-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmerge_sRNAclass_annotations.py
65 lines (54 loc) · 1.57 KB
/
merge_sRNAclass_annotations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import json
import pandas as pd
# load config
config = json.load(
open("MIRSORT_ANNOTATION_DF.json")
)
inputpath1 = config["merge_sRNAclass_annotations.py"]["unitas_annot_path"]
inputpath2 = config["merge_sRNAclass_annotations.py"]["sports_annot_path"]
outputpath = config["merge_sRNAclass_annotations.py"]["sRNA_class_annot_path"]
# load unitas annotation matrix
unitas_annot = pd.read_csv(
inputpath1,
sep="\t",
names=[
"Reads",
"Annotation",
"d",
"e",
"f",
"g",
"h",
"i",
"j",
"k",
"l",
"m",
"n",
"o",
"p",
"q"
],
skiprows=1,
)
# combine annotation in one column
unitas_annot = unitas_annot.reset_index()
unitas_annot = unitas_annot.rename(columns={"index": "Sequence"})
annot_concat = unitas_annot.iloc[:, 2:17].apply(lambda x: x.str.cat(sep=";"), axis=1)
unitas_annot = unitas_annot.iloc[:, 0:1]
unitas_annot["Annotation"] = annot_concat
# load sports annotation matrix
sports_annot = pd.read_csv(inputpath2, sep="\t")
# bring to same format like unitas
sports_annot = sports_annot[["Sequence", "Annotation"]]
# merge unitas and sports annotation
seq_overlap = set.intersection(set(unitas_annot.Sequence), set(sports_annot.Sequence))
annotation_merge = unitas_annot.merge(
sports_annot,
how="left",
left_on="Sequence",
right_on="Sequence",
suffixes=("_unitas", "_sports"),
)
# write annotation_merge dataframe to be used to generate annotation matrix for small RNA classes and subclasses
annotation_merge.to_csv(outputpath)