-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
59 lines (48 loc) · 2.18 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
"""Train the model"""
import argparse
import os
import tensorflow as tf
from dataset.mnist.input_fn import mnist_train_input_fn
from dataset.imagenetvid.input_fn import imagenet_train_input_fn
from model.model_fn import model_fn
from model.utils import Params
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', default='experiments/base_model',
help="Experiment directory containing params.json")
if __name__ == '__main__':
tf.reset_default_graph()
tf.logging.set_verbosity(tf.logging.INFO)
# Load the parameters from json file
args = parser.parse_args()
json_path = os.path.join(args.model_dir, 'params.json')
assert os.path.isfile(json_path), "No json configuration file found at {}".format(json_path)
params = Params(json_path)
# Define the model
tf.logging.info("Creating the model...")
config = tf.estimator.RunConfig(tf_random_seed=230,
model_dir=args.model_dir,
save_summary_steps=params.save_summary_steps,
save_checkpoints_steps=params.save_checkpoints_steps)
if params.warm_start_from == "":
estimator = tf.estimator.Estimator(model_fn, params=params, config=config)
else:
ws = tf.estimator.WarmStartSettings(
ckpt_to_initialize_from=params.warm_start_from,
vars_to_warm_start='.*',
)
estimator = tf.estimator.Estimator(model_fn, params=params, config=config,
warm_start_from=ws)
# Define the dataset
tf.logging.info("Defining the dataset...")
assert params.dataset in ['mnist', 'imagenetvid'], \
"Dataset {} not supported".format(params.dataset)
if params.dataset == 'mnist':
train_input_fn = lambda: mnist_train_input_fn('data/mnist', params)
elif params.dataset == 'imagenetvid':
train_input_fn = lambda: imagenet_train_input_fn(params)
# Train the model
tf.logging.info("Starting training for {} epoch(s).".format(params.num_epochs))
if params.only_one_step:
estimator.train(train_input_fn, max_steps=1)
else:
estimator.train(train_input_fn)