-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathschemes.hh
275 lines (214 loc) · 6.06 KB
/
schemes.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
/*
* schemes.hh
* GravitySolver
*
* Created by Oliver Hahn on 2/1/10.
* Copyright 2010 KIPAC/Stanford University. All rights reserved.
*
*/
#ifndef __SCHEME_HH
#define __SCHEME_HH
#include <vector>
#include <stdexcept>
#include "solver.hh"
//... abstract implementation of the Poisson/Force scheme
template< class L, class G, typename real_t=double >
class scheme
{
public:
typedef L laplacian;
typedef G gradient;
laplacian m_laplacian;
gradient m_gradient;
template< class C >
inline real_t grad_x( const C&c, const int i, const int j, const int k )
{ return m_gradient.apply_x( c,i,j,k ); }
template< class C >
inline real_t grad_y( const C&c, const int i, const int j, const int k )
{ return m_gradient.apply_y( c,i,j,k ); }
template< class C >
inline real_t grad_z( const C&c, const int i, const int j, const int k )
{ return m_gradient.apply_z( c,i,j,k ); }
template< class C >
inline real_t L_apply( const C&c, const int i, const int j, const int k )
{ return m_laplacian.apply( c,i,j,k ); }
template< class C >
inline real_t L_rhs( const C&c, const int i, const int j, const int k )
{ return m_laplacian.rhs( c,i,j,k ); }
inline real_t ccoeff( void )
{ return m_laplacian.ccoeff(); }
};
template< int nextent, typename T >
class gradient
{
typedef T real_t;
std::vector<real_t> m_stencil;
const unsigned nl;
public:
gradient()
: nl( 2*nextent+1 )
{
m_stencil.assign(nl*nl*nl,(real_t)0.0);
}
real_t& operator()(int i)
{ return m_stencil[i+nextent]; }
const real_t& operator()(int i) const
{ return m_stencil[i+nextent]; }
template< class C >
inline void apply( const C& c, C& f, int dir )
{
f = c;
int nx=c.size(0), ny=c.size(1), nz=c.size(2);
double hx = 1.0/(nx+1.0), hy = 1.0/(ny+1.0), hz = 1.0/(nz+1.0);
f.zero();
if( dir == 0 )
for( int i=0; i<nx; ++i )
for( int j=0; j<ny; ++j )
for( int k=0; k<nz; ++k )
for( int ii = -nextent; ii<=nextent; ++ii )
f(i,j,k) += (*this)(ii) * c(i+ii,j,k)/hx;
else if( dir == 1 )
for( int i=0; i<nx; ++i )
for( int j=0; j<ny; ++j )
for( int k=0; k<nz; ++k )
for( int jj = -nextent; jj<=nextent; ++jj )
f(i,j,k) += (*this)(jj) * c(i,j+jj,k)/hy;
else if( dir == 2 )
for( int i=0; i<nx; ++i )
for( int j=0; j<ny; ++j )
for( int k=0; k<nz; ++k )
for( int kk = -nextent; kk<=nextent; ++kk )
f(i,j,k) += (*this)(kk) * c(i,j,k+kk)/hz;
}
};
template< int nextent, typename real_t >
class base_stencil
{
protected:
std::vector<real_t> m_stencil;
const unsigned nl;
public:
bool m_modsource;
public:
base_stencil( bool amodsource = false )
: nl( 2*nextent+1 ), m_modsource( amodsource )
{
m_stencil.assign(nl*nl*nl,(real_t)0.0);
}
real_t& operator()(int i, int j, int k)
{ return m_stencil[((i+nextent)*nl+(j+nextent))*nl+(k+nextent)]; }
const real_t& operator()(unsigned i, unsigned j, unsigned k) const
{ return m_stencil[((i+nextent)*nl+(j+nextent))*nl+(k+nextent)]; }
template< class C >
inline real_t rhs( const C& c, const int i, const int j, const int k )
{
real_t sum = this->apply( c, i, j, k );
sum -= (*this)(0,0,0) * c(i,j,k);
return sum;
}
inline real_t ccoeff( void )
{
return (*this)(0,0,0);
}
template< class C >
inline real_t apply( const C& c, const int i, const int j, const int k )
{
real_t sum = 0.0;
for( int ii=-nextent; ii<=nextent; ++ii )
for( int jj=-nextent; jj<=nextent; ++jj )
for( int kk=-nextent; kk<=nextent; ++kk )
sum += (*this)(ii,jj,kk) * c(i+ii,j+jj,k+kk);
return sum;
}
template< class C >
inline real_t modsource( const C& c, const int i, const int j, const int k )
{
return 0.0;
}
};
/***************************************************************************************/
/***************************************************************************************/
/***************************************************************************************/
//... Implementation of the Gradient schemes............................................
