-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_DCM_ARD_baselines.m
489 lines (432 loc) · 19.6 KB
/
demo_DCM_ARD_baselines.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
clear;
close all;
rng(42); % fix seed for reproducibility
outdir = 'output_baselines/';
inputFile = 'swissmetro_processed.csv';
dataName = 'swissmetro_varalt_shuffled_groups_hardfakespec10';
fprintf('Output directory: %s\n', outdir);
fprintf('Input file: %s\n', inputFile);
fprintf('Data name: %s\n', dataName);
% load data
M = csvread(inputFile,1);
% shuffle data completely at random
%M_shuffled = M(randperm(size(M,1)),:);
% shuffle data accounting for individual IDs
unique_ids = unique(M(:,1));
shuffled_ids = unique_ids(randperm(length(unique_ids)),:);
M_shuffled = zeros(size(M));
for i=1:length(unique_ids)
id = shuffled_ids(i);
lo = (i-1)*9+1;
hi = i*9;
M_shuffled(lo:hi,:) = M(M(:,1)==id,:);
end
% process data
ids = M_shuffled(:,1);
Y_true = M_shuffled(:,2);
age = M_shuffled(:,3);
ga = M_shuffled(:,4)+1;
purpose = M_shuffled(:,5);
who = M_shuffled(:,6)+1;
luggage = M_shuffled(:,7)+1;
luggage(luggage == 4) = 3;
income = M_shuffled(:,8)+1;
availableChoices = M_shuffled(:,9:11);
TRAIN_ASC = ones(length(M),1);
TRAIN_TT = M_shuffled(:,12);
TRAIN_CO = M_shuffled(:,15);
TRAIN_HE = M_shuffled(:,18);
SM_ASC = ones(length(M),1);
SM_TT = M_shuffled(:,13);
SM_CO = M_shuffled(:,16);
SM_HE = M_shuffled(:,19);
CAR_ASC = ones(length(M),1);
CAR_TT = M_shuffled(:,14);
CAR_CO = M_shuffled(:,17);
% define specifications to test
alternative_names = {'TRAIN', 'SM', 'CAR'};
specs = cell(length(alternative_names),1);
% % easy search space
% specs{1} = {...
% ... % TRAIN_ASC
% 'TRAIN_ASC', 'TRAIN_ASC x ga', 'TRAIN_ASC x age', 'TRAIN_ASC x purpose',...
% ... % TRAIN_TT
% 'TRAIN_TT', 'TRAIN_TT x ga', 'TRAIN_TT x age', 'TRAIN_TT x purpose',...
% 'logt(TRAIN_TT)', 'logt(TRAIN_TT) x ga', 'logt(TRAIN_TT) x age', 'logt(TRAIN_TT) x purpose',...
% ... % TRAIN_CO
% 'TRAIN_CO', 'TRAIN_CO x ga', 'TRAIN_CO x age', 'TRAIN_CO x purpose',...
% 'logt(TRAIN_CO)', 'logt(TRAIN_CO) x ga', 'logt(TRAIN_CO) x age', 'logt(TRAIN_CO) x purpose',...
% ... % TRAIN_HE
% 'TRAIN_HE', 'TRAIN_HE x ga', 'TRAIN_HE x age', 'TRAIN_HE x purpose',...
% 'logt(TRAIN_HE)', 'logt(TRAIN_HE) x ga', 'logt(TRAIN_HE) x age', 'logt(TRAIN_HE) x purpose'};
% specs{2} = {...
% ... % SM_ASC
% 'SM_ASC', 'SM_ASC x ga', 'SM_ASC x age', 'SM_ASC x purpose',...
% ... % SM_TT
% 'SM_TT', 'SM_TT x ga', 'SM_TT x age', 'SM_TT x purpose',...
% 'logt(SM_TT)', 'logt(SM_TT) x ga', 'logt(SM_TT) x age', 'logt(SM_TT) x purpose',...
% ... % SM_CO
% 'SM_CO', 'SM_CO x ga', 'SM_CO x age', 'SM_CO x purpose',...
% 'logt(SM_CO)', 'logt(SM_CO) x ga', 'logt(SM_CO) x age', 'logt(SM_CO) x purpose',...
