-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathTask_1_1.py
199 lines (155 loc) · 5.83 KB
/
Task_1_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
## Mocking Bot - Task 1.1: Note Detection
# Instructions
# ------------
#
# This file contains Main function and note_detect function. Main Function helps you to check your output
# for practice audio files provided. Do not make any changes in the Main Function.
# You have to complete only the note_detect function. You can add helper functions but make sure
# that these functions are called from note_detect function. The final output should be returned
# from the note_detect function.
#
# Note: While evaluation we will use only the note_detect function. Hence the format of input, output
# or returned arguments should be as per the given format.
#
# Recommended Python version is 2.7.
# The submitted Python file must be 2.7 compatible as the evaluation will be done on Python 2.7.
#
# Warning: The error due to compatibility will not be entertained.
# -------------
## Library initialisation
# Import Modules
# DO NOT import any library/module
# related to Audio Processing here
import numpy as np
import math
import wave
import os
import struct
import scipy.signal
# Teams can add helper functions
# Add all helper functions here
############################### Your Code Here ##############################################
def note_detect(audio_file):
# Instructions
# ------------
# Input : audio_file -- a single test audio_file as input argument
# Output : Detected_Note -- String corresponding to the Detected Note
# Example : For Audio_1.wav file, Detected_Note = "A4"
# Add your code here
sampling_freq = 44100
window = 399
dft = []
start = []
end = []
Identified_Notes = []
Identified_Notes[:] = []
start[:] = []
end[:] = []
array = [17.32,19.45,23.12,25.96,29.14,
34.65,38.89,46.25,51.91,58.27,
69.30,77.78,92.50,103.83,116.54,
138.59,155.56,185.00,207.65,233.08,
277.18,311.13,369.99,415.30,466.16,
554.37,622.25,739.99,830.61,932.33,
1108.73,1244.51,1479.98,1661.22,1864.66,
2217.46,2489.02,2959.96,3322.44,3729.31,
4434.92,4978.03,5919.91,6644.88,7458.62,
16.35,18.35,20.60,21.83,24.50,27.50,30.87,
32.70,36.71,41.20,43.65,49.00,55.00,61.74,
65.41,73.42,82.41,87.31,98.00,110.00,123.47,
130.81,146.83,164.81,174.61,196.00,220.00,246.94,
261.63, 293.66, 329.63, 349.23, 392.00, 440.00, 493.88,
523.25, 587.33, 659.25, 698.46, 783.99, 880.00, 987.77,
1046.50, 1174.66, 1318.51, 1396.91, 1567.98, 1760.00, 1975.53,
2093.00, 2349.32, 2637.02, 2793.83, 3135.96, 3520.00, 3951.07,
4186.01, 4698.63, 5274.04, 5587.65, 6271.93, 7040.00, 7902.13,
]
notes = ['C#0', 'D#0', 'F#0', 'G#0', 'A#0',
'C#1', 'D#1', 'F#1', 'G#1', 'A#1',
'C#2', 'D#2', 'F#2', 'G#2', 'A#2',
'C#3', 'D#3', 'F#3', 'G#3', 'A#3',
'C#4', 'D#4', 'F#4', 'G#4', 'A#4',
'C#5', 'D#5', 'F#5', 'G#5', 'A#5',
'C#6', 'D#6', 'F#6', 'G#6', 'A#6',
'C#7', 'D#7', 'F#7', 'G#7', 'A#7',
'C#8', 'D#8', 'F#8', 'G#8', 'A#8',
'C0', 'D0', 'E0', 'F0', 'G0', 'A0', 'B0',
'C1', 'D1', 'E1', 'F1', 'G1', 'A1', 'B1',
'C2', 'D2', 'E2', 'F2', 'G2', 'A2', 'B2',
'C3', 'D3', 'E3', 'F3', 'G3', 'A3', 'B3',
'C4', 'D4', 'E4', 'F4', 'G4', 'A4', 'B4',
'C5', 'D5', 'E5', 'F5', 'G5', 'A5', 'B5',
'C6', 'D6', 'E6', 'F6', 'G6', 'A6', 'B6',
'C7', 'D7', 'E7', 'F7', 'G7', 'A7', 'B7',
'C8', 'D8', 'E8', 'F8', 'G8', 'A8', 'B8',
]
file_length = audio_file.getnframes()
sound = np.zeros(file_length)
for i in range(file_length):
data = audio_file.readframes(1)
data = struct.unpack("<h", data)
sound[i] = int(data[0])
sound = np.divide(sound, float(2 ** 15))
sound_square = np.square(sound)
i = 0
j = 0
c = 0
count = 0
xsum = []
while (i < (file_length) - window):
s = 0.00
j = 0
while (j <= window):
s = s + sound_square[i + j]
j = j + 1
xsum.append(s)
c = c+1
count += s
i = i + window
i = 0
fx=0
avg = count/c
threshold = avg/20.0
for i in range(len(xsum)):
if xsum[i]>threshold and fx==0:
fx=1
start.append(i*window)
elif xsum[i]<threshold and fx==1:
end.append(i*window)
fx=0
else:
continue
if len(start)!=len(end):
end.append(i*window)
i = 0
while (i < len(start)):
dft = np.array(np.fft.fft(sound[start[i]:end[i]]))
indexes, _ = scipy.signal.find_peaks(dft, height=45, distance=45)
i_max = indexes[0]
fr = ((i_max)*sampling_freq)/(end[i]-start[i])
idx = (np.abs(array-fr)).argmin()
Detected_Note = notes[idx]
i = i + 1
return Detected_Note
############################### Main Function ##############################################
if __name__ == "__main__":
# Instructions
# ------------
# Do not edit this function.
# code for checking output for single audio file
path = os.getcwd()
file_name = path + "\Task_1.1_Audio_files\Audio_1.wav"
audio_file = wave.open(file_name)
Detected_Note = note_detect(audio_file)
print("\n\tDetected Note = " + str(Detected_Note))
# code for checking output for all audio files
x = raw_input("\n\tWant to check output for all Audio Files - Y/N: ")
if x == 'Y':
Detected_Note_list = []
file_count = len(os.listdir(path + "\Task_1.1_Audio_files"))
for file_number in range(1, file_count):
file_name = path + "\Task_1.1_Audio_files\Audio_"+str(file_number)+".wav"
audio_file = wave.open(file_name)
Detected_Note = note_detect(audio_file)
Detected_Note_list.append(Detected_Note)
print("\n\tDetected Notes = " + str(Detected_Note_list))