-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathget_styles.py
316 lines (272 loc) · 12.9 KB
/
get_styles.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import os
import json
import logging
import argparse
import torch
from model import *
from model.metric import *
from model.loss import *
from logger import Logger
from trainer import *
from data_loader import getDataLoader
from evaluators import *
import math
from collections import defaultdict
import pickle
def main(resume,saveDir,index,gpu=None, shuffle=False, setBatch=None, config=None, addToConfig=None, test=False, verbosity=2, transform_style=False):
assert(saveDir is not None)
np.random.seed(1234)
torch.manual_seed(1234)
if resume is not None:
checkpoint = torch.load(resume, map_location=lambda storage, location: storage)
print('loaded iteration {}'.format(checkpoint['iteration']))
loaded_iteration = checkpoint['iteration']
if config is None:
config = checkpoint['config']
else:
config = json.load(open(config))
for key in config.keys():
if type(config[key]) is dict:
for key2 in config[key].keys():
if key2.startswith('pretrained'):
config[key][key2]=None
else:
checkpoint = None
config = json.load(open(config))
loaded_iteration = None
train_loc = os.path.join(saveDir,'train_styles_{}.pkl'.format(loaded_iteration))
if not test:
val_loc = os.path.join(saveDir,'val_styles_{}.pkl'.format(loaded_iteration))
else:
val_loc = os.path.join(saveDir,'test_styles_{}.pkl'.format(loaded_iteration))
config['optimizer_type']="none"
config['trainer']['use_learning_schedule']=False
config['trainer']['swa']=False
if gpu is None:
config['cuda']=False
else:
config['cuda']=True
config['gpu']=gpu
addDATASET=False
if addToConfig is not None:
for add in addToConfig:
addTo=config
printM='added config['
for i in range(len(add)-2):
addTo = addTo[add[i]]
printM+=add[i]+']['
value = add[-1]
if value=="":
value=None
elif value[0]=='[' and value[-1]==']':
value = value[1:-1].split('-')
else:
try:
value = int(value)
except ValueError:
try:
value = float(value)
except ValueError:
pass
addTo[add[-2]] = value
printM+=add[-2]+']={}'.format(value)
print(printM)
if (add[-2]=='useDetections' or add[-2]=='useDetect') and value!='gt':
addDATASET=True
config['data_loader']['shuffle']=shuffle
#config['data_loader']['rot']=False
config['validation']['shuffle']=shuffle
config['data_loader']['eval']=True
config['validation']['eval']=True
#config['validation']
if config['data_loader']['data_set_name']=='FormsDetect':
config['data_loader']['batch_size']=1
del config['data_loader']["crop_params"]
config['data_loader']["rescale_range"]= config['validation']["rescale_range"]
#print(config['data_loader'])
if setBatch is not None:
config['data_loader']['batch_size']=setBatch
config['validation']['batch_size']=setBatch
batchSize = config['data_loader']['batch_size']
if 'batch_size' in config['validation']:
vBatchSize = config['validation']['batch_size']
else:
vBatchSize = batchSize
if not test:
data_loader, valid_data_loader = getDataLoader(config,'train')
else:
valid_data_loader, data_loader = getDataLoader(config,'test')
if addDATASET:
config['DATASET']=valid_data_loader.dataset
#ttt=FormsDetect(dirPath='/home/ubuntu/brian/data/forms',split='train',config={'crop_to_page':False,'rescale_range':[450,800],'crop_params':{"crop_size":512},'no_blanks':True, "only_types": ["text_start_gt"], 'cache_resized_images': True})
#data_loader = torch.utils.data.DataLoader(ttt, batch_size=16, shuffle=False, num_workers=5, collate_fn=forms_detect.collate)
#valid_data_loader = data_loader.split_validation()
if checkpoint is not None:
if 'state_dict' in checkpoint:
model = eval(config['arch'])(config['model'])
if config['trainer']['class']=='HWRWithSynthTrainer':
model = model.hwr
if 'style' in config['model'] and 'lookup' in config['model']['style']:
model.style_extractor.add_authors(data_loader.dataset.authors) ##HERE
model.load_state_dict(checkpoint['state_dict'])
else:
model = checkpoint['model']
else:
model = eval(config['arch'])(config['model'])
model.eval()
if verbosity>1:
model.summary()
if type(config['loss'])==dict:
loss={}#[eval(l) for l in config['loss']]
for name,l in config['loss'].items():
loss[name]=eval(l)
else:
loss = eval(config['loss'])
metrics = [eval(metric) for metric in config['metrics']]
train_logger = Logger()
trainerClass = eval(config['trainer']['class'])
trainer = trainerClass(model, loss, metrics,
resume=False, #path
config=config,
data_loader=data_loader,
valid_data_loader=valid_data_loader,
train_logger=train_logger)
#saveFunc = eval(trainer_class+'_printer')
saveFunc = eval(config['data_loader']['data_set_name']+'_eval')
step=5
if data_loader is not None:
train_iter = iter(data_loader)
if valid_data_loader is not None:
valid_iter = iter(valid_data_loader)
with torch.no_grad():
if index is None:
val_metrics_sum = np.zeros(len(metrics))
val_metrics_list = defaultdict(lambda: defaultdict(list))
val_comb_metrics = defaultdict(list)
validName='valid' if not test else 'test'
charSpec = trainer.model.char_style_dim>0
train_styles=[]
train_authors=[]
if not test:
for i,instance in enumerate(data_loader):