% ... % SM_HE
% 'SM_HE', 'SM_HE x ga', 'SM_HE x age', 'SM_HE x purpose',...
% 'logt(SM_HE)', 'logt(SM_HE) x ga', 'logt(SM_HE) x age', 'logt(SM_HE) x purpose'};
% specs{3} = {...%'CAR_ASC', 'CAR_ASC x ga', 'CAR_ASC x age', 'CAR_ASC x purpose',...
% ... % CAR_TT
% 'CAR_TT', 'CAR_TT x ga', 'CAR_TT x age', 'CAR_TT x purpose',...
% 'logt(CAR_TT)', 'logt(CAR_TT) x ga', 'logt(CAR_TT) x age', 'logt(CAR_TT) x purpose',...
% ... % CAR_CO
% 'CAR_CO', 'CAR_CO x ga', 'CAR_CO x age', 'CAR_CO x purpose',...
% 'logt(CAR_CO)', 'logt(CAR_CO) x ga', 'logt(CAR_CO) x age', 'logt(CAR_CO) x purpose',}
% hard search space
specs{1} = {...
... % TRAIN_ASC
'TRAIN_ASC', 'TRAIN_ASC x ga', 'TRAIN_ASC x age', 'TRAIN_ASC x purpose', 'TRAIN_ASC x who', 'TRAIN_ASC x luggage', 'TRAIN_ASC x income',...
... % TRAIN_TT
'TRAIN_TT', 'TRAIN_TT x ga', 'TRAIN_TT x age', 'TRAIN_TT x purpose', 'TRAIN_TT x who', 'TRAIN_TT x luggage', 'TRAIN_TT x income',...
'segt(TRAIN_TT,4)','segt(TRAIN_TT,8)',...
'logt(TRAIN_TT)', 'logt(TRAIN_TT) x ga', 'logt(TRAIN_TT) x age', 'logt(TRAIN_TT) x purpose', 'logt(TRAIN_TT) x who', 'logt(TRAIN_TT) x luggage', 'logt(TRAIN_TT) x income',...
'boxt(TRAIN_TT)', 'boxt(TRAIN_TT) x ga', 'boxt(TRAIN_TT) x age', 'boxt(TRAIN_TT) x purpose', 'boxt(TRAIN_TT) x who', 'boxt(TRAIN_TT) x luggage', 'boxt(TRAIN_TT) x income',...
... % TRAIN_CO
'TRAIN_CO', 'TRAIN_CO x ga', 'TRAIN_CO x age', 'TRAIN_CO x purpose', 'TRAIN_CO x who', 'TRAIN_CO x luggage', 'TRAIN_CO x income',...
'segt(TRAIN_CO,4)','segt(TRAIN_CO,8)',...
'logt(TRAIN_CO)', 'logt(TRAIN_CO) x ga', 'logt(TRAIN_CO) x age', 'logt(TRAIN_CO) x purpose', 'logt(TRAIN_CO) x who', 'logt(TRAIN_CO) x luggage', 'logt(TRAIN_CO) x income',...
'boxt(TRAIN_CO)', 'boxt(TRAIN_CO) x ga', 'boxt(TRAIN_CO) x age', 'boxt(TRAIN_CO) x purpose', 'boxt(TRAIN_CO) x who', 'boxt(TRAIN_CO) x luggage', 'boxt(TRAIN_CO) x income',...
... % TRAIN_HE
'TRAIN_HE', 'TRAIN_HE x ga', 'TRAIN_HE x age', 'TRAIN_HE x purpose', 'TRAIN_HE x who', 'TRAIN_HE x luggage', 'TRAIN_HE x income',...
...%'segt(TRAIN_HE,3)',...
'logt(TRAIN_HE)', 'logt(TRAIN_HE) x ga', 'logt(TRAIN_HE) x age', 'logt(TRAIN_HE) x purpose', 'logt(TRAIN_HE) x who', 'logt(TRAIN_HE) x luggage', 'logt(TRAIN_HE) x income'};
%'boxt(TRAIN_HE)', 'boxt(TRAIN_HE) x ga', 'boxt(TRAIN_HE) x age', 'boxt(TRAIN_HE) x purpose'};
specs{2} = {...
