-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfully_conv_model_for_lidar.py
133 lines (99 loc) · 6.15 KB
/
fully_conv_model_for_lidar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import numpy as np
#import tensorflow as tf
import keras
from keras.models import Model
from keras.layers import Input
from keras.layers.pooling import MaxPooling2D
from keras.layers.normalization import BatchNormalization
from keras.layers.convolutional import Conv2D, Conv2DTranspose
from keras.layers.merge import Concatenate
def fcn_model(input_shape = (64,256,2), summary = True):
input_img = Input(shape = input_shape)
#normalized_input = Lambda(lambda z: z / 255. - .5)(input_img)
# Todo: normalize two separate channel
conv1 = Conv2D(64, (3, 3), activation='relu', kernel_initializer="glorot_uniform",
padding = 'same', name='conv1')(input_img)
bn21 = BatchNormalization(name='bn21')(conv1)
conv21 = Conv2D(64, (3, 3), activation='relu', kernel_initializer="glorot_uniform",
padding = 'same', name='conv21')(bn21)
bn22 = BatchNormalization(name='bn22')(conv21)
conv22 = Conv2D(64, (3, 3), activation='relu', kernel_initializer="glorot_uniform",
padding = 'same', name='conv22')(bn22)
maxpool2 = MaxPooling2D((2,2), name='maxpool2')(conv22)
bn31 = BatchNormalization(name='bn31')(maxpool2)
conv31 = Conv2D(64, (3, 3), activation='relu', kernel_initializer="glorot_uniform",
padding = 'same', name='conv31')(bn31)
bn32 = BatchNormalization(name='bn32')(conv31)
conv32 = Conv2D(64, (3, 3), activation='relu', kernel_initializer="glorot_uniform",
padding = 'same', name='conv32')(bn32)
maxpool3 = MaxPooling2D((2,2), name='maxpool3')(conv32)
bn41 = BatchNormalization(name='bn41')(maxpool3)
conv41 = Conv2D(64, (3, 3), activation='relu', kernel_initializer="glorot_uniform",
padding = 'same', name='conv41')(bn41)
bn42 = BatchNormalization(name='bn42')(conv41)
conv42 = Conv2D(64, (3, 3), padding = 'same', kernel_initializer="glorot_uniform",
activation='relu', name='conv42')(bn42)
maxpool4 = MaxPooling2D((2,2), name='maxpool4')(conv42)
bn51 = BatchNormalization(name='bn51')(maxpool4)
conv51 = Conv2D(64, (3, 3), activation='relu', kernel_initializer="glorot_uniform",
padding = 'same', name='conv51')(bn51)
bn52 = BatchNormalization(name='bn52')(conv51)
conv52 = Conv2D(64, (3, 3), padding = 'same', kernel_initializer="glorot_uniform",
activation='relu', name='conv52')(bn52)
maxpool5 = MaxPooling2D((2,2), name='maxpool5')(conv52)
bn61 = BatchNormalization(name='bn61')(maxpool5)
conv6 = Conv2D(64, (3, 3), padding="same", kernel_initializer="glorot_uniform",
activation="relu", name="conv61")(bn61)
bn62 = BatchNormalization(name='bn62')(conv6)
deconv6 = Conv2DTranspose(64, (3, 3), kernel_initializer="glorot_uniform", name="deconv6",
activation="relu", padding="same", strides=(2, 2))(bn62)
concat7 = Concatenate(name='concat7')([conv51, deconv6])
bn71 = BatchNormalization(name='bn71')(concat7)
conv7 = Conv2D(64, (3, 3), padding="same", kernel_initializer="glorot_uniform",
activation="relu", name="conv71")(bn71)
bn72 = BatchNormalization(name='bn72')(conv7)
deconv7 = Conv2DTranspose(64, (3, 3), kernel_initializer="glorot_uniform", name="deconv7",
activation="relu", padding="same", strides=(2, 2))(bn72)
concat8 = Concatenate(name='concat8')([conv41, deconv7])
bn81 = BatchNormalization(name='bn81')(concat8)
conv81 = Conv2D(64, (3, 3), padding="same", kernel_initializer="glorot_uniform",
activation="relu", name="conv81")(bn81)
bn82 = BatchNormalization(name='bn82')(conv81)
deconv81 = Conv2DTranspose(64, (3, 3), kernel_initializer="glorot_uniform", name="deconv81",
activation="relu", padding="same", strides=(2, 2))(bn82)
deconv82 = Conv2DTranspose(64, (3, 3), kernel_initializer="glorot_uniform", name="deconv82",
activation="relu", padding="same", strides=(2, 2))(bn82)
concat91 = Concatenate(name='concat91')([conv31, deconv81])
bn911 = BatchNormalization(name='bn911')(concat91)
conv91 = Conv2D(64, (3, 3), padding="same", kernel_initializer="glorot_uniform",
activation="relu", name="conv91")(bn911)
bn912 = BatchNormalization(name='bn912')(conv91)
deconv91 = Conv2DTranspose(64, (3, 3), kernel_initializer="glorot_uniform", name="deconv91",
activation="relu", padding="same", strides=(2, 2))(bn912)
concat92 = Concatenate(name='concat92')([conv31, deconv82])
bn921 = BatchNormalization(name='bn921')(concat92)
conv92 = Conv2D(64, (3, 3), padding="same", kernel_initializer="glorot_uniform",
activation="relu", name="conv92")(bn921)
bn922 = BatchNormalization(name='bn922')(conv92)
deconv92 = Conv2DTranspose(64, (3, 3), kernel_initializer="glorot_uniform", name="deconv92",
activation="relu", padding="same", strides=(2, 2))(bn922)
concat101 = Concatenate(name='concat101')([conv21, deconv91])
bn101 = BatchNormalization(name='bn101')(concat101)
conv101 = Conv2D(64, (3, 3), padding="same", kernel_initializer="glorot_uniform",
activation="relu", name="conv101")(bn101)
out1 = Conv2D(1, (1, 1), padding="same", kernel_initializer="glorot_uniform",
activation="sigmoid", name="out1")(conv101)
concat102 = Concatenate(name='concat102')([conv21, deconv92])
bn102 = BatchNormalization(name='bn102')(concat102)
conv102 = Conv2D(64, (3, 3), padding="same", kernel_initializer="glorot_uniform",
activation="relu", name="conv102")(bn102)
out2 = Conv2D(7, (1, 1), padding="same", kernel_initializer="glorot_uniform",
activation="linear", name="out2")(conv102)
#out = [out1, out2]
out = Concatenate(name='concat_out')([out1, out2])
model = Model(inputs=input_img, outputs=out)
if summary:
model.summary()
return model
if __name__ == '__main__':
model = fcn_model()