-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
99 lines (83 loc) · 2.82 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import argparse
import torch
from litsr.data import create_data_module
from litsr.models import *
from litsr.utils import read_yaml
from pytorch_lightning import Trainer, loggers, seed_everything
from pytorch_lightning.callbacks import ModelCheckpoint
from archs import *
torch.backends.cudnn.benchmark = True
seed_everything(123)
def train_pipeline(args):
exp_name = args.expname or args.config.split("/")[-1].split(".")[0]
config = read_yaml(args.config)
args.save_path = config.trainer.get("save_path", args.save_path)
logger = loggers.tensorboard.TensorBoardLogger(
args.save_path, name=exp_name, default_hp_metric=False
)
checkpoint_period = ModelCheckpoint(
save_last=False,
save_top_k=-1,
every_n_epochs=config.trainer.get("save_period", 50),
)
assert config.trainer.save_top_k > 0
checkpoint_best = ModelCheckpoint(
monitor="val/psnr",
save_last=True,
save_top_k=config.trainer.get("save_top_k", 2),
mode="max",
filename="best-epoch={epoch:d}-psnr={val/psnr:.2f}",
auto_insert_metric_name=False,
every_n_epochs=1,
)
trainer_args = {
"gpus": [int(g) for g in args.gpus.split(",")],
"logger": logger,
"default_root_dir": args.save_path,
"limit_val_batches": 20,
"check_val_every_n_epoch": config.trainer.check_val_every_n_epoch,
"reload_dataloaders_every_n_epochs": 1,
"callbacks": [checkpoint_period, checkpoint_best],
"max_epochs": config.trainer.max_epochs,
}
if args.resume:
trainer_args["resume_from_checkpoint"] = args.resume
trainer = Trainer(**trainer_args)
if args.finetune:
model = load_model(config, args.finetune, False)
else:
print(config)
model = create_model(config)
datamodule = create_data_module(config.data_module)
trainer.fit(model=model, datamodule=datamodule)
def getTrainParser():
parser = argparse.ArgumentParser()
parser.add_argument("-c", "--config", type=str, help="config file path")
parser.add_argument(
"-r",
"--resume",
default=None,
type=str,
help="path to latest checkpoint (default: None)",
)
parser.add_argument(
"-f",
"--finetune",
default=None,
type=str,
help="path to checkpoint (default: None)",
)
parser.add_argument(
"-g",
"--gpus",
default="0",
type=str,
help="indices of GPUs to enable (default: 0)",
)
parser.add_argument("-s", "--save_path", default="logs", type=str, help="save path")
parser.add_argument("-e", "--expname", default="", type=str, help="save path")
return parser
train_parser = getTrainParser()
if __name__ == "__main__":
args = train_parser.parse_args()
train_pipeline(args)