... % SM_ASC
'SM_ASC', 'SM_ASC x ga', 'SM_ASC x age', 'SM_ASC x purpose', 'SM_ASC x who', 'SM_ASC x luggage', 'SM_ASC x income',...
... % SM_TT
'SM_TT', 'SM_TT x ga', 'SM_TT x age', 'SM_TT x purpose', 'SM_TT x who', 'SM_TT x luggage', 'SM_TT x income',...
'segt(SM_TT,4)','segt(SM_TT,8)',...
'logt(SM_TT)', 'logt(SM_TT) x ga', 'logt(SM_TT) x age', 'logt(SM_TT) x purpose', 'logt(SM_TT) x who', 'logt(SM_TT) x luggage', 'logt(SM_TT) x income',...
'boxt(SM_TT)', 'boxt(SM_TT) x ga', 'boxt(SM_TT) x age', 'boxt(SM_TT) x purpose', 'boxt(SM_TT) x who', 'boxt(SM_TT) x luggage', 'boxt(SM_TT) x income',...
... % SM_CO
'SM_CO', 'SM_CO x ga', 'SM_CO x age', 'SM_CO x purpose', 'SM_CO x who', 'SM_CO x luggage', 'SM_CO x income',...
...%'segt(SM_CO,4)','segt(SM_CO,8)',...
'logt(SM_CO)', 'logt(SM_CO) x ga', 'logt(SM_CO) x age', 'logt(SM_CO) x purpose', 'logt(SM_CO) x who', 'logt(SM_CO) x luggage', 'logt(SM_CO) x income',...
'boxt(SM_CO)', 'boxt(SM_CO) x ga', 'boxt(SM_CO) x age', 'boxt(SM_CO) x purpose', 'boxt(SM_CO) x who', 'boxt(SM_CO) x luggage', 'boxt(SM_CO) x income',...
... % SM_HE
'SM_HE', 'SM_HE x ga', 'SM_HE x age', 'SM_HE x purpose', 'SM_HE x who', 'SM_HE x luggage', 'SM_HE x income',...
...%'segt(SM_HE,3)',...
'logt(SM_HE)', 'logt(SM_HE) x ga', 'logt(SM_HE) x age', 'logt(SM_HE) x purpose', 'logt(SM_HE) x who', 'logt(SM_HE) x luggage', 'logt(SM_HE) x income'};
%'boxt(SM_HE)', 'boxt(SM_HE) x ga', 'boxt(SM_HE) x age', 'boxt(SM_HE) x purpose'};
specs{3} = {...%'CAR_ASC', 'CAR_ASC x ga', 'CAR_ASC x age', 'CAR_ASC x purpose',...
... % CAR_TT
'CAR_TT', 'CAR_TT x ga', 'CAR_TT x age', 'CAR_TT x purpose', 'CAR_TT x who', 'CAR_TT x luggage', 'CAR_TT x income',...
'segt(CAR_TT,4)','segt(CAR_TT,8)',...
'logt(CAR_TT)', 'logt(CAR_TT) x ga', 'logt(CAR_TT) x age', 'logt(CAR_TT) x purpose', 'logt(CAR_TT) x who', 'logt(CAR_TT) x luggage', 'logt(CAR_TT) x income',...
'boxt(CAR_TT)', 'boxt(CAR_TT) x ga', 'boxt(CAR_TT) x age', 'boxt(CAR_TT) x purpose', 'boxt(CAR_TT) x who', 'boxt(CAR_TT) x luggage', 'boxt(CAR_TT) x income',...
... % CAR_CO
'CAR_CO', 'CAR_CO x ga', 'CAR_CO x age', 'CAR_CO x purpose', 'CAR_CO x who', 'CAR_CO x luggage', 'CAR_CO x income',...
'segt(CAR_CO,4)','segt(CAR_CO,8)',...
'logt(CAR_CO)', 'logt(CAR_CO) x ga', 'logt(CAR_CO) x age', 'logt(CAR_CO) x purpose', 'logt(CAR_CO) x who', 'logt(CAR_CO) x luggage', 'logt(CAR_CO) x income',...
