-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparabolic_wavefront.js
848 lines (637 loc) · 29.2 KB
/
parabolic_wavefront.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
/*
parabolic_wavefront.js
23/01/2024
author George Galanis, Melbourne Australia
Copyright (c) 2024 George Galanis
This file is part of the Parabolic Wavefront software
The Wavefront software, HTML, CSS, JavaScript is free.
You can redistribute it or modify it under the terms of the CNU License 3.0 of the License.
This software is published without any Warranty or implied Warranty.
*/
const degToRad = Math.PI/180.0;
const radToDeg = 1/degToRad;
/****************************************************************
***************** Window Management *************
****************************************************************/
window.onload=function(){
init();
}
window.onresize=function(){
init();
}
var scrollModeY; //store the scroll mode of the display while using mouse or touch functions.
function disableScroll(event) {
scrollModeY=document.body.style.overflowY;//store the scroll mode of the display while using mouse or touch functions.
document.body.style.overflowY="hidden"
event.preventDefault();
}
function enableScroll(event) {
document.body.style.overflowY=scrollModeY;
event.returnValue=true;
}
const can=document.getElementById("parabolaCanvas");
const ctx = can.getContext("2d");
// mouse canvas routines
ctx.canvas.addEventListener('mousemove', mousemovedCtx);
ctx.canvas.addEventListener('mousedown', mousedownCtx);
ctx.canvas.addEventListener("mouseup", mouseupCtx);
// touch emulation routines, used when testing touch routines with a mouse
/*
ctx.canvas.addEventListener('mousemove', touchMovedMouseEmulationCtx);
ctx.canvas.addEventListener('mousedown', touchdownMouseEmulationCtx);
ctx.canvas.addEventListener("mouseup", touchEndMouseEmulationCtx);
*/
can.addEventListener('touchmove', touchMovedCtx);
can.addEventListener('touchstart', touchStartCtx);
can.addEventListener('touchend', touchEndCtx);
/*************************Common Drag Source functions **********/
function WorldVectorToCanvasVector(WorldVec){
let CanvasPos = {x:0, y:0}
var CanvasVec = new Vector2D(0,0);
CanvasPos = wv.convertWorldToWin(WorldVec);
CanvasVec.set(CanvasPos.x,CanvasPos.y);
return CanvasVec;
}
function convertCanvasToWorldVector(CanvasVec){
let WorldPos = {x:0, y:0};
var WorldVec = new Vector2D(0,0);
WorldPos = wv.convertWinToWorld(CanvasVec.x,CanvasVec.y);
WorldVec.set(WorldPos.x,WorldPos.y);
return WorldVec;
}
function CanvasDistance(CanvasVec,WorldVec){
var WorldOnCanvasVec = new Vector2D(0,0);
var DiffVec = new Vector2D(0,0);
var DistOnCanvas = 0;
WorldOnCanvasVec= WorldVectorToCanvasVector(WorldVec);
DiffVec = CanvasVec.subtract(WorldOnCanvasVec);
DistOnCanvas = DiffVec.magnitude();
return DistOnCanvas;
}
function calculateWorldDistance(WorldVec1, WorldVec2){
let dist = 0;
var MS = new Vector2D(0.0, 0.0);
let wv = new Vector2D(WorldVec1.x, WorldVec1.y);
MS = wv.subtract(WorldVec2);
dist = MS.magnitude();
return dist;
}
function drawDishStructure(){
wv.setColor("#FF0000");
wv.drawCircle(F, 0.019*parabolaD); //draw focus point
drawParabolaV(wv, parabolaA, parabolaD);
}
function drawSource(){
//draw ray and source structure
wv.setColor("#0000FF");
wv.drawCircle(S,0.02*parabolaD); //draw source point
}
function updateGrabbedSource(){
ctx.clearRect(0,0,can.width,can.height); //clear Canvas
drawSource();
drawDishStructure();
drawFeedLocationDimensions();
