forked from WUR-AI/PCSE-Gym
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_agent.py
347 lines (306 loc) · 16.4 KB
/
evaluate_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import os
import argparse
import pickle
import gymnasium as gym
import lib_programname
import matplotlib.pyplot as plt
from datetime import datetime
from torch.utils.tensorboard import SummaryWriter
from pcse_gym.envs.winterwheat import WinterWheat, WinterWheatRay
from pcse_gym.envs.sb3 import get_model_kwargs
import pcse_gym.utils.defaults as defaults
import pcse_gym.utils.eval as eval
from pcse_gym.envs.constraints import ActionConstrainer
path_to_program = lib_programname.get_path_executed_script()
rootdir = path_to_program.parents[0]
evaluate_dir = os.path.join(rootdir, "tensorboard_logs", "evaluation_runs")
def get_po_features(pcse_env=1):
if pcse_env:
po_features = ['TAGP', 'LAI', 'NAVAIL', 'SM', 'NuptakeTotal']
else:
po_features = ['TGROWTH', 'LAI', 'TNSOIL', 'NUPTT', 'TRAIN']
return po_features
def get_action_space(nitrogen_levels=7, po_features=[]):
if po_features:
a_shape = [nitrogen_levels] + [2] * len(po_features)
space_return = gym.spaces.MultiDiscrete(a_shape)
else:
space_return = gym.spaces.Discrete(nitrogen_levels)
return space_return
def initialize_env(pcse_env=1, po_features=[],
crop_features=defaults.get_default_crop_features(pcse_env=1, minimal=True),
costs_nitrogen=10, reward='DEF', nitrogen_levels=7, action_multiplier=1.0, add_random=False,
years=defaults.get_default_train_years(), locations=defaults.get_default_location(), args_vrr=False,
action_limit=0, noisy_measure=False, n_budget=0, no_weather=False, framework='sb3',
mask_binary=False,
placeholder_val=-1.11, normalize=False, loc_code='NL', cost_measure='real', start_type='sowing',
random_init=False, m_multiplier=1, measure_all=False, seed=None):
if add_random:
po_features.append('random'), crop_features.append('random')
action_space = get_action_space(nitrogen_levels=nitrogen_levels, po_features=po_features)
kwargs = dict(po_features=po_features, args_measure=po_features is not None, args_vrr=args_vrr,
action_limit=action_limit, noisy_measure=noisy_measure, n_budget=n_budget, no_weather=no_weather,
mask_binary=mask_binary, placeholder_val=placeholder_val, normalize=normalize, loc_code=loc_code,
cost_measure=cost_measure, start_type=start_type, random_init=random_init, m_multiplier=m_multiplier,
measure_all=measure_all)
if framework == 'sb3':
env_return = WinterWheat(crop_features=crop_features,
costs_nitrogen=costs_nitrogen,
years=years,
locations=locations,
action_space=action_space,
action_multiplier=action_multiplier,
reward=reward,
**get_model_kwargs(pcse_env, locations, start_type=kwargs.get('start_type', 'sowing')),
**kwargs, seed=seed)
# elif framework == 'rllib':
# from pcse_gym.utils.rllib_helpers import ww_lim, winterwheat_config_maker
# config = winterwheat_config_maker(crop_features=crop_features,
# costs_nitrogen=costs_nitrogen, years=years,
# locations=locations,
# action_space=action_space,
# action_multiplier=1.0,
# reward=reward, pcse_model=1,
# **get_model_kwargs(1, locations),
# **kwargs)
# env_return = ww_lim(config)
else:
raise Exception("Invalid framework!")
