From d2f327f737795f42291bfa0a394f1728b26a1191 Mon Sep 17 00:00:00 2001 From: Fangcheng Wu Date: Fri, 26 Apr 2024 11:02:43 +0200 Subject: [PATCH 01/44] equations doc dfmcscf added --- docs/equations/equations.pdf | Bin 317363 -> 347119 bytes docs/equations/equations.tex | 173 +++++++++++++++++++++++++++++++++- docs/equations/references.bib | 45 +++++++++ src/dfmcscf.jl | 13 +-- 4 files changed, 224 insertions(+), 7 deletions(-) diff --git a/docs/equations/equations.pdf b/docs/equations/equations.pdf index 787c87e9ed4f36dc146127ce2e8e89384c5c9965..f2e33b86583bb8caeb103940d2fbf1b841cbab78 100644 GIT binary patch delta 231115 zcmZttQ*@wR)3pu9wr$&H$LXYF+g8UsW7~GpNji2qwr$(Clkd8pf8*bI_vWavMy{eAoq&oC&dyDeM0!O7gedYW^s}IB-P7AQ zmJDT2$5D~TVZll=u;wFS$;{_-gf<>No1CNkFgC39`MUBRg#jno(0G~lMX&f&?XH{Tq`k<56AS%PY?GA7yBltC;GLH6F9|>zDIqv+NcB zk4Vg5)2O}aY5O0KkS)}DPH<-Srp_+E&5Z2+ryPu};aD*_IY?MY{wD@8d@ zNm$cJR>A0jL#?0gMO-+W#~QU5@HjFjpyR;{rw=Zfxpfwtr-6opy9iKeQtJ=P&)~4e z_yTq4e`Gf0K{8I9T(1{XdY1b7mKJfjmZMfz!(jhlnN>ef)|tDf4pcJ-Q=0C0{m^b` zd&CU!H1~#3lQociZ&_8afUxdSud98SJf_#fB(?7WcHz{F#!>qQ)6cZSFCjGZP^q5PbnvpZOMY6 z5v#s*jE-|R5_NpwGq|pYgfR-n9ciB>Mw zvWsR9U`TLdlwkGT{ch)sgCR?JCZKehm#r!OnUW%7rV>FU(xIAa8S{8N<+8^PNiBMY!f?+Z2aj=acfm1e@e3`#6N0K)K`G(8ij8^- z-b_TRs^{Er2cR5R3UG|;>K!qNS|g}4QCyz~7QR^NDt^#f7(*j)(nCqqAp%{9*a$6yE|gdg#ii068!1ER{4r%Y?l2z_k$o1hW#A*LmU2L0Y#-s zjfFpsc)y_7hgQFtwe2QmokX4xMvfniVfjG0=kBa8WK+!05E~c^sM|booLRpO1u}XY zz-uJ#KFWCpScG>shy_B(JcKUfpcR{eTv-~ZX{Iq*sf2Um>PSJQl0JUH%9|s}l7I-j z^wQeh6F2g(or9llvLltKBkUu=ul1liT%&x>^P0SZa`o#Yy$VfRjpco?!uHxm?}fed z+f_#iO;(O5{iwZR<`hsScb${+;LEtQ2!GP}c21mnCJ#+!f2UBX32MYSh>WiTZJ}uK zq+zA&UJfiz4?0;nBny};*IUZn%Zv~~j64OP!{PCQ>?vYdVTSZ-w?b+mR{9lfDqDXS z#Q&Q25Ko}&-X2>jiLV-)cEZ*A{Ask85kV^Eymp>tk}KUsNqTBq6iLbmK&+r~-JQZk z2zO6rWfMQ?HMuYzt#P9ts9>@Oir~14M~UqMu#DAuq?2)n_3SU0h(gSEJV5~i0Yhj! z;p?KIrncbfeinQhG90D0Cz4uE|?AQAxL>3HQox z`S(F?j-84nELJO>vfN0$+d&wS2*f&Q9AXf4h-?Y=UWb${vOaLQk-ky^BP$5<$T+75 z8kflQ&(-YY13sz=wUS7)M2YiZYA1bg7b>FxE4@DcpeErSA{X1`v`X{2B?Zr7`}dCO zJ1T`irA(odH|$G|%CC;&pX|g9Rmt~7bv9?;hD zGH(DGg+nb%kEf?EMMtVVCQT=%TwXZt`e5_1N!4z1=T#?{5`Mb(Jl@@ZM#(Kczo7I{ zrCZEle+Fl1*&$S!SxA>KQ~xKDg^s5_%ry~>vPnk@R*!+!jO+mdyBJg= zlclbgx>lPT$9V@65mw-^^iEgB%fE_E!!&OEmeVz61~>QhjjNh{DuegY`t2FI(zyuZ zWb~;Ll?y?Zmuj*WQSxvgn8nI4g0gd5y=-GR1jWfMDQPf~9o?W%-->L18*S_-3spzi zOR2S#CG*FI>XmO2X%aLBuRD8&Hv~fDxsV-P`{j^QRsGzgftL03Uaiz6BYSs_h4%5X zXHFWuO{C>1CZ1N$T3S(X87$JBx8qd7Bj}VS@@|i}vQ@Bx$uq+x?={ zp+%_ZM@mJyXPlk&Qc#u^^vv9)@u)WIPra$5uEW+7N-$766tYT>@Ho9C^t+6HF_D7S z?w;No`YC~~t6l-O=Hq?6SFDfRkdrA~PHX%G(H4PZu2C8Ame7E{c8Ygoc)>g)#$v@3 z?@d0|^+>P}Fu54~2p3pOYe7#CtN&eyi#TGvK9LE+SFo&iump;jM*Nv)N034{~nyVQ>6J&5;xwRbU*-e;|^P!!44H zZ{TuK`5Xjz(~``qx23H?qE9^aLNMR|W6&ZC_xIwf-^fY(>e7%H;$*ueej=4nmMA`* zFb>df5>eQHmS}UhD|B&q@3&tzC+N`rn5(-_9shfkMGx61W^-1H4effhnZbG4vW0gO zNaW7ppM0XLFk}n?ayf2)X*?1oj8rgZvbj5Tec%MtZbJ$274?HO{XT&KS)o@oNiPso zHo8Q;0WZpw-Z~`PF~MVFMd01nI}36l)kpY;#b-EZp{Z1Mn`;edBs0#r^TxUss8z*L zQ{{~zR>R2uo9KqWL@2LVP=qd1fjTg~YvmFR4YZ_uYjqBf?{mimF&*Mrl0>NcC~c11 z!=MA!FpF}Vpj<6299aU+6WNxFt+r(G89gi12h~8U1cB z=#&S_2HbiSVH#t3WK{OUYmeEP_>0WI>cHY*QWjtSdAJiNqD9&b+*AdT4Dq@sdJ-b2 z(M-v@8T;a@-au$SRZBFA9)0Z9k9o4lgc}2W?KAKidM4}D|7avSiieJA?anz6d_oKw zd4GoS{v>{+^J@~sILRHan9@luq^li=!79~3XoKXdtz?Ljue*FhlI~2^T2g)Ng3Oe8 zz7uPvZN5!@@Iwz=H0NX^NkdznU=L9C{!5wK3f!U zbme{CO1crX1@x7%`;)^)ROCJ@!wpp`RWgONKx8cQH&HMlwV}_%DyHY5@pb zM>xzrpHp_X2jJ-h1muEHDak@sE&(@k;lckJ*YrN#ywR$5$hot=qeXqh3ITbLD$sSKp$%mtU;fR;iaX&m zUBBA*8y|8mZhW-VADPyf{(2!Ex(hdigDT+@naAz*&?a)TrW6?`inSr|PNf!&ZS8B3 zlnr&85npe6s z!>UjXq`Bh7q@Z>%pE_)`;95>>pD*`YNPL!>yNTeKwLST2o=AUX9|5Rz`%2Pv38Ouu ztC8%3TC`_keuVwB^cKoRM5?Hra&yU=@tdOB|D+nWNqlmTdN#_Syqubn;K`-r{!B4O z!Mtt$42BbQ(l;o`d&(zO%{>wIoCxZqGdTH?AAi&eUmzSL%j&Z0YAI}yvFuhr#p5w0 zu|1D1{#LFslK@ZVhz^)MT)g5mBJ>sR{>f@-)}VUFRS#-!ZxheZCt!nWBc*=s5pMS` zCKN(K{7Rnx*5>GH^2ARTFNh&jpi&)Y-!Nhq3quifXFCnrx4!a9L#)dU#gTz|odWqr zfIuO-faLP2{|xDDwF`pYXj~Y;aTQ0(2Tv=Z-lm!yBUMP;rvu>I46P8d^*{<}F+`~h z`XTr2(`Zi=Nq?0G%z;>Oow}*aySK+{u0^-&mA&_iYv6EOiQn>N3STNq%zb@zHVxVg zhvwc#e3_W+rxUP0p%`+k1eGdogib2)S;oc_MTd5?;~zqP&FFtm>+gl`itK=5c_@X; zT)BU+IB)f>yaI60(+S{H`qZ#}`F1Ciyt`YkAy^rpRAb5~P7gR4Q`m@K7U^UwxOGbR z4;9jm+L|oR)vYhaqP5+G(sy^QGj_}k1K(PNu(1(5x+vCQBLiY15Q0U>M-HD3C-2M< zG()h9=>BhRL;A)(udkT-T^RX9t~Dn9Z;UdD8JYvz_WB06MGzb$w$V!WpiWgA|bMxA?$IUIr6jy;f-{VwqONZa_k zWLpV0J0_hsEDfNhx1DIBZ>W`lpuv#tF*0PbAu?pfteS)2GB?uJxzVWf^?%`hdhwKq z;3g;ESz|OR;@Lw)CF~N0^+fnv;`B%i^cp6>2m}rrmaZ@|6wnwl?f_arGKTq;@Z^<| zCr%=iB!su{K9~PA!57A3VfA~&2HkR(cV?h-3vRFx8U_p~+OVmh@Ms~_er__tsNu+= zi<5%XGhn&w1kDhI!gZY+uC{|@fbD28l$cT1&88Bn%`glku;GD$iPZ%o87ZR7dbnXZ zaVa@-#BtxS3)Na;F^aYxE^$fP?4Sn z4;%6};+U8!#j`UY$YsN4AEoca;C6bDQaQ7})(O=N9>@vk=mX4LcGhr@x*s?FC#&Zb zc4v$BtEsM!ANc!rXI(T4y&uD>CFXTk4GZ4m24`-!EGGd0Usc1H%7hqz)C#-R ztw;s4_0+`_O;vi<&gx~W_gD4Gx%#fv1(uUX31X~V&PRiCJmzz%h(YuD1%t6H^yEpu zBZa6^J7v7-GvM%eA3npoa(IHTYQV(8B9l0`lWy2`UVmA`wMi53@B`cFN%?AfvF(1z z+Wg0u=K5IPvBsIx64jLc=kd>NW9aUG&6eKWOuHslr6|b6A#1#T@Z(vk>5Grj``(-{ zZ|d#hceue-wY^A4e@gTE@7bsvy~)%)v+nfu&BL5>Xu!bStif(@-8?1p8e$}OGQm%J z7zm2@&0XS7GlNWfR@@iFIDYYIk(u;((-xQ;6hm4;5Xi}M<+0d|%9{LV>;8Aa_dzsK z?t9Z!L{MjjXpcj0dA$+Op=RET5yxXL;H#sDsJhxKq&`eh(4RGLYY>GyyEH!|v&sXb zouJRX9I$eqq`df+F0=zlXx>xV3_tv&eDC=!)VY~2KtR1p|MxRf>t0?fCaV!LhmzXm z6U3Gn|DA?wo0!d=%(VRs=`>8tZKMIg^~)lLE*jZ>%sPOtzS3PphxCOXBlYOT2UvNq zo22d3tz2%|tMFdB+3UVLJJ$R6<;6wle%%GB130W(yF0_SvReBr-KcrCG1)*^Is3j( zCd1py7ke;MmBkXTeho&=9(=eZ4IFIl(Zx{FMCzipY-rUTTHXoSo$EEoeI%>{4^&lS zgMZ(mTH`ljBoEr8+9fJrZueoN5wX=uw7vTe9@pr^uoT#ku-^JYs$b$t4h z{tL>7hv4MlDy;tuK#v_Auc!#{m~HZti{S76Jh?l$$GO9KE=urJ^<41e@SO0V+Ruo# zV9Oo-Pbdu)MN8qvu@RXGjCmyA((D8Oi&(JdZtibJSsp)IvTf@%Z@%Y^pWR#DRU8#= zOZ@W7{^0Nw%+N2pLLByjP2f?QIiS_U8P3V09dQYZ?c)Xin^xF;h#xF|11SoH?~BUG zU0EHE%3w;<2!~wXy8RPrjGP3{hrp?#Hqr$DJbQsQ|Gn5FaCoN> z1vOO)hewLcVAJDb{p(DkAAs&Z>64n|MuE&l6_;Mv@iq}vD2RZY$>+bo{!pcei6Ptn z?@nx_1ITNH0?dJMpM432ssAF^m_exJ<%qw*<9yIfb{A;1peB$YyJI-}JOq@3F!7Ml zF$Fz#(@Enn=EA0u`|CyBPOgj-w{2?0&@KB-R!*o5gF5$agUP#r8XG9rm}EZ$e0CRB z))5Vz1gO<%lME2N6X;o!CoerpNKlP0vQ7AZpU?bMz3=uBHw(Dcg|p+x^GOdKj}BMB*>dh z8*P=fN8ZfzFBXL7P#t;U+gl1R-}nE9LWd2OH<~V^dQf#_@Qrs5_iaa^DWa}h7JUr- z=ksShh#(dnqV1tAD49~j<#~2Q)HF``A&0RsW8D-2A%)&QILWX zk+;9iba%7R(m>#!;;~NKawME+Bj{@d3&oNW3qWd^*AgD&AI)Q8gsPfR6#?5#f^v%-9(J~xGi=Y{8C51nS z6ji2a$t7b`fGt?P7%sdT+w%Eboc;EPy?(Fna&PhUJ!WFkkXLibyQC9pr^lMalb#^j z$(_K zBq`irnV=CRpYkjzc5gh-+udh|Tv!9=?t5$ua^frR`wSlP0lL89kUQ>zAYjn#YX6zb zMn`of$wYFgoBC=$gX1JB$=xx^t*3GHi0rB122CKvA`xA8n>VE-VB zk0Y;G9I2#pz&6{I+K(V*cxk-}C%Nz^5ow=XuW^%I31zw%uzX&3_y=u#G;u|s;=W7>X33i7KFQGY=>k2{2^5e$$^s~|JA?&|%oy?g z;JieY;|mZ86jZp$L?g^Ea zIsR7d;l|yLQ*?V#exU(enRR(G{hcEz?Cj*E?A2r9e(V#`!ghyj{Q3J15`v=k1*uPY zgq1-|KDw$I_Lfc(JwBZ@fwtA~<|cb5B`FP82o}M+RBdV${LgjK4XBe$fvPAuWthvG z1qZQ+@yPyyfk(?FbPIgUg^HRTc~1gqH7?2z;>k`6uKQF)_q1qP8=Z3dkL zQEwppj0`T$ya3k27h~b(lmh}0@|MtahP;$Q>S!-GQNVmoFtk8MDtoP^bJ)=)JO^i! zRUF?UBf!ndu;!bMvZ>}kExJTJy&+A74X^rLwmv-(yT*Zuh*?gMt&>a*j*mRoQN)K* zqF&RW<2yWw-vbu-^qmjvAfGolo3`FQ>uxbD53N7I8!7A z6c^%}P~9MZrC4-fC?bSncTsL2!hc7yNq&d1ZjiyTcV-5SH9J-2hMt1nol$IC7g}er9cLa*YS1 z;Ew`SR#3Zvt~}H(4MEID3bSq!9L^vNtQlhyW&*mcru$!j@+;0mCOFSYWy=w-jQ&_AHA-SF zt_!^=5L?@|6d^0@DVw2;+z&nMg2^@N#~o2s^BIZbIq2fnfBWhwUdo?OwiFkylhGu; zj_Pak;!R@Nrf|}X2O%J(Gp&m#y1gPvAPgJi!kQ!2&QbJ%yUKIN5C%mesd^}SUoy9< z6J)_ti1M>fGQz?KjCRaH{IE9;!mX`rrkKvA`;}IUC)0zj>_0{h{totz^sa`hVCW8u z^zVG^zokh7ibztd6MaPaM=Gm`m!hlf+aZGZE{x%Py<1C$~$_ z#-a0-eVe+DB9T-#A1(1XGt7%QVP7Zd1K5n%2{Xf`=Hz{HD zKXl^Z{vSHg0FydDo$uUGF5-=3d$myH;@3OpI9lJ}#F!qo;{fY;%sO55-E8|0l8x$g_rz!#Z>IY`71mMM z_+&YMnGumU9TvzE^lp$E3#jJI+NINLvK(3jr%*PE`2iRm={<4X=i^jdvC4g;3sMW4 zRK;<4r0xBzZE+|gdnK3D$%f&GL|Sid0QU)@faH?Mo05FvgdlFLL_pS}UBE9t8S2Mm zd+;u*Fhu3G%y*KJ)GLg3U>0mY*lN~=OCU`Jygf`yyli@sDWBFS!>Psg8DP~N=sakab7$;N21nN(j*fdyh}}1HhCwka|8s`1NAWB%B(nv z5SHPldd4a`%4QxkP7=#qb=#C15)8$b_;c?N0d>hW?cKTuD%$+=w;1UJC09JGk=D=P z98BGfKs^_>F|6C zi|^Xtlc$9hbmf4mvBLfjR<^)^AD#u0rE0l9*=d>4tbG*Q6Z$(83umEm>-tIqs`yh# zmSPjf4&0bB;IfB$O-aZ#+%OD|UKf~qQ8#JJzbSmnmEMg1WCf4}-YPXgL3E%FhTac` z5}GvsCg{HFfuirrPYnSZ0_Ie>cvOyh!YOq#{W9h?pwY>k9()RS6gNctpe@9Z_%iwq z*&tQr*kq&Ztj+b1ZXNJ>tM6Rn*Of&2o3~VFuAOAW@WYU2j)woZ-q&q;Oh9y#THND< z$@6?$Bc_7W;L4vh~P|2?J<?U6JVk;&8)hii3A;3cCI6!ImHK{kq^i-&UUw^Zf+h0%5w$=HgvRnGV5&;{midOT?&^-N`B8{Xd( zd8atFFXqp!9yM}H1^gE9U*wU%NHWRC0}T7PxfR&m)g6v0ez`y`W z{wte;D1UHHnBxv6>MsfGAh?9TqlXKlG7Vo%+9|!c!Bz<}y@1<@X{bh7XKSdsQ0S)( z@{wcYilPPAl=jS!o8vD6q>uU0`J&-aLyEG5Uzygo9C6GJYgU37?=Eowcxz~NkT6MV zXfpruz^vDz_x80ehz)y>GW;Q!JIbF%PEn#!uRH0~6zDL)RJe!7&;I&%^rli_)qcwj zhTCT2``>mL>j@0FO7wr0Fml20oM@QI00G?#wYwM!8ArIBB63(3YUovOdqIg zW`VQ%cZNsFuc#cTB)bj?oojZ$v%;R>Ew7{)W?S=o{Vr{>JlxcfN0d1@q`sUg>^Kv8wxv zkzwT_ajg4u70VnuelhRUEm2N(jo#bk$^$!W9jLdfk-NDLE|P}tjF7H!XV){txNIn4q#j~wm2*Eh&~IM{M{L5PQI>5nN`H2lgg z5@66zH}7MU(WX~A;D`|rX_4a4j86EVK6~d9-15~uzBCk2Wh*rhKokrR&Cc*nY94Pq zPx?x)dN800E)rJ#1$7WgXy`iPY-QzR7v?*7AFiI}B9^rGHd&p7fcHd$_|&H$c8lOwa@d~`YR6U`4_f%lkGlIM z3f3LJgw~M>Lq=V6KQdy+O9+=Ok(AN7XQXXBf?{G=ey{X_Cs57h(&`)O(0+UlU-^Py ztiKT8_J=qGGwJIad=Ma$YxZ&`L)Xd>{B$f+JATH#2J#2N{2(CFt!!^cleQd?0iCqL z_9!64yRwt0EN5I~BI&fv&P(K=hZ;AxSGxc0xaV}qWh!7bJ$0VoD%i91@B*{LJLe{1 zR#<#6fvP{Z3HS0^FS<-KKuTPcKe+~aj#-**2_`RYjsI)G@=LXEd+Rpq4ENEq7R^}` z>JgG}sMw^n=6fMs?bo8}w^xx0Q2n=D82%qGePMDbzV(pDTy3B7Cw%#o#;|O778y^X zKpJ@r7jkM6S4p-Qr@7H{5PdHn+a?f;%;rr5QQcFdA=P+jekHJO&QhN z&x99b=)S?IyO;PtX(nW{HW)JA&D**ZE{rFjP zsk+(zn#;E}35_@H=1~QwL=IXc$9&X(y&ma@&Es+^hOGOqWn5rEoNF?*F zJW1Tnh0b>`Z0|KYcwyU^=~=(odKNNtyi4CXsNrt)`Mi2MQgDEfPnuz%22PXli(&7{ zzfv!wK7VI)W#9{~_ldCSOzckAxYg&5mr_9F@M23rLCxLkr6fZionH_^YsIPi zEia8YuYqja9_h=ZnVH&W0stC{Qt{uFCa;cEr-jn+#+${1Sq3=dl?zds<)0LhR3m;! z8aem`x5@Fa$-RjZv#3pN(Tb{$Qm9GeD}PgoMac|={3`p@{l{FJD4KlxB+K88;9-#d z#YSgp7K7kWb0@Fp6v>magUWs2t7v8?u4xus9HF8`Ql&3`_{Emk3}^(9CBpY;5#37&zlT>XSe1UVr zFJV6$4)k50!=b24ii=>=`oKVuA%SctQ6(uYBYtAyAru4q8(cxf?VrqJ3LOFyl)SKeKR%PmQ{x(x?JD8tZz6+kP)>1(qiYZFqjQIVptqSR=o1ut+Ix~gmY z`VcoX&u(+RYr5Nh?fcuvP=gf_oEHkD^iA_#8IDldee&Ye18H0=NE)!*PzJnPZ~sm6 z5DVAAiF#7Q!DtR4${C3~WbseRG{`HBAp)`hhFA&N0H%#PEk|)v?o4K^1tE6uFPqg- zKdA!i24Yjf$zeT8LovK|=(B`0NmN32{BX>W+o^9dh9{yhek)e^e;pAin|@O-(@2 zwj>D>?bg98fGah;CXMmoZ-U=UA&f&XIM8sQW+^LR;I+Zn%Au5;;Wpu1Ncz2pF5A_h zOZFh^o&+sl0?RH>aCC_?4Pb^Qmft9fx(as6_|?&;xyw36=gEIU6@nS1lHK>Xwl!s< z4)=w0zzIqS{2jTd8)5(en%S$lk@&{8#ek_g>=XPD-{_}yLcYe>alXGL#(kWTUg$S~dlbhNOjavIg%$7?6ff*XA!GgX zuPsCxutXpug$iOGNE4%=0FfDDn=c7qg=8byEyIcKg=PuG?ZNTAF=ZVxRXfHZ7`njP zOK$wjhp6gGl|WJA{$0l?8(6Ao7IJLfJnj9x=mw-=SGzTr5pb?EH*hA;YJ4TpC;J5+ z`n}d}LKlFnfO3!u9%n-r$JNhkt~`;!IwFB2ovI@t#UiE?)8%B&9+cm*1#YNu+P1Dtcray1pGUMc!1`Y{@>nGe>9 zvLoOScNhV7swETKl!p45o@%>T!MS4{p^kqA(@B?0bj=tJ$M$iSV^NLcm#??HZ^E~N z@&;P(>H?u|nSDe}2sMZc1SzeEQEp<>csaxX6!)_-dshl@cG?#5N8&Mhi~Air{1OOq zb0@qG>uRb?ijEu?@$0he=Gjj2h=Sb(GY(x0v+5}le&&J+GhJ_&AC_O+%10Z`{C9ka zbP**JgV?1LkN=%0@_>}eh)Pljxj$9eB^}GouyH!_@n`3DI@YPLdR*?k$_(%>pdbdE zj~E6roGC16e{bTuzd>{2pP)uFi^)gzKx;!3@-YS)^e0Sz*-OX>wG(|+kKD;GUM4dJ z>ZI91qYJz_L{`YxClQVL$^IM}z|`98rUKhk_504Q`nk7LU=B8P6=}JxRz5^$ zcKmLY(q3w_s3grL*J-nhl)~m&etizK*dMiAk6Yb|)$-b`{SjYvTRt<5AF>rdi3xIe zIm1?Bg6^W$Lp@!zxq4c}hy)v{&}&jpkE2FG^z2p%(T6??ieL#=q`w7vqSg6RK@UPd zV#Lx@Mdk>8-m#vcB4M2tC+T;7oEQ+PYQbmoM#mWdPx;*$qMSygKHgMSWBzeQDNy@pvHoONx0$jnm~5ch z&{aoy``%LX{rF7$iQTF4`#oimVVhxT`k4q1XH}qk1ZmvsEK$))r7G-$*1+QZ?8>rk znhV;WUx6g6W*u(9pLEbIsb2xHJ%bnwTf)28g1fKH(PFPT5`Uf_{}{*-Cp9}3xacl$ ziO{P|A$?(8=rpF-K@FFT8Kzc#6lf2~?k}HoN=g&eX1ne~Q-V2yiHKE$XDN#j$4+>g z|A8JwS8XWi9k~c2_#>d=6u)%C*>ke2#upAPwZf4fBk2}pUIUKRGu7_RF;UtpQ%pm& zDgEyjcE#a9r!K7}Yy@CW%Q>--ppHx#=!LpL>kAH6chqA}?3O0jZN2|q5FyPtN4kI= zBqF)m&hQumM-#|_(8$?b_UlIq)6cnX@Iv0Q0w#CDuuQG(ok;a+8%h!2V*+s-Q{uM} zrL6Nn2Xc^WwJEiQs^;fQwx)j-WA7dmU$EnS+Im(Tw;Lo*wm)#*`;W|NxlN>DaDH;S zd*^`2FSz2wzRUNwSf1?=cC(2A^|iy->333byS^ZH=!Is^o5@oFc0 zm~2I!xhC0cqzR};xNK`MID|~mO9XwG*^P3=*!q=gC#sc_N?rnnrg?4d-40s|p)Id9 zyK@_H;M!tbP?f=m)tf_`0CAgRGvVQ#sJsHAC||&u{}9a{Z~p=@kV@d!RS_74_S$(?X9n^ z;{qib`blh*lWF?)0kYAHet8>N-k-H~mv6`v44-&m}a zYDqWYm%y9N$NXQD*meY74QV{hsk+3}1CX%CB!&s|XcEfcKW$lcLFAuUxkrR``oO?TEjsJ)Osw&uIrQ578w$FFMqe9T!N70q|(nYsGGK-0pn zi2nH&V!)GF9U*G*(A6_V!^{M>%Um5iUWlB)iAdbO!bjhLq2k>5ZEli25QiF8EL~aQ z4p!y#lH7Dz2v-6PA=gzJSukhde?({uj3N|9QxmY33eGO~M7xLckdY{{JPHShxWceS zr&BRX9Ewl!B<`Hbky^LrwZa0Iq(O=UF~4Yh;t4H~K4WyQga;a%)hX_y$q5ndu777e_Tk3r~c2qY6`zTJhNIH^cT2YiNsxHd%Y zzmIzzqvM{eP2?#@t~T)B498p`T`PHo73w?l$C1(lSfA?PSM1xZ|) zdsLafrF3v3;hDwoX?X-wLf#d7ZW-K%##@r9$O0+)sVM4vj7NSiuM zwq5#pOn99l(%jZi0k!xF3>UjHz0j;BiuC=JP%SUyX^aj!qRb4gRPIzD?=#HG{XVr*0)#X;Ixbo_;V zCoxTui$xR{gHRH1u?Hnml)=6|J+N*pOo~zye+g*eZYc_K93y{VGKm~K60xKu#pc=N z9A5@R;E_9ISp)-?W;hPA`t+JlcXUgi2vN|OTow_fW&h~i2bEjS2FodDCaQNtL%cdao8EvH55l32oNTd=+fSyGTyeRMBPh6CmaPIH8doQiN& z(+w>}_*D4+csH3WlpSMn8V{GvewLj^NT7m0vcW-doe}v1YBe({V?^}v_Bt@z%pE(| zM;T$upV?x*Q@zm+O@E_TIk8d**se+F+W&%a^{k`O4!S>rQ zJ{RV>giU@89r5d~a;NMM?oONHhwy{ z3L-h>cVlZ#o(L70^s&1{DTm!6g16L=>AX0*p~UmDlGYTX zK5e8-o)M97m|`#W?^f*7b>B8Dd#a=WQr>J(bBH=6VaT&nAzX#)e?kf6nyRd=Ol#CS zw>Co&$rjrK{zjflv?haYC@3k6K6!EoyfAatuoFe0)Au&>m-oDH%y7`gv!*~p0j=i`%p4fW z534-re-|QiVeSu0E)TNWsZ&cWoW7)S@FOlh;7w%Ekg);k_yjEu%vzN;OKO zBN)Qb_?2=c84LY2*&AVotf@JUP)h??(51E+qW;}H<2sTtt_9P|DK|8HPSvM(Ecq#q zXC|1jdLRx3eLHT0%u(mo?LdUQn`YlCm+QGeVj=iidKklS+A-b%lKkF&eotQ$o=CJ5 zhPValls}{cXY(eOEgZJy4!|6YGf01A9Sjlcy)!s6sE?jE03mnWSjJLO&c=LByMLF^ zg>Y^-K!Er@%~su1rKMpOzPP`s@&fd{e1iA{|E=0!Ripj5=01xom}{rUtloQt8;ic% z%Fy#~-EQ!R2oO{S9;8eqCDNcxaM`Kit3}3J{rc@Z`UZ;PR~0lEXPgKwiW>`>N=qiu zkLzO^^K??ZcGwY+;6^miX1&1M$yOc|t_vUMP#mdxT>khFz=#!wwz9<`HTp>3Z-Vw) z9?a$uVrVXp{9?&CVqsgoFOz1%L>_Cz_71(TQ%sg53>ZWM&|lHv$|Zkv-RCq5Ejlvj zPebeNTM2t0c!P!O(Z@g&aHV$H`Ji*Im8CsF;WyMnROZwwyWqqpD{?I63v3LgfJHwW zVMe&qMW%B5+qS9qyFn(ng&b~MqyGBr{Jm>bYnS58JeL>hD@=pPh$Q!hWq-JY-(qk+ZMsHZ(M^-ivZW(zmOS zNdI;J|FLyW(U|~Sw~cMv9d+!aW81cE`%A~RZQHhO+qQZ8oHOp*|6Z>(s&=ipX4%kC zwu!LacZ1b-60*0@wvDe9Q?_aK{sW8wN=kp#i*&WZ z!nF0Rb(m}iW&XMA6GJ}lYPYSbYr{(uySfdI-j9-HKXF>&+4zWDV7gQ$;=zg&?r z2O}2-;>-2TA#qLVI6;OW*l$uNB6R!F9?i9t{9=?}svB=V49VeuL}|2=&!K(8-p8Y_ ze|uhNA51h+#NNf;GG@psgoV>h+Z zw%;t$=S}=GG%=Z?_|d2m?U{j4g_Ot}@0ut5Np!sPF7F~e!_z%`a6~qs?v|q?uZ3}l zv!Cf1ypu!QEH&T)4k42=14s;U-~Pd?85^JK6KRWyorakt?&{Fr_UAE8kQy+U_$z)R zyNrV7in*8;-=_i!JWYe&;yMfVikh`KzM+gATVK8 zuKBC>8NL^^1=<$JH?ye7(5}b$fx|f8Y zb^O9R3K304L5z{hKA4%~55oKq(xk_0Xkmm_;YLqEzuvtK5*g8$M+2bjfb(zMY!82X zlo{rgUZArlWD&7Wl1kjlo@X~S(KD0P3mOclWT~rMot6wEBYi}zGCwvrx~}R=Tj@i@ zwd(6pfR~(`x@YuPKKn2UuT*>HbrB|!t1hZ?@l6fBcaOat=gD8Q5(vq1|3XueGU=7; zJRw{JQ)KGf1EYG;h8w^jNrN<1!gr%{=uTZ9kcJx`{g%|GzMMfAE2>v>1>-f^S);w4 z7K(nHrjO24SMN~J17VRx19Z!>iAsAc4S;sN0l&@mWv}MNmGF9{_Cs9<6MyP@?#9vC zxQX(i+{=s`t(9Nk<0}MFsU^CCZF-vhYGcLw&szSc{3c5VwHF{skG3V_S^kdT*G-tk zzhaptQEeHBq4bMvwUsy^T3HjXq)^{C2gd#}Dsdz6Z(5=z>$W4f;q??+2=I(WEv4b> z+~WXVegD^%)=qC9{OgaLlT(^w_>kPGP4?pK_QCY?+B=S?V8ehF)2dcNS^+rR$>q1q z&R$>fNK#09RUNa}4<%5Do~^K3U>0Vyvx;$HB7P4$rjF3o7a}YIB(pDx~GrTd(7BWb}Hx5x81dP4yUfr(Mi~w>nI|-t&S%nlLhr`SF9um~-0Mq0@ zI62ue?F6?Te^@0ICoE{!r!yD{ocH|T_ z4{W)$=}G23#wpU%|cm65fbNP+@tH6ad0(c)E~`kS2uPMYRa1Gx=D=95L(swqWY zwF8b0-&k^z@Dubo#PWy}8mv{vfC*3iHcB;2y#V(z!#m|VL5HnSzOgcKk33^$!)^qn z>0-5psij8hnE;rUhx7VnOIDpqJ{q-^y(DZpHNa%WnaWqsug3sUQZ8??()6i`A*grN z3x+9Yhihf5$TC%MW*kHih*C`6ER_db_RXq{GIP@x6NTulgy)3U9BTGwfGe2C#NEkR zdHPKCIKyG5cI8Qu*8}UPJx`VDgGSplP8byT0Q4l9Vgs*IU%IK)REa^TVHL5z#0%^s z^6*y!Mmc1AZMr-mW^J3Fu!ekof30PL3Ib`EtL%J!_6-Yj4lNdP>Qeuj?`&nWQy!LT zF|3hB4we#>1>~d;;y|_;AgGrsRZ%N@dZ`|TmNE$1^?<;`q%=cU2#xVcvUCT5BB9_1 zPeC2M0S>E~-oP-ojJ7s^?P+e~#n?XDjUJ*9X&uh?YxLqTP2{0_J5DF(yBLtaa?F)7 z*hC6Ts4-`Wfx#vmk;3zvwKR;0%Z3HJt=T^^Rn%nAi}QI)##9#^5U{%Hma(zRU751B z=)t~*WdLsS2y~;c;kc6^{E_@7ERfW7F#M;V5olQ&nH<>~2HYW+LJ@K7DK*DamAQlW%NX7sbVlwAnMbJkM=L3<0GDxgQ z65i6Vrx{WdTBv?k03it#7&~mAjnx*ft9X)TTP~YSXZI9sGN!ccmvb6=Y1bUU! zZA@Js?s|bg9aQsg`cN)z#diJ#H@{-(=dF=BtPm|#Y$b-;DD#`Hn|cTvXAhJ?^~$WE z-n>gBb2Xh=U0kc6h82Vr{M5?2RPm`2PFC7jnM*g#!pU|AfM&kfvPC30)>A2|y36ZP z2zbRt9}O-;G?b0p3tb_b!)P@hx%d@Gij7a7L_uO>6{{nu_h&eSGSnHAfm!v3IU0$J zPpsw@|FU$6rbIftX{#sZFS+|nMfAm2K8Z4;LuKqkv`U8j?eTxbW1)0;u8m@6Hu-k? zCSMCA30?bkz>~2L772o@tB}6EAtEs|6b#a%`KIc?)5^sK3fJcfvw`_w=D2=0c9qNQ z`lI<2*6&eZ&5X)rn^FD7qg-Q>;H#k)ha{eFs%9<{V%^vBO8gN<)D%{an!mf9V0)Mm z^~c8x+)EHcY>FYM@~ab z)}lu-mCopfP3!&wCzkWtHr>Nr@J@9KCmmDN14IBL%Q`Qe8Bp@Mv7%#QrX#l0FbP2m!m({UVF z&AhV!TD79z>Xxc24CsX6cis-VzR-Hdup-=TBT=|SS&JE`rCC#JX-8O^5cQx;}a+B`FxGW+^9h}6?>eZqtiM@_p3i_exYsZ*Dz{o`b z0Vh4A=sSG?;Rl+rguxvwobXq8Mb4bz4si6DaAUnWy+VMiBL*5;4--R}{BH#jBMrpp z({st}W9uV-P)S+_gT6qPQ`Pyi7^ne)&GZJKW~8!&AhJJ2i+zcOY$X^WLdW-foQ=b& z*51Ei0Yh=A4)GK}ips>%y|b+qqSS$`TQ@zK19p0P>UJZwRml%w#&@Dx9sfB1dNg(O911&pLu7AFlIb%>?Xg@s?+k&W!afV z?Q}9`Hl$32Rt&~jwpQ0xYoiMTuo2Ch3hCb-+dRISucg}wRWSo@Z{Jf$PtF=G+Kf2D zS{dyjPuWa6YYTZj=)c0^gv81smeL1q|?^$l}8S^~I9D|x*_IyG zQ{ivzJ(`jK^Id zUzPq6@ElFBSGf`|yq|7=nA=Ssstv6fbbT0o?zZMoqQ*oTI3vmiR1Qqqg7;suHUQNK z@_yk@ZcaLvrcDi0Zgwl}H{1-4dvHO=kGeL!dLArb6>~xb+*O8AuQE6kyRB0E-#csr=m5h3_~I^G180M zsWJrO$5@#Fu%n6qQ0Q5zLvXRV$ZT+~ip3x~DJM)qvuv0$PF=95Ja13rJJ%pf4Q4_q5VoGOP3~ zwouXB)(flppA2l~>H4UVKgUq7RI+p19o0xMeQ&L5WMcIIyw4?@PUEOVA+`!kfnfDvR)`{*Mvg zvB2)h|TxpZUjWuYBL0|ISzN2&p_-M!z?Y5R~KL-W^u{&;qFviYMc`U_nKbdgcU zRhPuPQG@*rTi3#hQ&9{_a;T)Vn|xT+dFT9!(Vt78;-{~umFt2=`*9ZKCOd1P-jB-Z5)Nj~uCyARFnQ$JJ)n-!Q z-+|a+Bf`AFHBh@`z`nScjcfU}E}tBz@DiNo#XiZtrQIB&O^xA$$>Un(U3W51%u{I7 z*wNE`wv(!&Hs)Wun*Ybr@kG05b`*IjyHE^;a0Q|@a`BRwXUmj23Tlt0%D*w1Q!OQo zs}qt+qeAmV%PQeSNsxT+#rMW%&bwS#CXdFZj$-ce(4!I6hEn%pYGN5$i$SW{?X(sq(KVQN8%>8 zIrVeKZ11U^?`KDR6lR37BZ-C3VkJfr#`o`+TSr5OfS!Ygh_S=VCg0+CJzpQM^mt>( zyYsJ(hY0o_Uw4mm#a5r6>m#j?tBHn|6C-y|4+l<8FZMdUKRp~?AMcL~hbM&p2pO0G z=3tH#qKY`u1uNNFR9_Zbf*5Q8NvMv~dTrT=1x6!_`q2xec;zEZDO__`^9i&f3!yji z!7Tkmz};26qfOZHMNNc=g4)qz8tHGIucFXfUY$Hq7!w%OE7ZaG}Y>`P^gKfBiXR?~f)e z&-c)}Ev56~*DT*!)_pr^U|Mp!UF0T;bTu)T08BX>a^)&nD@T?VnA=AxUCT_7y?R*v znE|nQ);HGO?ZGaoKq*s8pB3H1W8>nyS+>`b1Be7Q$fHV0peGF?#XmLCUG!`f_-Jd zY9E_PI+#cCXiRj8p@v<5UX}Q>j%#Ze082+wt{^8iLN1$x+(+)Sr5Yqi){$BR(}Q)1 z*TL$h=AW=d0$1{V|6BQ%EXQv1ip{m~1`h;zd?Qj!L|C@C`TIkDxh2`$HtnXh#1~@h zYnePIO{eHfg)cQl3Ta!n!=|*5xYar0qykqQ(F444Sd~;*a2Ta)S36PZ;$7_s(4N{{ zH&=e*FLm&FE@>VXTELJ;$&P)H5jmvZ)4+pn@9x2yRQwKO0xi=HLU(5if`( zDYFu{9O2E2xQHhyFzvh&+bs^_aQv1*C!HuN^)Kj7GlgGjXL{bOyofC>6;6y(1reaR zBE-QUne-k*lOGBQFw4!BFwwp|oxIfpfSQ$0AlAzW zV$CRP7l3f#h~E_6Am#~ji|O6o1=F$8>4h@es;9KfRz&B{r7m}{=!*v|K8j>BgFW~k z4cg#uEAAm2t0FDoNUd;3c zYx#?z+B#TuB4K!R{r47hX}yf|kI5K4pAC5|nkoSygym15)7WG>HsM z2?l>h*(q>|cXK=Q7ML9uyn%eE0M>K!?;>3@#^{%*qcU47jOXEI$!t|xm01}MBLRft z{FM54nV@Nnt8J`lmZN-6pc3YnEK?+RyJgw>{KX1xhrKg=GWY^4LtHs=KA3o>8v)9V z9%%SB7MqFOdcroq)>(2Tbwtw_l3x)+ui~GhB;D^N-c43|B+bCr~24B0~H zKB6SqyLa-H^sF{W4E9rcYw!lGdCX-q(Cq;xgtE)rm)>8tS}&sYYvo5qSx`d6(m^#8 z{DlzF!Ng{mDnf zSX?13MZ8$Q!f3Q0QIR-WDq+03hx+-ra*3`Q)8R;m@@`ue6???8Pg9|SGjiWjEBeQw zqvL6uMx35@d-yXQ`0F3D?Q=5r$h|ltI9FX?=LHHK@$!tguGiaRFn1UL1Nhb~vs9b& zBY~|HW+4P1qy$W%^vEcl7$VN-@LO+`XLy#2!Qfj#Egb;E54;uK=Y-HYhuzh>96mJW zGMj;>>|{>Lb+M%^F~6-GrbLS9-m3GG1LRg)FbOA0B*WYDL8^|#*^9K>E3Lx4+DzPnipEd49}?_IbhRTz2V}o3e^u&UU7S~73Tg~aN$xVYpWFjDS$&`SEZaPsNG{Hv&j(Z|BiAgoPee>*R(9VBFY+CA(UrA8N9IQl99JZiTyR?ATfDc|q$esO!t19Q}6X>tH^WIST$JOr=dp|694b-P>N@u0zYXwD%(Vq`)at+U!t;`&H2QxS&A@jh zw`L7!W3E~*L75kGYZ#tip)q7~l=HFZY%~JP<6RLdT-O^OBa4y7=qyhiGy#h4XB_fh z4~BBaecFw`X~w8jGlHY`NDK>(4#i;j>HfjUm1$IkxhK+z;T#x$b$-c z`&>mqH%>#GKr`QSfm|Sfkhy?u7{~OT^R}<0&5E;P)lM9Qn|ovKw1xV@uva!too&Ft zOcm4*joSNCcW(E#az(FDy&3^pu;vEPof%@S{9O4?Ui_X>$#B^?){IA9g2YsH+gf_@ z4@^Vi;l0|8nf>UQDcrM$AS=lE=G_C(IFL9IFYf#YvXyhrj7fc1R=Y9uA$T>!mbTaA z{``!Q8P+?232!0KnlS35B{bOafwtR^(6JBIm)^JiiCiN9u7WSQ8)pRkm0NG1X$59` z&oX$(GSsDk`A|Js&!S>Qt+3$Du|00%jASzty|AwkQ7CVK4-!o*9+4)nIri*X@Qfdk zwh3ZyT3UvYMK9y;e952pD?>WyvkviEvz_spemB|AvXE7lRJdpfDx!5tVQ-5Z#!D?*cpS;#1H2 zn4B^0wJzws?Y;JQ&!XqaR1Ss|i2oG!0~TsM3^sq6C9#w|z&-#JJ-0X$^;l!>Jym!v z4$m!+z1_0-i}J2gFJuk_6Dz9LoNW=a@PR2outujWKXc~HFrqxnGD=6f2~(9Lv)J~tjf z&5me9R`E!w2iJ&5C+IK$iE&5rq&XqreFV;_Ty8<@#0Rcn7DBwme>bYe$QGXiA21g4 zo=*f{fV<~E`SThEo`gXEa!!G0b;cZGfI#qcj(mMNAj$!59!CcLbP8x)-A3QI;jh&| zAdYM-)_d1^gt8#{&kB&@wqt%6b9EQKS%4-HfRN;=1sJ$6S9vkifI%)r-Hu(vOb%b% zX7LyUkGgRrf(dBCx3zvJ+5$G`JLlIv`7$y;2@^HYQ~o4Nt3L7UUh5Uns?hgR8l4eb9;oT#1l>ManU>s_9YRZ@g50BmaSd%ffJvZ+w5& z?*5vd=0x)mLc8eiOUw;zU3s${*}s%D;2Ll zq?;bE@MP;d7%J56g(+}g%m_@e=8@}F)TX-y5W$}wIJQ-W zYrFy&a_BAXuABRL=|YpCijho%Ir;)#Eb7Y7HS}y-1Ds@2*?_=dA2G5fTe;Ity% zHnqx8-FvEftIfti!!hgu&}OFl_r(I<076A2Pi9tAY`pM*MHb|Io{$3!3#3^iN-Mua z^XWJ;*>%5hluBoA1a%qqx=j1kP02lWNsAZ(nZ&LHsajU?S_6mmOeE82EP3|kz>MVk z{PmvC0yXbMdD2)S{|=z9B68~-&V zswyh<*au#lqg~G96KtGqwjfsz=E_WbFz(P}oh|?VzD8vSrfF6^;aU}83fI!Ui@M&6 z)Rw?)bB@aq8JR_x)4ojow2YQc#mfBqD{;3PVmaR6r2qI6+YXFt1iMemW|{XBSklDL zfgm9A=1EAcjj0(BV<(g9ncaP5b=IMNwbuCKP3l=6##LgulXYdl`N_pFR(eu=70J3KnWsrRa zgD9At+wO%xaDD%DnvF8qigxo6tveo+nsaN2ug4cepP>}}3N&Qt2%qCFz&ffn46G&F z(TUoJ-l|mkY+-HN(M$MVZ{~xtI#+mJJUFIeZO~SWjY`Kjs!v+@CC%U)-*)dbnKMzV zt_Qg~Y+v+cza*=Q^DGxpj^F+{y0oT)u@G+^rMiVmeMN}G7+~?AU5^IL{2!|~E7N}o z-c=rYKrbYve7@Mdu^a?(?VO!AeDm3*si+yBj{MKdO$w$RFD36mJeJk!<-MorKMTT4 z<5=jdscT!NkL33Dag0h`R!M)U@D!ikH|n;mi6{-K@6blf&F0LT=NZIJds)bciUtpD zge`ci`-8yh_i#KkNg2pE>yRELx~;~j-g>1Jfb-I>N=xVSIZ^G%w987*AlSZ`tQ(}$ zQZ(|}3f=HG+CC{N2 zz_yE0mhK(0ODx;4LA-bwzL6|rnY>2*7WdX>b$5S2@z|4T)B0qaO!wuc@DvmsE`t{R zwk^SC3?JsoU=;73?XEPO>t?>#-tI{boxa=wz|j{1HD?e1SK&&M9vov-JCFW3Va1M=q{DvcX?9GEH0(amq=uc>kB!R5aubTkkBoAqHC(LtM3 z6DKfW!w-edvEXhPY2JS_m`#p{dPT*~QUG3zMb0zM#Vk6ojAS9moK0#1h~aP~Ga-C3 zb`pH8XAZg%{$N)GU@j28{3wfyQo6grgfI41D7~fD12=_h$}$VA2qCjNg(PudoOHp< z!jZ9xWHig!D;K>ndA17Dp{4TSEa68-4%;7a99tqafI3;|lEQ>S8BYB+en$#+WqY{s zjSQyAB}VG0ibRXDkVL@)%m#<_2*wpmiEBH8&p%nx4jG=rLPQoJxv4Mpv-JUc-BQX( zf+euNG9&`zE|W)8{`A^TVRI3iZ`CRw#>7E_Q_uZYeG_N_fgP77k&_wH{QbHAbu?s` zO(>oK)7pgejg|<6qs^`D{Vr`L^@`jH9S!y8Ly_Lc+)ZzaSNC%SkaQ;m`bU#wVUU3U zhKa+gw6Paktcp+$mqLxV*Bvidy?Km2FQ&r^VYy=h=m&!|ZPXa5+Ut&i>PAEs zc|%TAXr(_LReIi_7~$(GN#(TIz;8GJH5kOaTh~6Bp1KkUy}#bzA5S*9R>Jj9oQ8xT zHFfA=B(Gk2JcAYhfUmM(O#ON@l<)k+$m90>%P=?!12j_+yn}UF8zS#W?MHzif~AXW zaERBrnd@gzEKD4m2#PFQzVaTv;|6gf^=1jCq^<{1nr*L6U|hSfM+vMi02YL1g0{zh zlt^h|VIff}uatk-h-E)KSSqC&>3ZEh zucKF(5$Ckg&yYA@12uQ^0;0YBrsO6xk6cEc+vrwWn~mh2&@GG(gFeW(*yC|YG#b-S zi^*h5XLiE|R0g}94S1hTFn-4$IMNSN2&y6&8}fF#sclzOPWR0&kwpJ)cp?Rsd}@!qA=-I5(gbhft8A4$NaL z@*5c>@TX&zo=TbZLi@% zB!ig*;2IZEo6ldCO-)6&x(*U7r~3GIL9NA5i@Wz7ewsVw0+(F_T`Tix3a-e`b`?Wv z-;!B8aW_qXVvuk7;ax=EplRSxKY`xFg!t159p*s zMq(k+suD>p>7f;W@3U}!i6|M~$`@S|&8spyAYnHbj>CC55^BFy)I$dsrt<*TV$*u# z%3pgK_2NkXE2QlxSJ62G{MzHDSfR+Hi57rpvvAv_b5ha%3*y*&B6=rJP?M+*Kr;&e z)`#u?M(>LEDVEL*dT-ac9LLsr&6}ro1b6A&0xR~1;K6tu z047(~p;#B(t5MBh5}Q)VXO-a^?tL=zQpHlRj+bHqCIB^!a~H;juRo%jVmrpyD5k@o zY}nZ4s;DVD^zi6+Gb1)_@lo(HzHI>pL;rPyK*`oihWHHd2=7FzW&g&PMVkRDE&FAg z`KQp{OB(>&Y#qJZXf{HYwTx>y%~X^dFyZYLpxyX|xS=&z=Sv>uu%LzA1&zSlo&B_m zwQWfx9@#$JVp1c42kuI!Yh_Ht!4@25?I;!J-iN+*y0T!>dDKh2v?7OQZI*6tTF0T1 zc5Y-t(6^34%&N-`VMSYSUm_i__oTywTBui!{C-y|rXYr+#lj=RVH@sO1ar zOmNiVIr4)oI4SA7m|{b1{yN{|&3vhwSU4b+H@hOwc(aG~A<&I_-eGaS^ID zm*)|`Yb=+H?O1(}FRN}HIM-KGR#DSuZPfqc-V*TkdO$ej%B*Y7DI=A|ZS9(bi{2w& zjA^n51I>P-T))*e?2%gf1OoW@(ImP!FL;I_1t~$%*b+Y2+W#tdckdwn^;^*-^m)Igt<_MbMFv!f5Q0+t08 z#dxpWIQh!NSjO2yP50~d`w?P8paLhlc`~I$$xKd;3(G z1d|?7?$i5gs)3%f`bGra+Z0ZGtmO^bNR|6IUYN39Sw*hv^LvEeG+nl)=X<23#-{?M zI9B!J1iA@PXYYPAA<)U6MJXW=xiFA2Tk|XVS{3mHyp4S$M8+Zi-!~1rBLk7=XCv6& zS!%TT29re23J>B3a*UifO#xDLn1>iO%$piyzwfkZ^DPuc4p2xCD7&cu*1Guiuzm z&$ETdE9J6EHfFns@%DvW2H<02EE=?!s4#ko6Q6nR((@2!k|^?yVB`wv@I&3;upVS! zqyRxl+8?vsM1LzUNkxr;sFOq(gV{5#lZpq0U$~Jk@&(9j!%pqNAZR56SH`74*yI12 zth~U>5W&>QMUFGP`=moe{gjnn`p$)yLW(aFp+@J9zw#27weuQq8O1v`{sz>47?@Qo zWvMwa#0RSLBzWK0ccp{60>5XggYVmf2LPN*T{SEC70bCyf|~rtEsP_%>eGH#0JU9E z^ZH#_Dwf9X8}}m_(T;w0j?c0KeAVtFsc<%2Bmr=6Hq6uGSIV(kSQNS#sBm`h} z;Z!22RbvSyj;Y@K!jnbAIeF6UEFqsTm$7x!Mj1)@oN56jV;GFP7IP4kj zc{NOccg8X`JrKU%GTr1I+>Aij`q$tMH=^DfCi(wgmH+xtB2tLw`<}bU?u@-F}{&ZU_&+~ z%@-uoYiTlj#QRuKg@RT!VS0iK<2@_OK5tAYvlXsl%*4Ry0*Y>Xo9oQo63Ylz%*l?; zR5;pMH<|Tgyz4L1K4AGT@C#O*5_7k}Q5!`Vc32~3 zK5Fl4B^QJ}VF;#7r*l6XfxbTli!t8#sDtW6YKe^k@+>qpmSik!{ffmXfLp`jdot>qU`sNw`@B~GdjWjHp*dSLpGsW)o=qG)Iq9>--d#Y9GuE3a3D6V zZ-UF(1l!bwTjq!lykKxajAE_75WWc<=YpE?{~|}AZp-*3_))`UZDM^m>SHe;Z4wtu zzhs5?zFDCSqaZIU@?dESc%eb6po`2?Ery`<-(LWVQi0v9X<1`?z$h=jOgY%?SgRFy zfcj0kso)Q=XEyHnF1n&IaDT^|544A4uf!ensoR(o+TeaC4IG00cnTa= ztcOuS*^vJiuW3(CC2oduGCe##D39DJ58gfIyFLI0(VnVH@*S&2)Rdk6{rG0DUxUFa zK))3UwXLm-!PC4O_X@n#WRU9B&oJbn=RkbyWhaJTsEoCMz?&F@*MHbB69UsGe2e7<<+WJ^io&MaEoQ|VUm za-kB>9Qx2Hz?Ww)s>l^q=L8rZaCV9y2C{pa(BL(DRyXtx;xknXXMb~h3ejt5IRrxZ9Fr@r@i-n+)aO3*z z9<;m^g=19?H1gLJbdq-5J>OJ_?KpSFYF!%j#TdavSlUoE(m6sYfRb-J*@@*0f}{Jx zB#nnnRF|M(tD56XfWA-%tx&o8PTu=P>t9`^^0ieE`+d?X7Yq6iJ3lsxisF}*x@qFC>AWgkF{h%ToC=8lO{_BqFT|Ny65uHYA3Ch!C1p3QtvrB zPmg9P<;WXdDu&UzO7z5A&_)k{x9m|7L1yVaRAO@(BCOh+0~PB(({4Wk^E$l?QM?? zN!%MtT%YA=hHJaYp&n?RLSA!+8z}6L7zVn3V4Nk}@C2mv#RO#bzWO5|uj-qZFO{bQ zy=AtZuRodLNUh+TV}l8HOQytk^jJP(LXOcdp0?xE2FPBd`=E;x8w{ZJlw$`oWHQrP z9SUafl#4U3qQ}WhN6eb1=p)FgA%g5v_&Ywblo}sY?~MB~o=6o}#^bhRBb>imrbPn<{k~R65QpPO-J~!43El(TOM?pSdD@ov{qD3L!zUQKZ z1cqKPC0b`)ccf-|2pR)8cJf(#Xc4L)faRd=Yod!GFXKlhg^rS>JQe&TJQGVhr}tOr zNKpa-oetcWDol-(8s_pNMh+c>)O*ORGuL#500{3_q}qpXJ&Zd?32&yH-edr;&Ueno zqf59rN0V{v}#WoKGr}r7wCGoHzWsfmAr>NWs9^fF7GeIPh7}rpQ0^ zbZKT+pe>jd*lyb+R~FbM4zvd>vrOC4rAcVbA9|8pWSv!j8T_+rZ)~NW-U2RAxd)6C zrKOLf;|G29ole+CRrOxaTTH(4Qp|3bV?9GS>C7}Wq3&X~MF0tj z*|AQ`y%<28(c`)rT~T^@{cJ?ih#?V&>?3wC z{yPjdrR~^}wjht}JgME*`Q(l6+3g|`-Sx@%K|t+$nR~TD4z)l9a?GnF&pr0sn5nwj zs>L_eAAuyhrF_zH;!S&-1z$v9nR!E#lOHHCHr*{o8qct%%|3EwBnDbBwy7Lcu(MKb zD(7~mksBOaG0rD-Njj#ZcY->=@Xu9X}`R3|i4q#AUhv`jq?IIJ> zC%qSJ^Yl#0II$hpuVUxHZ53JaSBl{k0Dl2674M2{`vJGgeotS!`4h}}#N=lFC*#)p zS#fC8?2Tm0q%=bH=CFv^w8Z6THSoJq%Ldpz=d0Oz6L1l_{<5^@?`_Nagc~1@rTmHr_sap~rg;mYc+_Stynt zi-zv5v*zQ1w4cZC^+`TwfHhz$r{4GVCM7z0sAkLBH)wOq(kn*lkB<-APg{o`pS5kr zM>hO>F=5Bd#E{zs-=x@3VRB`8n`q25FXM*c0MaTvMjZAbOuXVc~7ro*P?