-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_DCM_MLE.m
329 lines (283 loc) · 12.2 KB
/
demo_DCM_MLE.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
clear;
close all;
rng(1); % fix seed for reproducibility
outdir = 'output_dcm_mle_v2/';
inputFile = 'swissmetro_processed.csv';
dataName = 'swissmetro_varalt_shuffled_groups_easytrue_spec1';
fprintf('Output directory: %s\n', outdir);
fprintf('Input file: %s\n', inputFile);
fprintf('Data name: %s\n', dataName);
% load data
M = csvread(inputFile,1);
% remove data with purpose == 9 (other)
M(M(:,5) == 9,:) = [];
% shuffle data completely at random
%M_shuffled = M(randperm(size(M,1)),:);
% shuffle data accounting for individual IDs
unique_ids = unique(M(:,1));
shuffled_ids = unique_ids(randperm(length(unique_ids)),:);
M_shuffled = zeros(size(M));
for i=1:length(unique_ids)
id = shuffled_ids(i);
lo = (i-1)*9+1;
hi = i*9;
M_shuffled(lo:hi,:) = M(M(:,1)==id,:);
end
% process data
ids = M_shuffled(:,1);
Y_true = M_shuffled(:,2);
age = M_shuffled(:,3);
ga = M_shuffled(:,4)+1;
purpose = M_shuffled(:,5);
new_purpose = -1*ones(size(purpose));
new_purpose((purpose == 1) | (purpose == 3) | (purpose == 5) | (purpose == 7)) = 1;
new_purpose((purpose == 2) | (purpose == 6)) = 2;
new_purpose((purpose == 4) | (purpose == 8)) = 3;
purpose = new_purpose;
who = M_shuffled(:,6)+1;
luggage = M_shuffled(:,7)+1;
luggage(luggage == 4) = 3;
income = M_shuffled(:,8)+1;
availableChoices = M_shuffled(:,9:11);
TRAIN_ASC = ones(length(M),1);
TRAIN_TT = M_shuffled(:,12)/60.0;
TRAIN_CO = M_shuffled(:,15)*0.01;
TRAIN_HE = M_shuffled(:,18)/60.0;
SM_ASC = ones(length(M),1);
SM_TT = M_shuffled(:,13)/60.0;
SM_CO = M_shuffled(:,16)*0.01;
SM_HE = M_shuffled(:,19)/60.0;
CAR_ASC = ones(length(M),1);
CAR_TT = M_shuffled(:,14)/60.0;
CAR_CO = M_shuffled(:,17)*0.01;
% define specifications to test
alternative_names = {'TRAIN', 'SM', 'CAR'};
% DCM specification
fitSpec = cell(length(alternative_names),1);
% spec1: super-simple baseline DCM model
fitSpec{1} = {'TRAIN_ASC', 'TRAIN_TT', 'TRAIN_CO'};
fitSpec{2} = {'SM_ASC', 'SM_TT', 'SM_CO'};
fitSpec{3} = {'CAR_TT', 'CAR_CO'};
% % spec2: very simplified version of spec given by ARD
% fitSpec{1} = {'TRAIN_ASC', 'logt(TRAIN_TT)', 'logt(TRAIN_TT) x ga', 'logt(TRAIN_CO)'};
% fitSpec{2} = {'SM_ASC', 'logt(SM_TT)', 'logt(SM_CO)'};
% fitSpec{3} = {'CAR_TT', 'logt(CAR_CO)'};
% % spec3: simplified version of spec given by ARD
% fitSpec{1} = {'TRAIN_ASC', 'logt(TRAIN_TT)', 'logt(TRAIN_TT) x ga', 'logt(TRAIN_CO)', 'logt(TRAIN_CO) x purpose'};
% fitSpec{2} = {'SM_ASC', 'logt(SM_TT)', 'logt(SM_CO)', 'logt(SM_CO) x ga'};
% fitSpec{3} = {'CAR_TT', 'logt(CAR_CO)'};
% % spec4: more complex version of spec given by ARD
