给你一个用字符数组 tasks
表示的 CPU 需要执行的任务列表。其中每个字母表示一种不同种类的任务。任务可以以任意顺序执行,并且每个任务都可以在 1 个单位时间内执行完。在任何一个单位时间,CPU 可以完成一个任务,或者处于待命状态。
然而,两个 相同种类 的任务之间必须有长度为整数 n
的冷却时间,因此至少有连续 n
个单位时间内 CPU 在执行不同的任务,或者在待命状态。
你需要计算完成所有任务所需要的 最短时间 。
输入: tasks = ["A","A","A","B","B","B"], n = 2 输出: 8 解释: A -> B -> (待命) -> A -> B -> (待命) -> A -> B 在本示例中,两个相同类型任务之间必须间隔长度为 n = 2 的冷却时间,而执行一个任务只需要一个单位时间,所以中间出现了(待命)状态。
输入: tasks = ["A","A","A","B","B","B"], n = 0 输出: 6 解释: 在这种情况下,任何大小为 6 的排列都可以满足要求,因为 n = 0 ["A","A","A","B","B","B"] ["A","B","A","B","A","B"] ["B","B","B","A","A","A"] ... 诸如此类
输入: tasks = ["A","A","A","A","A","A","B","C","D","E","F","G"], n = 2 输出: 16 解释: 一种可能的解决方案是: A -> B -> C -> A -> D -> E -> A -> F -> G -> A -> (待命) -> (待命) -> A -> (待命) -> (待命) -> A
1 <= task.length <= 104
tasks[i]
是大写英文字母n
的取值范围为[0, 100]
impl Solution {
pub fn least_interval(tasks: Vec<char>, n: i32) -> i32 {
let mut count = [0; 27];
let mut cooldown = [0; 26];
let mut time = 0;
for &task in &tasks {
count[(task as usize) - 65] += 1;
}
for _ in 0..tasks.len() {
let mut min_cooldown = i32::MAX;
let mut next_task = 26;
for i in 0..26 {
if count[i] > 0 {
min_cooldown = min_cooldown.min(cooldown[i]);
}
}
time = time.max(min_cooldown);
for i in 0..26 {
if cooldown[i] <= time && count[i] > count[next_task] {
next_task = i;
}
}
count[next_task] -= 1;
time += 1;
cooldown[next_task] = time + n;
}
time
}
}