-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
107 lines (89 loc) · 2.96 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
from __future__ import division, print_function
# coding=utf-8
from keras.models import load_model
from keras.preprocessing import image
import sys
import os
import glob
import re
import numpy as np
import random
# Keras
from keras.applications.imagenet_utils import preprocess_input, decode_predictions
from keras.models import load_model
from keras.preprocessing import image
# Flask utils
from flask import Flask, redirect, url_for, request, render_template
from werkzeug.utils import secure_filename
from gevent.pywsgi import WSGIServer
import model
# Define a flask app
app = Flask(__name__)
account_sid = ''
auth_token = ''
# client = Client(account_sid, auth_token)
# Model saved with Keras model.save()
#MODEL_PATH = 'models/classifier.h5'
# Load your trained model
# model = load_model(MODEL_PATH)
# model._make_predict_function() # Necessary
# print('Model loaded. Start serving...')
# You can also use pretrained model from Keras
# Check https://keras.io/applications/
#from keras.applications.resnet50 import ResNet50
#model = ResNet50(weights='imagenet')
print('Model loaded. Check http://127.0.0.1:5000/')
"""
def model_predict(img_path, model):
img = image.load_img(img_path, target_size=(224, 224))
# Preprocessing the image
x = image.img_to_array(img)
# x = np.true_divide(x, 255)
x = np.expand_dims(x, axis=0)
# Be careful how your trained model deals with the input
# otherwise, it won't make correct prediction!
x = preprocess_input(x, mode='caffe')
preds = model.predict(x)
return preds
"""
@app.route('/', methods=['GET'])
def index():
# Main page
return render_template('index.html')
@app.route('/predict', methods=['GET', 'POST'])
def upload():
if request.method == 'POST':
# Get the file from post request
f = request.files['file']
# Save the file to ./uploads
basepath = os.path.dirname(__file__)
file_path = os.path.join(
basepath, 'uploads', secure_filename(f.filename))
f.save(file_path)
tempr=random.randint(50,101)
fire = model.predict(file_path)
if fire:
if tempr>70:
prediction = 'Fire'
else:
prediction = 'Fire and Smoke'
else:
prediction = 'No Fire'
return prediction
# classifier = load_model('classifier.h5')
# test_image = image.load_img(file_path, target_size = (64, 64))
# test_image = image.img_to_array(test_image)
# test_image = np.expand_dims(test_image, axis = 0)
# result = classifier.predict(test_image)
# #training_set.class_indices
# if result[0][0] == 1:
# prediction = 'notfire'
# else:
# prediction = 'fire'
# return prediction
return None
if __name__ == '__main__':
# app.run(port=5002, debug=True)
# Serve the app with gevent
http_server = WSGIServer(('', 5000), app)
http_server.serve_forever()