% fitSpec{1} = {'TRAIN_ASC', 'logt(TRAIN_TT)', 'logt(TRAIN_TT) x ga', 'logt(TRAIN_CO)', 'logt(TRAIN_CO) x ga', 'logt(TRAIN_CO) x purpose'};
% fitSpec{2} = {'SM_ASC', 'logt(SM_TT)', 'logt(SM_CO)', 'logt(SM_CO) x ga', 'logt(SM_CO) x purpose'};
% fitSpec{3} = {'CAR_TT', 'CAR_TT x ga', 'logt(CAR_CO)'};
% % spec5: even more complex version of spec given by ARD
% fitSpec{1} = {'TRAIN_ASC', 'logt(TRAIN_TT)', 'logt(TRAIN_TT) x ga', 'logt(TRAIN_CO)', 'logt(TRAIN_CO) x ga', 'logt(TRAIN_CO) x purpose', 'logt(TRAIN_CO) x age'};
% fitSpec{2} = {'SM_ASC', 'SM_ASC x age', 'logt(SM_TT)', 'logt(SM_CO)', 'logt(SM_CO) x ga', 'logt(SM_CO) x purpose'};
% fitSpec{3} = {'CAR_TT', 'CAR_TT x ga', 'CAR_TT x purpose', 'logt(CAR_CO)'};
% % spec6: almost full version of spec given by ARD
% fitSpec{1} = {'TRAIN_ASC', 'logt(TRAIN_TT)', 'logt(TRAIN_TT) x ga', 'logt(TRAIN_CO)', 'logt(TRAIN_CO) x ga', 'logt(TRAIN_CO) x purpose', 'logt(TRAIN_CO) x age', 'logt(TRAIN_HE)'};
% fitSpec{2} = {'SM_ASC', 'SM_ASC x age', 'logt(SM_TT)', 'logt(SM_CO)', 'logt(SM_CO) x ga', 'logt(SM_CO) x purpose'};
% fitSpec{3} = {'CAR_TT', 'CAR_TT x ga', 'CAR_TT x purpose', 'logt(CAR_CO)'};
% % spec7: full version of spec given by ARD
% fitSpec{1} = {'TRAIN_ASC', 'logt(TRAIN_TT)', 'logt(TRAIN_TT) x ga', 'logt(TRAIN_CO)', 'logt(TRAIN_CO) x ga', 'logt(TRAIN_CO) x purpose', 'logt(TRAIN_CO) x age', 'logt(TRAIN_HE)'};
% fitSpec{2} = {'SM_ASC', 'SM_ASC x ga', 'SM_ASC x age', 'logt(SM_TT)', 'logt(SM_CO)', 'logt(SM_CO) x ga', 'logt(SM_CO) x purpose'};
% fitSpec{3} = {'CAR_TT', 'CAR_TT x ga', 'CAR_TT x purpose', 'logt(CAR_CO)', 'logt(CAR_CO) x age', 'logt(CAR_CO) x purpose'};
% % spec8: testing removing variables not included in spec given by ARD
% fitSpec{1} = {'TRAIN_ASC', 'logt(TRAIN_TT)', 'logt(TRAIN_TT) x ga', 'logt(TRAIN_CO)', 'logt(TRAIN_CO) x ga', 'logt(TRAIN_CO) x purpose', 'logt(TRAIN_CO) x age', 'logt(TRAIN_HE)'};
% fitSpec{2} = {'SM_ASC', 'SM_ASC x ga', 'SM_ASC x age', 'logt(SM_TT)', 'logt(SM_CO)', 'logt(SM_CO) x ga', 'logt(SM_CO) x purpose'};
% fitSpec{3} = {'CAR_TT', 'CAR_TT x ga', 'CAR_TT x age', 'CAR_TT x purpose', 'logt(CAR_CO)', 'logt(CAR_CO) x age', 'logt(CAR_CO) x purpose'};
% % spec9: exact copy of spec given by ARD
% fitSpec{1} = {'logt(TRAIN_TT) x ga', 'TRAIN_ASC', 'logt(TRAIN_CO)', 'logt(TRAIN_CO)', 'logt(TRAIN_CO) x purpose', 'logt(TRAIN_CO) x ga', 'TRAIN_CO', 'logt(TRAIN_CO) x age', 'TRAIN_CO x purpose', 'logt(TRAIN_HE)'};
% fitSpec{2} = {'logt(SM_CO) x ga', 'logt(SM_CO) x purpose', 'logt(SM_CO)', 'logt(SM_TT)', 'SM_CO', 'SM_ASC x age', 'SM_CO x purpose'};
% fitSpec{3} = {'logt(CAR_CO)', 'CAR_TT x ga', 'logt(CAR_TT) x purpose', 'logt(CAR_CO) x age', 'CAR_CO x purpose', 'CAR_TT x age'};
% % spec10: exact copy of spec given by ARD - more more!