&8JPXvblTdSxsdt0}4aC z;gv}D#3s057YCOph-@3;r&Bv(s$I(#V}%<1lG=_!L6~*?LJmcwx?N8RWs4Tjrc>Q4 zB(V5f^5Y!6ZEc)f*%UxoMBq7#q@^80JETQ%M`K++x6Ji7h`0_Yw2>q*2gx7Fm{@A< zYRsaPLn?A!UH@xwUtcAIg}e46$X%cN1@3XTLJL)y*Ks&rWH+-wQK$% zori(za}FNyRQj^@u^4kn3-Nb+NwxJ8p2yn)gd}XpIjz#{uG&Y2_%NMW&?THGUvZ{rqA5idhl0Az;2Cg z5q5`@*j9Mp;2Qw*7$8i7SESLknFkj&KVN$%KSU+myz&6rI;&)Q(%bSmR4JfKlmCCzN#Up*aBr>39%(9U)v^|ApPejz+TrC^S*W}YoHysPVB`;uSYlj~5x8vbgr3_-p^m8b2 zvLQh@vJ%Lc_3x5CK^K)LJTW!LLQmWnZD<|Ob}&FhFbku7`EpaPn6|21wX8p(4oUpk zkah`#tEv+3>cY9gf&~L^0u`HU&=*?jSwwajtJxSYd9N&DVPOrdPZmhR1Q}0RkVj^W z(ysNA;~tvFcFar^(v0WD>Q+c4gZ&o!7-Br%?ZGPDHEC z0pZwk(>u_}_X2{S90*tkIM7I7))t1mh;U^6BjVno5t5I%r#&$rT{lntQO*`# z(-!U~Vjidvn4$BRMChTofZ7FPS6$t`79jv3cf&ef+qqNGiPaYy;qZ>P#b?x$%z+&h zo02{HY1df`qBEg}2XXn4y__+Gp#y#-+f7Z z&T08NsC>Bb7&TzDWg}NdK!I~&7AZdSS*qaqPX*Bcv* zLIgs>EwZsosYC|G_VLk)D_3yk7S`y%_~Ybuf5O=~&BP!*E9LH%Bc)13%%U|&S+KFf z_v!ZVESUG>`TTV@m5suDFk;34p5gobJO!|LnO(v>6_(G%xBvb#M%df+akB9^6tP#= z`}YAi?5jl*dMz1*+B{brwDKLJaqK`I!DM_HO^X&*^h@XgvR!T`aMG7Dd z6Dh{=&rmL-+dN##H#(?^okZ?k1MI_!!wHR1#U~jY3B@h?;F+GX#`4~(A>@`4aEiyHT zc42iAI0hZ*M;HF{9u<8)r|sOnAgL)-QIY^B9{!z7yk~zB6|o_^GI+ADe+H_s@)abm zlC-50GIYt9F*qKH zKzO#8gMr1%;h6*J3$!#9+|obBLNk<;Ss*eYSf? zLq1eVS=I8F3$~g4zee9ow*AoCKOuDNi+l!=f|S=$QJUjWZAFt@gH~Nvp?{ET{~ad} zA?~BCyspKnk4dBHCT{>?q_41eVWQQnqCgQYN4C@L$)#C({M!nF``umJDuH_f$UX({ zQJ;9qJ3lfB$z)k5NKLCCfk;aY*-~5CQHWvFXm#0Dt_>^~HKBvBu`LRY3shvoM^;x7 zRfobKb8F|#x!{+y>0>;W3>PHe1>E{yl6Ok!f;4CAbL3=iL<9hP(d=pN5Aafa^&VME zD2dJQbG|##Y*|?nkPqNY4idCElMg*%xT+Xzlg>2sF$&G@mQeC@uIA-j)>v#(WncImEz115~X` zvMVh3_>V!Fd^!MZ+PN&fJWiGP30a}Adoil=>`Pt2{9<@Qq6qR8os*Gk^e54V29pUY%(H7gm7W_rH zaauIdl(?V~bB0O7u0~LdseyW|i8rTo%I1eY6l3z(h(-V`@`R%(UxI?@fa00>6DshK zr?F2Kk+=ng#jl}Cp&>Oick=cZ~h258ynsLd3g!{eBG$Q3;}8I&X~h(;C%u*Uy5wI81fJJw;+!2_3&X;iW_;wZ~SZHj5?@S9sPUbokfRY@qiTr?y>;`A9BNMuxefMAo3xx16uv(V#)u2 zcnmNtGH*HT~uiHndDS5E0m(AWL|{Q;3Q$I(ws_LLQ!OwUv7x9LONXxvOigQd!FDoM3S# z=YIhIc2!(Q$@-@MAuSN!dm4hAgnR~u9+7rNwIzm#u(SbtKL*}e;44)ZeD|;{^kzA-d|?#`HGfD9au93{>Gn}9uoLZQ zDxi5EM7z^h>ef|s2`}WN*mGgVKf5MN8VL~HygzbL1!5zYl&_u^o&1{?8k5{hNLICU zKo9MAtu&OupE~y8X$~ltQN#mbg8e{L+2uG7v-Hv-XjLgG0!5BR(1u6LEy54Zzo63} z0hfT4<*A1nQ0yII54HnwK^n^ib zs6*iJO;B3<2)ekb#}i(8!i4u^o{*FZ6_l!yuC!WtJnKX)+^GdK1YB4CAZbv1%$s=- zb_x(_fNlW~owkhE7SRT7PAwW(RRe_cS@ULv{mH7$NyAr!x-kM9J&U@OCnXvmF(uck zEUQgj7d%B#KXRPHgEHO+h^mQUF0=nduwGID3BZgp<1WIbEB-<{UnJ4V~JYyoWhB4qM1 zOyqyn6mrLYVj)}(i~fzwAfy31yIi~ZBi2n0w#&n7j99D(xo{V(DB{4)jo&&n)Gh$r*X?hetR9O*0QzQG@^H4D4L16;5;q6*UpaiX;Rz|6es_+G3gqP($c3i>{EM|dx8(eioSY2CfXxB*DHVQR?ZhZ|1q zi^I(wS_f+GXT354DP`g3xX;6w;&Yu-M&`na`zA}4{(Pphxd{Vnmv8B9$q5rrZn~tb zPrN-Kr6`29yY}IB%I2CGqaog-< zRuN2S7s00KfHA=>-wn7S9neVm_WV<`xMIo|-KSNY71L9K=Mc*Bqr634RIPHM6Q~{1 z0bPO_BkD*pqND1V3kN$C`kPt7CZjEWi>e5m6PI3&^AL!>QevTSHkP9lS*^fQf8Y+g zlhpJfzD1<(iMXomnrohV{K9Ppb8t)fO|p!n0Jlt>6MxZ4(HM{nx~$6UvjUXc+v_xt z<@WwDdsw%DLUiq48#n}~Wt&9}bar!fV%t=?R(JjUj4|qGlj}pb zz=_~l+t<@oVexSg`>kDPA!FG0ZR}pnh=cuJ%*)TV&;$4#aCy;#aBDT%7g zKdshR8wwfK#dpv`$!NdA1Te#^(i`!mxLIbC)&IM zimrrCeFtDtlUhWMRrU(J7a^%Y8y!&-lWEma>wg*_&qR?tF9=*)&s2tIF-I7ZpQp1&N!(Y`~7k?aFqV%+`15=t76M56SEk5p2%!qWh*^{W$|N;4c7+^6a7h!k-iKlS_7os_UCsbsLVg zm(|(|lxy1=8Nr82u|>7$V^N9w@Sp@f2B`_p0m-YQy`!K6N%WZZA69a`#})j1=ZGjs zYTx0&-BSHEl}qM|ldt8e9>kiDr#ji;Dgo|rQ$_4J#)>O7cN?H{4#yLHzlvN6T;6Yr z$pQd-gr>cIpA_E21&Connf(%L;E>V4nkI5*?JYd8d)@Z)OaXko>n!?RvCvvBWM zi2!x7Nr`}P4fD?e>3thj^ToJT>&hoyb4D9ZGb7JSZ)wvTFSj>yKlXQ=oDeW%(f3sN zj1=JU{p<1&@TI4q|9`Yt2vY}RYZ%tF_-HURP&PKUw1ad|YQPHqmNRbKv!20#gte`` zV_$JnMsZ|LsoXzPPHBeIV#Y~gqedZBR^m}H;`a-Ip@)>=t0A;>vT>he6*&}M_9r}2 zMt5fX#2O`lpZEQ^qZL&emXWmq?`kXUNgqX<%U%JV(CK~ z%rat@Ohym6uwQN>^#3?quD{se{QGeO&Ov+9$>hzO3&VLH(yWs^9g-h<;LUQ>Jg>}A zl)Lul-&kx{bIPv1r%dMc_k8HI8Ck-M*~4RL-Um zb1&(#dI0j9Qr*G5+T;7P7wh)XV2|gGB4k#;*yMowhOfWcuKnd+9*3bcx>F`_W9CFm z~%x3>KSir+ppaS_c2wPkA`TKG!r4S1X3@j!#5mQD2+HswR~V3Xt}?L zy5cY2r6HguUN|W8q81#W53F=*B`S~@#OO@>(k=&eGg}N|p(d@B1R$)@;#K3~_{6a2 zl*cYZbvNEZ7%edj7+1yiB6@AHm{k-V35*!?IuOAWtI?iVb>`5PYskl!tp;s|WC(&2 zUw{l=kny@80{SHv^lj)0t1GyXYrF7{Q-(1OWJ$<**FIZ*wiDM%HuxXXWYSgWUK9_C zocDC8S1ynQVXxW!z{cgpO3_Tj%QEa+UR-yFfu(eMEPzLI}A!G7RK*Isx@cH-z*i^&?ynw(& zQHMJ301;OpwYwGIXjpn+K&XqH7Ko8fqNcXw9?)!z)5|v*r*lpvJA1;4s^@gZP@jpVgx)VA+z{+mqych7h_rhr zf-D21KDZPB}@zs0-2GO_B+@ey30&<_kUtT)Id~Q z5fG#eV0MvqI?K+Wxc=pNBlGainrRz_)k|n8QxQ8&{`Q)rJBbU-Tx9lQ22}UK_W={AvdJElmWEQYfquQ%qMwOrwOEskH}OQPzKFh72sZnQJ7Vl2{h~H zAy637fouOB?FMY35<^g^5lE%m zMNFS4ro$iFJwM@beW~MTBaJJ%z^J&esk`uRoiI(KJgj(t(ybRN_TQACj0J5UolTG3U*9M`J1_R{BNVWon=H^p6yonCZih&aD5{ zxFFNWzkT#>_=f30cd$QApFv)O%Z-TJ$51}J9nA9$mLL5UfhLe`WymZ}XeLynL$nq~ z1;Ff6qg9a%3fluCuzKk$6jV0kDMY^7rC~IZ$~%XaorL2M&H=@;tLPBT;DW0BP!?*` zv(_;z1iq4njD8Xwt`p2QglJu6+DB^8r(`ci=`M)gGH5+;$whp4JsoODbikS>OToSY zaUY7Q`SMyp&3>v8(o>8~rj!|o^#LAtu!({G8TA2+Kh)jxi20(r&K(ZMf*Et;|J?rV z51b&9+ZIZiCV<}=Dz`-on-S51V))Qnk{TGQNYM>cBh#H|j{&$HrJ(^-Rusg|SB<$9 zz6?}F2_Xzv;s`9%7FNc6ca!gn?uTV*qpwEUr9{?GtIoBVwA6DQPbU z8;vZ_5TunbtV^?N2rO%CyGQFqzOT1u=)->H(id@&eq~Vt(Vhex9rH0Ib?kP6)j(39 zR(N+(Cs)SsL1pFjd!PS@cPj9{y*Jk?~;x1CDJ)kI{Ku`mDN!+pk6(=@c`y0+! zuxF%>JwUG!v-Yl8#v{Mivj3^_JO$3F>l)%aSwbhQ;upz*l@iqE`0OybbDJ|SqT`rs z?t{Zp?P2^z2>xF3ri&h@oZap40DQOx|*z&aDiO zx*rdYyarXw5K@f0REjIE+IIrXl;2(DFjb-_=KwD@2a_Z(-1N-YXu-P%bf82P8aau_ z`2nL9is z6-oa6vrln!skjnY+Eo*RXmF2^p9xz7LQ<1x$M0jaWZ$L>l4GYg9mNCuSChL}_gcuq zTL8{d99B_#|1`y0mqSquLpv=C6s*#(-dLU?6$j$K7MkUvSoyH6ys1tRa>gVo88myi zn32y#R;uFt;z3iEp1=fy-)z>LY3@BF^fh8pN7YB|q~2-ms1h&~MZH0~ZC>3ELC3!Y zIAmZdF_1jbIz3#>7Iu#3`Qg51Rm_5P`vClP6_yz!UMV!cGCz+Yq}e#*8=K|-bo#>W zsq14)J@H_l!qYFg8aM~wqXn!@2(&)XBnT7)ovnx=1{Z6arwBmci>J0zSXDjuo@)62 zDsl?XnKF&@4qZSK_6xw5oLuLyn^dN!gjIg28cyQAEDH}7i~HQ(-a|teyOmgD zVGBpi0P0pfi-L<%DnNK!FUCJ71Xn^Ort|dSbr#_AK=WRcDM^vLR%}*Q>|-4sfuzpQw5K20*p5P&#O^$y4+}B9R{RfktyUt>^D={P4iKVm)I7i!5cR3g zPzTGQ39>1wig6;OmHe)`wPof~dMOMB~@Wi!qd%JgQdTQ&V zO=b2A8Hc{CE$d@uaz}dqhpTUw4RPi2!@MJXr(3^PeFhiM0t&(~&hE0)qqkGeJH51R zw$A{wUbBh6tu#=%W0iMP9tW@v3<$sBfaa&?ynfYhX|hEG9Uuhc=QbLL8V!P;ZE9uN zkZdN9ENV!14EgTQwP^Z8=I}7SF_iO(lmf>^+R|3{9m+$1|7FmG6bwG{MgAK$wJQ1@ z(+@g$9CVJI6snj2u0aO!k1&m44uTHV(It8ak`XdQ_7E?{a4(Wy`w5uE7b7t_Qz&M< zGbJl*-KyLonE+?fRbf)X2kRNfJw3Hf&%%*%CZ{!5icp)a(rcN1QAnIF9$-Gq&g5$P zVC~IL{4PDY&bF7E_bTYMF2J@lqERaVw#%o5sXT`i0R?P;(!j<9kbw2+qJ@OlxDDr> z{yCBVNJxB^5S2{B6a%<)AmH>|BUju9fB3GkRXT!8l6Vo=^tAWG$^c8>^bC{xPlbaJ zmtH?J&_D%1CQ0oDONkc-L6KWU9OufZ%mfWFVUIndgg1g5n*jwENzlfVAn*B$G;*KH zpL0*Pj#kK%Lm^q9$_pXb9!o`-2Cu9p#dn@BVo3FnxjZFaTmVW2z8RAv`|B8-&VC23 zCh}CJ1iA!MnJ+b~S;;b!YAgb6y2G3A{x#H=t8!NB(Mf5Wt+U)v_~JJITVFBt zT;)NFrP7+WL+6kM=^>H$saJ>T)*_1N1Uvy$@vcqHG-17;yxCJJLC7&jPC##iYVG#0 zn*%IydN?ehbOdn0?mY5!z}F_dr;e(TOsZDe8-C`Q-G0AK9jUFNLEr178?w(&N-S$n zM^cwu3m<0-VW+7Y5HD$G;Y(njOp%7asl?InAVrvtIQC|QaG{1kN;t*AHE$xGgi*#! zt2i=v6s59_;`CkmO$cr>Srrkmrkh6t>E?9 zg)~5AcJs=Gl|Xcck20k4s}oZImduQoSrhrlWZ?m6FJ@Pn|J_NrW_L`?1r#kOpal2;o0Nlkh?%c_|Hq2-7SAAflZjK*}6<3@C9ByFq^7@_?F zxBs|?&38aF#h}>Ty+Q3fwmS|^HTZO*YcC4VyrNNK4jK^QVioVxIkM)n$ zFReCA^AF)S>4H=mi)v=Vi-&I1~iW2OH z`&65|A8)m9Oy>^8ze8gtB}7t1(51%Ml0*copz_DBzreG;LD_LH*(%CM|~GC7r(3ejUtn^y+u0 zwV1S8Or?`a`R?fe738FhMKU4tLPJAGFoAN64<1oWEMU@ZjBy3vDAB-VcW9pZp$LUJ zwR99!C|RLG?Mm&wNUF7d@GvtCG`fW5nw279bgXgL4QDfrUv^<3P(UJM43xc4&LGq3 z`^55Zg-%=r1hJ?ZX&2c{UG;40@k-U}y5cE^cqT1yiAAu0Nrhr8LUWo?F8k^-N6=Dpp}*h&LxPv?O4@ zq(%x{$cHobRD&3A&S*L>XSA}Z3+IcJG=_@qKdQNt{N( ztBx;M=FPo;n8p)7h}M`Xu}Qz8-51bfN0uAAM^+0~eG96A_w*uhCdzD*@*v_wJqr${ zR^N!mlX9A-8;uOT;cV3xS2Nbt?09;<-xbV%G}U#y_m}QZoi**gNUGu|WejseB~Pm3 zLx4wQIhbQe^$oSsHcQjXLW#_n6Ez*@V`H!RW>D=N)UV8Uyh8`JH}X2ZL#|P0 z`=eS9YbzRTWLDJu;$p1B%*Z$^kdq+_hoObkgyTgC41Ag->@5gz-D*q>Y+*sQA&w+U zfdoDznjM;*>IfY9`yVO=JZVcI!M#S950t&oMp9ewHj)ix z?(uEf<=fuA{^{XxMT>Uyu=-jOGtZi~H6+p`z+Yo*;yliA(z z_5VchmF_s1@dx}P09>7Y#;2sJ$2exOMM*DC$7Nb@_#FA;)b^9k%#L~yH~9AKpef~< ztO4~cx%2MVVR;5eduL@Wu5f>aBUVwv`!<-T8L4&!g%42bQPON-h7DywwWmsy>>kl8iqoq@L(QU@+G{ znIWwUDitPThg>6dGf_zo(}RRuaw7O5QHJ2o89T<;n%0Umxt2uia<@h*Zt1#ia$GOn zHz=>*uE%U?Vf}u{Qkq5+1{uPfEw>CXTxCSlL#oA?4bJgpy%}I8lfZg0i?upv2;CKNel*Qq5KH|sdWSU=_sI`&Q-3o#kD(oxu(*A^DA%ZX$Lt`CMT7AHiam91&h#yvH z6<(PrBPNi-K+C#KM3$J3mzjyqh=Q5MMxEB5m{YH%YN@bQT$Px}yw3C^XQ@PYPB@-p zv@{99NA6Fq16?oqnLZoUSD0oux=Pu6MR0c9T47~H%qy_qMGH5^gpHFIjk{&)`mue+ zaI63-I0PVsWklEzY)Wfn@C4#2PK8LpmAToPv@V_4RWL96nT1J=u-Rtea?sMe%Rx0PEbjNsv_B#Jv0}0($x8IrP9asR*a-$O;!-I$tninU!_v78->E5hOTmKMT7bO> z8=L!U)qq=Ix)lz|ug-=PujEzEMX@4-s|gik3v-HulB?+LDcw5?s-I8p=OdA5=QBL~1_3GPCrrq{vK?}>HS z4)0(7`~ne%gD&%+&;gFKk}dPSqBuW+CJ#lKW}_ssP)h3ITZzX&P8pd}0k_s^vsbXW z-EBYhn&uWZN;JGZHoRp%$Fa)w!dL}h4B}M9gi`!=jjG$nH!#{T*9OszJP?jf1_zpo zpXm%kota<#gi8K}j1h(+Th%-YepR)D)RS|bzX?w$S#HVteBtoBm^%+ivYuj015C0> z$Rifk^g6LF$AR@ihVQf@B-+R07g0&sVM&=X!xbkRU6`5ng?K%sxU#n~3R)(BY@~Z( z69+4`A;=kZm#OfFudZc%vYD^KYM5O?y%P~KJRivSQ2O1exg}2Bop7})&Pt*#do0MB z8b%s!ES92#<8l$yC_uy+Bb-Py5QiW`q_;EhfyuV8%>A^v$tOa8uG9xaTXLi{*RbIb ze0jbVQ?^Qu0W|9l$(*{QatUd+PEt!lHr8T>Q<72$vGPzugS!jgVC1=|Ic+A zY@DLrkT8L+LuP1(#c(w`i{8ofCNvr~5wnsZZM0KC$x|7%K{qx~U0cTW8x0aXEVRCD zMj-o>8MfIb+a_}yGz9q$k}bBLLF@F1g40!j(1a!T1n~U;8Yhh)K<=Zkw25Xj(hDXH1V z?%}u=P&>&yosuCR8%`SFNaCn#-O?AILd?-S5sKcY%YwB1c^UCc->F|hqm(1`Pq;CKQC*9QR0`xh`O{IZ7r+Vfz7#!v20f{662hHRtm|yZV zO-MGAZPcVu0{V;SJDx2e1eNdCqUB#&qyl@E1;cA!V3Z)Ww{Cmq7L0{{!GTA^MNbS_ z9C;jJl~=Qj_V;H1ymv>N0U||ghmYBC@x7?Tghk+hBML<z_m(*}^1=XDdKJXiA8f6KQBvcMJn06hy z^Q_)+oV?J_u~R46$i-y5Znmo$zuPh5jo1$oGDoMg%Gj*h<4ymS{9Q>1Jq=$?~9KF+!d-XdE44F<#H=2{dWL zl2Z)Xl+(})dt0?>IdVJs#!W>5p;TQ+;SNYXRxOfZ7ECoMDbSjA2tcA3d#*yVa;#ds ziDiz5S|N@dsHg+H^5kh~og>YpWtd7$U$DJ;5oZIqbxP0tSQ%V)#44jmGJrD9ppbXw zkdMuSDl66VraV~Imdm&0V&?`eTa^PY1z9m=RGjfp<^RQg>%BT4k4+F(xzJqCscn)6 zrfvsfPyAbLXo6F}G<@(1k42N++jm?FvnCZz-G*8>v1fSR+Vul_bbsZ|L(P5E6x-~t9{>fEqnM7HrcC|iC}rnY0uG=XTo$p8*b zqTAWC;3g?Wq$HkvTVVF{1S^fR=zls8l_eD9`L_yO^?tusGahh}6c=!jm8E$y{B)0M z_>tU-beJNf7}0RY!HuIDbG{P@8xO&Uobcm@;RV=!je&Z63g-7pL^!3oWO)bwR>2s$bltd*f*MjW@^P0- za#YScX{ZsGw~2F2A~+%E4{p0S=x*;;q7ut^G1nA7L66MImaC6e0H0W!0EVD$OHct$ z@t2hdt)C?`t+!iqc^9(@uwLOQaY%c^s66z2QaoV(bU(eVIO&rgP5`_%95lMp=&nkb zoeobymaRtFVw*>W*sAo5Zbikh48vPmsrGwrtGjgqw z=|U;ZbWJcYVnbbB9?Vr&MOS|K+e61qy&Kns%*wj>w&p@wn(IeOf%`5Ye7YCBK^%0s zu;!d-qCZvfpg(o7Qx0fE)K2c8GHw*Z9%@PH%|g@-9f0GrDN@h!+26WuQrSk|Y=~Ch z4Blv`+6V?Zm`TZ4qL9DNpSt2Dl@j7K>fs*$ z!j1_&x7gjuAxQOQ#x7^|LSrrfBkDy)yO@;>a=12u#u;NRO94=_r&F3TUbixhvb504 zCT$Lq9El}ciaYz3L<8P~U>4RYRD>Krbzhq|0oq-gstM)?ULp_6!Q({75joUZC0JXl`V zX|h>rkNR@c4Y`*xSbRQ4w@+nNOwf90{B4URNSY{a&G423AGkL*Nel9x#(Mss94jjl z=@_);MQza8`;{-1v$$-zWzvI}{bYgjaDsh+CC!{S`wk!)9>o;jK!b-V!oMFMsQep; zkmD=iNAd;k6JAn#Bt39((rF|S0G*w#y9W&l zS8va+;q8n)M(^7uk2KV2*h^$0>)p6-r{*vJUR_%jrhj*YIZqM{Gm(`zH_7x{-ghrf z1qBRtXe53)@`*D`Ff^7rYaG+tSQ8#F3l!fu(+B1XzuBOLyqMf|*|Z7y;HE4WU1nve z0sP?rQ6N;FqNt+?c1ng11n@l`7cXp5Oq4rPN|GMYVQ5^{7bpiT2m z6Aesxx-sYiX6u__3@D)OnA*1XaG3?DNjl)R$#+#7Ptj4|jVZBz*m`~}`%j`|zXF{$ z27Lag7lM-}dT_CQbJTGz^fqt_Ovv%>+$0ZMJq%D2d~69N0=X`k(DmQXi+e&uxN~9( z&H4Z=N|RACo}B57Aac-({8QBsfCZ*{kh>X0HbVf2DgrE#%@qQx`zcKB0D9;cY>l!i z@=^tz_wOssenf(IK^Q*RH>aq5QI8;G7={q#&7yM>iaZpepqFC6h2z=3x58LP3=iM}p5ON*O;=h}J~U>d8*ac*=P zhnig8mH7d?153|({8>t9kb+QMij>Ce1`%nQ_~u6gzpW=T?1Yzsh$&L=TWbw@y%2%--M?2;sHDuJw&O)w#R!YM@Q%mY@BD~_C5hy|^Q zh0G-v9F{s997GNx1(wVN$YcN*#2PEnGd6VsWAq}@s+e?Yc-Ekl4XrGl!ii`fGLtPL`D5>GVnkrPI* z0+CUgSou7D&S+y~Ya&D}V_ExSUA0MwK#F10Gx4$%tLIyl={fpXwnc$KjS>7dXT4a-|ugsb>$m zhK*iI7Hzq?cT@P$0F9p-psGC@S@R{#LK5ysliMR2G?m24B8#Rp}Vwq&sWSQc8by!V%DzDpRtb2;s|F{A`N|HH|Q+YUT}h}l^BsC8XopV zBu)R1Lxhl25Qhdh)gXCxTTcIb^!qH8xi6s6y>+BT<*W>}$U?^&hd{hUk2@7y2=Rbp zj*8So+%H2+_#e41{uk6V!mNg2AXRW*F$w|RA1nB$}UNgGx*r~6pHf6HgR zcJ0~c<>lB|M_=!5od)91rf=JW4st5()@EM^#nQ^6L52oEWY_lgruD@`kgt3E5IL+F zOsE7%^G}Smf}n0W+wGs@b_^%yuOAc0Rif<>uM6NTI1=frRX9Gs^U0O9=dVR%SN-xdgzZ44cB_AG5fQ zYwu~1U3f(rXEmp#9L$eS8BR^ZXt3EV%}?O)%e38bE?0f{_sSytY|a@yLo*;DH!W;o zkUk$hL~pnoge@!dA^A0YZ1NzQ(UAXf|df0MSZM6ilc0`gZ7x!>I#3G zDU$^)+Wl-AoC%dbD8seZj+2@NnMJ>=V&_RnzWVgl?xS2$dgJ#b7qPQ|WPuow*vkzl zN-d2~_iHcjeNOBBCMyxhWtgSU_53j^7n?TVc>cE}6~2b>1rhX2L41ADB|wOP!L(L2 z+&qQGk9{#V}OFstcYEn<^_bptuf5q?U7(zL1 z`DQ)>6cj%$wCbXz5HUGkv&3x13Ku6HAvqaU#pYQL(TmEZK+MOK*XH$UHjyYzD2Pj{ z>55NkiQCtJ_lw5g%5MI1j$OgC?l+LJu=EZkao)7{zm$PRV-9NiCxGa^eI3{Vs!AJ7 zV)To!DOA>-MUm^Q;fJ+Ljn&g-U+?HNG%R_-8{=iYBl&T}pnI5C0=ElKzEyKtG%Cv^ z=pKKwmq}8#Bv}{5e^}|AeU8GIp0Md9JwB05%+A8Fjz|KqDQjOXmRXs+-M7ko0Eb{I zX5I(tlhUXas0UvE=wdZnnp-gdpQM6WZJ7-Cm5RhMsb>C*M(}JF9A+>4YaNyvKN&tQ zxfF`3bzvL4kn+7(MJ%&6SQjfK%`)QJvW}E_$gk6lOTIV7GYtTutyM$i zunjW+Erf8u#be`C@i@a$60c7XuKA}=Dn5Q~d$ZF)hL*+i6a2?<@d;K=ZRyUJWH#WO zgK$QmisbPhFF5N5%`FtLTAz{)=_kIdEj?P&7A9xG4a{!4X%BuFp*sgvVEl3E-;;5z zj`+Fb-QclvC@tIedY2}vk+m_@wX&1bXNh?C_wc03p;6+|WQ|4s(mTRNzb!n5uehx& zGdMB_6)WIy=y=(=Xl5a{(g`+IBdfw*QKq_9_q@sj^@>EUo`P+duf!WUqzquuaH za@l*bGUWZv)mQcT%IVhj6aLxtyenXJ;q$rjG-Llc5VyI83%b3OR^{_qd;ufwkV@M} z+5gw{`5u{}vkelU%Bkh>#i;QZivL=>X;^P?y-nrHe;w%zV%<67Nd)uC{9=7AGqW=Y?L1KK(}=(^8q2l@Y!p?+e#09A5p!%1tu-veNZx_ zxOS1J9TeZ-WE#&<91a4x|A<)Y&n_)9s;RfS@z$B zP&po!i<-V^;8iJ{@z)t}e06>=qSf`4Xgt>4hZ_o>$5xrJ^lLmIY!vb1U4_L((da%I zHYM?IyW1kb`3KlNwhU^XRM8H(x~3RxHj^^VesQki6$Q32X2J%<*n0tD|GQ`a>+ZGF z#HPGQ%aeg;ot0niW9H4G{Rsd**J%r`yG8#{;_pazC)-|6fC7Xssdu!#>DvI;F!nT8 zzctKm0jRQx#*kRkcc^|mOV+3v68$_Z&d_M~S}PJ@yXVyRBmCOFr6uAj>9IZ+@iIU+ zU5`(X_m4FH+CRum$%;#00=$5Zqwdj-QJr{BvsUiR zZbodlr#@$OeBD~CkX307J$o0HqegJ>I{cLfU?GYfSo}1mfx~jw(6LGKF-vjZXoUv_ zPa^=$WMsSlLm3fx(&O)T(*K$1Wta5tdO27g{rkH5b2euCtMYnR|584@5b`&AI+Muo zBa;!nXKgc`eg6)VVU;5Q{+A&RMe+R%|Ed&G)YGz+)+#~bxcbmdJn<1w;ujuHe| z{701mc{qOEq&QnfHIyO2GjAN$mjrhJK*^%zwfEjTMyYHV!?Qsttaz%h-t0gCPW~@w zv+@RW|RG(5Eh-e7<5!@&d z-1aFYz1x6H%PgRMzWjDv(W?BBJ+6*f zpRvF%C}d0GV}3{7rGd!SPkgnVArwg#bV0_k5jtF;G9u^Tn9)eRkGIeJ z3fi9DlY`#Wm-GF6c=foZJjW!S>B7?G$(jVNEIeHtmKQS1P-`JLYw-0Q?ZBx2{l`}* zGTp_sH$G_Ep!@B|>^+OIw-wR($N6s+!2fe44O6h&w*_!?77g(I$wa@=6&+$N0sM-} zIV~&9Kd}*zO3x1(|EST}`@Z`hw$7=$5@=bY(N5B_)v;|S9ox2TTRXOG+qToO?T(F( zjoafq-1~6P)A|EztQuA8t2u`|i0`8q`d;7O=gQNiiVv@SX{V*lMThTf2C&2;C)NXv zNVynxI$uly#mv0lk6+h51Fs+3=T=?4U35TCS9hSkpC2Xg_W1e_Z~SZP*PlJ-{*TUH-Q+`NY5Hi(v>;e}VSrJ6ZWr6ggAdV^JcbT$NbvFFCO&3;++>(j(azTP z)>aNG+xI8vTt8)AAD_CwtMBUuIPK7MrI&jLSD0!|=&P`3LAGSEX~1+cFq&}c!A6jC zKa$%7a!eVTvBQ5heVG9TdEZMAY5s;9a2jtF1@27qJ2{(4pny_eYcnMj8v?lr03xZr zqZc|}@J|ikQ``Gx{_ZNXcY*b#MX4GvXLPeXyl!ufg@Fl~fxNpZL(?Dvi1%vYdcQp} za)Sp3*M$C3ZrZu3%EA`^8Tpf{Bf}T?q)XKdFIYKB&AA}j5?WlWf%Gh!RGLGFpuLo1 zf_P6p9eDA<>b#w_mqQPn<_Cmp8PtMKGO~c)VOw6CqvGS>$5vrEBpU5P(Lffk4yKzc z!U=&{2LlTuK`E#p{gfgNaWb1M0g0rbg~~KHA~l3gRscmpS_3nIO465vo{%enlKug9 zjuav1%@9?*7~5G&y&(&7f##?B&h8!rE=Mp!?1Xy7%1jfL6p0t36y~Kwd{~JiI~Ds&%)1s+0Jn3s&(LCV?5s{?Mj=wE4$4xPq_)Ssiom_i!fIADd; zC35jQIC1E-b*}Wvmo|hjNI_6(UT>Fq^undz34l?moj=5{N}HstA`Ve~Tr=FshqwJv z0Rd$_dn7s9CK(-Sie^NzcWw5YIw2-pm8uc$&a@81Sn4zi@*HbgKvyw0A+Rp3gD7(3I#BQgKXGbDL zgG58!C51m*-FdqnX5sIKO*HP{prC;bOShLW0X~S8=9VkK1K4Phh^Ak6Fcqe7h1dCU zm}^A0Y8ae*rVOl(xngeN&Q6Cpy;IeOdl*w;yjDRmoHmExRio>!S6(%wfRmA_O)!|b zM7S(eU@TNo%j!qwhnh{hdFAL6$__oL+8iEYsLJ~JB9K8R;P-X+j#+vrarRMlwE2E? zwfT70`f-1po%kA-b%irHxcnJ(l+2W+sEZU7X@#uT=L^(GP3Zw)h}!0W5SiAiQ8@LQ zIA1)*4Ky_udY}9}eKOYM2oAITHG)?Ux#O&nH2g8lmCLhrRYu(rG^_pus@Fr?ca08R zrP|lEMZem*Fa`t3fWr1I|JtqF+m<5rZbQlR?}>PS9CZ$F3)qbd#Z(?(0lxV5d=B%@ zzkZ$%!~_3pxT#u%KBiMM&B1?`{0p^@8RCsZ9*f*@7+b#y$KQ>Du#R>|YX=H2~o9 zimSh~?yf}F5R`59$wp{kIC9%@CRO1ZVJd(6(*uW(IXv`pA?hh#JBn_JLwrAj6se{ziPoah)W2314t2i- z)?KbULp7e?7q@<2g+zwqmeOhk9x4F8_@ELC5{UB;X|M54BmSsCuOZ3ltnaV?<4$Fl zXcJte=XVlIAwAH(7qQIHmR!!^vM9jQ0>l`WM&z+TnR!-UG@2Sw+A}B1;Kv&Y%8G^G9g%Bh@ZE9YuN4NlbG17cNubK%N-q^nt95iU(rNYLFc9>`TX;P2_EKM;%qx zJ8YskIrc<4;YFAbp3e;)aBDsWEQsLlrV2k^jX0_1xpvd7v{YRvDYnBE)Ef(XkYk-U z!&Au~$gZ7nSl90)i)6L^WcZZ`Xv+bSFO?#xAwhu*hzYT3()ac0o%xg9zeG65fFn z;M0^jX^?>nl4ym<_XrSX_}6bi1PEN>69Ax@F@Z>wixOboT>kYxCjnqwnPMP289}3@ zgm&j(U=5RPj8Q|KpB}Rj-5c+>z59QHWrNkIDbVQ4R)0)2hm6rml!w896XkUw-C|=) z(8_@Y;vfX8!a*n0Yp7vI6A4iIh6HRg!cGt>4VFr#3!+s(hQaeN#QmF@9^GPLcS|j~ zAOXu=19mJe_bt|ZX^|>^X4{c`x|d4G!fUyYdnQRE7>5$goUJ7rEQYf-1*FfDhRxF6 z(DP?Zo&r!p;k~p~(uLy1?RnM5-kn1h%ZDJjCqyb2^?qub9IU^@w0B^1GTfa`qMHke z*E(3<^R>^JlE3E1o?KTN%P8LE7uwK35dsO4h5xA&Y90gQ3#;vwJsfvfHWFeF4i+5a zQ2$mR+|I}r_j*ZmJ3IIGliDrR8cQ&ESMa;19R&QAZ6As>c#ELDp(1?o@|A+N zvp}Xrw=goAwYUkCD-aD0%$7%{)31|*KBVjGhk8X-*&hHSJ|Zp|3>$b-s@qbdq6KO& z$xKKUo>!78*_IjRETY{&(wiGTnn9+Qx#Br$DC=a=Miv)_EwX7l{FbF5_~^MV?SqpU zQY?54S4F@JW4ST9F|CK8N29r+MvR?gylj!$eD-5yCN&KCs@q*_){i6- zlr3r$P?0GT5PoCn{u%8tKf4zEWdVHdR~?vNkYkODQdOel_$-Xvi^BPhZ)Qx^J;yx0 zyQ_neYiI8@MYsNgQ?@A5Yk#_*X9@peTY4%nE!{Po%D6JY6KGmJ1W z%^MU3J=wKGptP+H>ksPcl)oZY1!K%W>H6oI*#yBKmjh<)Mai1$TTsy)S9#YuRmb|h2$^Zl0H>?KH^cD4N*Gn_+zb?#@={R^Dx@{kM|?<5Wi$)=1wMD-Bs)~ zob2?>>b9!iPi>EmV@6<(kFy{)V+~P~HcLtQB_UeQ)l2WGtu@IS?l5fC9%<~cK^LOc zn(^^#sslkg2ra+3TQKdf^t)|dh?C=I42HK}gV0oc4Fj6R9o!g__{!Kp8IoMfiiF|# zv7WZEoGo)2ZLzwm#9^y5es$SpHamo}5Y9YGFp>2ms)8}E;cO^?1(U+J5Cp=F9VY_D#|%#|NrtMAo&U8Xu9d%YDg|C%-6Uox;{}-Q>X+6?Xq6L@q+D zdNM1vnQh8yl32SivStMs1L$ic;hFpk7aDG+P#*?czr9w+@WvhrmFPym@XCWSU-8xO z`;~c>-$Y8ob9jTF#$|=7oc%feSOCTU~4HCuRpFpHvHI08m8NNu$cLD>G|V?dNEK zC0kG5GG|>R+Fr(7p>A_Eab;F4O}9qc!&nHW!lG7;rOX%W9C2(E#v_)+4|6%r0n4i> z(foi0ya9vDLb9`wB`n>;n^q~%8DXi}7YRj6SJljS#?tdjpVkG6Ke@aMQf;IWyUEwW z35&AG5$NA*LckN=K!NZM*}?qO_HXkG&Emmz_=t>OHhC5L3SxGG36^d7r+aPrxD}cu zUGe{Rw2RRb5$v!0P_ElRO38yRsUg>^pId^Z6`kNrVlE07wmy)pDs>qLajU6XWp^|# zlH8u;%Ov++i8GXYC61L_DP^-O%#dbWJr+MEBfH)WV}U+)9LMZU;tpBzrHU)8jeF64 z&YrCdhrYZ!p${td!kJ_6Tw<;BJKCl^OmQ1QDNM)|MiHDTiHCKyi(`plO`}=wiw>jw z+djb<6$=pmK5G=;qxPbD4H!-Sz9!Op%hUHb?7k+Em|m9lhRVDO?K3FW5FJ0zfR|qPk&>A^8v^DQ2*-9vhIpH{hi3#^K39@_)vZt%=<7+lm$wnSte@m{?PP6;FsH`93HspMzk9ynVHz>B;f{0>Pbsdbg;d3PKmGXDb{(-br)C+~f`U9ZmxG=xnHnE<*u zyhOa3@dx4S*6N@xOHDtp7!S$;QI+A6!GySTzSQ)f5L}<}=pk(JiH}xAWz5d6+_ht(vIq&yo zez{ayd|X}yz8-7as1B->s($j$KNUoE^WIqvQO%YwRKb&EpcHzXpTGM$hGvD0j(#q_ zPs027ab6>gwmo_G{P{i^dV0Na=q9}=+t1nz8{OB>jrv}`*#5c&0e;^q-LUa~9FToD zeyi|4EbhI&?<;rk(t6(i(_cDhjo|?$B)$crv!bp1z)<&2J0!)L%X2sW^!4%Z0@qak z?(lWC>@7)wbMCzan`ftu{u4(2!H<2{4XCy5y3LE4ynvU5PeCkCnTVc<`0SdY%=Q6C zGu4P87oWz|*U|kr3GC+wZ&edBgHu!C@{dkjp8gzm|DI6idCA&lhHCs6|K-_Nh~saW z;Mex{v~Lfn3e{#ouF>N^zR^goEc?Y^vDgC%wvA{L@x92Ovbh6_+%R^Xe3BZ-mh&6xSb%7hJ+K8m$B zSwc!{_Q|uhSO%On@+AS%4JsfQVN6g^S3`TnzBtjc<^GtG6<`X72tDWoxPJ^GzzMKV zm3FgWv;-K@f-oI0%=>{6__m)vhjK+h>NJUAT!&X+mMkG$$<_#VY9kSW-{*xjilERa z17^8Q9@hNq*#Bl#c@R0vT8<{Q;z_U5cHvV$Cx*bpUi~|SB*Vddcu^`9lwkC7u!}z6 zmqw(L@>y-hU=S1@D#XYCwQdoyStB(<%7Jt*hwj zaspZ$w#~1-h46@${G71I2;OPqE^_K{v0Nhfe>A%vd5?7RDmg2~Nr+rHmMH6CFK4F? zn}y%bL9Mj(8GrAHPdTX6XCuTS&!<59&mY+^zeQ&gPyPEYEEHPj3fl&6Neai zrze1sqr`)<(fI(!Kz-(TXQSl;W38wNe!5_=+l?9s!=ePii(0Fn^ii^t@}6&!kKwnb z>sIdaXY_${n*C`|Ck~w>CM^eMKr$?A-6JiQ&Min#eZTsXkk2|1!lWK0A`*#33r&HN zAS@Y<4M-+onHeo*zH8V<8(pYFm#3EYfT6h!!4nAZdlX=1K&CMQ-Y!}ks47P9kMNTc zQ(|!TRe6%)8wP>h{iCnY2f5Vo@m%FN2wlrgxywp5!w_R!%gtI!6*bH${_v1S7~!P9ec+6 z6IY+BE(U$Z!wMKu3ZMgtEhs+}_9jug2E4b|SmaeQhCBa8g^NrSD8+LKAkUy*XBzWn zJ!A=i+VchCs^lz`$wZA|@sx08o-~Ug+~h*+`A$&n{b1@pT8qXKS4o8M8W*gzRIp@W zF?!U3!7n-NrfQ%jfn+b$E4s^BGYPgNt;)=xR2_(6!Y7PTmjGuz+^q#qvhQatQT0ze zxW=0gfMw?DqS9KI#my5rl>y;3vVgs#CnXvGEYncl3Y?4b=|%b_Oi6(eKIai{Mc z{yW%+hbl6$XUK=^w}Lx@k!xGoT&6mH*;@6}m{Er^hS}~|(Z$i1W%N!cYuq3`;~NPy zuappbPP??&?=zS+IV@C`zYSa{$@qJp!U>59w-9tgR>$eo^?RFJ?Xrn*4XE(HAW(=A zmjGMbTvY@lTfn7ASnP|yq*!JdHcs?y{Uh)g`oSL^6jYsARoC(2-w7Dp3<^~CUU;mp~N41{u{T_S_^@_$X@sd zF&{1q@q4cTYbZRF@l<`*#g(HQW2o4O(Z9#4JTZw!<<`*vJ4zEz8mzP6g>sc>_DUgl za+r1)^DZ0WtKm*)8XBI~-ZDpZVNx-B=}$U@k?ZJ5&wC)A<8b7?GvZEF4Bcr05s(Zw z;W?ZZ3MDdt)`ze-v6o1Wda6 zMdgo*=#+pE&?@kxh>48NqQWhVeFW5a02xxZykHw16EHrA9kjAg8&*s#`(d3#u9XN9 zw-}ljJC;+``jwTrrd8N*T`jX*V(k9jPN8v+Hq*u>%cgoh<0ty*bnwznE0C#pvzG4Q zyTxW4@%V7cG({=itp`JHL%ER4g3V*0u>>GeSYk`=Lh=@hi0``w(+txjkBKF_7s$MNVV)w_*3FSrfwwE9)hZkwy3Bfy` zPyPMQ&^k{=VWm6(SzyzLVAO{{9f*5Y7>dl9ls-#H2uVfFlyzawjVXzoVkbNk9<_15Bw!1K>-^i`nx?V zp+S-88i@=HLJ&>L$lpV$gclH6)A3smO0F~T4M5)AE+G?P+P9zT2YrTTC4n~VEUX}A zoXhUNG-0NHaKoHnrYQc5Id#QMAY6>a!?$I7*>)3 z7L669o3ESpq)?RP3~>fEG!{Aq0x0)eG`u43wJ!71cx7cPbb3o401HUO%B>epy=Yab znY6>Ze}!IUnugk0K_SSqKx~uVJ8YqgSbs1xMbAzoIdmrAtZ%d5-wCcbt4l^_5Vvx| zO?>&xYUz{8u3a|$?CJvp0CXMZ?2>kRLV zwO){ZZ_6>9G>PS&g1SfbL-13CQB)DxPu1d}b{()fCUCo7i2F{Tk7`N#PC2sBfE=W= zKso13BqJ{*y#!*kij$NQ9LMBNJJZ`{bCK-{PlmVU$>kaknBWOr6*JJxU*PKiW1ot&PM|Az;{qy_&klnY(%dJxQ;}f=@Qp+EHbl}U` z&4=&pndA4vAKj^@K2Q4Z_q}GAK!wbtXc*^0xIqSvo5)JTwr!p4d1dgMr?1cLz1N}I zjj^YOt@EMB`zMF3E>wkh@%o~?C}3az;Qr0m=iW=JV<*MSH5CoRhrceiIRMQ>DL&IX zapG~vv9H6e%%|RQU(M1UEv!hoUlk2L@2R^e%7X z+A})-C_f1}xT%E+VWE!97TrmH2<-0`DnM?ED1%2(%g?uAA`D~O3vMEZQnzNxACYR9 zqHXM0Hv~Th_SdzbCdZ^&{qv%Jz1UN0LCrmspJi^q)z(dQ`|o3LVBHXjeLs=-|g&LSN~Tjl7* zCH%T_b@$*Fu|!?0*|KP^#;gtrKzz)Kg|?OJ_^xdj53^22WQ)Mw0oLFgbVd0G&K~J* z7qRZu%TyS7_=qT9kj7QBk|)Tuiq#85-R9fgyL!fKLn2LZ;tj2C()V67!jP5`>4RsS z)4vsZl8cp0D@!m|+-wx_*!2n1L_8Ot5)eP>MPn zeJF!bW(5+-rom^vRX|MskB`g2`ujImZGYsC8Hu1B?M1)%s{iyi}mb9 z8EMUCt*u&EMFRbkVd;`PeQFIeY#s?I(PryRMctUNua}R_{gN!*g8Z(d10(0GG+jD| z-75ECbC05}tsQ$ieZ1ceahJPYx}iA%{nSZ1)5j_%Ldk*p7(n>t*U7Sri~R)s2+|AN z-pwQH7l|nSo$cfMqhZ_-hws`Q^q4lx2VQ;t8kmCJ_Yb#!AR&X}ZX1Utk1e~eo6&+9 zeOo{A_501j@kWc-e_%_)#uu9zkr5F~{_hw|ml z6EalF&7IWAf=Necp?c+T;JH|;Y9Jr~(8nCK2S{vqc+{;?L4QaNOn!w*RA<9=#zh<;zQ-#f8_&l6^ zmW-%(Bf>JIs&MU%evL&p4y4|dPAg$JO3&w4_(=z(j4Hv4;u%s#<+7=8ppmUf!j(`# zU1&_AWTIPZx>_Q(GSDsmK8L-uS|oRybyy@+Xt6&?tLo!b~$qG)GG%={6l{9s~JFO`P4Pv7P;S_cNnr@1Is(g1kAS$Cb{$ zzZn?)n{vlD<6iE#>I#OM7lBGf#X*!z}XT(wvNzCGxMI|=5X~1pW%C#rTvQW7z zIQNOTMsL|oIEjY%YGWcc%N&Z#7BsgB+h5F@8?69v$1Wl=pE|r!VtW#7Q4S?Gnv&2q zl9Ax)h~+1pK2!&O5ZfrM#xm3x?dyU)RUaTtG6XodU1bdtn&k%h$}8B$&0jX`0nZ4C zU;Yk4O#`_KC%ap$$kYuT9f03VKfd0VSyS|1%6!6*%Hz@XEhF@Ma{K*1#jWdYvy~i$RZ+kW z)|Tz1pDRx2=6=~MTyPg8SQy5(Lxt=tbKS8$KU<5Vxsmv9sUU^Hl!-uh2N^dZ)X=nr z{EeFB8i-E^Bl{z@45HZ4{zSIBg?Ac*Q*3aKi!_=L3kZUUSa8}Z0?jkm!!nW@$2*QDGfg&_;ghg8}uUeWok*8;2sOVE-O8||V7TgNL zUm;NWmiYN$q6)pW2Y$N#-6Sr$UT*rURpqiy!ziwFNiOgOzXey7JIJ_vwjt~!fzWLt z!atD$;2kD*&7o~$gHav7T_2D>Rs%R#mac??2|B>!cc07S2@$a{Un++j*r97+u=BBQ`+UXs`!N`5X!eK@++Jy{kWEI+~*OxjTgvh0XfzwkQ$Boq| zZ)W2Ja77Fsx>nPQ;8?3%t@Vim`Z;T{aRYh*O>9h+<)vpUHe+}tOk_RCN-QNN3s}?} z9A-SGYyHNC;MH7JU{fqyy!Jp8wQLHo+|F^fBJ812k+{UQX96}2fMS*F61~kXxSB59 zU>uqCck^UzSdK=u_8{rtp-9whF)bgr*W($LI)S7PFeq*3$02pUE|vpbp_LelYbOBu zM)&<7PPrW{H4g(ziIO_VHdB;R2SNBBi<|6)WT|@ceaAKmud7lAqyiX}k5y1uuJHRj zMtb}E7Aq+U6S~Xh-KoK=d(-Z#O#r6j)V5*TTM7gRA#yN3gUUgW>r;QUh)x)sWWX`u ze*2F&mSv#9!7+QKC4eMcxm{^q%n7tCJE!HM?yP9GIf5zvM7`!6BrUYu39CaC1Mm6_CXa8MoSRghApP+ckrrW0eU---;R0j6 z8W+|j#&e}!%ap+7c>z~f1SC`$ZUqzX2Y*!g&X(!Y`BwPm9`RGZ21mf$B-oxsLjz1? zOv!Y4t6{?}=Fh&wU~456-`&MXuN2ak#YKAHYcTqFWXIg_k`SiF-P7ZUV^m!ffqK+t zp{Js-QtydhRvpG_RaqklppQCTI>eMpzUwnB>u!%3&IxF#LiG$zscZOka~PPhJu0f; z|41grT^{{oKDLk~(NcT*cNe9HxW$$CRX2PagI(d6fLUldj?J;k2mr?VAQ7w2FF;5{ zI3Z#8wy_yfanRQE$`%F<>Te?2=V8_WOmU%_I=gvj+cBu{K6y;#jB&MQ7pISbMQFwTqBJm{V@$B#H5i64k*H{v>$`|7w0hi$yaE4#I{_BKG2<~sM3sKRXxG2RGD}VR zN>^=WgBrqIw`^)(m_5Rzp5Y%~g`E2j# z`vW}O)D^(L2;^m_I%G1QKo6P4P901={?>%6p-i8UN;Pw(2Za5NwUM|kZ7AZ!>=asr zKX<;6ZuP;&C))}-nCR@qg zxpMoNa{}EzM@apMLk`*qC9-xRi>7&v_zZMJ`@sMm7g&O4ClM5m=sU>D`g<2uZilFt zl(o_Y`hhA{#(&eajFZWE$8GnN=$gXy2l)|1g@irB_(26{hC+5B0)-L5lL&Yk`Ass1 zqRD{8;Dzhs(|fzv9Fv54190gf+`+3E#_AJt488luRH?+^6LC^0*d}>S)x*dAqy$ji z!-~)V?U|@?)8`+?(d9=_@g8=MoSQbhY1_SNb!vTymfqU#)^@qUV%GJv>aHX&*n`>n z{z|$N8f8gSzh+HvJa+iV?3^k~&rJn+p-eEuBD<$Z zOin!pb{;g94(;R^AYBUUg>u%(lK||URn=*6F=0i-^c8;_zMw~3bFVA1wULJ0Ds}M{ zmjkEkiJ;TvsnEx?z;y3S$H8u0ER|}!OeogVB2JOz@!RfB%V$ecR_8Z!if1k8{)v=P z=+?go3^d|S!pjYi8(G5~M?lBbjbt!Ds3GU+B-H^Mbatx1a9lD{#5P7Jn*^4AL*p+A5MA45B-j%CT2OT7p}_7g+B1#BX} zy~Pt`oti+EJl*F!;4~>aO%{0H?8MC(F`CP~B;T;f*Z%d$-p3cC7(7L)tpo7*7 zuwDtm=)RtW;wkzFq_Fp%f1hqNtvRsVEueH*gaLm(krCR)!t@+MS%|IF_q z(RcIlA`kbG_sspZL}kF}ujX+QYm?ssnHDmT*T)b$Q+V<0y_C-*#m8Kw7ABP}iiqrn zPx@;B4`JDmV5cr`S3q?;pLEv`c~o-`CuX-gK^0*9n8NCCCB+(HtN2wU%Z2K`v*qEG9Hzsefa+6Ey2K{4dll1pV#Z!;H@;A^gHic+ zS8m}bZB{=w#ucdc61RmSJa>yHT(yk#utQY4Ct=##9?aQ_XCAQq5q%5;wIlT( zqs0;J<|M9v>!T>ordK;HawumwuG9!L_6PMCj(;aqo#=A2=a6uKqJaQY=56sbmv>ct z`mGQC=n8W$j?DAk((U=fHD5H0`hfbIQTUnlpIU~^pG`+r+= zqW=TV{Y!lRzZ^Il6Wf1;ZMvGyxNXROt99w4rd&J&zQ5H}aizI(en(_btFOx~-^F*M zh*Fc9j(+pOPfgMLTTU6omSkf(cHr(=JiNLVg{johD1Gj&|DDPEe0$zdOI}fvQp@S9 zWUYu%N@=}Gx;_7>d~>@WCgA@*|2X2GZOyKTsh(}sYWVj>>hoFn3Ov5=dqwoR-+x)w z?|ZwGKl%2$y?gond;{0sPTVuZoxj39lx=pznoj~|sLqA8nxo$K`)2lVwbTRZ-c z2Yzp^u9YWWY@80=N4JONCb&&5t05t1H!rJgXbrW0QO!q_s`4t;a8=33%Dk`HZ;lo| zR&3xt-IU~A9=$ew19^*X@Mz(3lUtao7j*gs8asWSFE{^6x&nY7&Z1TYvX4o?2i;*A zx?uk}j^)+auX$Yg#$r3h5i4WUw#pi`ta~@x&V`oc;I~oJ>55tr*$T^CU-t|As@7&T z8C7j~)K*}JUx?D;ip=Yklw1~6UQx4Ai$AC~^GA5K=)g5RkapM!T~5O`0CK9c1Z#3o zwA3YZ+Jb}{QokI06v>6@>p&{1!#8Z9q%B>3rZu|3Kk6W<-odUiu|J(;IIdHY;fbv(rX zeN)Yl#RfFq%a9l zD4gF}B{wZIYBCx^9)WmK?&e<$Xlb&yv~cV63!asHm>38OC@L+=HGuNmF0hccwEl?l z4ZNCINyZJn0g$6Yl+y?e_5iRKva({mvd1--CJB^)`d^*GFy)xl#Ds=IfI0X4T#xBj zkRQ86YRyFh`VKf)I83v@rtCNnxA&v7M+J9~E8}1NLF)GvZt==NLJ6}^@w3GJEmNFJ zxlpu!zkBvKuccyZ(}2k{d#Gfl|85mGT1miqhW4M&;OfLq+|_m_7z^NPO|<3v1D3?w#UztJNdc4@0DiNE&YRtLwMR74Ote^D8U##)Pj`&UXekgr0x_Y-pO*lr>` zH#se^S$W2;fQpJrHx_YW`)rr>LklF(Huo-e|9yM>Pa`f-R>1v0c%8JnzDs#rAle2ELa1*8Vp zI9NdtO3me}>~fC6_H|aFzpo`It>t!Jz=E6IDX5E0+PE)GT!n|Dc{JsJ+&Bie7S#BT zz0H2a%?!TUfn|^eOIeZLX}irM;~@nh?+6W_JzjQ5_zUiS)gK(1a(s6n%Ipjlgl7$%_@a*`L_XQGI1c(><7bg>wvY|5}M9jT(;?~uU zB;jiM?9b+(0BfVg`xC-aMmXk&wxI=(#aX}WiXKV2$rI35+r%(0YRg2FL_iUh;~a;PU96z`^l~ZAi`n+xdd} z(x)GRe3$so?rn(Eb#>R*S%`7`ItPwjHLr?o0`WA=e2i^jH(!(67w_9w7j7f&=DYJg z?VekGee3!=ZTHvLn|*(Dd9Q&_ZL8|j_L$e}d0DfJXJVnAd4}j(@;?C9ppr*v~KTXis$o4neZX22hjCi0=NxlmPqb*RlI~tk`Ry z)8Sf(<-%}{8!&p>7;D8pOise|ijL(qk7B;-3pP6I=UG#wL>m7rD(NVUK1#(MgTd@R zGdj)E>SMmp@7;M8hlot?N!nK)otMqE)gr(<5q0LCwqoEJg2JeZQ&-p-xvL?0|gjqT-l7+W~ai%OgM5$*-=yGd! z##G1->|g(gg#b=O=@a@k#}E0t{{wjeoCKZ3p9o8XAq1$zqJaC#I9K1LB+cjqaRW|? zrs~V*!l`tJ^~>W~q65w59uAz38s||lrM)iMZ-cG>0!ccLQU#^D8B8&;aWe!q6K#CPI=8O!)Q?lC0bOfgW1ZM z|56bp&mKdxegJ6z%?GFV*}2RfkfVCy3xK$j)c_pK5G4( zwiiOmFW2Czkwv?4C#wLRm^Zb&a-%Hl*+C-bJcu6=Vg+UCk_ayi7s`YQ`3$|C+=Aew zlk%TLSD|9M+;-EpBYX9JBKOf&;^ZZ!{WB6{!ht{lrN5rT&G1zlqcP z!EkId#0f-Pt(z!|6Qh_=W~o?Q&?>qfR48!G$d|3-GB`>h53-2bl|~#I(kzQaP>Q1q zNGi(_B(+&8Q|6Q7l$a*+>ibNH8J*81Y1w{ZWHRSFGyXCFl`>Vrx%K zb!r`9&TS|}-R0fPXyGf5)Eb9!7J;wO7}LgfPz_A!S_%x^h>6*kJJWEg-w3y!X^U z-%3-Z1qNzq4MMsjP0ahKW&; zk6OW&*$!JXHRlp-GpHy>Dp}`bEpMvIrL?gnq{>qVRi%N2E7CeIXxja(T*E8%FcL+k zHbA&^B0^$=K3vA3lpH94PqFq-`Lq~LgCJ`$gJG;QWqlIG*30m?haw`$z`Wr>P`~1-*`dY2ztDs*$8dWx zw!fVK0#@EYPZN)TsFH-BV_mu83N43YNIF6>LDKCu?69F*JfjP3Lbwx^@{LeapvnvrgK7vQ^1_+HvM4}s68y{FI5pI?`+Gs@@s=MEa8Cf%+3MtZ_Pi-o1q=1>dkgr^;tAyIHk#dDqw56~}*a?EY?7TsIO)d9I>OrW~DL`{);@ zDprU=jjcR?V(ft_xQdtZh$Bl#ApjM>pW6fSGgSw8XS2)p?MTuF46YYd|&xv+b*9xgjp|;_eA2{pAT;s>fZw!X}e(Bwypr)07snQUWz2jj$z3vW3ZK-twy) zUn=VETQ5r5*f4iq3t1a zQRA*ARX?o*Y(%9J1`>SogDijs>@}_gqGPfD*+z^o(){UK8)v+(7o-U9 zNGZ}>{PXk)2ENhL*G5fih1W z4>*6m-%Oj6U5IT6kDlGVz`ib^&&|oAjML7HTSr&NheMOK1L+H}Cm?