In this directory, checkout the Foundation Model Stack (FMS) and the FMS Model Optimizer:
git clone https://github.com/foundation-model-stack/foundation-model-stack.git
git clone https://github.com/foundation-model-stack/fms-model-optimizer.git
Install both FMS, FMS-Model-Optimizer and aiu-fms-testing-utils:
cd foundation-model-stack
pip install -e .
cd ..
cd fms-model-optimizer
pip install -e .
cd ..
pip install -e .
Use the pod.yaml
file to get started with your OpenShift allocation
- Modify the
ibm.com/aiu_pf_tier0
values to indicate the number of AIUs that you want to use - Modify the
namespace
to match your namespace/project (i.e.,oc project
)
Start the pod
oc apply -f pod.yaml
Copy this repository into the pod (includes scripts, FMS stack)
oc cp ${PWD} my-workspace:/tmp/
Exec into the pod
oc rsh my-workspace bash -l
When you are finished, make sure to delete your pod:
oc delete -f pod.yaml
Verify the AIU discovery has happened by looking for output like the following when you exec into the pod:
---- IBM AIU Device Discovery...
---- IBM AIU Environment Setup... (Generate config and environment)
---- IBM AIU Devices Found: 2
------------------------
[1000760000@my-workspace ~]$ echo $AIU_WORLD_SIZE
2
Inside the container, setup envars to use the FMS:
export HOME=/tmp
cd ${HOME}/aiu-fms-testing-utils/foundation-model-stack/
# Install the FMS stack
pip install -e .
Run with AIU instead of, default, senulator.
export FLEX_COMPUTE=SENTIENT
export FLEX_DEVICE=VFIO
Optional envars to supress debugging output:
export DTLOG_LEVEL=error
export TORCH_SENDNN_LOG=CRITICAL
export DT_DEEPRT_VERBOSE=-1
Tensor parallel execution is only supported on the AIU through the Foundation Model Stack.
The --nproc-per-node
command line option controls the number of AIUs to use (number of parallel processes).
The small-toy.py
is a slimmed down version of the Big Toy model. The purpose of this model is to demostrate how to run a tensor parallel model with the FMS on AIU hardware.
cd ${HOME}/aiu-fms-testing-utils/scripts
# 1 AIU (sequential)
# Inductor (CPU) backend (default)
torchrun --nproc-per-node 1 ./small-toy.py
# AIU backend
torchrun --nproc-per-node 1 ./small-toy.py --backend aiu
# 2 AIUs (tensor parallel)
# Inductor (CPU) backend (default)
torchrun --nproc-per-node 2 ./small-toy.py
# AIU backend
torchrun --nproc-per-node 2 ./small-toy.py --backend aiu
Example Output
shell$ torchrun --nproc-per-node 4 ./small-toy.py --backend aiu
------------------------------------------------------------
0 / 4 : Python Version : 3.11.7
0 / 4 : PyTorch Version : 2.2.2+cpu
0 / 4 : Dynamo Backend : aiu -> sendnn
0 / 4 : PCI Addr. for Rank 0 : 0000:bd:00.0
0 / 4 : PCI Addr. for Rank 1 : 0000:b6:00.0
0 / 4 : PCI Addr. for Rank 2 : 0000:b9:00.0
0 / 4 : PCI Addr. for Rank 3 : 0000:b5:00.0
------------------------------------------------------------
0 / 4 : Creating the model...
0 / 4 : Compiling the model...
0 / 4 : Running model: First Time...
0 / 4 : Running model: Second Time...
0 / 4 : Done
The roberta.py
is a simple version of the Roberta model. The purpose of this model is to demostrate how to run a tensor parallel model with the FMS on AIU hardware.
