-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadversarial_detect_resnet.py
278 lines (214 loc) · 8.58 KB
/
adversarial_detect_resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import torch
import datetime
import numpy as np
import torch.nn.functional as F
from torch.nn import Parameter
import torchvision.transforms as transforms
from dataset import SampleDataset
import torchvision.models as models
import os
import argparse
import misc
import types
from torch.autograd import Variable
from torch.autograd.gradcheck import zero_gradients
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import precision_score, roc_auc_score
print = misc.logger.info
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--data', help='IMAGENET_DATA_DIR')
parser.add_argument('--arch', '-a', default='resnet50',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet50)')
parser.add_argument('--start_class', default=0, type=int)
parser.add_argument('--end_class', default=1000, type=int)
parser.add_argument('--train_num_per_class', default=1, type=int)
parser.add_argument('--test_num_per_class', default=1, type=int)
parser.add_argument('--gpu', default=0, type=int)
parser.add_argument('--display_freq', default=100, type=int)
args = parser.parse_args()
_timenow = str(datetime.datetime.now())
args.logdir = 'adversarial-detect-%s/train_num-%d-test_num-%d_%s' %\
(args.arch, args.train_num_per_class, args.test_num_per_class, _timenow)
misc.prepare_logging(args)
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
# Datra loading code
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_loader = torch.utils.data.DataLoader(
SampleDataset(
'./data/train_images_list.pkl',
start_class=args.start_class,
end_class=args.end_class,
num_per_class=args.train_num_per_class,
random_order=True,
transform=transforms.Compose([
transforms.Scale(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize
])
),
batch_size=1, shuffle=False,
num_workers=4, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
SampleDataset(
'./data/val_images_list.pkl',
start_class=args.start_class,
end_class=args.end_class,
num_per_class=args.test_num_per_class,
random_order=True,
transform=transforms.Compose([
transforms.Scale(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize
])
),
batch_size=1, shuffle=False,
num_workers=4, pin_memory=True)
def load_model(args):
model = models.__dict__[args.arch](pretrained=True)
model.eval()
return model
def init_control_gates(m):
name = m.__class__.__name__
if name.find('Bottleneck') != -1:
m.control_gates = Parameter(torch.FloatTensor(m.bn3.num_features))
m.control_gates.data.fill_(1.0)
def reset_control_gates(m):
name = m.__class__.__name__
if name.find('Bottleneck') != -1:
m.control_gates.data.fill_(1.0)
m.control_gates.grad.data.fill_(0.0)
def new_forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
out = self.control_gates.view(1, -1, 1, 1) * out
return out
def replace(m):
name = m.__class__.__name__
if name.find('Bottleneck') != -1:
m.forward = types.MethodType(new_forward, m)
def collect_control_gates(m):
name = m.__class__.__name__
if name.find('Bottleneck') != -1:
control_gates.append(m.control_gates)
def get_adv_targeted_input(inp, model, T, eps, target):
inp_min, inp_max = inp.data.min(), inp.data.max()
target_var = Variable(target).cuda()
for i in range(T):
zero_gradients(inp)
output = model(inp)
loss = F.cross_entropy(output, target_var)
loss.backward()
inp.data -= eps * torch.sign(inp.grad.data)
inp.data = torch.clamp(inp.data, inp_min, inp_max)
def get_critical_path(data_var, model):
self_predicted_output = model(data_var)
self_pred = self_predicted_output.data.max(1)[1]
self_predicted_prob = F.softmax(self_predicted_output)