+b^{VmuxodOv zM&$i*=+XFo?^^ZV8R*^8*X<_|mjkn^7tyL)X+mMCU8*Z{4g{g&!ko6p;g^!M#(&f% z=f5HV3OH{xo2igZaLX3p9(12fqj=mOa8SBq#fg%Qk8!%2$K0;fpbJvaq2ab|ErS3M zrQT?=9hR`s(=37Hy>ecOBpw;oM0}JC`JbvP7b-WMVW6zkGz@g4=v!Ko2f`v1{Ulzw zmQ+}@7BwrQ!tu)=rNh3i*1B90FBXcX+sm6`9u;1- z0L*p`=_=mL>s5QN=?0#e-hmKJ2fmCZ`^IeF1jP)QN!C#+TeoLZC)@YGA7jkiz3+O8 zD!n#zgb%>!_0&e${8O;TTLf~nBo^BEXY}|2oe^5_(U(xAp$&cK4L7j3C$MIpOC39(kFU?C=^d#MHzZC zo8$G&k>)JRD|4RzR2k64T<^rumyZI84EbyWn8ShN9``dC%c9y8Gq{-&P<*q$rNuIk zxPLn2Lv5=@(NRnCbUiQo+mGoao4>^4ImangL3z)(6$Kcy2jUHSJ^X?3OM*dT`E1uU`YGvm0deA}R1ZTBgs)d-~rAy7=JBve3|Z$UPSO zrU5{e(Vy1%Zw&`?h!S+>ozQPgec{=mlrulWLHj}ZIwubb&79!EltybshwNhXtUtT^ z{D1{pca7a)db!UI0_95y2^R`Xn{I+9D{u6to2}wr%Dk@2AA5J#(RK>yuwQHaI*f7< z&g-qn-N3@vTMxt{2#K_;c@o{5OI>Zg8dbI$pD2|xydH1__wSpvRJ#t*kHfDH>t3w> zk?8Uiz85Ac^3YyZ^iz}4A_Myyk=i}#fB}tvY0(P|AjM?Z`M*?1%(({LQTPgKu|`Rw zEO&A(;&@G;52o5fej&Ol=iN2$?flI^cBQ$^brh)ga{X--=%fQlH)g#FEL`T~gGEsx zxpvh`dhxo-ikkZ559BXCf~`FKYFx-`3v34p3Q%_srX)?3zk~x-QJ@0ZS;0E=T_ex6 zR0aInKu8R29Xz5iMue(py^up#*a-x8B5)sacW9%SL{#^S4(Q%oa=^)Y5`11GD zn-;X*{_0`0PHm`&Y)W=Od7d2Oke)xL$8697O*Ul!@?YVILc70b(R&QXV*Vnk$AHrmUeaVPgtRp%w%i*p^A^$Xi2er6!D-RONG56RGr2+4PiIwR=+PykxN+C8f01(;e#?oBU}3%h&`tLG~w3ZBf!A=nNSmB>7d zT^md;MK>*MclO1qXWq z5=zp%1Wl6E4JiVpa%p+{$L(U!09(Hxs8Ev64K{E_QrZo%hDN?rH7T9|;Oip9`{AnW zpHPf`a-HADYgpRiDg*r_+HL8s?)_DIH^;YaZHMn;2#LWY#bW{~jWn`CNcr+=bX^#q$^@0% zEk|5Al9HUTI@=S({PMRcp2!j^Y%Vx^Vz_~-v|v1<3>tB;__5(PbOOB5!EaO}D*%y} zT7(};emXJu`*nfF3CvE&IGSXC&ZKd#Llo)bI9j-|?JgsyfbMf25Eqk3;;(tsRP#-` zzTS*s;kdqDxN8|QWI+bi@CsSLPS_gRRxc=NGTyiLo<{^@zkg7sNtpiZRVC$UzYWR= zkgLcxM{N1#oF=#-Ea`yx`GczG!VhetW}}JtpT@?bl+0qmI`L7HU5eOLaCl5)fAmny z2l%9yiXncmfhy8JWI3G7phlz01(*}%u$w@^TtRS*Hi{#HF~949@@-#$z9?!w^jjP7 zQSY*=&4Zf08bcmAgjQ5U4Ng_+zZz2>Iq0fS-~LRz4VwIcUa>w*aKt&_(*RJtu!W{X zlfW%dzY-utVBH#|GoW zcQ6wK3ABA4@zK-46^&CC7za>NM*T|lTS{L=xE`2Vuz)&pLC6?_`NH-J0Y_yJ34HgB z%lWG@=7Ga-cJn!SFw7rv@7FRR%nnl`neInNWx4dV7ObVR8A;8OwW@Rc z3Zr5aZNhsS;-W#y0#%TPIXF|C&|_9vKrL!Xzif-aP?+~Czr#^<0)jREwi zU=$CdhBvI8-c~L+Vlm*vvWT>bLqIe74>&ZdYDhG=OL1x#%PjGt;JC8b33Ir2^%4@0 z#S#)?2%`g|MIuSEnTJhf&swo=eFglW*)FMtg^gMw;WiVLvSl#Q7x*BN;9bii(ZU@B%g*BW(jfw4;N&Plj89#}uRyUjL}hnaqOgCvKq>%-5+>4$;GFpY9LPz| ztI1{a65O}w$-m~(GzgI-An-c>f=a=B6on;HE*I*W`HLH@BFZEl~D~PH|f~=%TstdfUfJ(j5 z_P&8qwnWHGyCVUUUkxC@u!F~>^-k#~JE=SxqD;tZS5;O9h)t!fs*#ul9ihX?3qL0= zC%nE9QQF(v{TOV9liFXM+BOs>KF^53aG{Wqr~yL)K{E#0Y9S&e!jUO_asi+dn~8#m zq5c{m%0GM>q%6@4t4Zn3+__{3Fwe~sA&1UDZl%Q=wtfKHtTodyj-}V+e7cb0KsxR5 zD~*POcmLpiXA7eskI`oJ$HvA*Vp~%Oe9CmTsS8Ru4=MTq6FvkbQ7+n=`s==K;}>-&tAsV*cJ{Ll~Pt0Um_6B7cy1 z68c$RdVd3uw!<_VGx=&0bt}`()9$t@p1XCo>Jl?>MEv6>wm+>pyg^%X81T2M;-xb^(?*xpxE9ehL4|=OZ1%30A1DpK2<@oXDTx6 zGGDNaom^;z4n1cdU_@wK5R@#b%%(jJw$hUHPf?wpalQkqB#rTcBZnxZ&hc7lTFHI% z5e^5~Mafgm4{g6ZRde*pZb1KjFxBYx47li@nl%rYdb8D5>557&c0;zSphan5fB`bL zB@_sEhju!U-p1+}>n>ps1KCXY_#pp5SPjs9KtN*+^nryE_^a7S2SLMwf|r|Jis=cn0Mg!G$2bbVMMqiiU9-i!qFP~T|Y znY7sdj3>SNQS-y-?l^j)DI-AQ3#l1wm{j1=JNsWrY_{5EXfdMC{@$B^(VJmYH!kg` z-_+x3VbMLRCp2pBW`!e7`O70+RxZi@sE)m=TnG>pU2H@uXf_sAk%zAtdPIYqMaTn; z@>;@pDlbE(7Wir_<+T05~HlWy9!&1oOctEtb(XET)g4Q$w_S3=@ z(&qk9IMtH>%CC2B7;xCA($kVHGVCi$T;;+IwiXTI9$02w5lmTs%*HQ>`hSL&T{ zv)UfNE@_*%_L=>)Yzjr2csv3Qu^0!=KtiYk@!8Fsplyo@FNhhSDOeU0{&HgqZ&$ zJo{hKSpovuFJ{*NbY@cnB%C+JQG4Ij_aNm1XPypZ;pG{UaB*jk5Ghy?p&}e8g@Fgg zzn(p{fk2LwgE1#lnYlGYJw4thpC{1|kEjPG+!-8RKAqkUn(V>kC?%w65@i`sLK0G$ z6DA4CRhe@r`pWd_?z2kEDX>(CQ<4Nq1qN5KI3!U{s7l*V#1|$3D$_88z4Yp@R)ZEB zFJVnq&P}u@`(_=Q+M)gDP4-;!kV4}AxQzUa=(tKGe240*98-;`(heEgR{Sn)B+KNJj9gwu;>b2uVS^u$` zPnB2o*J`TohG#JVkKYP*h{LdF{AZ!f{qY73m5IL8C?YxT8J;dmQ;<+{d@8YifRoPo zKe$rn(Rk)!&oKuSW6Ff&<`TgqS;G|h8az(N$N=u9^^?+Owi zq-e>MUNG>AuGDjx@ACHuNMpEs)hW3I5la-OH(%YyZKYMWq1p1}TkphF3cz^YWIK<^1`)|BJP=p|^H;rxjz3I$ z{0`WY=ig^?`$?;or?#|ZCr!`2j(2kDu|*s~PhgPqW=ABTxN4o$dsoK@zqUl7Zf!Da zoPSRTkM0ZrK}O+0o;;Yn2?C+gx+#uyMhsY#M0CSq7y=ok@;~=88I5 zIVe#0orqqyMGacsftBzC{#Gr3-x#kO*5H49%VDy(Q$9=LGNvxX$2g7>zpKzCzwq*On|;kohO7T59ulp3^#UYL5KRF(95o=@o2b5l@y zrhSP6PKgry!K}^YtikY{5?yVM_1)laPKnxcG;57F%%&+1ZN3( zWiu|+ikM80<~}*d+5$#2HiQiCsDFzLp{fKpk1-nFm6p^x)xY%Ib-3MpRfh1I6P7l=7 z8ik<8+K?fB0fP%s`sED=ZW69^zuOJ44lUg)w1$`pa=6I)SA|LNt6=n<+&9P(6ESmw z-+$Xw7_%_4xtNtYOW0tsTH%%SZ|~wf55$44D2gu@L@s#3D2W2R2i$da zzvjlKCccDT+W4dxYi7kf0^7kiFV;2$>gl++lg`z|yLpk}+ueL`5}%|fYaTCvQYdgY zp*4RXGy^XjOhw=<;*GWdcxgUZ1jtcYKz;2L`n?~`%{|AwY|syxg;$4qeK{@9_^w2f zatC2!t_)eU1{dAM1d`j6;><5fN~WJJzT0tgveP26b_NlyVXJ1w2j7$&?%;D7gBHm# zicyJB=6nT*1zy<7*?q_kNCcTL{{rr>+h#)$8EZLWc9y>AaU;tw2+Rk4Z8ygqpFt9< z{c`axgOuTaY+kdJr_+=O>STFVfBYK7@Uj0AbR;o-;Q*d>y(I}qyr0x2e#vzKt8KAg zLszg1bRDHANgrM)hH`4uuZj$3;Sg~b-rIH~plIAS(}<9R1Ycf!4$KB9a<3^wro(kl zgju>HH9?T_6ME}Wa-r)gxV;hHz|x;@WW+V(iz`@37`MC<$D)*;OHj`E$XcFAP(OSI zI8`%OJpfeA*lL-p%Cs^h{+1RSuntUjpZ&IjcQ+MBqk2uU)HDiK6p%$x@F)Ap@LlbTP;IpifIIYkdVg*N#4(-zV7V z=CH%yHwIamC-SR$8U(?Nx)OoRcHVxiWH>9kxXQ87?n2^g|FVxT`L17y&K!5O6sG zA7Njk1RLTz_27dl5&HpRfThgIo%IU`lLmM0zn$r6o+`mXF<*OR-Rsp+uTz|mgq+u? z(!{-T!_g8zu&BeL?iLv}+lLCsll!g3TY$~fD@U(}>ak+NgVFfsmzT#`VZ9o=t3Y6JWno(??m=N+4J>Ldo=fU4^I{;K5 z2Ia(uY!Sk(ND-G2!$05&g%=vlser;=st)ipX|!Cop{f?+RHFT-dWnhxIb~vzL>;!% zOhhT1+`&~zSk8dcBE2oV71u4QNOZq0D&ClPauuHmQo-wy=xkag&R8PZkPVWfA;(F% zi|M5yOm=1UKVbaL4|@JPut|HN0EPwOFVineAe`xu~`QxsKv=G`>BT#zfN= z=hAP+RK?|6>++YWnqYE%KL0Z;B()Mz)esW}T zpQ3ig5wU>f^*nYRRDH;I%3z-0*XlQ)_Qi1q1NTAv3{I0u*U{df>6gem6Ly$okWs&1 z-g_V=UW2n9kFMub3^-ie$e!W~Y4ef4yNDbsS zg>p%5$YTdX=b{dywEoeMMtp`ahBkbxvqBVt)j;$f7`H_c3dWL0eGEZjP;zJ9A{=Q0 zM~DbOg54|*MCMOp1?=V-<(_|x@qEg4)0e4Q47+pqxJT<1(qHlRAt8?Wi#7FIQf z)la!nVjKYTzq6q{h$F#>G{UPzjSO&$zD|RF<`RiY!Wo871@LBSU?Kv#!AL5bFc{1p z+yOqCp|5RK%UeZDW2i!tABO>eI3-*&#wmY&Z$EX=;?-=<%yuQITZLF*r5$76CH z45SSPWQ*7+ZWLS+Aw$&~%?tkT?A;znC-y@hVUJy|>3z_EH;*RGQGN8hK3aSIS^DYEpti9X^UCl%V)63O^>vtv#v~cHZIqNvxxt}T#5FBABHt1e(G zJ~7)a`(jt$`R zE!n!%ineT61VA$O$6T#ipHFd3{? za0ddfMTd3=8Rj@Cg#@r}oaR(jn%~)Nw%;_gU-EHG9OnZ3+U0|SP{W}EesLk{p0bJ* z7eG-8Ps_D%h|jm{)rIg!(<7vCp|1u|I@2B$Qkv08#B_`$b*Xi&TIf;=uqi-j3_68= z0GhWtk0k~)=M3g~BMX*Qupk83wT5wD`Pi6{2?)g!|4U|YeSQYch zsTDi|m4Z7DWn9R-{c;G3*A|^z(jz{DuT4Lk7m=yG1?Zf68R;I}F8x?LDe0b%>NRQo z0;w-vDOHQ|4@Hj0lCPVwzg%0sp0Dq}0LO3pQ`h$>&5ZhqdEV?T!QD#|SxYh;{CQT3 z&+hI~GehPMWOPr?Y!8dhEpa0Wq~we+VTi@MsOe=?3F zw#dYG3r0uD+=ogQacF74=(UKr`w{uiXPrjg@%}+eyczyME}>6lnGBQSD?v6UfL__` zSC|kAl!~|+LY4w+?S&#QYasF^?I}+Ct{ralVg8qfGiUHu@_J6#;tK{S-W?Qn!b@zU zlnzlklm}%ijc!-0{IrY5MT#ci0r~N&(?l_NnYL`zPEF4|S|{=4b7PudA>@BPXGvCv z8g+1f8Ve^xdyb4$*tLD1NE$^d00T(`z{F`CWpyeQpX$pi>M-v`v^!gSlgg`y6BMMF#;)sfpwh_K2#FVKN$Ypx10l zsr(lr9t4CPPtde4EtTXIK!8~z%Bx!JX&_#5X4mDs;GR1VH>f<1RN~fmuDAA8peuJO z*^4reMt?kc8^-&a%KSZ}&Wm+sp$GOi1IQDScmey3Ho0qx_70zd_YRe=<=(SYne+G(>oncVV}nt| z%^YjYO4{+giSonas4c9>z^!IMfbbK;0hDU%|C6WS;`o32)R~z7>$gq?(2|SWWJm0I zSHC+GqY2GpF^R%om?5`~XDEjDvhZ@4m$NcR05f8Ed**3W>q3^BNEYRh>w*wz6?G0B z8slL3gMLMVa~47;qVy0kj}f!B>$e+=CLSgBEF>Ws&_M!|NB zUC?8xZxx!cW~#N}wA6|>1b(o`qK)UMKL%x`Kg1R(%c|yGDhUjC6VZsTn?;xoBaFoi zwc>1U3YD@+I$onzxf^ku^(Z1{$U5Zvqt^tqMKR-MSD+tH^gR`Fo6%xOCt?LT&B+qA zC)YMQb2#B>_nf2x>@4Vu>m+;$qKc7Yy>GJ!doa|1AUemfqk?&~G#(2j{m2d6?7Dqh zA!pDhK_nO^g#G}_B17gQfHtDlbp<7ahC=nm0mC*6>vzCHKk355t!+10cxs9J3nocU zP=;G5|2@(A3u9Jvs;0<#F3QaUrBTx!R)qwDf++sb31qkiAf$yRxUO_1;_yQCY4ycz zjC2l9t>1(>a|+)L0^Q&%j&d2X*qaom4)WD=y&I=~lP@DacZ<=!evY=?O37;`q{ zVNWz{SKt{1xC>>(cIb@?O(u9?`pi0pHNx=c^>aESrz#lZMl-?xD=M*1B6LjZC$LR} zx0^K~p4N0+-;bne*&EatSl-s#lfH1{{vhw{`8~Otb~5y;ub}Ds^Z{VJ79i!_Q2P~3 ze&!U5`oN6Ox56#JfJb&n=CGC~Y3Av%;2^fdo)JF?Adz|b zQQN?&fKPq;y`n-_`fF|qV(yzl5RiGW$C~lSj319Grp_f0=P+=w;3OBmPB)kQ490>c zUP&A4ptg4WURNhI-%Bptz}*FqX29DP8a^>cjprh=8;a*Up+v$V-G?RKu;fG=8FsNm zeLc<&@N$kQyR?Wfug?8_pt-M5n^8)wl^9jumu$8&U^j;*zSyG-od^!v1@VP=6F<>Ar7nYB(G*yq}xUswqkPu+xPZOH}NrFO$OtTm!V!hIkY ze2TSXwY1!YKWZTgsu~lNirnTO8yI^7Rew(-z??vJh3q#^F!d#q;PSM7;zobdx8L5Q zlOb+^O39HWA)i)Kz0A@giX{H%)pfBN1SX5rmSd#+@9}g_4VpJsZAq z+uTwPIX@YN{8t$z?`dUL+C1tbS(PM-74#(5u*Ikz2o-#jYtY2R+=>Gfwj|nq}!A#;+K5oRr~b)i;{Wqi}5l97X)9xod|P$PE4sxL(ioR!RVfM4unK& zpx>Ix2i7)b*w+qEfIcIG}H5>7+?8AqnVAsd~nsq)Z0Yue@Z_#klpbi6njez8rpU_gofg3gnzq>4k}Zan6-L zxx*}lyn)*~Ki|)n$L8+8M>Fqj40(Jl`b$R>Q_p>yec#q^n?t9#994(egn${;=F;*A zC+#y>_3Nqo$6GEENhqb%Out@Q>x`LGQ@Ezr)jv)5JFDy0jon&0DFXDXBLehl7!OlC zeOr&Znm0zSe06p+mD=i2uUr|^7*DF-9q$D`zld_+izEkC<;f1xli_?+(SBzLi?4U7 zV--kJraGGJxkf6l>f1EXQUJo8a*m-bMW*!CniTbsLMdm;KlRYxD=J5^1cM+?F28(m zec*)xGh7n{8u|;K561QO%v3%hut*&qxJduuMu1{u2}eV`fp^AYmRYax4W+wynW5WN zGBvIik_M|7TW*G9*k5iW`j~bZ!0I<)KYWdstjC zr3)oQ*-WA$F%&suNPtaDC<|;bJcG%%Qo=UKArHq+59h<>Oh*5lJf>A75({ypjVbQ> z3V&ISt7(v{MDq^OiCZ!2Mz;=!rg9pXx*@C9_o9VGmXy*(!j7E}aP3X9r2dkhgq{^H7eA* z=pvce)p*`%@=Q3SiLDC8=zDnZyep182JJPxkBNH=^s?g3WZ@KZ@A!m4hYyUUxz>JqBy1}(Kw_r z*VZq|-4HKZ17ofJPx<8UHMQY zoO?Qll?Z99R`F_@tq!G%!#<-DQCK)MGE2j6Z*(+TXeC~7B@>PQ!ca90T}e06lg=BVL>7a6L#EFT4IAk1$SQeptEBL`4lZK9!l9-q}zb3W;3voZtv8D<)eY9t_-p zI`!@5Uz-{LuNHKt5cu{NIrq)}x+fv$R{cZEQgcUe^lwejc8})++V{IYGd`)A&KlX8 z;29jUXBs&K6uP}wvPQ{368r(*bHEyJ0}PobXiS6rAbD2!Sb6<GH`>TaV& zuc>x{k$N%pta9ibCB8z}%@l}W^WQ_wGQ?*|{Bj+0+rA=95d#sjIvz_wPQcq7PNy^~ zo48@vSwBwX31^ z*p9nifWb~%?|CP=mCWY&*ulJ`O_iXm=`hf0{wfO^*yS|m-w^P^mScg6%^vR3eZr~u zRuvx?(v*2u{$PF1_RC);H_-BCXQ^Q(lHub1$+lT??*V85=9+X=3BbaY8^6RL+RE<6 z!lyiksli8a8&`Y;sX3geExbv>W{Lb$bpU9B0TKq3Sp>3!_P8Wt)WzJ?j!UH~-9!y) z0xuV)xXNZf9BGY`7Mvd&w&lkQSJ?a*l$d?nwJ7%Wc9ls&sc)~!xqoXF0@<(Eo92Mh zLw|92*k(0p5^wNKegIegb=15#j~ZTpFn)wEQkbxtzS5b^?K{&>!wS!wVD^F&N2oK1 zgQF;ucHJFQs~N=+;^ zjl(@^^M2qd|FCd0>iFvI!WeY%H6fOQGWAeea5EurCDQp=DX%i zFUVA?>nd!>$C!^k>YnxZ0?3T*)yvz{-P0NVv%a}yQ`>!&BX2`5)hU?m(p$5(J59_E zyY9`0o$nn1!IaJPzrrkF*0h8uP!v!WW~TpC#;E|hQc0Wa=s%_LyYkuyL?a017XWJY9jBU;cuBgf7{ zM;CyykE67@y?27%&%YyaX|EA!0-tXW&vm`51VOCHCVLK6y+ zcgVew_fHDVE&uvWbbk2BF(qc7s_TCB&g3<&13r9{1P(8Z;J)ng5~I*q|3M8Ex(Yuh82Yl$UGsVBygb^mEg2cOze4JJ}tZiL*S90d=!+ekgOr;uAWaNH=5i3ZAlQ7nheI%>tF7r09RVX!$O+JcPWDh z8%9u=y9LxzqqMtG0Krg+M`9uJI}?ZK5oiBYYHaN>!U3b!*Mi>3!q$z26Ny~`;p z5-0K<&o>wydcx|2jC5BM(jwEq+g1ZC=Ao-4bI{mEQd5msJXSLu|DDr-xh|`;4+x36 zHm*>-H$)pL+O;crUlVPW_hHB5ptKhx+rWZlKE(wURtLO9#^F^C-LR&(4#1#Ps6Fm@ zJZh8ZVpR0K>7bDFI+vsf>{mF>-C>*}g6x6BPkfN@c0lkN=6HNQvOHIS!{q~hgRBrz z6=p(ocwrq}sFpLROm)0L8@IgsXg<7>oK+ynd&|X*ABnQcBHTWM@D3RtnRssIDINZ9 z+g9q)qM(&mbsHlb&Rn;22H{=08ZV_^;WR@D3}{}M{wjwLAqotDD~%o8OBy5vA1s;Z zOT0h3zq(6%@7Ox zTTl+F8*eP=UK|a|q>KsF$?^#IClf0}Ubou{SvYhyy+^jJkj(4)?xSAqBQGF1t%oV(C7)TIi0#8z;^ruzUpM?_q44ktl;g|%NlUkS&ac0SEhn(@^ zXVx*U0}j$lOj5GEEF>7PK35nPZ0BD9e7Pz-mJ+wU0q z_{pLQ#^z&b*9z9X45QPGO8u}#z-AggMD>I#d zH(GKYoR>K1RUhaw-jx8xvU?CYC3bl|hudv}J6q%(`Olak;`v8ZaG`Cx04QGcDCekK?v`D#OnRdua9@$3`3KBfeKd^rJAba00agKaG}GL#!DD zcS5~95%{9ZVNiX5qK8*H1uviRMcEAWOoRp)vGh|V@;+<{;cF}N-vTPfB;k>Oi=l&g zt{*}hdGoA5!oH=%y3>JR>!IeHj_YlzHoEShM}ygd1p)|XwOhn8{{F|&(&$q32Kl?u zCa~j;@v;btwf6oAf@FwM6h8PU*@^k=u(25I_yk^dG6)ZV##Z^DG`vQ3VvwRX60i)! zDR`h*w(AMFODZT@_B85rxFs3C5fv5oDX6XztL%`O5BUU#GHT8hUS9tWe0||w{^%+C zR$V`K*Tb_B_C3I6E+qR`XSg%4FJO;`9HN&+dvEWf4K@z0EJb^?WeCsHLDr$J5Ly1( z>r7V36o3!lEiVnFS2c`{p?^fom_5Ie-I}S)NUumaAoiRCEz{2Q>C9M7KY6o zhv(%SR6eH1Eub)w>qZNhO{_L*ZQ~Dh*jzlaR)7Og!idJiEJ+ugu`93d!M3>6NNrY` zmcpk^*tF!ku}|1^9+?NivQyl8JDt>8x~X9-yR_@1N-772Pl8Y^kC7mo^_}xJJ*l3< zWQFY2Jn`_4raP|4!`3U!8li!$D6TiT$?L%Ll8>gSbSkEvSShBO<(mc9bfL&V{t^Lw z;qU^u`qOBQ(j7#snR!hZvv?b@x}B8xCAy(|4(%O(gm}SR9V_XNEEYvDt z4~Z)tRe%M}Cu%TF3h=6?X49kP^QU~|T9X4fvmJcH1z?)v6PE^87kVt{ieRF|GaXUz zkv_j|M$c@-ee@^)D(i-=pQIfgm?U;thXeG4UX~~T;6+94skWM+%Kn1YZGnH7FzFDlWprl^V6vXv(kD-YF2-KwuzCZ*;wn9#>40%Ds);AE zE14bdhPL=CHOCOV_!Oe|PYY$^?|IiBu|E(AUd zX~En}9~3PF@^_PRI!T>CQNk*u%eoeT>kFBcOeU1nXp(y#Z%B8+KaX5nKCz9xm?o)C z$Cf3a=Ws%cCE&g+He9S`vByl#Tq~#y`Qg}T0LovyegP8@d^1_BElKrM`I^Bq3a`V9 z*flXymMlS6W>^_}6qkQGSQMY@?1qxZ)zmy}^eR43Cs413dUNBJJC`%16}%4UFnl>^ zlw9;@O@V2~a*dKoX$EcY>r+vzI?^ptz0ZG{>vQ<24+k&G$CW8`;R*k?b3c+~9fNB{ zxQ$|D)7x_%gAsXC<^Ty(t2o@U#2Ir8)1~Tc{$r~yzIioROFO??X)|lbpp{eBGFmXN zU4;8*^c%6n^;7j@D}`M5Yy%Z=AF-BvgS(Vo?5?iu*OhPLRfhJ%ZN+893>PwSx1M|g z;+K6;;NaAN-$FR%_9$KjA~}c)c6Jjf)%fr02ZmOE0?647w9R#UxgpAOfO&F?FVXM zfB)ny(+p*0i9Ev+ZP=s>I~F7zA=F4nGAX>&v&#*OR<_S{LSnDU(%U3Dh7Tei6@eZQ z?8scE7wqnCjnyF}I4w6=Sm)z_lzDz~dIQ7wFq;2`CdP7oIP&RQ2XjrZrlDLM_;fqC zg!X%xsC+2Kgg30i=Cm8Iz^WFLnTqu1rK(3V_|=}Ha%3UX^J|bH+5ybfP5)@w1gM*3 zLc-cMOXqsC`;%_O#oKr7bJM0Zpr)x|90V z-N)C9!}zm5e>QvU4#v+gZ1TJK)bjS`hwNk4`}NPjrpL$LHd!VB%Y6KL|4l!^+!WSQ z!T<((LXvH66`%jYW|BIwT`9Oj!$^RA71Bvhf<>?67X@VHwTlh9W&GCPW&@tZs_mNn zS3_?=*ZQgc_7+~<(vsz~ltZX(0z{mH#+b94K;>jT%q z0N4!32I6DapL`J>CYE52sZkVdH}eL0n<&6OX56VXzh zG>)9-?L&s1cT1%ke8`$kujj*K91CAUXQT9TYg~TWv7w!2z%~vnz;EgCCQ?c1sdPlH z=l$m8 zyqrA1@UBhsi~O1y5Mb5cDa&tn*ARR2PQSWcNPE#kCR{c6^)IR@Ns8EXXqv#a2nrFX z`M!DzlB{~C`8OnGt{;_EY>UQ8x{|oYEO3MH+jRj)rdBg`>|b)#VsdGd+5um#UK;Nq z#0;zJ-xD_hsFmIwT*W%^ve-7F8*FEBHw2|gZ%5v#lHN~2fUn|KvJVe16A;}X#}H|? zLhnbF+O&cKatdLnHN;>URf2nF0|3P>+8ExU~uof)=;Wu^%Qra;$~h&G+XJwzv=##x{Il0~O|rE_`q~Qo<((o>?%b zYU-7(VAjJR6djA2EflbElL>BMrt!&bnnA^?Q54Iqurfr=UXMzmqmn_3DJJ5e{ZVp- z3DU|u%53D0S~g4MGT|TcvD(PndY1T{Z(a*A(dsRI2NeBPUGKWq?K68H$@@Xw3{6D3 zdIWbrT=ltrTld(u5NTea8Wtl78F_T@a6}0?7>+rnB&;9@$Hiz+34k5_iCyX;m#l+ zVytIhhsHvQKG$pch4J}(dgw-;AP738k`5XJKxK~z8_FV8qMRjdzy*^f-VaXxi{U!| zREQoeS)zOvA`X3dynp9K20e0)Hl-xUV0g-EB8q&%2ruj8X&5kQMK^b6R01_@i8i4i zNR6q7om+RjOOxeK6yldNW@?aSw7PhkwzKDEJwqpOQ$rxY?#&{P`bT*UCIEo=w} zK>M?@;m^vnqo_z3k>fkR5i=W5y$TWry*xR)^&*5Fy+(dMJBm8-(7A0~%r)?jI!qku zZ)+&{8nsGA?3O~VjoMV8h2rrQlovJ=2g$w9x^Hdy{ky13Vg}Q{*AebDo7uc&BBD|J zJPIo+VTRCiNk(qSaj0%ZVMAR^N|b=vn4iVBEc{t#5Ic5qvubB!km=IAhTX6`zrK+e zvJ|Y40>E>Zjl71Q>?)8OB&E+!t^5)$#tl}wZy7xHmEyKmekDGEs zoBb_>tbK65jD!<~2>8tOda%`UE3iaJT?&H_hK~{ymedGv>iB;zK21FBJ_2OrB;}oE za}S9#ki;L%JI*Y_(di@OjQ5FYu?D1!i9n-AlKvIUN$z*0h7IkuAcq_*7}82Sx@OvU zT1QOR4ZMsM3v}Y3qMSK8sMb}~<8T~?(R^Rt`OW3=Z=pWg{k%8d{khYNR$^ZkCP*i<#Dg(X;(zYw|K89BK7#uk z)OsF|Ab-&A5{&S%;!siDq2TH4ezfLT#I-?B|EFM+Mi$Vy41+74#26}DK!QzG{iBu3 zbV}4RV_J!Uf8(y=ji{fBtcvN+VA#1&tO1-WB(G39yxbI#;?rICvMBN@yobX-wt4U1 z@gK7*Wzb>UdE0!2m=N|0C;8WSqAcVE4{upG9 z5f?OIjXEfZt!=JHZSkVpN#dA7?Y1qC>~sN9(v(V6oFqi-$-yJx$L>XAf9$@|D7eEk z*V`Il5#eL`qv{$XZD@Tx>-B18-KPgP5=Q&Wjo;gwy$#<3b{Lzm+|`3M4-ap)4Hf^7 z`B)g5D9%eR5`!Uybe5r#w4P2XTeT-5X)#qQ@Hl!Ll?wz8 z)g@d)1cy|KFh;=Wb=?jjRfc#AdY{k4PlKS17UNAwhUXfNBDpO6e2^q$`Psqa^+#F% z;*Kc|fJh=Hj-rmknhYok@ok%LL>Xryq#MmJ<4~W%!-l;7;=yviDW2w`agN|f?nKiauBk316YvA{SuV%!Shw9O$-Ce%zU8Sp5sm*BD!=~nsTNw)0C1nLjQ<-sImhElo72ML2_KUT6q6?d%ow;E8hpW~j(`Ho<`#DvNd`W}18vYc*S zpjNCbq&SmtmBB$7q=q_3^vbd&hyVAJ+lhW(V#siw4oD?(V6;mimxixUkuTgy8pi#| zUgAggyvS2Z{Up=zfar+uv^>m1(e$fz1_353$(vOS{=;Jmapys&hwf(@Eq~s}`^5z; zzK7#7vRD#*?FLBd=({Cr8ahI)Ic$QkzVvt#8=rH_N3x<5oGfvqfy}Pj&yW28#f=j3wt zdD_UMi_TX)J#L*J#e!e4a{vEe>l}hKiPmmiwr$(CU0t?qSC{>D*|u%lwr#7+w*Nlo z#=VpO&feIAj2vX_$i3II){=8Mt}NlxDF+?D{2?_Ij{5&$UTpu1-Dcxp`7gUYttsb# zCW+L2Q+sOSbar-KagI1Hav&;CLXHB1m!L`IGzCK!$Ej6|dVlkZXDQvbr&5V3X`)yt zoS+zpSBfwRm2xB^Hz-aDLCrW-4X>-(rj6`tYTb~m z-c{L;DPB?3IF+^+6m|~CVlBz7PvKsURvN_QH*}>g908*G&7HU(`+pc$b@3*LD`4*3E!Y8i61W+~VR>rk=;i{375-_i*Gc^2yo@ z>So2F^P%s4;II;KcJlQ0*Vwy3AeY)u{j15(&+F6hfdVgnz*bX?F{p<7`3}y3cV|Eh zDKoo=ph#&KvOH!@DW3lype!wV?ET4B%#b+_x~CG-^zanu#u$b ze@JnZ5y4;rD~>jEpt}W|BOV}}nzzuO)buEQ9P)49PPQ5)sS%$NWt)*pm3$RC*&H@E z9u%p9w1DFX6>CKM z^?rKy*$}0MXf}Jwnd^Xz9}1(5gIx^6JmU}k_ltv9+n3qD9i*3y@7Ox0u5^~+Yb*CG zsq}{ER<_Fm(bM6BYB{k}CGt!jbS1@lhR9J9HSIk8)k9rPuyg@7{S0$ihKZUfZkysv zSan+N0pcdu=U|6bTa%6f_3&Ywff;l>R|isfY890cVAWh%@koO9Sj$?NBSkKc+%A0Lz=V^#6K7wQb0$8=qB3Bdop7104z>=xB=+bgC6FnkibAx)2Nu! zsj(#_7T*v*7x%`F24!(Dy67jYlE4g{bOf_!g7*8b*!G2?9=M=)UhgPz^oxg`1mz0) z8o!qvW{p&(QTR%a7dTor%*C~33%M-AUgK8Wq!-mPPuO&lh9yUiJE|8bXkkgr!FQm< zieM#!bQC;LBmh&g=DH!u?~EI2WifVPaQ__Krg=aJ8Hu;~G0yt-?skExYIJSemo|dn z?=AFQKwKVVe_)YEes4)DCZvT}{{^u(;UQ4{RrGJK#DXMDH{K$HkRU)%6O3#_Fag~K z&67#-2r5tt%F#G>fw;F-FTTZ8zT2~C>jhiD73@L$8UaM2v44B3ce=X3c zRSvi@kzj_;^S>ytZP6>PQ8ZUlBibIP8+ex32=;_9W015-_(OTW)_%?|reokt?c=#{ zK1$2z5dV#b(_iD!`FN|SawG|GuWrqAli_`c-Zpntxsqg#MMBug-(xQ@yk>Hiv$ z2YzbU_yEv5U=-dCR?9gE@o_`;;^Z-c;*YWkzmj5zo7_f<{qclB?7h2M9p7Zlx zXoud(U+_fvOyK7NXJAoAqSA$7LSG_+{Kv*GL{2?_kGj^ifP1LQ!+m2NbX zbJl4l*J;iBWVg6x7wdCzIjJX3sp)WGR!iQ+kpK|jgX%$vED;<5s3SDb5cv{(Nkq89 zTf8e--IwUlv_;@J0foy|h@Vm>F2{J|wh6dexJl z-~q&OLwREkK_V2|P6JI!?doI-MW>JEG-3~q8BYaTu-&oEM20{9K-)W7^(~2f=MOVk zJI$?Q{R#=?Q>Xl`5*^@T!Wzi|_fsHryF2fSaut9J=Pqa6y1BK`g5VcyH#i<_%Ho(0 zCM=3mQUN0t@br+EPF#f^#I&JX)C>v~>;SN9yhDzG5_sEhqO%n9nGGJDz%Xl;d$`P$ zNq6i<4|hg>d#Kt{lK4|4U5_%P6|o}ztYaf-1X&&O9*6p2$mPhx=^KL!`@%|qhYiaf z>s7}1ELQlvmxZ`^h@BT~n2&rug#Y9LudtRLR3PmeTqXzu$UPivaX}o6b_?KVJoLs{WY1+$yt=NEV`n2^tV*Q-)0X$vS1(>WNs2(4IA-wF;!edIT-Wx7m{l6p=OBDoY8-XwsyNf4QiwCv~`*i-k@KaV74l*$mj&1Wc^`QY?~tx`gd zPdd9K+$0sR+n-O{uuFG~*DkOSP#brx+DCTVng$#FII~kH?n1Yvw-dG=I`3qC4;9wb zlRgYp3cO^1Gx|m77hbA2YXNuT@Oy)3Hf3oK?bNIm+g*C$JRc>Z23CODAOq*}VUg)b zq#LP-`K$Dm5yN@Kaek#dmPamS0P}}zj`ze?y`x1zA2*v4-@Zz`QXC)8GU%-EljFoH zz+OHah>K(0OSH%4zbJ)guL;uR1hLEN7ZH(bikZD9d4Lgk~YBGhxk93tY+v@%XTlA$jXWR766 zcgg%bT)}%}6k__+05a;(I=3$j1TWx3jMz7L273Dr<*_EThivkSQ&LDgvV);1TTF+c zpvr4x^gBq<`IYxpiv@_#4PtN9zw~+UCmg|-s39;NzvDO2wmm?1p!#b83jiF8fm`r& zCQB>YedMkq>r0UnrI{vAB=dY1XrNyw^gcHl9`mmbP9;e9Oa&DekUp6ANk6S(kkSSQ zxqfG8M&X1gjFg&1-S3#JE{D*M%uSrz{nA??a}sqGN0M;FB~L!c0S#@?FfvSqTGXi*quzd+Krok) z&~{#>IjFHP;HPIQN7)_nKC!~)?ukAU+VXqX+$wzBmTWY6cfz>KE?^*>`U@0>vMh+9 znZhcF0E~{?T24EJ?|{+_mC#ch?6_N8QbD-51_nb{DG?y1#?-OB2~e0npOD*s$?d#P zg#JX8@Y+Ge!{Yv0p& zd|5*O{S0uQyhp!V}z znZ4j2laQV(Kk{BkzA4}0qusknb)+<)I{-CNS`%MPjx|MjGLVoF9UtV{7X&$*+>Se2 zWJrq3x!*%xL;0W`<5F%fMW&>PfYfEY$^C>Bw+B&z{?9)VDkcm2|F$-H(+jr;!%Q;GX0f<1_?M<(&M;bXXN+Anf_hs(siT zP9_><7E!G7I9HBwEa9`1D3K`ur#e6alyW7re7%IPs;m)ycUQJ9-{>7e94w zH4;iRs`_qSQ!?haeq_yPYJ+*|j+5NrDJ0}N)e(#O+pek!l4 zYtH?0k7qY*u39sqq?FR-$A)I0sO&8+WJkqj$Ka9TQCAF&A(&Vi=2%%+1{31THMw*^ ze@H{gRX}-owAR+0eg;K`kS$L?iBZ{IzL@|?jg8<^otmI&nn1FbTe5gtQBgqV5)w5( zSR330#O3p@qTe?GKVUKYSom(d9t0y1IBxKTeQP>p=MQ zQSf%aP9ZaYg)(EKMnYDA%y>;;^BPBgg7S{o-Q8MF%nco#oeMdeeiyVlvmKTefVTm( zxH3VL{>TeSYUDxhF-`z^isJ6|md_6+0IN>XXML+vZKm^dV)K9i6N1>ln&ee4hDJtK zL(d`K#^dMFk;5w1L2i88(S5W6)9>w012fIDesON~cK^Vb8htQYh?Qo7(`4Uk~oiEzb>X%$*MI85HA!3 z7Y27XqIM?+KN;X*f5SY?n=|X6BJ<+n=2bVMUK%`wYjc4_3%+0X-`)&1H#9ppKD{Hd zG}o~+e?^9bNAd?&R0jvbD*k%h4GZJ~1hgGJjr|Sym3Lr- z_?en;#&`z_NyzBU>;2~p5>&o zHFbVu6y93VM=MM#{NGP1V@0|+0L^zdii*EY3&dGu-j zkvZ{48CWpo1fUYJj_W+!>!9DQpS^&7T1%k-$6$6mE0R`R?4gnh?y#;as!xj99<3#~M+zEz3_YvJe zGJ|4~{SaXQ1uhXj#tT39o{Ey&Selp`ze@hZt6U?#k5T_X{szWE`;O!iq*43~6mX*X z5+?Ld{vlEa3Y;K(?ALti4Z9%S&Arqme2eEHeU;z+?~I)Lyh0PI!9;pE^I@dpvL5zvQ-@%JaVijZ!K|8iRJ`a}?ekR|fp zshi*ZB9o?Tg@f?D^GCnP9*=pi9fP z+P?&VGcfT8a40|gc?^Flbbcnp^xqcr`nWSTb9{yT%=?ZVVe-9oc~`kGfI5ATm8kPg zpHMe@m^E#exnBK zID3y~zj9SthjeN6d595zc8Br(?pNane%&N%+Tfx%r3kzz7}Ki@O#tLhEy9j9u)3jL z9{&Qs)DwXrD=Y%svUeMTdZ0w5p6a1G!tGfMUMrp_&lRF7VOrb?%r52EC=Kk%EK&k zP5wzMj$<=k`KVLnVtK@=0@6K<@y$Rc3b_K{Dab+JxxYKR`h7|I1r+a8w7ov3dC16X zI$$EXGSR-hR^|zhNA6rJ`yN~;Z_t5gz|2ot`L_`-5G-UCaS^3uj(ek(Cc^^o zNyAF?YC;yWn?4opK{VIGnQD7lBt|`A{_v^)jqz7^ABnt}?y6XIn zfDdK>u%Ydwxb6A9uPapCmF{?i@9V?nGI(Ki<=K4t2*Hiu>rp7 zyp)84gHarWskqnT$KFZrsYte$W1R({&x8%+WhqDIkiN}Hrpe_-j9+qwO%$!DNrOlT zi_m8>)2J(>#CQ%_RG8X&lv*@tU{sq$y)7x<8;j0H;k<+7HC8!Loq&unJSytD0gE@i zZ?)8V-p<5~VxKQ6?`dD|GPoM(VM`dff}grPwXK|7j6_qZm_E}TBgES~aeV@`HsleB zOu<6y>RgcWJ|&L_)3op<4Z4ncq|taM*)u+4+2zY3U^%uUt&PI%(q2c6EKhWDF({AU zx2L5J(}B%IN61$nwZ2f#NS-IZ8n!l}h&(>e3|`MC%X?NRD|~-WDSMuJ_tI)zhM*s{ z{{(+54q&N55+58qlld;th13JQy}8ZvY2B>38O$VzXlgMWz&@NHGN)$Wq9Eo7*>V`E zQ1srS@>IM1VltA$k+)>nPfbR^^U?;O%--;ntzm&{ks?1l&u{F~e|12~Y3T+cX=|s0 zaqNs}y7e1e9Ds~~6ua1p91Dy1+ASu=yv*+1JUC*xI_k@r?X%+dr(y#76L~?=Aa;H8 zHC8ESjae$a;)VJ>gaWC1RjLS(Ac~&TSHOw8n9y)5OCiEbqPq@~oB|+x0m?WfOTskp z_PHXoK!m#K7vmnp&AnnWWEsR1nw|UBVag!4zb*AXlFX`y&la*gKt$`7^O_cW2lqra z*ydeT9Il`3>-|J2^`rsHsLKVF(r1m3DcV>a2Q)*N7L+f#4wh0|{Kd!`uY{FH-B;ztAmJ%;K<`u$IiOOqd~S1Pf<)sAcL#D%wSi$P8Xe#MU!i>@M; zr04v=q)&Wyvd#b~1`qar(_}&q)ibnTKDvb&R37*kiyHEnCpb$g!7lyPz#|KXS5&=o z<0xc{>c(djIE%l?q|I&DtnGm~u9MU)`@CVJ`o*x7AWDbYBEAy<55M9RhQPsAuqNXH zA1^zmT|c|I6KgKip(1G)Ix^_jKi(AQRpk7t3b3zHYZDYU7Jbk^p8s)l9)G^!4 z#g$BHc9IbD!Ih}GA-JI-RpgajNROas#|Fs(G8bz)C9Tu55tx4qGbpiS$ZykJ>H^vx zHz=saR3NL!%y38I5(@Kx67=`tnzJQT)g_*i=A`(5&K43Hz-trGWZ{~jt1<_-LZ%{7 zsb9%pSfB!|*_?)Qe}JqhH<=_iNqJ5`h;eK!bU@YSXrTwsC2UPadwr4-YS9h(1b}8X z#Yfo5^Ajc{Gx;T=e0l&cVoaJmiNInvy{H;10{BFV0?(kR*q2fRxGaA)F)PqPX6UQ9 zw7e5q^P09K2`ySMMlf~kRbucVWx2(t-ux7yX9NR&7m}73*%571{mr$Z{dGuM4goWv zSP3{sgRT7yu}WB&c>N2}%lw<2yheb_Q@j)-L|YqHPf{3p~(bO&1fQ^|7R) zSnh`-EHt|t=OBh+m7Q|tyP}4^sX{fQhgSmtHZo}2DXaE-GU z6%a{xP3>Vs*Mly6nZV0pWXQo`<54Xh*<>8WVIJmpfbFT81_v8yfM zOVJBaf$myE*z!4-sV1<(P#_wS1lHpYX*u3TOzCfeZqFymc6;2Fr5CMI!Ars5$TNGo zsrxXxD6g1vM?B0Sl8U)PyC!1q{Avq*_b&vE!}OHIuDC%YqqU$%dRKmI`Pp<~e0IZi zlaA3^3#3l4_mYI>r^qPGWtd$usjv=!Whpcu6rbVNLydOPj~siIBn=^qtSpV_!yfHI z&r`t|QFv;H6g8SkrmT#)=gcbTm0p8($>X~Jgnut80#3$FYedx_+p3$#&;nM7T5z`v zM?-WK%IC)EaWcBY&0nL!@*zyQzG39Zp>(YxmG1+%x1SwXDpl-h?cq`xa`OTp5@^3| z>C`&9;j(nDWlneT$d3Hb8o^e?!6{aJfp#r3CYt8Ov6gS+tTadOVRAi*H)*`OT zoo5INaGS_KKOyf?IkfMfbU_z;5dOZ2#WwG(P&PxAY}iCJ8F`3{dxyD<`Fpf1KwP5!~C|>q;7Qxssa5?6F26APxR5M90gvJHGwPOD-jJ4?)DKP z__9ZP9laeddrnht`s@OKz^6=**Bs#a3#(n#H6c)>Bc|c4AkdJ^`MF~vOh)yoNZ``2tC=9_(!etV_S_&p zGndLDe0i<*M7$pS(5u?&G`k^IwPN^W*`e0TdZnam-g{YQ3eQ$rO%aj;1~t2`Mzy!f z>t47Od%#+7=*6#@f{82Zx^vZ^hP2z9U;10I86T~{OgVQd*wO)L#SG+%mCp5&3iF?1 z^(li@2Xh3|D8Vi1f1|EfYCm*bE;I9wzKyW=FqYFLcV8^J$M3J~0`DvX`381W{)mihizaS>J5`Gm#ep82^Ufe9yl!R1q76$8wy`-yPin38&mdQcyf|; zgzv#_l4FZ|`vn7VWeA+9MTb((#kBRC$WD z$RCP>awO(~o6>kh3vGB-$(tD~Sf7XB`!|yHz)xW4V=@5S2q%0}`f@Bgf={sqK_rRX zzPpdpOTeH4AwS>wGT6@bFq7Q?yRj{OGN#CumcQr;t-ZAIooS%-nzQ^_4tj5FN2VTq zZ#Km`1-|n115JnOIK`}h>W?B15tyXayeqyC`Mpp1)X?j{V5rIilIf3)`JA7FE%=|x zjmfaX!8!nndmFh5NuaRT-`ck!UqYl07LP4M!i3c4(Gqk<@m79_{&3)5%!*<1E2>MF z*V#urr1gV*?AwMVf4Q3{B}q4k4r*E44x%U|euuPOm2%ynw&Rvmp?IMtt3xO0hk_<< z+0@OQ$vNP5xCou4n2~NB{XYBy4jk37l?we(4@n8YStuVm%=Rpl;xx@wGD;(J3-pkp0LitdWv)iy8v5p1eB$ z_>}{=w#w~Sklnjg_|+)?T->z^gpxal&T-geNeaN$o4(LXp!;WzYLd!J%{4Y)l=t2W zSsRcJ0!WK8h#T$H4UlG)4S|GHMde@0?r}wP1s}WTolbdZb;z6IXrQ2pzEWseY7(Tc z2vh}%K6L%kL|kPo<6&XWrz(=u3m{l(Z5jcD1bNS(WPWP<+{}Hw?=^`Na6<>x@Xr}h z*NIK%jyWw>)e#V*e4zaHVRsr+V?dT_w@e$5&M~m^?I0^>CO%lR2D)3FsPLO94jeHx z?&%S&%w$lX(4KP=-`A`7o$rYFyCY_h+K|rsd^94HsDaiFrR#C#$za%BvI;$6x^Dp0 zG@qMb0=uvs?@+Zgs_DyZfZ5M z*3zzqrppe?>+&aco09eEu5VJNt*+k4-+Ana;~1@kZ9f$=aCLfP{WmUBcr5 zC%oLHQHnWm%H6lt`lf*M!c>73>z&eWOI+N1h}+HQ&Ac6~60AbPf4FNLVd?`o?G2i& znn;RJVeqt#tTtM}_Zi&mY^^xyk8Ou#i}&pIekGGZS*!L};;~ovS6WKCScRDLj>7xx}o^1 zKwjxv969F~I!hqcjFYyXR+<6`EtuE`Q4?}iM1dlYp2lQ!i@I(I0+z<9EysNy2yHh5u zn6DcVBH9h-sVv_D|A_>!&3JfVHt%Y~zYt;b1{g!Q5W0O3;?6cPd zZ#$M9`eI+P>@P0mukT|?4n>g3oUqeX7$=$)HzUEBkk}J!CYd-zU-EdhzlLbQe@9T zOAy(vq+*=1NFBK0h8Wmi?q#659K?QJJ2+QH%Mc~Y2idAz)-yT2m8r31({>b{>BG!{ z5bXrRYRg2Nxo{@2I_jqaU7i~m8o9d8&)Jg#7XOOzM+04ue58o%Is|5`| zO8tF62`6jYD7twnSCB70KeGJyCyRB#Z-UhzKg`7v;=lhiT~`bgCm>bHtGS#gh15) z?!#z64cY)rHRAs+6tFo~-Hq5AM^sCu1}3_(ki4(gEf$wx{(SV`H!bYhIGcl4s!C~G zt~Ok(5o@_0BsJjlycei77--2O)_km#MymD6EJYc~vjbz@&af?~3{kb}!1HZHau^~;`02ZX(Y3no?an@a*2oe~I zDIfqmw5Wl)aUx}`Ngf{@weA_=jBRKA@;;>t0MSGZ{?Hn>@;);Ev4e4EcB$9?ykqw?00zhy@cviEH~LDAt(hm%wVR`|sc$Fg(^&g&=Fgx_LL+XhZoeCbQ{ zmv`=ryk1UU&IGe46n5?nujH3vPo}wM9G9&JR;+GzS07A*lkXLg3m&|_oJy&NwKXq> z0W1|lp$mq=aq(0&l-PVHY5b;IdCo&(5-}F!E#he?zv6qegoguVcPNJT@?XHC(USpM zK==lYuuJb8gDU?@O#K!;1F*#&QMPJl3=_A0x-GC6)od#h$KOCu^}r_8FjL5t?e`NT zV!w<$-~0J2$}-E8))lN})Qg{R)%Q>vC5f`R*>F_feBgaSJ<@8Fnkz{aRylND?Y8AR zEo|}hKjH`U)m1X#old5pWokglqd@?`th#4*s*djq^vlvE4DZfus3O0}ba1$+P?D?S zU4=rja$49WDt}Bx#{TRRm~(Owo9^c!4)!a+)0Hu|N?zze81LU&6GCxK6q%c8oCF?S z5c9JWXWkoxe3&j{cCg#IxOChT7oJ99PXC5F*L^kz?ciweJgQBOwjdgA{2m2B1bemP zRiLet>^~cjgZK~NH$+mH}=@*qX6)Z$^rA(N&& z54a+XhqB|gYr1U8eHZj1=@6zU$(F}RW#S{*;FpcY`sB+B>=h&KVEf&f?GXEt1~_7G zVORJ%!=9AJiD`_jOA@q{izES9hpD2i-05=8E|51vJsaiT9+$AsB%OS&|4CYDsWkvv zr4S0SJ0CKnePlP}HackCNX5?D<$34$j z)x#E!Ca+IrVu9maa=?NYjhE8a+n=G#aE?#7hfdP*86^g79YsUA;Sdt@142y!6OK;$JO` zjJJr20j|Xb!V|hjJ7uJ+#*7=23WbSRU*^|E-tlECqem!=%ND&KkwfRXGR#jYUY^&Y zjojj;ee4c+CQD|=M;~%kJWwm28vTD=@(&=jWRN&c(f*oXWd+DvO{qCoEPmGJ9^v@5 z-lwMIwWzp#E^5BX$ssH9T+Vx_O>N>P!?pytoly7pLWuK~>|XsGV511O_0^Xd*#C?4 zFV?ULF;{#GKXadHp-$pUskWY13$oa&-Nh;9a&_UNY(^?2ecI0CZeSbh(xE1I3QxVh zl-SWV-F_OA8U@6}4ODu%QfIt~>FSmWPRqWJyTEM4mhUZX^GmDWoQD}&u$~Up3Ti&6 zuvqdTZ${8xbk4;sn|*4#Wq^^3GF~A%8=4nr{QAz;gB{CbOd}0oeFB%)9`j@p z*mMEWGpL(|P~psdF49xmk75SUeOtA=fIB6(nL-iT*#YwMx$aV%n2tq{QYgz}6df?F zWj~whFu{+$EZF_l!8OZL4(~LBByeVD@U+R4#w*k7UYDLH?q{RjA(2wH2449l{CN6H6us#BiBBVE5(Jcx}>e zWxw1m4Jgj3Z)wnWv_(F2mIU!SmG~W>6OYB|lS#kn0w&r9uC1(wrRR~CK<_!f@pMyH z1i*e-r31>jl4kSAnlT3giog|0`~2#Cf8z7f($Y%c)bb!CZ}{_bKKhhT8(iiHTtPI> z*L1hX-WnACO<6NHwVSjn=Z!(WC}j*X7osJSRmC9`XIj^cW;psymh}$2jreG`vv?az zguNs@!xG^*lrPa2R+6U#xG~w45u%yKJAjja+Z_b%ueT(+=S4gP*1C=(n!5dSjKh46 z0ARsadz zrT89T1WZ{0#*o<8i|9n7o2xDO$I{Z*J$-mCFr|v&ar+5^m+)7Xh7*{LUs{b@-_s)b zb&xOIKo%%EGoX^Ub8_{SihS@_X6GzzaDGaV}GVh&>9Vf7iob@skB?qY7GipoOP|gII zas#^gDlZ|;QJZ0r=VWq(-T>Gi%YgBaT#VOR!^WWkQ+cTVRarh@T8c?*PqQv=XXLIX3LdCt`$N@ohn2?&=d^8aB zAX$=7SKs<711RtY@9Sx1o(QvGgWD^Tc=hzni9fOtflY;o0V~Tb(Z@i^S#tHh^6M}U ztkMC{C#}DyLon)gkIXytt(wA7$w{^}-aC?t%@a{b`)u3vm>=l4SqJzC14%N}ie#qRn7Nvk=W?k|ei-+C1IIO;<*C)Gj1MueHx+%78~~$4xJ5_cf_Rb z@(GrS^Lx}*;pbKT%y+wH*g}o1^!#BVJ=`(1i)lkfR808jG)J44Cx`5n1xH zDaoF!*C?V(JcPp57VdAJZ*IttTaXT+#qVH>+dkC2Va2g>BN z5sx=Avm}5{8SwJq3nOMz5X!Vlb{Sf-T%_U(MRj_BxaRwgHvPl9|EMpWbOq zjgX#Mti=CWam{F@GmZ=qA|9S+qC{UgniNWN zv?Ft{=*F6TY;XuXoMopBWt`cUc-yfTinx;XEB*9#pA?N?L23QO30=11)yrbTC5n%g zqWt(6GBZhc7qh0m-MapDnXe0+FgiO7jo)?8AZgw1$rDVi!ZK7MQJai;aUNr{+nX{}%u(8KD=`H} zv$qgdjQ{c(a3V`>37Zzq#l}O80T2+DJR5RG{WA2F=G+dJgcfbVtH?eZGyN6wtNMgf zNF@}bk}l`(Uo}vz9SWM@n^J?zKk@`cYT;JYl`a@bQaqI17!gF~atwjrk=w|EL&iH{ zAm&S*WnBx*4r;S(ryrd;!bSB47#SevzLV4)lAm+oY~-hYrWGOD?JE3IPylp9i>yj@ zK_pGY8+%;b0^_)_VH*&;G8;~rx-~Tw93-b%mB-VN-7u%3cZU-RgcEG*}31;`L)t7&<*0hF3uM_U zT7nmIc_a`RDGP(qxRw5y5zus6{P@LS=oD^e_cdN5bUPTt%8gJpC-d4`oXHGWG$`Udmz{Y%=^yrHx&%?dB8_v6j+3V8ij1J~^t)oU5 zCpQg{WTdaZs-Fg->PrmhwaA^D^TAZOu`$~4pao_tLx9y77mu~}#ST{)#VJUlq`Jdl zd|yOkrPN9<|2~fO-T=@NT)DrLb`s;f+_vu;?Y`X|-g zu=q~86CP-dCw3>Cd--S(zkC;i%GZF|jbLHD*pQIA13`(Ii1jw)@Z$^=@3Oh;*m#09 zS#yn8;IgN4WwPatIr-p%eKW(IT7V1|kfsF=-(V`NvauGq1_8M(R_W9VHg#wFJ`LACt&lJ8s{dE!