waveletsEmmision=updateWaveletsEmission(S);
energy=calculateEnergyAtImagePlane(waveletsEmmision);
drawEnergy(energy);
drawFeedLocationDimensions();
}
/******************************************************************/
/********************** Mouse Drag Source functions ****************/
const sourceGrabSize=200;
var mouseGrabbedSource = false;
var BoundingRect =can.getBoundingClientRect();
function getMousePosCanvasVector(event){
var mousePosCanvasVector = new Vector2D(0.0,0.0);
BoundingRect = can.getBoundingClientRect(); //updated here in case window size changed
let x = event.clientX - BoundingRect.left; // mouse move simulation X
let y = event.clientY - BoundingRect.top; // y
mousePosCanvasVector.set(x, y);
return mousePosCanvasVector;
}
function mousedownCtx(event){
var mousePosCanvasVector = new Vector2D(0,0);
var mouseDistCanvas = 0;
mousePosCanvasVector = getMousePosCanvasVector(event);
mouseDistCanvas = CanvasDistance(mousePosCanvasVector,S);
if (mouseDistCanvas<sourceGrabSize) {mouseGrabbedSource=true;}
else (mouseGrabbedSource=false);
}
function mouseupCtx(event){
mouseGrabbedSource=false;
}
function mousemovedCtx(event){
var mousePosCanvasVector = new Vector2D(0,0); //source position in Canvas Coords
if (mouseGrabbedSource){
mousePosCanvasVector = getMousePosCanvasVector(event);
S=convertCanvasToWorldVector(mousePosCanvasVector);
updateGrabbedSource();
}
}
/*********************************************************/
/*******************Touch Emulation Drag Source functions****************/
let touchedScreen=false;
function touchdownMouseEmulationCtx(event){
touchedScreen = true;
touchStartCtx(event);
}
function touchMovedMouseEmulationCtx(event){
if (touchedScreen){touchMovedCtx(event);}
}
function touchEndMouseEmulationCtx(event){
touchedScreen=false;
touchEndCtx(event);
}
/*************************************************************************/
/*******************Touch Drag Source functions***************************/
/* for BoundingRect definition see mouse drag variables above */
function getTouchPosCanvasVector(event){
var touchPosCanvasVector = new Vector2D(0.0,0.0);
BoundingRect = can.getBoundingClientRect();
// let x = event.clientX - BoundingRect.left; // mouse move simulation X
// let y = event.clientY - BoundingRect.top; // y
let x = event.targetTouches[0].pageX - BoundingRect.left; //touch move x
let y = event.targetTouches[0].pageY - BoundingRect.top; //touch move y
touchPosCanvasVector.set(x, y);
return touchPosCanvasVector;
}
touchGrabbedSource=false;
function touchStartCtx(event){
var touchPosCanvasVector = new Vector2D(0,0);
var touchDistCanvas = 0;
disableScroll(event);
touchPosCanvasVector = getTouchPosCanvasVector(event);
touchDistCanvas = CanvasDistance(touchPosCanvasVector,S);
if (touchDistCanvas<sourceGrabSize) {touchGrabbedSource=true;};
}
function touchEndCtx(event){
enableScroll(event);
touchGrabbedSource=false;
}
function touchMovedCtx(event){
if (touchGrabbedSource){
let touchPosCanvasVector = getTouchPosCanvasVector(event);
S=convertCanvasToWorldVector(touchPosCanvasVector);
updateGrabbedSource();
// writeCanvasCoords(S.x, S.y);
}
}
/*********************************************************************/
let touchMovedX=0; let touchMovedY =0;
function writeCanvasCoords(XwinTouch,YwinTouch){
let xWin=200; let yWin=200;
wv.setColor("#00ff00");
touchMovedX = Math.round(XwinTouch);
touchMovedY = Math.round(YwinTouch);
let xwinStr = XwinTouch.toString();
