Skip to content
This repository was archived by the owner on Oct 24, 2019. It is now read-only.
/ maskflow-fiji Public archive

A Fiji plugin for object detection and tracking based on MaskRCNN.

License

Notifications You must be signed in to change notification settings

hadim/maskflow-fiji

Folders and files

NameName
Last commit message
Last commit date

Latest commit

9740df9 · Mar 4, 2019

History

23 Commits
Jun 26, 2018
Mar 2, 2019
Mar 2, 2019
Mar 2, 2019
Mar 2, 2019
Mar 4, 2019
Mar 2, 2019
Mar 2, 2019

Repository files navigation

maskflow-fiji: Object Detection and Segmentation

A Fiji plugin for object detection and tracking based on Mask RCNN.

It allows object detection, segmentation and tracking using a pre-trained model with the associated maskflow Python package.

IMPORTANT: This plugin is a proof of concept and in a very early stage. At the moment only a simple model to detect microtubules is provided. I hope to be able to continue the development at some point.

Usage

  • Start Fiji.
  • Click on Help ▶ Update....
  • In the new window, click on Manage update sites.
  • Scroll to find Maskflow in the column Name. Click on it.
  • Click Close and then Apply changes.
  • Restart Fiji.
  • Open your image.
  • Run the commands at Plugins ► Maskflow.

Screenshots

Output of the microtubule model.

Scripting

Here is an example script:

# @Dataset data
# @CommandService cs
# @ModuleService ms

from sc.fiji.maskflow import ObjectDetector

inputs = {"model": None,
          "modelName": "Microtubule",
          "dataset": data,
          "fillROIManager": True}}
module = ms.waitFor(cs.run(ObjectDetector, True, inputs))

table = module.getOutput("table")
masks = module.getOutput("masks")

The plugin also comes with an object tracker based on the centroid of the detected masks:

# @Dataset data
# @CommandService cs
# @ModuleService ms

from sc.fiji.maskflow import ObjectDetector
from sc.fiji.maskflow import ObjectTracker

inputs = {"model": None,
          "modelName": "Microtubule",
          "dataset": data,
          "fillROIManager": True}
module = ms.waitFor(cs.run(ObjectDetector, True, inputs))

table = module.getOutput("table")
masks = module.getOutput("masks")

inputs = {"masks": masks,
          "table": table,
          "linkingMaxDistance": 10,
          "gapClosingMaxDistance": 10,
          "maxFrameGap": 5,
          "fillROIManager": True}
          
module = ms.waitFor(cs.run(ObjectTracker, True, inputs))
table = module.getOutput("resultTable")

There is also a command that combine both detection and tracking:

# @Dataset data
# @CommandService cs
# @ModuleService ms

from sc.fiji.maskflow import ObjectDetectAndTrack

inputs = {"model": None,
          "modelName": "Microtubule",
          "dataset": data,
          "linkingMaxDistance": 10,
          "gapClosingMaxDistance": 10,
          "maxFrameGap": 5,
          "fillROIManager": True}
module = ms.waitFor(cs.run(ObjectDetectAndTrack, True, inputs))

table = module.getOutput("resultsTable")
masks = module.getOutput("masks")

Available Models

Objects Version Description Image Size URL
Microtubule 0.1 WIP 1280x1280 https://storage.googleapis.com/nn-models/microtubule-v0.1.zip

GPU Support

This type of neural networks are much more faster on GPU than CPU. To enable GPU support you need to manually replace libtensorflow_jni.jar to libtensorflow_jni_gpu.jar in your Fiji jars/ folder.

Authors

maskflow-fiji has been created by Hadrien Mary.

License

MIT. See LICENSE.txt

About

A Fiji plugin for object detection and tracking based on MaskRCNN.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published