-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolver.py
executable file
·319 lines (273 loc) · 9.97 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#!/usr/bin/env python
# Written in October 2021 by Brenton Horne
import numpy as np
import csv
from scipy.stats import chi2
from scipy.special import polygamma, gamma
# Read the most important pieces of data from the CSV
def readData(fileName, groupNo, depVarNo):
"""
Returns group variable and dependent variable in fileName that are in the
columns specified by groupNo and depVarNo.
Parameters
----------
fileName : string.
The CSV file we're reading data from.
groupNo : int.
An integer indicating the column in fileName in which our
grouping variable is.
depVarNo : int.
An integer indicating the column in fileName in which our
dependent variable is.
Returns
-------
group : NumPy array of integers.
Contains the grouping variable for each observation.
y : NumPy array of floats.
Contains the dependent variable value for each observation.
"""
# Initialize variables for reading from file
ifile = open(fileName)
reader = csv.reader(ifile)
# Initialize arrays to store variable data
y = np.array([])
group = np.array([])
# Initialize count for loop below
count = 0
# Loop through the rows in input file
for row in reader:
if ((depVarNo >= np.size(row)) or (groupNo >= np.size(row))):
print("At least one of the specified column numbers depVarNo or")
print("groupNo are greater than or equal to the number of columns")
print("in specified file.")
exit()
# Do not include headers
if (count != 0):
group = np.append(group, int(row[groupNo]))
y = np.append(y, float(row[depVarNo]))
count += 1
ifile.close()
return group, y
def getVars(group, y):
"""
Calculate various variables we need from group and y.
Parameters
----------
group : NumPy array of ints.
Group variable corresponding to each observation.
y : NumPy array of floats.
Dependent variable value corresponding to each observation.
Returns
-------
m : int.
Number of groups.
muNull : NumPy array of floats.
Initial estimate of our MLE for the mean under the null.
varNull : NumPy array of floats.
Initial estimate of our MLE for the variance under the null.
nvec : NumPy array of ints.
Vector of sample sizes for each value of the grouping variable.
yarr : NumPy array of floats.
Array of values of the dependent variable for each observation
with each row corresponding to a different value of the grouping
variable.
ybarvec : NumPy array of floats.
Means of the dependent variable for each value of the grouping
variable.
"""
# Number of groups
m = int(np.max(group))
# Vector of sample sizes
nvec = np.tile(0, m)
for i in range(0, m):
nvec[i] = int(np.size(y[group == i+1]))
nvec = np.reshape(nvec, (m, 1))
# Maximum sample size
ni = int(np.max(nvec))
# Initialize 2D array for storing y values categorized by treatment group
yarr = np.tile(0.5, (m, ni))
# yarr rows correspond to different groups
# columns different observations
for i in range(0, m):
for j in range (0, nvec[i,0]):
yarr[i, j] = y[group == i + 1][j]
# Ybar_i
ybarvec = np.mean(yarr, axis=1)
ybarvec = np.reshape(ybarvec, (m, 1))
# Initial guess of mu under the null
alphavec = 10*np.ones((m, 1))
return m, ni, alphavec, nvec, yarr, ybarvec
def funjacUnr(m, alphavec, nvec, yarr, ybarvec):
"""
Return inverse of Jacobian and function vector for unrestricted MLE
problem.
Parameters
----------
alphavec : NumPy array of floats.
Our current estimate of the MLE of alpha_i.
nvec : NumPy array of ints.
Contains sample sizes for each group.
yarr : NumPy array of floats.
Array of observations, each row corresponds to different groups.
ybarvec : NumPy array of floats.
Array of means for each treatment group.
Returns
-------
Jinv : NumPy array of floats.
Inverse of Jacobian.
F : NumPy array of floats.
Function values array.
"""
Jvec = nvec * (1/alphavec - polygamma(1, alphavec))
Jinv = np.diagflat(1/Jvec)
logsum = np.reshape(np.sum(np.log(yarr), axis=1), (m, 1))
F = -nvec * ( polygamma(0, alphavec) + np.log(ybarvec/alphavec)) + logsum
return Jinv, F
def funjacNull(alpha, n, yarr, ybar):
"""
Return Jacobian and function vector for null MLE problem.
Parameters
----------
alpha : float.
Initial guess of the MLE of alpha under the null.
n : int.
Total number of observations.
yarr : NumPy array of floats.
Array of observations with each row corresponding to different
groups.
ybar : float.
Mean of y.
Returns
-------
J : float.
Function derivative.
F : float.
Function value.