let ywinStr = YwinTouch.toString();
let touchCoordStr = "Moved " + xwinStr + "," + ywinStr + " ";
wv.writeTextWin(xWin,yWin+20, touchCoordStr);
}
/*******************************************************************************************/
/***** HTML Object management routines ***********/
/*******************************************************************************************/
var dimensionsButton = document.getElementById("dimensions");
var dimensions = false;
function drawFeedLocationDimensions(){
var Diff = new Vector2D(0.0,0.0);
let angleAtFeedMin = calculateAngleAtFeed(parabolaA, minIlluminationPointFloat,S.x, S.y);
let angleAtFeedMax = calculateAngleAtFeed(parabolaA, maxIlluminationPointFloat, S.x, S.y);
Diff=S.subtract(F);
if (dimensions) {
wv.setColor("#00ff00");
let xDim = Math.round(Diff.x);
let yDim = Math.round(Diff.y);
let angleAtFeedMin = calculateAngleAtFeed(parabolaA, minIlluminationPointFloat*parabolaD-parabolaD/2,S.x, S.y);
let angleAtFeedMax = calculateAngleAtFeed(parabolaA, maxIlluminationPointFloat*parabolaD-parabolaD/2, S.x, S.y);
let angleAtFeed = angleAtFeedMax-angleAtFeedMin;
angleAtFeed=Math.round(angleAtFeed*radToDeg);
let angleAtFeedStr = angleAtFeed.toString();
let xDimStr = xDim.toString();
let yDimStr = yDim.toString();
let DimStr = " " + xDimStr + "mm," + yDimStr + "mm"+" "+angleAtFeedStr+'⁰';
wv.drawArrow(F, S);
wv.writeTextWhiteBackWorld(S, DimStr);
wv.ctx.stroke();
}
}
function toggleDimensions(){
init();
dimensions = !dimensions;
if (dimensions){
dimensionsButton.style.backgroundColor="#20ff20";
drawFeedLocationDimensions();
} else {
dimensionsButton.style.backgroundColor="#F0F0EF";
wv.ctx.stroke();
}
}
var fillButton = document.getElementById("fill");
var fill = false;
function toggleFill(){
fill = !fill;
if (fill){
fillButton.style.backgroundColor="#20ff20";
init();
} else {
init();
fillButton.style.backgroundColor="#F0F0EF";
wv.ctx.stroke();
}
drawFeedLocationDimensions();
}
const numberOfSources = 1; //place holder for more than 1 feed sources. For symmetry number of feed sources must be odd
var numWaveletsSlider = document.getElementById("numWaveletsSlider");
var numWaveletsValue = document.getElementById("numWaveletsValue");
numWaveletsValue.innerHTML=numWaveletsSlider.value;
let numWavelets=parseInt(numWaveletsValue.innerHTML);
let intensityPlaneVertScaleFactor=10.0; //scale for the display size on the plot to align with horizontal screen line
let intensityPlaneScale = intensityPlaneVertScaleFactor/(numWavelets);
function getNumWavelets(){
numWaveletsValue.innerHTML=numWaveletsSlider.value;
numWavelets=parseInt(numWaveletsValue.innerHTML);
intensityPlaneScale = intensityPlaneVertScaleFactor/(numWavelets);
init();
drawFeedLocationDimensions();
}
var spanSlider = document.getElementById("spanSlider");
var spanValue = document.getElementById("spanValue");
spanValue.innerHTML=spanSlider.value;
let spanDeg=parseInt(spanValue.innerHTML);
let minTheta = -spanDeg*degToRad;
let maxTheta = spanDeg*degToRad;
function getIntensitySpan(){
spanValue.innerHTML=spanSlider.value;
spanDeg=parseInt(spanValue.innerHTML);
minTheta = -spanDeg*degToRad;
maxTheta = spanDeg*degToRad;
init();
drawFeedLocationDimensions();
}
var numIntensityPointsSlider = document.getElementById("numIntensityPointsSlider");
var numIntensityPointsValue = document.getElementById("numIntensityPointsValue");
numIntensityPointsValue.innerHTML=numIntensityPointsSlider.value;
let numIntensityPoints=parseInt(numIntensityPointsValue.innerHTML);
