-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3.interpolation.R
77 lines (61 loc) · 2.12 KB
/
3.interpolation.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# ******* #
# before doing the value interpolation, we re-arrange the rep orders data frames (from wide to long)
# then we merge then
ro1987_imputation <- ro1987 %>%
gather(year, value, `1991`:`1996`) %>%
mutate(year = as.integer(year)) %>%
mutate(ro = "ro1987")
head(ro1987_imputation)
ro1996_imputation <- ro1996 %>%
gather(year, value, `1996`:`2001`) %>%
mutate(year = as.integer(year)) %>%
mutate(ro = "ro1996")
ro2003_imputation <- ro2003 %>%
gather(year, value, `2001`:`2006`) %>%
mutate(year = as.integer(year)) %>%
mutate(ro = "ro2003")
ro2003_2_imputation <- ro2003_2 %>%
gather(year, value, `2006`:`2011`) %>%
mutate(year = as.integer(year)) %>%
mutate(ro = "ro2003_2")
ro2013_imputation <- ro2013 %>%
gather(year, value, `2011`:`2016`) %>%
mutate(year = as.integer(year)) %>%
mutate(ro = "ro2013")
imputation_d <- rbind(ro1987_imputation, ro1996_imputation, ro2003_imputation, ro2003_2_imputation, ro2013_imputation) # creating one big dataframe
head(imputation_d)
tail(imputation_d)
# interpolation function
# expand_data <- function(x) {
# years <- min(imputation_d$year):max(imputation_d$year)
# btw_years <- 1
# grid <- expand.grid(btw_year = btw_years, year = years)
# x$btw_year <- 1
# merged <- grid %>% left_join(x, by = c('year', 'btw_year'))
# merged$dist_name <- x$dist_name[1]
# merged$dist_nb <- x$dist_nb[1]
# merged$age <- x$age[1]
# merged$ro <- x$ro[1]
# return(merged)
# }
#
# interpolate_data <- function(data) {
# xout <- 1:nrow(data)
# y <- data$value
# interpolation <- approx(x = xout[!is.na(y)], y = y[!is.na(y)], xout = xout)
# data$yhat <- interpolation$y
# return(data)
# }
#
# expand_and_interpolate <- function(x) interpolate_data(expand_data(x))
#
# imputation_data <- imputation_d %>% group_by(dist_name, dist_nb, age, ro) %>% do(expand_and_interpolate(.))
print(as.data.frame(imputation_data))
# yhat indicates the predicted values
imputation_data2 <- imputation_data %>%
mutate(value = yhat) %>%
select(-yhat, -btw_year) %>%
drop_na() %>%
ungroup()
head(imputation_data2)
table(imputation_data2$ro, imputation_data2$year)