"""
J = n * (1/alpha - polygamma(1, alpha))
F = -n*(polygamma(0, alpha) + np.log(ybar/alpha)) + np.sum(np.log(yarr))
return J, F
def newtonsUnr(m, alphavec, nvec, yarr, ybarvec, itMax, tol):
"""
Approximate unrestricted MLE of alpha_i using Newton's method.
Parameters
----------
m : int.
Number of groups.
alphavec : NumPy array of floats.
Initial guess of the MLE of alpha_i.
nvec : NumPy array of ints.
Array of sizes for each sample (group).
yarr : NumPy array of floats.
Array of observations with different rows corresponding to
different groups.
ybarvec : NumPy array of floats.
Array of means for each group.
itMax : int or float.
Maximum number of iterations of Newton's method allowed when
estimating our MLE.
tol : float.
Relative error tolerance.
"""
# Data for first iteration of Newton's
Jinv, F = funjacUnr(m, alphavec, nvec, yarr, ybarvec)
eps = -np.matmul(Jinv, F)
epsRel = eps / alphavec
diff = np.sqrt(np.sum(epsRel**2)/m)
# Initialize iteration
iteration = 0
# Apply Newton's until diff drops to or below tol
while (tol < diff and iteration < itMax):
alphavec += eps
Jinv, F = funjacUnr(m, alphavec, nvec, yarr, ybarvec)
eps = -np.matmul(Jinv, F)
epsRel = eps / alphavec
diff = np.sqrt(np.sum(epsRel**2)/m)
iteration += 1
print("Number of iterations used to approximate alphavec = {}".format(iteration))
return alphavec
def newtonsNull(alpha, n, yarr, ybar, itMax, tol):
"""
Approximate MLE of alpha under the null hypothesis using Newton's method.
Parameters
----------
alpha : float.
Our initial estimate of alpha.
n : int.
Total number of observations.
yarr : NumPy array of floats.
All observations arranged in a m x max(nvec) array.
ybar : float.
Mean of all observations.
itMax : int or float.
Maximum number of iterations can be used to estimate alpha.
tol : float.
Relative error tolerance.
Returns
-------
alpha : float.
Refined estimate of alpha using Newton's method.
"""
J, F = funjacNull(alpha, n, yarr, ybar)
eps = -F/J
iteration = 0
while (tol < np.abs(eps)/alpha and iteration < itMax):
alpha += eps
J, F = funjacNull(alpha, n, yarr, ybar)
eps = -F/J
iteration += 1
print("Number of iterations used to approximate alpha = {}".format(iteration))
return alpha
def main():
"""
Main script of the program, through calling other functions it extracts the
required data, performs the hypothesis tests and prints the results.
Parameters
----------
None.
Returns
-------
Nothing.
"""
# alphavec's 2nd element is -inf when using OutlierRm
# group, y = readData("ProjectDataOutlierRm.csv", 0, 4)
# alphavec is fine when using original data set
# But lam is nan due to gamma(alphavec) failing due to floating
# point arithmetic limitations
group, y = readData("ProjectData.csv", 0, 5)
m, ni, alphavec, nvec, yarr, ybarvec = getVars(group, y)
n = np.size(y)
ybar = np.mean(yarr)
# Constraints on Newton's
itMax = 1e3
tol = 1e-13
# MLEs
alphavec = newtonsUnr(m, alphavec, nvec, yarr, ybarvec, itMax, tol)
betavec = ybarvec/alphavec
alpha = 1
alpha = newtonsNull(alpha, n, yarr, ybar, itMax, tol)
beta = ybar / alpha
# For my dataset there is an alphavec entry = 260.2153579
# Gamma(260.2153579) > 1e508, too big for ufuncs like scipy.special.gamma
# to handle
# I get the error:
# TypeError: ufunc 'gamma' not supported for the input types, and the inputs
# could not be safely coerced to any supported types according to the casting
# rule ''safe''
# When I convert alphavec to float128 type before running gamma on it
lam = np.power(1/(gamma(alpha)*(ybar/alpha)**(alpha)), n)
lam *= np.prod(np.power((gamma(alphavec) * np.power(ybarvec/alphavec,
alphavec)), nvec))
lam *= np.prod(np.prod(np.power(yarr, alpha-alphavec), axis=1))
# Test statistic
stat = -2*np.log(lam)
# P-value
pval = 1 - chi2.cdf(stat, 2*m-2)
# Equivalent test for exponential distribution
# Under null, all groups share the same exponential distribution parameter.
# Under alternative hypothesis, at least two groups have different exponential
# distribution parameters.
statExp = 2*n*np.log(ybar) - 2*np.sum(nvec * np.log(ybarvec))
pvalExp = 1 - chi2.cdf(statExp, m-1)
if __name__ == "__main__":
main()