>5DC6;rM09=ljkk&O(R`=IK^87SSCr?Z!OetJ`b_DQncOWCr?TcpBb0R z-F)F{@*#+a496Xs2ZPMiKBB@-y?|}IOGQn2^x;+-A8>4m`i(_rzh$#Ptp$m(JfIe-1 zAv1T>q)2Y=hf=TCRN}{Uhlxp9ThmHeHUIRaHTd?V#U!O~HWWz*k=+Pwzs&LbrnIhc z+&uKH4uJ8Uu*@q4UDejMQoe=1JWQRfHmPhG%^2U4(tOS-cCS-AbtGqa+iR0jGIUCG z!0n0I+ZrEfjx4c1Z?2{GI(KKPyc;pJtG$sx2R2uro(TdOLVi#l2Gk(h&)?@q`YXer z?G@|t!hfN~hAKSO(Ku5#27mVBs_7}5cu9_kJ^)G?S`SBn5gcu&K2sTYHm!p>v?SMY z3~z%^8jsaPPu=VoZnaZ*d3z_E+A7)5M0!7!1NZi7t@Z;d9$<;uVv^I%y`fd7=2oV{ z8)J^AzGct)9raxri&25Uv@~{meTOV63Fd8w6iN04iqLjN$>#})G#30>81v^n8S2eO zrGPYco9k5Y#YnEMWB6?FuXhM_;dy}_x4ci(8IyI@iUL-mE=*KT@4ouql7j#8>Fii@ zT?I{F&d|f=fd6HD{L<(v-$wm)_Joj;LRmdfy9vMLcyTeY+iK~GOKK1vy@gCe(l&Pi zuGCZ{5xfuHp+$xEcB7X_c~UlFNQ{$z_6~q@cb`gWNF{l$iLd1}#?FM%p0Wa#Sr2tTvrlezTnv{~jD0QWD;b|4|^GC!C8nW7l7ja#Dz5L=c1eA1;IZizEYa_Z z&E!dy|8x@*D?(pOH4%CsztivX=p+7WQ&K;-s^+?^i~tcFU0pI?D9BSyzhQ&dZz*h> z>g; zgJ1XfSC}bi7Z17vt(j}*O1_9{Lk{41fT!AEh%*@+-Z3Txk*TCK@qFZBBGLgh`*JZx zDL>}TbDlXh9dxgcaD2ECV)rO8WW~7h*2_=&Jqi04_Bt%jl`=uv0gel&au5(caO1x= zhZ?Z3y<0`Cu2&VLs@MH#tGGtu)Ei+SpdGEnHev6T0Du-@Sitigx`2&A|AmLN1ra4c zV(LR@FpiSI4VsWOoocFPKR0CDZ(!^eez4-e;mYm zG5Ie#glq;V@2p#9orJ%9pRG}>kV!hYPk4V9!*?*GG!U7w4X_SS_RNiuZOdxm&G_iv zVVah^v8&5b-%9|T7Q*U!gXUo(RC-UORj_;|E=cxo5W(7yW#k^>GQ4*NC}~xqKON0+ zhdyL$)}hnYbN$YC{N;etRTMHje|R{uD7^8KQtPIE)!H%0w__+j^<^7<_qE?EED@YA z_}Uv4G&a0>3Hsr)%tc9|dj7hK2SEzjk1!s4bV;Te{WNUyWb+;9*_TGU?*Rw`&tUqo z6OtIEa(5oCHQ#Tb*b7=i9tJFOLKo`eo>f--P>#YO@@yFtrIEc@C)ZKFe+YMGfTHA7 z_q6Cfag7!ya0*U%OBFUZt8w}YALt*bZyA@MSu5F##f1IR_-!BE4yXye#vNTtP70mC zc;!P-B*vZFnyTPgzi`Tn8(_!KefuOP*!&vZ!oPbtclsbP_L{wxD#S`zQ_m?migTmZ ziDF2Ao;LR)jC22OeW`Hhf3n3z)L>}>91=!nb~|mVqZR;* zg;;Q2dPAY@9(?~owAKEcJgs${&u|mpJY-E-$&aup%o#%AVD@wcf3msNFB=%;DQtiW z!IMFmj+bbk^VN|$kKzZqJ$M0F9CleEN^stzG6~tSe4`As>}Nz5#DR{yOIIt9UaFSi z)sjn0V*Cc_B9)~k0c8(-o#3K}9d_n&$#1)hWSNng=VgyfU5*$#F$|%HNyr|b17k3S zZw05Qs#d=Cm+a?ke>^LNogLUEOVY{1DwJxXZOO>-Fu^=Lmv_vNwKCfU@@;_Q3yNwOx&;F$=?Vjy0?k;l1MDu4XS26^p{)2dT}cj7`u=j;6`g+k&(tnZ@L%e zs9(Haq3-NLne+){@lmsz(N2IZK}kkcvYbkd$qjW~dI zh6jg}s(5Qo^F8BJ3D9?iA71(Irl{t>>9uupB#REP6kwbtH_ zv3ro8UgNPD<289gNKdJ1#*~E7i-!^m*5Oh4+g)B9f9s$GNL;HEotsT4N-^N_skPuS zEIq6x1(kU<(D|cH?N=6$QI(t}`z@edHM>6bqR}R6hRD$MWH~hmoghcqpI72W4a?CID zpVz}<#T|I!NM@2)FBrC&b0a;Hd2O$CkP}N3hkSi|2+TY@({n{3wjy4Gd9qzSd4gcJ zgBK5pn+=Y!QQEIbz9}2VM8{ViVQq`6fY=(-e;ChHkM5&IdIkpnn^{WCxaHJY)b<#z=Pj=nuy;aMgUdytw21tcdIbq)O)TyZB0!c;d_Lv={ zf6v{Gt{~b=5FU4D-Rq%R^idIKkzc|N@y8!aV?Qj>_cCu$CEf(|NRq zu>W-BOSuJd1EQ#Az2;Sv*Szs41Aj%+(rfawG@3<1#-Ds|_gZ|rUlbJ=hC2>qkQnTz zvixj0-=snbF)uX9wEwF$GuBJfNi~o;8A^pT63VV}anfxS)+5qR8XF;Gl#+!nO-UD$bB`m zkn`Sc7=yfLdR+WH=(1Gj7WlC$e`~V{X*V0sxeKZNsp>J` ztdUZJFa+D+-+q5Nn1OZIgbFn6_y(9uU+ItPp)~_55>Z=a*}3=Z&B6;P?a+3E}%9SYx4eXSiK`CEb4>#X*WB=Or+Yk^*g zIpL?X6gu#S-(PT!i9|P;e<^d3$zq(6KdYhRY7R1Drj>k4MFf+`WOBK>ct&A>l_Rng z(L=6all4_&F@)a}oPHHe^WLK(sLy)}$^k6**Ocba8hrVAKr!Y|`c$avFry^DLQV~G z6mPZgC}E_5h*_>%5=SR@7!&%7P;9~J<6 zov5gNCt8cx3Fvow(=0x)d&p$1JAA2kL}fp~Jy8hr5UBGE^&Wm|cLg=E(rq-qjkU%A zQ%$>2&{u7f=|Es4f8TBk{2fRkP?IVAR^l>y7ObMK8hhiiFwd>|9^CFK)F*Pf?T?^t zO8U*)S;~ByUW!Td+{H&MP0mLc91?i6j>D7{C|qZL9D%|QD6M%SZLJfcdkja&GGg#W zst8U^$iINLt*nn{-)<>e z@LA_Qpvd~_WH?64Awt$-7>(7U99~u29;AZ$>2}Ou$c9*2$`&1ZHQ}`DO|e;tdyHAm zO{O6@IGeZ+nPZDw@f3Q#r%RU%B`?A?fdcr?5>#5MMOpS^m>+}LO!}t@hWA6Ipa(2QK6d}3Z zX>(<>N%Yl@smpk^s$O85hKWVG@jK4|t8jrb;Km7UQ7+(L?t<`Ye>6BKrk?ru#^~E` z#?J1CpS7!3R#izp76T;V8n(`T8V|=!3f8C}5VvN?GyqB-TqrmIBi-1)& zBPw0vF7?}Hdolk|o>hCh1T9ALy>v^p@ZrgEza8lw5u8`GtGK=x;?&VJj`uU^=+iL~srVtRvK?l^EgCrG z)4gcFf0gi;*7r!^({;Tfu9kRm7kWG;mPpV{o_if=iT)K;>kgB6we~9$I&{wI__))?K)3gyYl0 z*pU&f@f%y-(uwR8>HKC1xL!tvKHm=JiCxq0-U7)zz9E9u_JL}}=${q)kH1T(Jv-Nh ze{JA=M&277_>99+sH%oM(HfVN6@5yH?X8;2)8m4Z<~GxdcA|T+(#E1!-1j(+U%s{AiB|Coe=2pD z++z^eZ;!~JB3}+duXx2&sd}4PC12ZW+HhwvwRuQ~bHxWy7c%Bbc zuFS;F#-JXFu7(Eie^ZnaA0q@^e{&)iIlB<{V0?}c6POoTZ#;c|qm)fXTH1eu5&`@U z5(_BF{?$HeQ!Eg-fru&>B8jH6oBMF)<_15iq)%oyaxsIqsP`))575I;$G!`rgl#4}yHTRf4hFq478Ms0e|{MNR^ar_1U;>6{tK=4YP%oBF>q}+&VeyBpzZ03BChumf_Cljl* zI|@xig}zT19QKWF^eb8$e^~M8f^2u&*s{c__8y1R5#1~^_Byc+1NF-#t!w%?**#Ij zC&%HkEYmOqOb?bM+(x;Wn`;d?_LGIgEbv9=TaA9z8Hfd0*3Kn092~U%**_KW=)_h6 zQEVB1pcA{t{C1KC!Sb%z?gk9hgwW6YqJ*g1IGLSZrbMXL@MKKie`8SW3nChb1(mBu zES8Ehsf$D>HYhkJILgs(Xvid++ez5oN${L1twFveLL{N5T_$eeszZO27WzFAJI5?F z!hO>ss)qnf)n|Sil%w=**!BhE6hsa@;1p%dNjgsMsQIa7qT1-IFMz@VS?`LX!=zYtKavzHtju5r}=U#?+yY&;^f0mt)EsMcX-oEHUW13ZH z3}9XU=XsK|HX}W2=yGx~&00t#Yeb>%DYLlu*Wj}`3>EQ|KHmX_*N)iZPymGg0LiX&+dEn%c@bu0)*Q@lr2w7D; zQ=sRoQy;x;PXk5Bh#Y-SS?5m|*iseHAFkO!T#!POKEFlZ4LnI#zpjy{G)Hh(e^t0tV33lf3)x&g-^+cC70UcIGosSy?*aA zS672wQi=)fZ@K!+DK;inwZl^h=1)d4KLIHPI-gMc5M23`En*(H_>R1KywHrZw28XG zF2dvUhAcZUN*0phDU3~NE3l4PpRjSyDu0vbetp57Hu6ihOa`_+EFFuESXR8X*313LTFTAxEDQ*?f6%`(Q^nCWJyS(&$ojlOf1FzTYWt)@ z(|!&&D!)1%N2b&8AoPOCj=10C3iYrj3Chu)trF4kM1WVYHQ7t*uwwS){>95|T+Y(q z){lP->R^@f6u1iSds(?X{%x%!e84UTRpDAvbxdhg@VF=ujH=R>H9M*&{_zH^H1kW_ ze+VRIh&ud=$uO1a{}ToS`TPo`cNK|xVbQiyL7Mi+8!&LtrQMZsoU!nk6}kmL4q-_E z5d{wsHYwX!SN~bQuU-xS)&R(q@ipM@a*9A1hQ*sk>NUz;C)<Ysm z#AGyO=VuXsnVzK2ENKLbzo%w7^`DD$LwkoEz4-lMsh8H{yBZg3e3e(<`qB0)e;b^= zA{_&;_Sfj9F7FS9|-b>SK0A_w@{pxU4pOY4s&_aDpweF)y{ zI-y{fzD!=6@qEud<|zoeVCSOsf7}+E@s@qIH#7TZaBm6FZ<~F##5dg!Ac?VR4Y-J} zwNw#MyV)XXt_$mQ)@Mf&Q+1{ZYu0dx5DW}TR&4x32b}3=f12y$i8;0) zwHfBLO3}x9cqmk)YVhbZA&meo)NIiq*_Vf9Vx!k@)AD%BcQ{$(M+7Fd&`5y|<}nUH zkc=APT7A+D8U4$xw|IPxaRtOo+b_OlX00y-dsX~2cmuY;d;24K8d-M2RAJ<|Zu5(# z`k;;J)pd_@&7e%g(MWXLf1ymY&&v8m>Lb@;gya6xV#%(5Tpxwu$N>Xgv%;pBa{`WL zqevFv`}Xm92pg@BmX+`(1!1%j>E@!jCo8;Q7Io_uXf$A>pW<0gn~Yi`3>@ zf^Zip+ri&2NXtq44ZDh)gG(`OXpfhXwgeLaHJ9;F1QiiAI5r9|Ol59obZ9alI5{#k zmr=a|6azUqHkPykDu1^HP#fA7E=+-V{{PH-lbK|HOTN9=+TYqUVW82_=8(38nuFw_5I6@9C-)10 zjOxob!T@e=K2C0KUJM2X9WdM;^p_cfK^Fvb216k){uLkt1AhVGk2YB#{4q`y3IQm& z*aLX@06c;(c!XYXa|3v}xkdgH2!*`>$O2u#mH<^wfD#k}a>ihgfjWA?z}7bK$8G+z z1Tb5$0C+@1gxLQ`2S_`BU|Sn`^T&WcP7Vaf zOKSpvj|Ki!p0foE>9$bIk ztQ`dE2J!j}Sb-syR=c0OW3A z!}Xh9$A7~S^oNt@xB0OGA1_C!Bf#ph2#^oh3iSAc;pGf;1p(kN7m$zFza9ULFnD+X zmS77wz#L=^hG6`|{%8hS{fQqh9|m>@7;-;qj|ag0`}6n8_)%V#P>8+9KjDAeFPFZa zqRbm@wm&QW+xPM%)E(f(As_jL5 zh<~;H-%SKN%Y)rPmKtEVh0UK@`P2UT_l((tAs`K?Gx+zT0^s1`=Kdew<6v3XJw6=H zkAnQe1$vyD|K3s#Vga@MJz%^7f&d^42K2yqyy8bB0Px~@oJ32I`yUbpaB)JQ@W&Lu zV{twJD<}-(_k9ZU0=Tq(oBl-n04|-sk$;E~fD8CH;&~Jw7wBJ*55Q&pFDMA$vi%o) z%(eR$6b5kF{|kx$xE%h0JdfML{sjd9T+aW3kIe9Y!AEA7f5As)*MGrBX1Bi~|D)3r z1cUxz_^-ZMxWHhK562(6er)Q0@E@-f2;>g3z?hqcT8IYPRtL6TRZ5e)acm5WPk%6M z=%ui5c+J5+yWC)-CbCp~c()9@kWT#CiMy~S$9yg|PkryT*Hnud(j2eZa_fC(8ml$7 z(Sk8MO4K`&yC+@KLy1nop(C~FeedM0>u-nD^rT&hAt z=?%@z3PEMeyW(+<$k!1@{sof^*?;C4QzWz~a1Kf|R{UdkoXPWx3H;2FU(`ymY#2WK zk$ibx1}nT#*HfO0r8>OMUr6am4M-@F&hZDw7`ur@ZmX{J`Y?2;cO5g)Yz&(h;gHcUI7}PS^2^ihs$!B&yYw^yX>S+%pG^B= zqr7+$gb-aj7%|k6NMXgTF^v<-70i*}tC?W(aBQeTN7{$qGqnkq3h0)3_l8b|4)e(s z1#dd&=w7FFr$X!bsp)Htd=p@a**w4Q-~6^erV}D! zDVp*$%=7s0`j?gl`XJaOw)f2kw#Mlr*G(tCh5^rfrNhIyto%z%L*$d625AR8_q?he zp-)t`~?krZ;atspfN$oJRd5T$X?mIv#)fp$; zvtK*&TD=a%06`oa^c3;-?ukxx#e-Ikooof^5kBf5F{>FfKYv|*>XWg9IK!v!Nt3p| zv1sLB950I=u3HA=h{h`-D+b|I@KdabZU;lw{C3c6jYsx4FZmi*4oSLs0 zpSk8m6@6cX`h^YS7i*wavg)_GinZgXX+Hl3Q_b|CR-X76uhv(=@K-a)h zG^6ZC;9xqU=r~^Rc#J@B3I!r3gErya&V$hEh=YJGTxsdX5O}VR5wJkMNW-dN2 z4k55e?Irj5RR(;zGhhspUSsE|9^I`gTmZWI6P8Q{qdjYR+B3+Bp#&wBqn+}LQRbe# z!V1JEn28J>jmS*rDkAIXCS8g%a20l{e)VgC@+5$S7Hypr#8=>a!e6tYo5Y+x#$YVB zcU^RsG=G2%QgN!fqI$3JjFgcY6QKe<%O)$8jkOP`|6XI0!DsU8ZWyx3o8cdwbRAtX zZ^bSz7yX}zMeWd*`NwqIZ~Qoi!2^Prprg_{0dhwvXS{(Zq?1_~bgp+yXOPwJeP_W$ zr$gbAjw`stMsTkp& z!he^ETP%Wxtif1GBxK|9-N`e+2&-P=tYw*Mw<%AQ1h$(5uI9AQhP%xtnymX%)^D#G zzR$~yj^xt|I39Ydq6h3%8TX(kw7(%W2oWdAG|H5qRmV`Tvv_b5k0kHMe2G68#i3u8 ztS)UyG)2mX zP~H5ec&nk8ID8Gg&m{{@Tr9=%a~yi&^uXzv;|(GyX|g*ArDH3;gHd3^Hsl}OVLN-7 z>pF@%{>DIm25ua=*GHgmq#nToxCCQFO*sqvK`yLDiKIq$)4?A(V2Q>cn7KJQcz@4U z9D2TX_dKp;Dky5)i2~hHGIh=Mesrv6yKzsr+r5qD0b%*JyfR}1i3s`gfF-kV*JAcJ z_6dtpm4?Y~EuD>V>X-OB6=arBwFe2PnNxCaD7%{eP2uz>f&2MVL#b~$4Q8tlBS+1M zA3Rz}GPFo($I|&h{f0Qn=o(McyMLPI{j-|#`zMKehnD3ZTwcw|IQ%T-%_&BFjZJ)C zWk7d!p@;84S8@Ms3Tx?y>r`AGMihao9rybJt%}9&n2E@ZsFMxt0D*?G@~zB={?XH{ zFR>TXvNI+%?-EUKUZ|K=4V^P6Dina$ktO(H=R9wRUHoTp!;gXo1nf*DM}HcOcC=%K z#%h-5N)plS6lm_!*UZn-ywc{8!N4T;Z2m#;f5m)>E1IdWm4=3 zXKBx?2Y(D$pkBg~X9ZMViTYq9|I#{P@*NEIT#;6_2c{2S7pp<=_=M$tMQKEYR(-G} zdm3gbti|wDfc3rGuu{B*n1A?3O;tZ*{lbFw>WY=vql=jF*kH#UbX6@_>Nn*F+PQ#3 zVhry$U;Izfnj(Y?F37(>vyB>hzLh8*IgJ=|wmQW#tH-vMLp>O?iyUHTV7ZhzaKWEE zM0!ZpU$QWFIH|(y@J>^T?%X-S57kX46ceGlJW+5Nmt>Ix$mPByCVv;Zqf_^z3n5YO zX&2qw>3*ne$l&T~(^irj#!sq7!X^8JPHCHE{>@;NuUWH>!qj`_Zs2R9uOfCjw?EnQ zdq3~v^<{*5^RJF#U}D`Wv3*QQxRa0Scpo#=7%3MVnA$`>5u<`_P8P{hg6k)*HDW{m znZ`ZxZt;iK;r*#_pnugoJGHL80wej3Dd$mHSu*OV_a_?0xQa!T{e#RUAjLIp^)r%t zH5cW=4&gJJTeV!Vy@_%deQ=Nk$8%17Tp8*p7}Qe;ldR%2$k%x_S=8K}>11yQuR5|l z$(>ForVQ>{%L1OI zB$;!YsJ9aB9kMz|VqW>o$o?}#8@X+++E*5Yu|uHxf_ob=ExK)h4@k|;l&Pv4WjHjN*(1nV2b@=zF+&7Ga z3oS7GjI5i5D?Q#KA!D}QT3!-?)Sq`IB4qOOqe~^TlYbgoUV>e)VqTZh=WRN5^%B3x z#RRw)KySn_F>{7n7q0_&mnw6=iQ4)B9MC;yynMe5l(3%Cos|KwcZ*LCpcmmlvv;=WYHfbOIrI z{73Gt2aM&Fe}R_i%v^64-5?ES*4`t4J? ze*90MmKdx0ScGRNQ@>${8&)eJmVG5*3lXWWSDGM8pKTA8nFfm3qkz5K*UtPm`45iFWi_rC{R3YP-W^4`}B8PX`+buL~U#zbUUPL2$ zyb>fCK8Uvsi;d-0GT2z_>$#40T__U);D5jQFdicP_1w_~Gtd5k;jnvAKLk07j3$qC z2X$9OMka*OWhtuqz?4O#thnZMWl_#Q{~V?c81kdTkN2jqF39%?J}Bzh+$)p1Sg(3t z6>o@~nQf=e({Y^3k(8TYruZ}=etlw7qxv=<#{pkgyui71ZR$M-bGP&K+1rUO)PJ}} zmG>vF?uW5*mX}M*u3W1GWKfE13GuNvE-JZJ*#;nQ)rCx)Z`>5YPKbgJN_Z~x*2*>D zDp55MSykAG}OP*aWPK*r1rF*o+Mv%!J6A$qARcRESUd^Jd+ zCiP3Wd(zm3Zg~CiDCX74Nk=sM@R~IdL~)J7N>ia4Z6kAfA_YeyZ0H@&z}z!-E0e*< zm!xT8(r8ix2n{l}%{K2cD0>l^r{6o~zIfl0ZiX`>mh55ZO#d8QPl4qW1b_Xy$jUz( zSY@2(yZ))G#qKq3ci=YnQj`t0Ai&h+^uJUwh|D zaiYF?DVbaRV|mQH1*vs^Pf(NqS0GB_+Xlq|N<#%I>U&S*;jdpKa(|Pwme*_S_}&%k zcI$TN-#E+g($@1iFv?T3A$1jukbm!TNZ5P&7Go zn40hH4jz6zbE&8{E`PslL1@`!mZV-hy^_#tpo4Ta*@+R3V;CU5ejKvxlU-v)HGlLF zG|mn*wGE{q!>A78_WV&QTjP~W$w0A^vu&8WwdBI)K3*;C&4!lH(`Z4CNa`h^DqYka#|(;c%WapfYDk^o&4$f1uZ(ocz~E%TaQUaer)j9LPL=UWvnN-u4n# z2J?UmacL8H^A)z#joIR_dvZ}x4V3lXVqM2}e1z9W9`t0k>@n%0*&kDtx48N8l5oWJ zsgojCFR5xg?vl@Z#8?){^5lFoA<6NFh~3#%I?b1Y`BA@WPz2CdKII^y&mVnyFjjF* zzxb{`&C=DGIe#vcJe$tv`z#z`!|)BEL6^Qk)B9P-qMF8Y?;Pp=I|VYk+(As{<)xdS zLC@vJCz)k-32o5ox|2>%0`1c|abY$>TvG`%%zCEtlHn$`l%cf7gIA=AR;^l~4_I5; zLbhDQ-mn76^4yvrtUdt*1gUBtx#lTHKuP(#R=mKsJAWn`J4ol}*3U@!V2;naUsp(r zQ1A-g+}E5dR#W}Twkcx9>aF9xfA-});ienEx6}H?;I<>Y2n8K%(cTrQd~L9SMPxp36yH>+PoP=1qS%w3M)6Xo zhR8bK3xDYO`Xr46S%`DaZZxq&Ej1FdraqV7=ED%tf8BFMB`&!MzTF=n-S)CFQ4bfL%xEe-6+`e7!@Ho5- z$A+>w%_=_2^V4WOH6=g-3;v0wVCtPaAMWiset$cgcw6KTYBua6N*bc^4@btuI#UG| zQvQV|t@thC18!poG+;Yrf4Of79G?+x-?6N&5fgL-uXW-OSuLU?M~g34?PRFG$L3gU z77YYSVZ6$tbQN$fik@z6i;OHWa(@v029cwRg>26qU8HlNUFP8B=TJkfJY;wGV{%T{Ae`4M5mirZ-04(M}Art5WJcsHOoag3r1Ku^vxLxrzMZ3 zuUCo_ZsEo<`8gwPqB~<3@Qjs>KMAphD}Q^;%!@}0Au`Fj+!$>y`zMx=r+?0VqpF#B zqps~r8W|&XQCR=mqFGDAb^}hcj)Vs*27u96r$urvnsd#%QtB?hhq8$pVK*B<=jT!kt&|iNiFVrsZ9Jhl^)sr9?tEhQ!@6!uw|_g# zzCx-{FQC@KPd;i*4=UgAB}?L|kI_k!OL}200bVuR?SYdhj1}d3*A8*%kjO#>-OFQ2 zyY}IvJB@nVk4O?GdNSXMakmrem1JVhm|ue?70tko#|}H9PZ5kR3aypCA~DgpfV!-h zdq>GyHS=eRRStRr?RjRBWeG}NXD=bu(RinX1&cmXwWB7q%h$eqoJ9 zw0K*nTj>jaz^owt9?ToIE;}R>6&lR=# z&eo@glwGxnS4C>-AAh%h7M$kCKQYTR4g|0VNu6@7Oh1;5G6I|(J+jc#nES!oE#ebdBV70UL=bjgCQG5I?y9n3*8X-VcjLW`*LOHR%DCIrbJZt;1GMvrtzL)i z8N8x8AHMf@R$q?HZFD%@;%@h$NQMLb17vbzW`jfT@cb$lUrldBT;Z~zR}LtI+1iyx zjB&gfG5vB~8h^v9XUH7;;I-dc#zU3gjB4Zcv+b~D` z0@lP{S9D9aIe_{dW6X~9=GmJlE+A$^f3|q@_*9*5Ko5HtG~?AkTSM@*VuIv)1w&Jn@-X2fiqVie&v zd$Y3j7|)P)!|0Y?&d2=f)6MqT9GJ`(@5neaOvXVR()fz%v?k*^Wxl9)7zKNG7P+dN z`D&jFxqnL+N+2RpEI}jV*q~w_oilsi$Hb=jBNL@{gn;^`0s^{o>Ssj)MlJYO4j{zd zT&?+6zeeZV;uJ-P?W#qCv1r~ZUEa^7W4j(QGw97-wl|JsTQ)pGEvNQ3DAD@cYg-vR zw6q?U>10tf!TcgryyKoXS#(X_fcrI=N+S)3r#MK= z5)5h6u13*Y=9l3SI?&iVt)YEc3mbvoR0je#R`qI|leFT@sZt>HBBL=(%V*ud(+DeW z8h?3l%cQmCo1XdBhZB5kLR>pWt;<3u{E*q`k9p==T=Ns=67`;^)7fxENINVb1gJC zPntt!-&kG^ZTB6)ki3F34$ckPGrIkz6DIzW2qmS@eg(n3pJ^&%1-`8jQ~Y?f9Dh}! zn5)8@W%`M{2+R24k*gl~bxzJp)9HO(RQ(9!US!X;W zXJW{}Zfai38{9Z+9>3~zo-Q-6dk@mn{9GFQjc}UEx3Nh-Q>R;^3oBf+uMg`9pq?tg z>vfj8W);-SbR?EY!=8=8!hNqGH>;8v zea_VC0F5}U_MrlbvV?jfs?4-Zs;%3L^w5S zOzWWUv}@aj$(d-^3$c^pcaJG0Dpc{>diVe;bznNoJQNP zS$pr~G-N496-fzN^g8?vD253E&o)ydoLt458)96;hbi#GU*EnG$Vd<5f;%w9ci-+6 zhV6Rw8vmFEP6Y*#pIkHx;+6F!#6QOb8|&U!2%bf6ZG<(N2HDq>*i<=6tOrN41L$jE zaH`QKx(vCA(SL{1VLZ~sX|*DqM#(p0e0n#C>RHd>4n?B1L(`Fi@$UF)u&i*58)|j} zS_3)ZgLaQPOn3D;x{q|EN#(I912%D=I0*8?*J_R_yJ=ce?Epq2i<&&AMt8?3_B~P- z#kemp=L@Y$jxOF(1Ak=XoyZ4@G3NHjD!gQ@7HQ#ovwuy&deux|XJ2k~$zu?RN$kIB z)|Wv*1h5qEGk+pty2DLF&`bJ--lu6sKj~+gyey3Ug%Y@36Geru8aT0rJ??gm=t8Bq zjO4qxfH-_$J*%vsl1%@M9nGyqBuY!W;XKB<>eMVklx1rvqXGe0Sy5!)B+ArW0&9ac z4yefqq<_zfiEGp37joYMgSp9QYf2>9rUQtJAc3|P> z0t!uYNw$;OYEgAd#+#q7dk1MyOG&+0eFDpl=YNF*mcO6sb+{Ix2>(bD>n}1PAMa^K z@gYae-`0#UYH%rfzNcJ)TfHSnF~qB^L@7=W+~%C(=wWNqG(F~pZt@(U&S7}_mo9V0 z8M(`%8j@2)=8zY?Og0LiYTRFE*!{FG`$L7*^PQr=&l;zpp}vd!1)A6@-_|yZri%;FQI>(PH{)ke z;&$j_B9+bf5cwqEZFRYHs-xX7cT7dhFMm@844dc5xs`L)o@zHU@pw|3M-`IQvj8GE zRD%3;ooa;$qojnXU5!TV=d2+s&)#_h?0=1Jt4?h>O1;cn4z%cSxkBz(1kw6V?s$#& ze~M#B$^Xio`T9z;gN<-)`_Sm2I)ThO+k?Lv8Mv33M)v0RqK7o?>tL0VA^F2y>iHa%WG&eW4STQ=g-G5Y- ziy=A`!oi9M&XKvTvxyza56Z&v%W4e1gE$04O9pK+wk7+6Hv!iZ4fOMyiCd;0!XP&= zqXNvFA^%h#r`~F>Cvk(q7HPo-HG2z~V|PD;BsUl+19F0;k#=|O*f|!RdU($6dAYna zme;>6TGFc5Mw$#$e<$91LLnDC?tkQ2L->7_H~fWTZO`G4IW2}@h;U^WSu;*u5Jh$f z2aw35@a=J_mtDb-=RB6}37B)+B}%jH_d1>CHQV|hvM zUv9UrnIna1hjfw~+~XxOh4`6oG9M#X;9qk6(n>lHs2E$@F&CIX585VKqgo4wQvPJ-Y)tPsp|F7T2bmPncVty>niX za3`Be|FW`7z;a)-;e{|~X{#qLTBodm{YC=@dcjmi-z0-hENn5CRKmG)e0LN+;}SDk zr|)Fso=rE?Py2TJkToc+p?@G)DnrnijhjawDC{yC*NWjU$DOnA0L zZJ2L@I+opq$Pw~e(^}OYk$+H39hmcZ25lS4 zd3`^o8Vz0$#c0>&9JE;J@SiX)pSr%)J1rh_&~T@Ri!)ff9cND`fxg2s5BElgeUt9C z;Iq4W0on&+3|jV0ggnV;opc;R%P7&Q=8;$qJM&&M7~IIg%>8(%GBHKMG^8&g3OIJi z#KOnE6-)4IkvAdU@;SdKnVr^sYF)7&KU$qlTeWa1mClYno6pev^xQ-O``nB6HYnaW zqNaxc+u)Af`J%`T@BaXdwQtCmk+uXA0yQ+3F*gAdw?%pZ<0k<%moGN~6}LX30qPn7 zHJ31Y0TmN6GBq&@FHB`_XLM*XATc;LGBcM^y#W;jIXN~klTiUDe~k47P#oIQfQ#Z5 zoCKG_-QC^Y-5FqTcXxMpceezB1%f7ca1HJd+yZy@K9YU@_p0tKs)qTxd$q0ZHI$?( z>Wrcmj%Gk9M+Y}XRwfocfViTfEGrv;g@v7og@p}?l2QZYW(WL_9Enm3=;8`;bm04k zg}4jQ)D0|?Fm(ePe=0gU0OZ{50Ici)RxUnPZax+k02>Pn?|%#(UHAYJrXC;*fFct> z&d~wribN^y=;ZAJva)sq$NA4!0F5~IFJ z1E@QigMe<{|Koy2z}n5tiI17t)6)`0=;QJr41UXn({#AyByA!jf1IXDO zC@b-A8?XrJkIV|_2H<4j;b!OI0sx%>KreG^=Dz}He|S3q|5md8B?i~v@9X5~1h52` z0rUr10>S@~d|gdFfB-iacc8!TKNbH=NUW>?3y`@Rzzk>wazOgy9V`Y~{)@r)?*j4y z=(B*wj}^f3*WZ7?8Gk z0IV!*e_Q}=@E8C8^`l}6`ga~If6mG}SUQ4F{3~B@qyCe#$G?Yw=HDAa3;17WN{-;s z1p;XPOu7LJCyP1wgZ2OOy#IaV|KFJZ<>mi%(*JKpQtozkf9q-fW$^!_HvmgOw7<0n z*?Irl0zA6zZs0XgbObMh!~Zqa2L5Yz6@eBYcl-aVm49_J1+RmsgB5tB8Cf})SUCPA z2f0dtynq%eAUAXCe~rz*} z=mtIl0Dsr)53qD}LHg^Wxi|sLqJN40Mce>p@jt`^9=1Qk3t*P~FLAQ~n5F&@D}Y)0 z53vE5W&RL5fLZnraR8X*{t!62{2$^1Ff05aa4w4fB_41*l|KZIr}~G$@znkhIG*|+ z0>{(%L*RIte+V2;>konBY5yT`?K=M@Ua-#ezkdW?Y-UqCC+j~FUa+;GX3A6;4s$zK(JHLKM>p;n|~m<1GfJ_aKU!}MK*ADcBb}b7Js~Rfh)56YmomO z0e_cm|BoJm4IKV>0H^2R{tqp<7N?k+CijsE+k1#k0z`0w9NAkYhFj(@bg;AqYtX44YZ{m>*z;K{f*DFAzs^`OJX zI9XKE31@|O`npO^FzVL;Xc}H)GdQcsh(8ttE9N)!hgG! zdi$HI@)WQMd9_Zr)!aJGMm6?0Z*Zv#x9t-{cj649GnI14OKMY!1)c{GRn0B@!nSV%DntLM7 zF?^G?+@D=})8Nz6({Q%W6aAQtI)qabtq}|I-XYAm;zd2|A761hd$^$^i+LYx?jC5j z@6Jx6SZ?ipco*K{Gwqfc&^tXik)VI_kj>MDsc|bB#bMdFAB@#mP&P4(H;!9)wJIO0 zFGvx|A&IEaRY7(9Ja3gfzke4NM#atbflBD=wf#wgCI`_!g@;Jj;&7CqSoy}*#y zRa~CgY(fPrx}~i>zfXjwUlB#tK}>p77X&FQ6LF;=0&`8q7|Q9uc^*G@e^SE$k#v5+ zGJGpHrw(P&#U&Yh2Y-<(@+GgbT4Gm?W@oS33dIm-BzT0j_Jkvz+OFfUWF%b73M8AH zEKBZIC3-+g6UucrD*Iq^<|#BcbFvft^Gd6@s#5%%+}+3gnt9iYc^`%-jl_mrvv?1 z+trl0G-7WMk*?CuR54L_Tf(unw% zw%BJu11cxydO2neD-f>4Q*Ii z6{!`(TTma@${@buTgN>7fzeT7_I(-D5(adNj}n#5DTp4hyb#7Fdhs&&QBwLe}B zrhlHN*>Ow(x@L;$&A7Ctu!l60q#?bVb1c9TLP%S-n!>fRWwu37>gAMC(cfj6(00ml zBdmiD+EbhHe52htBS983jve#r*>> zNPnfDa!(RD%s*+CHRWDgD-P2+j@+!~tK|)xD(Q>x6|)^k;^GHxkoj>RhQXrro*NEX zU+K88t0pN3iM>@(iakqkS>>ve<5pA$IW6nSrsQ&}91L9n6O zo%QQ^K?J)3GrJm2%I+ugjeQ34dj%BERfP6F%E8Hs)DHqTTPHTs8E*>m3V$t+9yhDH z{_)>igX*Q8CGjQ}bam$uufJ+B_<<&0cjrPzG*(!Pg78f>%{}TUpuc;CUO4ZkFrAr@ zG|9#fYGys}hog7F(WK~v>gzd|`|T+3Rg9!`*5`ks_N@rhh)t7~f1p8A_DVsCvf>iV zbw^}?J1Bix4m!10Rbvqu-hUP`(~u`4+9{#&E(tMp|mzMccr#Y`5Y;rpcD@?wEV))hra9>6S0xnwC+~V!-9;APMPz7_n-9_Afp6m3zwk!H@ss<6R=Mm`QDDWgG2-6gCauCpL+Jfq!& zdCf9n!}yBxpdWGMIDg;R+S}EghZ7kNZF>@j=j#WIc2904u*_cM%Qy=+C}y(?%&S;( z5AlRKh6QgRlLK-l!WgdJ-`9FQbDV9=<2?8>BK3_EH341+3VeuYL{C=QOm}^E) zhruvarAE5ap<#+YPW#~SdDgXJYh;YyfzYwJ;j%?sHGecb-ZQftxxcB4AaMPs=UBOH zG=ttQ?m*w3n;VEl5XXT}XZo;~%*;@}z`pU@?AA*3#f-$$@?Nu7sl(LL;klDRdkE`{ zt3%pgpEWCKiU&ba*~SrP8B=n765U>E=`VwkGgz-V*1R=?0aTxpG7`xIV$y2kB-nj3i{-d&I2xyQE%@2~HdCxYrt z$*CT3CCMvHcxiCs$1fPWm^*2#TYUq|PV5Ftr4>f1lJwm@TH1iKyr!`u_Ksz{ zk(0>0vj050!g9XCXT>sV$8p%N=%Og<>YijGfNa!ILuA>|GMv485s)~jd#yf)h$nw}t1E6_LBJa40_q|)c* zUQMaJ6w}(|eF&r1})AIFjF78^p;LwJYOL(|P8b%QF zPh$)V7bM=zkD3T#1QkZj zR&=Ehm+Ysad)l`n6`QBkf|Cn4wP>+U+7L1FCBl{IFQ|?SQG!OlH;M9pnX;l>pjAlk zhva3|p{r7#qpruuVSp+vTxC15P_4`w@Tc8QEb&E7%rV1NkV361 zVduqp3^JND0n(M3jeqR}eobuo0#eQ~b3k^!FRbQQ5PNW)+J-gAM)j9RvO$#xkX5JO zo7b?fkNglG2~1tzSG}{J4R9T(=Q<;TP`2h67XT?R%XDXBM6|UT;VI2RcSYB0E0)b@%X~~4+|yfD z^HNq6>bsV9?wJy>(=~0EOxdXOy%0G|K~bM$%>5zXLwMfvT|@8pw@6>rl~d05FcR}~ zs2*!hBXc8m?_e^j7~H>Z4oxN#vsNq4M1uIV>vCvQm4ls2A-ZA3=1(_$d)Y1Tf? zb^wt#+1y_F5`NyL->_@%KxugmgLYf*u67!%UVr>Ysh!Ul)^-%!ju?KB9fJvFVY@0u z%~heXD>?@BV$?+rp2KARA_9y-%ebIGhU1#O1{kl1Hqner_7MwO(KYGP{$lgfxgP)X zeeFI)#??N#qa5ExL(%VL5uSx5GXg=incI@)&=|{2FLSIIh94?8*;6u%-u6GU7GQ3@ zX@8%l>mSO_29rmLmLG}1f@{}=TW6Gs*BMp2K8UXhJWNVp1^j?RvwN|6%T+Y3*1mj_ z9{e;aArgnD{f1g9&m`G+Q% zqvL5YfKM|-Wq1brbnp>F*04z!%bA{CI{cXzf;U2%Vd;LcU(+*ooHiYm| zeyh$|rb}OWWwN5Gvt(p!TKi*_6Dx|1%K|L zKF8uw-G2WK-3TOsC?1=;*yrUxApE~m!_Omzas^N*v z?3reyqxvsPI&Wu%MW<;Y14QSz-!vhTec{X+oV*xm=!RuTweHt~Ejma$g7_^sic~9B z^eBVItJ4I3o7$`6?__9e}6-B+Y0=G{~}-p`QbU47I>Ol|5#0mS_Bi3A<_X7 zKei3fpK#F3M)@#YOp%TC$8GFGlk5<--=v41M)lheu4 zyFI?}2k5O;QmG*3)k%=56NV;aE3?d^eRCOt3q-V_FIo4WB*0zR2>!g3>|DeX!dG+c zIL+3kq0X1ZrC_lomGYWs+cmXOEJu!eerXW53+cDF!5T_jn4cIwf6Amg{8rh4#HNhCF_}q z<#~du<92#1sd~z=hkluitUKc2Z{I9;*4t*Ycnim9g90M>wg0+);vb2}KR?QsR)iRs zJVR7$(Bh49Ni34Jd^7S$0cuR?D+Ke8jDI8JN!GB;aRuF|?!ub&uz%wV`4c|c4dquR z%l{Tr%j79Va)Nfoiiq&S#_2%EIm&c-0ojB8}D13Zo4TCmEw2F>nlaFk8+UV5`eD&U_`n%yS7~^Bb(A z2vEa|^l|hj3K0xQap>{2=qzIb&`WtHgoix-+4hc>J(rhkxixof%TQ4LE}9dwN+ z9NaUJS=re1$2WXux2h6%gsxW&`@VcW`4r~&pkF|jLx*djQJ{kt&bcRg=xw2mKEhF) z;uZ!oSZ_?($Gti0T1RrQDviC@a455n!9W#m7@(6FWhpV?Fb5tHPsQXKadADxP4lt*iA?{_N^rec$^g)>G)ct>{Y~@GsBr^5EHD>>N)x(5%P&l zDRIz1d;>*K8TS1fOQ6w=#yS2^PV_z8ce?ck1enDKNq_f21yPo1-1?YY%t1O<3b+{ifmh09h)tKaJoe?kbWPX2p)tWFRHDw#fA4I}#`@e3 zC_}fwwp*k&&!<|~R?tK$jZmm(-h~+yA=nHsaSCogBlm>BCB5uQLnY)dOTfbYk-FyW zEfn_odb@Y~B$yu>gu)f+El|yIX+u2{r%EetZ90`RB&n%~IsPAi%c&{oZ(vc|uZ&WPLVzeupmUU1AnR&t`(-BC8 z!ZiCSinNZ*g!d%CVE24^EXF|Z6YaTNyr!YKq9QBtMg5eBHT$hX=ffKG%$gYOob!NeEEc!U7C=A{p{Y~v*o#($BEC7y^In4J&Zxl+OFO2 zHftJq{A@3TYOypxK)Z|TD3l3aCW-;swgSFw#Ruxxr@2`-3Q=GYm-)W5DOeqQjDMQw zot}PwI;V8AG?-v`r_-P1h`RUerXcRNo{HnAS7xo+A>G1AL0G( zRO_?7l#;&mLbul_70yIE`w4-J=O!NKgPXHCje8;$(&53t{*JN`GVHPOgnuu)_VT@< zHN~Z>U_~J(C0BB)p3rh1QOx%@l1pMe3Vlgj+n8_blH6nAHT4e#iMj6(Z0<@7K#+Wh zMuu?Mnpo`Y)vd%M17ihizCBOKTj3*9KZbQ*!jzj=Dgp%|2RL}NSi25lIfEH2zCv2` zKmvlwdT=)~*+=;W=`ll{S%0+sJ*^TPJ(p*&?}(~SSIqeR*`HM2JkT93zZdQpK}%Z> zU3>=!{v_-_XmEf2W)U=WJ(!fWYV3YSsv?u2sLkA5E?4x5-gD+1Nvw;J$oy3i7zA5; z9Mv5?dB7rt#rvv14(y+;(WZ@vM)L+-*qMu4ZOsZ0&z+7A47)^6$baFBSU!w$vO`@F zA9+=+v~I1qbaNJH1x1&Iza<*|WOowXW##P$`e+oU|dy?-({yo&0FV z!#+cHpM54#KUs3vaLMKd4on=(KCx%c(U3D4mb}B(vc}6loNaH`<)~d%_YpCQ>*{rR z*}yQ))|+irK~NbvwQ}8+75QSPTVWDVKrD$qUAY7=xud-4zkiN}JC*{Or%mJYLkmE9 zX%tbFb}%Wgci$%o>qSv?$bhE?hhG=?H_g*R+#Kj-d z6(Lh)<|)yhn17vj`nC)BW&K-G0@Cs_hBHu>r^);cy`7qgIB%d*Dh;k-&>gNppW{}5 zlEJOKt0BXZS32MjDiH#?+9 zc6VBd=vgY=^B^T;lnxr<3gW1w#sJicV}$LeoU(jK$*>)jYRjX07sWgVi*CjcKYV@e z+{XoCjkZV6T7{+!-7=+pP2P5TZYeNG9e56>MqL}KRQQv_s=cLQDfRP+rA8i~pMIUJLI?AK#X!isZ=6$i zX%;HTIEx00eB?yWrnE(KM`&i$`YqrmUDh7NGk+EWM(T^Ar$+GbfUG~y8P3EfHXa)6 zqR+u^PC-FEbqy2=h>;}W*HRrNR$1|qeUQaaAXyH{ifzk^Hf4L!vMGr&DuxZRABzqk zP9CJ(c8*p>NoTLK35Zm&%K(3PyyArqXAKcCK`0~-x5BfvSF7qIHCuSu$e&@|3G26K zrhhx_5Z53XpEwj#P|sCn?_x*x5It0)@jusk2Q@dt?civgV+5t9&J+%2SR8%)iG=iR zrRUblynQfY9a|5klARR;8z#A^%I-6L4Ng(8N3geIWcd-Ra+m89^;7ANEd`68tL@~1 zWO$40Kx!kJk1-BIbX;!ccSFww|4T-i0)Hmp7|eCTNB8ZRF7}*y9+pZFpp`G;dD0JY zi2~5NQxflLfa9CoTJeoj7x(A=Z$mxK!`XVFc17f4Ce+n7X?rLlvSq`9RlO_=<3Sh&4; zPBv9af<=i)AzS(g1-tz`f4WiJA@%hv=vw zSGe>&TA5w?RcxNUCHhvWSTM1 zK*R5kn~8*%xTXAmo1?WX>%CLHUaVi9)ax*JsmOo0ce?rlKc1V-BAKaUW`E*NlUBz} z=Ix3}8{7a@o2@rx4;R*15p*{J!nl=u#Rych!y`nd9FG>RU;5g>D&~_Aq17Dhvq)OV zp2s@{LLhEj*c6zZo+8HKX(ZIh>-l^k3#iaLGmxCt+z|Vi{DIh_{iL=SV(m+a?c&GB z%9w=En2x^il=`XdHu)b0x__BEVVC2KtcFsZ0GUBV^vexlLys@kuzu)hLr@o?1s*>_ zrhmfReZ&!v$GJqh7WPQm8nz~UyTNIug~BD)CDuAN?&xZ1`%M$-dN>D{NBLua4mf#? z&F}8t6w)r~`=dY8E_xGcGt``BXZbf(=v>;$yyQ)lRx*b4?6)>fZGTCT&DYhH(un=~ zu{?TS6^c0Q8-Nf1?L zm$3eM3;J$3^+X^*3n@7Chiqa!LEa>^m~dJbquu}oZoWbwy2gxQq;lSQ={6+IY9G6I z|IJqR_*_UnQb+hcDjFk)>@ z&BISj8Z(lB*5?H}_{aaM=krrwrKMI+YDa1g2)QSq=&H&My?-n4@TjkDN?GnGTj)9( z^%~rXam_DH%!LKjGTfCbd-rsj%42G!j@uGBFY$cypN~W*R^*pe=-eU`F`CPp+NAVX z_w*l%v=NLUY2-`NQpH5*w$mKTq1*E=$l-X(aJ;=UWUpyCe0;a(@>%#xY~cg$5_8t} zn*-9?bo9dQd`zhs{&mv|nA;;QX1~LsCf@mAy{U&fNI1oz+&vS+s9I>#qSe4}k3&n# zY#Uav&6`c>U3b0rairDR`zR5(%UBgYK^EVPvp*Dp$zT|3?v-Qw3IYHyj%EyCG9IFt{jfqAdmD3AfDs3 z_=K4o^0SB1+uQ$>WBU!K$joWpL@pfLHGp_w@>{3QdA?w?Aymo5K9N>5@{BY~TwmoM+_{hWP;GPiYYqeMj$t&8{S zS*%QbO+Mu7+t@N>&qIv5*wSt24tzW-8Ji?5dNO6}9?U)wWQO{nk=QC<9fx=p>-Q21 zS;wSYZU5WiQe3pr2mSVO%+XAD4MFK9hD-${?SEC9Gup#ss8@hiqyWqNj^AdHg|nPP zPodUxbLim5-R+~@mwRkrsgtX8i;8EMe{cIfwHaf#>8W%lgO?5=Qf~iao(5<1Tdzp* zc#n1AowS~DLo+utY>O*&Z7k%d$w)q<1~YUW90e!Ep{Rx!5zul##?U( z>1wKT8wD;kL^?Wa!#VB@u_6RICP0P?BvH?re#}!OG$OBInO!t%H}K*lbxfT}=e1!^ zn=Zl2i2TsG#rz(ZR>1Vm05&D(djLrh^?%!Qy?;l_ploKK)kUj#u9*$;RTW+MvY_FI z(Rb7Gx(UuIMj2Yot<)}`L1-FL-(jYAIqE2FOjIqkz72>ieuPhb;>vo5NK|vRw~$=` zRo%Ox&ck~}W9Mx`cv60uCHf3Sf$L( zh?09WQCcvBvfnKD7e$6FZkt5RBs+a~x*RDI@XgBcbJ6M3j*5|=jYH0zOF2m8&T#h& z=HA+s7;iapWJ`C`8KeKknV0&g?0;-9)Qq1ik2*H};X~^8YE4M+iqChaWiHiV{``Hr z@HVfD<565ds(PEkf_L|o?Kh_=f{|;j2g1TJM>w(%-ltb@xuW2Cctf_O)D#PBwKV$o zFwLXceD9W+Y_JaU-T};Ut|_4#)Wl3VbNhG`3!P|w$~olZ?v5;Hi%);3d4Hrf@R{m) z?Zrrq=ZPTAGOgAW2!b$e@JZ4$L%`nqd5wLR9Ep0H$f|Tc2gmX8MCxN2w8OUbTXo2n z)`dnfu^J}Fe#?*k6lEX9=}BhL{bL>F7xsBOs8#I?LQNmTF{t_J-IFpT^AMsN1dB%! zvT7Hf$M5`m?HZXFPr7jxK!48fEWJL22oPwTT0h~>wB20I3`cLRU@mF&(X>tSH2ltc zVVX%4k0UPUR{8qlz4QH}!z$MNEoB~3s_}GOtPJFqWcE4;MGAI~n|5I#dy#Tg3c)wk zNPaC&>jO~}Z23csd&Xg#Gz1KphrEVLD;jA*D?gsq+cvGxSLmzsynkz2H$Cd|X)QF9 z>&UEtLXbm_Af0$><6SxVuMsx*U`ywN<~aHYglR5J<=)!D=j@jJ;dA0jP=c?ZFW*r+ ztT(L1Qt!x@@-{6V>D2Qt?#K$e1kkmfw)pGX(<_Xui1B+lU$!;rmm--AeGNS_%f~WW zsWRAnY`z3e39*}{>3`<^bR3I>Kao|2)^d0fRCS_&Pg?s#j zQP*XU^GIxZ5r0oQ(SrM_5xZshb9JKa>b_e6E^Lh`j!hngW0Q0o2i>j@@lYXS`dwhqBsew7d3jPVHCJ_wAjZYjuTDM_vO>Bz zA5D2lu#rNb9!=mT30-(b(tb{5VS6Tqs0Hwl;D0RqAkS z(p5J!GP-3W&Ki{ZBpP2g%5dl0^Dn4THL6~m7j@BcNhUd&Ojmd6-`{mji_KGC#Xmo& zeo9-pR%2CFGN&5ZB;WGlwHjBQZ@DYjh3ex^y7t7B-ZILLX3~MR?V|L7xKWTx3_!@( zynkTFE|RU>i*+Sg>Yqqhe1>>hAaWo_Wyu-FOBDr-bi~4Y+mytNbTy}A_o*>c(Qzci zrMXAtWnUc+i+pj^5wKfvCXRE>OMStAH}g6(6sz6slR&zp9<84ho|1}3QV82I=@cA< z{A_pAk&-eYr1WW|#tsI9xoGxod4DBD!+&CGSgj2ME-T71P>_6xDi=`)>BZwEyAylb zMN2tIV67vLbKkmIT_DC^0BsnLm;{}A`WMqA`>&70r6VJe8ri9L^8+^BaH3^BzDV~8 z(M>Aa`NCEbE6B5B_t_)`)WqL=en=#b>XT_iBb`PUsedgx&MP`5#!(t`w3Q#U?tele zT0@jZOqqrDy7~Ia!`9@xYf+|DXgE@|;=%A>_lD|D2QrLr6HLC=mOTMv{C6?uXd7ah zI@VyNl*1p}&|KCbVRlc&e9%#iQ72j)W|qZs0zy8RJNhpz08iab?ru^3X*D?b0i){g zP2aAB*Bf;rMO&OAYycF#vXi2SeShOrzb=ZN#diStvfZi_4Ei|h5%_dHcaB08r-+S_ z!C@<^qX>67Ue63 zTKM22s;Xi8wAxoRF{V!ancBpQK5?1Po7WX~Le58%>>HhP5MM%V(|=_Qw13o>lpq%BQP!y;}3C}2!fEZQ-X?^2x?MxrLY&$d5*Z+`4xD(w)QRR8hR zOyhD9L9)i)FONG@luEU(<$tt2x{=g^U?-8A!jf4ZnQojGb;I=}O_!$qN#*lCq|s(( zM1*Ga4=g-+xvk{DG{(^yVK*y%g`Pp(m@D#ogM80z*@|Ieq#bek4YP7)osy zZCupH&4piPC%yvkZo>_@p-}xANyNxNN%3XM2+T-MhU?e<_kvyFY=554A6OAgPsFJe z$}Iw8dvIc#E#^f;l+ye1+H$r-&VE-0_8qtv_#Jerk~E&=Bgi~WN((eZ=bt={a(f$F zg+4&D(m|yq)PbHG+7ETV8_rz~vWAhr*0|2Qd(<`hA{0d}%2&zFew9B(wHDck*dNE` zvuLbG9YubCoLe7*Fn`*YVvM3!76~4M*#GE|V~q9`d9C;PJO3994F-ZzMbvU%51KD> z%62^j(Zc9cBJ<&|O+CNTOp(e6UXC;lF~l-GH$8oI_;XXopE2gKHW_ZMH${f&G=Mfm zzL?iQPJamtQyvAP*#|ln)5HOy)h<>thL`zF9xY=>k|_Xb)QUz{A)1tZWeo6OQmn_qoB7&t2Tib2*IKhb@%7j~=^0fa8p+ zfQf^{!F@=GA|fNF*vEL}RI>*n3bJ7khVgJMy`%-}K20|U&YxcJ)~Apd5%nUn5aJ6n zUNOe@i7r$+kblhCDFBr{A1Bh1-Bi2PHM8ZXMWj|jeS5Tn$i_y^E2j*dp$6@4n2V{3 zoBHzhYKuTq{Ea|M@rhrvy3)9z2N1;fy8s~hRu+6xQSQY@T*#&uZ@u`NR*x0ur}t9$ zJbz0K63O+2ExV!dsNHS%<0s(rV$+8J7j$7HXQihgQ-9Y*6FDWKn={{-5=dZ}Pa>SQ zXX@tITc5bqBzi=mX~%h$|2vP~fm%8~_Tx5~d1*1G)TsJ5*+4Q{+@}enSE;NN2+|a? zRurx4s5|%`IaAs_g60l0*5~s{wmeA@eWwvv$~d6(?Va#>fwm)@ws&+U zwtoH|4Qb0R$%>eRINat(&5d-~AEvvkko|A$-VHQZFa6XoIh_z*4jrB$b%_z8aS}84 zoRg^j>BovF_u)m5MO!uC6S;`b+dFn0IaAg;u73}+`qTDY;jw)rYQ8Anm43Z%<*Pov zjhwGNTNEz^wlzE9dLTJ1u=H?pbmvmO^x3vtcnv7Px9_sdRP(AC!qQ4bWRj2d2CC!RH_D&P4CYC6M^9l&g23)zvY zUVn225ePS^ND+9-Q78&S!C}YhE+V~S(C81ogUDd^yhQ%NsQ|pLuHLj;3eogaKgNpf zVih*dFCL633c<~vw=G*kSX{Yp#nkV_#A%tvH#{~6GcQ5{!mVvQJl6MEvo#OkQP??o zXxjLzD@Z>^!^H|hHSw%(#d;&A`)ZeJCVzJ*?Ey(+K3#ROmAqd|;WIL-v4smjtTf_h(ZqEU~J0tbfb2 zg|!nxbK=;$7k7IXUV<#l=~N#WCod7dr7QN8My8e+rWDJ0P$rN|;WyqjgLFvl`gPgb zL@Np>YDuW8V_MWFhw@`_;Tt8ltHe22x1rARa^WJ)rmd%&gRq5l5?z%QEJ7C(voRe$ zn3&MJpwMG_UgwQD1*-NwN>@%aTV{;r}c`YQGwsp-#)R~10;^wu|F+r z3X5!axJ+#$PPp`Ii;x<{QGa7Osq;Tn=9w0z3g+j}OX)WZx$Cm)`c-NQ?}jK?98B|6 z6D+Jtw`wemMv89>$oFVURaA>w&$jkh2HNHQ50D zuY?InW<>l>yJq7shcwu@SldeSbJ7f9+o7+*6oIHEdg<8quy-fa-+vHq(q>M>F-#pP z6+~JDnOROtx~LD+(5>NkUfbZ}avx72ccPGA#-OWb){IG!CC-}M_pEDr#eq8nXDOBT zx6%j8tXq+AlX-CD0rR?2S7glD8^;&iUs18fTy7Z?sS9LvvBa+4_X65EkuB|Xo?ig> zKjFM{18Q45pI|#;Uw;zW_&u$mFVLAaOGMhGj5{sPqoCH0VU&oSIyRUOis)AxB#f*L z4PN5!jSoUMsBb-qa9w6p$>w9F%mDKX`Nqq->B8cCIpNL-`#QG|A#p{+7#L$a%s4zF zO9T>$?=EmaMxNmW1^0OdRbOIOIr>jC5*?cTEF9T&J%PR?kbis0UK!2-bNiNj7R-y( zn8oQ5z)t7Q#{FOoxvgak8gGUG+KI0k8L9FTBybhfo4&>8p(InX-*YwDCAi~CzNy=H zEplr1Ts&7pySh`+a*8}%ltlSi1hVMOe$)7H{TW6ou>v`h%%$qLJKWc6Bd z?4FJoi4RmEP1DGnl0?QFMeta&!}|o{!8#$wcRTDdi14@&tKEH>AxE(LxyvkQ0fQO>VFV}e`%CItM4oXhJbVipc>D;>NdL4nv`3O^9T(-V{}HZL!