-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmodels.py
56 lines (45 loc) · 1.72 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import models
def reset_parameters(model):
for m in model.modules():
if isinstance(m, nn.Conv2d):
m.reset_parameters()
if isinstance(m, nn.Linear):
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(m.weight)
bound = 1 / math.sqrt(fan_in)
nn.init.uniform_(m.weight, -bound, bound)
if m.bias is not None:
nn.init.uniform_(m.bias, -bound, bound)
def load_backbone(args):
name = args.model
backbone = models.__dict__[name.split('_')[-1]](zero_init_residual=True)
if name.startswith('cifar_'):
backbone.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
backbone.maxpool = nn.Identity()
args.num_backbone_features = backbone.fc.weight.shape[1]
backbone.fc = nn.Identity()
reset_parameters(backbone)
return backbone
def load_mlp(n_in, n_hidden, n_out, num_layers=3, last_bn=True):
layers = []
for i in range(num_layers-1):
layers.append(nn.Linear(n_in, n_hidden, bias=False))
layers.append(nn.BatchNorm1d(n_hidden))
layers.append(nn.ReLU())
n_in = n_hidden
layers.append(nn.Linear(n_hidden, n_out, bias=not last_bn))
if last_bn:
layers.append(nn.BatchNorm1d(n_out))
mlp = nn.Sequential(*layers)
reset_parameters(mlp)
return mlp
def load_ss_predictor(n_in, ss_objective, n_hidden=512):
ss_predictor = {}
for name, weight, n_out, _ in ss_objective.params:
if weight > 0:
ss_predictor[name] = load_mlp(n_in*2, n_hidden, n_out, num_layers=3, last_bn=False)
return ss_predictor