-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy path1-normalize_titrated_data.R
350 lines (283 loc) · 12.5 KB
/
1-normalize_titrated_data.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# J. Taroni Jun 2016
# The purpose of this script is to read in TGCA array and sequencing data,
# already pre-processed to only include test tumor samples,
# (output of 0-expression_data_overlap_and_split.R) and to normalize
# the data.
# It should be run from the command line through the run_experiments.R script
option_list <- list(
optparse::make_option("--cancer_type",
default = NA_character_,
help = "Cancer type"),
optparse::make_option("--predictor",
default = NA_character_,
help = "Predictor used"),
optparse::make_option("--seed1",
default = NA_integer_,
help = "Random seed"),
optparse::make_option("--seed2",
default = NA_integer_,
help = "Random seed"),
optparse::make_option("--null_model",
action = "store_true",
default = FALSE,
help = "Refer to models with permuted dependent variable (within subtype if predictor is a gene)"),
optparse::make_option("--ncores",
default = NA_integer_,
help = "Set the number of cores to use")
)
opt <- optparse::parse_args(optparse::OptionParser(option_list=option_list))
source(here::here("util/option_functions.R"))
check_options(opt)
# load libraries
suppressMessages(source(here::here("load_packages.R")))
source(here::here("util", "normalization_functions.R"))
# set options
cancer_type <- opt$cancer_type
predictor <- opt$predictor
null_model <- opt$null_model
file_identifier <- ifelse(null_model,
str_c(cancer_type, predictor, "null", sep = "_"),
str_c(cancer_type, predictor, sep = "_"))
ncores <- min(parallel::detectCores() - 1,
opt$ncores,
na.rm = TRUE)
# set seed
filename.seed <- as.integer(opt$seed1)
initial.seed <- as.integer(opt$seed2)
set.seed(initial.seed)
# define directories
data.dir <- here::here("data")
norm.data.dir <- here::here("normalized_data")
res.dir <- here::here("results")
# name input files
seq.file <- paste0(cancer_type, "RNASeq_matchedOnly_ordered.pcl")
array.file <- paste0(cancer_type, "array_matchedOnly_ordered.pcl")
train.test.file <- paste0(file_identifier,
"_matchedSamples_training_testing_split_labels_",
filename.seed, ".tsv")
# name output files
norm.test.object <- paste0(file_identifier,
"_array_seq_test_data_normalized_list_",
filename.seed, ".RDS")
norm.train.object <- paste0(file_identifier,
"_array_seq_train_titrate_normalized_list_",
filename.seed, ".RDS")
#### read in data --------------------------------------------------------------
seq.data <- fread(file.path(data.dir, seq.file), data.table = FALSE)
array.data <- fread(file.path(data.dir, array.file), data.table = FALSE)
sample.train.test <- fread(file.path(res.dir, train.test.file), data.table = FALSE)
#### split samples, titrate ----------------------------------------------------
train.sample.names <- as.character(sample.train.test$sample[
which(sample.train.test$split == "train")])
test.sample.names <- as.character(sample.train.test$sample[
which(sample.train.test$split == "test")])
# get samples for 'titration'
titration.seed <- sample(1:10000, 1)
message(paste("Random seed for titration:",
titration.seed), appendLF = TRUE)
set.seed(titration.seed)
titrate.sample.list <- lapply(seq(0, 1, by = 0.1),
function(x) GetTitratedSampleNames(train.sample.names,
x))
names(titrate.sample.list) <- as.character(seq(0, 100, by = 10))
# these samples will be the RNA-seq samples in any given 'titration' experiment
# remove rows that are equal to all ones -- for any combination + test data
# z-score processing will not work on such rows
seq.dt.list <- lapply(titrate.sample.list,
