-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathacnn_train.py
267 lines (227 loc) · 11.3 KB
/
acnn_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import data_pro as pro
import pyt_acnn as pa
import capsulenet
import nse
import resnet
import os
import torch
import torch.utils.data as D
from torch.autograd import Variable
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
from sklearn.model_selection import KFold
import logging
import shutil
import argparse
import statistics
import random
use_cuda = torch.cuda.is_available()
if use_cuda:
print("cuda is used!!!")
# os.environ["CUDA_VISIBLE_DEVICES"] = "1"
else:
print("cuda is not supported, use cpu")
logger = logging.getLogger()
logger.setLevel(logging.INFO)
parser = argparse.ArgumentParser()
parser.add_argument('--max_length', '-ml', default=99, type=int, help='max length of sentence.')
parser.add_argument('--pos_emb_sz', '-pes', default=25, type=int, help='position emb size.')
parser.add_argument('--relation_number', '-rn', default=19, type=int, help='relation class number.')
parser.add_argument('--conv_output_sz', '-cos', default=1000, type=int, help='convolution kernel output size')
parser.add_argument('--dropout_keep_prob', '-dkp', default=1, type=float, help='dropout keep prob')
parser.add_argument('--window_sz', '-ws', default=3, type=int, help='word window size')
parser.add_argument('--learning_rate', '-lr', default=0.2, type=float, help='Learning rate for SGD.')
parser.add_argument('--l2_norm', '-l2', default=1e-8, type=float, help='l2 normalization')
parser.add_argument('--momentum', '-mm', default=0.9, type=float, help='sgd momentum')
parser.add_argument('--batch_size', '-bs', default=50, type=int, help='Batch size for training.')
parser.add_argument('--epochs', '-epochs', default=100, type=int, help='Number of epochs to train for.')
parser.add_argument('--print_loss_iter', '-pli', default=50, type=int, help='print the training loss every these iterations')
parser.add_argument('--data_dir', '-data', default='./data', help='Directory containing training and test data')
parser.add_argument('--pretrained_emb_dir', '-preemb', default='./data', help='Directory containing pretrained embedding')
parser.add_argument('--result_dir', '-result', default='./result', help='Directory containing results')
parser.add_argument('--model', '-m', default=0, type=int, help='Select models: 0-ACNN, 1-CapsNet, 2-NSE')
parser.add_argument('--embfinetune', '-tune', default=1, type=int, help='if 1, pretrained word embeddings are tuned; if 0, not tuned')
parser.add_argument('--cased', '-cased', default=0, type=int, help='if 1, words keep their cases; if 0, they are transformed into lower cases')
parser.add_argument('--mannual_seed', '-seed', default=0, type=int, help='if 0, randomly; else, fix the seed with the given value')
parser.add_argument('--optimizer', '-opt', default=0, type=int, help='if 0, adam; else, sgd')
parser.add_argument('--padfinetune', '-padtune', default=0, type=int, help='if 1, pad and position pad are tuned; if 0, not tuned')
parser.add_argument('--usewordbetween', '-uwb', default=0, type=int, help='if 1, use only the words between two entities; if 0, use the whole sentence')
parser.add_argument('--use_crcnn_loss', '-ucrloss', default=0, type=int, help='if 1, use CR-CNN loss; if 0, use Cap loss')
parser.add_argument('--include_other', '-other', default=1, type=int, help='if 1, use other; if 0, exclude it')
parser.add_argument('--layers', '-layers', default=6, type=int, help='res net layers, must be divided by 6.')
print("List all parameters...")
