-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathface_recognition.py
491 lines (445 loc) · 22.8 KB
/
face_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
#!usr/bin/env python3
# -*- coding: utf-8 -*-
import os
import sys
import errno
import json
from utilityfunction import Spinner
import tensorflow as tf
from keras.models import Model, model_from_json, load_model
from keras.layers import Dropout, Flatten, Dense, Input
from keras.optimizers import SGD, Adam
from keras.layers.convolutional import ZeroPadding2D
from keras.layers import MaxPooling2D, Convolution2D, Activation, GlobalAveragePooling2D, BatchNormalization
from keras.applications import VGG16, VGG19, InceptionV3, Xception, ResNet50
from keras.applications.imagenet_utils import preprocess_input
from keras.preprocessing.image import ImageDataGenerator
from keras.utils import plot_model
from keras import backend as kbe
from staticsanalysis import HistoryAnalysis
kbe.set_learning_phase(0)
# suppress warning and error message tf
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
# specify input shape
kbe.set_image_dim_ordering('tf')
# option gpu
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.8, allow_growth=False)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
# Missing this was the source of one of the most challenging an insidious bugs that I've ever encountered.
# Without explicitly linking the session the weights for the dense layer added below don't get loaded
# and so the model returns random results which vary with each model you upload because of random seeds.
kbe.set_session(sess)
# print number of available GPU
print('Available GPU:', len(kbe.tensorflow_backend._get_available_gpus()))
class ConvolutionNeuralNetwork(object):
@staticmethod
def freeze_session(session, keep_var_names=None, output_names=None, clear_devices=True):
"""
Freezes the state of a session into a pruned computation graph.
Creates a new computation graph where variable nodes are replaced by
constants taking their current value in the session. The new graph will be
pruned so subgraphs that are not necessary to compute the requested
outputs are removed.
:param: session The TensorFlow session to be frozen.
:param: keep_var_names A list of variable names that should not be frozen,
or None to freeze all the variables in the graph.
:param: output_names Names of the relevant graph outputs.
:param: clear_devices Remove the device directives from the graph for better portability.
:return: The frozen graph definition.
"""
from tensorflow.python.framework.graph_util import convert_variables_to_constants
graph = session.graph
with graph.as_default():
freeze_var_names = list(set(v.op.name for v in tf.global_variables()).difference(keep_var_names or []))
output_names = output_names or []
output_names += [v.op.name for v in tf.global_variables()]
input_graph_def = graph.as_graph_def()
if clear_devices:
for node in input_graph_def.node:
node.device = ""
frozen_graph = convert_variables_to_constants(session,
input_graph_def,
output_names,
freeze_var_names)
return frozen_graph
@staticmethod
def get_num_files(path):
"""
Get count of number of files in this folder and all sub-folders
:param path: (str) path folder
:return: (int)
"""
if not os.path.exists(path):
return 0
return sum([len(files) for r, d, files in os.walk(path)])
@staticmethod
def get_num_subfolders(path):
"""
Get count of number of sub-folders directly below the folder in path.
:param path: (str) path folder
:return: (int)
"""
if not os.path.exists(path):
return 0
return sum([len(d) for r, d, files in os.walk(path)])
@staticmethod
def create_img_generator(rotation_range=30, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2,
zoom_range=0.2, horizontal_flip=True):
"""
Define image generators that will variations of image with the image rotated slightly, shifted up, down,
left, or right, sheared, zoomed in, or flipped horizontally on the vertical axis (ie. person looking to the
left ends up looking to the right).
:param rotation_range: (int) generates a rotation of the image of the specify value
:param width_shift_range: (float) generates a displacement of the image of the specify value
:param height_shift_range: (float) generates a displacement of the image of the specify value
:param shear_range: (float) generates a cut-out of the image of the specify value
:param zoom_range: (float) generates a magnification of the image of the specify value
:param horizontal_flip: (bool) enable flips the image horizontally
:return ImageDataGenerator: (object)
"""
return ImageDataGenerator(
preprocessing_function=preprocess_input,
rotation_range=rotation_range,
width_shift_range=width_shift_range,
height_shift_range=height_shift_range,
shear_range=shear_range,
zoom_range=zoom_range,
horizontal_flip=horizontal_flip
)
class FaceRecognition(ConvolutionNeuralNetwork):
m_train_generator = None
m_valid_generator = None
m_model = None
m_num_train_samples = 0
m_num_classes = 0
m_num_validate_samples = 0
m_config = {}
def __init__(self, epochs, batch_size, learning_rate=0.0001, image_width=224, image_height=224):
self.m_epochs = epochs
self.m_batch_size = batch_size
self.m_lr = learning_rate
self.m_image_width = image_width
self.m_image_height = image_height
self.__pathdir = 'Model'
self.__spin = Spinner()
# export config data in dict
self.m_config["epochs"] = self.m_epochs
self.m_config["batch_size"] = self.m_batch_size
self.m_config["learning_rate"] = self.m_lr
self.m_config["image_width"] = self.m_image_width
self.m_config["image_height"] = self.m_image_height
def set_train_generator(self, train_dir):
"""
Connect the image generator to a folder contains the source images the image generator alters.