Note: We need to disable the Tensor Parallel Embedding
conversion to avoid the use of a torch.distributed
interface that gloo
does not support. Namely torch.ops._c10d_functional.all_gather_into_tensor
. The roberta.py
script will set the following envar to avoid the problematic conversion. This will be removed in a future PyTorch release.
export DISTRIBUTED_STRATEGY_IGNORE_MODULES=WordEmbedding,Embedding
cd ${HOME}/aiu-fms-testing-utils/scripts
# 1 AIU (sequential)
# Inductor (CPU) backend (default)
torchrun --nproc-per-node 1 ./roberta.py
# AIU backend
torchrun --nproc-per-node 1 ./roberta.py --backend aiu
# 2 AIUs (tensor parallel)
# Inductor (CPU) backend (default)
torchrun --nproc-per-node 2 ./roberta.py
# AIU backend
torchrun --nproc-per-node 2 ./roberta.py --backend aiu
Example Output
shell$ torchrun --nproc-per-node 2 ./roberta.py --backend aiu
------------------------------------------------------------
0 / 2 : Python Version : 3.11.7
0 / 2 : PyTorch Version : 2.2.2+cpu
0 / 2 : Dynamo Backend : aiu -> sendnn
0 / 2 : PCI Addr. for Rank 0 : 0000:bd:00.0
0 / 2 : PCI Addr. for Rank 1 : 0000:b6:00.0
------------------------------------------------------------
0 / 2 : Creating the model...
0 / 2 : Compiling the model...
0 / 2 : Running model: First Time...
0 / 2 : Answer: (0.11509) Miss Piggy is a pig.
0 / 2 : Running model: Second Time...
0 / 2 : Answer: (0.11509) Miss Piggy is a pig.
0 / 2 : Done
export DT_OPT=varsub=1,lxopt=1,opfusion=1,arithfold=1,dataopt=1,patchinit=1,patchprog=1,autopilot=1,weipreload=0,kvcacheopt=1,progshareopt=1
# run 194m on AIU
python3 inference.py --architecture=hf_pretrained --model_path=/home/senuser/llama3.194m --tokenizer=/home/senuser/llama3.194m --unfuse_weights --min_pad_length 64 --device_type=aiu --max_new_tokens=5 --compile --default_dtype=fp16 --compile_dynamic
# run 194m on CPU
python3 inference.py --architecture=hf_pretrained --model_path=/home/senuser/llama3.194m --tokenizer=/home/senuser/llama3.194m --unfuse_weights --min_pad_length 64 --device_type=cpu --max_new_tokens=5 --default_dtype=fp32
# run 7b on AIU
python3 inference.py --architecture=hf_pretrained --model_path=/home/senuser/llama2.7b --tokenizer=/home/senuser/llama2.7b --unfuse_weights --min_pad_length 64 --device_type=aiu --max_new_tokens=5 --compile --default_dtype=fp16 --compile_dynamic
# run 7b on CPU
python3 inference.py --architecture=hf_pretrained --model_path=/home/senuser/llama2.7b--tokenizer=/home/senuser/llama2.7b --unfuse_weights --min_pad_length 64 --device_type=cpu --max_new_tokens=5 --default_dtype=fp32
# run gpt_bigcode (granite) 3b on AIU
python3 inference.py --architecture=gpt_bigcode --variant=ibm.3b --model_path=/home/senuser/gpt_bigcode.granite.3b/*00002.bin --model_source=hf --tokenizer=/home/senuser/gpt_bigcode.granite.3b --unfuse_weights --min_pad_length 64 --device_type=aiu --max_new_tokens=5 --prompt_type=code --compile --default_dtype=fp16 --compile_dynamic
# run gpt_bigcode (granite) 3b on CPU
python3 inference.py --architecture=gpt_bigcode --variant=ibm.3b --model_path=/home/senuser/gpt_bigcode.granite.3b/*00002.bin --model_source=hf --tokenizer=/home/senuser/gpt_bigcode.granite.3b --unfuse_weights --min_pad_length 64 --device_type=cpu --max_new_tokens=5 --prompt_type=code --default_dtype=fp32
To try mini-batch, use --batch_input
For the validation script, here are a few examples:
export DT_OPT=varsub=1,lxopt=1,opfusion=1,arithfold=1,dataopt=1,patchinit=1,patchprog=1,autopilot=1,weipreload=0,kvcacheopt=1,progshareopt=1
# Run a llama 194m model, grab the example inputs in the script, generate validation tokens on cpu, validate token equivalency:
python3 scripts/validation.py --architecture=hf_pretrained --model_path=/home/devel/models/llama-194m --tokenizer=/home/devel/models/llama-194m --unfuse_weights --batch_size=1 --min_pad_length=64 --max_new_tokens=10 --compile_dynamic
