-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathnew_eval.py
593 lines (543 loc) · 27.4 KB
/
new_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
import os
import json
import logging
import argparse
import torch
from model import *
from model.metric import *
from model.loss import *
from logger import Logger
from trainer import *
from data_loader import getDataLoader
from evaluators import *
import math
from collections import defaultdict
import pickle, csv
#import requests
def update_status(name,message):
try:
r = requests.get('http://sensei-status.herokuapp.com/sensei-update/{}?message={}'.format(name,message))
except requests.exceptions.ConnectionError:
pass
#from datasets.forms_detect import FormsDetect
#from datasets import forms_detect
logging.basicConfig(level=logging.INFO, format='')
def save_style(location,volume,styles,authors,ids=None,doIds=False, spaced=None,strings=None,doSpaced=False):
#styles = np.concatenate(styles,axis=0)
styles = torch.cat(styles,dim=0)
styles = styles.numpy()
todump = {'styles':styles, 'authors':authors}
if doIds:
todump['ids'] = ids
if doSpaced:
todump['spaced'] = spaced#np.concatenate(spaced,axis=0)
todump['strings'] = strings
if len(styles)>0:
authors = np.array(authors)
loc = location+'.{}'.format(volume)
pickle.dump(todump, open(loc,'wb'))
print('saved '+loc)
def main(resume,saveDir,numberOfImages,index,gpu=None, shuffle=False, setBatch=None, config=None, thresh=None, addToConfig=None, test=False, toEval=None, verbosity=2):
np.random.seed(1234)
torch.manual_seed(1234)
if resume is not None:
checkpoint = torch.load(resume, map_location=lambda storage, location: storage)
print('loaded iteration {}'.format(checkpoint['iteration']))
loaded_iteration = checkpoint['iteration']
if config is None:
config = checkpoint['config']
else:
config = json.load(open(config))
for key in config.keys():
if type(config[key]) is dict:
for key2 in config[key].keys():
if key2.startswith('pretrained'):
config[key][key2]=None
else:
checkpoint = None
config = json.load(open(config))
loaded_iteration = None
config['optimizer_type']="none"
config['trainer']['use_learning_schedule']=False
config['trainer']['swa']=False
if gpu is None:
config['cuda']=False
else:
config['cuda']=True
config['gpu']=gpu
if thresh is not None:
config['THRESH'] = thresh
print('Threshold at {}'.format(thresh))
addDATASET=False
if addToConfig is not None:
for add in addToConfig:
addTo=config
printM='added config['
for i in range(len(add)-2):
addTo = addTo[add[i]]
printM+=add[i]+']['
value = add[-1]
if value=="":
value=None
elif value[0]=='[' and value[-1]==']':
value = value[1:-1].split('-')
else:
try:
value = int(value)
except ValueError:
try:
value = float(value)
except ValueError:
pass
addTo[add[-2]] = value
printM+=add[-2]+']={}'.format(value)
print(printM)
if (add[-2]=='useDetections' or add[-2]=='useDetect') and value!='gt':
addDATASET=True
#config['data_loader']['batch_size']=math.ceil(config['data_loader']['batch_size']/2)
if 'save_spaced' in config:
spaced={}
spaced_val={}
if toEval is None:
toEval=['spaced_label']
elif 'spaced_label' not in toEval:
toEval.append('spaced_label')
config['data_loader']['batch_size']=1
config['validation']['batch_size']=1
if 'a_batch_size' in config['data_loader']:
config['data_loader']['a_batch_size']=1
if 'a_batch_size' in config['validation']:
config['validation']['a_batch_size']=1
config['data_loader']['shuffle']=shuffle
#config['data_loader']['rot']=False
config['validation']['shuffle']=shuffle
config['data_loader']['eval']=True
config['validation']['eval']=True
#config['validation']
if config['data_loader']['data_set_name']=='FormsDetect':
config['data_loader']['batch_size']=1
del config['data_loader']["crop_params"]
config['data_loader']["rescale_range"]= config['validation']["rescale_range"]
#print(config['data_loader'])
if setBatch is not None:
config['data_loader']['batch_size']=setBatch
config['validation']['batch_size']=setBatch
batchSize = config['data_loader']['batch_size']
if 'batch_size' in config['validation']:
vBatchSize = config['validation']['batch_size']