:param train_dir: (str) containing the path to the folder
"""
# Training image generator
self.m_num_train_samples = self.get_num_files(train_dir)
self.m_num_classes = self.get_num_subfolders(train_dir)
train_generator = self.create_img_generator()
self.m_train_generator = train_generator.flow_from_directory(
directory=train_dir,
target_size=(self.m_image_width, self.m_image_height),
batch_size=self.m_batch_size,
seed=42 # set seed for reproducibility
)
label_map = self.m_train_generator.class_indices
label_map_ = dict((v, k) for k, v in label_map.items()) # flip k,v
self.m_config["label_map"] = label_map_
def set_valid_generator(self, valid_dir):
"""
Connect the image generator to a folder contains the source images the image generator alters.
:param valid_dir: (str) containing the path folder
"""
self.m_num_validate_samples = self.get_num_files(valid_dir)
valid_generator = self.create_img_generator()
self.m_valid_generator = valid_generator.flow_from_directory(
directory=valid_dir,
target_size=(self.m_image_width, self.m_image_height),
batch_size=self.m_batch_size,
seed=42 # set seed for reproducibility
)
def train_and_fit_model(self, figure_history_name):
"""Train the model"""
history = self.m_model.fit_generator(
self.m_train_generator,
epochs=self.m_epochs,
steps_per_epoch=self.m_num_train_samples // self.m_batch_size,
validation_data=self.m_valid_generator,
validation_steps=self.m_num_validate_samples // self.m_batch_size,
class_weight='auto',
use_multiprocessing=True)
# print plot training (accuracy vs lost)
plotter = HistoryAnalysis.plot_history(history, figure_history_name)
def load_model_from_file(self, filename, weights_file=None):
"""
Import trained model store as 1 file ('.model', '.h5')
Or import the schema model in format 'json' and weights's file in format h5.
:param filename: (str) pass path model file
:param weights_file: (str) pass path weights file
"""
if os.path.exists(filename) and weights_file is None:
print("Loading model, please wait")
self.__spin.start()
# load entire model
if filename.endswith(('.model', '.h5')):
self.m_model = load_model(filename)
self.__spin.stop()
print("Done")
else:
self.__spin.stop()
raise ValueError("Invalid extension, supported extensions are: '.h5', '.model'")
elif os.path.exists(filename) and weights_file is not None:
if filename.endswith('.json') and weights_file.endswith('.h5'):
print("Loading model, please wait")
self.__spin.start()
# Model reconstruction from JSON file
with open(filename, 'r') as f:
self.m_model = model_from_json(f.read())
# Load weights into the new model
self.m_model.load_weights(weights_file)
self.__spin.stop()
print("Done")
else:
self.__spin.stop()
raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), (filename, weights_file))
else:
raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), filename)
print(self.m_model.summary())
def save_model_to_file(self, name='model', extension='.h5', export_image=False):
"""
Export trained model store as 1 file ('.model', '.h5')
or export the schema model in format 'json' and weights's file in format h5.
:param name: (str) assign file name
:param extension: (str) assign file extension
:param export_image: (bool) generate figure schema model
"""
print("Saving model, please wait")
# self.__spin.start()
root_dir = os.getcwd()
print("work directory: ", root_dir)
dest_dir = os.path.join(root_dir, 'Model')
print('destination directory:', dest_dir)
if not os.path.exists(dest_dir):
os.makedirs(dest_dir)
# build the name-file
filename = os.path.join(dest_dir, (name + extension))
if extension not in ['.h5', '.model', '.json']:
self.__spin.stop()
raise ValueError("Invalid extension, supported extensions are: '.h5', '.model', '.json'")
if extension == '.h5':
# export complete model with weights
self.m_model.save(filename)
print('Saved model at: ', dest_dir, filename)
elif extension == '.model':
# export complete model with weights
self.m_model.save(filename)
print('Saved model at: ', dest_dir, filename)
elif extension == '.json':
# save as JSON and weights
model_json = self.m_model.to_json()
with open(filename, "w") as json_file:
json_file.write(model_json)
print('Saved model definition at: ', dest_dir, filename)
# save weights
namefile_weights = os.path.join(dest_dir, (name + '_weights.h5'))
print(namefile_weights)
self.m_model.save_weights(namefile_weights)
print('Saved model weights at: ', dest_dir, filename)
if export_image:
image_name = os.path.join(dest_dir, (name + '.png'))
# print image of schema model
plot_model(self.m_model, to_file=image_name, show_layer_names=True, show_shapes=True)
# export as tensorflow .pb
# especially when run on Altair PBS system keras return 0 size file
frozen_graph = self.freeze_session(kbe.get_session(),
output_names=[out.op.name for out in self.m_model.outputs])
f = '{:s}.pb'.format(name)
tf.train.write_graph(frozen_graph, dest_dir, f, as_text=False)
print('Saved the graph definition at: ', dest_dir, f)
# Write the graph in human readable
f = '{:s}.pb.ascii'.format(name)
tf.train.write_graph(sess.graph.as_graph_def(), dest_dir, f, as_text=True)
print('Saved the graph definition in ascii format at: ', dest_dir, f)
# self.__spin.stop()
self.__export_configuration(dest_dir, name)
print("Done")
def get_pretrained_model(self, pretrained_model, weights='imagenet', include_top=False):
"""
This method allows to define already existing neural networks and to export their model as a starting point.