args = parser.parse_args()
args_dict = vars(args)
for key,value in args_dict.items():
print(key+": "+str(value))
print()
N = args.max_length # max length of sentence
DP = args.pos_emb_sz # position emb size
NP = args.max_length # position emb number
NR = args.relation_number # relation class number
DC = args.conv_output_sz # convolution kernel output size
KP = args.dropout_keep_prob # dropout keep prob
K = args.window_sz # word window size
LR = args.learning_rate # learning rate
L2_NORM = args.l2_norm
BATCH_SIZE = args.batch_size
epochs = args.epochs
PRINT_LOSS_ITER = args.print_loss_iter
MODEL = args.model
EMB_TUNE = bool(args.embfinetune)
CASED = bool(args.cased)
SEED = args.mannual_seed
OPTIMIZER = args.optimizer
PAD_EMB_TUNE = bool(args.padfinetune)
USE_WORD_BETWEEN = bool(args.usewordbetween)
USE_CRCNN_LOSS = bool(args.use_crcnn_loss)
INCLUDE_OTHER = bool(args.include_other)
RESNET_LAYERS = args.layers//6
data_dir = args.data_dir
preemb_dir = args.pretrained_emb_dir
result_dir = args.result_dir
if SEED != 0:
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed_all(SEED)
torch.backends.cudnn.enabled = False
random.seed(SEED)
if os.path.exists(result_dir):
shutil.rmtree(result_dir)
os.mkdir(result_dir)
else:
os.mkdir(result_dir)
data = pro.load_data(data_dir+'/train.txt', CASED, USE_WORD_BETWEEN, INCLUDE_OTHER)
t_data = pro.load_data(data_dir+'/test.txt', CASED, USE_WORD_BETWEEN, INCLUDE_OTHER)
print("Load data")
# word_dict = pro.build_dict(data[0])
# t_word_dict = pro.build_dict(t_data[0])
train_word_alpha = pro.create_alphabet(data[0])
test_word_alpha = pro.create_alphabet(t_data[0])
word_alpha = train_word_alpha | test_word_alpha
sorted_word_alpha = sorted(list(word_alpha))
word_dict = pro.build_fixed_dict(sorted_word_alpha)
# for k in word_dict.keys():
# print(k, word_dict[k])
del train_word_alpha, test_word_alpha, word_alpha, sorted_word_alpha
# print("#########",word_dict['has'])
statistics_max_sentence_len = data[4] if data[4]>t_data[4] else t_data[4]
max_sentence_len = N if N > statistics_max_sentence_len else statistics_max_sentence_len
position_dict = pro.build_position_dict(max_sentence_len)
x, y, e1, e2, dist1, dist2 = pro.vectorize(data, word_dict, N, position_dict)
y = np.array(y).astype(np.int64)
# np_cat[0] - word:0-122, e1, e2, pos1:0-122, pos2:0-122
np_cat = np.concatenate((x, np.array(e1).reshape(-1, 1), np.array(e2).reshape(-1, 1), np.array(dist1), np.array(dist2)),
1)
e_x, e_y, e_e1, e_e2, e_dist1, e_dist2 = pro.vectorize(t_data, word_dict, N, position_dict)
y = np.array(y).astype(np.int64)
eval_cat = np.concatenate(
(e_x, np.array(e_e1).reshape(-1, 1), np.array(e_e2).reshape(-1, 1), np.array(e_dist1), np.array(e_dist2)), 1)
embed_file = preemb_dir
embedding = pro.load_embedding_from_glove(embed_file, word_dict, CASED)
if MODEL == 0:
model = pa.myCuda(pa.ACNN(N, embedding, DP, len(position_dict), K, NR, DC, KP, use_cuda, EMB_TUNE, PAD_EMB_TUNE))
loss_func = pa.NovelDistanceLoss(NR)
logger.info('MODEL: Using attention CNN')
elif MODEL == 1:
model = pa.myCuda(capsulenet.CapsuleNet(N, embedding, DP, len(position_dict), K, NR, DC,
KP, 3, EMB_TUNE, PAD_EMB_TUNE, USE_CRCNN_LOSS, INCLUDE_OTHER))
logger.info('MODEL: Using capsule CNN')
elif MODEL == 2:
model = pa.myCuda(nse.NSE(N, embedding, DP, len(position_dict), K, NR, DC, KP, EMB_TUNE, PAD_EMB_TUNE))
loss_func = model.loss
logger.info('MODEL: Using NSE')
torch.backends.cudnn.enabled = False