function getNumIntensityPoints(){
numIntensityPointsValue.innerHTML=numIntensityPointsSlider.value;
numIntensityPoints=parseInt(numIntensityPointsValue.innerHTML);
init();
drawFeedLocationDimensions();
}
var subSamplingNumSlider = document.getElementById("subSamplingNumSlider");
var subSamplingNumValue = document.getElementById("subSamplingNumValue");
subSamplingNumValue.innerHTML=subSamplingNumSlider.value;
let subSamplingNum=parseInt(subSamplingNumValue.innerHTML);
function getSubSamplingNum(){
subSamplingNumValue.innerHTML=subSamplingNumSlider.value;
subSamplingNum=parseInt(subSamplingNumValue.innerHTML);
init();
drawFeedLocationDimensions();
}
const illuminationPointStepSize = 0.05;
var minIlluminationPointSlider = document.getElementById("minIlluminationPointSlider");
var minIlluminationPointValue = document.getElementById("minIlluminationPointValue");
minIlluminationPointValue.innerHTML=minIlluminationPointSlider.value;
let minIlluminationPointFloat=parseFloat(minIlluminationPointValue.innerHTML);
let minIlluminationPoint = minIlluminationPointFloat;
function getMinIlluminationPoint(){
minIlluminationPointValue.innerHTML=minIlluminationPointSlider.value;
minIlluminationPointFloat=parseFloat(minIlluminationPointValue.innerHTML);
minIlluminationPoint = minIlluminationPointFloat;
minIlluminationPoint = minIlluminationPoint.toFixed(2);
if (minIlluminationPoint>=maxIlluminationPoint){
minIlluminationPoint = maxIlluminationPoint-illuminationPointStepSize;
minIlluminationPoint = minIlluminationPoint.toFixed(2);
minIlluminationPointValue.innerHTML = minIlluminationPoint.toString(10);
minIlluminationPointSlider.value = minIlluminationPointValue.innerHTML;
}
init();
drawFeedLocationDimensions();
}
var maxIlluminationPointSlider = document.getElementById("maxIlluminationPointSlider");
var maxIlluminationPointValue = document.getElementById("maxIlluminationPointValue");
maxIlluminationPointValue.innerHTML=maxIlluminationPointSlider.value;
let maxIlluminationPointFloat=parseFloat(maxIlluminationPointValue.innerHTML);
let maxIlluminationPoint = maxIlluminationPointFloat;
function getMaxIlluminationPoint(){
maxIlluminationPointValue.innerHTML=maxIlluminationPointSlider.value;
maxIlluminationPoint=parseFloat(maxIlluminationPointValue.innerHTML);
maxIlluminationPoint = maxIlluminationPoint.toFixed(2);
if (maxIlluminationPoint<=minIlluminationPoint){
maxIlluminationPointFloat = minIlluminationPointFloat+illuminationPointStepSize;
maxIlluminationPoint = maxIlluminationPointFloat.toFixed(2);
maxIlluminationPointValue.innerHTML = maxIlluminationPoint.toString(10);
maxIlluminationPointSlider.value = maxIlluminationPointValue.innerHTML;
}
init();
drawFeedLocationDimensions();
}
/****************************************************************
***********Function Related to Dish Geometry********************
****************************************************************/
function calculateParabola(a, x){
return y=a*Math.pow(x, 2);
}
function calculateParabolaDx(a,x){
return 2*a*x;
}
function calculateAngleAtFeed(a,xP, xS, yS){
let yP=calculateParabola(a, xP);
let xDiff=xP-xS;
let yDiff = yS-yP; //World Coords, yP os up from parabola surface
return Math.atan2(xDiff,yDiff);
}
function drawParabolaV(vw, a, D){
let parabola_x_min = -D/2; let parabola_x_max = D/2;
let currPointWorld = {x:parabola_x_min, y:calculateParabola(a, parabola_x_min)};
var Pwin = {x:0.0, y:0.0};
Pwin = vw.convertWorldToWin(currPointWorld);
