-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain_test.py
108 lines (71 loc) · 3.38 KB
/
train_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import torch
import numpy as np
from utils import all_metrics, print_metrics
def train(args, model, optimizer, epoch, gpu, data_loader):
print("EPOCH %d" % epoch)
losses = []
model.train()
# loader
data_iter = iter(data_loader)
num_iter = len(data_loader)
for i in range(num_iter):
if args.model.find("bert") != -1:
inputs_id, segments, masks, labels = next(data_iter)
inputs_id, segments, masks, labels = torch.LongTensor(inputs_id), torch.LongTensor(segments), \
torch.LongTensor(masks), torch.FloatTensor(labels)
if gpu >= 0:
inputs_id, segments, masks, labels = inputs_id.cuda(gpu), segments.cuda(gpu), \
masks.cuda(gpu), labels.cuda(gpu)
output, loss = model(inputs_id, segments, masks, labels)
else:
inputs_id, labels, text_inputs = next(data_iter)
inputs_id, labels = torch.LongTensor(inputs_id), torch.FloatTensor(labels)
if gpu >= 0:
inputs_id, labels, text_inputs = inputs_id.cuda(gpu), labels.cuda(gpu), text_inputs.cuda(gpu)
output, loss = model(inputs_id, labels, text_inputs)
optimizer.zero_grad()
loss.backward()
optimizer.step()
losses.append(loss.item())
return losses
def test(args, model, data_path, fold, gpu, dicts, data_loader):
filename = data_path.replace('train', fold)
print('file for evaluation: %s' % filename)
num_labels = len(dicts['ind2c'])
y, yhat, yhat_raw, hids, losses = [], [], [], [], []
model.eval()
# loader
data_iter = iter(data_loader)
num_iter = len(data_loader)
for i in range(num_iter):
with torch.no_grad():
if args.model.find("bert") != -1:
inputs_id, segments, masks, labels = next(data_iter)
inputs_id, segments, masks, labels = torch.LongTensor(inputs_id), torch.LongTensor(segments), \
torch.LongTensor(masks), torch.FloatTensor(labels)
if gpu >= 0:
inputs_id, segments, masks, labels = inputs_id.cuda(
gpu), segments.cuda(gpu), masks.cuda(gpu), labels.cuda(gpu)
output, loss = model(inputs_id, segments, masks, labels)
else:
inputs_id, labels, text_inputs = next(data_iter)
inputs_id, labels, = torch.LongTensor(inputs_id), torch.FloatTensor(labels)
if gpu >= 0:
inputs_id, labels, text_inputs = inputs_id.cuda(gpu), labels.cuda(gpu), text_inputs.cuda(gpu)
output, loss = model(inputs_id, labels, text_inputs)
output = torch.sigmoid(output)
output = output.data.cpu().numpy()
losses.append(loss.item())
target_data = labels.data.cpu().numpy()
yhat_raw.append(output)
output = np.round(output)
y.append(target_data)
yhat.append(output)
y = np.concatenate(y, axis=0)
yhat = np.concatenate(yhat, axis=0)
yhat_raw = np.concatenate(yhat_raw, axis=0)
k = 5 if num_labels == 50 else [8,15]
metrics = all_metrics(yhat, y, k=k, yhat_raw=yhat_raw)
print_metrics(metrics)
metrics['loss_%s' % fold] = np.mean(losses)
return metrics