-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathwind_train_with_mobilenet_py
374 lines (287 loc) · 11.5 KB
/
wind_train_with_mobilenet_py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import tensorflow as tf
import numpy as np
np.random.seed(123) # for reproducibility
from glob import glob
import scipy.ndimage as ndimage
import random
import scipy.misc
from keras.models import Sequential, load_model
from keras.layers import Dense, Dropout, Activation, Flatten, Merge
from keras.layers import Convolution2D, Conv2D, MaxPooling2D
from keras.models import model_from_json
from keras.utils import np_utils
from keras.applications import mobilenet
im_size_x = 224
im_size_x_here = 1*im_size_x
im_size_y = 224
im_size_y_here = 1*im_size_y
f_do_save_train_data = False
f_do_save_test_data = False
class_out_len = 2
rc_data_len = 4
rc_data_num = 3
imu_data_len = 10
imu_data_num = 6
# conv_input = []
# fcn_input = []
# class_output = []
# all_data = []
# train_output = []
train_data_regex = "/home/gavincangan/windBackwash/data/actual/conv_data/train/conv*"
test_data_regex = "/home/gavincangan/windBackwash/data/actual/conv_data/test/conv*"
error_files = []
train_fcn_input = []
train_conv_input = []
train_class_output = []
test_fcn_input = []
test_conv_input = []
test_class_output = []
conv_input_shape = (-1, 1, 94, 94)
fcn_input_shape = (-1, 72)
class_output_shape = (-1, 2)
def read_input_data(location_data_regex, dataset='train'):
# global conv_input
# global fcn_input
# global class_output
# global all_data
global f_do_save_train_data
global f_do_save_test_data
global error_files
# global train_output
global train_fcn_input
global train_conv_input
global train_class_output
global test_fcn_input
global test_conv_input
global test_class_output
all_data = []
file_index = 0
print 'Processing ', dataset, ' dataset...'
for this_file in glob(location_data_regex):
this_data = np.fromfile(this_file, sep=', ')
this_data = np.asarray(this_data, dtype="float32")
if len(this_data) == 150602:
all_data.append(this_data)
else:
print len(this_data)
error_files.append(this_file)
file_index += 1
print file_index
all_data = np.vstack(all_data)
class_output = all_data[:, 0:class_out_len]
fcn_input = all_data[:, class_out_len:(class_out_len + imu_data_len*imu_data_num + rc_data_len*rc_data_num)]
conv_input = all_data[:, (class_out_len + imu_data_len*imu_data_num + rc_data_len*rc_data_num):]
num_input_files = np.shape(fcn_input)[0]
for index in range(rc_data_len*rc_data_num, imu_data_len*imu_data_num):
this_mean = np.average(fcn_input[:, index])
fcn_input[:, index] = fcn_input[:, index] - this_mean
fcn_input[:, index] = fcn_input[:, index] / this_mean
fcn_input[:, 0:rc_data_len * rc_data_num] = fcn_input[:, 0:rc_data_len*rc_data_num]
print np.shape(conv_input)
conv_input = np.reshape(conv_input, [num_input_files, im_size_y_here, im_size_x_here, 3])
# conv_input = ndimage.interpolation.zoom(conv_input, (1, 0.595, 0.3333, 1))
scipy.misc.imsave('test_image.png',conv_input[1,:,:,1])
conv_input /= 255
print np.shape(conv_input)
# for file_index in range(num_input_files):
# this_rand = bool(random.getrandbits(1))
# this_output = [int(this_rand), int(~this_rand)]
# train_output.append(this_output)
if dataset == 'train':
train_fcn_input = fcn_input
train_conv_input = conv_input
train_class_output = class_output
if f_do_save_train_data:
train_fcn_input.tofile('train_fcn_input_data.npy', sep=',')
train_conv_input.tofile('train_conv_input_data.npy', sep=',')
train_class_output.tofile('train_class_output.npy', sep=',')