vw.ctx.beginPath();
vw.ctx.moveTo(Pwin.x, Pwin.y);
for (let x = parabola_x_min; x<=parabola_x_max; x++){
currPointWorld.x =x;
currPointWorld.y = calculateParabola(a, currPointWorld.x);
Pwin = vw.convertWorldToWin(currPointWorld);
vw.ctx.lineTo(Pwin.x,Pwin.y);
}
vw.ctx.stroke();
}
/*****************************************************************************
********** Parabolic Dish, WorldWindow Geometry **************************
******************************************************************************/
var parabolaDSlide = document.getElementById("diameter");
var parabolaDValue = document.getElementById("diameterValue");
parabolaDValue.innerHTML=parabolaDSlide.value+"mm";
let parabolaD=parseInt(parabolaDValue.innerHTML);
var lambdaSlide = document.getElementById("wavelength");
var lambdaValue = document.getElementById("wavelengthValue");
lambdaValue.innerHTML=lambdaSlide.value+"mm";
let lambda=parseFloat(lambdaValue.innerHTML)*1.22; //1.22 is the Fraunhofer correction factor for circular apertures
var parabolaFDSlide = document.getElementById("fD");
var parabolaFDValue = document.getElementById("fDvalue");
parabolaFDValue.innerHTML=parabolaFDSlide.value;
let parabolaFD=parseFloat(parabolaFDSlide.value);
let parabolaF= parabolaFD*parabolaD;
let parabolaA= 1/(4*parabolaF);
let focus=1/(4*parabolaA);
let XworldMin=-(parabolaD/2)*1.2; let XworldMax=(parabolaD/2)*1.2;
let parabolaOffsetY=-parabolaD/5;
let YworldMin=parabolaOffsetY; YworldMax=XworldMax*2+YworldMin;
let rayLength = parabolaD/2;
let rayPathLengthDish = parabolaF + parabolaD*parabolaD/(16 * parabolaF);
let rayPathLength = parabolaF + parabolaD*parabolaD/(16 * parabolaF) +rayLength;
function updateCommonParabolaGeometry(){
XworldMin=-(parabolaD/2)*1.2; XworldMax=(parabolaD/2)*1.2;
parabolaOffsetY=-parabolaD/5;
YworldMin=parabolaOffsetY; YworldMax=XworldMax*2+YworldMin;
F = new Vector2D(0, focus);
S = new Vector2D(0,parabolaF+0); //source vector; Starts at focus
rayLength = parabolaD/2;
rayPathLengthDish = parabolaF + parabolaD*parabolaD/(16 * parabolaF);
rayPathLength = parabolaF + parabolaD*parabolaD/(16 * parabolaF) +rayLength;
}
function getParabolaDiameter(){
parabolaDValue.innerHTML = parabolaDSlide.value+"mm";
parabolaD=parseInt(parabolaDSlide.value);
parabolaF= parabolaFD*parabolaD;
parabolaA= 1/(4*parabolaF);
focus=1/(4*parabolaA);
updateCommonParabolaGeometry();
init();
drawFeedLocationDimensions();
};
function getFD(){
parabolaFDValue.innerHTML = parabolaFDSlide.value;
parabolaFD=parseFloat(parabolaFDSlide.value);
parabolaF= parabolaFD*parabolaD;
parabolaA= 1/(4*parabolaF);
focus=1/(4*parabolaA);
updateCommonParabolaGeometry();
init();
drawFeedLocationDimensions();
};
function getWavelength(){
lambdaSlide = document.getElementById("wavelength");
lambdaValue = document.getElementById("wavelengthValue");
lambdaValue.innerHTML=lambdaSlide.value + "mm";
lambda=parseFloat(lambdaValue.innerHTML)*1.22; //1.22 is Fraunhofer correction for spherical aperture
init();
drawFeedLocationDimensions();
};
/********************************************************************************
****** Plotting Parameters ************
*******************************************************************************/
const imagePlaneDistance = 10000000; //10kms in mm
const imagePlaneHeight = 120;
/**************************************************************************
