-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmy_utils.py
executable file
·432 lines (370 loc) · 17.1 KB
/
my_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
from os import listdir
from os.path import isfile, join
import os
import shutil
import bioc
from data_structure import Entity
import time
from metric import get_ner_fmeasure
import torch
import torch.autograd as autograd
import torch.nn as nn
import codecs
import logging
from options import opt
import numpy as np
import random
def setList(listt, value):
if (value not in listt) and (value != u""):
listt.append(value)
return listt
def setMap(keyValueListMap, key, value):
valueList = keyValueListMap.get(key)
if valueList == None:
valueList = list()
keyValueListMap[key] = valueList
valueList = setList(valueList, value)
return keyValueListMap
def batchify_with_label(data, input_batch_list, input_batch_list_text, gpu):
with torch.no_grad(): # feili, compatible with 0.4
batch_size = len(input_batch_list)
words = [sent[0] for sent in input_batch_list]
if input_batch_list_text is None:
chars = [sent[1] for sent in input_batch_list]
if data.feat_config is not None:
if len(input_batch_list[0]) > 3:
labels = [sent[2] for sent in input_batch_list]
features = [np.asarray(sent[3]) for sent in input_batch_list]
feature_num = len(features[0][0])
else:
labels = None
features = [np.asarray(sent[2]) for sent in input_batch_list]
feature_num = len(features[0][0])
else:
if len(input_batch_list[0]) > 2:
labels = [sent[2] for sent in input_batch_list]
else:
labels = None
word_seq_lengths = torch.LongTensor(list(map(len, words)))
if input_batch_list_text is not None:
if labels:
words_text = [sent[3] for sent in input_batch_list_text]
else :
words_text = [sent[2] for sent in input_batch_list_text]
max_seq_len = word_seq_lengths.max().item()
word_seq_tensor = autograd.Variable(torch.zeros((batch_size, max_seq_len), dtype=torch.long))
label_seq_tensor = autograd.Variable(torch.zeros((batch_size, max_seq_len), dtype=torch.long))
if data.feat_config is not None:
feature_seq_tensors = []
for idx in range(feature_num):
feature_seq_tensors.append(autograd.Variable(torch.zeros((batch_size, max_seq_len), dtype=torch.long)))
if input_batch_list_text is not None:
words_text_tensor = [['<pad>' for col in range(max_seq_len)] for row in range(batch_size)]
mask = autograd.Variable(torch.zeros((batch_size, max_seq_len), dtype=torch.uint8))
if labels:
for idx, (seq, label, seqlen) in enumerate(zip(words, labels, word_seq_lengths)):
word_seq_tensor[idx, :seqlen] = torch.LongTensor(seq)
label_seq_tensor[idx, :seqlen] = torch.LongTensor(label)
mask[idx, :seqlen] = torch.Tensor([1]*seqlen.item())
if data.feat_config is not None:
for idy in range(feature_num):
feature_seq_tensors[idy][idx, :seqlen] = torch.LongTensor(features[idx][:, idy])
if input_batch_list_text is not None:
words_text_tensor[idx][:seqlen] = words_text[idx]
else:
for idx, (seq, seqlen) in enumerate(zip(words, word_seq_lengths)):
word_seq_tensor[idx, :seqlen] = torch.LongTensor(seq)
mask[idx, :seqlen] = torch.Tensor([1]*seqlen.item())
if data.feat_config is not None:
for idy in range(feature_num):
feature_seq_tensors[idy][idx, :seqlen] = torch.LongTensor(features[idx][:, idy])
if input_batch_list_text is not None:
words_text_tensor[idx][:seqlen] = words_text[idx]
word_seq_lengths, word_perm_idx = word_seq_lengths.sort(0, descending=True)
word_seq_tensor = word_seq_tensor[word_perm_idx]
if data.feat_config is not None:
for idx in range(feature_num):
feature_seq_tensors[idx] = feature_seq_tensors[idx][word_perm_idx]
if labels:
label_seq_tensor = label_seq_tensor[word_perm_idx]
mask = mask[word_perm_idx]
if input_batch_list_text is not None:
