-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
304 lines (262 loc) · 14.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
from argoverse.map_representation.map_api import ArgoverseMap
from argoverse.data_loading.argoverse_tracking_loader import ArgoverseTrackingLoader
from argoverse.data_loading.argoverse_forecasting_loader import ArgoverseForecastingLoader
from argoverse.visualization.visualize_sequences import viz_sequence
from statistics import mean
import glob
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
import torch.nn as nn
from data import Argoverse_Data,collate_traj
from model import LSTMModel, TCNModel, Social_Model
from argoverse.evaluation.eval_forecasting import get_ade, get_fde
import matplotlib.pyplot as plt
import argparse
import warnings
from time import localtime, strftime
from logger import TensorLogger
import numpy as np
import os
class Trainer():
def __init__(self,model,cuda,parallel,optimizer,train_loader,val_loader,test_loader,loss_fn,num_epochs,writer,args,modeldir):
self.model=model
self.cuda=cuda
self.parallel = parallel
if self.cuda:
self.model=self.model.cuda()
if self.parallel:
self.model = nn.DataParallel(self.model)
self.optimizer=optimizer
self.train_loader=train_loader
self.val_loader=val_loader
self.test_loader=test_loader
self.loss_fn=loss_fn
self.num_epochs=num_epochs
self.best_1_ade = np.inf
self.best_1_fde = np.inf
self.best_3_ade = np.inf
self.best_3_fde = np.inf
self.writer = writer
self.args = args
self.model_dir = modeldir
def train_epoch(self):
total_loss=0
num_batches=len(self.train_loader.batch_sampler)
batch_size=self.train_loader.batch_size
self.model.train()
no_samples=0
for i_batch,traj_dict in enumerate(self.train_loader):
input_traj=traj_dict['train_agent']
gr_traj=traj_dict['gt_agent']
if self.args.social:
neighbour_traj=traj_dict['neighbour']
if self.cuda:
input_traj=input_traj.cuda()
gr_traj=gr_traj.cuda()
if self.args.social and self.cuda:
neighbour_traj=[neighbour.cuda() for neighbour in neighbour_traj]
if self.args.social:
pred_traj=self.model({'agent_traj':input_traj,'neighbour_traj':neighbour_traj})
else:
pred_traj=self.model(input_traj)
loss=self.loss_fn(pred_traj,gr_traj)
total_loss=total_loss+loss.data
batch_samples=input_traj.shape[0]
no_samples+=batch_samples
avg_loss = float(total_loss)/(i_batch+1)
self.writer.scalar_summary('Train/AvgLoss', avg_loss, i_batch+1)
if (i_batch+1) % self.args.train_log_interval == 0:
print(f"Training Iter {i_batch+1}/{num_batches} Avg Loss {total_loss/(i_batch+1)}",end="\r")
# print(f"Training Iter {i_batch+1}/{num_batches} Avg Loss {total_loss/(i_batch+1)}"
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
print()
return total_loss/(num_batches)
def val_epoch(self, epoch):
total_loss=0
num_batches=len(self.val_loader.batch_sampler)
batch_size=self.val_loader.batch_size
self.model.eval()
ade_one_sec,fde_one_sec,ade_three_sec,fde_three_sec=(0,0,0,0)
ade_one_sec_avg, fde_one_sec_avg ,ade_three_sec_avg, fde_three_sec_avg = (0,0,0,0)
no_samples=0
for i_batch,traj_dict in enumerate(self.val_loader):
input_traj=traj_dict['train_agent']
gr_traj=traj_dict['gt_agent']
if self.args.social:
neighbour_traj=traj_dict['neighbour']
if self.cuda:
input_traj=input_traj.cuda()
gr_traj=gr_traj.cuda()
if self.args.social and self.cuda:
neighbour_traj=[neighbour.cuda() for neighbour in neighbour_traj]
if self.args.social:
pred_traj=self.model({'agent_traj':input_traj,'neighbour_traj':neighbour_traj})
else:
pred_traj=self.model(input_traj)
loss=self.loss_fn(pred_traj,gr_traj)
total_loss=total_loss+loss.data
batch_samples=input_traj.shape[0]
no_samples+=batch_samples
ade_one_sec+=sum([get_ade(pred_traj[i,:10,:],gr_traj[i,:10,:]) for i in range(batch_samples)])
fde_one_sec+=sum([get_fde(pred_traj[i,:10,:],gr_traj[i,:10,:]) for i in range(batch_samples)])
ade_three_sec+=sum([get_ade(pred_traj[i,:,:],gr_traj[i,:,:]) for i in range(batch_samples)])
fde_three_sec+=sum([get_fde(pred_traj[i,:,:],gr_traj[i,:,:]) for i in range(batch_samples)])
