-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgpt.qiskit.error.detection.py
82 lines (73 loc) · 2.52 KB
/
gpt.qiskit.error.detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import qiskit
from qiskit import QuantumCircuit, transpile, assemble, Aer
from transformers import GPT2LMHeadModel, GPT2Tokenizer
import torch
import numpy as np
# Step 1: Data Generation
def generate_quantum_data(n_qubits, n_circuits):
# Use Qiskit to generate quantum data
circuits = []
for _ in range(n_circuits):
circuit = QuantumCircuit(n_qubits, n_qubits)
circuit.h(range(n_qubits))
circuit.measure(range(n_qubits), range(n_qubits))
circuits.append(circuit)
return circuits
# Step 2: Data Preprocessing
def preprocess_data(circuits):
# Convert quantum data to a format suitable for GPT
simulator = Aer.get_backend('qasm_simulator')
data = []
for circuit in circuits:
job = assemble(circuit)
result = simulator.run(job).result()
counts = result.get_counts(circuit)
data.append(counts)
return data
# Step 3: Model Training
def train_model(data):
# Load preprocessed data
# Initialize GPT model and tokenizer
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')
# Define training loop
num_epochs = 10
optimizer = torch.optim.Adam(model.parameters())
for epoch in range(num_epochs):
for batch in data:
# Forward pass
inputs = tokenizer(batch, return_tensors='pt')
outputs = model(**inputs, labels=inputs["input_ids"])
loss = outputs.loss
# Backward pass and optimization
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Step 4: Error Detection
def detect_errors(model, tokenizer, data):
# Use trained model to detect errors in new quantum computations
errors = []
for batch in data:
inputs = tokenizer(batch, return_tensors='pt')
outputs = model(**inputs)
predicted_ids = torch.argmax(outputs.logits, dim=-1)
predicted_batch = tokenizer.decode(predicted_ids[0])
if predicted_batch != batch:
errors.append((batch, predicted_batch))
return errors
# Step 5: Logging
def log_results(errors):
# Log the results of error detection
for error in errors:
print(f"Original: {error[0]}, Predicted: {error[1]}")
# Main function
def main():
n_qubits = 2
n_circuits = 100
circuits = generate_quantum_data(n_qubits, n_circuits)
data = preprocess_data(circuits)
train_model(data)
errors = detect_errors(model, tokenizer, data)
log_results(errors)
if __name__ == "__main__":
main()