-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo_train_for_unknown_noise.py
33 lines (27 loc) · 1.35 KB
/
demo_train_for_unknown_noise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import os
import argparse
import collections
if __name__ == "__main__":
iso_list = [1600, 3200, 6400, 12800, 25600]
patch_size_dict = dict()
patch_size_dict[1600] = 15
patch_size_dict[3200] = 25
patch_size_dict[6400] = 27
patch_size_dict[12800] = 35
patch_size_dict[25600] = 37
parser = argparse.ArgumentParser(allow_abbrev=False)
parser.add_argument("--iso", default=25600, type=int, help="ISO")
parser.add_argument("--model", default="unet", type=str, help="dncnn | unet | custom")
parser.add_argument("--skip_preprocessing", action='store_true', help="skips the preprocessing stage")
opt = parser.parse_args()
dataset_name = "CRVD_ISO{}".format(opt.iso)
dataset_dir = "./data_set/CRVD/CRVD_ISO{}".format(opt.iso)
if not opt.skip_preprocessing:
os.system("python ./data/preprocess_unknown_noise.py --dataset_name {} --dataset_dir {} --patch_size {} --replicate_dataset 1".format(\
dataset_name, dataset_dir, patch_size_dict[opt.iso]))
print("\n")
os.system("python train_for_unknown_noise.py --dataset_name {} --dataset_dir {} --model {}".format(\
dataset_name, dataset_dir, opt.model))
print("\n")
os.system("python test_with_unknown_noise_training_sequences.py --dataset_name {} --dataset_dir {} --model {}".format(\
dataset_name, dataset_dir, opt.model))