return env_return
def measure_history_histogram(data, year, location, crop_var, axes):
# Extract data for the given location
if isinstance(location, tuple):
location = str(location)
loc_data = data.get(location, {})
# Extract the values and dates for the given year and variable
dates = []
values = []
for date_str, var_data in loc_data.items():
date_obj = datetime.strptime(date_str, '%Y-%m-%d')
if date_obj.year == year and crop_var in var_data:
dates.append(date_obj)
values.append(var_data[crop_var])
# Plotting
axes.bar(dates, values, width=8, align='center')
axes.set_title(f"Histogram for {crop_var} in {location}, {year}")
axes.set_xlabel("Date")
axes.set_ylabel("Measure?")
axes.set_ylim([0, 1.1]) # Since values are only 0 and 1
axes.grid(axis='y')
def evaluate_policy(policy, env, n_eval_episodes=1, framework='sb3'):
episode_rewards, episode_infos = [], []
for i in range(n_eval_episodes):
episode_length = 0
episode_reward = 0
obs = env.reset()
if framework == 'rllib':
state = policy.get_initial_state()
else:
state = None
terminated, truncated, prev_action, prev_reward, info = False, False, None, None, None
infos_this_episode = []
while not terminated or truncated:
action, state, _ = policy.compute_single_action(obs=obs, state=state, prev_action=prev_action,
prev_reward=prev_reward, info=info)
obs, reward, terminated, truncated, info = env.step(action)
prev_action, prev_reward = action, reward
episode_reward += reward
episode_length += 1
infos_this_episode.append(info)
variables = infos_this_episode[0].keys()
episode_info = {}
for v in variables:
episode_info[v] = {}
for v in variables:
for info_dict in infos_this_episode:
episode_info[v].update(info_dict[v])
episode_rewards.append(episode_reward)
episode_infos.append(episode_info)
return episode_rewards, episode_infos
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--checkpoint_path", type=str)
parser.add_argument("--step", type=int, default=400000)
parser.add_argument("-c", "--costs_nitrogen", type=float, default=10.0, help="Costs for nitrogen")
parser.add_argument("-a", "--agent", type=str, default="PPO", help="RL agent. PPO, RPPO, GRU,"
"IndRNN, DiffNC, PosMLP, ATM or DQN")
parser.add_argument("-e", "--environment", type=int, default=1)
parser.add_argument("-r", "--reward", type=str, default="DEF", help="Reward function. DEF, DEP, GRO, or ANE")
parser.add_argument("-b", "--n_budget", type=int, default=0, help="Nitrogen budget. kg/ha")
parser.add_argument("--action_limit", type=int, default=0, help="Limit fertilization frequency."
"Recommended 4 times")
parser.add_argument("-m", "--measure", action='store_true')
parser.add_argument("--no-measure", action='store_false', dest='measure')
parser.add_argument("-l", "--location", type=str, default="NL", help="NL or LT.")
parser.add_argument("-y", "--year", default=None, help="year to evaluate agent")
parser.add_argument("--variable-recovery-rate", action='store_true', dest='vrr')
parser.add_argument("--noisy-measure", action='store_true', dest='noisy_measure')
parser.add_argument("--no-weather", action='store_true', dest='no_weather')
parser.add_argument("--random_feature", action='store_true', dest='random_feature')
parser.set_defaults(measure=False, vrr=False, noisy_measure=False, framework='sb3', no_weather=False,
random_feature=False)
args = parser.parse_args()
framework_path = "WOFOST_experiments"
if not args.measure and args.noisy_measure:
parser.error("noisy measure should be used with measure")