************** Number of sources for image-plane resolution **********
***************************************************************************/
function convertThetaToWin(theta, wv){ //Theta referring to the range plotted diffraction intensity graph
let thetaRange = maxTheta-minTheta;
let winXRange = wv.x_win_max-wv.x_win_min;
let xWinCentre = (wv.x_win_min + wv.x_win_max)/2;
let fracThetaRange = (theta-minTheta)/thetaRange;
let fracWinXRange = fracThetaRange;
let xWin = wv.x_win_min+fracWinXRange*winXRange;
let xIntWin = Math.round(xWin);
xIntWin = xIntWin+xWinCentre-winXRange/2;
return xIntWin;
}
function drawImagePlane(wv){ //Image plane is the plane on which the diffraction intensity is plotted
var nInt;
var degMinus20Win; var degMinus15Win; var degMinus10Win; var degMinus5Win;
var deg0Win;
var deg5Win; var deg10Win; var deg15Win; var deg20Win;
/*
//test code for checking aspect ratio is 1:1
wv.setColor("#00FF00");
let winOffset=10 ;
wv.drawWinLine({x:wv.x_win_min + winOffset,y:wv.y_win_min + winOffset}, {x:wv.x_win_max - winOffset, y:wv.y_win_min + winOffset});
wv.drawWinLine({x:wv.x_win_max-winOffset, y:wv.y_win_min+winOffset},{x:wv.x_win_max-winOffset, y:wv.y_win_max-winOffset});
wv.drawWinLine({x:wv.x_win_max - winOffset,y:wv.y_win_max - winOffset}, {x:wv.x_win_min + winOffset, y:wv.y_win_max - winOffset});
wv.drawWinLine({x:wv.x_win_min + winOffset,y:wv.y_win_max - winOffset}, {x:wv.x_win_min + winOffset, y:wv.y_win_min + winOffset});
wv.setColor("#FFDD00");
let worldOffset = 10;
wv.drawLine({x:wv.x_world_min+worldOffset,y:wv.y_world_min+worldOffset},{x:wv.x_world_max-worldOffset,y:wv.y_world_min+worldOffset});
wv.drawLine({x:wv.x_world_min+worldOffset,y:wv.y_world_min+worldOffset},{x:wv.x_world_min+worldOffset,y:wv.y_world_max-worldOffset});
wv.drawLine({x:wv.x_world_min+worldOffset,y:wv.y_world_max-worldOffset},{x:wv.x_world_max-worldOffset,y:wv.y_world_max-worldOffset});
wv.drawLine({x:wv.x_world_max-worldOffset,y:wv.y_world_max-worldOffset},{x:wv.x_world_max-worldOffset,y:wv.y_world_min+worldOffset});
*/
wv.setColor("#555555");
wv.drawWinDashLine({x:wv.x_win_min, y:wv.y_win_min+imagePlaneHeight-100},{x:wv.x_win_max, y:wv.y_win_min + imagePlaneHeight-100}) ; //unit intensity line
wv.drawWinLine({x:wv.x_win_min, y:wv.y_win_min+imagePlaneHeight},{x:wv.x_win_max, y:wv.y_win_min + imagePlaneHeight}) ; //zero intensity line
degMinus20Win = convertThetaToWin(-20.0*degToRad,wv);
wv.writeTextWin(degMinus20Win, wv.y_win_min+imagePlaneHeight + 15,"-20");
degMinus15Win = convertThetaToWin(-15.0*degToRad,wv);
wv.writeTextWin(degMinus15Win, wv.y_win_min+imagePlaneHeight + 15,"-15");
degMinus10Win = convertThetaToWin(-10.0*degToRad,wv);
wv.writeTextWin(degMinus10Win, wv.y_win_min+imagePlaneHeight + 15,"-10");
degMinus5Win = convertThetaToWin(-5.0*degToRad,wv);
wv.writeTextWin(degMinus5Win, wv.y_win_min+imagePlaneHeight + 15,"-5");
deg0Win = convertThetaToWin(0*degToRad,wv);
wv.writeTextWin(deg0Win, wv.y_win_min+imagePlaneHeight + 15,"0");
deg5Win = convertThetaToWin(5.0*degToRad,wv);
wv.writeTextWin(deg5Win-20, wv.y_win_min+imagePlaneHeight + 15,"5");
deg10Win = convertThetaToWin(10.0*degToRad,wv);
wv.writeTextWin(deg10Win-20, wv.y_win_min+imagePlaneHeight + 15,"10");
deg15Win = convertThetaToWin(15.0*degToRad,wv);
wv.writeTextWin(deg15Win-20, wv.y_win_min+imagePlaneHeight + 15,"15");
deg20Win = convertThetaToWin(20.0*degToRad,wv);
wv.writeTextWin(deg20Win-20, wv.y_win_min+imagePlaneHeight + 15,"20"); //subtract out x because text is left justified and is approax 20px.
