给你一个下标从 0 开始的 m x n
二进制矩阵 grid
。
我们按照如下过程,定义一个下标从 0 开始的 m x n
差值矩阵 diff
:
- 令第
i
行一的数目为onesRowi
。 - 令第
j
列一的数目为onesColj
。 - 令第
i
行零的数目为zerosRowi
。 - 令第
j
列零的数目为zerosColj
。 diff[i][j] = onesRowi + onesColj - zerosRowi - zerosColj
请你返回差值矩阵 diff
。
输入: grid = [[0,1,1],[1,0,1],[0,0,1]] 输出: [[0,0,4],[0,0,4],[-2,-2,2]] 解释: - diff[0][0] = onesRow0 + onesCol0 - zerosRow0 - zerosCol0 = 2 + 1 - 1 - 2 = 0 - diff[0][1] = onesRow0 + onesCol1 - zerosRow0 - zerosCol1 = 2 + 1 - 1 - 2 = 0 - diff[0][2] = onesRow0 + onesCol2 - zerosRow0 - zerosCol2 = 2 + 3 - 1 - 0 = 4 - diff[1][0] = onesRow1 + onesCol0 - zerosRow1 - zerosCol0 = 2 + 1 - 1 - 2 = 0 - diff[1][1] = onesRow1 + onesCol1 - zerosRow1 - zerosCol1 = 2 + 1 - 1 - 2 = 0 - diff[1][2] = onesRow1 + onesCol2 - zerosRow1 - zerosCol2 = 2 + 3 - 1 - 0 = 4 - diff[2][0] = onesRow2 + onesCol0 - zerosRow2 - zerosCol0 = 1 + 1 - 2 - 2 = -2 - diff[2][1] = onesRow2 + onesCol1 - zerosRow2 - zerosCol1 = 1 + 1 - 2 - 2 = -2 - diff[2][2] = onesRow2 + onesCol2 - zerosRow2 - zerosCol2 = 1 + 3 - 2 - 0 = 2
输入: grid = [[1,1,1],[1,1,1]] 输出: [[5,5,5],[5,5,5]] 解释: - diff[0][0] = onesRow0 + onesCol0 - zerosRow0 - zerosCol0 = 3 + 2 - 0 - 0 = 5 - diff[0][1] = onesRow0 + onesCol1 - zerosRow0 - zerosCol1 = 3 + 2 - 0 - 0 = 5 - diff[0][2] = onesRow0 + onesCol2 - zerosRow0 - zerosCol2 = 3 + 2 - 0 - 0 = 5 - diff[1][0] = onesRow1 + onesCol0 - zerosRow1 - zerosCol0 = 3 + 2 - 0 - 0 = 5 - diff[1][1] = onesRow1 + onesCol1 - zerosRow1 - zerosCol1 = 3 + 2 - 0 - 0 = 5 - diff[1][2] = onesRow1 + onesCol2 - zerosRow1 - zerosCol2 = 3 + 2 - 0 - 0 = 5
m == grid.length
n == grid[i].length
1 <= m, n <= 105
1 <= m * n <= 105
grid[i][j]
要么是0
,要么是1
。
impl Solution {
pub fn ones_minus_zeros(grid: Vec<Vec<i32>>) -> Vec<Vec<i32>> {
let m = grid.len();
let n = grid[0].len();
let mut ones_row = vec![0; m];
let mut ones_col = vec![0; n];
let mut diff = vec![vec![0; n]; m];
for i in 0..m {
for j in 0..n {
ones_row[i] += grid[i][j];
ones_col[j] += grid[i][j];
}
}
for i in 0..m {
for j in 0..n {
diff[i][j] = 2 * ones_row[i] + 2 * ones_col[j] - (m + n) as i32;
}
}
diff
}
}