if args.agent not in ['PPO', 'RPPO', 'DQN', 'GRU', 'PosMLP', 'S4D', 'IndRNN', 'DiffNC', 'ATM']:
parser.error("Invalid agent argument. Please choose PPO, RPPO, GRU, IndRNN, DiffNC, PosMLP, ATM, DQN")
if args.reward == 'DEP':
args.vrr = True
if args.agent in ['GRU', 'PosMLP', 'S4D', 'IndRNN', 'DiffNC']:
args.framework = 'rllib'
framework_path = "rllib/PPO"
elif args.agent in ['ATM']:
args.framework = 'ACNO-MDP'
pcse_model_name = "LINTUL" if not args.environment else "WOFOST"
pcse_model = args.environment
if args.location == "NL":
"""The Netherlands"""
eval_locations = [(52, 5.5)]#, (51.5, 5), (52.5, 6.0)]
elif args.location == "LT":
"""Lithuania"""
eval_locations = [(55.0, 23.5), (55.0, 24.0), (55.5, 23.5)]
else:
parser.error("--location arg should be either LT or NL")
if args.year is not None:
if isinstance(args.year, int):
eval_year = [args.year]
else:
eval_year = args.year
else:
eval_year = [year for year in [*range(1990, 2024)] if year % 2 == 0]
crop_features = defaults.get_default_crop_features(pcse_env=args.environment, minimal=False)
weather_features = defaults.get_default_weather_features()
action_features = defaults.get_default_action_features()
kwargs = {'args_vrr': args.vrr, 'action_limit': args.action_limit, 'noisy_measure': args.noisy_measure,
'n_budget': args.n_budget, 'framework': args.framework, 'no_weather': args.no_weather}
if not args.measure:
action_spaces = gym.spaces.Discrete(7)
else:
if args.environment:
po_features = ['TAGP', 'LAI', 'NAVAIL', 'NuptakeTotal', 'SM']
if args.random_feature:
po_features.append('random')
if 'random' in po_features:
crop_features.append('random')
else:
po_features = ['TGROWTH', 'LAI', 'TNSOIL', 'NUPTT', 'TRAIN']
kwargs['po_features'] = po_features
kwargs['args_measure'] = True
if not args.noisy_measure:
m_shape = 2
else:
m_shape = 3
a_shape = [7] + [m_shape] * len(po_features)
action_spaces = gym.spaces.MultiDiscrete(a_shape)
checkpoint_path = os.path.join(rootdir, "tensorboard_logs", framework_path, args.checkpoint_path,
f'model-{args.step}')
stats_path = os.path.join(rootdir, "tensorboard_logs", framework_path, args.checkpoint_path, f'env-{args.step}.pkl')
agent = None
if args.framework == 'rllib':
raise NotImplementedError
import ray
from ray.rllib.algorithms.algorithm import Algorithm
agent = Algorithm.from_checkpoint(checkpoint_path)
initialize_env(**kwargs)
policy = agent.get_policy()
pass
if args.framework == 'sb3':
from stable_baselines3 import PPO
from sb3_contrib import RecurrentPPO
from stable_baselines3.common.vec_env import VecNormalize, DummyVecEnv, sync_envs_normalization
from stable_baselines3.common.monitor import Monitor
env = initialize_env(crop_features=crop_features,
costs_nitrogen=args.costs_nitrogen,
years=eval_year,
locations=eval_locations,
reward=args.reward,
**kwargs)
env = ActionConstrainer(env, action_limit=args.action_limit, n_budget=args.n_budget)
env = DummyVecEnv([lambda: env])
env = VecNormalize.load(stats_path, env)
cust_objects = {"lr_schedule": lambda x: 0.0001, "clip_range": lambda x: 0.4,
"action_space": action_spaces}
agent = RecurrentPPO.load(checkpoint_path, custom_objects=cust_objects, device='cuda', print_system_info=True)
policy = agent
evaluate_dir = os.path.join(evaluate_dir, args.checkpoint_path)
writer = SummaryWriter(log_dir=evaluate_dir)
reward, fertilizer, result_model, WSO, NUE, profit, init_no3, init_nh4 = {}, {}, {}, {}, {}, {}, {}, {}
print("evaluating environment with learned policy...")