ade_one_sec_avg = float(ade_one_sec)/no_samples
ade_three_sec_avg = float(ade_three_sec)/no_samples
fde_one_sec_avg = float(fde_one_sec)/no_samples
fde_three_sec_avg = float(fde_three_sec)/no_samples
self.writer.scalar_summary('Val/AvgLoss', float(total_loss)/(i_batch+1), i_batch+1)
if (i_batch+1) % self.args.val_log_interval == 0:
print(f"Validation Iter {i_batch+1}/{num_batches} Avg Loss {total_loss/(i_batch+1):.4f} \
One sec:- ADE:{ade_one_sec/(no_samples):.4f} FDE: {fde_one_sec/(no_samples):.4f}\
Three sec:- ADE:{ade_three_sec/(no_samples):.4f} FDE: {fde_three_sec/(no_samples):.4f}",end="\r")
_filename = self.model_dir + 'best-model.pt'
if ade_one_sec_avg < self.best_1_ade and ade_three_sec_avg < self.best_3_ade and fde_one_sec_avg < self.best_1_fde and fde_three_sec_avg < self.best_3_fde:
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'opt_state_dict': optimizer.state_dict(),
'loss': total_loss/(i_batch+1)
}, _filename)
self.best_1_ade = ade_one_sec_avg
self.best_1_fde = fde_one_sec_avg
self.best_3_ade = ade_three_sec_avg
self.best_3_fde = fde_three_sec_avg
print()
return total_loss/(num_batches), ade_one_sec/no_samples,fde_one_sec/no_samples,ade_three_sec/no_samples,fde_three_sec/no_samples
def test_epoch(self):
num_batches=len(self.test_loader.batch_sampler)
batch_size=self.test_loader.batch_size
self.model.eval()
no_samples=0
ade_one_sec,fde_one_sec,ade_three_sec,fde_three_sec=(0,0,0,0)
for i_batch,traj_dict in enumerate(self.test_loader):
input_traj=traj_dict['train_agent']
gr_traj=traj_dict['gt_agent']
if self.args.social:
neighbour_traj=traj_dict['neighbour']
if self.cuda:
input_traj=input_traj.cuda()
gr_traj=gr_traj.cuda()
if self.args.social:
neighbour_traj=traj_dict['neighbour']
pred_traj=self.model({'agent_traj':input_traj,'neighbour_traj':neighbour_traj})
else:
pred_traj=self.model(input_traj)
batch_samples=input_traj.shape[0]
no_samples+=batch_samples
ade_one_sec+=sum([get_ade(pred_traj[i,:10,:],gr_traj[i,:10,:]) for i in range(batch_samples)])
fde_one_sec+=sum([get_fde(pred_traj[i,:10,:],gr_traj[i,:10,:]) for i in range(batch_samples)])
ade_three_sec+=sum([get_ade(pred_traj[i,:,:],gr_traj[i,:,:]) for i in range(batch_samples)])
fde_three_sec+=sum([get_fde(pred_traj[i,:,:],gr_traj[i,:,:]) for i in range(batch_samples)])
if (i_batch+1) % self.args.test_log_interval == 0:
print(f"Test Iter {i_batch+1}/{num_batches} \
One sec:- ADE:{ade_one_sec/(no_samples):.4f} FDE: {fde_one_sec/(no_samples):.4f}\
Three sec:- ADE:{ade_three_sec/(no_samples):.4f} FDE: {fde_three_sec/(no_samples):.4f}",end="\r")
ade_one_sec_avg = float(ade_one_sec)/no_samples
ade_three_sec_avg = float(ade_three_sec)/no_samples
fde_one_sec_avg = float(fde_one_sec)/no_samples
fde_three_sec_avg = float(fde_three_sec)/no_samples
self.writer.scalar_summary('Test/1ADE', ade_one_sec_avg, i_batch+1)
self.writer.scalar_summary('Test/3ADE', ade_three_sec_avg, i_batch+1)
self.writer.scalar_summary('Test/1FDE', fde_one_sec_avg, i_batch+1)
self.writer.scalar_summary('Test/3FDE', fde_three_sec_avg, i_batch+1)
print()
return ade_one_sec/no_samples,fde_one_sec/no_samples,ade_three_sec/no_samples,fde_three_sec/no_samples
def train(self):
for epoch in range(self.num_epochs):
print ("Starting epoch {}/{}".format(epoch+1, self.num_epochs))
avg_loss_train = self.train_epoch()
print ("Final Training Loss {}".format(avg_loss_train))
avg_loss_val,ade_one_sec,fde_one_sec,ade_three_sec,fde_three_sec = self.val_epoch(epoch)
print ("Validation Results for epoch {}/{}: 1sec. ADE/FDE: {}/{} 3sec. ADE/FDE: {}/{}".format(epoch+1, self.num_epochs, ade_one_sec, fde_one_sec, ade_three_sec, fde_three_sec))
# Tensorboard summaries
self.writer.scalar_summary('Val/1ADE_Epoch', ade_one_sec, epoch)
self.writer.scalar_summary('Val/3ADE_Epoch', ade_three_sec, epoch)
self.writer.scalar_summary('Val/1FDE_Epoch', fde_one_sec, epoch)
self.writer.scalar_summary('Val/3FDE_Epoch', fde_three_sec, epoch)
print ("Finishing epoch {}/{}".format(epoch+1, self.num_epochs))
if __name__ == "__main__":
warnings.filterwarnings('ignore')