% fitSpec{1} = {'logt(TRAIN_TT) x ga', 'TRAIN_ASC', 'logt(TRAIN_CO)', 'logt(TRAIN_CO) x purpose', 'logt(TRAIN_CO) x ga', 'TRAIN_CO', 'logt(TRAIN_CO) x age', 'TRAIN_CO x purpose', 'logt(TRAIN_HE)'};
% fitSpec{2} = {'logt(SM_CO) x ga', 'logt(SM_CO) x purpose', 'logt(SM_CO)', 'logt(SM_TT)', 'SM_CO', 'SM_ASC x age', 'SM_CO x purpose', 'SM_ASC x ga'};
% fitSpec{3} = {'logt(CAR_CO)', 'CAR_TT x ga', 'logt(CAR_TT) x purpose', 'logt(CAR_CO) x age', 'CAR_CO x purpose', 'CAR_TT x age'};
% generate dataset (i.e. all variable transformation and interactions)
fprintf('\nGenerating dataset with all possible variable transformation and interactions...\n');
N = size(Y_true,1);
nChoices = max(Y_true); % number of choices/classes
% create feature transformations
D = zeros(nChoices,1);
groups = cell(nChoices,1);
X = cell(nChoices,1);
for c=1:nChoices
groups{c} = [];
X{c} = [];
for d=1:length(fitSpec{c})
varName = fitSpec{c}{d};
%fprintf('choice %s: adding variable %s\n', alternative_names{c}, varName);
if contains(varName, ' x ')
[matches,~] = strsplit(varName,'\s* x \s*','DelimiterType','RegularExpression');
var = eval(matches{1});
inter_vars = cell(length(matches) - 1, 1);
for i=1:length(inter_vars)
inter_vars{i} = eval(matches{i+1});
end
res = [];
for n=1:N
if length(inter_vars) == 1
dim = max(inter_vars{1})-1; % last column is unnecessary
vec = zeros(1,dim);
sn = inter_vars{1}(n);
if sn <= dim
vec(sn) = var(n);
end
elseif length(inter_vars) == 2
dim = (max(inter_vars{1})-1)*(max(inter_vars{2})-1); % last column is unnecessary
vec = zeros(1,dim);
sn1 = inter_vars{1}(n);
if sn1 < max(inter_vars{1})
sn2 = inter_vars{2}(n);
if sn2 < max(inter_vars{2})
sn = (sn1-1)*(max(inter_vars{2})-1) + sn2;
vec(sn) = var(n);
end
end
else
error('Not implemented');
end
res = [res; vec];
end
D(c) = D(c) + dim;
groups{c} = [groups{c}, d*ones(1,dim)];
X{c} = [X{c}, res];
else
var = eval(varName);
dim = size(var,2);
D(c) = D(c) + dim;
groups{c} = [groups{c}, d*ones(1,dim)];
X{c} = [X{c}, var];
end
end
end
fprintf('Di*Kd=[%d,%d,%d]\n', D(1), D(2), D(3));
fprintf('Total variables to test: %d\n', sum(D));
% pre-compute some variables/statistics required for later
Di = zeros(nChoices,1);
Kd = cell(nChoices,1);
Dgroup = cell(nChoices,1);
for c=1:nChoices
Di(c) = max(groups{c});
Kd{c} = zeros(Di(c),1);
for k=1:Di(c)
Kd{c}(k) = sum(groups{c}==k);
end
Dgroup{c} = zeros(D(c),1);
for d=1:D(c)
Dgroup{c}(d) = Kd{c}(groups{c}(d));
end
end
fprintf('Di=[%d,%d,%d]\n', Di(1), Di(2), Di(3));
% assign names to all generated variables
varNames = cell(nChoices,1);
for c=1:nChoices
varNames{c} = cell(D(c),1);
ix = 1;
for d=1:Di(c)
for k=1:Kd{c}(d)
varNames{c}{ix} = sprintf('%s_%d',fitSpec{c}{d},k);
ix = ix + 1;
end
end
end
% % standardize data
% for c=1:nChoices
% meanX = mean(X{c},1);
% stdX = std(X{c},1);
% meanX(stdX == 0) = 0; % for bias terms
% stdX(stdX == 0) = 1;
% %X{c} = (X{c} - meanX) ./ stdX;
% %X{c}(:,1) = ones(1,N); % fix bias terms
% end
Y = Y_true;
% write dataset with all features used in the specification to disk (long format)
fileID = fopen([outdir dataName '.csv'],'w');
