Quantum key distribution (QKD) relies on the principles of quantum mechanics to securely distribute cryptographic keys between two parties. The most well-known QKD protocol is the BB84 protocol, which uses polarized photons to transmit information. Here, we present a simple BB84 protocol and some associated equations:
A Python code snippet for the BB84 protocol using classical infrastructure:
python
Copy code
import random
import numpy as np
def encode_bit(bit, basis):
if bit == 0:
if basis == 0:
return np.array([1, 0])
else:
return np.array([1, 1]) / np.sqrt(2)
else:
if basis == 0:
return np.array([0, 1])
else:
return np.array([1, -1]) / np.sqrt(2)
def measure_bit(state, basis):
if basis == 0:
if np.allclose(state, np.array([1, 0])):
return 0
else:
return 1
else:
if np.allclose(state, np.array([1, 1]) / np.sqrt(2)):
return 0
else:
return 1
n = 10
alice_bits = [random.randint(0, 1) for _ in range(n)]
alice_bases = [random.randint(0, 1) for _ in range(n)]
states = [encode_bit(bit, basis) for bit, basis in zip(alice_bits, alice_bases)]
# Simulate the quantum channel using classical communication
bob_bases = [random.randint(0, 1) for _ in range(n)]
bob_bits = [measure_bit(state, basis) for state, basis in zip(states, bob_bases)]
# Key sifting
sifted_bits = [(alice_bit, bob_bit) for alice_bit, bob_bit, alice_base, bob_base
in zip(alice_bits, bob_bits, alice_bases, bob_bases) if alice_base == bob_base]
# Extract the keys
alice_key = [bit[0] for bit in sifted_bits]
bob_key = [bit[1] for bit in sifted_bits]
print("Alice's key:", alice_key)
print("Bob's key:", bob_key)