print('train: {}/{} '.format(i,len(data_loader)),end='\r')
image, label = trainer._to_tensor(instance)
batch_size = label.size(1)
label_lengths = instance['label_lengths']
a_batch_size = trainer.a_batch_size if 'a_batch_size' in instance else None
style = trainer.model.extract_style(image,label,a_batch_size)
if transform_style:
style = trainer.model.generator.style_emb(style)
if charSpec:
for b in range(batch_size):
train_styles.append((style[0][b].cpu(),style[1][b].cpu(),style[2][b].cpu()))
else:
train_styles.append(style.cpu())
train_authors+=instance['author']
trainer.model.spaced_label=None
trainer.model.mask=None
trainer.model.gen_mask=None
trainer.model.top_and_bottom=None
trainer.model.counts=None
trainer.model.pred=None
trainer.model.spacing_pred=None
trainer.model.mask_pred=None
trainer.model.gen_spaced=None
trainer.model.spaced_style=None
trainer.model.mu=None
trainer.model.sigma=None
if charSpec:
train_styles = [ (s[0].numpy(),s[1].numpy(),s[2].numpy()) for s in train_styles]
else:
train_styles = torch.cat(train_styles,dim=0).numpy()
train_authors = np.array(train_authors)
pickle.dump({'styles':train_styles,'authors':train_authors},open(train_loc,'wb'))
print('saved {}'.format(train_loc))
val_styles=[]
val_authors=[]
for i,instance in enumerate(valid_data_loader):
print('{}: {}/{} '.format(validName,i,len(valid_data_loader)),end='\r')
image, label = trainer._to_tensor(instance)
batch_size = label.size(1)
label_lengths = instance['label_lengths']
a_batch_size = trainer.a_batch_size if 'a_batch_size' in instance else None
style = trainer.model.extract_style(image,label,a_batch_size)
if transform_style:
style = trainer.model.generator.style_emb(style)
if charSpec:
for b in range(batch_size):
val_styles.append((style[0][b].cpu(),style[1][b].cpu(),style[2][b].cpu()))
else:
val_styles.append(style.cpu())
val_authors+=instance['author']
trainer.model.spaced_label=None
trainer.model.mask=None
trainer.model.gen_mask=None
trainer.model.top_and_bottom=None
trainer.model.counts=None
trainer.model.pred=None
trainer.model.spacing_pred=None
trainer.model.mask_pred=None
trainer.model.gen_spaced=None
trainer.model.spaced_style=None
trainer.model.mu=None
trainer.model.sigma=None
if charSpec:
val_styles = [ (s[0].numpy(),s[1].numpy(),s[2].numpy()) for s in val_styles]
assert(len(val_styles) == len(val_authors))
else:
val_styles = torch.cat(val_styles,dim=0).numpy()
val_authors = np.array(val_authors)
pickle.dump({'styles':val_styles,'authors':val_authors},open(val_loc,'wb'))
print('saved {}'.format(val_loc))
if __name__ == '__main__':
logger = logging.getLogger()
parser = argparse.ArgumentParser(description='PyTorch Evaluator/Displayer')
parser.add_argument('-c', '--checkpoint', default=None, type=str,
help='path to latest checkpoint (default: None)')
parser.add_argument('-d', '--savedir', default=None, type=str,
help='path to directory to save result images (default: None)')
parser.add_argument('-i', '--index', default=None, type=int,
help='index on instance to process (default: None)')
parser.add_argument('-g', '--gpu', default=None, type=int,
help='gpu number (default: cpu)')
parser.add_argument('-b', '--batchsize', default=None, type=int,
help='Set the batch size (default: use config)')
parser.add_argument('-v', '--verbosity', default=2, type=int,
help='0,1,2')
parser.add_argument('-s', '--shuffle', default=False, type=bool,
help='shuffle data')
parser.add_argument('-f', '--config', default=None, type=str,
help='config override')
parser.add_argument('-m', '--imgname', default=None, type=str,
help='specify image')
parser.add_argument('-a', '--addtoconfig', default=None, type=str,
help='Arbitrary key-value pairs to add to config of the form "k1=v1,k2=v2,...kn=vn". You can nest keys with k1=k2=k3=v')
parser.add_argument('-T', '--test', default=False, action='store_const', const=True,
help='Run test set (default is train and valid)')
parser.add_argument('-S', '--transformstyle', default=False, action='store_const', const=True,
help="use generator's style embedding function")
#parser.add_argument('-E', '--special_eval', default=None, type=str,
# help='what to evaluate (print)')
args = parser.parse_args()
addtoconfig=[]
if args.addtoconfig is not None:
split = args.addtoconfig.split(',')
for kv in split:
split2=kv.split('=')
addtoconfig.append(split2)
config = None
if args.checkpoint is None and args.config is None:
print('Must provide checkpoint (with -c)')
exit()
index = args.index
if args.index is not None and args.imgname is not None:
print("Cannot index by number and name at same time.")
exit()
if args.index is None and args.imgname is not None:
index = args.imgname
if args.gpu is not None:
with torch.cuda.device(args.gpu):
main(args.checkpoint, args.savedir, index, gpu=args.gpu, shuffle=args.shuffle, setBatch=args.batchsize, config=args.config, addToConfig=addtoconfig,test=args.test,verbosity=args.verbosity,transform_style=args.transformstyle)
else:
main(args.checkpoint, args.savedir, index, gpu=args.gpu, shuffle=args.shuffle, setBatch=args.batchsize, config=args.config, addToConfig=addtoconfig,test=args.test,verbosity=args.verbosity,transform_style=args.transformstyle)