给定一个二叉搜索树的根节点 root 和一个值 key,删除二叉搜索树中的 key 对应的节点,并保证二叉搜索树的性质不变。返回二叉搜索树(有可能被更新)的根节点的引用。
一般来说,删除节点可分为两个步骤:
- 首先找到需要删除的节点;
- 如果找到了,删除它。
说明: 要求算法时间复杂度为 O(h),h 为树的高度。
root = [5,3,6,2,4,null,7]
key = 3
5
/ \
3 6
/ \ \
2 4 7
给定需要删除的节点值是 3,所以我们首先找到 3 这个节点,然后删除它。
一个正确的答案是 [5,4,6,2,null,null,7], 如下图所示。
5
/ \
4 6
/ \
2 7
另一个正确答案是 [5,2,6,null,4,null,7]。
5
/ \
2 6
\ \
4 7
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def deleteNode(self, root: TreeNode, key: int) -> TreeNode:
if root is None:
return None
if root.val == key:
root = self.merge(root.left, root.right)
elif root.val > key:
root.left = self.deleteNode(root.left, key)
else:
root.right = self.deleteNode(root.right, key)
return root
def merge(self, left: TreeNode, right: TreeNode) -> TreeNode:
if left is None:
return right
curr = left
while curr.right is not None:
curr = curr.right
curr.right = right
return left
# Definition for a binary tree node.
# class TreeNode
# attr_accessor :val, :left, :right
# def initialize(val = 0, left = nil, right = nil)
# @val = val
# @left = left
# @right = right
# end
# end
# @param {TreeNode} root
# @param {Integer} key
# @return {TreeNode}
def delete_node(root, key)
return nil if root.nil?
if root.val == key
root = merge(root.left, root.right)
elsif root.val > key
root.left = delete_node(root.left, key)
else
root.right = delete_node(root.right, key)
end
root
end
# @param {TreeNode} left
# @param {TreeNode} right
# @return {TreeNode}
def merge(left, right)
return right if left.nil?
curr = left
curr = curr.right until curr.right.nil?
curr.right = right
left
end