# Run a llama 194m model, grab the example inputs in a folder, generate validation tokens on cpu, validate token equivalency:
python3 scripts/validation.py --architecture=hf_pretrained --model_path=/home/devel/models/llama-194m --tokenizer=/home/devel/models/llama-194m --unfuse_weights --batch_size=1 --min_pad_length=64 --max_new_tokens=10 --prompt_path=/home/devel/aiu-fms-testing-utils/prompts/test/*.txt --compile_dynamic
# Run a llama 194m model, grab the example inputs in a folder, grab validation text from a folder, validate token equivalency (will only validate up to max(max_new_tokens, tokens_in_validation_file)):
python3 scripts/validation.py --architecture=hf_pretrained --model_path=/home/devel/models/llama-194m --tokenizer=/home/devel/models/llama-194m --unfuse_weights --batch_size=1 --min_pad_length=64 --max_new_tokens=10 --prompt_path=/home/devel/aiu-fms-testing-utils/prompts/test/*.txt --validation_files_path=/home/devel/aiu-fms-testing-utils/prompts/validation/*.txt --compile_dynamic
# Validate a reduced size version of llama 8b
python3 scripts/validation.py --architecture=hf_configured --model_path=/home/devel/models/llama-8b --tokenizer=/home/devel/models/llama-8b --unfuse_weights --batch_size=1 --min_pad_length=64 --max_new_tokens=10 --extra_get_model_kwargs nlayers=3 --compile_dynamic
To run a logits-based validation, pass --validation_level=1
to the validation script. This will check for the logits output to match at every step of the model through cross-entropy loss.
You can control the acceptable threshold with --logits_loss_threshold
Errors like the following often indicate that the pod has not started or is still in the process of starting.
error: unable to upgrade connection: container not found ("my-pod")
Use oc get pods
to check on the status. ContainerCreating
indicates that the pod is being created. Running
indicates that it is ready to use.
If there is an error the use oc describe pod/my-workspace
to see a full diagnostic view. The Events
list at the bottom will often let you know what the problem is.
Below is the generic torchrun
failed program trace. It is not helpful when trying to find the problem in the program. Instead look for the actual error message a little higher in the output trace.
[2024-09-16 16:10:15,705] torch.distributed.elastic.multiprocessing.api: [ERROR] failed (exitcode: 1) local_rank: 0 (pid: 1479484) of binary: /usr/bin/python3
Traceback (most recent call last):
File "/usr/local/bin/torchrun", line 8, in <module>
sys.exit(main())
File "/usr/local/lib64/python3.9/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
return f(*args, **kwargs)
File "/usr/local/lib64/python3.9/site-packages/torch/distributed/run.py", line 812, in main
run(args)
File "/usr/local/lib64/python3.9/site-packages/torch/distributed/run.py", line 803, in run
elastic_launch(
File "/usr/local/lib64/python3.9/site-packages/torch/distributed/launcher/api.py", line 135, in __call__
return launch_agent(self._config, self._entrypoint, list(args))
File "/usr/local/lib64/python3.9/site-packages/torch/distributed/launcher/api.py", line 268, in launch_agent
raise ChildFailedError(
torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
============================================================
./roberta.py FAILED
------------------------------------------------------------
Failures:
<NO_OTHER_FAILURES>
------------------------------------------------------------
Root Cause (first observed failure):
[0]:
time : 2024-09-16_16:10:15
host : ibm-aiu-rdma-jjhursey
rank : 0 (local_rank: 0)
exitcode : 1 (pid: 1479484)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
============================================================
You may see the following additional warnings/notices printed to the console. They are normal and expected at this point in time. The team will work on cleaning these up.
CUDA extension not installed.
using tensor parallel
ignoring module=Embedding when distributing module
[WARNING] Keys from checkpoint (adapted to FMS) not copied into model: {'roberta.embeddings.token_type_embeddings.weight', 'lm_head.bias'}