words_text_tensor_1 = []
for i in range(batch_size):
ii = word_perm_idx[i].item()
words_text_tensor_1.append(words_text_tensor[ii])
char_seq_tensor = None
char_seq_lengths = None
char_seq_recover = None
else:
words_text_tensor_1 = None
### deal with char
# pad_chars (batch_size, max_seq_len)
pad_chars = [chars[idx] + [[0]] * (max_seq_len-len(chars[idx])) for idx in range(len(chars))]
length_list = [list(map(len, pad_char)) for pad_char in pad_chars]
max_word_len = max(list(map(max, length_list)))
char_seq_tensor = autograd.Variable(torch.zeros((batch_size, max_seq_len, max_word_len), dtype=torch.long))
char_seq_lengths = torch.LongTensor(length_list)
for idx, (seq, seqlen) in enumerate(zip(pad_chars, char_seq_lengths)):
for idy, (word, wordlen) in enumerate(zip(seq, seqlen)):
# print len(word), wordlen
char_seq_tensor[idx, idy, :wordlen] = torch.LongTensor(word)
char_seq_tensor = char_seq_tensor[word_perm_idx].view(batch_size*max_seq_len,-1)
char_seq_lengths = char_seq_lengths[word_perm_idx].view(batch_size*max_seq_len,)
char_seq_lengths, char_perm_idx = char_seq_lengths.sort(0, descending=True)
char_seq_tensor = char_seq_tensor[char_perm_idx]
_, char_seq_recover = char_perm_idx.sort(0, descending=False)
_, word_seq_recover = word_perm_idx.sort(0, descending=False)
if opt.gpu >= 0 and torch.cuda.is_available():
word_seq_tensor = word_seq_tensor.cuda(gpu)
word_seq_lengths = word_seq_lengths.cuda(gpu)
word_seq_recover = word_seq_recover.cuda(gpu)
if labels:
label_seq_tensor = label_seq_tensor.cuda(gpu)
if data.feat_config is not None:
for idx in range(feature_num):
feature_seq_tensors[idx] = feature_seq_tensors[idx].cuda(gpu)
if input_batch_list_text is None:
char_seq_tensor = char_seq_tensor.cuda(gpu)
char_seq_recover = char_seq_recover.cuda(gpu)
mask = mask.cuda(gpu)
if labels:
if data.feat_config is not None:
return word_seq_tensor, word_seq_lengths, word_seq_recover, char_seq_tensor, char_seq_lengths, char_seq_recover, label_seq_tensor, mask, feature_seq_tensors, words_text_tensor_1
else:
return word_seq_tensor, word_seq_lengths, word_seq_recover, char_seq_tensor, char_seq_lengths, char_seq_recover, label_seq_tensor, mask, None, words_text_tensor_1
else:
if data.feat_config is not None:
return word_seq_tensor, word_seq_lengths, word_seq_recover, char_seq_tensor, char_seq_lengths, char_seq_recover, None, mask, feature_seq_tensors, words_text_tensor_1
else:
return word_seq_tensor, word_seq_lengths, word_seq_recover, char_seq_tensor, char_seq_lengths, char_seq_recover, None, mask, None, words_text_tensor_1
def recover_nbest_label(pred_variable, mask_variable, label_alphabet, word_recover):
"""
input:
pred_variable (batch_size, sent_len, nbest): pred tag result
mask_variable (batch_size, sent_len): mask variable
word_recover (batch_size)
output:
nbest_pred_label list: [batch_size, nbest, each_seq_len]
"""
# print "word recover:", word_recover.size()
# exit(0)
pred_variable = pred_variable[word_recover]
mask_variable = mask_variable[word_recover]
batch_size = pred_variable.size(0)
seq_len = pred_variable.size(1)
# print pred_variable.size()
nbest = pred_variable.size(2)
mask = mask_variable.cpu().data.numpy()
pred_tag = pred_variable.cpu().data.numpy()
batch_size = mask.shape[0]
pred_label = []
for idx in range(batch_size):
pred = []
for idz in range(nbest):
each_pred = [label_alphabet.get_instance(pred_tag[idx][idy][idz]) for idy in range(seq_len) if mask[idx][idy] != 0]
pred.append(each_pred)
pred_label.append(pred)
return pred_label
def recover_label(pred_variable, gold_variable, mask_variable, label_alphabet, word_recover):
"""
input:
pred_variable (batch_size, sent_len): pred tag result
gold_variable (batch_size, sent_len): gold result variable