:param pretrained_model: (string) set name of neural network as inception, vgg16 ecc.
:param weights: (string) set weights of NN
:param include_top: (bool)
:return model_base: (obj) the model select
:return output: (obj) pre-trained NN weights
"""
model_base = None
output = None
if pretrained_model == 'inception':
model_base = InceptionV3(include_top=include_top,
weights=weights,
input_shape=self.m_train_generator.image_shape)
output = model_base.output
elif pretrained_model == 'xception':
model_base = Xception(include_top=include_top,
weights=weights,
input_shape=self.m_train_generator.image_shape)
output = (Flatten())(model_base.output)
elif pretrained_model == 'resnet50':
model_base = ResNet50(include_top=include_top,
weights=weights,
input_shape=self.m_train_generator.image_shape)
output = model_base.output
elif pretrained_model == 'vgg16':
model_base = VGG16(include_top=include_top,
weights=weights,
input_shape=self.m_train_generator.image_shape)
output = model_base.output
elif pretrained_model == 'vgg19':
model_base = VGG19(include_top=include_top,
weights=weights,
input_shape=self.m_train_generator.image_shape)
output = model_base.output
return model_base, output
def set_face_recognition_model(self, pretrained_model='', weights='', include_top=False, Number_FC_Neurons=1024,
trainable_parameters=False, num_trainable_parameters=1.0):
"""
It allows to use different neural networks of convulsion, the first is based on the face recognition model
VGG16 Oxford University, available at the address '' and personalized.
Instead, those defined succinctly are the expansion of existing networks with the addition of the custom
classifier. Furthermore, it is possible to specify whether to train all parameters or just some parameters,
simply setting a dimensionless range between 0 and 1.0.
:param pretrained_model:
:param weights:
:param include_top:
:param Number_FC_Neurons:
:param trainable_parameters:
:param num_trainable_parameters:
:return self(object):
"""
if pretrained_model == '': # use own custom model
try: # check minimum size image
# define input model block
x_input = Input(self.m_train_generator.image_shape)
model_base = x_input
x = (ZeroPadding2D((1, 1), name="InputLayer"))(x_input)
# block 1
x = (Convolution2D(64, (3, 3), activation='relu', padding="same", name="block1_conv1"))(x)
x = (ZeroPadding2D((1, 1)))(x)
x = (Convolution2D(64, (3, 3), activation='relu', padding="same", name="block1_conv2"))(x)
x = (MaxPooling2D((2, 2), data_format="channels_first", strides=(2, 2)))(x)
# block 2
x = (ZeroPadding2D((1, 1)))(x)
x = (Convolution2D(128, (3, 3), activation='relu', padding="same", name="block2_conv1"))(x)
x = (ZeroPadding2D((1, 1)))(x)
x = (Convolution2D(128, (3, 3), activation='relu', padding="same", name="block2_conv2"))(x)
x = (MaxPooling2D((2, 2), data_format="channels_first", strides=(2, 2)))(x)
# block 3
x = (ZeroPadding2D((1, 1)))(x)
x = (Convolution2D(256, (3, 3), activation='relu', padding="same", name="block3_conv1x"))(x)
x = (ZeroPadding2D((1, 1)))(x)
x = (Convolution2D(256, (3, 3), activation='relu', padding="same", name="block3_conv2"))(x)
x = (ZeroPadding2D((1, 1)))(x)
x = (Convolution2D(256, (3, 3), activation='relu', padding="same", name="block3_conv3"))(x)
x = (MaxPooling2D((2, 2), data_format="channels_first", strides=(2, 2)))(x)
# block 4
x = (ZeroPadding2D((1, 1)))(x)
x = (Convolution2D(512, (3, 3), activation='relu', padding="same", name="block4_conv1"))(x)
x = (ZeroPadding2D((1, 1)))(x)
x = (Convolution2D(512, (3, 3), activation='relu', padding="same", name="block4_conv2"))(x)
x = (ZeroPadding2D((1, 1)))(x)
x = (Convolution2D(512, (3, 3), activation='relu', padding="same", name="block4_conv3"))(x)
x = (MaxPooling2D((2, 2), data_format="channels_first", strides=(2, 2)))(x)