}
var F = new Vector2D(0, focus);
var S = new Vector2D(0,parabolaF+0); //source vector; Starts at focus
function initDish(){
wv.setColor("#FF0000");
drawParabolaV(wv, parabolaA, parabolaD);
}
/****************************************************************/
/***** Parabola and Ray Tracing Geometry *****/
/****************************************************************/
function calcParabolaIncident(xWorld){
var Incident = new Vector2D(0.0,0.0);
let Iy = calculateParabola(parabolaA,xWorld);
Incident.set(xWorld,Iy);
return Incident;
}
function calcParabolaNormal(ParabolaPoint){
var G = new Vector2D(0.0,0.0);
var N= new Vector2D(0.0,0.0);
let m = calculateParabolaDx(parabolaA, ParabolaPoint.x);
G.initGrad(m, 1);
N = G.normal();
return N;
}
function calcReflectedRays(D,Ru){
var Rs = new Vector2D(0.0,0.0);
var Dmag;
Dmag = D.magnitude();
Rs = Ru.scale(rayPathLength - Dmag);
return Rs;
}
function calcPhase0Point(P, D,R){
var Ray0Emit = new Vector2D(0.0,0.0);
var Dmag;
Dmag = D.magnitude();
Ray0Emit = R.scale(rayPathLengthDish - Dmag);
Ray0Emit = Ray0Emit.add(P);
return Ray0Emit;
};
function drawRays(P, N, D, R, Ray0Emit, Rs, Source){
wv.setColor("#0000FF");
wv.drawArrow(Source, P);
wv.drawPDirArrow(P, Rs);
}
function updateWaveletsEmission(S){
const rayIncrement = 30;
var rayNum = 0;
var Incident = Vector2D(0.0,0.0);
var Normal = Vector2D(0.0,0.0);
var IncidentDirection = Vector2D(0.0,0.0);
var ReflectedDirecton = Vector2D(0.0,0.0);
var ReflectionUnit = Vector2D(0.0,0.0);
var ReflectedRay = Vector2D(0.0,0.0);
var Ray0Emit = Vector2D(0.0,0.0); //location of zero phase (ie reference phase)
var xWorld;
var wavelet0Emissions = [numWavelets]; //location of 0 phase
let xMin = minIlluminationPoint*parabolaD-parabolaD/2;
let xMax = maxIlluminationPoint*parabolaD-parabolaD/2;
let dx = (xMax-xMin)/numWavelets;
for (rayNum = 0; rayNum <= numWavelets; rayNum=rayNum+1) {
xWorld = rayNum*dx+xMin;
Incident = calcParabolaIncident(xWorld);
IncidentDirection = Incident.subtract(S);
Normal = calcParabolaNormal(Incident);
ReflectedDirecton = IncidentDirection.reflect(Normal);
ReflectionUnit = ReflectedDirecton.unit();
Ray0Emit = calcPhase0Point(Incident, IncidentDirection, ReflectionUnit);
wavelet0Emissions[rayNum] =Ray0Emit;
// Draw some of the computer rays
let notDraw = rayNum%rayIncrement;
if (!notDraw){
ReflectedRay = calcReflectedRays(IncidentDirection,ReflectionUnit);
drawRays(Incident, Normal, IncidentDirection, ReflectedDirecton, Ray0Emit, ReflectedRay, S);
wv.drawCircle(Ray0Emit,0.0075*parabolaD); //draw phasezero points
}
}
return wavelet0Emissions;
}
function calculateEnergyAtImagePlane(waveletsPhase0){ //The diffraction instensity graph
var theta;
var ImagePlaneRay = new Vector2D(0.0,0.0);
var RI = new Vector2D(0.0,0.0); //reflection to image plane vector;
var currWaveletPhase0 = new Vector2D(0.0,0.0);
var energy = [numIntensityPoints]; //for the square of intensity (power)
let dTheta = (maxTheta - minTheta)/numIntensityPoints;