'boxt(CAR_CO)', 'boxt(CAR_CO) x ga', 'boxt(CAR_CO) x age', 'boxt(CAR_CO) x purpose', 'boxt(CAR_CO) x who', 'boxt(CAR_CO) x luggage', 'boxt(CAR_CO) x income'};
fprintf('\nVariables to consider for each utility function:\n');
for c=1:length(specs)
fprintf('%s: ', alternative_names{c});
for d=1:length(specs{c})
fprintf('%s, ', specs{c}{d});
end
fprintf('\n');
end
% "fake" specifications for generating aritifical choices
generateFakeData = true;
fakeSpec = cell(length(alternative_names),1);
% % easy/hard fake spec 1
% fakeSpec{1} = {'TRAIN_ASC', 'TRAIN_TT', 'TRAIN_CO'};
% fakeSpec{2} = {'SM_ASC', 'SM_TT', 'SM_CO'};
% fakeSpec{3} = {'CAR_TT', 'CAR_CO'};
% % easy/hard fake spec 2
% fakeSpec{1} = {'TRAIN_ASC', 'TRAIN_TT', 'TRAIN_TT x age', 'TRAIN_CO'};
% fakeSpec{2} = {'SM_ASC', 'SM_TT', 'SM_CO', 'SM_CO x ga'};
% fakeSpec{3} = {'CAR_TT', 'CAR_TT x age', 'CAR_CO'};
% % easy/hard fake spec 3
% fakeSpec{1} = {'TRAIN_ASC', 'TRAIN_TT', 'TRAIN_TT x age', 'TRAIN_CO', 'TRAIN_CO x ga', 'TRAIN_HE'};
% fakeSpec{2} = {'SM_ASC', 'SM_TT', 'SM_CO', 'SM_CO x ga', 'logt(SM_HE)'};
% fakeSpec{3} = {'CAR_TT', 'CAR_TT x age', 'CAR_CO'};
% % easy/hard fake spec 4
% fakeSpec{1} = {'TRAIN_ASC', 'TRAIN_ASC x ga', 'TRAIN_TT', 'TRAIN_CO'};
% fakeSpec{2} = {'SM_ASC', 'SM_ASC x ga', 'SM_TT', 'SM_CO'};
% fakeSpec{3} = {'CAR_TT', 'CAR_CO'};
% % easy/hard fake spec 5
% fakeSpec{1} = {'TRAIN_ASC', 'TRAIN_ASC x ga', 'TRAIN_TT', 'TRAIN_CO'};
% fakeSpec{2} = {'SM_ASC', 'SM_ASC x ga', 'SM_TT', 'SM_CO'};
% fakeSpec{3} = {'CAR_TT', 'CAR_CO', 'CAR_CO x purpose'};
% % easy fake spec 6
% fakeSpec{1} = {'TRAIN_ASC', 'logt(TRAIN_TT)', 'TRAIN_HE'};
% fakeSpec{2} = {'SM_ASC', 'logt(SM_TT)', 'SM_HE'};
% fakeSpec{3} = {'CAR_TT', 'CAR_CO'};
% % easy fake spec 7
% fakeSpec{1} = {'TRAIN_ASC', 'logt(TRAIN_TT)', 'logt(TRAIN_TT) x ga', 'TRAIN_CO'};
% fakeSpec{2} = {'SM_ASC', 'logt(SM_TT)'};
% fakeSpec{3} = {'CAR_TT', 'CAR_CO'};
% % easy fake spec 8
% fakeSpec{1} = {'TRAIN_ASC', 'logt(TRAIN_TT)', 'logt(TRAIN_TT) x age', 'TRAIN_CO', 'TRAIN_CO x ga'};
% fakeSpec{2} = {'SM_ASC', 'logt(SM_TT)'};
% fakeSpec{3} = {'CAR_TT', 'CAR_CO', 'CAR_CO x purpose'};
% % easy fake spec 9
% fakeSpec{1} = {'TRAIN_ASC', 'logt(TRAIN_TT)', 'TRAIN_CO'};
% fakeSpec{2} = {'SM_ASC', 'logt(SM_TT)', 'SM_CO', 'SM_CO x age'};
% fakeSpec{3} = {'logt(CAR_TT)', 'CAR_CO', 'CAR_CO x age'};
% % easy fake spec 10
% fakeSpec{1} = {'TRAIN_ASC', 'TRAIN_ASC x age', 'logt(TRAIN_TT)', 'TRAIN_CO'};
% fakeSpec{2} = {'SM_ASC', 'SM_ASC x age', 'logt(SM_TT)', 'SM_CO', 'SM_CO x ga'};
% fakeSpec{3} = {'logt(CAR_TT)', 'CAR_CO', 'CAR_CO x ga'};
% % hard fake spec 6
% fakeSpec{1} = {'TRAIN_ASC', 'TRAIN_CO', 'boxt(TRAIN_TT)', 'boxt(TRAIN_TT) x ga'};
% fakeSpec{2} = {'SM_ASC', 'SM_TT',};
