-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
63 lines (56 loc) · 2.62 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import argparse
import datasets
import pprint
import pytorch_lightning as pl
import os
def parse_args(stdin, verbose=True):
"""
Parse input arguments.
"""
parser = argparse.ArgumentParser(stdin)
parser.add_argument('--dataset', type=str, choices=datasets.__available__, help='Dataset to use.')
parser.add_argument('--data_path', type=str, default='./data', help='Dataset root path.')
parser.add_argument('--batch_size', type=int, default=128, help='The batch size.')
parser.add_argument('--num_workers', type=int, default=12, help='Number of workers to use for the dataloader.')
parser.add_argument('--epochs', type=int, default=100, help='Number of epochs for the training process.')
parser.add_argument('--gpus', type=int, default=1, help='Number of GPUs to use.')
parser.add_argument('--patch_size', type=int, default=4, help='Patch size.')
parser.add_argument('--task', type=str, default='classification', help='The task to solve with the GLOM model.',
choices=['classification', 'reconstruction'])
parser.add_argument('--model_size', type=str, default='small', help='Model size.',
choices=['tiny', 'small', 'base'])
parser.add_argument('--lr', type=float, default=3e-4, help='The learning rate.')
parser.add_argument('--wd', type=float, default=1e-3, help='The weight decay.')
parser.add_argument('--exp_id', type=str, default='', help='The experiment id.')
parser.add_argument('--logger', type=str, default='wandb', help='The logger to use.',
choices=['wandb', 'tensorboard'])
args = parser.parse_args()
if verbose:
args_dict = vars(args)
args_dict = {k: v for k, v in sorted(list(args_dict.items()))}
pprint.pprint(args_dict)
return args
def get_logger(args):
"""
Logger for the PyTorchLightning Trainer.
"""
logger_kind = 'tensorboard' if 'logger' not in args.__dict__ else args.logger
if logger_kind == 'tensorboard':
logger = pl.loggers.tensorboard.TensorBoardLogger(
save_dir=os.path.join(os.getcwd(), 'tmp'),
name=args.dataset,
)
elif logger_kind == 'wandb':
task_str = [args.task]
name = [
str(args.exp_id), args.dataset, '-'.join(task_str),
'-'.join([str(args.model_size), str(args.patch_size)])
]
logger = pl.loggers.WandbLogger(
save_dir=os.path.join(os.getcwd(), 'tmp'),
name='/'.join(name),
project='glom',
)
else:
raise Exception(f'Error. Logger "{lokker_kind}" is not supported.')
return logger