for (let i=0; i<=numIntensityPoints; i++) { //for each point on the intensity plot
theta = (minTheta + i*dTheta);
ImagePlaneRay.set(imagePlaneDistance * Math.tan(theta), imagePlaneDistance);
let sum = 0.0;
for (let Wi = 0; Wi <= numWavelets-1; Wi=Wi+1) {//for the ith wavelet, Wi, for the current source, currPhase0Emits
currWaveletPhase0 = waveletsPhase0[Wi]; //choose the zero phase location for the Wi wavelet from the array of wavelets
RI = ImagePlaneRay.subtract(currWaveletPhase0); //vector from phase 0 to current ImagePlane point;
let dist = RI.magnitude();
let nLambda = (dist % lambda); //get the phase in terms of a single wavelength
let phase = 2.0 * Math.PI / lambda * nLambda; //lambda is wavelength
let intcurr = Math.sin(phase);
sum = intcurr + sum;
}
energy[i]=sum*sum;
}
return energy;
}
function drawEnergy(energy){ //The diffraction instensity graph
var theta;
var energyPlotVal;
drawImagePlane(wv);
let e_scale = intensityPlaneScale*intensityPlaneScale/(numberOfSources); //place holder for more than single source
let dTheta = (maxTheta - minTheta)/numIntensityPoints;
for (let i=1; i<=numIntensityPoints; i++) { //for each point on the intensity plot
theta = (minTheta + i*dTheta);
let thetaWin = convertThetaToWin(theta,wv);
energyPlotVal = e_scale*energy[i];
if (fill) { //draw all points
wv.drawWinCircle(thetaWin, wv.y_win_min + imagePlaneHeight - energyPlotVal, 1); //draw filled power curve
} else { // If statement selects the maximum value for the current source point.
let maxEnergy=0.0;
let ints = Math.round(subSamplingNum/2);
for (j=i-ints; j<i+ints; j=j+1){
if (j>=0){
if (energy[j]>maxEnergy){
maxEnergy=energy[j];
}
}
}
wv.drawWinCircle(thetaWin, wv.y_win_min + imagePlaneHeight - e_scale*maxEnergy, 1); //draw filled power curve
}
}
}
/**********************************************************************************************************************/
/***** Main Line Initialization *****/
/**********************************************************************************************************************/
function setupWindowParams(){
ParabolaWinHeight=window.innerHeight-500; //allow 500pxs for controls
ParabolaWinWidth=ParabolaWinHeight;
if (window.innerWidth<ParabolaWinWidth){ //width of window becomes limit
ParabolaWinWidth=window.innerWidth;
ParabolaWinHeight=ParabolaWinWidth;
}
}
setupWindowParams();
can.width=ParabolaWinWidth;
can.height=ParabolaWinHeight;
var wv = new WorldView(ctx, XworldMin, XworldMax,YworldMin, YworldMax, 0, ParabolaWinWidth, 0, ParabolaWinHeight);
var waveletsEmmision=[numWavelets];
var energy = [numIntensityPoints];
function init(){
setupWindowParams();
can.width=ParabolaWinWidth;
can.height=ParabolaWinHeight;
wv = new WorldView(ctx, XworldMin, XworldMax,YworldMin, YworldMax, 0, ParabolaWinWidth, 0, ParabolaWinHeight);
initDish();
drawSource();
drawDishStructure();
waveletsEmmision=updateWaveletsEmission(S);
energy=calculateEnergyAtImagePlane(waveletsEmmision);
drawEnergy(energy);
}