In order to use the code build the docker from the repository folder:
docker build -t meta_learning:v1.0 -f docker/Dockerfile .
or make the conda environment:
conda env create -f docker/conf_files/metalearning_pytorch.yml
In order to use docker the dataset paths should be set as env variables (either manually or in docker/run_docker.sh) then run run_docker.sh.
The folder structure should be the following (running run_docker.sh will automatically make this structure according to docker-compose.yml):
├── parent_folder
├── meta_learning
├── {the code ...}
├── data
├── imagenet
├── imagenet64
├── {other datasets ...}
├── results
├── {experiment result folders will be saved here}