}mbm za1CzF{fDj+#nwv1wb$H@1ynyN=CRCd2%XmIjbwuDJa!(gdL(;{>`nziH-G*cCzC~6 zRd*nJ3!3`E1mgISLBHP|R*5lRN4(3%5dH<^nSVrP(U#)G)X@R^LZ5CoQ}3^oo12Dr zClM}|_PQRdYlY6s<)ceepK1Z?e3@Gj+vwbUF7F{ac-{a*Tt{BQIbCmwDZqLa~UOPH}S7z4{yfkk0l@0`29LUk+s75$~YD8XBQ1; zS&ddbab)J5Zv4aUup>}_P>%8KS0Kk z?~lKcHgZ2zXsx$|W!1{jiKYv}zM}DVE zLO+Vy8HDV)UB&e2q=~l#2z-o-Pihr9gbqvTlXH?<7RFdQzFVON{Q}|%6~sYeKkcBz zEH#sa!e@U#Yz4=kEt;2>+y)!Kw9Kqx2p3GDjF$TEUyTRAt+P?@5oOyv=+VDXEm58C z#O=be&2&Bm2(Jbi1zUwsmVZai%?LRdgnc`GAWvYp%!yA7Ue{kiEp5gSlwPQK_--K` zZ}9n$>uZu>K>x~IY3jIWYqutB_OAm0&T07g;re{b=AG`7eYs@oZ$PRp{DYa8G)a(n zK=G&$W(yP(=hxNJAW{b7=e-^f_YiCGqHdMbqFQifeyI+Nd$<=7vwv_=Y_ia6qD|ow z3Pi&H6JrdV^X9qh^Q^VXk#6(q_d8NY{lA1B1{MC}|2Q4!Rk_@XuQ!3>TR?>4|Zv`E0p+-1C@NNCpX;FW$~yW-NiVBJfmQ zv4k9P*?%NR7)XAwEM0q?xIZ4maHA~z_pC7?8Z#7PEv8EEZvEh|@AR8_s4Ljhf zRDbuWy1wR@%d0ksXtsYVtfUywX|3o=BMc=}7eMG}W)q6&@6*1-9~k?Lq|e!Z6)1R5 zNFtZui%WZzf2W@?209V%BBi@!(vkL3n=pH{qZ1rPdO zlLeki<0(pguMV*)2cK%P-Oo2|ZlTh`zGE!pPEL67BTRR@A4h+XjwTrDu=U$L&%bP~ zYG)6Br#>oYvx0+=3oA7Y_y=om6*^HnA=V|*$*y(&d{-63owrX0dur$9c_*bc>LOgW zf}nMTZ1|b0n5Tjj=g@G-97a*x$;(A3h3w~3ka7{Z7AsKHDMSF$5FZfkU?1zIBO4zt z-|F`9uOKnZDaU_4@>N#&9n66~a>}Pwcf8(vNvux|x#ddgsWQpc zozF8t8yWw(>;`gJF5$JR5ENG zSX6)yF06mnu;qpdlH2|FF1Q*yX?<4P%=;uw2x<+BFhoaLwGd z*&lpX_7SWdXR%keE{2JsQmT&n6O_Rb>s;vH0SBeGe%N7uw9r#Mxt+`5|V4oq6S6MLp^+cQ@X)#zNeLA7L zi!Fa;TWM(8L0_?=<{*=bYQ8Q({3Z{4Cz)@{5BI>^*U1+JK(2ChiCVkCYl^6idj&El zJY|QkHAd6I?2g`(fHl8ZM_}vCg6rdrW1`s;uCszUuCgHm&b$qnH^?;LqT#dsa%Ng=3w zkKp*Lg@uTRHv{#TLO{&`Gnbd8A08=!md91rWR(C4I z%J#(1L7chL{*iY?cIeUnH+ovrd=?h3b6C?$vgVXC@o(;<|Ybx8p(zM|=I;2CZyo1iEvuFB2ZRx`wFVE1`eywp3 z3*}DUao605Q9{+PE@EkO1e9kGV4FI+Jg=gUv_fH?oz6=zb+}1G!HpAHq^1lk-O1L?YhBH|{4xGT;kLE6?NEX3f=zNfR-_xDZ<|U4xJ| zjz*y72bEd06E@$T21;pei}J1ZW;BZ2bJ|iwt5tIWs{|7yB*?6ULH@X4#C%xfyVJIP z%*U~xPG=;^iHJu}HJ?C-umK&IQ=Tzw+JyRdH`x`pMKp%eioHCdwl#mIbB7|%N~Ws= z_|2L8c%QjmEy3kAel88|?oJLuut)5FZ(-gA5sI~9H;8m^R~YCMQL)%>g~p6GAXzDH z*JmqlLcuB#%n;Y2K41C%>vM$3S~j1R4X^1JA?68KFFUD9hOEN1k3PH|^q@Q(p^QsQ z)~?u53Y(^R>ZgHM`GyxTb0agk01& zd^H?Kw0?+QWCfRyG{@;pB@BmH3itpw$+A<{2wB~5kiRuCl!Bn3;WVrUXw-56JM_lm zHEe>KwMHKtdNI$kGp3rm#}UN+CD7bz@66F)rN`HyG#_N?6Ec6JuF56z_zt%WC3N7S zU>v?3o4M+6wp!%_1bmAasFIZ?|ZdBQ7k= zQ28~Pn#@rP)}CarLKUB`ETx^Uq>oMefW8emDnMLjbUJV4H+vf7*C|w+S0t%*q7r7f ze1nCO?w3cc=dpj-uAn4u4{tpE%SEwH2r(&6;iU$#W5NG^End7fszInfZJVnU2{Bh8 zXlK1#TSTn~gOS?ku|`XsGbS-uYEpwkQD;Y??4>Avv8oa?rHr&8`4$Bs$IRuJKb(AS z$aYxRR(&>(YM**KW?b#_weaJf>3n=$Vl6Q*^IjS_#`&o`w`sA3aJCykS!1t@K@)vXsY(MIVe`bf4uUP;l z2_l%Q&fkBHn2EifU<~3FSR?>O=BE*Wa1f|c4FF9cOlRWNPCCf z6yIZ?|HqA*Z&!IHvTDxtItvklGR@o#i05GUsA_+;L|w8iBygrK5@BJ?!OxJ@JN8{+ zF6z*RJdevIxG1xTH(Kr^X?5ZL>P*&^C47G!{M05=EhRPuCGpuEsQC1~3V@kB!wiV) z^3({f>!2{v`4^NFf670^7LRsa90U2?&Q6SxST8>WuE(vWQ8Qp>w%Rw!{gN8!qhfzf z$BBP2XO<5_vMfMkE%oXR1Az{ZcX}_Wb#?D7#yiMR9OY^ zl0U`%&R(-nr4gepUd&vkrM}-xftNZNe7pjf2IP`k%xzEH0U7Xt@AF5@d$@<~hnGaP zhvxuZeCANpOa06EzmmVqZi3B0tf608Ry>k4oYCesT6(J-1Qjl9puCoyc`$GecI|(! z5e$y^q9!>@+9|R1*lgrI#!`Dn71V4+gHoo}c5P$ynI z_eRNxAb^!yQ(#VF8an+DW6H50saYwgeLbHZYel zHvtp3G6e#G90D~qm+?>p6caKqGdKz_Ol59obZ9alF*GwUGM7=k0Tl!_H8eMqQ2{4^ zjrIjloLjSi3*#2toxvfvySux)4DRmk4#6R~2MbPcg1ft0kl^l@z4v#%>~sFV>fV|v z=6%{$cdzbuASYH-p%XH-HwKE^+quv&(KB)bMC9b8I01}|EcA?w%y8u7s+KM`!2gKh z$kl;P&X)Fe-2XBVaRM5-e8@zNTt4i71}#SegLsoIgBV?M#7A zfRDogDpIll1qYzrKgP2E7|;U#(;EO2J=1@~{m1*SK$doYI~$pp*xNc7*?C&pnFGu$ zZGZp;aanp74;Na1k)7#ZhDJ7j&h{VvMs7xyHb%xD27hO61P~We0vLT1_@DBeO`I$p zT%75hEp7fPk>Rf}A6*u+GZnG7wFTO_IK%ywpQxo1(Bz}-o(%uothJrJyPfxcz|7Ll z)adZ4}dovGb@0OnT-*Dz{JGF2;lg5@crLm6pbwZlLq4-Unx5?d%%bN-|2qz>3>po z`_BYW{bxI<0slLgy#2@60s&Nird*eijnU-e57YnWS^wMR|KEuJ73KeJ%KvXd;;uF} zf2*nf*8l&gjchG#JpW_xF}1EP9~&TN|FH*l|JPIl_|MkL0ZlD`U2XrbR?5ZbV-tkz z%s-}?j)|3?k@X+BrL(xD2hdc}(#6E$pPBhbuJ+fi*;v{E744lZ|9ZK6crh~mAKk}- znOJ|kK%74Y^B3{X^^k2H`)%@iA%tB@Pw< zgVY~l1u#hep^qpsf9NBM>>uI;Fv$NQE&zkVe~FV3z@Yetm;ek)f9T^pl|S@xp6Y*z z>mxIx|I){nF&No6Sp1Q2eVl3hN6-90K$m~1Kaw!{FR}f9MIY~%e+B%w7zWdS;l}~M zf8j?wvp-$>AoIU|2R;VrkI6?vEdPZc9kKcsexz^xFZ{^X=D*1NahQ#ft+DB!eAqwI zvH5E%{5SUdg;Kl=WsF6NIq zoGkwB{88tBpR|}i>T=o)*WP>eL=B#-cXUL5;)mu$#t94Wcc61$yzlWz7LZy% z@-SMeQ~EiFB9jG4sDn3?5-`#mc_*9Qvbc9 z?9ysHq`J>`gH4&cV;dj58>1VUCZ9UNTe>TN86CW5IVmrtyW4L2lGklcEXt@}a>t!b4VY4HW_ z1RJTNAoEwTg?&KUBMVz^FlSos97(u&l(#AGy0~&cXX|44$PCu~GUV3Cp3SH3sWz%? zQXh-TvMYbTQ6ZIRtMqCUZ9005Jm3Oaejn<8XLl3EPxq}7OliCxIsHXf>7Ak6Y8HTd zPClh)cG)SA*#}F&XqFn8u_S1zkc{R=-VnnbS@%iL_WzJQvyeC;~hbwT~w`q zfLxFGW;%rlEA`oqi#bo60mZVaQA2oSuu|#4^$)&lxc%jH_1^B z;S{ytDGls(T9|LU)QH@}zO-fpXdr}c7|fA~1xp!YNR9&mjZWpHJo zZn!ALbSizf_d32@QSzC$&mq^_P2e707r#xSD^2g==qQ_C6ab6kGX6=eg!Jv4a~vy} zwtD3m*impOK?k5-U=n#}B|YTYnQs#IORGpe6pfZLhIzY%GWf(!8^_197Hv;|J0*WB zC6{fLVDRFmZV$3gK7?YCUpk~@2?}Vl$A4cm?MB#8$CF5V-k1vy*OdTxmcQ2*hP`IPJ z{Zf!G*$4RX)K)VYCC=ddHl?+AWvR?{73ROD(;*#H54r?li!KAQJ`sZ`VId8S3_V}z|RJy^Ibufv7uy0H~vUrhfYTe?DN6#}M z{Ks<2Sn!~WNK;JIrj9xHMzp+(K}5=_DKovorCR>W2KjZVdCjeVa}P{B1?uI)8W>NX z^)$-`o)HA@VMst^v|A#A!$7PAl{hJbfg5cuJDP2cfrl-;YnX^jk3UXQtPhaA?}nY} zw83)oZ5-|(W9ZvO|;K3=fuO!stH7WY|4&h6SN+Cgstw) ztDZt@vr2spYc7I+cC%|O$gnaG$TH(qCHv`6DS3aI8;EOqaog_QkKI3ak;dzM#o=!D zgX7aJ6T92Ho&9D!2n~q@eX?A!?T)kF5a)TF|4KfULF{c-;TK5dj;rP?HxR=90)r+@ zl)(tLQgC|Gzfnt3U_UBXE6gYc;tqmU=^+_sfKARI(7f<}Gung=V%XzK`U!k`Txv@7 zmB%lchXO_SDUk|R4$5oIT7@bC^syyMx^S9FU(IUI_z)P(&KyKQQ^PILa*a?k#6t1D zM|UCCp?Sri)BalM)|2JcEGTo?8DmCz-1h1ZeX~a6ES|tK=F3XlP&jkar0Nx&z;i(~f zA8NyZejABx&85fTy}G-rhFp5z9tLk*y`qE#8|>$nOXG?{H+14 zT*1-PUa()j_%!5PkF&38D2!J)1DhM~awf1pclz2wI+*ldYv31A=1jlgYhn9P27h@B z{>J-qqlJ=-DTb_2#4AKc22qzlIlLazgRG#7S@zf|EF}W57vx{-;~vAgU9Xlk+nsk^ zq%8PH2x; zQ|!vRU|BcxsBkV0$>ML3B!i%AEc3i|SCQaBjU-JA$^NKHS^Co*a#a&2KYZsQ9g$2a zXE<04qED70=Nt7I^Raw(wE~J^~jkezM0#7B*Tm=QS+~H$4kNW8j469WW~#4=ZC(5g%d8pntA^ zU8^CCdrfaicKJD?{|kBv@$!^}hnVp*-Uu8Nh>Jx1GhF98mQ4+(v=&l=Ptpnz+>dW; zGF;Ii@dW4dsB4#3w%O2Hv*m+hcIW`{p?iKh0qQ1_p;D-3F7@O=DE!&aC9&>S2y*(`VA^t{uRQ>NZiM2ThJ=bHj z@Ct?Y;-F~WsL!j%KyZhK+2~pIvf3zHqdp;d1Ue?<6zLwlBHPd`1}osTKM9B@YjuMe zX^fvq+6I3;&acz8$ytEq;5RA%{45F-D<<@THG8Se1C?+?WJlA53<;k?>`~)9A?fJ* zIz?#9bn9<)$oOip3XB(OHWL|tnx_HFJ}*dM+xk5^$OfHffAmwnGu0h+TtC`6yPX?t zQv%_cS4D+X(mmgeeGqPR5W4P11Ar+UCh$|td3&tHr%T{E>3GlyEkKH>*I+F1ZO*uc zy$2GzpYT;<5ey-x(>PS-Cr0+3^|z;+;2YBL&_-0aXHb{N?XmNNEyMbMrPq7HCp71{ zrcyKd$Zx&ScE2r5Do5YT3hb`M*kZL=<4MV&Uwm08yGxp@`s60sOZ>vF3c<|h?o7U> zD;<_K9O=++Cvek~;8cdR)faof;YV3(ciw#8S|TS0K{F6{kSs5frOgd_N(^A|ZHoQR4}sy*sJJgW{xEa=1LMT zRW2W^@3Ny!zZ@|2o|IR`Ui=wRVLNzhZjM!{hO> z@)-_kgI7ENzlC((naSVeT{~e;9`s9{TqQK?s)66$%YK)vcnb}Hu;Sc%#Zu>*q!<n9)ZbEt_*>5#;W_{nVh zZl|~v#o1r9TdEUh<|}}-qd4V~0i|MjWLCStd0qt06yuh(_0eNC7k5K$YPa(XeK1e+ z7aBiUYj|XT&l<0Ng}w=-iB-4njJr%`kJ|He;!_5STQbFw!?H2}!5}iVUMPuHY2x)9 zIq>fL*aP??#8RxS(py)`9}~6}&!GF}U|J3M^hd74g>txV1llnrzl+VrDCD2lMnWX& zA3Q<81drAPM4vC!{R+S0klWWd7M-QCVmXg&WXvjmr9SOX3A%L-Mw2-Z&sAZm1aaCw z&7_bwFbf!MTFufeY=il6TO?;>J~EA?HM7c$7E*}*at&CWBiMmX0mD&=(%M4aLbC8) z%n6+&@4E6x)C+b?{LGsSR1x6P=>B4G1|az+xV1NprZYT8TZb^#VsMH zf<6k(Os$>_;gh~cpSSH1NWEcLT+|a0>0zMu>OSrG<*U;3n{r)V)#OSO!~jBMKm<}X z;466`VTj6*$tmM@n?ymu0sYGC0naMm{aNyHE$5xH=Sf!+<+ZjRvXDpph`aW}u@#x^Yrzt7XDMAnLm?@DnD63rDUv5(yJ+~vhLzhV zb^+5*oQ$ZQ#h2u(O0BW_4q1}}eXc>yddc-FtXT~8cv#Evu3aL~NA=gNG|^Bo=qlO) zju#Gw)73bI7lBbWqSaf;GZ~Dmbjt33Yh;Wm+^?uh$GsRcZ={o67d=t5*b=hivM@02 z&@VIjnKJqd@>6l|6~>n-)LUKghf3-8DI;ukH@j;7UpayfcHfalBR)?GNtChnGC3vK z#vQ#QoQ`Mn8BVPROYvSKe^#&JqZ;Kbcp#;DpxO82I1;cEm?9Sy3UDr#sM<(>=V8gg z*nVRJ*Z*ualr4Gks20Tp4Pr;w&ybE>>kd|LsM3^`WL_bNXH-e)JcBRk*6sl-cJQ-( zMV~t5heHs=O#JM1_C*;r*;875KLOT}wp+fq@DEu;i8M|(=5Jl3Mr@jJza|G+S3+`b zxE@U9hXq-(bh$KKa^f><7F1<_?@|0O$hlAVFlVx`mkOumG{L!UQRwvIy(tVH514R` zIefh+!oHER>Y3r9596{?)!Oiu!$Xb3b&FEa>7mtv=FReaPgLknS7yKJ{4#lyb}Vck z##5M-4hT+-BS)n-0%c`r>!H)}x^gfuO{?Eg8Qf#u-?TRBP>i#u_A>H+4deG;`4y6G zEpfi&Cz{UIb;&ko&krW3CnVKrYcSLFr4shM?+m}Ds6x7^Hpu>Wls?38l5O*37@>W1 zXEd+FIdq`3hG1*;7zlZP+WLBqHHbaBt7_QZ+H7n99^`F^ak{F9M(Jipo$s{9=Y4MUzm{ zWn*ftV7-z=mH}1S(a$?caWS4{B4VR&m(rUBOH&@-W@<8}o$s@Mh)b^yU#O-CQs&b6 zcUH`u_3kG)2@H9%P@(3kFx5f$TGrz&tm{I*eu-CwmVUU?ltcZT!a1hD>~&%S%!oy; zn+_GDu24>a?;=iPhv;{2y37yVxg^5Nnqx^t>7b-!CvhI`v^@$YkTT?BG$A*i@^}h1 zyTD3hrZQ(bMSg>SJW!&*!XQO?%XElPh-tb8cheHglf-$SGfwn>o{x~wxj!eH&eWA< z8!1RdpLkk%o(GA5Gb;vT=tW{jQMkMFOirAR3|8G8<4X65eb!T0fE+YTwyHW>u4h7~ zi3rcszzC)^Es@XMUH(ZGQ);u>&s0$@JiH=`t*^IT*zN^?b4Al5%Ua8n7FK|&l%a;| z2p2dI`9&C;u>Boj?Tfk)W&WAUZRv~SEJ_NzmD~P9PcU^HW<4tFS?wj_EaFsj zJI*Jd&pf_me;1yOp({!-L-av1ql4gph7{bcZGugsz2%8~+D^niSa(2`uz9vXS% zUaYjIbs)duRiP91>b2AmxhM9?qaXxGxgFiN+T!ZI9TnE^%e_r=-pvyWvBg>!I@nl0 z70xU|ip9z|En{+zbWw0VqY8UOf{83lWssJSQTfe(kn#=m;7%qY+~xc&*>&K$h!a&1w}FtIwEMMyItO(inW>Ui zxRm1zNh0LC!o27pk{Dor!n$)}RJVRiA#|wpN((1O@WH|^J%#)8W$8gfl%SG8W=e3Q zq8PS+Xn@MKZcX%4`7vO9DQ_>gxHhClq#pa}I`mr3LP_aM?u>`rWLk!(+mhZIw!Z>?@_{8xnq6t^koIAJqQxJ%3|LWk*@Q}MX$s=FWCiwbwrn*e z`{M@IettSX>j0zVH+1S{&?F?tL~c~4It6#OuK*8~24H^)$@${Ko5MZl^> zawm0(n??m*w3%CvMzUD7pA8GWH`)v%QCB^lTX)2~>Xvcnyt;e`kSsM*=i&?Zv%y~U zr!~@*^E*Gy+%P6#pXkyn=h_q7rf-UW&34RbkP5Bfd4Vo{&z)x8#`@4P_t7K|YD8w! z_@@nDQdqAv9#a9n!y_k6VWg~r0Y%r$Pt1K=xTa4;{pET4JJo%K1*(lOy}FRwCN*`} zWfR1uMQLOxPH4@Fbk$zeg?H9VBpE4o=F7$ES7A*$C*jjzkR)C|+2w$4h@7Ry?21uH zFdvK4MR}WDYh>eGX^Viu|1~i{$~rSq7$|GY3zr7k9eX~;i-1ydUEMR9#JL~oq<;Qo zzrd53kFrTWQK;*6onP=#VsXiT_2+Xz*(LT2dalh$TZD90G~T@uKJ8=DqniCB^d9&D zJ1WX{t!Y8yFcOSy%Z5To-M+oyrc%N+BedcPdCddYrBc+I=Pyy=h5pMkO_qYP9YMJ! z3`g$vPJ(aU4c)j?5MfrQ z4`*S1x}g%;4$wLf5VTm!terikm)N5f{NzD_d1g`YC?p$3o&It=VM#Isr`PKJPRrAC zuA3XFx2)n_I8gV!vG@x^=q(4YVbHh4*^cD55b*R0b49N-poi_ebx5;*ispAk4 z=I##XmV$>q>1n)pb;DkNo*k|XOD9$Om0`p!>^_L>4^)N{H-i0F4=zr$v|vUjRrYi~ zFN&*sMzR-sTl=?R*Y4Lt=4<{x!TM%Wv>(?Yw)Q^t(vKR8r^u&=H8G+JuU}uww96gE z#XFmg4E5nH8gq5S!=TZFP~StNoW}3F6AWs-z90yZ{RQ`@`t=Lz4V{zTckG0f3ni>Cn4bctC zZo{DKxS@-X&}f)bi6LFeBPT;tl=pdDmZ$o=A0WW5@)peIOT@hIkrSJ;LHEU#6~Z|4 zP?ApiSfa<}KrOO=o#;Ssl~}eMeG$CwZK=tDks9uj9;{9VEyrUUB;R(0)2K?#C=4r@ zlP`&(fWyvd>UDt`dig^{^$)PKT7O|j$|lrs&vsH?aJ>TiQ=1DkVWJVum>L0)g1onF z7|B9kv6+D=8(E=Xs^iCY;e1V;g^2w=)p0J;O!5`9?zu95X-^TnshZ<)=30>2#?4{& z7k|_XGSSP%sr1YjJ9&3Y(zBE=KlSqwElLJ1Cd#2Krj8fzucLW1y?E2zyb;(R9&`3Y53X&o!vGv0xNfcdD39!GMzJXj+=u?W9KX-$=k43<=wY~D4u1kbl?}Qcx z?}ku(RNuK9Uk7Vc)IdDNH3B@}+@ACZNrT4nrb#!ODq|u+@wGLEQ2Yow?0~;97$pI{ zSHe#>?dvA_)dMNGS+tnVVjwq%Z~5}_sV4+wZwb_Y+$Eg{q4F5F7(>vAmr7GX+G&D! z|I>4YXod{nT=#j({F^q)xdQHDNnyX#$TMp|COaGQalb#K;_~+t|FaG&5llR#WcT;z z?~)h}uW&roC9jYVnKwz17Oo2k`{tf#HTEogt*xwhMU+-cFzDlPkXW|+n#t`nd_`aV zapMYquvMOpLSOpzgk;mIW>-VQtcT5FJP(EE5rHz4{s)XOBZ5$dE?4+F;r`O9ni~Q# z+YjMG(wwaUK-mXgllN>$Ly>-N8nE-YgLRe^Sn9xw0;$nx(<9Z)gW**g_q_{P$w31| zz$lSgLh8P`y5fP?idHQdQunX!J>-C~j$WRBX#$EGLKFeVbs-?O5G>PRo6=MAPjNg){(S4M(r6ugm(4;8!46qmR{0)QS7?9ts z$CjbgF90jkNjRC}T4}gNGT)VZwk;S7v`)M*8JZ~ato0N*d+gK#zOyqx2MT?Ui%}!# zP3Bst5Wb0rzw$avB!qX}aUQ_v52>=B`X*4wH6NVk!s#4->{BDd+w$P{nS6%7ksac3DE2-yy12{<< z_braLW5;O*{q)y+rzm+QtICZS8gEvJIySfK>j@}$_7W%~G<+ik8h z$5t_n315iYI3@ZFm&6ALGgei;Ub#iIq&r+O6|p7u+}Oi?9U-dPwBRsA;C^T`y#%R7 zI2=RCGC~61pee`Nr7G^beY_-pX@rwl?<{VaEaR|;LxfkvnDo58#{lR3yf2qwcpsK!|hvZ?3BX_r}q9+*?D04=@q^t!OCq=m}v`VL#fEpwp2GYf%zdy5VI`aEwQ?2?aWGRI24^Ka+YG8tnjUl&@V$jgNLuf`JN-GVI z>e?lhD(%#$4qpAXGM$3js=0Kf^LEwDxvjjePFJ9u3uj6UNNyJA_$&QUrbl?WK*JKs z8>R!ERZlWavl4@InO*>YH#_xL$h z!EDhhi7=JIRHgKTc}9bfQUgM3WIbN>k(0#5Q045U0W7k%E=J!*N~B~0O(E6f=98Hc za=2k-F_#4lTTabZkbWDLGaU>7Mfx~2F^4Izem}YT(+xlc8oNq=z-?w+sAZWbx^Wv* zauU~%^ssh5$}n8BBArG!ML!**t^ z20h4;3puvw z?w?-Ygl8(VOp3IBgLV}JuzGI9J32gitoqWUobo|VIIl_dMrG=Y(q>%B-*-;XY_b`D zx6u81I{&Q`*^lON%tdX-MvylRUelP6w)iwRx`bC_@mB3f^wq2< z5elB)n{4wi6j^KZV>@cxS`V49a09H(<1^5vCg%g~76i!+Ap}@Zj3X zteAc-`DmQCrgQ}S2}2%@N~|0!h6@R@v;TUDE%nDv1`&+eL<2fr@f|XnYRGB-d{KDs zo2{oCof&q2KpnqS+LQ?Y=$g)F^1<6xd472*biaIb=`^GzFhLI~;_J4SLe^A2)ndvE za9*z*69^C3l}Em?TP#Rq0sQ-iI#wy|`AW`**Sl|iSLX65iqASmrDS`}7xOYXpTeF6 zSZ|UVu1-p75IGlM`|f&LqUbLlc`8R_)ra88?_^kiWL{Hz#D6o%Ti0EAjaZ54mb%(Y z#bW6UI140q3>E-TUpbn4lWvG;Pa6H}%u~;-D4hY?|i70iV`+^*u^2=M|n>{$pp6J_l?&>I+^aerJ6yDh4El%Mb z>B@%Se4`=xI-v!e8i3UlOS#)-7*3BilQcPEjeiS zIST#dH#7fZ`=^@o&$+|I&sAv3yGS7pC`(TJT#Hm0!}tzyd?oJ_?rI{tx*L!jNMcPj zT4!IS5($@nSIIYVZJ*eVL+Kg%GJ?%k_c zLoL5^Qm$l<5Byz*GfrjI=Zq5xPgJLWUB^I-tL3{f23_L|QQoAO^Zd(9@^)VX{NS}S zrf6m+d-h_8(G}C$cUogaWa$;O_KVyZhw*I&S>{vRiEPG|=;OHB3&fjI^NcG$Cua)DBDRgqnD58EYCU{GcR*DYMp{ee_ z^z&*gTYIx*ugMS z^9~JVKOo|5L@!-BUI_x;RvlKnAP+vo2!0WEm;$-+;QSR!swJZ!d;Lu*{-G5!5M#Mch@+IeGNmtm^6yv*HYSOzoRW>RJ}v+g9q4 zcMPj^w#63=)547KIv#<49087CHbF?@!Nn2V+F`JqNB#kZB#v38Q)FR(_(!!_PLueb z_#Ne)-JgF^E2BX4x>qNeUZK?0!j=iXl!EQW+;`0!kf{2J7CP;>}-Hqx? z8bx>m@CMP}jHMbYv9wWRb}&rGh6S@U@9i-RzMF@vj3oB&t6md$D3(g+y%uM9#Yd}& zPuM9VwiLv}8uPT0HxE-~S~Y!%ZRol-4cvh!{2>8&@XJYmcN%6A;<&&gNN~J;Z0L~p zN$x87dNY?W45*`$qt+6>H=RKDzp2GuE))#aJ}YZ!DAc2lJ8;c%mCZA{U{yfF5#0d~ zEhX+g8HPVRp<{n@a#f!#H#>eYw?CXnc5KtfZ3Id5x~Qg-Jv6NP3Y3SwpBa#j06R|E z^IRXBv;}2<|B`b9;;@L>LC*g)>ZtaB^5iSgH;K=heGa=Wpr@?>bJT@_4u^V3R{}YZ z{TyCB{%)~_h>1J`LtPfYJ4igtrXcydaHp~9+VO5-%V+oUG&?o~YnWgj%RE9CTt_Zc za=>!U+i3>90HM2k#r9I5^waJ&3YwS9B(H&Ip}FOM;P0#ID;OGqtEwq@s?&6uZadc6 zR(so{pDiNF+7|7D28+ZU+Zg6zdSk5A2$X$og_9|^K|6=<&FPXU<4k%t)^fr}YsTD! z@|Wcgyj|hkWznm;eMy9rOT5Cf4e)9Bzcil@jb>ejC!Mq}5vMupC4ykdAI}d*nwAV& zr0rXO^X-?63duX+I3^B^pUh2vrILera`EKQN=(}+D`G!D!{{$K`i17mi+aL)a`(kS z5+9X0WpCkP^BSm9B6-U6ec#L*Nit-|n6Nl zlH;(H^I}_5dn=xm0$~{&eEgP-6$Ylgg(km1VRkV)>UvUX2QlN3Fo@-77Z*@8WrZKs zk4DVHz)u&ha%zk_CnMJvo+wF$4j#*_i=nST<0XqK=Nm(l)t;(kj?bqh-?mYIp*WJl zX?tgv?z@V4?w4_hmEQiXVD^snBjjYew`tZ9MjN(u0>^H)U$xg%Ffv;g9&1$b=NJih^vIFDc zql1TjHNd4pgc8cL(|AgoyK%SgZ!>l_Z4zzJ(G!-klG=}H%E^gdU5#609gf2mEi^o7 zAiz|tR11_vg0TEk+9m~mx?f}euMDgS5)TcTjo77?*PB%$ylc~51x0R&+>B02q_kq; zgwh5b*HWUeWY}~zQh}%qiO4!b4HHXdG5}IlA;tl@k(2M*%|M+%SW|OsUcT6Vw=8=x zddBZmC9j6w_j1>`DcNo7a(}3FNSsO<=}41aGM|_xOFl=LSE;*y)r-f`d2ANl=8D1O z-E`V82*~$+61-A9mTR8SOjy|5TOUG(oSWW5nV;OQn=R-wkk_yN9 zJNeoS$qDRPxoU&;mY#=u3=bsL2&=)r4YM5m%kt(=8|7esK&wwH&daXLZgPA!jZaZ1 z@s?F44Pyno=ALoBz9&)( zs?~w9?z1CUovcqM5LRMR;L3kTG?ICMJgX0eg8#9p6M2PiJR=JKmKlrJSD~es6*mJ>@#%e+@v+Gfd0U8h<(}{orRVzem5^at=z+na*71l}xi_vRjBH3y zuOGEc$!r=e`?x{UJ%xiff11M){n4R+$7{IC*{}qEOY~MG&)0U^C){nnpDHpBOMN6- zuOt$KtGh*|1l9>Lz~t#nc$3#@|4l@D^Sb>Pj7M>!QM${ly=;q z;S~|9a*i8-^gsrsD8$(3y~M)VGfyNE;LETx)x${sh__%& zmDt}&I%p4lUDxJFun~ES8Yd{tJo?cHn!D#4NXBskWcYbCogu#I=jGn>328BYPzmOL zJ`xm$g)f_kD;#eDB$%zhdJ?ubr-U9w$HkA`%D(zq-l$=WQB2s|2thi1gbQqtN}?OS zu7p^vyw@4!2R&_HJ9K(&^P`G}QxGfOsak}VGBvSWdJ%yPFGvNiv`rOTwXw6q&F9fK z>2^p^aPB*tLg6p0a}g)9)HBKvC(ZMJFH&p|37@>K$9NOJ|HP$uN#WhCq#Kc-#FFk< z9e`fB#|%F^xHfnE!M?_N8z|3`C0^G}jJD)a4#7WVjgnu!3|odc%Rch}d_aT07;_wX zLUK|ph6~GMkY-H**ko#Xy1Ix$VWvnM6NXQnj8=q$)Q&W#NL;LAK#cr8qcCYgV143p zf1$^RM=`#ZOw$bZFtWh`qVgjia`4CA`GK%X#Y;@8q3?KS+X$LeVL|6;9+aQLbL(~( zk2;{}z(F(GfjgnV$;w}Zzb2;8=54%lg&9BCZYn1jHd#X-tv4<REygYXMEE&o!jkM=sw=9$mLYc-7SHEAV!l%xEcNa;ZjR0b|$fZF_qXzl}f#~^Jn zMnhhINLBW1%DS40;zF*S65N6gS~}?UP6pkIxNu^j$7?KkX|L6qIUs?-y|=2Te-KIE zqfRA~11&K=v5@i-^;*C_yzUuyiC~W;s*S}z0w$QVU zpS_I2>N~RgpRy{3+Tf>I90#!P_o0Iz_pkDrjd0ilG`AO*^kq6z3znfAV-&i({;s ztIP%Hut~B4!zEVglMv7uAxPI0lqEMG_bk~sK4u%r}3QXI(Bc2FKo+^OgNkP3P^x2jzD)#;j2)EJmUbTmOI8`w+y zW?ZF-db<&1U$;5KugEt4e_JIzelh&qY#pX*fuqaE5gMFt7gD!O9*wDUev@DNnVB7T z1U`f+($HMmmuHGT)!K=`0vP{XFxE^L zM+pS9-BFDh>fCpECH?cULw%FVgCF3OEFdyy6jaT6+}`Pk3VuK5f2&a$(R_e2KPqXP zB(HysTGzH6%Z;yvzhqq>Mv7uJxea%<(JzDhxT9(Kn>rojsv-^HLo<`Z^r;SiTck%6|^ zoh`X&UHQE)gV?uiEPJd$KCN);F=C6e(?$&yGZht2x*6g;e_UbLmi#0W{tU%DiL;xb%B9jusn(CzB*rU;u4N;SLrEAeZ$6$POmiEGr`!G(Z*|!Up1+< z{=M{|aGjq1eVzuj+doZj1p6Z6EvB2`nS8>KFk?oO58(!f#5qV~p zU(n;vkk*8QUbYII+D7i~vqK&>+(n1+je`kg59(dV^x(2%poJ5|in@g0Sjsurw-nBo zl;qc$MGSmKrTtmvbY4@gYb+(D7c#|I zdmoNLg&lr?Ah6T@G?R98hvz%seMgc7R8u$HF=J2<9tPe@PX}YZXNyf&I8lTCE+6V& zicNnn$<=4w3kvj`qh+lt^z>wX?0~bIyoTtyNXRdlgFbC22Mo0OoHK9_u z?9)JKf1S7HC`Z>vaF>~|UJfk|AR8A0oS7uDAt@+F^EpY$vytMA_b|aNSvYrLysmue zm{*5NWVArRI9>E|0mAOD6l4|*MI)u!gF%2DDCxZR5Nk6KwM7=*v$%`VZ-wFJZ;k)7 z=JzrE9M{vSz&nUzg*kXc6uGlrxn?Y~`}BsDe@-Lu1iSiU(C~nm$TCynTP^2Z&9WeW z7SxowGET9f`G$qprwoFqm`bqRwsK#pDfVWQ@4mbRV-r`~{=$_oxEb>TJ+kFKjQ-8W zgNjKnYP6IkEqNs`(@;mujC7EWV^7&v$W4*KjGW=oG3djMb;DXeHYyFff!bmg-uH6f6S=)f&%USeClE}(dFkSQ+Ze{IEIS+Pm^*9 zq(=&hQRUNmeGR)meHmxX3@xQofC;`2m0{buG{Qu&eRRD|MS^$gKk8})>dD+LM)QE= z7Z_DMt2(|ds;#u3 zRv+Z!MB+iz7cld$JjD4{PABY#@W9dY_k!sJFZJ@m8Pb88!3S(v`MhLVPDY;9L@;s$sW=lKOuD7}|Bbmyxyv69P6gmoYa16cRWzISMaKWo~D5Xfhx&F*h?d zmr=a|6a_LfGc+)hQ2{4^jP?akomtZb3gZNa;1&)L+}+*XJvaw<*Wm8%?(Pzt;2tEn z28R$_L*Smw%sXVh|F62Yr~+1Z@9x#MpG`)rs6r=XVrK*tx3hJoW1?r|28hThGcf}g z8CmEV8JXe9$W$$yt%3iD;mOp2j!qVKw%mUhh&Tcbok22DLuZhGot&L5K-$F`z{CPz zV&`V!;AUh5Ff%f8{m;^&SU%*>rZVgC0ofYO)> zz{JJHLHpNnfRGK)(Zbl!79eNnY!0*mMKm_F2B_E>TL7Is{^Np@*WB6Jo|}Qe&CQM8 z(8h`0&e4pYiWcC1X5nlOPzE{y9bJJYfZquN}Kc) z1b_tA7REqZC(sEOTN9uo02CacA|(q@um{@yZ7ln@0WIL4+5nj7nf`V6&*|TeENuTe zY-nt3XJc<@>tSJQ1~9d-1_BhsW$B&WooNAvwkE#~4XvGj>_F!YT@5X)4UIqse=#=% zhzltJ3_%J0lb(~YqlLY*6TOp#_3soJe!BrxSwg&Cqq{tz}e9S=;QUL;=c%< zi3wn0VeAYr0-9Oa!oPY4iGiknV^H%QE!+V*jG)@^cDO*!J z0N3ASK~?%6Vb_29Px;SoPyznyOWqDNv_Jsm>x_S3WMec2{bKt6Jn4TO`TsZIzrFmw z&G`Q%B<^Bu{g;~ZFa7_I+R(%6hu>ri8K&xm1bpLCH z0SxrEcFv$908n~908=|h_}?96X9F+@{TBUyjo1MU!mo$}z##I9H~|cz{~{(309rd6 zzN)zZ3}XKx4n_cj_$vZgOS~dx0E6T!VgWEny&_fsgY+u`k&}5vAab(*BG55eLmMNL zR|Xs)x^k}wL|6V5f!Hbhi#S2-6kibtm|Oe{L6(Y6uaFbOUFj8pxGTRR5DAr61mdoL z`iel@)m{;ZyZS2vG1YiQpom(p;X%6BoLE5Q3~lT|`}X_F{MQB~HF`xLhDMHt##TVk z_si7zRnGFS{O=|FR{;uW{E9%djV&CFU2IIPL9_BdF&ij`v7I$&F8?QC{cQ-ka9`Q| z9$1D~T1?C!?j{yMN1zkva(^`f@dLhp`UO=2_#Zk<%pjtm!8UXs2p~${6PNf{-XxDw0~8DoY{lk0k;2{AXcV-r2m~CR!}0K zk+iUTZ9OZfHulyoe{}tKIUQd6`5UMvlwgI~S(J(fU6DNz;6<`I`)XDnKv1DQb zrT!Wg^f_a2Hg^R6QC8;P1{T&Pe+)dRw9amJfA|2ob@>B=8t?iC1d(<7!yo9h`yUV# z(c=#Ys-Wj9UyvtHpyS`6{_~YEc5wuC(fP0MIB3)UhyQw%0fFv7WBBEN1v_J&Aj^iJ z&igtcd^ftiDZV+fJ&iOfIx(vMf3+3SE``hqnyU34PUI7kRbK&L9W@BPccTixFZ@)LNEG+Ca53n#K- z0s6h$fP{PFV8!Z0$ikj~(ta(w48l{zEM2r()Cd34d9r+??5{W^FwS&@Z>Zm%yQ9qC z+|Iqtoqi#bj;De5`5w(u?4`ZM9P{wibG=HH*{K)zJ+3wmA>_^5i5YS);lmVZ>_xA# z;!Vei)UQ}wliM~)OxA~#o_q4j_l`%GdgNr&+?2RD43HR7kx`p}?UD&LrNjv^tl8&l z(wpv5mmHsroM;siEM63>IU3oN5xDmH9&;N#4`C@W8#JjymCZ4e8;NZD*+L1ya~sK# z!wUDzhM%IbH$Ds-uaB)`G`Ddf8;B8p>hk+$met_qf3&VjJi6vSA~k;@?KvCfdbC4r zjd6Z$oM|`Ivp?y7WMYG>2cAsU+#JAnSl6DMD~dpaABokNP3UsV^$8yuFPbztDOFMul3%i%@NK9%mL>5u7A!Y|KL|MCkUU3zo!} zZEn$xx1rn8VKL8?Aq7_&)t|2>yRXi43+Whn=_|}sgi#QG<*k#@wR05WWY6aEW7zQZ zxSIMgp1Dh9+Nq(ve~7~e1ig6mhXYnZ{VEp3Xg6_lemZnQVDoobGU}zepQJP>4L(z7 z_8*=49tDSYTHqp%^5A-Ck1F0cw?XX`Kw$B|)Gw{sAG~AoS5dD6_lX_mF6rH^7Z9^wSoD{>~=bloAMZf8EnQj^bs;3W#kMD{vnV6pGzXZ+%M|m^y$?+6)%g* z3=UGTNlzt&bU)Yvw(L6x>d2cOGW_5jUN;J+JSYDvJ$X^r!j`BU)GT_5fhHB(PIv9I zA4LgRo^zQ$>9bWL6XmXns6tkGM_Z$Qxc*X{GxsBZyn zP_AZTqChNMwM=2Py zNCLwNW~GK6EoVX{4KsSXtrZ3^u{T^;8Eo`N7RfY$QQgwe?zM>AeTDmL(`Q;f$_LYC z!+TsGYrh;hA6ctCVtNu+=u(6_3j7qHHYM7By!Vd#dOJf|Aa*U$H`F5t-GPW^YnA!Y z^ALEt5;0h)aLeDnu_K)m)hLupl{1xA8LBe?2h&l7kwK^y-p}_7+T$!5hwTQ_KIyzo zIalqj?Gl}Qn6b0H3_UJ@B86@%v%G;5J$c4i>P5(%dZO_CHu0JnkuoHXq@M~HK_!oW za-TZbsoIv`cL8GSl4!Z*su^Z8bcMrJdW>Mz0ggnR#}>EgL|-a_PmskTZ#MH%)QvDW z^uAeT=9J$^^Hdol!OQn1QC}e~M@ta&mK1F*duJxh_rD8MD|#`Wtl2C$L>?`(p7-5O zWS=$9V29R$V_x2D{*oK_j!1jURqZ-|G{Ba049kHa%Rmb?5k#XXxx)sCpCS4LK*}j zC(tAoSkOcXxl;r5T4I~?=W^qy$v?4P*e^MLbB})7W&=XL%Zt@BN6EAjyin1fh}k0& zvDVXrnebU@p>yC8Y@gW#zHGn=)^|LYz~;4jN4UvFI3^lnaBV7LQtsyPT5)#3*777* za12W_Bo?-^rYf&U;&iZeSI_x>!7S{lHDfN)iW7KGQm+L@1wo=$MHmw8*@q+J1j?%* ze$gQ&uZBjCBiI{!@9X{b&V~$vU$tx6s&4zuk)um+otB`SZA7cfl!gJB03M1GC*if5 z1dAD=-!o4qf=Mw<+nV*59o!_|C+1&>iE7(dH!i*G-_k@DBFXRuwN!6^D3q_GhVd+C z!E)^umjWW5kkDO2WP3-Qa;q{psq>d&&+wFR{EU=p5~!84|_6JsN8-gpTmc#i3{9+x>BfCW~IgtoQS;`?M+IGZekxQO~&I^y>$v@$z47=CtolJc4v`s^Q?g#X|0{-_|DuJKXyuhg`2t9dHG`5gB)Kxo!E`{)`92@`LwP> zoL+7Y*$bz9n-U09{LdibgthXr~r^kexj5{rAkDal8l~Z;wgsQSPSe zAZ_siuPy87RdXP}Bt7YN;PD!RUS6qx!{gNQItr3agJf8!&!DQa;Ra zK(bn@m{y?`mYrg&7sB9CPzT>jw-chxKSwLwm!#l@= z(g4&$v&mXTvcyPtK$XdHPfD+Q-n`H+_@F8n6^3ge9S!y+Z%3+ETn+f_1wSpKNTO3lonyUFD z?z**W4_61iJ{9=GJnqDMdy&kHp%X$>nhDA_xfr;wohynz)gu!W?DNNlosC5d+P~&~ zW6X>hXz;7yWUJB=q8y|+N(f_;&Oo3-#H&S5n&TU@6%ezJiP<)EKr4v&Q2TI9K{c+= zx=h%A?IWX=UrW<$vcRuryrCY+KJ=DROnbs4T=6!yF73o%u zn?Rp^|8~>MWMcoXZRh4}EW*`ZVtpn+=iGpQiDQFT@skN+!VYcXtl*_C%~DHzSA@ta zisz>rTQo1IBSz)#YBfDF7f}SXi$F1#tDPWQnuB)7WODetF0N#Aw zd-dFZ(MD*Gjm?NT3BUlG(hQbsZO33$U%G(Qtr?A4PIq4eln8ky?i>8z1K8U(wz^q!SnXpGUTuOO^!oBl_$^BtC z>2hS(ARb1&H~E5GObjB|U!cVp6$g2L;T{7~WHog-or9x+&R}@?JydPAoa-j+G2te(?7sJ7(k^-t~?O zIEb)%f?=dS6o_}B?s9QbJ$mq6*VQ`jO+;0XwHHty5NG=>2U@oR5-q$H=nuqyxZI3X zAljVMjUCg7K3%THYv3^<`wEe4+G-X| zTrf3*cd!QA#{0_<_9=+aVaW@XZ}V|so3ZhoYUsI7PEbO-`!@}|tmKIKzN_n7apuHE z^^woLUXY3r9ScfINDJ?&%qS**>LK=z!x@Fxfc7KN^#N}Y$LJaCjb9d1MQ0wdQMTZP zEBWlmVu-~!d@@M<&h%Tt@F8?Zgi02<2Bw!f{sLGH%&PtiQU&tXKxs2WYPyCoyg$+& zQ{oa^u17p)BR&IS`vQ!5`%Z1?^>XQ_{!9OWY*cDJaUVP)QUOFo{Qa1JHa|L;r?ZbK zcsBhXEzgs(65fcr5~vRWh{9#gm*`PpKTv2D+z!QDYX?N+qDK>khb?&TzvUu_&FUIN z-Y|9KK-q5bQ|kO^+e!zJWeZn&yLZZ<69LghfTNQb;HRMM0xZRT;@^`Pm_{h}1beKt zR2;9RwbVH9Pr_1Osd3?dXmUXM-f?efV+|h?k-?HnympSu<(Lq3f){N8cZ6!-GQdgP z!1f-m(HN@iK}{|FNnwoVqt9v?N*mg}34c(;2;Q49;fY>|v&Hmd;l7cuj0?S^`e>D$F|jO1Arx7nkO=#6nG;yz^8Q*0q0f=}L=dNr~H+zyw9?Oe5 zA*jb{xG4h_{Jh}F`*)=pR3iK<>5@Hb$yN#h& zM$HvQ2H%9<^G}5~o>uc#xGbajq(=C@$#I5nIW#=32H!UBSJMHT!9;Q)?bbHK{JEYZ z51RlU*Vxj3ISRj0mi(fGwgqfp)#hDRyjg09J)c*|oIc7(I^(?LBtPYNlZ!^zT(PHj zrs_n~j=GfGPOT~RW?>NfXH3`$JwTWwuFII=33?Jvo%6*szDI6s7?6f)YfF zP=Vco0BK><;5^*y6GG(@2v`fRT}jd=R&xZ(VDLPDe6zuio$#F9bPF+y$H85b7=rhd zKHoEOp2GLBRI^}I5#&;{f)uOk0}RgW=fm<1JfpmxDKfLd+!4diFljOp;K#9ffABgl zCUD7TEcZ=pT1!b1=B+zr_w$`O0a5BEzD+=3-})9YNl#UjQ%5h>^_0u%q_+-4J5d{( z-3Ts!eYCMMbuAO&Tpt@o4+=p-;!?HO7L3(H3!E5&EDg%D;IMD4WNt|gP?D`|d>YIzaup|n_ckssZ z80tVommWV1{PL6@#yj)4j)JcE%}x<*E-CQ}}5YWACoha$48`%$*B#`2IEa zL7mfZp#+jg*oPu)kxOZ?JSu9fdH}=!s4vw{d zX{V4C?6>^4{G$uG!Q0J5J}rV_`qQlqJ1@}XR~i`P2W3>yqz_Yzesvj93qNV{vEPrz zG4EUGrPu;kBlR5GHmgRk{o?yP1OhcLLb|AyvY7zkaQrJkZd3@K!%ALy0lcAs!i2ZOPPj=L zbpFQn6w47Fq|L7*5(uB(88OR2 z0IQMq!l{9ai}#xr%B!00oS%daQ^jmm-X?!g#>|Jw^GFq&+eY!v{0y1?IS}7+`bm|G z3Fk~PvDC4)W%*iH)q7yZg)!ZKb4x=mLgj$3E-n%B$`&7d9WQX!D)S-pc_8`?a6X#$ zFnZwYJ&{o1f_V0lRTG2Jhnt*tTJep=l-r4*R+ zw`3Ru$LAVGmn+s$ezYW0tO;ow8RbWTZ@kMR_=6%Mi3BCd2IAniiick}%^}<0p+|fBFp_6c!90VZ z2%>URX-E=x{qWl`R@wq9)W1naq$k|0;5J7yNv!1FNxDaT(?aPyQf-)=tsDh+ilghd zSBZkD>=S8h$aCO^4}j!<;&KNX!{{o{d3lP|Lx#2scqp{1EYR=MY^jnOJQag{x1_)O8lk5Z`a%`Ao16Diz7jf53Vcx!ix^=4ye=ZI1I z^IgC0*(@PQ6UWz6^VZZes5C%~e1_nYo8a=%B-B||X4!reVy2OQ4>UO;`Q{2H&JHJb zlb~}(kCHz%r!6lZAc{}8^Z9_t90xP1(3|M(xy%7S+iWB~8>P(lBjy}G4Qxmt4Qq$T zSHUvO4e0EcFT!7c=x7nObtc`wRT0t|JfTG;hbP5fOvV!zm(qEc-zclgIkLlVr0pjJhS4W?JQj*ad(BEDnIrk>Q8{k}w_=e>i-ZsVBGVPfIP;5PCR)NadTYjXr z4>r3P8wzz0&&we=ZlB#0T&U%T?~$#*+>Il$(_hpJ=li&-BtJWF)-jJ3O{1|~6ii)S zF8Y4WyeiwD zwqp)nOf(v?$sYDl#F6`=?urm?Z~nUyDimMgE?E2_#%8>&|6S{&| zCZY7RTaFJ*(N?3*ikKEGf1>J#@);#Cp3sU~B@01U7+Pu}c@Tiln> zb5os;UoVa3p+ASAKKlg@IX4STFE`=ITr6ULID^r}-Uvk9UYa#(z!Gqz%jRwD)xy4s z^J4&})E?!2dcakKFrgPuA(yzf{sI0lNPDla{04}kdOGa@%P5{WR(TP-x_#zCKPx&> zl~ANu@4m_VVvoE6%cDX%jF2O|bYoDPeHWfV?IJ}G%q?7?M0@okq8xvJ z1U8>-u|_XhIz=^&?#B2bRS$SkZn5a%UPW!q=M=Mx*yU&#-gX&tLo_xSTTgD`mv$$cuJfL6-xKI{BSvQBT`oo47EtdVO<$><16M zVvF}@Jca(w$;Iy@dN)`XA*Bz5*WA#qi{h#K7nEYbV(dNQM}^s(8v?Z%hFp}TIAdo` zv9E|bCN|mSV_4}sRKIDnVSNT>wsn#T3nmrG$V4NZYd#XyA4hHwUW@uf*F~G6CzuYw zp`V0^zpK>QZy)9g&w_QPdHQgF>_mqPuGV-le}=BNg%xe|nJe&ky>o$90d8@1M#ku2 z>uIg01d%01(CbTr()I1wgB#-_H{Mz141duH<1j!U``v_oi+TKU?QI>U6CyZ6MyHzC zkGpAhKY#9A*P*RQDpKODzw3(_Sw)ta-^Jpey`FbRSFZ@ zbn=ra#fq0a|UIa+`@JoHIcNV@uKvalD>ZJ zZbGJ=#L8Q@v{#mu{7ESu5DiHfrGgbh6l-_>i4Y|6S)uC!BD!DK!vq|el|pFF&uTrI zq{$aeBk6o`mp)_gfPI30H;#0GM`5!u9yjbRQUYq1-P(AlTET=gp2(DiEyzAn} zN_H9qZ=U#^{By8yIeeS8{;mSPrC)U%=>FaWzeuB|tvtCX<~_t{pxc3Vs6qScQ3^vm z$LZAG$2PrNt8cn)w$++?`kq(21BK}ue!oUZuVw@7HvJ%fS5_vj=H)>Dibkp zGjmupTIS3Onpc-rpN7a>3F7ITXd1thg_Rah2n(@00n85}5m0N-@8KWuw zaoozn)&&z}kVm0{*O#+FizOBNBHoswDMLUhgoEi6|AE67LLnp-07!V7JsM%(tbCgg zoy5m;m$Qe?Jy^7VtWrwNmk{tRKrM>7i4ENnQdQMbN8+-?WUUK>xk9t<;-zx8-rkal zB{5FEG^~E(pf-Cd74Kn3Q^AAhGxiysw-1LoS%d*#138;|QUEyp(q1u7t%Yn$aO-km z<7m?uhv3oeNP(ei*6kc3|cGhx{*i}HlAN1=c3i5Q4x>Vkgs=)$A@8lvIAE9*R zw@cyr%9FR*cc|-2r!JxrcqD687fK(Zhad(%3#OfJ1izNv?fQQ7aO*c4ouh5Tmq zSVQM=Y{8)IAKmvg2K`v5lpg&DD~FLZ+?TET)^^%|F0?_zdCNB?-9iCTJeMla>j#Q; zk@AZ6go#JB$Gk=;e#4|v}w;zsI1SG zcZ`*a&{vp+Xp)#TwZ0HCHv&V(0-E($l?N+-idgv7l-9-xRDPt*`O(wk<}EOKt?MMS0Bkd109yq@nj{==!zZUn0qqVp`w$SYiY1 z5}f6rG|x~9o*tg5wHB#!s};BD+Seyxws5Qb&SY#fhFes2BQa2Elq!HLIzFdr{%iVw zRraf`@79R8Ei<|9Q~l;Du52#rjo4PJ<6I$1eppvkeeJ@?327mb%Zpac6ZFw~-feO1 zwQ8K>ZRq7YDncKSS7~L?q|WBTH{4lf0dEx|0WWnin>b!5)IpMT&#gD66c(MKF>h8-y}C#Ug5p-)_q-qj;ScPkgKTvU5R;} z2XiF2q@<-&O)z@Y1j>A(3%l%TspBli*bVD`IE`3j!=)NTVC=L#M8bTDL=y6!#_L!c>AALuWY8NBDlIyPS(LAS#Zw_@cRdpL zE9tOK_fm$(#vY02Ul$r)`+H(>#|k6QGHF9`Lr)Gtj|Sm!#N__!-PG{PcrTsb{z zYCPbIV>!MX8YMfCA}B15-D}@32LXgBlTf%ncnjBrfcA8`?7Gn^MHV96 z@!0F4z`tRF=MId9q=tdWKr?05z9L&EKSjz~3!0XHqU*z41i0(m z$4@9I;m;D@@6lCbylmOLd;3Q5jmy`${XgcGQU)xcem*%NZ{ssyH}t-1W7?&^Kq-(2YE}dpY+w;PaxQ z2hY*_l34PKsAmJ(jVu_+#fZ(_G!gl^2Kz%=Tuo_64H2I z!s(x2H1znvUa?p|0cDpPoZl0M{je(}(OEc<-;4Y)Um z5VPc1f1TY=rVl>tu^)AYS0wm2&yYPE5X?C zd$oXtTmsT=9iTAUQ1yWA*#`*pB;vZ6XGXRhFD_}`;dKjr@!UejkN&q%FIQwv@^gxf zxzS-RTjPm;if=~4PomnCQ#`@7^9nDz;pwlm-B*V{W*nbVB?`2m11x?51pG(dIO5GD zofm|#^`Z~nIC*!|T4c-bI>%)Ql9G<2cypp{39RBO#QI9?cbJC6iZfo&aW&EU~VG1_RmNs7~KRohiE_<@}m#nc#EhQb4%YEn{ zjDJplPxIY)mJPmFBa~32x3AA?j|ryK^X7>R^5OGHL(xX<&j(Hn9*jS1MQv6_hKm7IYwC6xmyC5tkM~}JjWX{Nj?&i!ugd!GY6Psm=aP;Gnh0ba<7$O}%`2q&BgH+zsf|^;YJPuSEJ11)VMf9s ze>rocEy2>{2C|AAg zQPm4KyIO8d_?a{KeS&R+9I-!=f^x_8*WZaqw(n{4Ir5s!9GO^l!$FUfG0+w&GUN|` zB?f=1iG**8#MMSTN;n)i=^bt8(nn_)G0uc(*P51(@Px_Yx+%mDMfk;Rjp%KF`PKI$ z<7Li)Zgjk-SBuIZsVd#D&D@j$x)hk^HgtXlOL(14^JYkl3v*h2H3D()3O|hpB$qqK zAixtVZ&M*8*h1B35sbWky_cij-V=R)S%^upsKEK~I~eL2`*yuun4#yAJ!Dz3_Y>WZ zF>66@B@LmPo})}ZwmmH^e;a-LZ|MT_VkJ|aianJ-*dzUD+h_dr$rSc}de9Djq|$B& zk`Guvk8L%VyPUAaBWa+&&-@~2al zpbRG>=akdaL9HUTVa+gqaKa$bI?w9F7P1oh?=Gyx!~vGkLj_)N7;!`$-nT@w zjB(~)vG=TUZM};Gc0$Bw!=imitgQRBxs8kNONup2rTB71wojMZKgU4&r+rH^a<5ud zADcoDe%2=46fDM;&HpSky-2;fQzn($n|YxxlutP#G4ICR-F@Z2xE0TTgcM?0Rt8?Z zsnYk>g|%V732hCb70&#zW`@L)<^eUQUAkdbxgn4h3OSq`(nX{DLrLeLt@^aDZ6=RV zjhr#cl~!g&UV5q2*{A#=>iUJ-*A? zIjWw(hpd9}hF=VXe{v`wexY7vi1E+J-oj)Z*IAkUs&KWAtX`;*m5&zXqX!)NTCj%3SbYVnGE5n-n8hl6M&q6O3vV&5yW9K?