% fakeSpec{3} = {'CAR_TT', 'CAR_CO'};
% % hard fake spec 7
% fakeSpec{1} = {'TRAIN_ASC', 'boxt(TRAIN_TT)', 'TRAIN_CO'};
% fakeSpec{2} = {'SM_ASC', 'boxt(SM_TT)', 'SM_CO'};
% fakeSpec{3} = {'boxt(CAR_TT)', 'CAR_CO'};
% % hard fake spec 8
% fakeSpec{1} = {'TRAIN_ASC', 'TRAIN_ASC x ga', 'TRAIN_TT', 'TRAIN_CO', 'TRAIN_CO x who'};
% fakeSpec{2} = {'SM_ASC', 'SM_ASC x ga', 'SM_TT', 'SM_CO', 'SM_CO x who'};
% fakeSpec{3} = {'CAR_TT', 'CAR_CO', 'CAR_CO x luggage'};
% % hard fake spec 9
% fakeSpec{1} = {'TRAIN_ASC', 'TRAIN_TT', 'TRAIN_CO', 'TRAIN_CO x ga'};
% fakeSpec{2} = {'SM_ASC', 'SM_TT', 'SM_TT x age', 'SM_CO', 'SM_CO x ga'};
% fakeSpec{3} = {'CAR_TT', 'CAR_CO', 'CAR_CO x income'};
% hard fake spec 10
fakeSpec{1} = {'TRAIN_ASC', 'logt(TRAIN_TT)', 'TRAIN_CO', 'TRAIN_CO x who'};
fakeSpec{2} = {'SM_ASC', 'SM_ASC x age', 'boxt(SM_TT)', 'SM_CO', 'SM_CO x ga', 'SM_HE'};
fakeSpec{3} = {'boxt(CAR_TT)', 'CAR_CO', 'CAR_CO x income'};
if generateFakeData
fprintf('\nTrue specification for generating artificial choices:\n');
for c=1:length(fakeSpec)
fprintf('%s: ', alternative_names{c});
for d=1:length(fakeSpec{c})
fprintf('%s, ', fakeSpec{c}{d});
end
fprintf('\n');
end
end
% generate dataset (i.e. all variable transformation and interactions)
fprintf('\nGenerating dataset with all possible variable transformation and interactions...\n');
N = size(Y_true,1);
nChoices = max(Y_true); % number of choices/classes
% create feature transformations
D = zeros(nChoices,1);
D_fake = zeros(nChoices,1);
groups = cell(nChoices,1);
X = cell(nChoices,1);
X_fake = cell(nChoices,1); % for generating fake choices
for c=1:nChoices
groups{c} = [];
X{c} = [];
X_fake{c} = [];
for d=1:length(specs{c})
varName = specs{c}{d};
%fprintf('choice %s: adding variable %s\n', alternative_names{c}, varName);
if contains(varName, ' x ')
[matches,~] = strsplit(varName,'\s* x \s*','DelimiterType','RegularExpression');
var = eval(matches{1});
inter_vars = cell(length(matches) - 1, 1);
for i=1:length(inter_vars)
inter_vars{i} = eval(matches{i+1});
end
res = [];
for n=1:N
if length(inter_vars) == 1
dim = max(inter_vars{1})-1; % last column is unnecessary
vec = zeros(1,dim);
sn = inter_vars{1}(n);
if sn <= dim
vec(sn) = var(n);
end
elseif length(inter_vars) == 2
dim = (max(inter_vars{1})-1)*(max(inter_vars{2})-1); % last column is unnecessary
vec = zeros(1,dim);
sn1 = inter_vars{1}(n);
if sn1 < max(inter_vars{1})
sn2 = inter_vars{2}(n);
if sn2 < max(inter_vars{2})
sn = (sn1-1)*(max(inter_vars{2})-1) + sn2;
vec(sn) = var(n);
end
end
else
error('Not implemented');
end
res = [res; vec];
end
D(c) = D(c) + dim;
groups{c} = [groups{c}, d*ones(1,dim)];
X{c} = [X{c}, res];
if sum(strcmp(fakeSpec{c}, varName)) > 0