else:
vBatchSize = batchSize
if not test:
data_loader, valid_data_loader = getDataLoader(config,'train')
else:
valid_data_loader, data_loader = getDataLoader(config,'test')
if addDATASET:
config['DATASET']=valid_data_loader.dataset
#ttt=FormsDetect(dirPath='/home/ubuntu/brian/data/forms',split='train',config={'crop_to_page':False,'rescale_range':[450,800],'crop_params':{"crop_size":512},'no_blanks':True, "only_types": ["text_start_gt"], 'cache_resized_images': True})
#data_loader = torch.utils.data.DataLoader(ttt, batch_size=16, shuffle=False, num_workers=5, collate_fn=forms_detect.collate)
#valid_data_loader = data_loader.split_validation()
if checkpoint is not None:
if 'state_dict' in checkpoint:
model = eval(config['arch'])(config['model'])
if config['trainer']['class']=='HWRWithSynthTrainer':
model = model.hwr
if 'style' in config['model'] and 'lookup' in config['model']['style']:
model.style_extractor.add_authors(data_loader.dataset.authors) ##HERE
##HACK fix
keys = list(checkpoint['state_dict'].keys())
for key in keys:
if 'style_from_normal' in key: #HACK
del checkpoint['state_dict'][key]
model.load_state_dict(checkpoint['state_dict'])
else:
model = checkpoint['model']
else:
model = eval(config['arch'])(config['model'])
model.eval()
if verbosity>1:
model.summary()
if type(config['loss'])==dict:
loss={}#[eval(l) for l in config['loss']]
for name,l in config['loss'].items():
loss[name]=eval(l)
else:
loss = eval(config['loss'])
metrics = [eval(metric) for metric in config['metrics']]
train_logger = Logger()
trainerClass = eval(config['trainer']['class'])
trainer = trainerClass(model, loss, metrics,
resume=False, #path
config=config,
data_loader=data_loader,
valid_data_loader=valid_data_loader,
train_logger=train_logger)
#saveFunc = eval(trainer_class+'_printer')
saveFunc = eval(config['data_loader']['data_set_name']+'_eval')
step=5
#numberOfImages = numberOfImages//config['data_loader']['batch_size']
#print(len(data_loader))
if data_loader is not None:
train_iter = iter(data_loader)
if valid_data_loader is not None:
valid_iter = iter(valid_data_loader)
with torch.no_grad():
if index is None:
if saveDir is not None:
trainDir = os.path.join(saveDir,'train_'+config['name'])
validDir = os.path.join(saveDir,'valid_'+config['name'])
if not os.path.isdir(trainDir):
os.mkdir(trainDir)
if not os.path.isdir(validDir):
os.mkdir(validDir)
if loaded_iteration is not None:
with open(os.path.join(validDir,'z_iter_{}.txt'.format(loaded_iteration)),'w') as f:
f.write('{}'.format(loaded_iteration))
else:
trainDir=None
validDir=None
val_metrics_sum = np.zeros(len(metrics))
val_metrics_list = defaultdict(lambda: defaultdict(list))
val_comb_metrics = defaultdict(list)
#if numberOfImages==0:
# for i in range(len(valid_data_loader)):
# print('valid batch index: {}\{} (not save)'.format(i,len(valid_data_loader)),end='\r')
# instance=valid_iter.next()
# metricsO,_ = saveFunc(config,instance,model,gpu,metrics)
# if type(metricsO) == dict:
# for typ,typeLists in metricsO.items():
# if type(typeLists) == dict:
# for name,lst in typeLists.items():
# val_metrics_list[typ][name]+=lst
# val_comb_metrics[typ]+=lst
# else:
# if type(typeLists) is float or type(typeLists) is int:
# typeLists = [typeLists]
# val_comb_metrics[typ]+=typeLists
# else:
# val_metrics_sum += metricsO.sum(axis=0)/metricsO.shape[0]
#else:
####
if 'save_spaced' in config:
spaced={}
spaced_val={}
assert(config['data_loader']['batch_size']==1)
assert(config['validation']['batch_size']==1)
if 'a_batch_size' in config['data_loader']:
assert(config['data_loader']['a_batch_size']==1)
if 'a_batch_size' in config['validation']:
assert(config['validation']['a_batch_size']==1)
if 'save_nns' in config:
nns=[]
if 'save_style' in config:
if toEval is None:
toEval =[]
if 'style' not in toEval:
toEval.append('style')
if 'author' not in toEval:
toEval.append('author')
styles=[]
authors=[]
strings=[]
stylesVal=[]
authorsVal=[]
spacedVal=[]
stringsVal=[]
spaced=[]
doIds = config['data_loader']['data_set_name']=='StyleWordDataset'
#doSpaced = not doIds#?