function(x) seq.data[, c(1, which(colnames(seq.data) %in% x))])
seq.dt.list[["test"]] <-
seq.data[, c(1, which(colnames(seq.data) %in% test.sample.names))]
all.same.list <- lapply(seq.dt.list[2:12],
function(x){
vals <- x[, 2:ncol(x)]
indx <- which(apply(vals, 1, check_all_same))
return(indx)
} )
all.same.indx <- unique(unlist(all.same.list))
# if no rows have all same value (in previous lapply), all.same.indx is integer(0)
# subsetting data frames by -integer(0) results in no rows
# so check that integer vector has length > 0 before subsetting
if (length(all.same.indx) > 0) {
array.data <- array.data[-all.same.indx, ]
seq.data <- seq.data[-all.same.indx, ]
}
#### get datatables to mix -----------------------------------------------------
# get a list that contains an
# array data.table and seq data.table for each level of 'titration'
array.train <-
data.table(array.data[,
c(1, which(colnames(array.data) %in% train.sample.names))])
seq.train <-
data.table(seq.data[,
c(1, which(colnames(seq.data) %in% train.sample.names))])
titrate.mix.dt.list <- lapply(titrate.sample.list,
function(x) GetDataTablesForMixing(array.train,
seq.train, x))
#### normalize train data ------------------------------------------------------
# initialize in the list to hold normalized data
norm.titrate.list <- list()
# single platform array normalization
norm.titrate.list[["0"]] <-
SinglePlatformNormalizationWrapper(titrate.mix.dt.list[[1]]$array,
platform = "array",
add.untransformed = TRUE,
add.qn.z = TRUE)
# parallel backend
cl <- parallel::makeCluster(ncores)
doParallel::registerDoParallel(cl)
# 'mixed' both platform normalization
norm.titrate.list[2:10] <-
foreach(n = 2:10, .packages = "tidyverse") %dopar% {
NormalizationWrapper(titrate.mix.dt.list[[n]]$array,
titrate.mix.dt.list[[n]]$seq,
add.untransformed = TRUE,
add.qn.z = TRUE,
add.cn = TRUE,
add.seurat.training = TRUE)
}
# stop parallel backend
parallel::stopCluster(cl)
# sort out names
names(norm.titrate.list)[2:10] <- names(titrate.mix.dt.list)[2:10]
# single platform seq normalization
norm.titrate.list[["100"]] <-
SinglePlatformNormalizationWrapper(titrate.mix.dt.list[[11]]$seq,
platform = "seq",
add.untransformed = TRUE,
add.qn.z = TRUE)
#### normalize test data -------------------------------------------------------
array.test <-
data.table(array.data[,
c(1, which(colnames(array.data) %in% test.sample.names))])
seq.test <-
data.table(seq.data[, c(1, which(colnames(seq.data) %in% test.sample.names))])
# array normalization
array.test.norm.list <-
SinglePlatformNormalizationWrapper(array.test,
platform = "array",
add.untransformed = TRUE,
add.qn.z = TRUE,
add.cn.test = TRUE,
add.seurat.test = TRUE,
training.list = norm.titrate.list)
# seq normalization
# initialize list to hold normalized seq data
seq.test.norm.list <- list()
# LOG normalization
seq.test.norm.list[["log"]] <- LOGSeqOnly(seq.test)
# NPN
seq.test.norm.list[["npn"]] <- NPNSingleDT(seq.test)
# start parallel backend
cl <- parallel::makeCluster(ncores)
doParallel::registerDoParallel(cl)
# QN -- requires reference data
# initialize list to hold QN data
seq.qn.list <- list()
# for 0% seq - use 0% LOG array data
seq.qn.list[["0"]] <- QNSingleWithRef(ref.dt = norm.titrate.list$`0`$log,
targ.dt = seq.test)
# for 10-90% seq - use the "raw array" training data at each level of sequencing
# data (this is LOG data, but only the array samples)
seq.qn.list[2:10] <-
foreach(i = 2:10) %dopar% {
QNSingleWithRef(ref.dt = norm.titrate.list[[i]]$raw.array,
targ.dt = seq.test)
}
names(seq.qn.list)[2:10] <- names(norm.titrate.list)[2:10]
# stop parallel back end
parallel::stopCluster(cl)