fprintf('Adding %s to true specification (dim=%d)\n', varName, dim);
D_fake(c) = D_fake(c) + dim;
X_fake{c} = [X_fake{c}, res];
end
else
var = eval(varName);
dim = size(var,2);
D(c) = D(c) + dim;
groups{c} = [groups{c}, d*ones(1,dim)];
X{c} = [X{c}, var];
if sum(strcmp(fakeSpec{c}, varName)) > 0
fprintf('Adding %s to true specification (dim=%d)\n', varName, dim);
D_fake(c) = D_fake(c) + dim;
X_fake{c} = [X_fake{c}, var];
end
end
end
end
fprintf('Di*Kd=[%d,%d,%d]\n', D(1), D(2), D(3));
fprintf('Total variables to test: %d\n', sum(D));
% pre-compute some variables/statistics required for later
Di = zeros(nChoices,1);
Kd = cell(nChoices,1);
Dgroup = cell(nChoices,1);
for c=1:nChoices
Di(c) = max(groups{c});
Kd{c} = zeros(Di(c),1);
for k=1:Di(c)
Kd{c}(k) = sum(groups{c}==k);
end
Dgroup{c} = zeros(D(c),1);
for d=1:D(c)
Dgroup{c}(d) = Kd{c}(groups{c}(d));
end
end
fprintf('Di=[%d,%d,%d]\n', Di(1), Di(2), Di(3));
% standardize data
for c=1:nChoices
meanX = mean(X_fake{c},1);
stdX = std(X_fake{c},1);
meanX(stdX == 0) = 0; % for bias terms
stdX(stdX == 0) = 1;
X_fake{c} = (X_fake{c} - meanX) ./ stdX;
%X_fake{c}(:,1) = ones(1,N); % fix bias terms
meanX = mean(X{c},1);
stdX = std(X{c},1);
meanX(stdX == 0) = 0; % for bias terms
stdX(stdX == 0) = 1;
X{c} = (X{c} - meanX) ./ stdX;
%X{c}(:,1) = ones(1,N); % fix bias terms
end
% generate artificial choice data
fprintf('\nGenerating artificial choice data...\n');
if generateFakeData
fprintf('Fitting DCM to true choices using MLE...\n');
Y_onehot = full(ind2vec(Y_true', nChoices))';
for c=1:nChoices
theta{c} = zeros(D_fake(c),1);
end
% fit DCM with MLE
theta_optim = minimize(theta, @neglog_DCM, -10000, X_fake, Y_true, Y_onehot, availableChoices);
probs = DCM(theta_optim, X_fake, availableChoices);
% sample artificial choices
fprintf('Sampling artificial choices...\n');
Y_fake = zeros(N,1);
for n=1:N
[~,choice] = max(mnrnd(1, probs(n,:)));
Y_fake(n) = choice;
end
Y = Y_fake;
else
Y = Y_true;
end
% ----------------- trying to recover original fake specification
% run simple DCM model with all the possible variables/features on the
% entire dataset
fprintf('Fitting DCM to sampled artificial choices using MLE...\n');
Y_onehot = full(ind2vec(Y', nChoices))';
for c=1:nChoices
theta{c} = zeros(D(c),1);
end
% fit DCM with MLE
theta_optim_full = minimize(theta, @neglog_DCM, -20000, X, Y, Y_onehot, availableChoices);
[llik_full,~] = neglog_DCM(theta_optim_full, X, Y, Y_onehot, availableChoices);
% output results
varNames = cell(nChoices,1);
for c=1:nChoices
varNames{c} = cell(D(c),1);
ix = 1;
for d=1:Di(c)
for k=1:Kd{c}(d)
varNames{c}{ix} = sprintf('%s_%d',specs{c}{d},k);
ix = ix + 1;
end
end
end
fileID = fopen([outdir dataName '_topk.txt'],'w');