doSpaced = 'doSpaced' in config
if doSpaced:
if 'spaced_label' not in toEval:
toEval.append('spaced_label')
if 'gt' not in toEval:
toEval.append('gt')
ids=[]
idsVal=[]
saveStyleEvery=config['saveStyleEvery'] if 'saveStyleEvery' in config else 5000
saveStyleLoc = config['save_style']
lastSlash = saveStyleLoc.rfind('/')
if lastSlash>=0:
saveStyleValLoc = saveStyleLoc[:lastSlash+1]+'val_'+saveStyleLoc[lastSlash+1:]
else:
saveStyleValLoc = 'val_'+saveStyleLoc
if 'save_preds' in config:
to_save=[]
validName='valid' if not test else 'test'
startBatch = config['startBatch'] if 'startBatch' in config else 0
numberOfBatches = numberOfImages//batchSize
if numberOfBatches==0 and numberOfImages>1:
numberOfBatches=1
#for index in range(startIndex,numberOfImages,step*batchSize):
batch = startBatch
numberOfBatches = min(numberOfBatches,max(len(valid_data_loader),len(data_loader)))
for batch in range(startBatch,numberOfBatches):
#for validIndex in range(index,index+step*vBatchSize, vBatchSize):
#for validBatch
#if valyypidIndex/vBatchSize < len(valid_data_loader):
if valid_data_loader is not None and batch < len(valid_data_loader) and 'skip_valid' not in config:
print('{} batch index: {}/{} '.format(validName,batch,len(valid_data_loader)),end='\r')
#data, target = valid_iter.next() #valid_data_loader[validIndex]
#dataT = _to_tensor(gpu,data)
#output = model(dataT)
#data = data.cpu().data.numpy()
#output = output.cpu().data.numpy()
#target = target.data.numpy()
#metricsO = _eval_metrics_ind(metrics,output, target)
metricsO,aux = saveFunc(config,valid_iter.next(),trainer,metrics,validDir,batch*vBatchSize,toEval=toEval)
if type(metricsO) == dict:
for typ,typeLists in metricsO.items():
if type(typeLists) == dict:
for name,lst in typeLists.items():
val_metrics_list[typ][name]+=lst
val_comb_metrics[typ]+=lst
else:
if type(typeLists) is float or type(typeLists) is int:
typeLists = [typeLists]
val_comb_metrics[typ]+=typeLists
else:
val_metrics_sum += metricsO.sum(axis=0)/metricsO.shape[0]
if 'save_spaced' in config:
spaced_val[aux['name'][0]] = aux['spaced_label'].cpu()
if 'save_style' in config:
stylesVal.append(aux['style'].cpu())
authorsVal+=aux['author']
if doIds:
idsVal+=aux['name']
elif doSpaced:
#spacedVal.append(aux[2])
spacedVal+=aux['spaced_label']
stringsVal+=aux['gt']
if batch>0 and batch%saveStyleEvery==0:
save_style(saveStyleValLoc,batch,stylesVal,authorsVal,idsVal,doIds, spacedVal,stringsVal, doSpaced)
stylesVal=[]
authorsVal=[]
idsVal=[]
spacedVal=[]
stringsVal=[]
if not test and 'skip_train' not in config:
#for trainIndex in range(index,index+step*batchSize, batchSize):
# if trainIndex/batchSize < len(data_loader):
if batch < len(data_loader):
print('train batch index: {}/{} '.format(batch,len(data_loader)),end='\r')
#data, target = train_iter.next() #data_loader[trainIndex]
#dataT = _to_tensor(gpu,data)
#output = model(dataT)
#data = data.cpu().data.numpy()
#output = output.cpu().data.numpy()
#target = target.data.numpy()
#metricsO = _eval_metrics_ind(metrics,output, target)
instance = train_iter.next()
_,aux=saveFunc(config,instance,trainer,metrics,trainDir,batch*batchSize,toEval=toEval)
if 'save_nns' in config:
nns+=aux[-1]
if 'save_spaced' in config:
spaced[aux['name'][0]] = aux['spaced_label'].cpu()
if 'save_style' in config:
styles.append(aux['style'].cpu())
authors+=aux['author']
if doIds:
ids+=aux['name']
elif doSpaced:
#spaced.append(aux[2])
spaced+=aux['spaced_label']
strings+=aux['gt']
if batch>0 and batch%saveStyleEvery==0:
save_style(saveStyleLoc,batch,styles,authors,ids,doIds,spaced,strings,doSpaced)
styles=[]
authors=[]
ids=[]
spaced=[]
strings=[]
if 'save_preds' in config:
for b in range(batchSize):
try:
to_save.append([instance['name'][b],instance['gt'][b],aux['pred_str'][b],aux['cer'][b]])
except IndexError:
pass