~Z-Js0MHpO`2o$&YJLI#E zl%Yveb_3o$MnI90dvv9{<-=Jf2bf@!V+6_U5_OODHrj|^9m!Q}ISbHVeARhB&;FpG zf$1-LYM4Q=wd9h2o^_)Awi=LirIOdfC2QH8aKqx|Y-t-gN}iEYMtNrz@U5e2j=->G z1vjs!8Q-aptt|XD{nIfWT=j96a`>1^sZKKoRGUMkp>Et~Fv~)fFTRe;5Of;@!x!Gr z-BVnM5wi_1LlUYEB30Z?($@RlmBQ8<04LEY%}z-fB*-s+6eSU}f!&QW1=R8xjfihZ z!)vtX?cYYWbKn*0giaOMnY55Hv@QLV z=x`7XpQL1c$XpMPK%5#vIlgOj6W}6#~}BQ^iDS5b^^P&`gtKunZl{259+X1d&3|{;a++@))|dLE z!Zdd&IzS}(BsNYtX=d{)bMS*NLzJOj)*Y6##HV3=Ux)l5JYK2TY%#3D zB@;A9xMU{;F?gx054Pp{bB0>&1y;~0q&&(%+p=bY;R}@fHo54I(WOT1#jo(8iE!Wf z%8RD@)tJiKuG)JjJ{ExU?W+nzRtaPnovrMDpSk=b!%2BJ^VPoIDMD(W*C=%=Wtspc z)}=iiR#6dGp z25T92`Uc`VrI0viB=rmsWV9RejglK92=Cuiezl*pzeTRoGDmi_U~a17Gq1A+XC`}y z=Km>bO*J%BGxK9i9KXF%)vR1URDSCLT8c%%NXQ}Ox}cZaaz`mUBT{WapElbIqBbarZg9)2&s0=*2mSim~C2S0?c;q3t4`+<*_3+Pim zsrZwD6Lb! z?NLwtzDjHK=luHsOhE>!Z!n}*5OA@?95Ts)%%9sJYJ+N?HDQvMITiPvM@Fm=MY!}( zLC?ngHRmmu9t=kW0Ew=|6~ADV8}?(Cf&bmrC>-JLTHqClswlje;|C05QnDkrJouk# zX>>*$NJW!;(JROP?Zt;;z*U!Zt<=w1#|{nQHHRZa&vyC#};~ zxX>5~mQsdYeIFp^Q;!wNlhIW)pldq(TgZn~;XkD}QoWCkuB7ohi<{KFBTkji45D_NVs!V+PhR`o(a$TrN`vyzj045BVdHOjaCIOw8+I1e{#nqBv z$4rUSj_$xhF2v7AI>O}AY;CEr!BAeF2e0;0^Q-^$g)E?dC2v?o(f*FL44`ceg)u3K ze1~x@el#3y^-$o%={TsWV71x#bNC}064n>b?;i{2vK)7;HTpUS-zCxnhD?(trMtpR zov+4$6WoPxEkGW8az&CdWU@2CJ0FN`iu>Rz@t$VO7q)v1OYAZCPa_*y?FOg_MXpkNTT0bQ6fbU|igM4&jM^rH4x~(S2uUj#`dbk#pGag{L^LWZu+lfRMvfM(<296|`?6VScT#ehe z9#M?NWpIU4Jsc(I#c#%C(DUyG;_5XrWoIz)c9@A~J)PemAo1@R2X%1#LXR+7K3Yqc z=wn=!C{cP+_P=^G$S5YVreb2MFqbW{zwOh1wCVu%J(@qjtsxF-n`RSp<@Fy<|M*bn zQ)uBXc=v{^8}smfh9~Y2{R3>qjvE@JMY2A%OVG7EG!w5`r4!Qy?rsZ?8n_467viUE zqGtk09-7{m+x5Uc{6^@6YHa7$07^i$zZ+jo_szP#Jd?HY$}CdG+$!X4axY6pW+vl& z(QnRge>1GQ+Y9H9mH0~iPQEx}D!plS3o>BI$o>vKMxN?f9<6c%x3-HV5};e|0z-Bx zb*P|5x4U*Ma}&{NO3lfTn#VV45Qz=wg&TY@t|7pwSNF<7+B@lLq;*wer(Zne>80=F5qm1!NbWXzPek-J|FchEEv+z zaSw8+R4v&`6I;(4)}%5Nuqb@Dxq1202IcQl9^#`GbQNT4Ee3w>2MZ)$7l~hXQy(qp z2dj!Thv+NTSFma2UDLTHYydJX91vPr+q{qs{-XyzgjS&kCnIs@Gm5zuP^>N()_Nx> ze}MT|7&(^q2y!$IoaN7*X$?X{&s-&0Gc!0#kJv@u@6fQyQf`yFGvmKDLyc9&aTZ%h z;_2IOOn>WQtLmt6L;OaeL06iz=~vP;LDA4CjJvKS^*u7xCpUzA8Hm_<5B;_O<-^ZR zF%zTMS$H69Bi})OP9s{^0&X(|^-z+%e}|Rix)taVk=7hTrR^e4lyzmMyy0IX?kqrh z?t8P3N-eXB&G2;>UGBtGB^z(gvy*~YqMf$}aCZlvhguM4b22c<>b8MdXGGH4>iwCQ zFGqHWTJk94>x`muw@?%JhjVYDfpTGY<4!}80usc@!caE<^$|33y$cDp+O;~ae_{2O zsj#=*p$FT_;tKsR&2MhmY6il?`9^%-?dK+sepk;kmk#zlkKusTFlI&T& z?2e@$41&+U5|nA!d$Fx9iQj;<7AbOWp4xoo*dcjOcK@uidN{in6Iz543D+ZaCCK_f zVB!(HSd{hg=*yi7*&BAm@py<>e=UEhJIo1#k>{zpJkA&_((|6vHv?ytVZ-I-`;@2g zFa90`)&*}v5x+L?VrND^vBV)FaCfZKEdInr&+6N*OfE%x_!@k-coqIe^>!Q$lB)p) zmm4adeSGdIj#oN~vP*Zm;ArYnjOPlAP+Jv888(#4(~;J)E7hKM4kyK}f2nJ+WBE?G zSt?-Sq>MGdH1a#Ex)=U+(9X^VL82L9NHO|3bK-{H2mG1F<&?p2;*wlyRU!zsq+3L4 zy!^ViLG%)uF#w?;a|6nTq&7LU=0hg^+F9rPCu7&lu@!Tp+h!E3CHjGPyAPN42`(_< ziPR?%ox&y*tmEG#(88mRe+dv5#=x?7ZiRZ?4NRzzjO&QTNxB0<=CpWRtP#a?0ll^0 zF%0#rb=_?rN`q=vZh?1#?xB z$mkQ{l3V30PSqF0NvVa~!1RCi?4O7})3(gA1X}CK5=S+5Fw znnLAo*NVP8{qS^a6}#Ja6n>+V&;>oq6XE%E;KUu?r6VIi;}dHfIuq6qkcHQTUTPiB z%NLAs!oNPyyLlD{b=}$Fw{mvx8OigV@{IB`EAKH8er%fnET>FR z$U>&vBUYugUNx7|e`HIfaBdCpQe`^!&-QQcJ+T4GE9=Ov-t-?_w|2i2Z0lFJOVNvg z9b&={c~c)QWDj4=?u~xR9{=qgjWr)pf?rrGG!qWi-d< zVC2NYA9N*TJosUBA9bx;G6g)KPf8(f_6XjB_KnQkpbvF`y1p(K8{&+T@gDr;BdPD3 zCg@m=E8_CVe{qEoZcYRh4^}CQR{T?##$tpQE43?u!Cs&M!}?enJ>*t`c)kIer96*z zo{c2#hN{QUvo4fO)<7I6jTcPD)MQCM@hRF6RlJ9MxF2v*(wwtIK)-4W`2y4=D)z{c zyPHuMp)Y~ydSmr`c3Iyina-WpH<>YN$jsZNi;cDGf0Z!tFFgrh1g6GfJBvBD(&x8a zG7JpfWY9yNpQk#tSSGY8-G_y}XwfUzH|S?Q^IA~+e;90j4X*I6N@|)2!-Q-C`+USoRF92_Wj-%0(MKv2S|ecdLB-d1LfBv7;!H zR%&GYN*BxkB5rWYPNmb2($k^T+R5pTtCoF(e=o&eu6=i`*9OAg<0B*sr&-%dkx#yt zq^5q|mlK1D;TzNWo+u92NtD)@c;!O>X|#p18J=`GK+3Poh}!>>ZTH$7!WVD)b> ze_++a?re40HmH`vo&|y|--*atQ;>6LBy&>YYRy^0tLbqhVDx_wXA=~y((Bwj6k3nN zHXqL~_T=LH^6(86JMGRN_2r``Is3sSW9=GBgLTO{OI?aAalYEr=9k=o_`BZK(I#%) zuk4iBA1=N17X^#dQcofCMlz9aWg1Pme`>%V#x=fl`a@V@{|sZ$G(P%4`^STdl>WRa6 z5tg(oB939V(H1_Uw_Pn?E~b6YZ#rArKXqE`q@tR!Gn_z?jc_4|z_G!FbM=b!?f!s!s0VAL{p`*BpxomNvIvaS^K(1=!uwh4bmQtvs6gN`6R`N8dl zE+@9aZM$DxPd2y=skIOE3s;!%lgL*nhOK3yp6$egq0n+^m)|n!cc@yjf0<7`v9b@<6yM$cj2VaxFxTje;o-QJkTlWVHK#_Jd6b-N zj@5nsMPSHkqf&bF)!3BA;M0NI`4wYA9J0O0ZCJv)tab*xRnx(Ww9Y4WiNAn#h>{PXIX?#^za-xk7Y`b+e)2ae`;sf0{hV)y#I1Xm^l8 zmNo^L%3a`tkGMyR8!Iu7MJ3@Lia?))i~7|CpmLr?A8Oem+v=CF&oW4GV_h_Ioa53e zbj7&A4Lj_Gy!eG(QM?8Dw+#d9`9HC(UChf zFzU+Vz^(Kwe8+}Ge@)#<>H=BPWt=uyQJbv#;p>+lmK#wD2Y%H5$ zJK$~)`g$<3wu*@Kr}RLE;}*1Nn!YngpF^x={-6$~NNiMe=l|SzwRiNxFK?>SNiRm_ zL)HgXY`$6syDc$#W!Xf<1|E9?QyL+T>~~NFhEHhIF*~t2e;59VT`~w9?3i%mq_ytR zlO&&RC4Sw5rPzgfIN74!NJKVfUR+~quBfvG(NX9hr8}D880xia`$S@z`B=-Le5fvR z1=6T+5|`PiEc7se%o15(#Wh8H4Csw7b+Y9JE56DZ0UE3^THxnj#3@2WFp6p40l{Eb z=J}H#zZacve@k53xjM?(h7A{+J_B@diwjvfnq5@wBTTVwZS4R*93aM{Y#Cd|>L{*2 z@aPYGIF9JE{`Pq6ETU=&@`iTmnT_)gBTs(TaXBxxDS!$JS3c$-Q-@}{UumDVv&T9_ zeiSb~BKslNc%oRfP==rf#(c}wdY?tP37`B4mO$x#6QWZ~vIzjR)WEt!7_f~Vmo zII5m$KX+oUOufa3OKhG+&|28q{LsIl1b9FMgmCdSAC`9x)7^W*lP!CiCz05uy%!dW zR}J5if3eFBLxIye(O==3w@1ECE{Gt}+x_|N`VWSS1DK@W4aJ`xLO!xSx}#TXc01OQ z8*A5&n897whAPJJ<+*rI0HGy=R<@W{%b{3_Eav6i$Y6Bxnva<&+28it@3`=`ig0xw*kSdyo zTmV`(CRR1N>8TiyUPCmGeMlix;O;7RWwH+%?{ z)laj5Cme~(qCXYGwd%R?3BzoW-U4beeij?wZ^)DtnS>>{-#bv zPUs0a-XDZcasXOA4L5WA5C{oi0BKpJ$n(1v2ENRW=2QKfY^#eUXxdOw@D`OxjOY$e|3NVqf#DA{H|8Y*F;?neH(=bGE6 z^E7qHiApelM@#8Gb*cVmWS~A27rpEPK|NMs-VWvU+ z5>u*@kQ5y?!AVJr7-a+898|I{f8S&W&xf0#Hpw1f(rJ=+4KwHi@wI`zLR|2SGd@;8 zDhF;{UE@xY9y-d(n^sJq+h`9d0Po_$VgSi{>HayBsx$FQf29j{n!))4<)_3+;T7U8 zG?PT6ej?6lG+wcUj+wpGNmE>n5A}}_4=A(;HH?+C#^e2DPk1;5Iig8?e_=}RKR;*8 z4#s{6gkNoFQrlE{X7d{trnIbk%2#9Y)+ZR3?{Jwg?50MtT-TeCbG5^MP>~Cf4t|v2 z3H6_26!y#6KPzd8u-W*@m z*=6-fevEC#G-jg!QpN95e@jF-lkU~E4{=vi2XO#&h3CSQf1@s1V|uGcU7O!LyWP() z!~tF7!y<;`h_U$!u2Je9AunJ555G&mf6Z+9-G9#Hzx>J@XdFVxNO4~&N;L9q>0Q+s zex5)x?o$YtZdy-Csy6P??ZgdjEaA=;z!h`TWHleZV1;ynb6dG9e>xXNcI|L&a=r<- z%mN>aUKOitg-*jb_Rz1>L{a_x2Uccq7L-^)QND zL=Gz}DOtd5H8f3LO|rPgsXY%@yGukPIMK34g`dkC=KCj=F#k}Rzjj(iDz5iZ9F#N8 z4oaDEWu`W>XqCDgf08)E2XN3wo)6dpG0kGD0?CN_=o}KJ2c>=B9E0m6DV7|=MVLD? zZP0WtimSxKds^1}mN64tR-f4!01jhjs&g@A)n8CYY`kyDb{lM;BmgCdAx~7QiJs0z zcG#^J51a@YO;?|`Kw8(r-bfVn>G~G)7;++gd4Z+`TIPtGe-m6H_M0n1He^^qu^ahk z^_<^NO+g#Hc35*nl_sxzzq>%(;a2OsbbMpz2JN{+H{G*ti&kP;Z%Or84EOe@Bz|_G zcv+yidN^}@oC(9}IC&BT&+^s}fdvpdF6=wLKc2>vljyuKH1CaK36&eC39 zC1dLaZY@*>MJ}66S2{NG$UNE~XEioGhIcDY$H>Loe+;QkluQm6ZjCOctM*m+J zp}j9l=sbzv;oU81&(fR&HO7F1f9_(^p*}Pe>W*-sVK#+qA55rrLpWu{scYma5U8dn zrrV`iPc1Ru{+S-Jywzt1Z7I;L2e}e;Z61~d^^jsZM0C5R|6Zs;byc*DRam)e&={#= z2y7fae{I8idu)!GQS?xxc}}+Q=A5>YHA?foPQu2hA@ItD0#m#O?`Y#}P6q)#_HDds zCQ)Wgn!V6!`9R-Fo%UOi9Zqur8Ff}{8%emlMc|wL#-!Sv)Z{##gV7Qtn(bs9mq$hq zVywAkLHItT+WMN*-$RNxk?L7Z zzXcJ4GR@o#i05ocxIc6*&Rj60HRjCDC|bMjY5SCMoq9BLuwo}=bf&>jQlxA@Z@#Cz z(QQC}$rOW=zTUSF%E{+lpFU<|^$q@TNwWwA<$E`^;*FAn(k+7d57pFJ3&9)U{<(TN ze@xD85xwaUUl|CNA-noCeQnmrV#H0(t}chg%}4Zo7c4uKuFy8DQy`PX{6H=kV1|#8 zpuXxg3$r>{o}fuy%;%bFkFIrA*^0}9;>Sapy$9lbqM0@L6P77^jvhLjXux)xDCxaX zI$0?$kaO^8uEm7G9Zr*P>lt2OvKY*{f3pXj6XT#Yv9z>dX~xZ9$Pgr>{Al^xXxfyF zrzTm^U-xhBMVHzXAY2&BJE}mvX?XY?mb7jk5+N%dGx~ypC`{}B@1w9BpFJ;g8%Xr(KBmIL?htxBd(r8f_e~$15 z13FAGYP*K1Jt!0dLrpGFB1*8bsDm`8?M8VbuM%KHoJsv(k_i~aSStfX-p}IwX+7FH z#I_}?3(T;CVM}RU>`g&n+emW6I|0fSjT;h260Hht=k$5%mb?9}cavRGc7Dzc_VR~* zJxqTm8kj}}3JrHxq`Z8ufDYp%f6v_P8fpOLBR2wm-gOr()>)_XcjVU9M`O`i7ofDU z@+@wd&*OULD;_SCc!>a}P$>nRD^TV$Hk?a>xdrogd1a6@Q36@|D?9OlM~C62OPM1X zYo?YRlQ`3CL?3RYNd9ys)0O|?uuRliDNP+$TrLCO;!_12dUBMTgOn6hf54}4=g!Sy zLVzS!Lti`Y`{Fq`xGDw}RqC~I_vU7f8rPq%UW&H{++5EUw^g_v^^A&6`gtpP7*Z31 zUMbn(toeHUwg!^+$N5T`&NDeu0iD2ZZZ{qKKR`PHHJ3qWrG?(Yf)bpk?wtyK(q*6L z%#G7zRr?aP@+FmUz-+OOe_Z4!GlH>isQ=56^85_nv5kuA23#Y!)@zDPrw9cI_LI<4 zTPc!5h?ikTlw-$&6W|5(k+T|h{+~QBT*FMK>+-=4p(lk;rT<=O-cgbp7Fa(XM zJRy8sfwzV6#}7$+b8XR-wSqE=X8oWaVJDj2(KfW)2t>>#)1%<@e^8N#$(bqZ-$+Ho zO|wiL*OC{CTibXmo7%c*Sp0 zpnO5RxTyEqBxK2MT7yXkvuKhqvLEd)U1_a!K02<9B1YaF#~E3WyW8pWAagKxr-h4#d z+vLMw;Rs=5>?xkmtqe<#;=X89K#+hY>kg3zO~ zyqQZo)27&vgg8UJZ6a+foC(|N(zdO-7_|3?_veUlN)#05&q#65a?O*Al zQE~Gn&+6PHBw2bolAoDGa7DkWn%0h+;ahsK%RdG_Wq!HTVGf^(TsjdEfxZzj`r;x% z!h(qqGpP!m+xU)yRg#p(XvYj0dpJ13J7%y4FM%ez9I@qF$4@h)!O5Zk0o8S=iF z=rw>Xf9*pHQMe=<*iTziCu~EDd;7cl5gBbw9+VOS*TBB&-@<#ZHY@)z?lGKiti0OI;sbH$;h zLgx_5uH+TxJe3cSX0tO-jfEkjesR7727o|_f7gA!%pGl>#l!|s-O^0wZ=<^LVKRu) zrzucSW2<`|B%Wx2j>r(2ck}LAMM5S7xN!nqdq=Hb^y|ElN31mtZ{v5f4xPDT>W1}M zPy;6Ckb-VoI~8KCs|l8$1AEP^>s>xD&M2N!jO!t7NB#J3>$@*Zc8GM{=)ZrI6KDFy zf4)=3uZG1CSf5j$!N^#k0}3`7RsvhB!T4t%T&YotAx-Ip0Mu@lRORfc2JS(c3zguL zvLoE_h@!bRA$OuzZQ2yFU=W~joKt71XgGIzrF6HyN^Yg=J8*W8Vd~^w%{bK~KAIEWB*99zHS%VIP}d4p@K0f~hh_2nwpkWqkc)3+Vc3^~`H&fbCXtT|;Z(jMj})hCM!HoTAE z9<5}5-g|s8jaHhtgMnd^NRfn%DMDt;I(rIBJb*JdGJJO|s2xri+Kmil7zZBbe+lJa z-R0o$4SE;N{|+hCE9>a4Zk45?<_&lXdJVFavps3O2!m>s zdtuL^2hY|0DB~BWm+uA(D(8Q&4z0B6yKlXy6Aji9G>?p<4=UV2WKrj2pr5>s4QpuM zVFM zA8wn(jB07@yWpGDtl9q^`XZ`&*KNXPYK-D4*YzkkH!@--;PQsxO1?d>$Yup}_{6*m zUOnoZIWn0Aq~l0{36AW!e@=U}pXeXuyYRN}gjGK}#Oa$h3M`J~BG;o2Al+-va*YB( zD{lTT9~ZZ4GPc57t-zC}z`y5CjYm`!hAN~*IB$0x7e=6F&x7kPrr2PAn1%FyBhNAwR20EsNG4*tl9=~28tf3HxCmdbQkq1(e@ z`ICJ~Y6_L7sP2=XOh68+IKRE}T$q~LO1ygDZ>LL#FI0#G1Eu9fm-RdO)Tn;#j-2pe z91JU?r8qxw`9{`T@<-UHKa%e1;xMF9;2;@DhEpnQt72t1d&K&CgNrseJ5832xtoh& zgkYGDcOxMM-d5xQe|-}^-Aj6Y31m{>)MuP%kpud86Dz}m;Uk^#cI)Fe;`M0WqtPAt zBP0V|CZ#6rX%CVwEbQ}k4HX@OHLs1g+3BPs; z;74*qQ&_cU5b9It2Msf>NWh;>N z&kMg#e@q!|H{c-nAZzT3NEz0}2t*v`UuY6Lu8Sk(Ok_;zv?b66x&Pd-lrmr$!F@gL zC$Z6}dx4^Aeg9xfBD3uMYznWL|1u+k8(EU|Fz;@>Ig_UulRIIuI>0*pYb*hvj?Y91 zvCl)>XX8P-=ZqUvt;Jund*tbiFmLSQfreFae;Pk)BGXT~UM;O`!cBpE;|l42QXI6x zFmHhR&ez!=f!vfPab?R|%_{D0`YQIXr*BewJoj5MfVSszTeg+<&7wKT{Z}#neh*As zU$#OD{Ht-qTdFthwjC}NDkjsWLhQ+{9i9`LCT&^F!YOvLW~0W%K5T`?*bR-<4hS_F ze@jY`Ur~*NKW)l|fxRVCEVpP}x+}c}aj$5Y&=fnlC*QZYvWE^%hFw_U-@gQC_y01o zLr=ceiXIKP2*cnL>jRwau#Fuc(ts*lQ&hqul3?Ajr_%8b<1ew-B_!ry{W?61oNkK2G~ZpGLxZAZjF|^Gf5EkVGq zqzR=~oj^)RRJKP%LcZVkt_Q@6t5s1CAL6oT(EfitpAj%CZZp9EUOIivR!OV9e`DCl zeRNO87k3}G5*r|R_-=YguR(Z6U zpr3`ND2NHELou`$N@|g#1UV=+I_Qv%FM5C+diu>+FF}YA@umAkwWgagg~_-Is0!a@ zR7=Ov3mEN@y?;e{ioNvlx&E2*e_~oYoXn?zO`c-*(;9LLS=N9oj_m)c7~|PhfW+3p zKi_VNWSgroM(jEzO2D0y{TInE4b#FXwq{I7YF$tOrv1s5HiLd-^V z;!1q55sPR%!M8WjAJmwz|oeC(HzwgeLaHkU9r0Tj2_ zvjPky0yQ?5F?s@k}4h2-5?+!DJ@F(S$*n#-tU_^XLjbl z_w~CvnI38Ca7tM^n1kgVU~o)PEdc0A*Jw0K^Lb35b9MMYy>EJlx#Ee+fD`ivVQJ+#r?! zH7W(Kzb+ao+$ zm_Y$L4i*qF-1A>1SfAR!;f^9epu4*}mzli_mxHslI2#AR9RjxjXn%uUz|L-9OTe#m z0qSP<;NOXH;V=PoZ6Gdxz&Z|AaCb9jFaQBSAr@em3qrvaW(jr%AbbOKlvDv4j$qgy z!m57=Z~*=+4FJRi`rF)}+P@4zV84~kEG!)C9nD~#5STT<3IYWKG~`ve;2v-efEmp4 zm!KKc#Q~vj=4J+gntz!i1bzo@29TH10+=E4`!hQi3ulNU+=a^p0{xXC@Ru1xk>y~P zG7k3kU>Mv5=U05P5NEIjqUxT&-)*&nIk>~T|9D$LV3t+_`+px@C76{1K=_Yf5movtV7EWJ&-&+LumS#UOWgr6v0wn}KLc*e&ChLt z_<;V;WByy^|2N>o$zn{@?M)yF#JAxvam~{}0#99s>3JlaH8JS2$w!)f^BT0Q+yz zXW&29RSj$jakc+%t`gh~u>(>tYv|uagt*8Up|HVUWm4zMRXt*He@iz;MSek#kl!I9~SpM2B9)1CUnX|K*Ck~>;2#O!z z4MMD;CD`Nl1OtFvFb6n71%OD;7hvV!jPt9X0{j4=)Gz2aCCCc^D*a6fAt;@{Da0}W z&7I9G?0>+B18D{S2j~48|D)4?GlT&^i+?CS1O;)naJ9FBB0~BL7C=}9JGmmd{ujc- z0|45aSvVsq@)ra`tP9ZLZ;}sT7;#Gfp}7G-N5lbx{VOg$(4XkPqvA&>yMXN>77oz= z^uQwk0Ky?q%YUpQDh`CZ|A$v00MHBU{0H!_9)DQ4IwRb`fA0vQL4VP|&m9=-0k*)I zpLMVhePvtws^y|uipHIDb5v}KY4ce+8>jcYbF1qWK4uDARd&#d^O;o2z$d~l>vF88 zk_+^=-g}Mpm|;yxTFuu!H>L^N6PwLApU262#|rnP>U!v~X*qQzw|s7$eDnkDP#clk zm4BJ?oLq(QHS+`AP#>Uzo-heKyKwYI7RR36-vPjbfSMH>f}Of$VP&zYfQz<_ho zVLc%}@*tQ#J)0taJ$6s8oWPFbyC1__a?$h`(suomC6``CJ-F1^)7Ky)kRlV(~#PFj6Kr7xV= zqn@Kf$xS(ux7z?IcYpBh3yhyQ*J57|{K`MjXOMl%QCxF|iYj7@46}M9XaY3{u78v7 zRWoRQ_Kn2oTqv=)m@m^b7tHzjr_o^eXttv|rjV;!Xpl9$tCSikIX$hBuGa5e?_yxn zwMi%*Gm#-8@IXnWWYu2xOyTHoVPjWZi4tA6NBZ=HLgJgaVsa zmI4MzjA2(wN0ND;V$;?UtIwH-M3!6vM$MEY-SHKQabXLI$|LkoL6M?-hb9+_58Fe zssVj7?ks+2Vj7Jns+1Pi7n*A|yKV`>HS$AQURPvHghAyOM6bX;x8WLTz$x>?;3}%H zw$InQyZYE~16A8oK0 zdSR$DO8V`gy=Ji02w(Md6Mq|By02P9mS*w5wl&XqEfi!OGrT5$I=YjI|9v^%5id<2 z>7(z@XzvdtPmPGkX!#+^8V2R!BQyM{#Lpv%4clk~9`BzmgZLA_3nG8@Yox^7Hq1pr zp)FfT89OK@DCE=&k?owYmq6hit=}(u#e%heNfq8!(70AgqE9%+u75pGy}( zqh~@Tk#ICPFk!_L*?*8b^h5CcEP^q><3JB-yQ|f{DYo_WrEQVLfL;A#SCIw`?Q+uj zkVuH!H@zmp=9xF6gs-3Ox2%1b;W9B`u1Q}ErHyx3rV(}#FT}eX>S}IFXxhZ760&Xc zqEeb#+>uFRa%i5qc^jLl0TZJ6scp@eDk|HOIz*E@PRNtMs(;KLJap_cKhcS$keyVr zJ#&z~NBY%Hc%gPSnDiLznNLl0TMFzKX6N8E=XGxseinZrh~k?wx4Q_yCpy^knprJq zq-`j=8<{Gj*7Lm8b-e0;&s{gfM*J|nN#Wru{bnXG=~9{)_Ko}z#Zy7yWp- z&iJd;v7__jcz<{P>Sr0JZBxe+1Ru-*EdG5XBd5>JdWR zvTgeCF*Sz1(f4bNBt^s9+;f$xYiDEk(>E=N{;o`irnQ;!cqR{;P{j&1kP@~@Q>JtJ zLuEp(TGN?0=N3P<*J+EltVL>}qKp#2B~OO>x}P?N$$vQ4-%x%%^eWieNRpihNoOTF z1N&C(icn(7jUh?M1%$MnT9f075gm6fY}1*aaWjOBS3BuyAiq$>Fb-(LA(a}=x|pcI znCw;?Njg=FO$l*$OaIzKwW%#CV$#ob;NgqlX48p@g>QJsq{8D|1LcxaA0KAYMD+n3 zE|7b3m46=780CL4;7|;WBra;}QCbk^$(+Y!+snIYDtkxKUR2-X=N07~PC)$@T?)Hk#<<6%)kAAg(k=ZgTM$c(0^WkcO7koqa*9f6riYU@N%En=Lo!rjL=4!HSlzYjUV^#+h#?5&dJ} zd*)Ok*Q%(cH`~mrBbKxc1r|GB#de&l9)I?OC$(?4QC3B+?30Q_pVBe81l2s^#3@=E z5PF_9!tTh-cV?SGwn6pbOv9uFR8yqu=oTXzVv-h5+TD#wADy{~cjECl{rv&E74&4o zBQb&M&6Z$imDm~;NJl`N=E#}sN{uGW3&8hvh5N-lURuG(^NbLg;^m<)^d!5T*nd1! z{^-3;rY`sVuCf&-S1c0iE7-TTU?=j6ZOqQA(-L&t>K0ZK3ar-4sib)=Iaeztk5AjI z_6%6a$kGp3&7GYLoTyxpUyQz0q_ggu??$35bQH`>%C8iuQJ>e6BC|wpIS8GZF-Z9l z_+876)rV~Slj*s?P64og=v>GwNq_&cpNYj`!Hq$WC-zareu*8O4ZoH|-0_=owynq% zYi8v)j}PffNQnZbhd93WE!yh5AY&c`?aMoj4?pSOeX=<4Jo8Cx9Hbl?_EX17J((oU z+sTj?yNU%>vhS-U+64?s*Wi82pwcaSl8=1flZidc2Vc}Rh$Em7&b)u_%YSDB*20B$ znhHuL6B*L#b(ggPi=-@?o{WzWG)DNRirdOWhU6<=^=xHj{e9An=U zuAK9h%&9M<6I1yl_f4{$YrnK-EhBq*bs0!;U)5~Sd{8wOkh~d@k$?Fk_;j=P!83FE z>KANUF+_8=Rxr%CAxE1)!cBN(hUlnq{Fmr6A(34U@9^4Mv0GGS0=Zxwqi64Ao4jRv z1iv)X33r~+uqX#C=bn#mUNeGD#z3}dA`>w7Q*?!Vj=7#Ojuf&@5`U=69dFB0ki62p zuHx4?McR;;iAZOeZhzTrDSKs`VoXz9W?P=fDxq-^m7Z$Sm#{~zI<9t}ZVdc2i?Uug zvn5|>Soo+1&R0f}UTOK@G0&DZ^><8tY|^H*;I(6(YMEEg%fscfAH_R1`rKiZ)NkW6 z`hqT-gnwgY7)Mz7Lw`);!~WBm*(n_EO8lAi*VaEbs5(t?Xn);dtL@%9Em~3^(P5}1 zWsM5fNlJ>T(JwIN@Gh(Ij}sjHd-QYeKW+xJ@QJX7VGS9t>lPZ&W4b(Tugh!rn%bq_ zDDf3X?R7uy0p1Qv^`Pko&P-iqGO&Nt;`rW8 zz$I_Ci(E7Fw|`z5tW1;lHxEkPuLc~$3c8(ED>~xdDGYxv6ddEIu&+f~mn+$A5D*qm znYt+zR1Bq-N}Hi<1y7t*dasYa%ZriFpBhpx;BeGD(@k22j=p|iWt}Ukbl1AlnIe(T zkg+H|H9IBiIbMsay00dVBe%rS!)H-E+v&4|L+zV@AAgRIzA1L~t(x@1hzFUu$|29q zAxcZ+waMn8$+L4bJt=*`cOF`PU^2!-Iptw1AV0D;PYJGV)^ZM5mcspGlw2QANHA#;XWu$^=w6O#smeKawXd^GeLc z^=A6DV}GL0l8_YAxWrfIbjRuV`|4*4vL{~SUmXX!jbRCGge}>vekuF$sK1@^_27Z8 z2S7~F@TYGuabI@*PVNhf)Z)EIv$lTaF%rJaq=e?r3)35%<{)xWycDP;9trlhqj8tl zh5|FiawmfMbuydmA}R^fyAeq>tCvfD@|I}o)_>(7EQQggEv7TnM5K|qz|!RR`-@}C z8$FA`AkVcrisem=x1{02f$ps`Q1pYX@`{?=VJDD$rZ6b5x43amx2y$xkg= z-{?^mHd%YZX+M}mXVS{ip^ewwGBwn&;#w(tMGUW-JbaK<&yrGCi-mIZ5lT*x;mygdA#L!~gms8z7q*`86mZ?=&B>JhSgWonG5HcR^<&el z3i1#!P{y?v$*97d!m3B#HZBk)f}!?9ah3e}sRMdx-BXSy2{Ba^pU(*98RrasILwKx zm@&uO$}CX^_E+^3xgJoSsdCeYnAOE#))b*+bpKQ>=KgQsgE96M%k3`d#7UT8!u;Bicl(_c|imho|t3n0QGFO#BY~_u)(NUxFmQYCw<&oeM z2Ifad0i&Zi6~q@Y%#VL~D_kBH$A3w@gtijC?kZ;sjuvJ1aSK($r)%&!vfBmVAj!IH{8vEqn?t7&@&_{ZSp-KQR_Xp7tTdB0I}} z3DTPTpbv(75{cY~+}3)?K=539@PCOQ=IsDo=%ofEW?U_^CIXpnZNC`s!)X8#ns=&bg@Qg6CzWxgts5h8h zvV0@>rEl>hjNPug5qp11B@1ty{l=xqg`M>pS*|jrAH*K2mUQ4(&9uql@HTFk%ez-Q z5%0+)lWZjw$7o%f-tGqRynkkIXBbVfEk?4u$Z*|KycIPXwvpX;@0Y>PhHmDXHt}c# z%$UcbD9CrL;CF5e^5mLA-+f3E*-^dx)C1cV*~O&&Bh<)=&fTp}Fwe#LuUGHFq6O$y z-ug=|WGX2~vBY_EN7Iz4&^iFpx4JAZp z*mL%JNFJk1Ee^)HOd7TGAhkqbN2}Au$;_Llrn477w)~s3^4SNXFWxS|h+KWY=Dd!6 zcNBeS3vD4yPL_QyHh*A>nv3NdG2i&*2`G|RVokVgz?pyYs4D5Hj^}%0bG-p0)P0C% zTd!eV z4FdK@FMsmGC%|!6B*t+xk3O_lpSRqdv|wum-;+^kKr6z-H-Ed$3zanbt4PL|*go5V zZSAZQN#aVN|B)13IBrK6nRf8LQHd zbCB3xpl1`KZGX2{8r4;{Zj14YZx|02)r9sVOXuIyMy&Ag4KRF{XDnP+$*xqrmwO_; zV_!!5#r;A4k_E>=wGGGXr;Jw39!z)a4_8$A`SMacuXozDk+5PIW7CdxTpD6S*vBzX zY|EKid;3>sujjVAoSimbD_7?Pw#U~7RTFduZr~4|Q-5t@o-6LBy$gK#1%pV(C*_pI zjO>x1(b=paa{!mLn~HESpSRyg6^mRl1$5)AcxCBQS{PTr`couKhk)7lU|3!?i{BaK z`+Pg6SweJ7v9D@{PE+HF93PYE)CgLjmS+SB7a))w)QTK@H0Zk=cq%$FYOIqERgsgd z7-XWr=zl5HVwlFQc-ZOS4Go!n~lJa`l?%1vHk`;x1S{$t86>!on* zm$e&9>_;WZ+@f)DsX!y-?xvwtfcnfdycx z&eUT6SeK8JQ=H5)_Jgv}+~ZHaN*p3>T>bHVbbmA6^?F@EuMAw=bK`%g@J_l7_A&00 zirR2Q&W#4$b#x~9g~pNtMOt??83bsd?`=osau=yXG}ibS>(9 zscz|R2-N?w?!;3`GBYyvk=4;h)zFg?Ie~&XqNl;5>`UwJ*?E~j)4(G3=jz9y`hTOU zI~}@85(fQS*;KA}0`$GkU#&}<%#y>f$>C07mxSNc#H#Kju3W$I`Pm4X*(%(Zxg*b} zh87ML%w$yGnhSmQ5!~tW-`+JPNg?h=mipQEp2tO8^1%7CT`cos*yi+T7!9m)zWwDj zY1CMYrHZV&RY)Fv)rP+ScW(e6V}CQVK+5Z*Q>PMfnb~>Y7g4NlU;U$@a&&x-K2~Tp{k-X{5S7T1MV0CmkQ@vl4 zhd(aT`%taQuxOaynv5wQlQ=#u|9HD563!DvC&yi1k{7yPBIoU^!LdB6JII49%Nr}4)7H=LM4Js-=~@e?9Mp1Jte zxMNQh6B&me@67oWE9W2ddX^Ietl%$-aCle^oOk#=_vb#*cpzDvjg)>{=b>t0)%|8q zSksn8(5y85ER$CXd-nLPFMq0^X7-E1GF?W)XGf8+tchjjKu-z7GER*~T?}r^^b1On=EP@5jO&4l9dZ zlDQ%USOQfVHQ+m}ALgWI3j<$;xglI5cL|9ZR))w(RElv$+pWdbS>)ttr0jE}v+2jDZA)z0W_DD~}ZJLJ@cgfDsDb(iBH?#YVyk9r7 zyLXK;XF`5{*EeKb9pxyaN!hZA=~T}jSLqVajqUGFHNo;EVq#B1u6i}`{X=?0RJ5F( z+jv{~YVKuQO1=_S{EuD*1?Nbpk8MJzP=5;ZN+3ovjVTU^xFxv& zXh4_07s0uWb;xS?0i+|T+JVOT4aXqNx{6S_CV)CgndXxye0)D!h9hJknZqAZAqf^WHtsfGVCSr9$x|K?Uy`rpeW6 z53KjRz|rbB2d@;=!N%coW)AzQuv z;Wn~FVyQ_``?9Et=SY+BgtwKtq=@2+D={OhyVvOu%tq@V5j$B}+FWloKjY9tPp0H@J*T=$Nn*CX2 zR8LsK(#r!)j(idR?<={J9`g@O&$K#@-{XHUI@nS?YP?H%6Y!p7vk4veEjy^`cmAZP%REk zW8m{8c351p{5N(+GG3zcV~8s!RE;dcPoRB*AiM5IU8B_6H7M;nnV>=PyBIF?q91G8 z8tqS)q6mR9c{#6#DH4-%d-ocMQvqC1E#=LyXo}hIn<0N^>+P8-C?B9ZlLgipt0t1- z*WY!_m0U&Gx-uuJyS4qj(jtmHZxn)XA8XAMw0?YQO1&J&Q^PLys(ZD1_hVW;bQM+4 zMsjmbcK@a~bhm{%y)u>p`5U(IQKK|RqB7cmu+d(gE!)77#7ZbWPCFQ>OBer8!RIJ2 z59f4BZ>@ittwJYg8_)mgcB(_ZqOd`i&m!`61#v*=L-^@+v5%Q@P)PWlwezL9!_rFv z+sp^$)Vsmee3))Htrl>u(xOMYF0oK*yKwK^p2Q>iG)QU~j4Xe`+og>v$`T<$dXfvokEyF%Yf%E5{S{*Q|8QV2m-a63_PSrk} z6XkzKq(-{2w2wrPn|kq0i_xc^%b3$3c_x;NzfW)eojbLDd&*#?INug^_JM_@C_2OG zSa0$LE;hBrwFk!fXN&i)Rn3Yql2sb2Y`$B$J7pVOaOv)4)w&{&(#2WnOSciPWNO||8_GRML49qd-0!}sqzBk< z&q0Re@mX*AInzH+czTvqvfq7YpEB+D~qpW01z!z zELGE7tmm^)2?cQ&vA%$MbsI`7WZF*-3NjsaZvZVuAfbjok^OTH7@yEp$H;aLi!gs9 zX_;v0;%7~__Bw_VaKk2gOZ9iJ@ZCyg{D9S5HyHH041geA^68Rv%(p)|8Zp84yaP>o zTTI^mK>Q$2E20fwBKQP=~ZpFAsBI3ut3@QW_2@QwjlX%}Q#Xbjtrz!Wl4IA=W?UcB0sk-}B;cWdFCK9WU;Ry^U?Pl$3|fee?Fx=dzu zN;(<9hs)SZsg}MI3#r;?Pl>&qT9U~XZ9;l2y=~=xQm}!SkA4u{+&E2`jQw)CUFN33mwEu-kJYS-jQ@Q)%U`vh@6~F zc2<)5TK|NyLl7_5jkoo?Y&t|0>(#Y}aPJf&v6i*YUZ^j7Xx}F~OpVldP#^z=be70Q z*vV8=O<^Hl8r}p4;apLITU^_4Ojrh59@VhbPs>M+Z=l3o@Vr- zJE+eNI}1JNvnpzB@>h__fI=dEeEC_8Cy%_GrVB3Q*jc;l9Dao@c@R&?lou!E8)0qPGgnDek+)+ zozIJpHNSjy{s^C#i}%ShigX(!fGIO;IG<=%U$_B>Q0#*u9)o}7yyzAs1{WEO+lDXN zTQylfrh!Ems~=GeKj8p;HIhnjljGsxH?1-PGM7562~{LLLG#5c;t4<>N7aa0kHt{c zJG54xt!*KCj*w-@XSPoR}yw1!6L}c72g+`i>;47}LQnq@^^bW=#h50_XQ! z`8%JLZusu`%K#H^u0+T#(&XNrHBd*|7xEgue7|)#pj8((tw2=4CE5L_E~cY;fBX`q2d z8h3Zs;2sDh5ZqmZ1=ry25}csPW$%5?$$$R$s_w0>>Rw~om~(w&e$}*8YMQJP77k`$ zSqG>qD+e1;5Fn+jsl>qv00Oz#fIvC5nJJ7M`=z`tG& zfP;_BEO0e`m+0?10J13)hm{%bxLb7zR7s|%Y8#O|*d+5al@@|tC!7E%uO_F$;1 z3(8;pNkg2$<}dHvi~V1RYYTPofcpF!Swf%|mVb?5;pWJ$4TU(lffc0x74u?3`D3#J zy8?KCKp>xh008U+0DGESv;TiZpylNV{@cm%m-%G|KOaX2M}Xza7+^n$CHUnB#m5EY z4hFb7yMg_D{-@)=5ef$fzyf0K3NQm(L7*sqs=t`QmjB?F^LK`L0t|pJ^5Xyi|N8vr z$>>F477kE5uRq~`A2GYMiln5*Tjqa_{2!;Jq=P5Ghn0sHz{<(P0pNe&0CEEOcz^)E z|E{A3g8Zuw;GbLtsHFoy;GcG1-qXKZcK??K82+^&jDY{HrQ-0STrhy)kI)T)JV5i8 zFOL6bx&NK=|EKc5s{CJt{=Yktb+fbk+t2V%!2ib&vWM7t{VU={xo)m6TcGUlvJ24v z9jXKVXLXgq77#c4|LuQOa0R_=g9Oy-MbWGRY}~y6m?18*5Kpj$8pPGy`XAB!W7qy` z-RvMxu$qGl!3J6Qa+Yn(6V403h` zd7%Jb1jWh21MuN^SxO7A=igceu(LrOTwhWEFC+Q^EFGLt{yKkGULF9u#9yX=5HEmT z@((izfb!|Gsa*U{A0)%Hq6(xlpK0ZD{*l zwFIdL>+U!wH~PS3^fi*sjtsH;zIw2f@ck86QOtrw_w0XO%>4$=G3V#sO}4rOKwIN= z-^>_6g2noFcuTWw7T-x6k%wa!B{$B!w_RQOrd&`9D}u9TjUkU~@fk)!7N?8dxtv2e zVY=qZpB2_;i1dvoY-q6KaWRNQ{QO*Ku%R6iIUSXfH4-zkoeDHAm*V56@5yBk?=$;H zIC-`PmdbxvUO_f9Nso@u9p7H(9EoNe^zxFtHJt>^(C+lg5IrU`1Yfs@1~HhqjA{xu zYiJ~}DZLM{Xm4)kq{nG4HR1x&6*&2Rx5e zUXe_X%Bc$rLg*8#Wc+7`fw(yMkBHw?@Rxvkxn6%!9q7|@VFzM12tU_Efd|7+ny}#P zH&kW$`@O{>PZ|5N@tQP!gj21zV!u%5Z;VkHJC0y^u_gAR@27IEf^%7K4lS*F)O`@V z_j1KD_r_mm_x!F9QH~O2vOPVa5|IMEsd@D-3T&BL#5YGt^X;uAzVEf%9=wmxr!pye zOAdeE=5V|ZSEV~Br_X23qWNbXfTwgWlHB7Ts4)h%0na+T%)*q4F$E+&BGEsJkn5I8 z8Lt&=c+MEsM8dep1?`)7i<+Y9SmROzN@cyOVJR{8qIq zICo1fJJTJ~dxF(KES;)bpwjB)2t78sci4Y;;IGLE!a*T(%(0dmu($XpgS59rLw!1Y zcAw!9j8;2I<4BzNkvuuMWDiD3%^AWj=+j#Jn32DpS(KiJbR+jy3!LyldsKf% zK8)SauyyXql6bW7h;eZYY5qzV;AXn;#74NWx5Z?Ut}LU)FYKa5R!m&M`IfKXxA7fg zz>*TNA=G{se&u@{TO1vu+kU|$XnWhZk6F@a{PZcsuk5grb*x|rk_fz<~`dkP|U-!d3!6&IOe&q zQZFv>cvl11uzBgHMbcU!f=ae*Qr4eTUCMx!!JG3k_wSC-N zT{Cp&;i{q5k~5Mga^{|IbWH>9>V;`oRP7AGdLs|=GVolRR2mADa7trWsce7t$VOg0 zV=9nTO=rrhJy=yq<6&)So<#H-ZB%tvp=U*sj}IvtFg9N*sLrO{+3(#yekBzWJyMGi z@{YJBFKiyDyJx02QR&v<2ck}q_R+2H42v15) zi^9MzE+$*JlydSzFJh>7DmH&Gyg;4yF(}DLu;AAnZ-v`akz+%eAaONBR&@>R-}Hub zV-+O&KW}=Bd*e*xJPmVGe0Wnv0l0E6W9#)@JQb-bQ$ADlJ!1r-8E%O_#f>WTlv`q* zAseP4gQyf+*7>>vG;P(yeupk--1ytTcx|zzP0|NQFPwbrJAjjONp63;L^H6qo2`qo zJX?CrfkoFENKBdE+b<*7;J1!qX4q=hdqANNX3B6P*PdMbt_j~c7$vJZxGQJB`*uve zQgDI|u0XFj%EJSh^g)8JHlfAem?XXAEmm3T)NehPQ4zPp7Ushu*ZYRbdc#nG?J`dS zUxG(JvU|iTez~VW4w-+Dw6hZizBgs~U6R|0O`kc4qvX$6TtAR;BvF3sqt153w!wo> zUzK_lGv79HyMD2{H~e$JHFKoZNpb{NnSaFw(xu;J*dL2+m@-iC38DRhzjV5|Tnpwp zE=<@9mXU(ef^cjnqFCC!o;aLYSv^f-?hL^lJ`E_;M)lBt$ZUUYMb(3#)C?+GuwXy4 z`FQE!=r2REyE)q&r+i+We3`xjD?ev_wd z(@%kw>=vCUW2_71NR1F!P}2{tUo|h1M)&bk_~+}*(+htX&)vzyA8Zx!OZTp*myRG!jhOpL67vzU)}0T%cZ7F=!c2A2YTf86DtXR%4t;Qh zX#GMC#Uza%I}~QJc+rL@gqSx*b>*JHLrklCWbyEI(p4?gUEJAvX7Gdh%QBJ8%z__{ z!Xwl6#}j`MMR7cJ^bk&cq^8e*+O?QoO-~^a?7%rcV?c+?N;efv$)D1n?Qr8K+o|k7 z(1!$^e=ga6TRMx*V1;3$2VH=PDOW{u-qwH3XDNl>Nl>gm6q2$xmJh%CSewfwR6~M{%Hk4Ib#d|-@H||-rf%lnm>CIxWoq2!W{ns3Ws{6c-0=eX?j!Lv7&QIwG zf$t2l-(=z?+`O3|`Q&2rh!s|K*-#Hk`!-k&Vj}nn;-t9A%qJ$F>VH**N!DKEC6ayCUju+z9X12zw`y&`7Bp`GE$FCYCX_ z6iE~Z8MRl4A!fcQoHhIojcOj$awS*G$~)mNJU)O8N0|PN7tATM2IQiM)i{kW$Hzk~ zEM}{)#~?6fY(g8>F2hD*m`q5u9e>wJ*U*3VNh8VW{#Kz+o%UDTVCb&AKE*d8@47y; z;#J+9>s1bZttYw`N%_H6zFhZNPD8F6rT1*z7ze^fBx5dK&1`iP|UO zzMCnO*oc*cu^p7K*4Ytx6t-`u{SUROxxnfs`bBduU^Z<0!Q_p*XAL9Tm?H~ zKOwit3r)A>{n~VtBN<`dwvbH8q!0xDlUMNB~y-C?WjfJ?E@SZ`Ur~sd@p~&`KDGRFOQwi>{iVpZ{g!Dyun|gxsTjIM=C!E&d$@u$h zMe@9f#|kfLGSZ$lqc6tnHG5>Zqc|(xZi`z9{&6VUxz2J}9&-$b)` zb}FI&7>D(M5tlxZ1r!_8j_2x?lAho#FQN>h#B)y1?=W0yDF?;yHWPntW#l(C8E1UR zL%Aowz@KQ5eCNTQOOG^*)Pd*#PIl5KgplN-9Zm%%lFw7vK1c) z=yZ$+?Y(CY-N!8LGtqygDl|mv@psSXN6yd3?!J)C2Rh2hT~F`Q${iwCuDOpPe??me zu5{X@%qFg`>QkDjSoMZToKTe9wWh5G8SV9Ro!#SYyWOxsqknEVG;2!?mgLNAC-a68 zdYeAn|K`DDMTb<$d982bXGR3Am!qvAxsybp3W(hni*X~M=Z1e;FZ+aYQ&_Vl*~$wb zeT%tVngK~6^Jq*NO5{W*y_xKZ9hU#;Be5RyX(}%nwQXS0kvP^+5S=`Py@!5-G`C-T zXT#HgAO8mj;-iMAlzo^@u!j)g?E^DDuK1&C( znhq|ru#E6*GI`nkz&%RA;XIq*Wfo8>tb%n{rF@l*U3;!U*(`4WSF;F||S( zf6OBBqsz_&_W71v*OYTpOi|C5PEa|Ilo7{Y#CWBJ8}Cod->*GkCi$q znzoKs6guUGZSqV(XwC$hMZRv1=SUt=w*;w+5LVahVK6OkZV@!OLrSzN?jwjO6~4oY z(x0CY%btHDjbN-Bag;faTA>Mt74c(JPWPMWE8xwJW+4E$CFBrL*y zXf}s^&y7(|>GA;KOv>lgu2o#B=E53TuPxqNE97VlGPvBQpmJM)=>O;4P3^D-B4iw{>at)tNG=s?lYZd{1y`1<7JY5-XnmPn=lkQ#-<(p@mj zP6c$LQ(V2&Ff7=N4am?HRJtH=f4%H2G#U|ck6n`=JXNaWu4Qm<$xh`pe-VejP1dZ~ zC!>YaHjeEH1cYTEi(Q3ch{PDs&-~^kk3;CJGykU`PTA#6n%an@e>fxX_L{%khj9D ze;uK?9lw<~N7eE|eUxadb{W^zoBCCB`9p+ZD2aen4MhmAQI&=$%xsLhPHJocd?|kc zZd5cwZvVJLF^q&B$9u$&dV-H)YX+WN{M=@(cd-_+u8j4JQ`N6UV9-P5GDnxCgXbr- zjg#$p7_D)j81`u6g--Bh4&#Q6rFGpIk>t5v-Y(HlWuk8{nUtV26-KU)!(ts0l6O5i zZ1&mWF6sP>)&0nX5yvu-OgBnsES-ODb(I%z%bEfWb9MRkAU7|*SjM1T!}{ zon0`pUYOuhd^(&SU57vNiwB<*^i=^YuI6>$Z{Xmql!Kzip0$g2ejcq7JHecQ&QQM( zpd%aTvGja%&?0n&i0ypKg8hF%_<4=$^V5maq+Rl|>M`cXdbpZXjJCzVbvIMY@wy+Z zDZkBlnCy?Fd9KfD2qGE~Js7EPK4v9U1!<#lfHA5WmmFrT>c>%gd-xWwQqC4*ZqV3v zBk7{qj`$MLPL^?WKt_rq_ftN?)UR+>vv3E8m;dt=*B&Ti*m$+80iv!!=iGlDw z4unkW_B*XLYVzxkipcL(av0)w0k`o0KJ>xdcWALR=pGC)4SXg?2cJS30|HkJWOYRZ zNY1kL3&yEZ795Y$iz0s`)nUI^InP&q$%IFPALp8eE(6UyxFk#KjvExYv{X*fQqn5g zyRjr>Mtjze#jrlYM(4D8MA{7MurM?V@FmKp_e?QXZH`~w zUiO!hJUPM6mLi72-sF?yrL_!>8I!*giv`VpjO({EeubHu#e4EL_+b<8h|Ks=ZCY5h zR!?Aty7+Pp@1~%NlaV(&R*JfCRc?sB_mjN>Gg3A0h@esN*TlN(ej}`S&(~(; zjCF;xNa~+2Lrj11CF#$W=0Ce820his+^I#vaVXMD9W$rX$bjk;HhHuP4xMfUyVJ6*iznyLvR9PGNB$G?N>{PegC8hQ= zVDC*s6fB+ku&~;**?qK7+h#&q`5Bu-f{gK9NKpIIQnewd?{!8&3A9wLCnyUtyrbNjJ`Q~9p0RoSS0 z^y6mrC5lzFLVnjU1YQSqXi^uRt9d+LD3y|-YL0(|#_8*Gm4LuHae0)z;E8Q9rsgor zOMzIFPtWL$OpCvYWf%lj$55L($^;5&(b+#5)X~;V@6T2=j0!!HUQ4!Ya>onpsC7wU z3cDMYa3I;eKMC^PfBS?6SFTg~vy{b*&icoRnK#qkjdp8#{cg4PX#M(BOrD}@=&(hV zyiR|n+)tV}_SdNUKZ~5K6V9_*Ei+He*e()XF((T|cQFF#QJitaL$jK$$?i>H2*3I^ zod?S8=1;zTe3$nDLq;^LkDjn@a!a>IF#eTVy8(3x?zt%*3H9b|UWKOiL8@Wek>&dN z20JT4Ui_>O_bQKf#{0Tor^$4!EB57GdV+s#v0prYsQo0sv@LLb^AWYgJ=0vx=)Om^ z{@llIr9#R3>y1&y99ZEe7hR!b+W0WB7OX%)Wg$6}yfI!_EIa^tG()m#naFrvd=y6L z_%&kT5?$#VL-!{j7V_O4wM`I#>d_TvPj;hLzOKx`0O~9Ii+K^Joea7c9L`AOfzf?IIaqzc~dP!iRS5tj`)tt)+N z=VDtmfAZr*wzKh9K_UmOdW$XciDkK?PW^_)Y~st#%2)fLTObvMn%urSbsJ6U4?Yw0 z8a}tG;V1z4edJ}Yq7;w?7Ug#k6!-dBF62$Yo5x9W(!$PpY90(M88tZ^2p@mAyE`EY zw=E`P6_@bLsH4@5BO_@^AZu(_!kNzx{@(by@hMkvKcv)^)UAt%j-@7_9TS@-!O~h= zMqjUF=t+d4!uzHn$q|%aZb-V$BTQN;$|l7%O5%Htj=6tZxmZb99ijIqgUiWs-n@43 zorLqI!61AI#Tw81mktB{H~@bI6+bgXiu(1oQhOb*re@_CQ`y6%_JK*$F2Pb)ngSht z!cRoSUdG>;C7;Qdfs+aqwa@V!tWL~qb=q&-IMB)w)W!IxMhK6#w@MEQ#HzKs6W`+K zj?8hhw2&WmJ*w02QIkf3zqL9DKZzE=HO*jc^OTZXH56v0Qtm_?_>X@w@Z=4^GkH$7 zRekfx$5P&x-V87h$?k=u>Atqqkcn|rZG_=WUoDxtdCQyrn&cUq{k6%~-ESE&EJw$< z7%^~?UBL%L?==G{^~Wp#S&h7?rH@sj!guLsnsoI2<0S{&#R2VU(xf)OEe?6luZ&-h zY=J>TA8ipU?=!b@Oq_o&w_wC^0>*>_%edr-h`xRrr}oe*6AF8Ldh>1jfx->$2_Es> zg-1;%*#IhcM>K6gtmg?M?c9cH{~@bjZM_dkK)&OEEJjKh_FM%x(7Bt zzd&mWs~~;sRFtu^EbR5N*T==g)Mm9@u+qAK1)^p1M_S@C)Xjg~OnXLN>K<;b97cGp zqIuob4LfGGPvME(Z#Qh9q8hAzYwlZi^oT=ngfKth?N1uZNSOR~h*=5Q7zq0gl&E_k zRuYS2eFn)6m(cSAaVql?%+LMRj2UQx_mgsuY_mW3ig`|E8oro(rZjPe3hb537F)-0 zDY|zKh#y(ev!#F64bfk9(Nu6GF|T&t-+Fa%%uBHl_sK9*lxY|h=}tw!ofp&?%Wj@*YxEkFagKaw zcEa}!BHd(XFJ84vh{@4HC{R3(ewtFW1!Bv7he-q-1)tFl~er*LVUwq9X2osI;Bq4-^%XpO+T0hEMxoJ{*=QJPQBFAwt8efud z%EUIuGYo$wHtO)?wI7BT%M^>2wG?!kOsZ+fQ!9*=wQ=?}gFY#~dOx#YFkKCFTBJMn zyx-U7BzzxB_|)rssb#)5GsddLRj80i$55boVjVraH){nlFDw|}DS?D;s|2jeQlCI- zRVhp+7G96}T0cBAY{m>Y096{$o`+n-nv_KX93y}2tPdNy`1P49CMT>vI(vN!r;5#t zWmVO?b`@N7QA3ga^`MHjz*ixLB`e%S`P8k=j6g{z3$6Ce#b;0*G;`jyZ?lilIyoW9 z#uXI|f#JAV#^a(d>6>Zop(=XqgsMVx;4dn&JB>E!K1ph?`K8nOxHr2y{^u~spag-+ zw{m}P^@S4KU7AF@Yp8Ckad_-huh<;1t$!JoY1-u$E6+zehk~)uA-bc9f{CB3lrjsY zw)chiK3|vG?oc#Z98|su2(XHu^MdwcM*~gx&6BBX`U1p)BGYp5q6XYah(HV92E>1} zcgT=R{tO$w0H{GeEXY|CW-S^RiM%Heo&zpcXPH&D~meCb=dKamOzz6TKk}(N@mU4TeYC zq9LU+fTIJ_Co%q72{b=oOaVqxuat;CD;rP zGN7bHM!sy79sFq!TY>4M6_y{!Hav-l`>BR=fJSgG^N{@g8*q5OhFuX>P-FZG1#%qs zn;#)qcTW+8Sq!