# QN 100% seq by itself (preProcessCore::normalize.quantiles)
seq.qn.list[["100"]] <- QNSingleDT(seq.test)
# add QN seq data to list of normalized test data
seq.test.norm.list[["qn"]] <- seq.qn.list
rm(seq.qn.list)
# start parallel backend
cl <- parallel::makeCluster(ncores)
doParallel::registerDoParallel(cl)
# QN-Z -- requires reference data
# initialize list to hold QN data
seq.qnz.list <- list()
# for 0% seq - use 0% LOG array data
seq.qnz.list[["0"]] <- QNZSingleWithRef(ref.dt = norm.titrate.list$`0`$log,
targ.dt = seq.test)
# for 10-90% seq - use the "raw array" training data at each level of sequencing
# data (this is LOG data, but only the array samples)
seq.qnz.list[2:10] <-
foreach(i = 2:10) %dopar% {
QNZSingleWithRef(ref.dt = norm.titrate.list[[i]]$raw.array,
targ.dt = seq.test)
}
names(seq.qnz.list)[2:10] <- names(norm.titrate.list)[2:10]
# stop parallel back end
parallel::stopCluster(cl)
# QNZ 100% seq by itself (preProcessCore::normalize.quantiles)
seq.qnz.list[["100"]] <- QNZSingleDT(seq.test)
# add QNZ seq data to list of normalized test data
seq.test.norm.list[["qn-z"]] <- seq.qnz.list
rm(seq.qnz.list)
# start parallel back end
cl <- parallel::makeCluster(ncores)
doParallel::registerDoParallel(cl)
# TDM normalization -- requires references
# initialize list to hold TDM data
seq.tdm.list <- list()
# for 0% seq - use 0% LOG array data
seq.tdm.list[["0"]] <- TDMSingleWithRef(ref.dt = norm.titrate.list$`0`$log,
targ.dt = seq.test)
# for 10-90% seq - use the "raw array" training data at each level of sequencing
# data (this is LOG data, but only the array samples)
seq.tdm.list[2:10] <-
foreach(i = 2:10) %dopar% {
TDMSingleWithRef(ref.dt = norm.titrate.list[[i]]$raw.array,
targ.dt = seq.test)
}
names(seq.tdm.list)[2:10] <- names(norm.titrate.list)[2:10]
# stop parallel backend
parallel::stopCluster(cl)
# 100% is not applicable for TDM
seq.tdm.list["100"] <- list(NULL)
# add TDM seq data to list of normalized test data
seq.test.norm.list[["tdm"]] <- seq.tdm.list
rm(seq.tdm.list)
# z-score seq test data
seq.test.norm.list[["z"]] <- ZScoreSingleDT(seq.test)
# untransformed seq test data
seq.test.norm.list[["un"]] <- seq.test
# CrossNorm RNA-seq test
# Rescale each column, quantile normalize, then rescale each row
seq.test.norm.list[["qn (cn)"]] <- rescale_datatable(seq.test,
by_column = TRUE) %>%
QNSingleDT(zero.to.one = TRUE)
# Seurat RNA-seq test
# for 10-90% seq - use the integrated training data at each %RNA-seq
# parallel backend
cl <- parallel::makeCluster(ncores)
doParallel::registerDoParallel(cl)
seq.seurat.list <- foreach(i = 2:10, .packages = "tidyverse") %dopar% { # 2:10 corresponds to 10%-90%
if (!is.null(norm.titrate.list[[i]][["seurat_model"]])) {
tryCatch(SeuratProjectPCATestData(seq.test,
norm.titrate.list[[i]][["seurat_model"]],
vbose = TRUE),
error = function(e) NULL)
} else {
NULL
}
}
names(seq.seurat.list) <- names(norm.titrate.list)[2:10] # 2:10 corresponds to 10%-90%
# stop parallel backend
parallel::stopCluster(cl)
# add Seurat RNA-seq test data to list of normalized test data
seq.test.norm.list[["seurat"]] <- seq.seurat.list
rm(seq.seurat.list)
# combine array and seq test data into a list
test.norm.list <- list(array = array.test.norm.list,
seq = seq.test.norm.list)
# save test data
saveRDS(test.norm.list, file = file.path(norm.data.dir, norm.test.object))
# save train data after removing Seurat models (just keep Seurat-normed data)
for (n in names(norm.titrate.list)) {
if ("seurat_model" %in% names(norm.titrate.list[[n]])) {
norm.titrate.list[[n]][["seurat_model"]] <- NULL
}
}
saveRDS(norm.titrate.list, file = file.path(norm.data.dir, norm.train.object))