-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.jl
132 lines (101 loc) · 5.54 KB
/
main.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
begin
import Pkg
Pkg.activate(".")
end
begin #################################### required libs
using ImageMorphology: opening!,closing!
using GLMakie,CairoMakie
using DataFrames
using LinearAlgebra,SparseArrays
using Images,ImageBinarization
include("lib/boundary.jl")
include("lib/optimisation.jl")
include("lib/utils.jl")
printstyled("Libraries Loaded\n")
end
@time begin #################################### load images
egg = "E2"
images = Files("data/$egg", z=40:60, t=1:120, Δr=[0.37μm,0.37μm,1.5μm], Δt=15s)
binaryImages = AxisArray( Array{Bool}(undef,size(images)), images.axes )
############################################ fit ellipsiodal coordinate system
binarize!(binaryImages,images,Otsu())
parameters = ellipse( binaryImages )
weights = nothing
#################################### de-noise binarization
region = Tuple(2:ndims(images))
opening!(binaryImages,region); closing!(binaryImages,region)
printstyled(color=:green,"Preprocessing Done")
end
@time begin ################################################################## optimise boundary
weights,residuals,angles = surface_modes(binaryImages,parameters)
printstyled(color=:green,"Surface Mode Regression Done")
end
begin ############################################################### show movie
GLMakie.activate!()
movie = Figure(resolution = (500,700))
ax = LScene( movie[2,1:2], scenekw = ( camera = cam3d!, show_axis=false, show_grid=false ))
colors = [ parse(RGBA,"#0000FF"), parse(RGBA,"#008000")]
######################### show image volume
timeSlider = labelslider!(movie, "Time", 1:nimages(images); format = i -> "$(round(i*step(timeaxis(images)).val/60,digits=2)) mins", startvalue=26)
t, movie[3,1] = timeSlider.slider, timeSlider.layout
x,y,z,_ = ( range( extrema(ustrip(ax.val))..., length=2) for ax ∈ images.axes if eltype(ax) <: Quantity )
for (i,channel) ∈ enumerate(first(images.axes))
volume!( ax, x,y, minimum(z) ≠ maximum(z) ? z : range(-1,1,length=2),
@lift( images[Axis{:channel}(channel),Axis{:t}($(t.value))].data ),
colormap = cgrad( [ RGBA(0,0,0,0), colors[i] ], [0,eps(),1] ) )
end
######################### boundary model
boundaries = boundary(parameters,weights)
boundaries = Dict([ channel => map( x->x[150:end-150,:], boundaries[channel]) for channel ∈ keys(boundaries) ]) # drop out butthole
legend = []
for (i,channel) ∈ enumerate(first(images.axes))
line = lines!( ax, @lift( boundaries[channel][$(t.value)] ), linewidth=3, color=colors[i] )
push!(legend,line)
end
movie[3,2] = Legend(movie, legend,
[String(channel) for channel ∈ first(images.axes)], framevisible = false)
button = Button(movie[1,1:2], label = "Export")
on(button.clicks) do event
save("output/$egg@t=$(round(t.value[]*step(timeaxis(images)).val/60,digits=2))mins.png",movie)
begin ############################################################### save statistics
CairoMakie.activate!()
svg = Figure(resolution = (1000,500))
######################### boundary length
ax = svg[1,1] = CairoMakie.Axis(svg, xlabel="Time [mins]", ylabel="Vegetal Boundary Length [μm]", xgridvisible=false, ygridvisible=false)
legend,lengths = [], DataFrame()
time = map( t->ustrip(uconvert(mins,t)), timeaxis(images) )
lengths[!,"time [mins]"] = time
for (i,channel) ∈ enumerate(first(images.axes))
boundaryLength = [ sum(sqrt.(sum(abs2.(diff(boundary,dims=1)),dims=2))) for boundary ∈ boundaries[channel] ]
lengths[!,"$channel [μm]"] = boundaryLength
line = lines!(ax, time, boundaryLength, color=colors[i] )
push!(legend,line)
end
tMins = @lift( ustrip(uconvert(mins,timeaxis(images)[$(t.value)])) )
vlines!(ax,tMins,linestyle=:dot)
######################### bucking
ax = svg[1,2] = CairoMakie.Axis(svg, xlabel="Vegetal Position [radians]", ylabel="Buckling Amplitude [μm]", xgridvisible=false, ygridvisible=false)
for (i,channel) ∈ enumerate(first(images.axes))
scatter!(ax, @lift( [angles[channel][$(t.value)] residuals[channel][$(t.value)]] ),
color=colors[i], markersize=2, strokewidth=0 )
end
svg[1,3] = Legend(svg, legend, [String(channel) for channel ∈ first(images.axes)], framevisible = false)
save("output/$egg@t=$(round(t.value[]*step(timeaxis(images)).val/60,digits=2))mins.svg",svg)
GLMakie.activate!()
#################################################################### saving csv files
save("output/$egg.boundary-lengths.csv",lengths)
for channel ∈ first(images.axes)
ellipses = DataFrame("time [mins]"=>time)
ellipses[!,"a [μm]"] = map( x->x[1] , parameters[channel])
ellipses[!,"b [μm]"] = map( x->x[2] , parameters[channel])
ellipses[!,"x0 [μm]"] = map( x->x[3] , parameters[channel])
ellipses[!,"y0 [μm]"] = map( x->x[4] , parameters[channel])
ellipses[!,"θ [radians]"] = map( x->x[5] , parameters[channel])
save("output/$egg.ellipse-parameters.$channel.csv",ellipses)
end
end
printstyled(color=:blue,"Export Done\n")
end
display(movie)
wait()
end