else:
test_fcn_input = fcn_input
test_conv_input = conv_input
test_class_output = class_output
if f_do_save_test_data:
test_fcn_input.tofile('test_fcn_input_data.npy', sep=',')
test_conv_input.tofile('test_conv_input_data.npy', sep=',')
test_class_output.tofile('test_class_output.npy', sep=',')
print np.shape(fcn_input)
print np.shape(conv_input)
print np.shape(class_output)
for file_name in error_files:
print file_name
# print all_data
def load_train_data():
global train_fcn_input
global train_conv_input
global train_class_output
train_fcn_input = np.fromfile('train_fcn_input_data.npy')
train_fcn_input = np.reshape(train_fcn_input, fcn_input_shape)
train_conv_input = np.fromfile('train_conv_input_data.npy')
train_conv_input = np.reshape(train_conv_input, conv_input_shape)
train_class_output = np.fromfile('train_class_output.npy')
train_class_output = np.reshape(train_class_output, class_output_shape)
def load_test_data():
global test_fcn_input
global test_conv_input
global test_class_output
test_fcn_input = np.fromfile('test_fcn_input_data.npy')
test_fcn_input = np.reshape(test_fcn_input, fcn_input_shape)
test_conv_input = np.fromfile('test_conv_input_data.npy')
test_conv_input = np.reshape(test_conv_input, conv_input_shape)
test_class_output = np.fromfile('test_class_output.npy')
test_class_output = np.reshape(test_class_output, class_output_shape)
def train_model_old():
conv_model = Sequential()
# conv_model.add(Convolution2D(32, 3, 3, activation='relu', input_shape=(1, 188, 188), dim_ordering='th'))
conv_model.add(Conv2D(5, (3, 3), activation="relu", input_shape=(1, 94, 94), dim_ordering='th'))
print conv_model.output_shape
# conv_model.add(Convolution2D(32, 3, 3, activation='relu'))
conv_model.add(Conv2D(5, (3, 3), activation="relu"))
print conv_model.output_shape
# conv_model.add(Convolution2D(16, 3, 3, activation='relu'))
# conv_model.add(Conv2D(16, (3, 3), activation="relu"))
# print conv_model.output_shape
# # conv_model.add(Convolution2D(9, 3, 3, activation='relu'))
# conv_model.add(Conv2D(9, (3, 3), activation="relu"))
# print conv_model.output_shape
conv_model.add(MaxPooling2D(pool_size=(3, 3)))
print conv_model.output_shape
# conv_model.add(Dropout(0.25))
conv_model.add(Flatten())
conv_model.add(Dense(8, activation='relu'))
# conv_model.add(Dropout(0.5))
print conv_model.output_shape
fcn_model = Sequential()
fcn_model.add(Dense(16, activation='relu', input_shape=(72,)))
# fcn_model.add(Dropout(0.5))
print fcn_model.output_shape
model = Sequential()
model.add(Merge([conv_model, fcn_model], mode='concat', concat_axis=1))
print(model.output_shape)
# model.add(Dense(128, activation='relu'))
# model.add(Dropout(0.5))
# print model.output_shape
#
# model.add(Dense(16, activation='relu'))
# model.add(Dropout(0.5))
# print model.output_shape
model.add(Dense(8, activation='relu'))
# model.add(Dropout(0.5))
print model.output_shape
model.add(Dense(2, activation='softmax'))
model.compile(loss='kullback_leibler_divergence',
optimizer='adam',
metrics=['accuracy'])
model.fit([train_conv_input, train_fcn_input], train_class_output,
batch_size=32, epochs=10, verbose=1)
# # serialize model to JSON
# model_json = model.to_json()
# with open("model.json", "w") as json_file:
# json_file.write(model_json)
# # serialize weights to HDF5
# model.save_weights("model.h5")
score = model.evaluate([test_conv_input, test_fcn_input], test_class_output, verbose=1)
print score
print conv_model.summary()
print fcn_model.summary()
print model.summary()