*qVLyLwl6_CcBjbM}6{S8xZy>C6R~T@5tK6t{Md?$p7@|-pM8er# ztVg}|KFO^9-FBp+{ySXw<)2<0>mT}T33R~?nc4NfQdYzg!led!6S8+3=9BquezVUT zHtgGrm32Qjq%v&d^L0>qd4BKPItc#8cdG2F=&IN@w3B{@p9?{ENW*^>dWhDU zY5-ffHjCK%_qjbHzD*62;H^GYBh$(W=MHZ0T3Juugc}Q3(WoGp4YZa|C=68p_McZsgP=Iz^|hbcN2?8-WnLK| z!L(Nkq&-;7%=*wno@>CaRle09hlixv8z!Sv=tlNlDjhWEFpF%yjsL5U@&! z2~TNZe$M#7e%7KDklosz&1liIsvR*_e=x>5x`>%Su+%sCwiZXN(lxUYBcj!7*$n9@ z=X#+hLG&AvP*xtsgEc2B)6_uK54Z{YW>r>o^KWZ1W!R>=#klf&M)+Y_T!Qtvs%Xq- z!{O-bZ(!>VZ6yr$u8V*9e+eb3!*5cE4}N`iOY-8WxyKv=BU}-u*f$HjZ)7Pc51I4T z`<$ad4~=X-gSp5l$)0zyPdrTE`W9W6M&G4)$lSY6nnsDR9Y@F_qiUY*19?>%+x`I6 z@ooCfUDsm}v5#ot+o~=>w=f#FjI>=d;D4u$C)<8i2aeTJP{x0OIl1J9m!U{`PEABx z?XMwP-FEHN6C|#vJNi^!J?>)6y)Mg61T>Qt{~@j0a_4oWRWFA}_C477P?`ms;SR|3 zt6Czi=@m|9?nAg_>~LWi+G)t0gt%>&2)!fdDL6_(o zHJmTq2S)?hd1y|1NCsc3XF&mcH*<9K-H5r_rSBTZWAh)*YHmU zn+xt4+cCo8Zc%taXSqniZ?VIM+r~?7Z;y{!2_cB0DPSc<$+2Dp&n8T9KQ1`Cwg2?~?|ikiiw#1?dEHCHs}q%Z?RW`{mqN8-bWY%BgiocLyDpihHd;^jk?nN*V@+vy zw^hglRXtlUA7(v1Jku?!K+L?;i^fA;lkSM+03=hrXIhs3_mW#?FErj6c9sVp^GnD*H zd+*7vjTEi{q4!)SD+`ZSyCgHq<{1)2Xw26jQUCG{+oABXI*vNG@`G-ep_#r)^HI&C z!50q(L0{2|uhefC@a>1dwG?nwinf17c;3U>I7$Zi_qnR$V)=eBH7pjtQ;I8cn!DxP z(q5GvVHZA9YORae1O}L@8CM7LR#GENC{4n>Z;>`vXNg9N?foqikL{k)LcdV7fM1=M8DsB^2TRGuuJQbj`G}$l96Jb!7{3L(;=Q3m0A_1#V zsy4)%rLcA4`vf8U<#)YacZ0_g=e*}wJvy~+kMH`={?mH(i?ZO*Mn%CM%n(kbj$!&xTGl8n`&$iiT-_$?aVM|{Wz{V)o(*a6vBJb zYy3l5iP-_B25)2inEdHHGJ{P+-fh0ynf$5!84csAxhP$JCA2u_c2NTJ9cnJ~Amw7n zodBt@az=0phf$ImgrBM^*z)}Z!@c%g;d^<8$)Qe>E*d)QPv(C%ZnEi~^uh1S@1%=S z0(BKOWZc(f&pQP5bR*rS=QqNMFF#=6@37qbJX zrIwHN1f@UXqRym3;ZE*&en}%1;ePK>RtPPCSC%c&YsgHdlkw?6*b*%h*OFqxS0{XIMB9jcV3Ye4qL6zO2j*mn`` z9?Wv?J$mhS!jOE88?o8&*f4J&s=&vOnYpadBqo#!2igWKY;4eQ22>=9fJ|v|DFiE< zU&$TeXiq3W#<$mbicxlW=&pIf1i-jzdnC)Q6&4q{A`zW^r*z`hL!*a zRJ9yd2|c;K0^#NAsc7s1)(OUMR9fllhw%jE7%#?cBu!|Qw12zSby8uTIW52r^RFZl zRP`dl){;pO=1<(`^w-^Ua0y+ZvKs&eat@@$nR6uLPTmyO_!8zzHyUvAYt?ADb8p?F zp?$sgge-r+lBu-Pv3G_`U1IZ7%}r^o($traU5H8Cp1I^9TKqs`a&>JNz0m(MG)r3~ z*LFzaqLB^uN^jzb3^dWVm70YgQTrK;*^S$R0Q`mf6*f!y4hbSXoH|tJ%-z_{gv9gk z2Ir=K1pMfC_~VDZrfVg&hs>j#TIs!Bc_acj}4+uYyF zyRo(4AQ2hrE*;0h=-wjtlWPz`f%{Pt^_!?34m|5!7Ds9@=MOg$j)-z`v3pnB8@%f( z{!{a5FJ*#dK29~!5y$H&Bb7TOkd%zBD1Q{kfk=Im4Ie_30oJ`D_Lm4+{XkXsRqbF@ z$haC@!CY=CfKs!J0)e`*D$>>6OhJyj@U|{%f%^{q}r%56?T2!ZD&D|C9$O3o!w?Y=CO}sqpK`Hu!%I zCa=%FyL|Y4=dJuk1ygOlsJ1_1^H{eB0=buVw4+SA!1Xmtw22?%5+@vHg-UTC!tj|C zZ|a`x45Xj5yGg#2-|^CX!@4CkU{&0R4rzN1>AbtS#>u(<5d5WMk^lGL=XS<&H1E}3 zpik>9@#My|-IFMwa|G9kGtxXlg5rO!V(K$*iJD2Lk#I4!a`mj7AvBR;;ltgedljpx zHS6l=G~vPASLT4Fu1)Cko^^#{gK;}tYpq%vR_(-?3p(*0=FFvL?Q6&1z0r)8DB7%BDwL_eFsG4Ifox}tin+iD(Q+b_@;jzrJ_oZ z49IN(zLYUv7t$^1TNZJ8LWbj)2PuQQx2G$;nu}LsrBIzWBd|}@f8-TZf)d2q&_*y9 z2R0{vNqn!CwUwyX^r^VVPQCtI+TB9O{WIk#eCOGd^v2!IKFZsW5=}I5=sqMP#<)8s zr7B~Rr*|3q=ZrVL^Tj)f5@&y$8GeINj(&+CTQ4Vh1>%GJDjCP7oe7V^WEJM_A9;QDbmvg;RrQq}*rk?$kFT&zh98gok!^ooDa9Fg(gUWy zOsy+0xfTfpe%DSF@~__=dgQ+g{+x2@iW7T>39rmHAE;{}n$A;1)1dE*g{x^|$JhhM zxl*}5eA>-F+)*1$J=nD?ICa=_gwp=2b9`kW*>AG2f;l)%@i1iAG#og!ES(lVHg{`+ z$)fYcp;la!0Mnff1($y?UMU0BqQP_lecNT?)A=N^B21(s9Ok-TpkK+How)Ly`F0G) zx4;8Nu?+(=PM1lBAF1dmT{UQD0>i-zozC#hvhK3qU8AwFNjoE7Z8gPUL75?<_Z7$0 zr$G~69xvX0BI6V=e5PdKEnQPhrE8Dw6i1pF<&5iT^5so+MVNm}H^Z}QtxHOhaa*q} zpYs+0LVqJ*4<{hijGi5Riu#d8m!??r9*@phILi?6{PUIr^lR5EitQp4N^Lfs)Y8MM zwk&~b-$BJG@Aor+Wa#$Id>G_*7esltWwoA7721XpPNW#uP<3tOEieTrlUO-Fc0}jX zipZstxsks^HN1bQs{P>P@#KrrTlI~evN-MJknjudbu0UcXz$7K%9Mc%5oQzgDZXiC zg+um}jF1Kf*w*sUYo}z{e*OV#ET0Sc4%K|DY~=Zvfy&(six=_7(-@`qKse@WQJC5g zLNAjCy=4>W45>qsX?2Gb zkv^U0-4$Z;ql+<=iMn!GnFcw= z>DGuwn81HL%*$d9-Lab~+UfpqOwuW-EyDlD807X9vay$)Th7tfWYZa$WzMZ6VVfZo1u*n&WXvsA9=XJpwcHXy}<+Yc7eE|{B6!J)bxMLuHga*x>Lo;?~%ZZm*G;j6)5L@ zux#Huk<+!wWgsTVyqT{q3QROkGsQFE8)=8&O|xK;jN6w1M`8I3dqllRgUp_u%tACv07og~k~3jh6lObG zM*nPfS9dS(<&6N-KG=I~v$7wyiAj#ae?uc6Q$Y%|F zJ*UV%aX5_y=Bjz7`=JkmCI1JynOH6gWp0<0wgeCXH<$5H1QoZ)E(26012s1^moYa1 z6Sp!{0~H?vH8+gh;)M>NOwzvq|zacAYCFzEA>u){r|pm-uLXB zZTEHeb6@wfV4&5~<&d_4S%VZ{P&fw|U zx>a>HVfg*kh>g6-_#h&+G21uz3y06fCNg6zND0n$z&S1`~D3Q)I# z+k>1C8G%+1fG!LO2Eo1m6M|XH9u9XF;o|c2^yIX1a^r-#+DWjm13bZhaC?9b$PMJ` z0kQ%7Y8jwm>P{$Z^4hXFg_&%*)maPs^e?oaPufxyt;&Q?Gm%*ojb>J5h40c^n#5I|EwjT7z# zX9rk8ZGIVALEK;ne=84vD=@^$8e#CebSr>@v^KyB(cz!{xdC0l&TuzQH!$Q^k6gdP zAdXocY9kACasol&ZdkwSlLNbgfQWPV=K6EEj!>8<)b}sR77Vqq{ndtzyEB(Q6zt*- zQkMJE1_5FHgV}-L0Df*^0Res<0LTRZ@&ej({Ys$c?F{;@{0$?2dhqvkhB*Ul5p96{ z!L}g83zn~&l?Mm_cXbE(`~F+;UkQtc2VesR!U5JGJ1`XMpXdk}Wc!DVn7=F73t+;H zpdSx_``6>|cV-BN*}$L>?|;mHkC;or=((zvA={rV|E-jffq4OZIe3Ku9Kr(J03IG5 z0f3+&KfwRLakQ*|z<<{9FJEP-Ees(1N4bb|`m1D*KRLks=Yp^R{u@gJhF~rT!2A!< zO}Y8Gfruxb|7W`YcKQEf`L8JdSEB!KMGEc^$ZtLK9|r#)y_FLf;{B%ug1PQ+#1^Q- z5W4{VU(@HHKUP;AWCM10`d_Uw+zPP`(oj1Dqd9nFj z7Jn&uf9af^U144z7k2~){=yNttlSWz0J}LN=wbh_V2BE>tz7>F2>u3atp9Nq0&oGr zu0ROL8RG8tk0rtokp%2v1pz@3B>lStM3)f65&yRU1n2~YfBwsz7Xi3K;9zIO!T*Kv zBf5ry?0$bhxIwJk{#7S{%NbEU%m#5kBHBPO^=}_U1MX1puTAlF=u60Jm8}&!>!x`t^_}Z(XXDUv) z$XMD`k`AY7f6bS^n4I;aVEuMA=4JXmJ9s5kDHo0;-@hSq%#ru;$LV`J5VZ}A+-_Vj zEouY*C_$SF*U|*lgemFy>`k~}58qDJcEN3@+m5mD0l*1Rbb&{kN&$Z*ozr=M{L+Y) zehofkWQrI2#MLC-T~Aqm{1*8oIQCMeJ%;Ru_l8Mqf5y<~&mXb}`qTJM@>P4Q1u9<< zkP-T*(B=#$4w4ZiWUIV$Lt>QSzmP3WiKingbb7(Kf?_GSay^|t(3UXB=iX?iAshTi zGhn32y&lFtE1uJ{azbgbnWguG3!Ah#G0L93CXHT(q1p!NVkrHnnh%oOi%LulK&$Uu zx>uiue-)Qp8mS>KHpQR^gz}khPmo?&zRFDC;WbMUhX@URc`GBJ1)+8xwtc>MBbEXn zAZH-ZQby6Bby#yBe#*{y{dC<3?@J^Zk z;uF3BtGocbR&@^6Wx*1c6E_{GlbeI8)z+yfe`+ixJU>AfXTXP>r-whMr?!KXu7PPJ z5-uGyjfX?v_^p(xYOz9K8?fC3j5)Zdkk>q3SRmh^0*Lp7`3^!IZM&rPTQI0`-`{dPq@ZkS?qcQr;BD-zxig zfGA4eWWY+T{j3?owP(b(>Fmd29+OMaXPd#!=DUp=N6yz}E;4d}C%8=W;lg|ymFhu^ z!oH}FBMk!Ou+N2_U|UTzhVafpIg#vbf19v2A(E<##Q6s%^e>yE@#}voIv-#3Qhp|A zt)=8r8T0{Oq7;TG2wi(<@hyMhGSn3K;4Ka7s{Iyluw(Yzg+eYwy#+1O=-F!V>5FFk ze51ITk$gif`D3+P-VF=hmPeH>r7)!wUo0LHuPHLZkNZqr?e1iLZ7}Ssi=WRme`u(5 zGUby`iVibc;--<$t{Iaz(jhbo_r#`wYWT=H_B>V83OUx_iz>(c*&-m=vR7t+qQa#f zW{faO58D}7D4Xp#X}0>oAx*viB}9@E$hs0q_pQ=AP^V(stjy`fCf+A-ahPhE=Etd6 zTIEMEb<=g%JEZ42_;(iY>F1&ue_bQr(+Az9n4gxxSx1TqrXT6Q$@cZzI6v3+x8mDU zD1o4)be;-%p;l0!7fitum7YtN^i-~k*3&K;tW4Zt%eD>?h8n=?)0RA1bG{}@_S7fS zh$d&(iVrVKu!jw76qk3J(v|;cO35Ud)H!_Up(C3zUx=EmEoYBKhBGZ?f5DzJNIaa4 z+u`_x_?5LSWJg;0O3NI%tUkkYA(NoUM){+Xk0Ueik}uTjI-WZEWAInqA$=|7dRt%B zvC>gD^6=B8eUbD;Y(k9z6w{}rPXp1IGSOazix8U^l6a!8;W|-pRf}e>xK5q$5Pi^;nBPPu821aE@TDS;Um+9*e$zi;H^z(=Xv z=~T9tl$l_h2e+j_t1)Nj$EA&i=`S9!Fk$T~HU4S`?)*-F7 z^Cjl{c#6vwSAom+_o9XM#;Lnq1DhW6)WVLBz42p-8{((cx#jtaaQF4WQ5rQd$nB68pHiREKQto+mY-9j6t zir%d*3XYbhf5#tqk+>-O0Sw<`{Ua8-C}QT9Ngg{5hgTclkoV=Q;Rua)pDnxs4xcuT z!w46UE26X1lnOt!sxF_MHs!FSpQF3vu+1$2jl5I(N81W>vmRg(Sg4Q0+*)!-)uVGi zF+jVeU^>elubsFkh3l4lEWovq{9J2Dgi631Y7`pYe|PDq@x0Nf`%qzCY*)s=K6THr zeyJCIRp*d-ac10{cb)-{8(I41_N!A^8&b>|?jFR?DHJyS;cMwLGVQHaqROy5@7Dx= zNpXuFG*6D$0^$pDsr!=U8-cN(>K0HE)dvpdxGFEGh!5cN;V3sspv)HwTCxp$9va_v z=oAI~e;*fp#r}q#n`73ezm_Pu2h;=4IB;7y$l^$G+sKAJ<|FA|j-z>eE-15Eye-7!a9aFl^GeOb|_Hr9j&!-C4iehbe z0|J%C710V9r9)-|zQ_bH6HI^${l&v#7!~VbnsCg3>-dcF%RHDvwf>>%1%a1CUMnXiJKE?Kn>A0(Y~AxhE<;bX_`&M_X1dKs;`-B znFReEiUOvO9qmLU>sweW()2@z=uaFPf7ii>qlKfDuoI!UepOFxyU(wjvsrn}32;I< zXQLxukM$hXK2|e`3OM_4e{y*b0ZTR#SX66gltQkr-^x6k#1*QKPa& z9(_gBE1bw^mFOVKM&(P?#vOsle=@NsooLrvqsqD;Y^d6UykyYC6c#81C0q|~Qq zKlly84s0j&qxW63g8eUVru@Y3V=@unXL|TG{j_?~cHJ_CzZX--`fqL}f3adwvDrCG z2eH?%zZds&DCgzJm;D$bm~}q$IPoa8x-o5@5-*T*k4vG1g5qP#Fn4|`Tqk?2H5!?d zj?xqK*q)rM3r8#H4QO-L$@%1)N(8Jys-|{5HTd4*cwc%dkgs@Mn`o~~hT7mPfc{um zKEIVX-a#DerI{q4eD}4lf9Jz$3tWD_%R+^3cGF$;&tA)9>~3a#l`biNvew~JH-0>f zOS9U&GWo0#J(@bAAb#Q-PnDJ}=_kyJQ}$Wi{#=2xjrNC>Z(IwCO%gu8_pto(xV^FV z`W4ApSD@FWBK>_XMOfkfIH!MJ%h;olt;j(*Offg@zNMnhp=B!ssPuh~&r*(`#E zMEwdkut_(6``##Ze*xM^9`XteEhBD*v4qt;mTEA8=>{l;gu709!}#u_pV;bHe?i)1 zC-o%xVa=2K{e?2NWFSsuP?K0*fH#xVS2wW?{k>peXIhI+5-NE~F z&q+^Yu(o4Q4$r>uain*2q&ItZP)&q-476>|`&o_GCX4z!RqAB;^qTMWMVd1WM7#P; zlJ<5+6sq-Fe+dzn^XY@e(>IiQNiLlVlR~H#cQexXiCxeG0_{)e_xVn$vA&ExqGB^$ zIcUL7CmSYU!I5#|hJ)<4- zUunOk|4CmbPDuVGWG-8B-$sfL$bx6aS4N(Svp+*QgT%n9?yp4IOP;Y;m?J7{^L8!$ z;YU~J4zd~^LWkR21$=V6u1H|G8x=g|P?70!UDh z5g!AwtUCWDYB@u+vn@S=p(N5!^=8dTiOQNMf2nc3O=-}#*)w!d$J}T#lMII)>kYj^ z$){8$xrGx0a!KbCbnnTu7DBBR1_kl9keVFw&o1Y4KT@g% zBOiq3X(cfV!r{2c7w(EaqN;Y!7EdQ%QH#EFXQA7x7yY@co08h&(J_2{b1oZDFWIFM z+QyZrKqsKjS;H-{gNA&@wydf>9mY*YH#A*7DSiFw_gCVzxF{MmyqpexU`AKGMP>I5m0)zezFSCU)okg2_s-T(UlO`rZj3Dd zjiRgFx;|PT9{&h^Ttr$7qhC#2V^=grK+0#uvdwv+oV0!HylOOckF8Z^2NHO3=*B7l z`}=r4^!s6!*_c_sHuA`G(s0fBe+2SKCmhb0x3QJSm^vn%BopZ{4KatO+ZcCDAv=BT zJe36VINhTDG`Pp%rs{#OfwRma^Psp|$&2t88wAD~&!|-+?IKW1`*#a^N_TJxq++u5 zDv|*+OjZ|k3Li@W zFvW&Qm`z@=_E=*R4I{%Qe@4i+-|QsDspU0S1lgm3?|3!~kFmLzT_RB5ydBrBLMpFmaQ1QOPDSOIlOvbZo zBgs_q?n*VK3K-NAltWhbu;E3G^B!oSFJ?^1Tez$@CVNlR4HSrmxcTqL*c_F&c%KVP z*rxiIz60P*T=g}bfAPU1n#%86^Bl@v6!rSi6*p|3eT$#P${qY@LNu)wZJ&!AYxIPu zo@E}!FX%|LdYAN+ArM_D(G-cj!fVX$%&pqZ>#$HMM@&H#e`7OZ{^97Meet6fV}S|M za3m-8l}USDj_1Zt;&4#LR7jcL)m#pVmuxP3YHYo(w}O<3e?-w=Y4WdXZH9UFT1-UA zb4SyvuJA=o4AYr!P5!WRxfABDwUr-W7Imf*zZ+HjCL#%G1oY$RK05$7DY+;2?%af8oa-wK=XdpGO7e;JRj($5b_C z6Ym3$$5=i;xAdAjcR$d8CtVu|mXyWtf{Z~I&GnW|(`mYEC= z-*=jEEj606KY8(VN_rY_y*}(7V9-Qr_hX!S%GgaLthe9l-nQjr(an`XvaF9Ud_-Gn z)0MqvOy%buz8~I?a&|3oRDb+V3Qej9#Mu3Ye=j8+(mNCd*S*~CW1tE?WZC6%))~B7 zS?DgKBjs&$$4Zw6CGuaf^)1x66&s&0kz)|nwiKVIf7!8))UG2xJFd}%Jjr$FzW~IO zk^7)~kRjo%1g!@!a1yBcm}(H_MThO&Y+Mq{@1wJCfDCx2@Ws_hU<53L9KkBUL4z*^ ze(kW`LqFY{lj((AFdPn7(+E2Xbf2Y*t zWDJKTe~Dk&7aS_@TusQ;&KZ2yxnK>JSk5-qEGVXa6BeCh(`utI(**=#(bJWue?Rg& zCa|Yg(e}WQVIntujZ!~K$S@+%vsuTtTdl%^E*)Y=e33knz_N}^-lBw3Aa*aRrf^A3 zxRKWaEO@(;6u-PYqi*{K%;1k!jN|mI*Oxj)>Xa(Wj>Z6te`zv9uG58`RVMCtie*#t@R}bD) zXROp4iq}ADT2O35g15I_`iP3bJVNfDn&K1|a&FJ3%v0R3J!{$=orB!2U$;|_CA(aK zM$6cyn^T?SxxnrQcPm)Luv~p)OT|(|BRc|%Y18m0d#h#)oWPWbE z;2ym(Zq}cHqzS#A-!53Ve-GM_*27U|F;}BST`E}liB5Uv4L*OH^pN67ny#+#oy{Uo*H1hXb%A8}lGY{bPr4*!*M!yFq1Sae{~eSg~5o@|Jp{8 ztr6KGUeLr&ysyJEW-}%{gP)Nk*RLz^rHgRoWdMrU%hgHcAk+A$sRQrIeiaRqhtCr0 zN5A;mR^S;M)bTZaWOa#FSiAC2x^A7eQ`kh8yR^Po{+O_gIqDxztD$IBhuvG*+Cn5? zb}WsH(VCeuXD>9gf8U}?Wf`uxF;0Y;RTX--9@N;3iq+rzbkKSz#bsE4K7sG(w+ zkJHV)r}DCN5qA?vwA=2(`RvqzZ`#E2Ol5udE6IDi;Zv&^nDI52y2`rA+qlmPXO$)bF7w@Row!04811wP`S_vdCQrQ2A0AN$ zM5;zJ2!Oh=0#}F!_#^q2s^UMsj}wJD+LL1oFlZ#6-+H1w2A1v>VFVxrqN+k!KaQ)D zTktk*3%}p+f1Fqlc}z>Hnr~)sv~}MpR36_YfS$h5i`k|dDn~@OvVo7G7ZYGNF48O6 zY4!xNCfT(nV}(|cnru3%qkd4aq3>})RDJY*ra*rBJfB4(7)waOg2lA;>CG1Zv=`69 z2bFNArXFIFJKG1ng6Bt0Z~W4s$Fd8>QI5*KB-7+cf3lkfyFyJAeQwrDZ7Wo?vs(*M zD8wh>pUX-nRWS&xBBuoRib zf8b-Y<2bCx*vMv4oCH2RscVA{4=AAz+^p%ay;4+?WHB)|-Y^-dcL;)rwq=WM>z3f| zHC`lbNfK)ock>N0#8I?`%yw1{Bu0gJ0Xg7Po9NfnFXAs$lWq2p zu$C-|E3QMcv3E;XleA(Tnm&CUp8T1EEOHr_tUqrU50*oJ#+|=4{@O+V6H-NNKh`%< zn$dh`ZAr@s)%?6$%d$$Q4TZYt5i)s_om>A}8MwUPsbfV6r>%#H(e;8KI z#gn6@SX7J0O794)605{KOpVjEGkb!t*AD1wpB&FQhD684MavnAJ;yh2t9tXJc|t^9 zlk-1U;84 z_G;b7LZfEke%F%I@nwzGghq+9f5cj1dtH1RW&#v%C-chkT50)^RNsx%y}enL>)$xG zOy!cYhp$9D-GMcY<(+wE+R{`k7q)5c9MfeqJ7F6r_RbSBhJ;!o5A?ks(zj+o}bWp%u)aOP&u5k|2K@~~^bawh`cBJoo zhr!1urcW{sDT(7i)*48Bjx?cW{U6p_8PCtv6_?`Yyq+*8f2CPdPVuJA znSs3=44kadYTbF)n1o&)LHDzPOe9=YZ%HE>pZPmwKR?WJR{8AwX6~>JVsEUg_*7!! zr9w!3?A->}O1dc8e^eKrI*aMyTjfWW(MO}?`xE}ef1`l)LWuiOCTD1f3h7i- zzH<|`5*?m>i{afH4ikyf(MZB`ib_#`>0+Elz9ZqdgNj9ho}U%fcI|fB`8^o(3^kaQIk@!tV5(bc+O(aB=F81d(67R(T%{MRbGfus zOU)f#DD};Ve*)$e$j`@XKUSkf@RD>Y{${|0wzkcmdRen;m56_m>&@6wSxf5a&s+SL zd)MQltQcGdP`AF`ek2}NA6?6Mkq~;_b8nBY@?;kaFve-!HlbHnkT^N62)^9Ow*i%)gX zz13#$o~f@$bQWT%cDP=gsi1voFN`DD1JN43LA~kV*QmmEESIW0jCjJYll8Q*d4XSm z-x{BI%v-zE-rPm8nu?2$9c3HF*Z!hA$y7+LLy29sn$q`P+#JNI^CBfjoR{F!Ek;h{ zi`FO4f8V`&Sg7YS!d+qCV!Ke>^y8rQ^n2?=0G83Yhq-f>pW2l+VE{fQm_IRml0lNw z5$>S_4GhZKV{f_~2{!#~fjg*+&))gEZ$a&6am;f2Wq20#ayEoehjjlbfk!%-V)K>$ z?e$_)yuEKC&&$E>cX7!!YrM1GIie^~4`1A4e?Rt~xJ+=T`djWPxH37d6qe8%qm0}y zEyDviiS$uG&d#}tokWM0oS*2hQyO1LS0Z_LQJxz1WYnZLgiX>kNG-KKKhw)yFwTIo zIx6pK3x_OU-pgoDuIGmq|4xsNVyyN9y|zWAJc+67WLG6Qs=nu;q!pvW^W=SfcfvwH zS6DC@A`7%ezMX(fuNP7D0~pc-IlP#=QI8Dc22onYxQ06vt4tMKik<;Sn<4-;*d5`F5TMXbDa!=VyAXoh#02X&imyxyv69G4uF?sp6%scvH3~0GWo~D5Xfhx%Ff=wYmr=a|6$CLg zHZhY?0VjWrwFOk0=@u@GI~1pQa4GKY?poXl5F`l%r#KXc;?@>-_fi~+dvPsRiWR5D z3YX5znVEC`f3160)=Iu-?`PZlKKly;jg~IEv@OIMr~m=GvvYHBi2!8P^_01J09;(W z99&#H7z_-0Aa`frf9x0xFM)0_5CkmpFNUle(8_=P$tGvz{zO!VfB`BV&H!#+0Jne$ zx1b0Y7l4P0OZY!Th?@vN&dL*H3sC0(s6fC#7zTqZ1nT1kvUhNQs`H;m0J9AXfLmBt zknN9ffV2zH4P;{l2B=%PI{;mtD%w~%19TxaAfUU?f2Cj+b8vTuig0pzd3kYIxxhFe zZuWl?ENlQTkh=pw2M7bYc>-+#zefgWSh)cI8jS;k0ifpqg8k{xh1j`!S-AlLPX=d@ z4G;`_3h@Bj0^I;l)d9N7Y5+|r5d0@u?N0(5;IG30aC30~o$jyb--$rrKZ31nY#=UB zE3gj;Y!9#lIRgQj3Thng-tKGwE3oZvqLqI$4Du9jF1cocdsps|Qe7?k~=h3F9A|J3+R9O zK!JZaxqq9VX7KleLZAS_$ip5(_3;QIaf`^oG{VYU#kv(G>DKdzWlQBzMxOZLTI zBmeD`k%4#v{MdN~0PH;c+yHKFE?$3tAU_wt|G)ESS%LoQgX^DIWw0FtApB>$Pv`WX zmOcN{0P|l9!UFj3TpExk5KdSS?+&?{Qs%^cb5OF(Eqn11rKNE zKm5#p68=AaD;JQn&tHru<$Ab3ZGk%EX&1o%OEm!gxw`5=Tabs#|9X|(t)73jK^koT zq-b_-J`OIvKkXox0>~R^s|9kmarjd;f7HGPf=W4|KodFG8?C- zw+QS>nt!-}PdoJAb>+b}5Zm9&#=|cFuyS*=^1`3ywZD-N7l2diAN0i3 z`x^-h12}E|M%+*GtVtpnrLvLLL4EpQtsVUG1-?bo%^^>RSqYpOwC6e zSO^nwF{salgm|$K!aAhic2vvMNzcr7D$~Qxr6#^7Q!4D=WcH8p@NW$)m$SixHZ#c& z4zQuBmv0XwGWL1}$W$$-05c3bz4FiR-Y|z;wuc2XTf@e5#Xf)N=p=BcB?sEJ9e4%o zD8C7TD)9=vi2as+mUL|rx?&}}HIduNQo|3u6yyGUgU{rXT>m-WSe@qJBHR8Hu0nOb z)&V8+ZOh>nY@aQdt%y}=`9qk7KzVjY*iTN4)^*8+b?2ek1d*OI=|_*XlNOhKX7u#! zr~{#{CPJHh;vau<-*p98;38@i5YB|UOx}e71@i5&yFQnEqRE%b3i=k4Wg?P>Jl7ew zf~@DvmizUYOq^?>!p2TCo>PV_YJqZZ>oMOx}j@SelO{<0`~exsgJ$B`!L zOTOq;zZn-Pn&QO*m2mn4X#fhXjs$|7=%wC}cuP`o;E zmc8n&5XFBU2nQeMPogXNU=Q3fbZGgxZGAAsq`{OaAY={+iX;1u{UtFcRBtWJv4Hlc z1=1o}Bc?|!FR^Z^N$LBqHN4g4im`qj?>f*7VxG6h6-VB{9B4JNkB~x#cZjGBj_Yom z8mZ}&wXa?azhAN?FFStU;JpDYB^@@xQfW(0Rr!BN0{QPYxG(TSED)Zy%Q>9a5_Zw61nEy`_{M4C=8{klcnVG_kWccieJEC**bb454d zxx(3^S{WYZT2fHi_xUXf9maRd&Iu_rqJ7H6fqq2pn;CJr!eB>W6>3 znWwd@AyTpNc(laMt`x$<_%#G-mci4VF|Se+b)GlV8?E@PSr&jX2&N*H{uNPTy+3GFT{;DxRxT zV>4{?z5dd;L56WD7pv`9Vze^D-6wxuSeRDVt0q6k~SKY|m!%TzaXO;w@xDGU531`?gNUo*PNg;6~+2l3Z!U(l=X1T3xED zM8hRZkF9-sGUqUhouFw0;V$Wj8aWJmRw~s;v6L&0@#;xW^4f@rI#F)|Oz&y4 z2Tnf*5@FQS3ct>sLux}ZkP$5RGcxuFlV~y<5KnbjX%1<6M_NPIwYt!hG@dO0XQ zAw+8L)OxOKzGplUGH#2PTkqYD^eqT2-uQy*6!!oNvnNjiO=gA@Y@dJCs8mMJ&7^?D zKqKba5#%z80I8pJS2sVN$l(pA6j5Hvu_$sjTe99KY79WHE_uEa)LW}d{SiWzU`uuF zX`dWaaPQxP(LTT0wN{K0AZ$4{a*(^=G!b@$-iWjNa2O@k+m@3eil46ERr`S8$jy*2 z*(|0Juo;37mJgnUcOrkYdkK1-KKy`XSoJ1g!Z@ti1eeU2s_DC!XIcIN=WU9FuidoesL3l=3kH z{9`iSlg%SM{}{e@lH}TFXpT|3MDe5!AG;=&9GDRO@c8yjye>+HzlBN^xtf+fHr~Om zGRf^R*^DNxCRBeB8*ajpO`R{8*+Xo*kMOwIo1LH(-YP|3uV%oG0b)(mt<3kaw;aHg^ zFpaBL=2CHxSZB%74xOzvNi?IaLmaxpT6}|py^Nw>A{$CUJ-OYV`fX+Wb;?!436=iQ z9hCZh;wpFo$75g=^P^MuoL@N-c>G!9o(3Y5J+XrW3{ZdKuR)fUd~JWv`asa&-k!5y zTEZFONX~ZvZH{8AcFhC!*#oGWMI9TlM32DyrT7yq0r&5l&qOt$Yl8{`%M2 zdo2bmN!h8fA4C}x=)!A(J<=~Pp}sj6o5PCueab-$#)dZ4Dj0`VZj{~w1jl#wMjCnd zZg!0}USxke0qIp8p)%!?Xfk=FD2$Bm(?yG5^A8m{G0@Mqhm8b;a+#z92eCm37d75vjkp(&?gKQnvd@@2VX32LsGveM4b@LzYQ6`2kzRLtk0 zbUy6(whfpp>r`xFukaz8g;R-FhrUK#W!aOr%uj!v7#)BAEw0o^nMUPjksVm%xj}*1 zTz|UL1X!7_H^z~6KU(IsjAyXt(sJKayNAM0MGaAQeB4>*G1ZBnR1h<4#@Rn#NwFEi zy)&Zb`*rZ$tDRHb7v9#$A=@xARv>S#gvi(eB4KVUu7URQGWAlR2Phf$EzAb zStftdBSN$L)nUe&3(L&t2!jyJ!Iw#x=NF?SPL(c<8_~N#Ei&7&Qn^7BliA~p^9GZN zWSo4MM&_D#F@3mQr&yL?gw8^VZLm(7yhWU|00Jeh!qHD7a09r-jR7h+gL0m_>fgce zs#{+!Zl~}r#m#t*bDymutd9;^qnI0EdsTm_cO`)%LN2wAv`3yc4UUW@J6sUi_ zHoFg9?!UY!n#7ngjc!WXr?S8Pc0kXQnM=QThv2eD(v2B{k>J`)a#H;Pajihw)i$)i zqyJmxD1Wug+4p|D?r)KA#|JA^tfpCrKX-jW7vC{q3b(^9)A4_|Yj*uw3_)Y7BbV4W zVJdiTfrainmut)DX?JYIyDwGA&$2zT!Z!Gr+`D4Bg8|$1^sXS<^gH{jS@~*FGUcg_ zvF04+qQ{=Mn*&uiLQznEtjPMwk-mlw7IRv+gVN96M{cLxbu9>9@~R>`2&aG2zCEHZ zj?Q~ymBQrmuB3zG#D6$knCf=hsIG8-C2bNRAcGwwbAKD1a>e@M(6)0kDA z5R_^W%XNVm_Cl10cG0G5$f$o=BAbM%Mnf1E_HNJ~Z+xy~y6~myz*qQibo^vTi=G5{ zxc)x*>*YAy@WqVWRCoFhoHH{AgoDRw%Sp4=+^Eljn%mz0$cO4HGBO|^HyC-P)$P{2 ze}(g*fwvM%&1C6OV{=@gLv7LwC?Ec0uKD#5DD8_FMyj4a*Q~ciIJ19lEGCjaOvP5t zkw^bc_ssoNyj0gwVbOwg3Mvn`wd*^%?iS)-E%OsHc%ktDXAp@E+sEAUe36xRTRo)> z2rAA*?(@zqu$Kv&gyP9!y^(Uk#w5J%m|F=E6;0Yf@Yw%a#l=q8NlMYK?aJFGD@i*z zS_9MSm+=fII9vGw%t?Q+Hov_J3z)B9$xO>J2Cm$sv5h7LcA6w$_^{R>OHQseB*}k% z-^6J#Y^?FE**3XY-i9{j?Y>{x$4vweUN{x-$@EEn8r&s+EPSsMmB-b0GPOcclYmTH zWM*2ZIvM$-YH6`*sw3XBsEq749+#sd($*>hg;f`gqn;?9iE>X7kAsUEG*mQg>V5(jipc1MT0%H+qtg^OLNYAoy_W0n`82w}X%&}<&L`Zal! zxXW?((lA*{(`J6fGB>}JF>$~`2BnJ3{r-K7W`e!W12~cW%sL5nz{2)o*l$nYWjUBB z16(Z25*6sY!S;WthVgl&T6E4kOno#Zg#1$vav-R;rR5{Onh zttQhUBtoNI?W-DoCrM)3!MP;_XuXV!a1&gR*%e>)cm5^6a6iR*?O4mr(c!I}t>SAQ zWi{}({1RV$&OD8^5`?lyA+RNjN|^9Tp$GXQ675{&{^Eb4RV6uO9@8>ay04@JkUGJ2 zhd(nc)8Ifcw8w|v30gAbx~#+Jp!3bC(mz?a_oPc2T#DRXl6BaQCrq?kh9r3od?nTy zG}j6)PYN3paA8w*Uosz)8ORv1xaS2~Vz%HGcUR;cOnCfqQ~LaCzE+W`xFz{a`z<5g zeN~6tCy#$FnAmhZ;hj#S!M5`S8hLZNO*zWFw+!-yv7{R4elNr$eqQ!z{_$}^7E!mf~{I0;ZK>u+Id_D(=g90hGaI&nKAyXtYi0>8I(CFehTDgdo zj39rVs$leJJsx-m{^vm|?V(UZ(9kG%&ilQHRdy7=T#fD1bK=+(xSDH%DrGy6&j2#`E>q#`ays9FfJFZQhmshN!_qzXpdNfuXd`y6FKDJ z=|7f<;Io=0OGCEo(WgoHKsgkaB4IyrQDuA;aghJ))oh&(8x0G0vu|pDC7uc*t{_k;p!0mt5sxJBOW%X%C?~3z(cP! z!rIj&9$V2x$}SQ-{mIjn5)%=PgrnyI0nr%QngVj7EvQ_eHETBQTBs{>p?T%><7ky|~} z%N7L$3Ow*;kr3j|+`vZUVHZv;4ozg};7@XuFboMz4ddKM42%*hp~_6!J$`sF0Nr?H zX-dVG25B>KV`Xpf-a1ymQhabWo(f~!MTGZeIngLhl?B(w!LGr+Xxw3?=%<$SvyinF z8>V($YJC!Rq{LV0iVZzNL&<-yI0tB{+Pc*#RjcBhdXxbODVb#5ZXolZX+KA5Ik7cS zXh>soc%Scsqx3LcqIXHH=)vBrs?%q5mQnpobsjtKBJ-u?PmvWf>nYxYG5NmwggJzN z$(t<1Wu;k+HPR0)pURN;EfPTx}xs0 z_q<6xZ>vTVVuPZ7XskEc8nQL|k@HD~GU}IclnrtdIWxZ3>QKd8nXlCLb6H@zkFdE$ z3aKI8WblBIxsebEOn#)Ry`Uk=$q$*+_r&1XXP1g;GYF?V8?TqQb^T}t|FSsUL8pqt z&UURX9%Apt>rLvs5_^9i^YgYP{>YUW*5ACbN@wM>51)El4*I^xhgRp}r6w0r#b^XS zHp?gVl{>!g#EZ3G^I`RKS3fG7_{SIRxT~EWBfqOL7n^XXe5i8g&Mmj{*2NB zC8LKbmQoYgEyDJ;yDL|QUI6jE zey4|M)SFi#)O3Gb&RY{>eu{)k?U@7dTYO@*bW^P+%kL_eBfpH9s}A}pnw(r^nd7tC zjx}S8h0(7yTBzKyxSXea*xsm>(Hm>CKFqX4KG^S(XLUAhKL7Xk&7D$7gbB zPJtN+RudV6I1>a`2$@F^Ft(1$q0ChUI^w;K&UivIME=1??}P)kMS zW+#cqc#Ge%r|oaIb!cfX?_{Y*;KcAPww|}1HR)~CMnyuR3Xz$z=}e2@G*?1nv6aGn zPus7AD91dC%B18DMrR-2jNmbAd`7Qtiez(Uk=0wB&@V7PuxD$j1wD^>R#D2pF8bHH zjwlzz;N5@tod@rep1c%J0-r|d$S99+A>;SqT`R;r*H^l>-ykzQ6&V$nv%Ar|O}|>T z!3jt&A4H1nQNEn;+IP0k@+fpGQs~w^M+g$FnbYk62ZWJ;yk2Q>sL$QS5Xq8RRb?}d zgPImT*H`5uo`~Z5={1&Ft5RmCu$wR)7IE}aThx1YDH+#y>m}wzv}2FgIEh`p$+Gx#XQBdGs~yIL5?*HaTEcAC%b!+SEq# zM^wzB6Bxmq97Mv8P}DZ_6`4v8l?XRX|2TghwhD!^^F=&=XX|kD+#=5K1(#ft4eP2g zBey@Hk@nr~>5^nN2CPK0;oOY4yXum`&{>Zgzv-Qi;6^Hb)t*6^C?^%T<+(oG*LgS* zOz7irG5WFMsm?|e(>fQy-K&oCwT;>u!;_AIHYCCE9E{YIUS~Tuv*+;@hknyqe4>BU zvmPI$TA1kq8yBfopaQX9By1>2ABkUlYg$PaT%2N*g>iOQ?_8v(I&_?6wwgBhnvJm@ z(!#6v*NmMiI7?m_p(t=h*iusSACdU(@r(nuCV=j*V?LIb>LrUXe&>Z!f}2@BM_zXRCo5N-Hysgbyj>UU=atB|P< zWonH#4tV~EpnAnW;S#Bp=Cd|1l`aETK`Q^V2Mmz@M9TjLF?`)d~j(-lxWT zoN^?wqwJx<;_Qzmk>=$clk-IJU5t(aQYd6_2v)Wb`9scIvc}dv-TJp_Ov@! z8TyDB?u5xos3GDb1JjXr(LXN_98=09IA0pSAGI~j`sv$dQ><~J zgEp82>R97GVF6Xvj6~t)*OYpI9XPn(EYL^ufLt08!&9+O2u%ee55YWiNZ*$}(i@P$v?ToFzpZ!- z6ql{9ANfkUvRZv;W4P5mOXL*Zd}#+ZdX}tDqLI&IWB30$%h;dh2O7Kq52c@NT8Fc> zrKrQ)qRopZi>?c3?^<~Rm>PQeU{)!#eb%u|_J6&@ma<1xC*{*WEFFlX z7bYH8|3(D7wB^(2rkj#1SS$smB|b>k!%85Z$t#SKXCVqernf|b531eA)_SVh675&E zLU`hLB@+D#w`{jY2e4`bQag>PFio+0jOGxC>*E8kw|#Pqy&3hfb!~1(%aij|jvr!s z5dUJp8T5pJ8a_uLNj!=LwwehIO(ZKs)~zI=r&}s^JgOqY;PUP?Vo0`cN7xs!;(5?p z=XY2>5R3)!q6Tin$oTT=?$=BgMSl~%d}@&kmt*ABOA6FnrV#T05^jNsS6u8`gp;#V z^(gPY9<>JiP7~N?n=tS}1`%$$1u)qpR6Zf%Em7JSv-`TeW4S+tFD4NNAXdGMA-<6SA3+SY32hJ=xp|I2s(vrwqSxV2-*VRo2{2KcZY8#WWvRE!8 zmZT{9X@(k?JQV_mKe00_i|Glu9RuHlGD&k1h1IU~`rgR<>M278yhIuwsyiV+>F*=Ch(V{FA;npMclF1g0#*5&x4MSkhA&@mA|h; zg6R!F1GU$@+IP<{MM_;*h|mOK)-XwbURO=;cq-clJNnE2oiKY6U5}VX;utr`Du2{e zy;0SmRr zP{BafB!2prLK*~u-nWN*bXS9F?em}3^^zw5+TBtjexV?UFY*Z=6g&ooKcNK2#Rv+0 z!`bHPAVShi1G6#bl)OW*3o?UfQa%~PJFu9Of^ebaKgGwk4?e5kTpUxP;a%7=GoAfg z5k_qxYLxh+NSC+7e6mKJ(!L#;ybi9ag!}xlu_QWATljx( zmd`KT-b;82{bS%P-~&WTDSqi~XLtpGSOO6u)~?zY{c0P|sE?);<@0MYU)h4KBhRYX z^uwbZ`6OIfX)iAy2&swzxi>x|A*bxg*(At`^uB4$;lzH@UnM<|aE7-p2k@v!=$w_S z+{FmfGb#KTI*1yZRfF)@RI-{O_SrSsGS717ZQN^!ZZ;%_9pThl3dZt_dkwb$lu5+1 zO3~|xSy%ie@ze~dB%)<>6FT~d$6UGG8d(Jiu7UGeI3I{z2v3)}sd&<9mxy`@>BWaM zv6?wr&KKU53w5TDthJL>kIrXHlF_~fwB@>}uzlCjOx~w+2^x-j7xlr0QJNkE=dnGt zS#}r?y;ytc{+T(NVc?YRUu=&8on9`G@8m}xL`ps0v%*!@Z>kb9K z8gb^qd}-Lw**}~!g@+Fq*US7T?J?e4Ytx^5OA?Neq3WT-%%gun&W}utM7!n4x70eP zCCwQ-qRJr`V3*4Jlvr=zujW@aF4iXPZg^xoEsbgc-A3wXQ{)r0+E)$D7#ZzIAty146;5Hg*GTTg040}s)2$RO+?Dd zUQ$xm^*NU!@f=_As12S1@TlS`n&MPiNnpJCnvo~o{7#Bi{-BTfi;O_Z_@AB(k1ms$ zxEG=Z;V#{efJ!NXS1q74H~CAN(R{p$&zkg!yRcX07bfM}gJ^bh)Yq@NxcL`5i%KB@;JM)LMIQN-e5q{~ z56ks8bKZ?g@m%g|Jg@gVpPM{ZIc6-2spwz!mA#i?t9gN-nbV-0bGT1}u8!UvQH_RB z3giEKDCLH^PY`58>`|oysayOS-|ekdh0^BZi_cQ|wnJ(wY-i~r&PUc66V($}4~qk3 zGReMznWv0qlIO7kU@v<*%?u8#>31G4Tq|D-Zc{I^5_1TGruB=T#E&`m7@UT^t#=AG z;V?apUElVZhwCn++~?7W15gIkHSsP=Cbvjb7?Yr!%> z7ggjn8K2}Z{weZ8S&GlA?Ap~(z^YtduE97^G50E<5xeOEaAZo2v15LaHxKPjn8|&f zrI9|;qnaOIc3JzQIq_y2kFOC&oRs~x$f;G8z3C1j)SsUC2c3MU z1v4p4shEb&H@7KsoIelUn3psHj^5sY40-G?|eS~Zypcu3KW;rP9_4N|4Mr98?Cz57pY8Cp$o(4RfvF1EN^bh*gRcV z)E1ML2G5>mfjiF!E2xovSz&=_G9K4v6Sp8dEiV56co+)RZ=y<0NquAykvZdXw|^eA zmLv&)SGtgN*nhw_kc< zq+P>h4G2mNYye*lu0PL3Htp**TUNe2FhnZUTtOfClzLdaF&V1GL8FL zFu7-Dn4+dHk0?6@a~w9&JIoUH z3^AFX#v!j^a!Pr-ZJrqfzhr2WhYD#838ZS_IxL?L*i95Zd{op)7Bb`iIAa<)v4xTW zI8N1Ty7hf$*jdLq^hgm+*!_q#9G_8FjS2aCIM>^3kv^`?CtVgnxs$nlHbX;(cODHa<>f zeGbfwo5MIV7VDf(p<5|Kq~#OjM4R;iG=BS`nwz@GAATGT*cnhfwE5jx;#P_>N`a3V zO%hG{e{iqu+HO#uH8u#kkW3|%qGmxTPguuqZ_#c)PG;m0_g!i?*)^IX>~%R_{M$!3 zxPtKYs>a3@9Voli83@4QO+}(4zYkal(kGX<+RKEAF4}_R=WKSuD^b7ne+Yd7gk&PS z_V#)>)J!OZ2!o67OPmtzrHwqfJ*DUsy8<^Cm1IWN%(yI_A%wjr*2%N#!U?82*X)2? z`N-9dNEDV2T6@XJB=Z@#DL&d7UWjd-lTlf>4y%m}oer@4S&nbsajfBSac~1Pe>Cz2 zj#@NgK`b~O#ql)nSgLg|5mVFw0^y_I7$nrel~;F|5^})xY;POO^fLXeF9!VeTOv?KD&C&L8h3Eh((uu@`A_)(q1O4qE{VRd zo@D&Rw-1?3_0#8Uiij%qAn^&t6*OH@_+RIETz1>@>>Bre-ZKRdTD5*z-_|g^@IdpzI z@vyx4xPy--mG9Ib^-`&t-18x;H(e-{*ta`vTH|-tt0J8r+yHn&%A*-6q^5EUq%(1wPl0v-#WePx}q?4`?=@d-bqY;y@ISB9NZ z%5q^CtES7!T6fZkiC=gSGs8npc^XNG#|Z9Ry5cKNxf>F5r!4WK&YCU|X$2ycED=g` zLXUlI@zq}dzpC|sP4oW;%ni)(f9k8Ue}j-?{GhqnS`5%Z8OiN71Ur>+aBtK%y4?dfB|M4%i(qeF~?CP;*fY3GIrAvCpK8M;J4$G?`A zeso=eU-D?{V~HD4dce|@!GrOTAXNI91v>47y6*Hc8Z4Wwq+sWQ`U9JXrpy9m3=eFRW^!NZaL*NeWw!OeX<`WjwQtT zAwYmR*;_KALBTUmxmj8B^Px;x$xy7{z)b2k$)|9Ra(217D(jQ}fM7EY6aqd5k{lA6r7MIk+WoooQxd*??eOwR#r~-1i~vyfVP$$ z4rjgZbIr+!4s5>dmIQ%%Z;HF4gDLKMn@udls_i-#u@s&}_UJ{;_FK4h*k(QI=INgwNplSI z;A9*qTxUWWBukP$jv#p6yKMbJTH_)MF+_YS1mF`M!F8h|)G5Ugln9<%fBTj{%P_}+(feE$lg)k<-m%`FZXbM(|w2i>yNd@pVMA=-KvJWW5wj<_yjo`tWsLhUz z+T;D6e$iB!!$^Te7|t@mw)5OF<6$m>922cX?%GV7h<=C)!Pzie-D`|H?X@B~jDuJj zaRit~rQ}eAM!iO6Cj@)+fLnC&J+ee#fAkGjza?aw9pI}NVuIwqL0&N&@g0! z9dod{pe1C(e$0QES8-gCfkyjg4EyrR>VO+yqR@OGS0cenBej%8Lik1eh z5nc%>_Myz+g#IQ$OP$AV74(I(K$0MR#N8$D4cOs*dj1<^tO1E8#ZVK%ha`r`LhYK( zzfFk{PQNC^DHnb>e+-zHQQ;MImn8OdRvS9;<@jj7uK`p+EajV>IA>LR5>UfW|m_GL==trBuAmFR|LBlQuYmQU2$C5Vn26mGCPYVRiH7HB?oOdf+#t zv*T5xk5DR!hC)fy5gwtWvCUa?X>Q-$QYZ>S^L{r7kl=O7=i!8L&wed6z44U83dbC9 zjj@}y#YGyEhaiIfyBvi#x5 zLLp!#)?jso3}zyf;rk*Fobq`^`z^dx=Ts%pVBBXj;QMsb+VD=~_5o4G8C8AvSX&Z|H7 z2Gw2ZE$k&R5;L3Y9LNX=1$Kxuh|I_m>-`tMraZi?RUiW)kbJ(Rh1T5p2CIo@yKAw1RF&|8HdV~bZkjBkym9ai4v_3#Xu1X>(Zar zxp4lEK!4G_-!0MEQg5Y4SUVIu@nsk}Cl8FPnPaLpZwjjr@2S>u;)W7x*Sxj;nL^V{ zfaK)&XwZIAj>8#jBnw3KQJ?91B=C+k&ZOv^fRN4(?cN}7nZbO`nPRTi5h9Hb79SPb zVYp1$OfY;IG3pu&?YkSvE-v$v{%HdtnPKX4fHWv-$Zk`#9BxGq-EAFe{8IJci)=pc7WFWec zgdapr2>z0Ty|5Mr-G=9*6G01(;i6>A#cVk-P2T0 zf(?EejXzD0RDf3xvemOUt!8_S1HQ=KL&GH`_2?j97;W!WZX9?0mYAUK*c2A}{E8?-fJc>*6jaR#-@-KQ!6P-33GAd$k62)S8IGrS^p0 zTUqsX{ZuO3B;JxuHR}_{1(r;`NueHR0}|+v%v$jW?he1ms!BO7#`oVR0T_0TE^nHj zB>Wwpg-wmTW-dGW9F=+`5`)Ifhg8iZ8{lkOby16@n5k+`p`o!2(MDLygml>#tjLHs z`WdiUf?OmT-!yxUBdURO(L~DWHemg}7|c=O&njpck}xc>laO>F3J>`jsHf^<)>QC# ztPts2^%8+`fl=T#;7ce90Gd650aJAYvI5t($=8;-W)qA8Ff*hLvDNXMVIM<&iDGu^ zguikZR+~dq$7ZfqoxO-^$E^p?`ifi-AtY1~fTRksXk!tA>*H8Xi#G7VlCcvA3197u z{UycS@S)&!4wNvrOn0*S0zfh%bKt@(Lpo?#r?Hx)`jd>Lxvbvc11%5AojDb2H1u1gKwLjW+LO4cHdEzb1=w4=c^D#kZ!xCN0)1fNi%S$6g@)SZ(Z5buAgH z)>0vj8SvNM4%ihXsF5L}WQa*%T2v|Q6j^QOcN#e$Z6(xV&SAwpGjUh;cxo$E$4Ba= zUMhQO>fZ8RaFu@U+)m-UQ5D)E&cw#QjIy=k28#rkIXg)H3}6ew&NW3Efq0QBG#27OFqYWE~V#nIO5xNFw5H5l`E+tSOXdCFMS09 ztf*cMti=mK4_kuai8U*d^lO=Nn#wdf>GN>?l8#d<01vw6+siti<>a<$_R3I6ow{hX zS(=9D9WB=E!(~w`|E@pHoV14NZN2{fF!clGhc8pYy;o#h#_=NYeI>MLlt`QIE$YS^ z!&R;qhQQG!4-pG@}-xuw$5HrfoCC%MU6G7B3?-t-~T-C!?#_vw1-$DDw~aL0WnpI zxoVvMwAyPR%XAXCE`s@}h_@UxPjq%zIw+4_y%=o=t&Cp=+dZsR%9Sfnr_z&b4j9Sj zWu5$2G7aJd(I|)^^Hh|SWxX17-Q#24|KNR4alrD8Uo}=paWg0j{fXAtRBq7ma|zsQ1F;s1PNhMM6!=HO~Ez60igIl>9Ksnx}6%@cW10X7f znbPhceVwU;9OzRIYS!-m;h$T(yocdMy|R}H&oGP5|+NFSXF zXV&F}N8zm7eQo4#K>{}@Hh*;b6F5!O1VskW4C9KY zW22e_DfSN#;vMuCYeO3nDG*A6Cg37BZcPzUv*_4DO*iWekFag`FMD?E)B&6QUea_b z#WNOp^82gw2IrRU*0depR11l}9?_r9-402sdtR*KHuf3p_tp8D)p0%dk<;94U1@N) zhFg;E`vL> z89eq+DBX-V@iwiir1wKX5B0AJyOQ5Y;-BmH!HDeV(pYH{9HN(#dcYyXzO1rQ2jxzDX+>a{Uwd+jT!}ZB?+_g5#xLDJ1Ka^}4ge6v>P|ltL%W<6 zPn|D4LtJ-8DOCD-s+PRR%iGlqgbtDO2)TUERQ0m375&?Wz*+gfU`_2~VO30uqiR(I zDjkuEq>hr)MBB7TFW_IG%uTt&M~Sr9BP|M|BL?daA#+ zw^F+f4vS=-F?gtyoP$^c!hA5tBm}}02M@Q?+r{%C+x_Ng5kR$GAu{(Nxpr;dty%KQ zi83KccEN_P=^_6dJfA!a%m&;=6ZbwF6=4!(iZ$_@2PV&2r z`q$fw{r7gr1i-OF^JHbg@>T@)`5d!*nP}MdkmD(4yT`q0WblQx8Fc|tfftE&s-_?q zv=k}hqh@Vg*q=QGB>cJ0rn;e}H#*MiD`EUvS3y93W}X8_ARv$~Je8S`ZfUEfuZoP`Ih zcAvhZ1Hg;5vS-#NwwzAcU0&|&RG$l>>TH&@Kj-b|F{rk(M`s3%aHGGckLV1W57C_! zY0&1|P>9?b$!`yvCQ|z00T4B7YYj~^MpP#0nWc;x&MFtG+3BFw zRu_ZM*TwS!x|LbI2Z!}&9{9UwtUjF;)0SHP^1&>}{f^qth(XYDv zHGqjnin>E(1i;DVjjFrwZ_3{NJ(Pn`>Y%UCz>NL4Sr=O-^a1l6L;tACD+?M`T$pc+%>*}Kf&JxzdkOD@1LMjZB(^VJ4Sb! zZ4(-jhBmmlUO(;`6B@=Ql|>M~?!k9&P3_&GcQr1}H686&d%BB5oA8!e{y=i4Y~`=n znZN+P9xo2ub4vNNvXJRM0zJzU<*Q_%^cuD@>o^PTuY+m#0-hL#l`laj?M#sL@B!Uk z9)S#J7uIMXtu(o>Kh@Ivc$#TyB?P*~yB!qFtf7Hv0W;+o#T5753Gpvg6GssUB|VwH z86Z@XK>B`-em{r7?S^30vb9_G2fA|pWo|zm(nl7^~0^C#1tbNHJz^kM;U)__#go9?FS#RD7mE z%Cmf62JqV}MO0|0v{vHnkGyF%j;@T=X8U}+*j_)%m4uMn-G(4hLlP#uN$&#w&LU$) zY@{cOrYly#a!g%Q=43RPLm{M&V-!T(9_l;Gn88(7|1*gGNeR<hWfM83!~@e@l1m zNbGIv0yOWpJ?TG>W(`&RzKKJ>PrmIL(x(1e3m)B;=DcZheRH&CZc4xM|2CXyxP3<| zf=waN4{Fm2kw3=xOUG9p5%a_;L_~wAXo*GG#4EJPfsg2ved)KBQ3MlOC7&)7=H=8ygglrY=3EOa{coH zn=>;sqPj>d(yp?4n%_V&QyYi{U;>(R#KOOY^yX4YfETls$akTeuX$b0OsnLIl_Q>dDr>slHxkkGVbKOx7dcHl;mm$~LDXnna!3`Ks5^XudN?