-
Notifications
You must be signed in to change notification settings - Fork 752
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add Export.classifier.toAsset to API reference docs.
Also updates ee.Model.fromVertexAi docs. PiperOrigin-RevId: 589247154
- Loading branch information
1 parent
c1853b3
commit bf02515
Showing
2 changed files
with
159 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
/** | ||
* Copyright 2023 The Google Earth Engine Community Authors | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* https://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
// [START earthengine__apidocs__export_classifier_toasset] | ||
// First gather the training data for a random forest classifier. | ||
// Let's use MCD12Q1 yearly landcover for the labels. | ||
var landcover = ee.ImageCollection('MODIS/061/MCD12Q1') | ||
.filterDate('2022-01-01', '2022-12-31') | ||
.first() | ||
.select('LC_Type1'); | ||
// A region of interest for training our classifier. | ||
var region = ee.Geometry.BBox(17.33, 36.07, 26.13, 43.28); | ||
|
||
// Training features will be based on a Landsat 8 composite. | ||
var l8 = ee.ImageCollection('LANDSAT/LC08/C02/T1') | ||
.filterBounds(region) | ||
.filterDate('2022-01-01', '2023-01-01'); | ||
|
||
// Draw the Landsat composite, visualizing true color bands. | ||
var landsatComposite = ee.Algorithms.Landsat.simpleComposite({ | ||
collection: l8, | ||
asFloat: true | ||
}); | ||
Map.addLayer(landsatComposite, { | ||
min: 0, | ||
max: 0.3, | ||
bands: ['B3', 'B2', 'B1'] | ||
}, 'Landsat composite'); | ||
|
||
// Make a training dataset by sampling the stacked images. | ||
var training = landcover.addBands(landsatComposite).sample({ | ||
region: region, | ||
scale: 30, | ||
// With export to Classifier we can bump this higher to say 10,000. | ||
numPixels: 1000 | ||
}); | ||
|
||
var classifier = ee.Classifier.smileRandomForest({ | ||
// We can also increase the number of trees higher to ~100 if needed. | ||
numberOfTrees: 3 | ||
}).train({features: training, classProperty: 'LC_Type1'}); | ||
|
||
// Create an export classifier task to run. | ||
var assetId = 'projects/<project-name>/assets/<asset-name>'; // <> modify these | ||
Export.classifier.toAsset({ | ||
classifier: classifier, | ||
description: 'classifier_export', | ||
assetId: assetId | ||
}); | ||
|
||
// Load the classifier after the export finishes and visualize. | ||
var savedClassifier = ee.Classifier.load(assetId) | ||
var landcoverPalette = '05450a,086a10,54a708,78d203,009900,c6b044,dcd159,' + | ||
'dade48,fbff13,b6ff05,27ff87,c24f44,a5a5a5,ff6d4c,69fff8,f9ffa4,1c0dff'; | ||
var landcoverVisualization = { | ||
palette: landcoverPalette, | ||
min: 0, | ||
max: 16, | ||
format: 'png' | ||
}; | ||
Map.addLayer( | ||
landsatComposite.classify(savedClassifier), | ||
landcoverVisualization, | ||
'Upsampled landcover, saved'); | ||
// [END earthengine__apidocs__export_image_toasset] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,81 @@ | ||
# Copyright 2023 The Google Earth Engine Community Authors | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
import ee | ||
import geemap.core as geemap | ||
# [START earthengine__apidocs__export_classifier_toasset] | ||
# First gather the training data for a random forest classifier. | ||
# Let's use MCD12Q1 yearly landcover for the labels. | ||
landcover = (ee.ImageCollection('MODIS/061/MCD12Q1') | ||
.filterDate('2022-01-01', '2022-12-31') | ||
.first() | ||
.select('LC_Type1')) | ||
|
||
# A region of interest for training our classifier. | ||
region = ee.Geometry.BBox(17.33, 36.07, 26.13, 43.28) | ||
|
||
# Training features will be based on a Landsat 8 composite. | ||
l8 = (ee.ImageCollection('LANDSAT/LC08/C02/T1') | ||
.filterBounds(region) | ||
.filterDate('2022-01-01', '2023-01-01')) | ||
|
||
# Draw the Landsat composite, visualizing true color bands. | ||
landsatComposite = ee.Algorithms.Landsat.simpleComposite( | ||
collection=l8, asFloat=True) | ||
|
||
Map = geemap.Map() | ||
Map # Render the map in the notebook. | ||
Map.addLayer(landsatComposite, { | ||
'min': 0, | ||
'max': 0.3, | ||
'bands': ['B3', 'B2', 'B1'] | ||
}, 'Landsat composite') | ||
|
||
# Make a training dataset by sampling the stacked images. | ||
training = landcover.addBands(landsatComposite).sample( | ||
region=region, | ||
scale=30, | ||
# With export to Classifier we can bump this higher to say 10,000. | ||
numPixels=1000 | ||
) | ||
|
||
# We can also increase the number of trees higher to ~100 if needed. | ||
classifier = ee.Classifier.smileRandomForest( | ||
numberOfTrees=3).train(features=training, classProperty='LC_Type1') | ||
|
||
# Create an export classifier task to run. | ||
asset_id = 'projects/<project-name>/assets/<asset-name>' # <> modify these | ||
ee.batch.Export.classifier.toAsset( | ||
classifier=classifier, | ||
description='classifier_export', | ||
assetId=asset_id | ||
) | ||
|
||
# Load the classifier after the export finishes and visualize. | ||
savedClassifier = ee.Classifier.load(asset_id) | ||
landcover_palette = [ | ||
'05450a', '086a10', '54a708', '78d203', '009900', | ||
'c6b044', 'dcd159', 'dade48', 'fbff13', 'b6ff05', | ||
'27ff87', 'c24f44', 'a5a5a5', 'ff6d4c', '69fff8', | ||
'f9ffa4', '1c0dff'] | ||
landcoverVisualization = { | ||
'palette': landcover_palette, | ||
'min': 0, | ||
'max': 16, | ||
'format': 'png' | ||
} | ||
Map.addLayer( | ||
landsatComposite.classify(savedClassifier), | ||
landcoverVisualization, | ||
'Upsampled landcover, saved') | ||
# [END earthengine__apidocs__export_classifier_toasset] |