fprintf(fileID, 'ID,CHOICE,AV_TRAIN,AV_SM,AV_CAR');
for c=1:nChoices
for i=1:length(varNames{c})
fprintf(fileID, ',%s', varNames{c}{i});
end
end
fprintf(fileID, '\n');
for n=1:N
fprintf(fileID, '%d,%d', ids(n), Y_true(n));
fprintf(fileID, ',%d,%d,%d', availableChoices(n,1), availableChoices(n,2), availableChoices(n,3));
for c=1:nChoices
for i=1:length(varNames{c})
fprintf(fileID, ',%.3f', X{c}(n,i));
end
end
fprintf(fileID, '\n');
end
fclose(fileID);
% ----------------- fit DCM model on full dataset
% run simple DCM model
fprintf('Fitting DCM model on full dataset using MLE...\n');
Y_onehot = full(ind2vec(Y', nChoices))';
for c=1:nChoices
theta{c} = zeros(D(c),1);
end
% fit DCM with MLE
theta_optim_full = minimize(theta, @neglog_DCM, -20000, X, Y, Y_onehot, availableChoices);
[llik_full,~] = neglog_DCM(theta_optim_full, X, Y, Y_onehot, availableChoices);
fprintf('Log-lik full dataset: %.3f\n', -llik_full);
% ----------------- fit DCM on trainset and measure performance on testset
% train/test split
Ntr = floor(0.7*N);
Xtr = cell(3,1);
Xts = cell(3,1);
for c=1:nChoices
Xtr{c} = X{c}(1:Ntr,:);
Xts{c} = X{c}((Ntr+1):end,:);
end
Ytr = Y(1:Ntr,:);
Ytr_onehot = full(ind2vec(Ytr', nChoices))';
Yts = Y((Ntr+1):end,:);
availableChoicesTr = availableChoices(1:Ntr,:);
availableChoicesTs = availableChoices((Ntr+1):end,:);
Ntr = size(Xtr{1},1);
Nts = size(Xts{1},1);
% run simple DCM model with all the possible variables/features
fprintf('Fitting DCM to sampled artificial choices using MLE...\n');
Y_onehot = full(ind2vec(Ytr', nChoices))';
Y_onehot_test = full(ind2vec(Yts', nChoices))';
for c=1:nChoices
theta{c} = zeros(D(c),1);
end
% fit DCM with MLE
theta_optim_train = minimize(theta, @neglog_DCM, -20000, Xtr, Ytr, Y_onehot, availableChoicesTr);
[llik_train,~] = neglog_DCM(theta_optim_train, Xtr, Ytr, Y_onehot, availableChoicesTr);
[llik_test,~] = neglog_DCM(theta_optim_train, Xts, Yts, Y_onehot_test, availableChoicesTs);
fprintf('Log-likelihood full dataset: %.3f\n', -llik_full);
fprintf('Log-likelihood train: %.3f\n', -llik_train);
fprintf('Log-likelihood test: %.3f\n', -llik_test);
% evaluate trainset accuracy
S = DCM(theta_optim_train, Xtr, availableChoicesTr);
[~,preds_tr] = max(S,[],2);
train_acc = sum(preds_tr == Ytr) / length(Ytr);
fprintf('Train accuracy: %.3f\n', train_acc);
% evaluate testset accuracy
S = DCM(theta_optim_train, Xts, availableChoicesTs);
[~,preds_ts] = max(S,[],2);
test_acc = sum(preds_ts == Yts) / length(Yts);
fprintf('Test accuracy: %.3f\n', test_acc);
fileID = fopen([outdir dataName '_accuracy.txt'],'w');
fprintf(fileID, 'Log-likelihood full dataset: %.3f\n', -llik_full);
fprintf(fileID, 'Log-likelihood train: %.3f\n', -llik_train);
fprintf(fileID, 'Log-likelihood test: %.3f\n', -llik_test);
fprintf(fileID, 'Train accuracy: %.3f\n', train_acc);
fprintf(fileID, 'Test accuracy: %.3f\n', test_acc);
fclose(fileID);
function ret = logt(vec)
ret = log(vec+1);
end
function ret = boxt(vec)
ret = boxcox(vec+1);
end
function ret = segt(vec,k)
I = eye(k);
ret = I(kmeans(vec, k),:);
ret = ret(:,1:(k-1)); % don't add last column - it should be captured by the bias term
end