mask_variable (batch_size, sent_len): mask variable
"""
pred_variable = pred_variable[word_recover]
if gold_variable is not None:
gold_variable = gold_variable[word_recover]
mask_variable = mask_variable[word_recover]
batch_size = pred_variable.size(0)
seq_len = pred_variable.size(1)
mask = mask_variable.cpu().data.numpy()
pred_tag = pred_variable.cpu().data.numpy()
if gold_variable is not None:
gold_tag = gold_variable.cpu().data.numpy()
batch_size = mask.shape[0]
pred_label = []
if gold_variable is not None:
gold_label = []
for idx in range(batch_size):
pred = [label_alphabet.get_instance(pred_tag[idx][idy]) for idy in range(seq_len) if mask[idx][idy] != 0]
if gold_variable is not None:
gold = [label_alphabet.get_instance(gold_tag[idx][idy]) for idy in range(seq_len) if mask[idx][idy] != 0]
assert (len(pred) == len(gold))
# print "g:", gold, gold_tag.tolist()
pred_label.append(pred)
if gold_variable is not None:
gold_label.append(gold)
if gold_variable is not None:
return pred_label, gold_label
else:
return pred_label, None
def evaluate(data, opt, model, name, bEval, nbest=0):
if name == "train":
instances = data.train_Ids
instances_text = data.train_texts
elif name == "dev":
instances = data.dev_Ids
instances_text = data.dev_texts
elif name == 'test':
instances = data.test_Ids
instances_text = data.test_texts
else:
logging.error("wrong evaluate name, {}".format(name))
right_token = 0
whole_token = 0
nbest_pred_results = []
pred_scores = []
pred_results = []
gold_results = []
## set model in eval model
model.eval()
batch_size = opt.batch_size
start_time = time.time()
train_num = len(instances)
total_batch = train_num//batch_size+1
for batch_id in range(total_batch):
start = batch_id*batch_size
end = (batch_id+1)*batch_size
if end > train_num:
end = train_num
instance = instances[start:end]
if opt.elmo:
instance_text = instances_text[start:end]
else:
instance_text = None
if not instance:
continue
batch_word, batch_wordlen, batch_wordrecover, batch_char, batch_charlen, batch_charrecover, batch_label, mask, batch_features, batch_text \
= batchify_with_label(data, instance, instance_text, opt.gpu)
if nbest>0:
scores, nbest_tag_seq = model.decode_nbest(batch_word, batch_wordlen, batch_char, batch_charlen, batch_charrecover, mask, nbest, batch_features, batch_text)
nbest_pred_result = recover_nbest_label(nbest_tag_seq, mask, data.label_alphabet, batch_wordrecover)
nbest_pred_results += nbest_pred_result
pred_scores += scores[batch_wordrecover].cpu().data.numpy().tolist()
## select the best sequence to evalurate
tag_seq = nbest_tag_seq[:,:,0]
else:
tag_seq = model(batch_word, batch_wordlen, batch_char, batch_charlen, batch_charrecover, mask, batch_features, batch_text)
# print "tag:",tag_seq
if bEval:
pred_label, gold_label = recover_label(tag_seq, batch_label, mask, data.label_alphabet, batch_wordrecover)
pred_results += pred_label
gold_results += gold_label
else:
pred_label, _ = recover_label(tag_seq, batch_label, mask, data.label_alphabet, batch_wordrecover)
pred_results += pred_label
decode_time = time.time() - start_time
speed = len(instances)/decode_time
if bEval:
acc, p, r, f = get_ner_fmeasure(gold_results, pred_results, opt.schema)
else:
acc, p, r, f = None, None, None, None
# if nbest>0:
# return speed, acc, p, r, f, nbest_pred_results, pred_scores
# return speed, acc, p, r, f, pred_results, pred_scores
return speed, acc, p, r, f, pred_results, pred_scores
def freeze_net(net):
if not net:
return
for p in net.parameters():
p.requires_grad = False
def unfreeze_net(net):
if not net:
return
for p in net.parameters():
p.requires_grad = True
def get_text_file(filename):
file = codecs.open(filename, 'r', 'UTF-8')
data = file.read()
file.close()
