-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNumerics.hh
96 lines (72 loc) · 1.9 KB
/
Numerics.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
/*
numerics.hh - This file is part of MUSIC -
a code to generate multi-scale initial conditions
for cosmological simulations
Copyright (C) 2010 Oliver Hahn
*/
#ifndef __NUMERICS_HH
#define __NUMERICS_HH
#ifdef WITH_MPI
#ifdef MANNO
#include <mpi.h>
#else
#include <mpi++.h>
#endif
#endif
#include <cmath>
#include <gsl/gsl_integration.h>
#include <gsl/gsl_errno.h>
#include <vector>
#include <algorithm>
#include "general.hh"
real_t integrate( double (* func) (double x, void * params), double a, double b, void *params=NULL);
typedef __attribute__((__may_alias__)) int aint;
inline float fast_log2 (float val)
{
//if( sizeof(int) != sizeof(float) )
// throw std::runtime_error("fast_log2 will fail on this system!!");
aint * const exp_ptr = reinterpret_cast <aint *> (&val);
aint x = *exp_ptr;
const int log_2 = ((x >> 23) & 255) - 128;
x &= ~(255 << 23);
x += 127 << 23;
*exp_ptr = x;
val = ((-1.0f/3) * val + 2) * val - 2.0f/3; // (1)
return (val + log_2);
}
inline float fast_log (const float &val)
{
return (fast_log2 (val) * 0.69314718f);
}
inline float fast_log10 (const float &val)
{
return (fast_log2 (val) * 0.3010299956639812f);
}
inline unsigned locate( const double x, const std::vector<double> vx )
{
long unsigned ju,jm,jl;
bool ascnd=(vx[vx.size()-1]>=vx[0]);
jl = 0;
ju = vx.size()-1;
while( ju-jl > 1 ) {
jm = (ju+jl)>>1;
if( (x >= vx[jm]) == ascnd )
jl = jm;
else
ju = jm;
}
return std::max((long unsigned)0,std::min((long unsigned)(vx.size()-2),(long unsigned)jl));
}
inline real_t linint( const double x, const std::vector<double>& xx, const std::vector<double>& yy )
{
unsigned i = locate(x,xx);
if( x<xx[0] )
return yy[0];
if( x>=xx[xx.size()-1] )
return yy[yy.size()-1];
double a = 1.0/(xx[i+1]-xx[i]);
double dy = (yy[i+1]-yy[i])*a;
double y0 = (yy[i]*xx[i+1]-xx[i]*yy[i+1])*a;
return dy*x+y0;
}
#endif