This repository has been archived by the owner on Sep 17, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathzplane.py
186 lines (159 loc) · 5.74 KB
/
zplane.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# -*- coding: utf-8 -*-
"""
Combination of
http://scipy-central.org/item/52/1/zplane-function
and
http://www.dsprelated.com/showcode/244.php
with my own modifications
"""
# Copyright (c) 2011 Christopher Felton
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# The following is derived from the slides presented by
# Alexander Kain for CS506/606 "Special Topics: Speech Signal Processing"
# CSLU / OHSU, Spring Term 2011.
# Fall Term 2017
# UNM
#
# Hans Hofner
# Slight plotting modifications
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import patches
from matplotlib.pyplot import axvline, axhline
from collections import defaultdict
def zplane(z, p, filename=None):
"""Plot the complex z-plane given zeros and poles.
"""
ax = plt.subplot(111)
# TODO: should just inherit whatever subplot it's called in?
# Add unit circle and zero axes
unit_circle = patches.Circle((0,0), radius=1, fill=False,
color='black', ls='solid')
ax.add_patch(unit_circle)
axvline(0, color='0.7')
axhline(0, color='0.7')
# Plot the poles and set marker properties
poles = plt.plot(p.real, p.imag, 'x', markersize=9)
# Plot the zeros and set marker properties
zeros = plt.plot(z.real, z.imag, 'o', markersize=9,
color='none',
markeredgecolor=poles[0].get_color(), # same color as poles
)
# Scale axes to fit
r = 1.5 * np.amax(np.concatenate((abs(z), abs(p), [1])))
plt.axis('scaled')
plt.axis([-r, r, -r, r])
# ticks = [-1, -.5, .5, 1]
# plt.xticks(ticks)
# plt.yticks(ticks)
"""
If there are multiple poles or zeros at the same point, put a
superscript next to them.
TODO: can this be made to self-update when zoomed?
"""
# Finding duplicates by same pixel coordinates (hacky for now):
poles_xy = ax.transData.transform(np.vstack(poles[0].get_data()).T)
zeros_xy = ax.transData.transform(np.vstack(zeros[0].get_data()).T)
# dict keys should be ints for matching, but coords should be floats for
# keeping location of text accurate while zooming
# TODO make less hacky, reduce duplication of code
d = defaultdict(int)
coords = defaultdict(tuple)
for xy in poles_xy:
key = tuple(np.rint(xy).astype('int'))
d[key] += 1
coords[key] = xy
for key, value in d.iteritems():
if value > 1:
x, y = ax.transData.inverted().transform(coords[key])
plt.text(x, y,
r' ${}^{' + str(value) + '}$',
fontsize=13,
)
d = defaultdict(int)
coords = defaultdict(tuple)
for xy in zeros_xy:
key = tuple(np.rint(xy).astype('int'))
d[key] += 1
coords[key] = xy
for key, value in d.iteritems():
if value > 1:
x, y = ax.transData.inverted().transform(coords[key])
plt.text(x, y,
r' ${}^{' + str(value) + '}$',
fontsize=13,
)
if filename is None:
plt.grid()
plt.show()
else:
plt.savefig(filename)
print 'Pole-zero plot saved to ' + str(filename)
if __name__ == "__main__":
from scipy.signal import (freqz, butter, bessel, cheby1, cheby2, ellip,
tf2zpk, zpk2tf, lfilter, buttap, bilinear, cheb2ord, cheb2ap
)
from numpy import asarray, tan, array, pi, arange, cos, log10, unwrap, angle
from matplotlib.pyplot import (stem, title, grid, show, plot, xlabel,
ylabel, subplot, xscale, figure, xlim,
margins)
# # Cosine function
# omega = pi/4
# b = array([1.0, -cos(omega)])
# a = array([1, -2*cos(omega), 1.0])
b, a = butter(2, [0.06, 0.7], 'bandpass')
# Get the poles and zeros
z, p, k = tf2zpk(b, a)
# Create zero-pole plot
figure(figsize=(16, 9))
subplot(2, 2, 1)
zplane(z, p)
grid(True, color='0.9', linestyle='-', which='both', axis='both')
title('Poles and zeros')
# Display zeros, poles and gain
print str(len(z)) + " zeros: " + str(z)
print str(len(p)) + " poles: " + str(p)
print "gain: " + str(k)
# Impulse response
index = arange(0,20)
u = 1.0*(index==0)
y = lfilter(b, a, u)
subplot(2, 2, 3)
stem(index,y)
title('Impulse response')
margins(0, 0.1)
grid(True, color='0.9', linestyle='-', which='both', axis='both')
show()
# Frequency response
w, h = freqz(b, a)
subplot(2, 2, 2)
plot(w/pi, 20*log10(abs(h)))
xscale('log')
title('Frequency response')
xlabel('Normalized frequency')
ylabel('Amplitude [dB]')
margins(0, 0.1)
grid(True, color = '0.7', linestyle='-', which='major', axis='both')
grid(True, color = '0.9', linestyle='-', which='minor', axis='both')
show()
# Phase
subplot(2, 2, 4)
plot(w/pi, 180/pi * unwrap(angle(h)))
xscale('log')
xlabel('Normalized frequency')
ylabel('Phase [degrees]')
grid(True, color = '0.7', linestyle='-', which='major')
grid(True, color = '0.9', linestyle='-', which='minor')
show()