template< typename real_t >
class deriv_2P : public gradient<1,real_t>
{
public:
deriv_2P( void )
{
(*this)( 0 ) = 0.0;
(*this)(-1 ) = -0.5;
(*this)(+1 ) = +0.5;
}
};
//... Implementation of the Laplacian schemes..........................................
template< typename real_t >
class stencil_7P : public base_stencil<1,real_t>
{
public:
stencil_7P( void )
{
(*this)( 0, 0, 0) = -6.0;
(*this)(-1, 0, 0) = +1.0;
(*this)(+1, 0, 0) = +1.0;
(*this)( 0,-1, 0) = +1.0;
(*this)( 0,+1, 0) = +1.0;
(*this)( 0, 0,-1) = +1.0;
(*this)( 0, 0,+1) = +1.0;
}
template< class C >
inline real_t apply( const C& c, const int i, const int j, const int k ) const
{
return c(i-1,j,k)+c(i+1,j,k)+c(i,j-1,k)+c(i,j+1,k)+c(i,j,k-1)+c(i,j,k+1)-6.0*c(i,j,k);
}
template< class C >
inline real_t rhs( const C& c, const int i, const int j, const int k ) const
{
return c(i-1,j,k)+c(i+1,j,k)+c(i,j-1,k)+c(i,j+1,k)+c(i,j,k-1)+c(i,j,k+1);
}
inline real_t ccoeff( void )
{
return -6.0;
}
};
template< typename real_t >
class stencil_13P : public base_stencil<2,real_t>
{
public:
stencil_13P( void )
{
(*this)( 0, 0, 0) = -90.0/12.;
(*this)(-1, 0, 0) =
(*this)(+1, 0, 0) =
(*this)( 0,-1, 0) =
(*this)( 0,+1, 0) =
(*this)( 0, 0,-1) =
(*this)( 0, 0,+1) = 16./12.;
(*this)(-2, 0, 0) =
(*this)(+2, 0, 0) =
(*this)( 0,-2, 0) =
(*this)( 0,+2, 0) =
(*this)( 0, 0,-2) =
(*this)( 0, 0,+2) = -1./12.;
}
template< class C >
inline real_t apply( const C& c, const int i, const int j, const int k )
{
return
(-1.0*(c(i-2,j,k)+c(i+2,j,k)+c(i,j-2,k)+c(i,j+2,k)+c(i,j,k-2)+c(i,j,k+2))
+16.0*(c(i-1,j,k)+c(i+1,j,k)+c(i,j-1,k)+c(i,j+1,k)+c(i,j,k-1)+c(i,j,k+1))
-90.0*c(i,j,k))/12.0;
}
template< class C >
inline real_t rhs( const C& c, const int i, const int j, const int k )
{
return
(-1.0*(c(i-2,j,k)+c(i+2,j,k)+c(i,j-2,k)+c(i,j+2,k)+c(i,j,k-2)+c(i,j,k+2))
+16.0*(c(i-1,j,k)+c(i+1,j,k)+c(i,j-1,k)+c(i,j+1,k)+c(i,j,k-1)+c(i,j,k+1)))/12.0;
}
inline real_t ccoeff( void )
{
return -90.0/12.0;
}
};
#endif