parser = argparse.ArgumentParser(description='Sequence Modeling - Argoverse Forecasting Task')
parser.add_argument('--batch_size', type=int, default=32, metavar='N',
help='batch size (default: 32)')
parser.add_argument('--cuda', action='store_false',
help='use CUDA (default: True)')
parser.add_argument('--social',action='store_true',help='use neighbour data as well. default: False')
parser.add_argument('--dropout', type=float, default=0.2,
help='dropout applied to layers (default: 0.2)')
parser.add_argument('--lr', type=float, default=0.001,
help='learning rate for optimizer (default: 0.001)')
parser.add_argument('--clip', type=float, default=-1,
help='gradient clip, -1 means no clip (default: -1)')
parser.add_argument('--epochs', type=int, default=10,
help='upper epoch limit (default: 10)')
parser.add_argument('--ksize', type=int, default=3,
help='kernel size (default: 3)')
parser.add_argument('--levels', type=int, default=20,
help='# of levels (default: )')
parser.add_argument('--nhid', type=int, default=20,
help='number of hidden units per layer (default: 20)')
parser.add_argument('--opsize', type=int, default=30,
help='number of output units for model (default: 30)')
parser.add_argument('--seed', type=int, default=1111,
help='random seed (default: 1111)')
parser.add_argument('--model', type=str, default='LSTM',
help='model type to execute (default: LSTM Baseline)')
parser.add_argument('--train-log-interval', type=int, default=100,
help='number of intervals after which to print train stats (default: 100)')
parser.add_argument('--val-log-interval', type=int, default=500,
help='number of intervals after which to print val stats (default: 500)')
parser.add_argument('--test-log-interval', type=int, default=500,
help='number of intervals after which to print test stats (default: 500)')
args = parser.parse_args()
curr_time = strftime("%Y%m%d%H%M%S", localtime())
# initialize model and params
if args.model == 'LSTM':
logger_dir = './runs/' + args.model + '/' + curr_time + '/'
model_dir = './models/' + args.model + '/' + curr_time + '/'
model = LSTMModel()
elif args.model == 'TCN':
logger_dir = './runs/' + args.model + '/' + curr_time + '/'
model_dir = './models/' + args.model + '/' + curr_time + '/'
channel_sizes = [args.nhid] * args.levels
model = TCNModel(args.nhid, args.opsize, channel_sizes, args.ksize, args.dropout, 128)
elif args.model == 'SOCIAL':
logger_dir = './runs/' + args.model + '/' + curr_time + '/'
model_dir = './models/' + args.model + '/' + curr_time + '/'
model = Social_Model()
if not os.path.exists(model_dir):
os.makedirs(model_dir)
tbLogger = TensorLogger(_logdir=logger_dir)
optimizer = torch.optim.Adam(model.parameters(), lr = args.lr)
print("CUDA is ",args.cuda)
print("Model is ",args.model)
print("Social is", args.social)
# Load data module
argoverse_train=Argoverse_Data('data/train/data/',social=args.social)
argoverse_val=Argoverse_Data('data/val/data',social=args.social)
argoverse_test = Argoverse_Data('data/test_obs/data',social=args.social)
if args.social:
train_loader = DataLoader(argoverse_train, batch_size=args.batch_size,
shuffle=True, num_workers=2,collate_fn=collate_traj)
val_loader = DataLoader(argoverse_val, batch_size=args.batch_size,
shuffle=True, num_workers=2,collate_fn=collate_traj)
test_loader = DataLoader(argoverse_test, batch_size=args.batch_size,
shuffle=True, num_workers=2,collate_fn=collate_traj)
else:
train_loader = DataLoader(argoverse_train, batch_size=args.batch_size,
shuffle=True, num_workers=2)
val_loader = DataLoader(argoverse_val, batch_size=args.batch_size,
shuffle=True, num_workers=2)
test_loader = DataLoader(argoverse_test, batch_size=args.batch_size,
shuffle=True, num_workers=2)
# train model and losses
loss_fn=nn.MSELoss()
# _cuda = a
_parallel = False
trainer=Trainer(model=model,cuda=args.cuda,parallel=_parallel,optimizer=optimizer,train_loader=train_loader,val_loader=val_loader,test_loader=test_loader,loss_fn=loss_fn,num_epochs=args.epochs,writer=tbLogger,args=args,modeldir=model_dir)
trainer.train()