#if gpu is not None or numberOfImages==0:
if 'save_preds' in config:
with open(config['save_preds'],'w') as f:
csvwriter=csv.writer(f, delimiter=',',quotechar='"', quoting=csv.QUOTE_MINIMAL)
for l in to_save:
csvwriter.writerow(l)
print('wrote results to {}'.format(config['save_preds']))
if saveDir is None:
try:
if valid_data_loader is not None:
for vi in range(batch,len(valid_data_loader)):
#print('{} batch index: {}\{} (not save) '.format(validName,vi,len(valid_data_loader)),end='\r')
instance = valid_iter.next()
metricsO,aux = saveFunc(config,instance,trainer,metrics,toEval=toEval)
if type(metricsO) == dict:
for typ,typeLists in metricsO.items():
if type(typeLists) == dict:
for name,lst in typeLists.items():
val_metrics_list[typ][name]+=lst
val_comb_metrics[typ]+=lst
else:
if type(typeLists) is float or type(typeLists) is int:
typeLists = [typeLists]
val_comb_metrics[typ]+=typeLists
else:
val_metrics_sum += metricsO.sum(axis=0)/metricsO.shape[0]
if 'save_spaced' in config:
spaced_val[aux['name'][0]] = aux['spaced_label'].cpu()
if 'save_style' in config:
stylesVal.append(aux['style'].cpu())
authorsVal+=aux['author']
if doIds:
idsVal+=aux['name']
elif doSpaced:
#spacedVal.append(aux[2])
spacedVal+=aux['spaced_label']
stringsVal+=aux['gt']
if vi>0 and vi%saveStyleEvery==0:
save_style(saveStyleValLoc,vi,stylesVal,authorsVal,idsVal,doIds,spacedVal,stringsVal,doSpaced)
stylesVal=[]
authorsVal=[]
idsVal=[]
spacedVal=[]
stringsVal=[]
except StopIteration:
print('ERROR: ran out of valid batches early. Expected {} more'.format(len(valid_data_loader)-vi))
####
if valid_data_loader is not None:
val_metrics_sum /= len(valid_data_loader)
print('{} metrics'.format(validName))
for i in range(len(metrics)):
print(metrics[i].__name__ + ': '+str(val_metrics_sum[i]))
for typ in val_comb_metrics:
print('{} overall mean: {}, std {}'.format(typ,np.mean(val_comb_metrics[typ],axis=0), np.std(val_comb_metrics[typ],axis=0)))
for name, typeLists in val_metrics_list[typ].items():
print('{} {} mean: {}, std {}'.format(typ,name,np.mean(typeLists,axis=0),np.std(typeLists,axis=0)))
if 'save_nns' in config:
pickle.dump(nns,open(config['save_nns'],'wb'))
if 'save_spaced' in config:
#import pdb;pdb.set_trace()
#spaced = torch.cat(spaced,dim=1).numpy()
#spaced_val = torch.cat(spaced_val,dim=1).numpy()
saveSpacedLoc = config['save_spaced']
lastSlash = saveSpacedLoc.rfind('/')
if lastSlash>=0:
saveSpacedValLoc = saveSpacedLoc[:lastSlash+1]+'val_'+saveSpacedLoc[lastSlash+1:]
else:
saveSpacedValLoc = 'val_'+saveSpacedLoc
with open(saveSpacedLoc,'wb') as f:
pickle.dump(spaced,f)
with open(saveSpacedValLoc,'wb') as f:
pickle.dump(spaced_val,f)
if 'save_style' in config:
if len(styles)>0:
assert(not doSpaced)
save_style(saveStyleLoc,len(data_loader),styles,authors,ids,doIds)
if len(stylesVal)>0:
save_style(saveStyleValLoc,len(valid_data_loader),stylesVal,authorsVal,idsVal,doIds)
elif type(index)==int:
if index>0:
instances = train_iter
else:
index*=-1
instances = valid_iter
batchIndex = index//batchSize
inBatchIndex = index%batchSize
for i in range(batchIndex+1):
instance= instances.next()
#data, target = data[inBatchIndex:inBatchIndex+1], target[inBatchIndex:inBatchIndex+1]
#dataT = _to_tensor(gpu,data)
#output = model(dataT)
#data = data.cpu().data.numpy()
#output = output.cpu().data.numpy()
#target = target.data.numpy()
#print (output.shape)
#print ((output.min(), output.amin()))
#print (target.shape)
#print ((target.amin(), target.amin()))
#metricsO = _eval_metrics_ind(metrics,output, target)
saveFunc(config,instance,model,gpu,metrics,saveDir,batchIndex*batchSize,toEval=toEval)
else:
for instance in data_loader:
if index in instance['imgName']:
break
if index not in instance['imgName']:
for instance in valid_data_loader:
if index in instance['imgName']:
break