elif MODEL == 3:
model = pa.myCuda(resnet.ResNet(N, embedding, DP, len(position_dict), K, NR, DC, KP, EMB_TUNE,
PAD_EMB_TUNE, (RESNET_LAYERS,RESNET_LAYERS,RESNET_LAYERS)))
logger.info('MODEL: Using ResNet')
loss_func = model.loss
# for para in model.parameters():
# print(para)
del embedding
if OPTIMIZER==0:
optimizer = torch.optim.Adam(model.parameters(), lr=LR, betas=(0.9, 0.999), eps=1e-08, weight_decay=L2_NORM)
else:
optimizer = torch.optim.SGD(model.parameters(), lr=LR, momentum=args.momentum, weight_decay=L2_NORM)
best = -1
train = torch.from_numpy(np_cat.astype(np.int64))
y_tensor = torch.LongTensor(y)
train_datasets = D.TensorDataset(data_tensor=train, target_tensor=y_tensor)
if SEED != 0:
train_dataloader = D.DataLoader(train_datasets, BATCH_SIZE, False, num_workers=1)
else:
train_dataloader = D.DataLoader(train_datasets, BATCH_SIZE, True, num_workers=1)
eval = torch.from_numpy(eval_cat.astype(np.int64))
y_tensor = torch.LongTensor(e_y)
eval_datasets = D.TensorDataset(data_tensor=eval, target_tensor=y_tensor)
eval_dataloader = D.DataLoader(eval_datasets, BATCH_SIZE, False, num_workers=1)
for i in range(epochs):
model.train()
acc = 0
loss = 0
j = 0
for (b_x_cat, b_y) in train_dataloader:
bx, be1, be2, bd1, bd2, by = pa.data_unpack(b_x_cat, b_y, N, NP, model.training)
if MODEL == 0:
wo, rel_weight = model(bx, be1, be2, bd1, bd2)
l = loss_func(wo, rel_weight, by)
if i != 0 and i % 20 == 0:
acc_, _ = loss_func.prediction(wo, rel_weight, by, NR)
acc += acc_
elif MODEL == 1:
y_pred = model(bx, be1, be2, bd1, bd2) # forward
l = model.loss_func(by, y_pred) # compute loss
if i != 0 and i % 20 == 0:
acc_, predict = model.predict(by, y_pred)
acc += acc_
elif MODEL == 2:
y_pred, M_t = model(bx, be1, be2, bd1, bd2) # forward
l = loss_func(by, y_pred) # compute loss
if i != 0 and i % 20 == 0:
acc_, predict = model.predict(by, y_pred)
acc += acc_
elif MODEL == 3:
y_pred = model(bx, be1, be2, bd1, bd2) # forward
l = loss_func(by, y_pred) # compute loss
if i != 0 and i % 20 == 0:
acc_, predict = model.predict(by, y_pred)
acc += acc_
# if j!=0 and j % PRINT_LOSS_ITER == 0:
# logger.debug('epoch: {}, batch: {}, loss {}'.format(i, j, l.data[0]))
j += 1
optimizer.zero_grad()
l.backward()
torch.nn.utils.clip_grad_norm(model.parameters(), 15.0)
optimizer.step()
loss += l
print('epoch:', i, 'training avg loss:', loss.cpu().data.numpy()[0] / j, 'accuracy:', acc/j)
model.eval()
eval_acc = 0
ti = 0
predicts = []
for (b_x_cat, b_y) in eval_dataloader:
bx, be1, be2, bd1, bd2, by = pa.data_unpack(b_x_cat, b_y, N, NP, model.training)
if MODEL == 0:
wo, rel_weight = model(bx, be1, be2, bd1, bd2, False)
eval_acc_, predict = loss_func.prediction(wo, rel_weight, by, NR)
elif MODEL == 1:
y_pred = model(bx, be1, be2, bd1, bd2)
eval_acc_, predict = model.predict(by, y_pred)
elif MODEL == 2:
y_pred, M_t = model(bx, be1, be2, bd1, bd2)
eval_acc_, predict = model.predict(by, y_pred)
elif MODEL == 3:
y_pred = model(bx, be1, be2, bd1, bd2)
eval_acc_, predict = model.predict(by, y_pred)
eval_acc += eval_acc_
predicts.extend(predict.data.tolist())
ti += 1
print('epoch:', i, 'test_acc:', eval_acc / ti)
if eval_acc / ti > best:
print('epoch: {}, exceed best {}'.format(i, best))
best = eval_acc / ti
torch.save(model.state_dict(), result_dir+'/{}_acnn_params.pkl'.format(i))
pro.outputToSem10rc(predicts, result_dir+'/{}_result.txt'.format(i), INCLUDE_OTHER)
# model.load_state_dict(torch.load('acnn_params.pkl'))