-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
66 lines (55 loc) · 2.87 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D, BatchNormalization
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.regularizers import l2
from tensorflow import keras
from sklearn.model_selection import train_test_split
from imblearn.over_sampling import RandomOverSampler
import numpy as np
def build_and_train_model(X, Y, test_size=0.2, epochs=70, batch_size=32, verbose=1):
# Fix random seed for reproducibility
seed = 7
np.random.seed(seed)
# Split development set in training and testing set
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=test_size, random_state=True, shuffle=True,
stratify=Y)
# Oversampling to treat imbalanced classes
oversample = RandomOverSampler(sampling_strategy='not majority')
oversample.fit_resample(X_train[:, :, 0], y_train)
X_train = X_train[oversample.sample_indices_]
y_train = y_train[oversample.sample_indices_]
# CNN parameters
feature_dim_1 = 39
feature_dim_2 = 94
channel = 1
num_classes = 7
# Reshape data
X_train = X_train.reshape(X_train.shape[0], feature_dim_1, feature_dim_2, channel)
X_test = X_test.reshape(X_test.shape[0], feature_dim_1, feature_dim_2, channel)
# CNN model
model = Sequential()
model.add(Conv2D(24, kernel_size=(3, 3), input_shape=(feature_dim_1, feature_dim_2, channel), kernel_regularizer=l2(0.1), activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Conv2D(32, kernel_size=(3, 3), input_shape=(feature_dim_1, feature_dim_2, channel), kernel_regularizer=l2(0.1), activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Conv2D(64, kernel_size=(3, 3), input_shape=(feature_dim_1, feature_dim_2, channel), kernel_regularizer=l2(0.1), activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Conv2D(128, kernel_size=(3, 3), input_shape=(feature_dim_1, feature_dim_2, channel), kernel_regularizer=l2(0.2), activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2), padding='same'))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.4))
model.add(Dense(num_classes, activation='softmax'))
optimizer = Adam(lr=0.0001)
model.compile(loss=keras.losses.categorical_crossentropy, optimizer=optimizer, metrics=["accuracy"])
# Train the model
history = model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_test, y_test), verbose=verbose)
return model, history, X_test, y_test