for c=1:nChoices
% sort features by their absolute beta value
[~, ix] = sort(theta_optim_full{c}, 'descend');
sorted_names = varNames{c}(ix);
sorted_theta = theta_optim_full{c}(ix);
fprintf('\nTop 20 features for alternative %s:\n', alternative_names{c});
fprintf(fileID, '\nTop 20 features for alternative %s:\n', alternative_names{c});
fprintf('Feature\t\tTheta\n');
fprintf(fileID, 'Feature\t\tTheta\n');
for i=1:20
fprintf('%s\t%.3f\t%.3f\n', sorted_names{i}, sorted_theta(i));
fprintf('\n')
fprintf(fileID, '%s\t%.3f\t%.3f\n', sorted_names{i}, sorted_theta(i));
fprintf(fileID, '\n');
end
end
fclose(fileID);
% ----------------- measuring performance of full DCM with all
% ----------------- variables/features on the testset
% train/test split
Ntr = floor(0.7*N);
Xtr = cell(3,1);
Xts = cell(3,1);
for c=1:nChoices
Xtr{c} = X{c}(1:Ntr,:);
Xts{c} = X{c}((Ntr+1):end,:);
end
Ytr = Y(1:Ntr,:);
Ytr_onehot = full(ind2vec(Ytr', nChoices))';
Yts = Y((Ntr+1):end,:);
availableChoicesTr = availableChoices(1:Ntr,:);
availableChoicesTs = availableChoices((Ntr+1):end,:);
Ntr = size(Xtr{1},1);
Nts = size(Xts{1},1);
% run simple DCM model with all the possible variables/features
fprintf('Fitting DCM to sampled artificial choices using MLE...\n');
Y_onehot = full(ind2vec(Ytr', nChoices))';
Y_onehot_test = full(ind2vec(Yts', nChoices))';
for c=1:nChoices
theta{c} = zeros(D(c),1);
end
% fit DCM with MLE
theta_optim_train = minimize(theta, @neglog_DCM, -20000, Xtr, Ytr, Y_onehot, availableChoicesTr);
[llik_train,~] = neglog_DCM(theta_optim_train, Xtr, Ytr, Y_onehot, availableChoicesTr);
[llik_test,~] = neglog_DCM(theta_optim_train, Xts, Yts, Y_onehot_test, availableChoicesTs);
% evaluate trainset accuracy
S = DCM(theta_optim_train, Xtr, availableChoicesTr);
[~,preds_tr] = max(S,[],2);
train_acc = sum(preds_tr == Ytr) / length(Ytr);
fprintf('Train accuracy: %.3f\n', train_acc);
% evaluate testset accuracy
S = DCM(theta_optim_train, Xts, availableChoicesTs);
[~,preds_ts] = max(S,[],2);
test_acc = sum(preds_ts == Yts) / length(Yts);
fprintf('Test accuracy: %.3f\n', test_acc);
fileID = fopen([outdir dataName '_accuracy.txt'],'w');
fprintf(fileID, 'Log-likelihood full dataset: %.3f\n', -llik_full);
fprintf(fileID, 'Log-likelihood train: %.3f\n', -llik_train);
fprintf(fileID, 'Log-likelihood test: %.3f\n', -llik_test);
fprintf(fileID, 'Train accuracy: %.3f\n', train_acc);
fprintf(fileID, 'Test accuracy: %.3f\n', test_acc);
fclose(fileID);
function ret = logt(vec)
ret = log(vec+1);
end
function ret = boxt(vec)
ret = boxcox(vec+1);
end
function ret = segt(vec,k)
I = eye(k);
ret = I(kmeans(vec, k),:);
ret = ret(:,1:(k-1)); % don't add last column - it should be captured by the bias term
end