-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluate.py
67 lines (53 loc) · 1.65 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import numpy as np
import math
import heapq
_model = None
_test_ratings = None
_test_negatives = None
_data_matrix = None
def evaluate_model(model, test_ratings, test_negatives, data_matrix, k):
global _model
global _test_ratings
global _test_negatives
global _data_matrix
_model = model
_test_ratings = test_ratings
_test_negatives = test_negatives
_data_matrix = data_matrix
hits, ndcgs = [], []
for i in range(len(_test_ratings)):
(hr, ndcg) = _evaluate_one_rating(i, k=k)
hits.append(hr)
ndcgs.append(ndcg)
return hits, ndcgs
def _evaluate_one_rating(idx, k):
rating = _test_ratings[idx]
items = _test_negatives[idx]
user = rating[0]
gt_item = rating[1]
items.append(gt_item)
items_input = []
users_input = []
for item in items:
items_input.append(_data_matrix[:, item])
users_input.append(_data_matrix[user])
predictions = _model.predict([np.array(users_input), np.array(items_input)],
batch_size=100 + 1,
verbose=0)
map_item_score = {}
for idx, item in enumerate(items):
map_item_score[item] = predictions[idx]
items.pop()
rank_list = heapq.nlargest(k, map_item_score, key=map_item_score.get)
hr = get_hit_ratio(rank_list, gt_item)
ndcg = get_ndcg(rank_list, gt_item)
return hr, ndcg
def get_hit_ratio(rank_list, gt_item):
if gt_item in rank_list:
return 1
return 0
def get_ndcg(rank_list, gt_item):
for idx, item in enumerate(rank_list):
if item == gt_item:
return math.log(2) / math.log(idx + 2)
return 0