def train_model():
mobnet_model = mobilenet.MobileNet()
print mobnet_model.input_shape
print mobnet_model.output_shape
# print mobnet_model.summary()
mobnet_model.layers.pop()
mobnet_model.layers.pop()
mobnet_model.layers.pop()
# print mobnet_model.summary()
# x = MaxPooling2D()(mobnet_model.layers[-3].output)
fcn_model = Sequential()
fcn_model.add(Dense(16, activation='relu', input_shape=(72,)))
fcn_model.add(Dropout(0.25))
print fcn_model.output_shape
model = Sequential()
model.add(Merge([mobnet_model, fcn_model], mode='concat', concat_axis=1))
model.add(Dense(8, activation='relu'))
model.add(Dropout(0.25))
print model.output_shape
model.add(Dense(2, activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
model.fit([train_conv_input, train_fcn_input], train_class_output,
batch_size=32, epochs=10, verbose=1)
score = model.evaluate([test_conv_input, test_fcn_input], test_class_output, verbose=1)
print score
# # serialize model to JSON
# model_json = model.to_json()
# with open("model_new.json", "w") as json_file:
# json_file.write(model_json)
# # serialize weights to HDF5
model.save_weights("model_new.h5")
# print model.summary()
def retrain_model():
mobnet_model = mobilenet.MobileNet()
print mobnet_model.input_shape
print mobnet_model.output_shape
# print mobnet_model.summary()
mobnet_model.layers.pop()
mobnet_model.layers.pop()
mobnet_model.layers.pop()
# print mobnet_model.summary()
# x = MaxPooling2D()(mobnet_model.layers[-3].output)
fcn_model = Sequential()
fcn_model.add(Dense(16, activation='relu', input_shape=(72,)))
print fcn_model.output_shape
model = Sequential()
model.add(Merge([mobnet_model, fcn_model], mode='concat', concat_axis=1))
model.add(Dense(8, activation='relu'))
print model.output_shape
model.add(Dense(2, activation='softmax'))
model.load_weights("model_q4.h5")
mobnet_model.save_weights("mobnet_model_q4.h5")
fcn_model.save_weights("fcn_model_q4.h5")
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
model.fit([train_conv_input, train_fcn_input], train_class_output,
batch_size=32, epochs=3, verbose=1)
score = model.evaluate([test_conv_input, test_fcn_input], test_class_output, verbose=1)
print score
model.save_weights("model_q5.h5")
mobnet_model.save_weights("mobnet_model_q5.h5")
fcn_model.save_weights("fcn_model_q5.h5")
def test_model():
mobnet_model = mobilenet.MobileNet()
print mobnet_model.input_shape
print mobnet_model.output_shape
# print mobnet_model.summary()
mobnet_model.layers.pop()
mobnet_model.layers.pop()
mobnet_model.layers.pop()
# print mobnet_model.summary()
# x = MaxPooling2D()(mobnet_model.layers[-3].output)
fcn_model = Sequential()
fcn_model.add(Dense(16, activation='relu', input_shape=(72,)))
print fcn_model.output_shape
model = Sequential()
model.add(Merge([mobnet_model, fcn_model], mode='concat', concat_axis=1))
model.add(Dense(8, activation='relu'))
print model.output_shape
model.add(Dense(2, activation='softmax'))
model.load_weights("model_q5.h5")
mobnet_model.save_weights("mobnet_model_q5.h5")
fcn_model.save_weights("fcn_model_q5.h5")
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
train_score = model.evaluate([train_conv_input, train_fcn_input], train_class_output, verbose=1)
test_score = model.evaluate([test_conv_input, test_fcn_input], test_class_output, verbose=1)
print train_score
print test_score
if __name__ == '__main__':
read_input_data(train_data_regex, 'train')
read_input_data(test_data_regex, 'test')
# load_train_data()
# load_test_data()
# train_model()
# retrain_model()
test_model()