for year in eval_year:
for test_location in eval_locations:
if args.framework == 'sb3':
env.env_method('overwrite_year', year)
env.env_method('overwrite_location', test_location)
env.reset()
sync_envs_normalization(agent.get_env(), env)
episode_rewards, episode_infos = eval.evaluate_policy(policy=policy, env=env)
elif args.framework == 'rllib':
env.overwrite_year(year)
env.overwrite_location(test_location)
env.reset()
episode_rewards, episode_infos = evaluate_policy(policy=policy, env=env, framework=args.framework)
my_key = (year, test_location)
reward[my_key] = episode_rewards[0].item()
WSO[my_key] = list(episode_infos[0]['WSO'].values())[-1]
profit[my_key] = list(episode_infos[0]['profit'].values())[-1]
NUE[my_key] = list(episode_infos[0]['NUE'].values())[-1]
if args.framework == 'sb3':
if env.unwrapped.envs[0].unwrapped.po_features:
episode_infos = eval.get_measure_graphs(episode_infos)
elif args.framework == 'rllib':
if env.po_features:
episode_infos = eval.get_measure_graphs(episode_infos)
fertilizer[my_key] = sum(episode_infos[0]['fertilizer'].values())
writer.add_scalar(f'eval/reward-{my_key}', reward[my_key])
writer.add_scalar(f'eval/nitrogen-{my_key}', fertilizer[my_key])
writer.add_scalar(f'eval/WSO-{my_key}', WSO[my_key])
writer.add_scalar(f'eval/profit-{my_key}', profit[my_key])
writer.add_scalar(f'eval/NUE-{my_key}', NUE[my_key])
result_model[my_key] = episode_infos
# #measuring history
# for year in eval_year:
# for loc in eval_locations:
# for var in env.unwrapped.envs[0].unwrapped.po_features:
# fig, ax = plt.subplots(figsize=(12, 6))
# measure_history_histogram(data=env.unwrapped.envs[0].unwrapped.measure_features.measure_freq,
# crop_var=var, location=loc, year=year, axes=ax)
# plt.tight_layout()
# if not os.path.exists(os.path.join(rootdir, "plots", args.checkpoint_path,)):
# os.makedirs(os.path.join(rootdir, "plots", args.checkpoint_path))
# plt.savefig(os.path.join(rootdir, "plots", args.checkpoint_path, f"{var}_{loc}_{year}.jpeg"))
# writer.add_figure(f'figures/{var}_{loc}_{year}', fig)
# plt.close()
if pcse_model:
variables = ['DVS', 'action', 'WSO', 'reward',
'fertilizer', 'val', 'IDWST', 'prob_measure',
'NLOSSCUM', 'WC', 'Ndemand', 'NAVAIL', 'NuptakeTotal',
'SM', 'TAGP', 'LAI', 'NUE']
if env.unwrapped.envs[0].unwrapped.po_features: variables.append('measure')
else:
variables = ['action', 'WSO', 'reward', 'TNSOIL', 'val']
if env.unwrapped.envs[0].unwrapped.po_features: variables.append('measure')
if 'measure' in variables:
variables.remove('measure')
for variable in env.unwrapped.envs[0].unwrapped.po_features:
variable = 'measure_' + variable
variables += [variable]
keys_figure = [(a, b) for a in eval_year for b in eval_locations]
results_figure = {filter_key: result_model[filter_key] for filter_key in keys_figure}
# pickle info for creating figures
with open(os.path.join(evaluate_dir, f'infos_{args.reward}.pkl'), 'wb') as f:
pickle.dump(results_figure, f)
for i, variable in enumerate(variables):
if variable not in results_figure[list(results_figure.keys())[0]][0].keys():
continue
plot_individual = False
if plot_individual:
fig, ax = plt.subplots()
eval.plot_variable(results_figure, variable=variable, ax=ax, ylim=eval.get_ylim_dict()[variable])
writer.add_figure(f'figures/{variable}', fig)
plt.close()
fig, ax = plt.subplots()
eval.plot_variable(results_figure, variable=variable, ax=ax, ylim=eval.get_ylim_dict()[variable],
plot_average=True)
writer.add_figure(f'figures/avg-{variable}', fig)
plt.close()