return data
# bioc will try to use str even if you feed it with utf-8.
# if bioc can't use str to denote something, it will use unicode
def get_bioc_file(filename):
with codecs.open(filename, 'r', 'UTF-8') as fp:
data = fp.read()
collection = bioc.loads(data)
return collection.documents
# list_result = []
# with bioc.iterparse(filename) as parser:
# for document in parser:
# list_result.append(document)
# return list_result
def is_overlapped(a, b):
if ((a.start <= b.start and a.end > b.start) or (a.start < b.end and a.end >= b.end) or
(a.start >= b.start and a.end <= b.end) or (a.start <= b.start and a.end >= b.end)):
return True
else:
return False
def normalize_word(word):
new_word = ""
for char in word:
if char.isdigit():
new_word += '0'
else:
new_word += char
return new_word
def read_one_file(fileName, annotation_dir, entities_overlapped_types):
annotation_file = get_bioc_file(join(annotation_dir, fileName))
bioc_passage = annotation_file[0].passages[0]
entities = []
for entity in bioc_passage.annotations:
entity_ = Entity()
entity_.create(entity.id, entity.infons['type'], entity.locations[0].offset, entity.locations[0].end,
entity.text, None, None, None)
for old_entity in entities:
if is_overlapped(entity_, old_entity):
logging.debug("entity overlapped: doc:{}, entity1_id:{}, entity1_type:{}, entity1_span:{} {}, entity2_id:{}, entity2_type:{}, entity2_span:{} {}"
.format(fileName, old_entity.id, old_entity.type, old_entity.start, old_entity.end,
entity_.id, entity_.type, entity_.start, entity_.end))
overlapped_types = entity_.type+"_"+old_entity.type if cmp(entity_.type, old_entity.type)>0 else old_entity.type+"_"+entity_.type
if overlapped_types in entities_overlapped_types:
count = entities_overlapped_types[overlapped_types]
count += 1
entities_overlapped_types[overlapped_types] = count
else:
entities_overlapped_types[overlapped_types] = 1
entities.append(entity_)
def stat_entity_overlap(annotation_dir):
annotation_files = [f for f in listdir(annotation_dir) if isfile(join(annotation_dir, f))]
entities_overlapped_types = {}
for fileName in annotation_files:
read_one_file(fileName, annotation_dir, entities_overlapped_types)
print(entities_overlapped_types)
def makedir_and_clear(dir_path):
if os.path.exists(dir_path):
shutil.rmtree(dir_path)
os.makedirs(dir_path)
else:
os.makedirs(dir_path)
def shuffle(a,b):
assert len(a) == len(b)
start_state = random.getstate()
random.shuffle(a)
random.setstate(start_state)
random.shuffle(b)
# determine whether two spans are overlapped
def is_overlapped(a_start, a_end, b_start, b_end):
if a_start <= b_start and a_end > b_start:
return True
elif a_start < b_end and a_end >= b_end:
return True
elif a_start >= b_start and a_end <= b_end:
return True
elif a_start <= b_start and a_end >= b_end:
return True
else:
return False
def random_embedding(vocab_size, embedding_dim):
pretrain_emb = np.zeros([vocab_size, embedding_dim])
scale = np.sqrt(3.0 / embedding_dim)
for index in range(vocab_size):
pretrain_emb[index,:] = np.random.uniform(-scale, scale, [1, embedding_dim])
return pretrain_emb
# print("stat entity overlapped in MADE .........")
# stat_entity_overlap("/Users/feili/Desktop/umass/MADE/MADE-1.0/annotations")
# print("stat entity overlapped in Cardio .........")
# stat_entity_overlap('/Users/feili/Desktop/umass/bioC_data/Cardio_train/annotations')
#stat_entity_overlap('/Users/feili/Desktop/umass/CancerADE_SnoM_30Oct2017/bioc')