self_predicted_prob_var = Variable(self_predicted_prob.data)
lambd = 0.05
max_iters = 30
min_loss = 1e10
for j in range(max_iters):
output = model(data_var)
prob = F.softmax(output)
pred = output.data.max(1)[1]
loss = - (self_predicted_prob_var * torch.log(prob + 1e-20)).sum(1)
for v in control_gates:
loss += lambd * v.abs().sum()
if pred[0] == self_pred[0]:
if loss.data[0] < min_loss:
cg_list = []
for v in control_gates:
cg_list.append(v.data.clone())
min_loss = loss.data[0]
best_output = output.data.clone()
optimizer.zero_grad()
loss.backward()
optimizer.step()
for v in control_gates:
v.data.clamp_(0, 100)
model.apply(reset_control_gates)
return cg_list, best_output
base_model = load_model(args)
base_model.cuda()
adv_target_class = torch.randperm(1000)
model = load_model(args)
control_gates = []
model.apply(init_control_gates)
model.apply(replace)
model.apply(collect_control_gates)
model.cuda()
all_orig_cglist = []
all_adv_cglist = []
for i, (data, target) in enumerate(train_loader):
optimizer = torch.optim.SGD(control_gates, lr=0.1, momentum=0.9, weight_decay=0)
data_var = Variable(data).cuda()
target_var = Variable(target).cuda()
orig_cg_list, _ = get_critical_path(data_var, model)
adv_inp = Variable(data.cuda(), requires_grad=True)
get_adv_targeted_input(adv_inp, base_model, 10, 0.01, adv_target_class[target])
adv_data_var = Variable(adv_inp.data)
adv_cg_list, _ = get_critical_path(adv_inp, model)
all_orig_cglist.append(torch.cat(orig_cg_list))
all_adv_cglist.append(torch.cat(adv_cg_list))
if i % args.display_freq == 0:
print('processing [%d/%d] image...' % (i, len(train_loader)))
all_orig_cglist = torch.stack(all_orig_cglist)
all_adv_cglist = torch.stack(all_adv_cglist)
all_train_samples = torch.cat([all_orig_cglist, all_adv_cglist]).cpu().numpy()
all_train_labels = np.hstack([np.ones(len(all_orig_cglist)), np.zeros(len(all_adv_cglist))])
_idx = np.random.permutation(np.arange(len(all_train_labels)))
all_train_samples = all_train_samples[_idx]
all_train_labels = all_train_labels[_idx]
clf = RandomForestClassifier(50)
clf.fit(all_train_samples, all_train_labels)
#############
val_all_orig_cglist = []
val_all_adv_cglist = []
for i, (data, target) in enumerate(val_loader):
optimizer = torch.optim.SGD(control_gates, lr=0.1, momentum=0.9, weight_decay=0)
data_var = Variable(data).cuda()
target_var = Variable(target).cuda()
val_orig_cg_list, _ = get_critical_path(data_var, model)
adv_inp = Variable(data.cuda(), requires_grad=True)
get_adv_targeted_input(adv_inp, base_model, 10, 0.01, adv_target_class[target])
adv_data_var = Variable(adv_inp.data)
val_adv_cg_list, _ = get_critical_path(adv_inp, model)
val_all_orig_cglist.append(torch.cat(val_orig_cg_list))
val_all_adv_cglist.append(torch.cat(val_adv_cg_list))
if i % args.display_freq == 0:
print('generate [%d/%d] val image...' % (i, len(val_loader)))
val_all_orig_cglist = torch.stack(val_all_orig_cglist)
val_all_adv_cglist = torch.stack(val_all_adv_cglist)
all_val_samples = torch.cat([val_all_orig_cglist, val_all_adv_cglist]).cpu().numpy()
all_val_labels = np.hstack([np.ones(len(val_all_orig_cglist)), np.zeros(len(val_all_adv_cglist))])
_idx = np.random.permutation(np.arange(len(all_val_labels)))
all_val_samples = all_val_samples[_idx]
all_val_labels = all_val_labels[_idx]
preds = clf.predict(all_val_samples)
prec = precision_score(all_val_labels, preds)
ras = roc_auc_score(all_val_labels, preds)
print('precision = %.4f, roc_auc_score = %.4f' % (prec, ras))
misc.dump_pickle([all_train_samples, all_train_labels], os.path.join(args.logdir, 'train_infos.pkl'))
misc.dump_pickle([all_val_samples, all_val_labels], os.path.join(args.logdir, 'val_infos.pkl'))
misc.dump_pickle(clf, os.path.join(args.logdir, 'clf.pkl'))