-
Notifications
You must be signed in to change notification settings - Fork 12.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
d4ebaae
commit 81a131c
Showing
2 changed files
with
68 additions
and
44 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,37 +1,52 @@ | ||
## Name - Soumyajit Chakraborty | ||
## place - kolkata | ||
## date - 10 / 08 / 2020 | ||
|
||
import cv2 as cv | ||
|
||
face_cascade = cv.CascadeClassifier("..\libs\haarcascade_frontalface_default.xml") | ||
face_cascade_eye = cv.CascadeClassifier("..\libs\haarcascade_eye.xml") | ||
# face_glass = cv.CascadeClassifier('..\libs\haarcascade_eye_tree_eyeglasses.xml') | ||
|
||
cap = cv.VideoCapture(0) | ||
while cap.isOpened(): | ||
|
||
falg, img = cap.read() # start reading the camera output i mean frames | ||
# cap.read() returning a bool value and a frame onject type value | ||
|
||
gray = cv.cvtColor( | ||
img, cv.COLOR_BGR2GRAY | ||
) # converting to grayscale image to perform smoother | ||
faces = face_cascade.detectMultiScale( | ||
img, 1.1, 7 | ||
) # we use detectMultiscale library function to detect the predefined structures of a face | ||
eyes = face_cascade_eye.detectMultiScale(img, 1.1, 7) | ||
# using for loops we are trying to read each and every frame and map | ||
for (x, y, w, h) in faces: | ||
cv.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 1) | ||
|
||
for (a, b, c, d) in eyes: | ||
cv.rectangle(img, (a, b), (a + c, b + d), (255, 0, 0), 1) | ||
|
||
cv.imshow("img", img) | ||
c = cv.waitKey(1) | ||
if c == ord("q"): | ||
break | ||
|
||
cv.release() | ||
cv.destroyAllWindows() | ||
|
||
def detect_faces_and_eyes(): | ||
""" | ||
Detects faces and eyes in real-time using the webcam. | ||
Press 'q' to exit the program. | ||
""" | ||
# Load the pre-trained classifiers for face and eye detection | ||
face_cascade = cv.CascadeClassifier(r"..\libs\haarcascade_frontalface_default.xml") | ||
eye_cascade = cv.CascadeClassifier(r"..\libs\haarcascade_eye.xml") | ||
|
||
# Open the webcam | ||
cap = cv.VideoCapture(0) | ||
|
||
while cap.isOpened(): | ||
# Read a frame from the webcam | ||
flag, img = cap.read() | ||
|
||
# Convert the frame to grayscale for better performance | ||
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) | ||
|
||
# Detect faces in the frame | ||
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=7) | ||
|
||
# Detect eyes in the frame | ||
eyes = eye_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=7) | ||
|
||
# Draw rectangles around faces and eyes | ||
for x, y, w, h in faces: | ||
cv.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 1) | ||
|
||
for a, b, c, d in eyes: | ||
cv.rectangle(img, (a, b), (a + c, b + d), (255, 0, 0), 1) | ||
|
||
# Display the resulting frame | ||
cv.imshow("Face and Eye Detection", img) | ||
|
||
# Check for the 'q' key to exit the program | ||
key = cv.waitKey(1) | ||
if key == ord("q"): | ||
break | ||
|
||
# Release the webcam and close all windows | ||
cap.release() | ||
cv.destroyAllWindows() | ||
|
||
|
||
if __name__ == "__main__": | ||
# Call the main function | ||
detect_faces_and_eyes() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,18 +1,27 @@ | ||
import cv2 as cv | ||
|
||
# import numpy as np | ||
# Read the image in grayscale | ||
img = cv.imread(r"..\img\hand1.jpg", cv.IMREAD_GRAYSCALE) | ||
|
||
img = cv.imread("..\img\hand1.jpg", 0) | ||
flag, frame = cv.threshold(img, 70, 255, cv.THRESH_BINARY) | ||
# Apply thresholding to create a binary image | ||
_, thresholded = cv.threshold(img, 70, 255, cv.THRESH_BINARY) | ||
|
||
contor, _ = cv.findContours(frame.copy(), cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE) | ||
# Find contours in the binary image | ||
contours, _ = cv.findContours(thresholded.copy(), cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE) | ||
|
||
hull = [cv.convexHull(c) for c in contor] | ||
# Convex Hull for each contour | ||
convex_hulls = [cv.convexHull(contour) for contour in contours] | ||
|
||
final = cv.drawContours(img, hull, -1, (0, 0, 0)) | ||
cv.imshow("original_image", img) | ||
cv.imshow("thres", frame) | ||
cv.imshow("final_hsv", final) | ||
# Draw contours and convex hulls on the original image | ||
original_with_contours = cv.drawContours(img.copy(), contours, -1, (0, 0, 0), 2) | ||
original_with_convex_hulls = cv.drawContours(img.copy(), convex_hulls, -1, (0, 0, 0), 2) | ||
|
||
# Display the images | ||
cv.imshow("Original Image", img) | ||
cv.imshow("Thresholded Image", thresholded) | ||
cv.imshow("Contours", original_with_contours) | ||
cv.imshow("Convex Hulls", original_with_convex_hulls) | ||
|
||
# Wait for a key press and close windows | ||
cv.waitKey(0) | ||
cv.destroyAllWindows() |