-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulations.py
218 lines (181 loc) · 7.37 KB
/
simulations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import dataclasses
import itertools
import json
import logging
import multiprocessing
import pathlib
import pickle
import traceback
from typing import Any, Callable, Dict, List, Optional, Text, Tuple, Union
import dataclasses_json
import game
import utils
utils.setup_logging()
ContextSizeType = Union[int, Tuple[int, int]]
@dataclasses_json.dataclass_json
@dataclasses.dataclass
class Simulation:
experiment_grid_name: Text # name for saving
experiment_name: Text # game name
context_size: ContextSizeType
object_size: int
num_functions: int
message_sizes: Tuple[int]
target_function: Callable
context_generator: Callable = None
use_context: bool = True
shared_context: bool = True
nature_includes_function: bool = True
shuffle_decoder_context: bool = False
num_trials: int = 1
mini_batch_size: int = 64
num_batches: int = 5000
loss_type: str = "mse"
epoch_nums: List[int] = dataclasses.field(default_factory=list)
# {Message size -> [Trial x {Evaluation name -> values}]}
evaluations: Dict[int, List[Dict[Text, Any]]] = dataclasses.field(
default_factory=dict
)
def _get_simulation_path(simulation_name: Text, subdir: Text = "") -> pathlib.Path:
return (
pathlib.Path("./simulations/").joinpath(subdir).joinpath(f"{simulation_name}/")
)
def load_simulation(simulation_name: Text, subdir: Text = "") -> Simulation:
name_split = simulation_name.split("/")
if len(name_split) == 2:
subdir, simulation_name = name_split
return Simulation.from_json(
_get_simulation_path(simulation_name, subdir)
.joinpath(f"{simulation_name}.json")
.read_text()
)
def _save_simulation(simulation: Simulation):
# Can't serialize functions.
simulation_copy = dataclasses.replace(
simulation, target_function=None, context_generator=None
)
simulation_path = pathlib.Path(f"./simulations/{simulation_copy.experiment_name}/")
simulation_path.mkdir(parents=True, exist_ok=True)
simulation_path.joinpath(f"{simulation_copy.experiment_name}.json").write_text(
simulation_copy.to_json(indent=2)
)
def _save_games(simulation: Simulation, games: Dict[int, List[game.Game]]):
# print("pretend it has saved the file in simulations.py")
print("bug name: ", simulation.experiment_name)
print("bug type: ", type(simulation.experiment_name))
pickle.dump(
games, _get_simulation_path(simulation.experiment_name).joinpath("games.pickle").open("wb")
)
def load_games(simulation_name: Text) -> Dict[int, List[game.Game]]:
return pickle.load(
_get_simulation_path(simulation_name).joinpath("games.pickle").open("rb")
)
def run_simulation(
simulation: Simulation, visualize: bool = False, base_seed: int = 1000
) -> Dict[int, List[game.Game]]:
logging.info(f"Running simulation: {simulation}")
# {Message size -> Trial x Game}
games: Dict[int, List[game.Game]] = {}
# TODO decouple simulations from message size.
for message_size in simulation.message_sizes:
evaluations_per_trial: List[Dict[Text, Any]] = []
game_per_trial: List[game.Game] = []
# print(simulation.target_function)
# exit()
for trial in range(simulation.num_trials):
current_game: game.Game = game.Game(
context_size=simulation.context_size,
object_size=simulation.object_size,
message_size=message_size,
num_functions=simulation.num_functions,
use_context=simulation.use_context,
shared_context=simulation.shared_context,
shuffle_decoder_context=simulation.shuffle_decoder_context,
nature_includes_function=simulation.nature_includes_function,
target_function=simulation.target_function,
context_generator=simulation.context_generator,
seed=base_seed + trial,
loss_type = simulation.loss_type
)
# print("simulations: ", simulation)
# exit()
try:
# print(simulation.num_batches)
# exit()
current_game.play(
num_batches=simulation.num_batches,
mini_batch_size=simulation.mini_batch_size,
)
if visualize:
current_game.visualize()
evaluation_vals = current_game.get_evaluations()
evaluations_per_trial.append(evaluation_vals)
game_per_trial.append(current_game)
except Exception as e:
logging.error(
f"Simulation {simulation.experiment_grid_name} crashed:\n{traceback.format_exc()}"
)
raise e
simulation.evaluations[message_size] = evaluations_per_trial
games[message_size] = game_per_trial
simulation.epoch_nums = games[simulation.message_sizes[0]][0].epoch_nums
_save_simulation(simulation)
_save_games(simulation, games)
return games
def run_simulation_grid(
simulation_name: Text,
simulation_factory: Callable,
message_sizes: Tuple[int, ...],
num_trials: int,
num_processes: Optional[int] = None,
num_batches: int = 1,
**kwargs,
):
keys, values = zip(*kwargs.items())
simulations_grid = list(itertools.product(*values))
logging.info(
f"Running {len(simulations_grid) * len(message_sizes) * num_trials} total games"
)
simulations = []
for grid_values in simulations_grid:
simulation_kwargs = {k: v for k, v in zip(keys, grid_values)}
simulation_kwargs_for_saving = {k: v for k, v in zip(keys, grid_values)}
current_simulation_name = f"{simulation_name}__" + utils.kwargs_to_str(
simulation_kwargs_for_saving
)
# current_simulation_name = f"{simulation_name}_o{object_size}_m{utils.join_vals(message_sizes)}_sharedcontext{int(shared_context)}"
# f"belief_update_game_c{context_size}_o{object_size}_f{num_functions}_m{utils.join_vals(message_sizes)}_sharedcontext{int(shared_context)}
# print("simulation name: ", simulation_name)
# print("current_simulation_name: ", current_simulation_name)
# print("simulation_kwargs: ", simulation_kwargs)
# print("loss type: ", simulation_kwargs["loss_type"])
simulation = simulation_factory(
experiment_name=current_simulation_name,
message_sizes=message_sizes,
num_trials=num_trials,
num_batches = num_batches,
**simulation_kwargs,
)
simulations.append(simulation)
simulation_grid_kwargs = {"m": message_sizes, "trials": num_trials}
simulation_grid_kwargs.update(kwargs)
simulation_grid_name = f"{simulation_name}__" + utils.kwargs_to_str(
simulation_grid_kwargs
)
pathlib.Path(f"./simulations/{simulation_grid_name}.json").write_text(
json.dumps(
[
dataclasses.replace(
x, target_function=None, context_generator=None
).to_dict()
for x in simulations
],
indent=2,
)
)
if num_processes is not None:
pool = multiprocessing.Pool(processes=num_processes)
pool.map(run_simulation, simulations)
else:
for simulation in simulations:
run_simulation(simulation)