if index in instance['imgName']:
saveFunc(config,instance,model,gpu,metrics,saveDir,0,toEval=toEval)
else:
print('{} not found! (on {})'.format(index,instance['imgName']))
print('{} not found! (on {})'.format(index,instance['imgName']))
if __name__ == '__main__':
logger = logging.getLogger()
parser = argparse.ArgumentParser(description='PyTorch Evaluator/Displayer')
parser.add_argument('-c', '--checkpoint', default=None, type=str,
help='path to latest checkpoint (default: None)')
parser.add_argument('-d', '--savedir', default=None, type=str,
help='path to directory to save result images (default: None)')
parser.add_argument('-i', '--index', default=None, type=int,
help='index on instance to process (default: None)')
parser.add_argument('-n', '--number', default=0, type=int,
help='number of images to save out (from each train and valid) (default: 0)')
parser.add_argument('-g', '--gpu', default=None, type=int,
help='gpu number (default: cpu only)')
parser.add_argument('-b', '--batchsize', default=None, type=int,
help='gpu number (default: cpu only)')
parser.add_argument('-v', '--verbosity', default=2, type=int,
help='0,1,2')
parser.add_argument('-s', '--shuffle', default=False, type=bool,
help='shuffle data')
parser.add_argument('-f', '--config', default=None, type=str,
help='config override')
parser.add_argument('-m', '--imgname', default=None, type=str,
help='specify image')
parser.add_argument('-t', '--thresh', default=None, type=float,
help='Confidence threshold for detections')
parser.add_argument('-a', '--addtoconfig', default=None, type=str,
help='Arbitrary key-value pairs to add to config of the form "k1=v1,k2=v2,...kn=vn". You can nest keys with k1=k2=k3=v')
parser.add_argument('-T', '--test', default=False, action='store_const', const=True,
help='Run test set')
parser.add_argument('-N', '--notify', default='', type=str,
help='send messages to server, name')
parser.add_argument('-e', '--eval', default=None, type=str,
help='what to evaluate (print) list: "pred"=hwr prediction, "recon"=reconstruction using predicted mask, "recon_gt_mask"=reconstruction using GT mask, "mask"=generated mask for reconstruction "gen"=image generated from interpolated styles, "gen_mask"=mask generated for generated image')
#parser.add_argument('-E', '--special_eval', default=None, type=str,
# help='what to evaluate (print)')
args = parser.parse_args()
addtoconfig=[]
if args.addtoconfig is not None:
split = args.addtoconfig.split(',')
for kv in split:
split2=kv.split('=')
addtoconfig.append(split2)
config = None
if args.checkpoint is None and args.config is None:
print('Must provide checkpoint (with -c)')
exit()
index = args.index
if args.index is not None and args.imgname is not None:
print("Cannot index by number and name at same time.")
exit()
if args.index is None and args.imgname is not None:
index = args.imgname
if len(args.notify)>0:
name = args.notify
update_status(name,'started')
#toEval = args.spcial_eval if args.spcial_eval is not None else args.eval
if args.eval is not None and args.eval[0]=='[':
assert(args.eval[-1]==']')
toEval=args.eval[1:-1].split(',')
else:
toEval=args.eval
try:
if args.gpu is not None:
with torch.cuda.device(args.gpu):
main(args.checkpoint, args.savedir, args.number, index, gpu=args.gpu, shuffle=args.shuffle, setBatch=args.batchsize, config=args.config, thresh=args.thresh, addToConfig=addtoconfig,test=args.test,toEval=toEval,verbosity=args.verbosity)
else:
main(args.checkpoint, args.savedir, args.number, index, gpu=args.gpu, shuffle=args.shuffle, setBatch=args.batchsize, config=args.config, thresh=args.thresh, addToConfig=addtoconfig,test=args.test,toEval=toEval,verbosity=args.verbosity)
except Exception as er:
if len(args.notify)>0:
update_status(name,er)
raise er
else:
if len(args.notify)>0:
update_status(name,'DONE!')