# block 5
x = (ZeroPadding2D((1, 1)))(x)
x = (Convolution2D(512, (3, 3), activation='relu', padding="same", name="block5_conv1"))(x)
x = (ZeroPadding2D((1, 1)))(x)
x = (Convolution2D(512, (3, 3), activation='relu', padding="same", name="block5_conv2"))(x)
x = (ZeroPadding2D((1, 1)))(x)
x = (Convolution2D(512, (3, 3), activation='relu', padding="same", name="block5_conv3"))(x)
x = (MaxPooling2D((2, 2), data_format="channels_first", strides=(2, 2)))(x)
# classification block
x = (Convolution2D(4096, (7, 7), activation='relu', padding="same", name="fc1"))(x)
x = (Dropout(0.5))(x)
x = (Convolution2D(4096, (1, 1), activation='relu', name="fc2"))(x)
x = (Dropout(0.5))(x)
x = (Convolution2D(2048, (1, 1)))(x)
# Classification block
x = Flatten()(x)
x = Activation(activation='softmax')(x)
except ValueError as err:
message = "ValueError:Input size must be at least 48 x 48;"
message += " got `input_shape=" + str(self.m_train_generator.image_shape) + "'"
print(message)
raise err
elif pretrained_model == 'inception':
model_base, output = self.get_pretrained_model(pretrained_model, weights, include_top)
# classification block
x = GlobalAveragePooling2D()(output)
x = Dense(Number_FC_Neurons, activation='relu', name="fc1")(x)
elif pretrained_model == 'xception':
model_base, output = self.get_pretrained_model(pretrained_model, weights, include_top)
# classification block
x = Dense(Number_FC_Neurons, activation='relu', name="fc1")(output) # new FC layer, random init
elif pretrained_model == 'resnet50':
model_base, output = self.get_pretrained_model(pretrained_model, weights, include_top)
x = Flatten(name='flatten')(output)
x = Dropout(0.5)(x)
elif pretrained_model == 'vgg16' or pretrained_model == 'vgg19':
model_base, output = self.get_pretrained_model(pretrained_model, weights, include_top)
# classification block
x = Flatten()(output)
x = Dense(4096, activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(4096, activation='relu')(x)
x = Dropout(0.5)(x)
else:
print("Neural network not available")
sys.exit()
# common output layer - predictions
predictions = Dense(self.m_num_classes, activation='softmax', name="predictions")(x)
# create model instance
self.m_model = Model(inputs=model_base.inputs, outputs=predictions)
# Layers - set trainable parameters
print("Total layers: {:10d}".format(len(self.m_model.layers)))
if trainable_parameters:
if 0 < num_trainable_parameters < 1.0:
layers2freeze = int(len(self.m_model.layers) * num_trainable_parameters) + 1
for layer in self.m_model.layers[:layers2freeze]:
layer.trainable = False
for layer in self.m_model.layers[layers2freeze:]:
layer.trainable = True
else:
for layer in self.m_model.layers:
layer.trainable = False
# compile the model
if self.m_num_classes == 2:
self.m_model.compile(optimizer=SGD(lr=self.m_lr, momentum=0.9),
loss='categorical_crossentropy', metrics=['accuracy'])
# store configuration compiler
self.m_config["optimizer"] = "SGD"
self.m_config["momentum"] = 0.9
self.m_config["loss"] = 'categorical_crossentropy'
self.m_config["metrics"] = ['accuracy']
else:
self.m_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# store configuration compiler
self.m_config["optimizer"] = 'adam'
self.m_config["momentum"] = 0 # not set
self.m_config["loss"] = 'categorical_crossentropy'
self.m_config["metrics"] = ['accuracy']
# print model structure diagram
print(self.m_model.summary())
return self
def __export_configuration(self, dest_dir, filename):
"""
eport data of configuration and label for prediciton
:param filename: (str) filename
"""
outfile = os.path.join(dest_dir, "config_{:s}.json".format(filename))
with open(outfile, 'w') as fp:
json.dump(self.m_config, fp, indent=4)
def __del__(self):
del self.m_model
del self.m_train_generator
del self.__spin