*Eq@$-oy?f7b%y;7>^ec+@zZh6*vZ+^#K7i1&d$&hnvF3f?kBR{Qr-r-{u9(@ zOqfwYYsu^cO#}jAWBi}sHA;(EHz>?cDEg-_-Sadk(NEkNdj?dSo`s2xk&%IsiGiAd ziJXCfoD!N|#?Dy8z}bX=LWGNnfr*9T|EZEvGy|&2&PG6?Y@$veZQ*J{@Sh4Lft9_1 zv$>Or0fDQDqmzZ5Edd)H3mpR`G#}spHIeZru8o7u$p%d?X5r}MOu+GfTj3Efv#_!K zM7SvcSz0zR>ukthS9*Cdk7%1{qr0)7{=ZI(MX%{3^w@0dDZ&F97?BI!U7K6FwrYAj zC?w+s>zYqfk|uZUvyamVDHU{~yDe}~q>cWuqgop!c(+s&;$vIM>^nql)M{tB$;48( z&4{$s=aDJISJ+8gd6+~dA;jI3Fb1ph{ll;V%tksWna8tmP0Pfy)z^j1CHPzI92QvQ zKN#6%5PbT(Q1==8H#R&(>>P(Atx?8NRR*db&%TBpTJV`rx>*I5$JOoG!hJBzi2u0#-f;+&~au5nrw&2*rJgE z3xA?u`~yuWEJcOU-Ho&K(SSm6rSoY(y1*1;(6?Vy|J9l7BJQGL%TZRT6TA^%H=ub+ zq+=Ojk!NK=?scZ{qnE|;%kl^(0{v#qv%z{IQ}0D=^%H?e?gV@4G{hnr{H284w@Z3- zvO_v2VwcxokI+lgXmkfGOd=CJyO(hQkVlQ*9i-)wGAxLT6ZMs7A~2(brG$op>Q;on z`%^TdY1()w8D{RJNM(a8ge*)IIzt9#qK*7FUe}1n1 zD4sN!^xrV@fG4G_X_!GAyx8l?FK-$~5j!j_jh3(-LPqWL$#4bRslQE#Y*XQ>09=w_ zr<>kD2NKeL3OVsV8UHAQHs{Vp6Bb|3`L9|gUzgolMiyTW2iA?g!o?c6z8#%b`sXqM zkMoBW%hUWl?yqky+J{>|naCBNS6}WecHXc|?10#(%`f}Tm)cb+m8vN{>oJVHX0D$^ zcDE1v*nSC}?PWLqt*h#*Et?`)z}m*c!zuYM&-;t_WqzOg*9fzeZ>B1L3YE|aNTlwE zzlHr&0#EZmUB356@ATiduZPS0orxmUv4ys#vBs{^D*Y`$%BLTTRRn9B-6_e6~=S^3`$e6&DyW zgEu9Hv7_B^s$1TNS7$OQ7mP=~0LL z(Iyzf(5^g*@Z%4{MI2aV&yyf7oH^~q4DNFl)0pIlnkJcoODrm^RPOt^h6h2pMo=(M z@z=)UP;v?000YxH@T3Br(8XxOvRH_q0snr#kpX#LY0Lxo_KmC(0FgZ=D7=)3)Fp`$ zi)xklvP?q!kS<$x@IIj^k4)UL0*fle9RbHW*fgW8D(JDGJ^rErmmJt%e3mDrC@&kP zUv?vN5BBveV6rul8F2h0{VgRSCAX2cV}k{P`g=hJ!%n@_6_9Y22`V9@*@ckO0ljo| zsENN(pipMbJ1?Fr0F?Q&EU7q-d&QimA=7o4LNjoV9jcELy_xy7zfqebq#j$dJr}wB zZ96AgDFwM<*be$+@AZdO?2^K4LU>Y3Jx%phDV>=^EzK*--5{Eil@6eXAVZKJsArX1?Y2XFUGUFd4q*tObD0WTM?n~NAJBa>gP$z5$7 zUauEt14m!2o8Olce~j9E-d4<)nLZ~9k$!JB4)wdN9V|J{uWa^b_N;7PL^r$?ME6V> zJdwow*mUeaUEJ+mlMRvNu0*D@zjs{P_Ply_^sJ8F^ShI9 zi}U(B^;ek20y=m*dwv?RZTmFv;<{#N0TIlt+HO({`>bqi*wxTq*e*fU_H5x5qF>dtTpR13?q-&G@oeMu z9k@DqU9d218qJ6V%m<>6%q3A~^{id9kA&cOAX~Bb0@!w&x3|W-uErzABWgtV(bI4u z9J{={nmR-Y$=NNxrUOL2KH()_6&lRn4a|_!N4gNy@Sid^?cABc4V9}=5ThmO*0YF{4P`RA7YJ$ zL<3PxYEBlAE?rAzfkF3orSm_(S+lL+l%TAn&Y4ftPJ!0KYc2t=#2Tgo_wQ2)))rif zHH=kO=T3=&CLAY+Li2XYnGY;Qtj~i^E(vT>05JZIwL$}dTm-+fVG*XtuA!q9a&EcWRH=cPoU0L- z#9XLBMB|catIOFiSRt(8L5p-Qxs;X*Itb`=B(p?Uj*>_ROKYjrAjnnO7ZAX~2wg;> z_Tm+SJ<~!XS*UR>w)T6I1%rCjp$#sD2hy3NL5y89G3>1FN)DBPDAl`^TLpd$V})5L z$<@f^D;p#r`1$1O5iR9acH$9&KXysNo_STML!NoT@d^6W^pQjUt1|WbYn>c61aP@* zl8(&ftGLPIs0|gSU&>+xPClhNJBKD$1+Gj?13{U~~EXB_^^?Ngb z&zWBH{)bdx8q1)(d1V&i7liKaLO@+J-{}YuVbFy>)7PIKqz{!oG?0&Mq^?X$GTL|} zKUeUdIp~a)v%qBPm4<@d`N2ql2qr9A+7+(Swe6oi6zPo<)YVosCb}zbrJm?x=!HX; zk#*OxDpPeW1O}=rdF6V3KNQQqR7SG_MROT>^go!H9h}cN#H36Z-5r zh8#W7#4^R=)#b2J8iu{3dokWWLuuPmqHnT{T~pEi_$VqFbwdw((O&|f(z940FqM^T zVW3J{Au>=Ysfo^55uYqFQC@h6*g$1LIan!a5QkJnofAIudGyKFGkAuO(jNTLJsYES z7e*bWbr+$@ZQI9bk=}Ta&@TDRcQSJdO0!}5FwLSP#V4M=Gj=S_W7`+NF7tMP62V|O zdX1{}J6R7Q%US(3F`67Oa0qcBA>}KNGcZ=-U_s;Pi=F;2JIDV|3U!Lv_Bkj+qT2WU z-)b-`;ctqiCViP&BmGyOgB7TRQay4f5cu%*!h*fW8Ht|@yD>8!T*$u!)T0#spVC-! z`H8bX)l0U9!iNpEf_csyftFkKz^d6@?Xu^c4?5wW5VCv<#zTkzrdy%X?-s;|pQDpF z_sRU?+2o`w|f*sV#x_jagb%n2|ZEdD+9&R zJSMriyL0CQZ|Jr_zI^?>mO^6rY{b>@X4mX`ldE0C14+5U7}xgwnmF{%9-lZ=%~p$`aH%#e>l$c9>Qiz`8j!_+$SDlV z3Hwy`7x08TdE6Y`rA{8^rFXq5O;emji9@L*3)3O=Y2$eS+N9m-Vj3>+dx+)LhWMln z1lDH4$FqvZ>85!k=Ze>8YM9!Tb__@j! zvb%NMJoI4Dv5ibVZoaEL^CRJZcjbTA1kX<6-k*&Q*i96Dk9WAO-{T{!cRSg7*Liew z@$q;#ew}gb9^E)mD36d7zvmO7=I=e?d+U?CYcEs2o#~|C2URYek7LvBZ&}b z@h}K+GH`H;G6}MaGK;dY3JNiE3W^Fci3o`Z{otpVg!l;l|Ed7<>7>w80I>o{lO?QG zRZvH+J+?n3{e+~_pc7>U(ljZA#~0$@o#_(uCTMv`u~7{Bg=AJR5fe~WOQ}&b+L*VZ zV5FrJ(Za;`#W04=4GpD3$*@t7(XqXI0PH=PUR!S4&s)4bUfWQFfyWw<8nyDDG>AHr zLdkZ-OtF3*j#^=o1pZ)-TA_fk+R;5OtnpU*>Ts6-Y)D(ucB$m0Y!TW#gDd*59lb_v3|rAFiCc0u#DdQSf4AW|;$T8+ z%NQNBrk{dua7HD}vwU*OC7J$nIF?43!YSf(e3R;8sfcSV=20mIGa>~fEGfrS4B663 z&Zv`(;FzrU!8=-wo~pR{>l~#2tHWNkoe`^!%1kc%eL=V^5uG&gWa}~AQ0j|+|9YHrg$c2>0Cz3c>1^9VwouFn+8V0hNaOmo zR0P5U!zu{@#70`4(@qn~GYfkl`7cSH>Nm*duMlK-Qd~)nM0*N2MiP>T`S$ z1~^M6urkxD;>b0uJy-EY|D+m+2M)75Fp_d@s7b@`1V0O$e<}fzFm64Ikw2%9I(&IA zbS<*ESX7YP_DqbLpJpv~CD3`VXKu+F=vg0I?QFmJI*S`K!2DNKE>`1TT7BvjcxUBP zZ;Pgz8?VVtC}-Ut1gO9WvbfU*{XLwmBEr_R^H zx=ZN+QvoG&{9lsvfD=Fz{~ywWDb1*1KkqF07C;lH+lHjbCXO-+`;XXxlpX$;4jj9k zqgj54wAx7+fWQa3Hu3iMkn(5$&%PH>@GIY6(w~(Y74n}QerSZ6AG&t1?*BnCAP0_- z_WzNmUnv+4TZZ+FQW=K+GMD5ls<6)gTEY+ZzsD$yO#@L~LheECz5P0+g6Av=-;daj z7*7GSha(8R&kExL5X1h7MGpOIO5~U<;-h{tNi?ah4W1l8Rf{#_BdS@^IyrW(w=8qo zZP>J$RzH3F{{z*6|A>I%}-HQ2PZN0-2tF)+?P3c33R zexJ*)0GR2gZY+FT*cq(|g|OkX{B%Ao5;83i+7os8U%MWOHI!5SJrzzc-!k<5vrT zl;j*RXQ#II$9n-8DldkTn(@6Gus8KD z8n63=W|H=8ZcfOSvg|wLkpXv_WS8O~ zTYLa%sIOw?;|@4z8~dWp+Rc5&dqzcyroF#56=~Pz!|8%n^E;Fdr3N#cg`>HfyQ_tX z!~dL|Ol{#+`ti!7KGErf^` zl<(d`ECf>AlwB2;SEd}Z1!r*go9X}nS*P7LE1zA5l2Y2}#k!2Hqv3-T{&X4)S0_aK0Gqj+*!<{BIfj;sJ#j%~&D#)L&lYs)v%&B%k9z$B+jFDLK-MNy(ItLdowe--`_vokzH`%S z^46~5miX@U$9KI;djPbBjp~li$IJ~h9(Si7@b85G%298BmdSw7{2d;gu$dpxfdD}7 z2n(XA-=VZGw>P8MOf$60B;bz-E72H<&}>$MhQKFT_w$`mU}0eZlvgro-~ZLFy#Fgy z;2dl`na$Xcw5j$`NT9N*eo({!sWKt)vH9^Xuxp{{l8BMF&$%S7ctRI^dJ zsV}?+819yByQ%VoOU3?)1Y7Al*okcX#_4M=z18dKS;pBLWLlYS zW0(D3OQq5KMcG2M4On`#j2zT^bA z1;3cz{%N=SZ7xQ(K+$A&t}Kw;SVjNECY5{JkzkdMapzN0{Q4Kczp8+dS*O!%txXRt zi?JG3$<`;hc!tFd?V_+MSfmy|=lSAi(0LA`;oz5~Cn7L>8pb>TqJ$l|PTVxV5;@n0 zqR)n}(z&P6fecp;$M|5T=6Ra(BiUox*`k(EA(Z%=wh+}K20{JQK_7lQ7I0nDaEBw6 zPRil_u%>qgztrUx|Aui-NK3PQz%CMzwV^!b;nj3ODtCbQe2o&eHhCR2e81{r}pMb8_z5+)-m8~nHlElaAoF{|X_??1y zxckpIe*Xm^-%v&>=vf%rVk@w0L!K1hcTdOq=O2dqu915Ta$WAW_A;aMJM;}bcJ*nE33b^c`*^C@Zs%Ja2cFl0 zu%9|hLCYjgec6b}L2!&b>9NHPKV4uji7t`60;vIspcoi#2N# z=-SH15sP6{NgpXf-9gGX^^~Kd<}|8#S~IALN^3t6n6%YAlYugZK&c5J=J)U zE^q+M>loFAtsuTScAl(357}xvvd1qgXP%WQfYoJDys9_*8YcH;Tr~5e403$^6_&7f z48@;O+b#D&6_~ha2wAktsHW53O#G#k;X0r)Vbit&2E9GVvan-Z2d`_QDA-_pRdsL? zbQo6ke9ip`bP(YgeRin1ByNE&zm5fDXqN!`zSzF|({}dT9@ynknX~T#77qCl!HsvZ zTvnSbR-2`UV~vhTkQJvbH7!`>Sx8rGA>rp(;*P;c42&`UsZKrp;A)K)8EY18PQjLc z`aY9x9vlp?d~|zV>Y>x5K=T(;#HH|0vVQ1c{=sq}wfH#i8h)W5Y=`MAiH;P8`pg4J zJG=AzZe`C%xIh;$PKZ}5hyyrUGpVA3Q>B!j6`lFHAc7THFgYlKNx1G$`kWjZqHS`g zNPGwJYH}e|ls6O5sQC2d1*7p~K?-o>?s!Q~=x0(Dj*{m=rv@n!2?t4Wpfq+ntHeM# zyirldJq~yP_umf(-(Z5GuA!p zcp?4I1Et5*o1w>pHMHbc<2_Lw3Jj4g6s1iU>#N?SR)oZ&X0Ne;P7PI-2Om@M?@Y79 z@Q0nq{=QMNzCFFaXe1Iin9k)`ope?5opl?WJ&F94i+?J$W#!`5 zfu?0)+K%}2Hl{LypHVR3bt;Hbzlh;^bX--?nzphkC$cz(aH1_3Dh0kKEUVT{mKc zRz-DOQ)`?>Kfc3#wL&wRTu30-m=RrRzKLOjg||!?z|vJNs8fY_8crI#-cT-oMJ0zM-6GsA zh=A-58Jdn%ZW(PnZgY7LD$0x3tx6w(@Hzi-eQ@|wM{q&G+W`2J1fQ`sya|btBZ_)- z!Ku%3N4xj+ z28){zE5P2KAk}P~2rUlEuL&Y%yNOp0Y7X^J=+d2+Wo_Re@z&+fru+^IfsDW)7&85T`1%7Chzl_@HqCjej(m$Ddi$0{`kJ^Dt!)`Nnb zB>VLBCSN$bC)L|8Y*(24#bSvcWb>Ro(bHY6Y2N3qt5`TPy z{O6`oA8w6V@(<0@ZnT$#v)CIl5IsHU|3EQzUJ@3P|M5@)0&vU<7MV;6pip4!?5W8q zw5cjMkN_^Mz?a6wLj)8TA9QBDr*cO;^IXWQHApPQ2a-fiB1*ie436f$fk0$gSt=`@ zObo}^l8=L>aK4wv{1NfPBd(#TTy}xaKrfGfiNu|9G}3CaDf*1)(aC6JsA}X?=B^&8 zy@mOW4?X?Xr?jb?ar454U-11(T~aYD9S07ARsi!g><$M*56fUmd5RK>!w7~tYzW!n z9p9Kq0m?AT-?y>d^nQ=esii-l=zm`<0xlgN-^UH|8gpvSgtj&PJ=Ga9#keAI>Env$Zd=%K zaLhc2wjQANs+^|#0oJ)X?nHAN>!sD?*o{*tY4@Yt_H~|X+c$R_24$v~Oyp(*S?~%5 zzP>X7MxEHVh>%fmU})`B9J6D}PV+$^xB$bhpkQcX!uTbHYc?Z{#uM5J_qA4V;?lxj zt&_E571MsD#XimFc}Dv!&`a9kJ^e1MAWsEqyI&%t1K^xW0qmbQ$$&)i zn$^iVx<+gZp!8uhDZ^{$T@ZX7F# zs7o9xw=+#ClxQ~5j9_qK>2f@O>;XFF52_1%6BuMsV9L=Li!F_}H_&9i1{28S(BWRd z(~+~1tMoBo`FtPfkGeMK7evG%^>L5G?P2pt^5b@JpeNrO*Q2hR>9ix()EgEAMZSZThHJry0@4jq@m7}% zTA;di*m_xM?LZR6mO>+e>;W}?k`|s18t)Dz5+7UYp;NFX=No+C zrJ`3NOVI=awze|r@?rY&>vXOn#DLEIbNyzh`)u2FUuy`f2*5~O%9&uiF(?9neTFNM z07%C3ld)D{Nmm^IG+Iv7WJ}2M;M5smsK$HEJ?WvXUQX)aE5}VG@%}5 zdxg{y4B8hXk$o~jhzz0@NmEZ_ediu`j-{D3<{@%DDpcJohO283$FL%b$!$v;{#F{1 zittO72~8!B0?0v^41=rMh^!#IO-p<6lQrc7{%&4NEpOiA1rRj~lDFPXR5*9cVh1c| z{18U4v&KWFdDGiQNTGa<1ZR_EAo7p>NO)Vx$gEVfL=tm#K4mYzfv^GK5G2zbtX&4u5TTwx0jzkqLCVlI>G0 zQJ8ch0d8X4{I90p7!KMJ?9hW~snxT2(h8Nuq~`tSf8+H$ENWt`1_Uv&x+NF<8}*g= zWs>%r2n&!)Rs4XQtC_fN?cmq|@iIDd4+|1FYU zJ9Chrsv2vYp^cf0xEet$H0>iCkqI416S(f;1DFGPtkmolZR9w}N;W9!61^n%_51Q< zvz$_R7-T>aP%v9IMwh(3k|q;IO!48*k?Rv^gdkrM^xj z+UIub;H14?J-7%+)VvcUiK4Lj^~5EH4ZW*O$Xd{Za z=JNx}fG6FTGl6C}-EQT3Nm8#?O=w9~bC-^rt#CLGkOog3 zId30&z#!sMHday%T-exYEnh5xxCLQ}n#cdO!! z0<5xNvUF`M)2A3G3{=u|#>=Q+Nt7|5IFNheafio?3t-LRJDM&*Tz4AX52F$(*UJfl zO^0#$;b&z@Vrno}y;eG@g#pC=Tzl+(m+sV~3XuE#V-7jnb^Cb;q5UnGES{onG_^c0 zFUVw)_V;$5%z2QqzYuHj&|X>cnBy($n=zlXe4~|61w1{zR19z)ZjMaVBM2J6oSuB@HWym|LgSulO%}}GMBp@O?(>FgS3B3gGTYiK0uD5* zh-f181WUrxq}_fX2u(5ujcQBEm4$?;Vo}f10y0hx(2B#)<2f<6wy`mO8i!nowg9+e z5rJ0gVM*Zcnhc!%ja+(b2>7_o&Ac7&+VdTq;^EFor26UhdAk4rJDheC0lhwt&uxoy zzsfiy_;p4Gn3IoU#wCC2!^veC|6;;nm4hsq0`g>PC04{rdedl|IZEXo^ye@Y95|VA z)x_Kh$NfLb)_KT8xziFgUwe zQ(hDI+TqMt(>GwwXR8cj6;HA0%vNj#n(_N)cTLP@1q9HC*2G#}W2SO&V&xK@_{6PI z?zKycGVXu@*1>s$cS54?NLl!WE|mTtuNpR0E~sM=g8%?iY@2^B(*KK`u-0OqL?n4P z!EK|x?T7z|V7#){r|7f3YE3q#ezGXMhX=#bqI7-PqHCj0``8^bkXAdnB?nuRBB3rw zQczn`5cJHwdvh)#Ww9Mb(?wfj%oeH~H zUU`gyS|o)Xl!_Gm{B{Uq5F#fK)Nld8p3|glSy+NE8TSCeLZ%`bl`C~Ly7PvalRZLb zVr0W?dX1qt!-}APf_oquVR(nkjv?1F5uI}T3J9RwU=Isv^}9Nbb1qdEpj$mr<=Z~G zCoktf+oCe@9z`xzAo)@bAv`9xMslP=fH!waU4|{Gn(rjtnfA3%Qn%%RXh-cxo$&CH zGl7OWw$k=C)jpH- zmIcUN!Pvi$_+Tz=J=Ly-5I46kauw@VM5FM>8c)TIb5KM1(`Tm93?cg^gM!_WO_Kv> zWTf%YboLC2mvOMyD+Gz+8E&fjWgX!lNH&Dt$7XQJ>g_2d*ZOFb!?$ie2>CkTL$rrXrK+6+loJ zjGXH~W%(#a<#<9;%#E5^yxBrBavYj8Y+Ga9<7$rO6G^dnWLxf*LTovXcM@`~4Nqe` zCCaF_&@#5Ed^;sbr9)%3q-1*jC}uZ-XL)A{FQp4%c_Z7T{*5EU1VT_648M`NFplxMP<-Cf z3nE9OM*21u_ud#GgPEiD=J(y*&8p_Vq0~_R)+Ib<{Mh<}R0yCB@w7wJ6ac5ZLqgCZ zbhU+1#dv*0*f3@he4&6?-ri_AB)xX?z~|;ZOc%O`aSx0O4P34^TCyw%o?AEcgwDTp z@n&HrTbm|sVSRs@`_C)N8V#6@3U{28$Du?red9(P{eFIp>Q4ndh>Yi70Z(_Q)bR)& z{dyYYV*x=ZZ!^wB0w=NwL4Z!Yx&$jPL=CD649CARXw1oAr-PuD^7SYyQZetB-W*ba zyC<-LT%lSk3^d+dwv3DdAC4Ane|@B}35)m9$StFD($4%K*VwKRxI6j^b4n8_nhP8X zstR+OM~qhS4Idb2L)3i@ch)MDEf(Yz+HI1pt+I_*Sf)^|9H; zz`Ze2WfUT(DKEp`fsjJ&aTc-gy<>$-?i~hl+wV@#Y2jPy9hncfwE5 zW{$F*E~cmp8%w|dJ~SkkLs#>h4FSAl1>4 zLS0dZW7Fy~AppVvly|*-laOW09vNbZ0F@*RQ3G1$f{D?*R&+8xw9T!;WA5CLG*WA+ zx`DF(5#+epf2^3#?Xa1&QTb00+1i9mOMT)!{My88Ph;XpW3!M@i%3OjWrCMWC)4)7X#m8J5>HI)Vy;dYDMhgB728J5 zM=5(IAFWJYT9*Rc!1jM3kEB|LU>XS?Z7kyWDRfI}7>5M>?{}H58&OV_25S{1U1I_X zFggeP2peXId|PyW+@>V^5#TjFfkf!0%&w6kg+G$a74!>Y4k3C8q58+(hDu=xqp|)V z68GzcHX!>%Z|1+?fHI;KMuR}Je^beQQBQJi8TRk{50f4tbbCua3N#`I>1 z8~nI8mh>*K3Yd+QLbcqpEpMf3m*6!qdVD1x2oTlXLY~hCnogdIn%mBrW6p{!P(m|#FTy}tDN`+j2sLkuMdg!wn3*a~5RAaW1IV3l0 zg1dr!hLf7G-~X*HuEndZ4!n$4>Z+*t2GE_IltiiV169~ZQ{OSy)&`O;Ts`W-I%z}5 zr{sD67(W`z+Bke{Xb-}BkJ$c9oBaIpUwPV1p=Qr;-atX}vr~X~FhgvOKfq*R!G>Iw z2%ts#*%#^bRwW|dB1w@Cm0=2zQChdMQi^PD zT12T4<}rBubo>3a8Dyuy_hdJ^RT+LCfcTt3&D{QY&>sV!?)3mr2MgEtJAz(@L>?@K z`g>!X%A8Iffx_f_6kej9(A$*!KX7{%KK7K!0Vz+Y|73EB;=su;d_BrFQ0%k=yOqH{HnCx9H!k?>XOCK^*rvLI^ACPq%g$ zu71*m>v_XoPB~^=TcUZEKNK7xCHpOrD$-1TVL!(vz!{=4P8EPy_CI0lcp>pr6K?d> zH)JXlZeE`M2`e3~+^tF2SU6bzKWz8?+IHNQK?_*dUNL*v(=w`Y5@8WB9bpHby@4`A zZt77YGLJSxPnKntydHgg_KPWD>z7GGWdAszIyZf;Rv+tbMX-4|;(#<&&NiherQL5N zH)F#cPp1ln29+O9r?i{2Ezr?-p}L%+5`a|+?NOMwSUM9pOwk_}&e|}J9tGsxh2bza zkvh$WG5XwEcqKaUsx&1OaqShaV}OqG$2jFY=k9fOPP^-0 z_oiX+*|F$N0^vIpI=r4Gfd$xGIGYJ7yOPjLfP_AS6r#U|K;ni;g0Sd@^3osSJ4Z4G z73NKu!tl5^%~{_~kw(iNfe{$DI!~MGL)6ML4c2o#Xh99J00;B!A)7#t84@^#+p(Xp z{LQRHr%CsWnv%_A(5Z>QoOJj^c_fY)KC`mJDfEL#q7fVOAz%ecN&y1F0}_kI^iB{= zQO{A)(ZP9DQp_uz1UQ)rixUW$%;k3=Hs?twLZV$v zyNjA1DE7s!l3ra(kVvs9P~yX4pwU8&;qvRf@ltLGqC`-!P*F+YHATh7Po{djI0Q@2 z6Q6w)m(hLM2MU1gl7P}#z4!gdsocWa_G;`)AHB8JZR+9Ll8;C>y?f%=8f(iLQrVv5 zPe0(iCq0m?X%_`Ud$DV)amBGin6^f9^Y7BF#dgLj=3EUVq0#z`>GN>{)>vn2$uu=%k{keZ~|i9;qzGeYne;Z#a(w{0C2TCDJT{|Q56d*_;O8j zQprs`UD|Eacv;(>!zkP*SY#ZV&fQ2%T$t}JknfJo-7(W*z#Mb4L_OF2y3oz;8x;5# z&$YKsd+fm4!+;@^BBnC`kCEk_k%#7d4Jn~#W5Vyl556mc!S&YM9Jlb zT=~hLj-vM97=Wqdz&hd_u@i4uUF9`#2Tc4IiI=sG(O>lzi>s^lx`Z54NFKNQfIjhS z6uch>4(3V*f+BkZAb4MHi$mTs%EC|8J>iY@W1t8%r;6>PL%3O&xU+DAcx$<&h?mP4KEpE1bF4G#;$@I8{}f{55h8WJ^)IIgkNs+M#mQW`|ZrAQjPKS~&h zwck}dXgWy+oH)n%d#-ey{veTr$P?qV*6Zm~PenHBp!cWZ8be6$qX`R;T$x=%CKl&- zf&kr!$x!``+kJHWG=Dg(4?FjkGgi$0eQ=)fm*@yJTs<)r7<8MV^hA?IT1R&_7Dk#` zcM@`tGz55ATq~$4=iMRNIQK+W8B2!rcm#H9cOK$F)^7DI+-)=4N7bpj5gk@oM85C| z>JhNG*#sz!Qd^c%{dbefyBFt}`)QLkQ^2LjJQTJR@W1;O2w)K2I9N3BF_Y&u2e{GF*%-u=G==UO^I255W~-2@WPDYmZuosLNaihq=-JVRRS-yjSH-VuvtH zLs5=RokRIsT!SiozVaO5Pr2S51cTF~;pK|+3~#`W!Xm~AP`%N^64YNgtG$?+0h%^x zl+X%PDVeGL7$BWcM$aT<$h?%0JWIsNDe;$*-#XDp8(dBri$xNy40$k}Q$aks$7bt7M_; zeluJ*XQt{dWbsr$D*Hy>1Waq=t)z%XtqlV%g%{xWm)I#i#O3XaC8fsl1>R%WpdF{YI zBy6X9>6E*RtdXI$wPxX@mGXiNmlPE*H{ll|#Oh{KFD4WrWQ&haQJnEkH=5Axe-L6J zvA`oWN3F(b{PzVpzduVt00h1CnnGcqb7@P2tOHEqlDN->$qhHB#gVudqBp)ttKBKz zHSWiUsqV*Lmw(c4m4^iqeM&4WXb=nhXMxW4fB0F9v$?xDa5dfgb0=Ez zj7cW*0ZXtkqj|^+3!pC+<#haJG{%3Eb`2xLm)xb^j^|5C2kV{`@m>MsH~B38M<&OW zipq!u%KE>QpthxMsp+5f0Li%Mh1*T?MgW~`@5mYL!zr!cLVfh>+fQGo!4!qQqI zALwW3wUAJdJub%EA4S2k{PpjpuThW3N5T1F9bf)pRu^fz5^2_WtWQLWZNv_J)7F;G;+*2irB?{I% zv_`FXH)MQpt2I6uFi>k6qt1@e4M)KR*Rna4V1TD;^XVq)!gC-;k%X-4d8kJ;#yx7S zsUr+cVX5Nv>v$J6yDstKA^{w}97P2}47m)Wx7CuUm5;$(L5#wb#ITJSw%TU!qOSGb zo9K7@(k`b@9Y5EP%V1j>da!DOhiZY`{(7Es)7ja=P*PtDAlRi-zSHWi?Xcd;j8su3 zU~^k~A`HzbT2263{692%1Q*iS@-F))&}2k^**}E4C--y=Nz}zAJezag*6aq zT4<8IxheZYz(6RmZ+k0XZ_{x=-@edu0qJDR>9^t=Aa-@`>tUR32eS9yVP)OM>Cb&F zL(AHhZF?P;0dv86w!s!S>ULS%HFPg1`z9&QGy=K8XK9TsA#=2!JHZvIdeekHlwT(= z>`N8R&WQ4;pg-Enof5cE2hmTmDssGp;Agpta@vx(CM90-V9&ZZ#XCGHnp;h-UR2mP z37RPj;8o0@S3*oI$-Ios01ro<1RO3QW(db0#4L+6PBf8q++6z5>b>=4C)*1azrd?WK@NwW<6A-!> zWCN6gG~hH3vMjM?S!d%P8LTrB2woFBwRSWGV0_j^V*)gzR6kI2%g2qlwMaB#h0UO& zR}Wn70-*}$I_-k|1J?37l71H7WT1K0`f7b9PWBO&!r0R`8~F_r2YQgaXRoG$vyl7a z81!zdq?rAbHb@ZWlwC*h_?M!=?;NgE67Z0lWfJ5vR|lWr5Gbfg1-l;t&$n^PrtRl> zz*2Lu68srV-F`Zi*mK93+;9>oMfO%rndzA(r&!~k+CR0nQFdiUS%#YAPjr2BeRz!z zoad_)=_=4LE3{xX8tJpUl*WcRKAQWeVFlB@5ze)OS)}Xb`W6hw(}y_g38$gIF zcTt<6g`=Gh%@I)d%>LqL2HMNy+RH*DfI&iLH=GEPn-$gF3mGU&H74?B;%R!T$2|x9 zatLxu7rf6EeZ?(VZ~pVBO;uipQY&dR@sa8o>rR?!{d`eRL$U0c&ik{p#ZN%_Y!{)| zkq49pntXOFvqJVI?XBzfT%Feb&{ll{{m`8d~h zi&h%uWn({;(4d8o;qL4|BfvVvj6df9w1B=r`U-G3< zj#rzOdRwV^6Vae4O}feQ>=?!m(3n0d?{D1gPT%ck&YVIX+ONYcM6;MMs7)2c`+YCM zfz-cWYb4P{@LJ$5S+?HTHB(EA0hy%P<5ls0NGZyef^7;S> z4Z5tN>5N7V%}4wPr85=yYFnkusKzFfLO-*y9bLuRf4$#(vHw+@$vC`IqNoWREIUS2 z_;~m7=>}rgULSg<*319*q#gRKUZ5VL`}8xGu7R%(<9ho*&V6m>-SAqW!?scEb;IXX z@n@0lbG$?J?m)m-BUJ8{f9J zmvn4EJ1@wN57?&vu2vD0fSNrwum5UO?i;DIYOA!bCwU&c7nLKRr<1ksx62MKhT4DA zaNqcJnHyuexFN*i%k)xUwzv|dXqr*AFo}s8NSqa^ zl31B9o8o9mOl_7@!7I%(3| z5ssn=8|H5HvD>pZQB1DJj-#w#e^Wc<4NU9gK za00R+A$>ARNE`|Wt`P+sIip1h!l!yhT;){Z`TkVy%VFtn)$u9?Ts#Z8KTk(go#yh0RB&(r}fuL?Fj`>T-Syqj;1^_O2#Qrq)X~wS#vm|axltn-1If3X)Yzp z6}>s#(y1AMM;l&R+n>Oes+y91T#Kd~Qz67rc;(I6;q};>UWU^*O@2P++|Qc!2lSi* z!>~qO+se`X^XZgC8J?>YjsuV+ezapPl7K8DVRI_vdY@sxVu+nih%1@jq`$(wL5EO6~ z-_$5gNTLy_%Vp(Nc~!X5Xaf1P5{NJ8-22N!Y%r2LXJNzen=U7dyPe11;tF~*Vbd8$ zEMz5`X_R1bCGW#~{Y3iJ6w5MZ&omy92g72cL4`6ZU**z1NJTB{Gx_19{hgAdpLk%0Ndq_8f6hb34?nU1#e{rgR;K<{qEwV*uIFR$1fz`GQ4s@USG44#1~C*A zr90zn%E#^ZBE*3?vE@~zB1m)$%fTRYFVtAR34SMNHic~Dg@*#oMs7M56InXR_7JTn zSmn)05p|IIO-lLAFORIUsItV+VTKw2R#QNWmeN+`Wf{uKB4NHE1e0%*!7m6L3Qjx1 zSQm4_Juq_KkbQZ7`lds z($_T9SHKYlKCBNfU^U&wlJ7BK1|#tcOc zK6c4Ovjqm40I?lW;t(w@GQEQyL*)03lcPiitc5Y0fLDMewXU^=_2B)w;eQ1{m6}LW zlZZ<3I zpP}##N|M=f0NbIPB~l*F2lE)nN7k;Tk@|p&$qN%z=xTet4XXApIykf?=10mqk-7cE zjmMuW8io)D|C7DN3#=t9l@jczLgkl=zmZl{W{AP5%2Z`(QhfoL^$iC!X#CR&cHb6z z4cvz;%(Wsid~rj1=7nbOUu|HsU6;{to$L**x@v&i0CAEp!`NNTy!eP{JPUW)-B!^U zOh#xa#dInU8bqmWU_|FrQi%$_X0J{jEskpoI8!hNUK4EYg9Ay;l2q!J2@a6mgK&*h zSGkXO*z=F}_jfoO;DiA>+~Hpst00Uo`n#J-YJuPgOken3*#{MS`F%F5(`5rpIVJh? z_&*wkb;8bD=roUr$zOqbw{j7%07|nTZ0zr!!zoq)nLI8f20v1WiWWit>Ry%vUk~IX z?^bMC&%G-<+>H~iD0O|U|CH>s+l|F4eX1gSz>)4`d3d?o!X4ntO)pO0<;RM_k=3T? z?#FAP=SRQXo%v?9u6WD2Ay}^PIAz}aE8iw z_j~DKiv@$tx*Je2aZeLLf(E{Z2Yg|_d~VG*uU2X^5@3_2?<>l+zBPGwfbGVR#&%7H z)IZ(TOQ6FBiCQ0iXHBPJm^|*_7shj%{ZHaJ^beQ~_epv%C^|SR57+-+<>h2e1(l{v z4KZg1h{P0${I}PUDu^34C^c};xlxhY1DpTpF8Q@PU}V(yMsgh{Z(3)Pdbu54JZdYr zL`5!^JN4}UK}rR>e0j@zv8is>ZW?s}pmV)oH&$jJSNX$fN`cR)W_ zYdLB?poPYzhc;ng9SQ|pJPh58Q#|e zytb?B4ewDslDNiAQe>(L&6HTHRerS?_U!Tt#>}NUF4dCOJk2K1?Ys8VT$|uZ$%-d!Fp!J>_ ziet{*35OI5Io^gGE@j+X=evi993`UMRGN_&e)1m_IHu)Qe{y2(?#fpf?uyNbyx>nyEsgws5dfL<8)Rs^n z&dIrP&u2yS`MlP#xIc4EXx{XE(}2v3H@DJt6X?)jwBqyJ%nmPZFEtte0>u;HBtN1$<_~WGM1J%&%qfN7xlG5 z4tL!|OVAbmPh}g7S9s}h`d)Ytn(cFq?7hYIIiW9iEP?>B!3ySV5bOEgIO#8Bl~LDJ zrTum$bFfsKrWK6u+qAWdiX$NL(9{T!i@o~J8Pb?qL2xF&2AX0dPL9;`{Ypt;BFilw zdRb{0G#;&Dh9UrKoj9}K{;V_!1Clhzh9pm{EntIgOLzDogr3B5N|1M>#V{lEWdDz? zcZ$x0>7sRG!DEYv0)#$1KfW-U6u&$hm4bnR z0T#nXJ~?%Er(>Wlk^}&%!5?5{JKni^o(KY%G=okGD8(OovvZ?!zy5~E}RzwM; zzwAy71;+5A&woCwrqoq}r#wkr!HwtBJdI9xP?Ki)q&{p)!Rmym4z% z69EL&0TR1R6;Kn~gUXx(*8(I1K##&H5-MQx1utAvM-%Qu+Ol*;V9fh!HlvaVzxKiV z%9|W?wByjq6G8=tE*(}={d~*b%}YTW!M0)n!_pc9NL3+do{kyvWiIV3>Q!vzTs!4rjEL*A1XQ+wy2~_4ayK~GUc`1*YCQt3r5d51EZFD)O+6# zd?Gvh<*IgkjOs0XcWwbE?`ir!_e%;uqej=^0)4k}U`@#9GvtJ~2I>2u!EpV6fO9=~I~{%| z{_qg^M_w|@v7^8>?4ukqy1vVH-tpy&a?!cJVUD#n^Ue*ZZ>JqSg~-Q<`=k8odt(%u z;TCcW_*ZDAP>JMPngKe;O2s}79NGM-?~%a2uuR0}%1K$s+S@z4)QOAvu7L_1F8}SL z_l!HDV*K*mA_=A5z#{*vNH202Maw0~Na^%G6}(DaOGu?Y$9gbhtbIp+r43G>XA*^@|v>h-I~+elQGKb)E25F)OLeD?a^tKbh~A&i736Y`;_JTGV+VtYSP4yIh^YbV zg!S8qbp^v+o4_`*auZVxldkY9e;E1+*1$Pn-Pq~aYi3s#1zvn_tOeehN2;nhWotiq&W{GUJYhcCA#*Wnbe z{%G`CnFFEiC(IwYwnYe$NlcBdKSRYBq;5S@Cy9Na@MTTw2b?e<#_|85Iq&+x<+1QoF7b?SJei77=IMkE8k-q9_KE~z^y zZhn{4c;uAQogwgZ5p~OG^v$eMg`~Kdps$&BB z+&ldY&!z41eZjm{=AOpFKryJ{k%T6*lP^p zsCG%TcpibRK`W}xVkGJ$vIZstR@g3gAFkiOYYU$)_WjfdsEnr7ULA$Xyq+DA@**!j zjMla;ffpOst|}@Zbh_x{79YnC25)IUoA1)*_@DwaO?r<@OZswVwv?H+^0~6~8SgZ8f_yzVyEw{n{#5^@KEyx(&3( zYIqu{&nwTcQh%w6@=X5c10cxMRGD=@z=aT#0NwT9)OxU8ho{eP65^i7=vAoI($lHP z2kT+4V18@;HOMGSL?1E=l*d@asrf!Nm>Agtp-GMs?{DN7`MFO>QWa-|iUga~V)8mK zkRhwp$SPf(?I$ANm;N(In}}@1O3R1}XS6)^S+FC=S4<~^ItW-7`@@F*fmwZ&fEo=` z0c`oq3s8frouQF2L)6MuqYV}*+sd||l}d5JzAca>%Qo*_Qkgq<;KHF54t+>4X;SiU zX$Y1UulU;#_bNRBFhO74X5&?TCaL%^A7*LkNK}>8^PAs{`6a!z6%fSwVe-4`DMrhg zIWZVpAj#+SPfsSe8|Zs3F64nhWRRT2Gf=lmShbSVJf$UY(mL7vqThls8Z5cC>K&wZ zszjM&L}n0RMlcD1I&2DOX=)E121rF1@;cZTuc2m8R2RR>Zl;qoK!vo4m@tesMAQtY z(~BmV{8jdXib+Kq^XSDSsGMZpP05F!HvB*Ve7pwPfNv=7(h_8_J@5V5+m#GT1h%%m z!J?gSz!t-Kt#6)vDMq#TDBWyH63Z64TU*aV|4vHt2B4r)4uN-#2g%wxSox#-_)gazCQ5#wi@A zjn`BghTor@Rs{kp5zis^&74D$-3xf^P+me4NeB z%4YE;aUY9`iAiwzpFdDF-+9ln*h1PWfu0M?-fwgQ?i;Nc7A!{5kAY|#c;(ioU})rH zw2~IfoY}HRH5Kd&pb9kcP$aWy_X|z*A4`F7`Il&XYSf(5&wQse8VqHSgsWB4euu(Yl(KOEoeG+;)}`2IAVl4CG$1vmoXXV?&O?i)18!pZkZ^}+8Qdn7jq;+ir&pCRbHV~9mxH<+qT2%T)EkqT0Ypx%tYbc_~x7*D1ms@Ak` zjGR77T1o*K*WGRK!K2*LyhR2rT4=LOhCGP(33cq78y0x*%ePHi zGDNqHXt_=lQ*#ykt||${&oR?dwfcF2iy#+vN<`#F`%x%=hidEMOjm`pNAX z*u5K#GOT$RkbOM?qUB7^f&kM~L4r&)1hNLX0UaYLVWNMe@obIfkbIb2>lf(nqf?Gi z%t)tSzf8;iL+^0Oh*q#ytVhS=1RL`jVp$UBTbj3EMfajw84-GEk@PaFT+L-6eiCm6 zlL2^|z0av;k>+9btj{<_QPgq+ik*0I0`;PSQuy42K&iIKL5cE}6H12*+rOAq<{?QG-KLJF)FnJxo)DuTUD7YTgt$sAZDx%qV9EtP+YC0$Ta!;6Hf-kgbqUgzL z3yql@+XBwRneb-iDb`TvBKH}fF$(a1>()lZ_8HVQwwcBT+?yPOPCzv!+e;w!Eyhj0 zdki|PkX<=JB;T1XNWopq;6Wj@TaeEoJ_Jps{3mR(=)WL|G9iK95*w&=l zz6@cH3QWG>xT(7Jqa(Z#suHYK2@rh5rIs9=MpO9@%^8=;O00J0mixoBY|N+dZ?nD{oDvW68{(S(t+;a- zS;Cvb0rKm;sv@@au31AZHIuxsq4FKUIo}=nDVv-YXGrsh)D^>{&==@gW@>3;DZmpF zvW$N=M!i)*k9nFt<`i+vt<@hWm$}4_q{mv>3t((S>-Q`&n&EELB;j#^I`*R8D1w>a zZ6O3MM+J7W(mV~x=KYk(U%e2uq@6+NaUH^OnE@2^GiM0YY6O(bLH5R{BzEG0}^}Mu41$u$u`j*V> zM;Z=aNA0v4#>Db-j664B0}-kMXs>(a?{;fs9#6d?iB$!Hyeuw!Gw&ncJkd zH`=4e3775{8b9KW{XMMl^zK`l7c0xMut8hqTQW{fv&a>h!;+msS#@R@X-Z?0hN&V+ zHsVoE0JfA9YFT%=`26X!3<4cAA3=rNsRMgeZ8C*-^_OKpS~w=Lv{>KGozXhQ5!h7F z`00PrBg-&JLF`K%UynV^1$jTUa#-jn8Z&{;60r!iN_(iohl>*+X^f+ObRlacRcyb# z!j!OzD89_Bcymrxh(YuG2CIC9bRhY2)rjWGn6O0h7=Pw`-zzqzU_aY@yjDF15(4tq z7kK|uw;wKmWDh4narbZo3iVP3(E|54o3hNV-*|a{Z^P2Ft!7txPMBXR6YK-57}?i# z_Ag@L5x>zBF7~l-75${9nJK{uiU1@>ul9I6hM@nX84g#Y(`mc3#M{8ajy>&;e z^{2QIo1?p6TM`Fde&l4vg4>=d$hLc!%y2P1)b0259PJ%>G=hxmdSODJX1av!LqMyg zfcHg_Ui*6X-xQ?)5h-;3tEL4O(t5;`;S5iXlixOCUsR+{7CUZqz<*)M)zjN8qLCBN z?YUO(ux?3OGjnNaSU-@JGNXFit*Rhq6v|VZyKp-uNm7}Wxb#!xbNaY@r`N&H3tLwifp}cR8r_a-=L=~Qc zvqtsA*xqm8`!SpQ={dZ2f#lqC+xOEU@~*+x!_}ML@U7M^@C`9(zsU-6EjobunWfKU z`ft59xhP6$CC<}lnNhBx4R7cB%`TH+sRczgNlR8Us~BUw(OueZf4Z^lM1*ALfdmcq zpmx{KTUVB*xT-pA5)!dmPem4G7U?pLm<4w=A;k;mKHBVc0fwYkX4f!J21kaP8cC~9EHU2`*;$8 zPBxGnL!x5ObJCZsPtm4YR9*8V_Kxp+SWy^TUKlQ>{+TW5c@VZL9-xtz0$&Unh2=*q z&87uxcgoyE3}Id)#^K;)E?O-0M=4m@>4kW9mbf?>*Wb$tl@*aPGDsDtt(zFK#*u1< zo7Myf)x;u7_HzayRcL)H*f0i=r`2nGn0RxAx9SY3LX7LO)TMQ7li5CNX&J&#MPowz zO)w_5TdqpRl!be!Ec_MjUwPer8H_D?&x#H_>}=qu{6#LO>I#Q40dFJNrShXN3FbEB z4)@JQ657m(V>2`b`UA^Hcur0O;}Nr%K%Qrmn!K3(J|NYcYSC33n+t=NPqL%z-qfp* z0jAFiQwbPHU+Xd$we~KjW|)MNiN6`Qdsr;58!Y%+d z%O=Gvq7G_=8#^xEC|Hh}^Z5i~h=&B~Qy7H)#<0^V0z<=!1{m0qQS;nYh)44ie<#Q9PQ*BBV|k`U!GRmwM{miM+ejaovu*iw1bHR_cZJ3|wd7kxeoMBiKu! z@P%t)R4gT+I;3)F^o&a45aBG*kHL1h5pF}|Iv;`w|KjoquH>rj%g7{*do=!vkITpw zGj~R!4d@9-EeXVy7%p;(-PQ-HiXfogi=HiH7ZI^s-(5(Iib8Pij~xX_d9b!bz^p@S zZ~80q%Wb$r;%n-0QQBJW(x2BrIL=$)e28Y=c22p$=99h16t4f->}08Xmxx7U8;L;1 zopDCKlJ#Gj9Li5{s5sE#lUsE6f2x-i8uomErl3#Hm81e*~=z$sG(9UHU z=5eVhZ^(;`e3I^zCuW$!R+kj-Q5nb>;&a5|`dSWV49mq2paBHw^+%5rcwy6)+p}@8 z8C$~Syh2eWbLdQtCTSkxWi14@0ENw#bbCEM+H<9YuOxKB{KWwpf^e8w9oS*Vl}Osv zilHOoqe=(-1t~uo{V6~M(n?10;xe*>1Rqk^P)aV-JQ(a!w5_dZW=b|5aNJltc74i) z|FDzQk7RqVU(qUGg$C8k_2tOM3sjNpW_$hF z=yPQ|1pQj~O(47NM0YeaA0T;WkUkiNp(?>*Mu_4?7oLotv1z~zC!YOoNH0!$G3xU{ z3aE30V(rjqk;*r2{Rd~0_BHraMbMIJ&FrT#jiC>+C2*&fcLn&2%$&^9C3e_GyR~Pxp!aH^jrskV*q8P$?@j7ffak6bdms67hY_V+_p_UT2a!fsg=t zYiEaHqA;Er{ZgLL2otA*{B;n}NC1E4v7(}8N3?YRAh|Xe0h~Kn0VXl}OdepG5=X3n zc_vra&%bf^f>QzFYk#Gq(ywX@0g{~5zV0oN)2!Z(I1VVbe)->}e$`2_y&68t3dQ%N zCaYzkq@k11S2`zOCqjq4U4?|6hFTs7zgggUE%LK}hCX7S-ImN>HCqPssY_VlT{a~n8EWU_6UvT%7KpSAZ6R&2Pd78#rx`lP3 zmy!72mH#kf{VB2w*KEdccVxP;U z6l(2tr3{WA`Y#29^2TaSw#0B`QO+dQw247rdo=De$gff-VExRg+Pbr2> zk9j$+)+_r#Y0MD}D!Nao>1}i>eFFzh5e{P#+3x~2gxWp0v$BQvafIwv{hF2+Tlb_w9i!`3)=(SS(Ad976=_DmFJ;8M>l$z)8@*XGyeqo-7_ zGH;ck^{P9xKX3JjWsV-=EQW-t0Sn?hoWY|X9n7p;jA~)oa37WB`2?lQ?YcboI0iEM z-}i@KTl``0a1(k0zqvhGdx^4|rT~REnzb~3_nRkrF?-SIsX28wYR}4g1B06W8+N_< z({umBnpJmmQIl}g)75})&-LWu7sek={XwcL(|(QT9((YO^J&Y$M5U=rR!cau)Af~YyrO>lI`^9zG)$E8%D4HFZ^~WQX6MnjAz1tf! zyyNQ3!+*7YO~v0Y@qA*BT|C0}qVKS{0}ZZTbm?Z(4mDC`HK(fBP}7*IZD3b)u}I3k zvB$6JFC9F+kJ&!m%MaiVBf7pNzScKF(Ufwbw|T1t`6UDeqqZ5=yd#L{FdRtlwZop^ zjPJQEB~o4ae$MG3tCe)m{$-J1&5A^L>`K=XlQzo4bC@H!OKJmqY!Pkfl-VDVZO4L2 zDhGcEO<t z@E=0Tu+O9cIlcLN?9x-MRk!{01T|WhHe>d=$M@>T@-j3w)fVLi@4U0o_QYbG=6Tcu zD#d86_Ax@Z_lerZ)gnSAiPR5or+xQ6WzZ$EZ2UOA-Eap7EIS^IdE)~hzwqQRGp9U=lT?w14OdA~nJnhp=tBV~(>{n$KVtv(WVU2g90uwND8s6$BxYOC>hL7e zYY>YP4i-CMr*UF5HEoxI)k;CPCR>FO%65mgCg01<(i>x6uM(C$mkhA+>V8FV>walV zMePI>ytx~{-}f+Taf86pu(iyx1rBqMy&O;E8oB$6%e^I1@CxvtuA6d}oI3n_Uj|4E z2}7W7ljpH|L<5NFkChAa+=~2*o3~SSR4IkaQH+DK~X5KfqH#s#5YpOgm>H=*N z9#%*>Sn2(Ym{r3lXi^xlCkTE7=&>jC2c*-9)L1!;mOv{NS?;MrlpyA}{$6_N3Q@LX z6L@#L6lmmqr$o4{l%dBX*x=n`sP#w4PdfSXMwG{AS=ewXZNMD;~QPcgf{n>?qLo*?H#0WPB_J7FV@3Mjz$b_dU3nT)9^ z%gM)=XRV4|VzD`BKWb@NwW0Jl_x*g{W;xdY`+V>SJeeumeT5eI z@p-w(+x7ce*+9+{+KqWVzPcsy8_;OSY`UA~@jpm=%K+>kM2Qqu6U)07h z-BopMcFeY0>!SVo@U(Cwn_p>20IAAGlH-f_Yp14OgKE3gG8ZHuUI5V(CZQ2$o>3mx zkO1S~C?@<1W3)SMo^{5oxw^@&toJr#TxQVj_$7q+m1#_Q^w3DCXkat=n>>~#+Qm6+ zw)B%cNY$CeGUBuX2z4L9tNI|lu=7-ATwN=*9`$-n2Fpt!&Pzj{|AQzk?;(i%$JY-# z+EU;kLeyRmL69U6Br}i|XYl1cCNCggc|_WOh33u;WTkE#4ldjt3ftH%40OP@Srfb; z01i(9C*gl@qOvsO@-tHzJwr-v#aYFR3NnMBbMWQHAr3X&sA_RRD|3C>i%j+6@4aLdsgmhD5vMQ& z024T8Dh3!Zdm*GrKb2DqD2CV^SQkyrM(itk#dAf`7_q~E5>iU(BKI8@qzw|Eus?g4 ztq|#2iP0KMLoN;un!IEe33ockpIn6~t7QPgIAq=!-y<1sU^>nTS@urjKyV%)cZ*?9 ziijnuYZA2)NaxEuxVD0{-=KyM!eS}{ZWSg4B`Xa)Q_Lqvfh@Vp;#3oL0egT_N5^*& z=DX~>?9%cjcGwC9`_ruc5nqHzC>TBnxk9ZXFchx zyIr%TG^wW^1?HOroFcBjEPg_pCa1dt^2vR)AS37H<#h8D+{I2)i{n=-_X8p~M1v-( zY88Qg?;+EgcO>;VRuF97r(uRX*^UR*&lb-IM_rWpgdi&lQ1h++Q+_)e3$k7quU~@a&_W`k%~pWz6l$oTQ^q^2yViY>r- z0|vB*>16lvbb(~)F_}_*^5Chn0PLFx3e!?6fqLTtJo$EEl^_iKam<1Lw$d>zT6%&Q z6bEMM>01P|G)(WEEkxd!cJNE5(k$nXD*AIYkdVJbH@RHRWHoRhCyG<&Y5svvn<~-u zUsQ!;qfgTM;6En(3iVVCNG)QiLlOsu2gsyIp<3XPItyT01bOIz3qT|FX+Tp!ur6m0 zF5}0n{Oxz+L1+s0LEHv`Z>2`BhpretCk_~;btKoPbpvhW?o%wqeh(iTrtBZs_cTKA z6e=yZb}B1p3V9`WVw#I`bO>_zpe@LQfyP(ky*85Gha=u2pTrNU4a6V|QY-_KZY7A! z&8KvD5$~TCgCyLIl9)4T%42G>ixP)n2*7kGTkO-$4w%dQ7^d+dJ6;OAj|%Ga41N*Y zXv5qz1o!S_;b3DvbrYcrJ3(xrPUv*Vu&&UWXf`**1!O(ZVhpEI+Yyt7+RI%mskbIg z0EB822UqATZksQ`ldqJzGgZgv7(4zp_JJUEC` zmJ-EWOo7B0Hl>$kX<{7VKai}oCLxy9m4;#Hstsx`8-z1f_Hx|!3wm@;7NB3J+(le22^JDG5EhTZqS+k25wV_o zEM^LAbCkaGfk@=e*3<`@?D_0CrqK;3gp~sr>5hA94E`LzimKz8TE(~EnUtG1XQefr z?0+yR0iaV^Text+Qb`|(FBF#7S@~icC;Ok;k?=w1xz-hi7lQCrp;m>tUE~+Pw6_j# zF3;5$7dl%;uVTr4!KuL@Vtsf>{$ztGjx1cYckHsGE*Bm7L5BiItUU9~XJ3v~!ZPGU zvaHgV41|uF#4i|y@1ugtBuK2t_|VeEwkO-7+aO@I>r`bc`LGji-C^rRQ%-3SkkXR?uSEmm%#GH{_Y)< zC|P2x9Hdp@@gfAyY>ofgfhx6FIzaZZh4ep4mR(xlcXLQ@foyZ41U+`!95~lR{>(Db za^u7Du9$O5-*rJIW3FH&~ zF>bAkOK6a2_j^`L_DMP?J#u{2Q{E?dF}rgYS|hu6k2wcQMXTr=TcCXkG^oQD8T_qiHTy^}5(j)gbf($ZA#Ym)fi{HRg#EJMeivm&u9)=%oyQ`z|%+BeI5X$eg zf>oq;H+K!F-mI9=EsH@sBjyB7k%=d*qg&=`AQ<|Rq9uviqZsNbHpRZ3hHnfFx#!v# zSJN$9tW>_|>AEmPT(PQC5~mWDKv65RY132pmO?ad_1EN-^}o&r6ZQ~gB4g-8*3~iv zoyz0j058xin0j}bW=jPzCg!R%=bU6`+5rUA`9Fz3bk%$42~Qy`=s6waPIBljvV1k{ z_NvSqGi_R3KVOe;ZzC1rrAKt=Wzku+mUxDnM29~}^dV=y8+Qzbprr3AaAtrJHQ5vI zl!5X)=@4!wj$!L1YAjaeQjdpaY&60OZe0P+hy;cmrLCiNX2f|INN9~-X9|kY6-aTJ zkYY~YDk9Ca?!4`Z@~~oNMMAz~Q7&ei)^U=fUgJ}=0?CMZe(Z{lso3E1=@LO}`6*9i z0eXp5)DH74zJsD6MV|)R#PB1hD{gT3P~2`c(ax`>+_(gBqOJjvqn0>ZEpE~38FA@i zM1cpbCD5gnUjjoMa;jyyn;~^*djU!)nYVF3hux`T*8wOw;jHk z(*f>RX~y3WhuD9HxKte4cqmVIbDemNcK`PD=%l(o)syWts($8h}33W-dtZuZkyzuFoL_Q^xLi6?8U-qUMqgMNcpM* z;UV~4+GNf=J(v7$&H3bj*f8I(1W(BrbO>mK+-tL&`e+NWC#3fUy$ys)UWOXystR;r%|st4jY-}L?|A@>H2^k<3<4OjioZm`Y1#L zGg`Uu_%;P9);KvnWkQ&|Qv?y1>$W@ah8i`47f9+GKt+bKVqaw!MUK_)pfDir3P2#W zPtT$w=Sop@qM)<*PfBL2GH97bQc9#R9$-1h&g5=-C+p2l94bBbQ*5I=>sB^unU8K} zPN|${<~WNCq4O@WjYMhP@xgc}@Mw~g(<@``P&v945u1smRoR*MJ6^F$@x zFkbOSRmC#cB&|sM6>G=}-op;;{0U)2d0nBn`O7k|t7_T8>R<;LvCV9yjiIqPlEoF? zsvVgAAd;{0)Uc~;%X*l7dw40I^;jnl>3=Rd_=FVH!)(B-S6~SIE zbMQ{FE+7pxPxmq%)vsQ@v!)p3tn*(*H3jM9XE6U6POX^98n+U1c?1<#sQqV}`8frh zV5F1?boiqY`PtnQqew^q{^ZM92X8(iz}456EZEES(%{iY0u*2XIZlEVe)6g*H_5 zm;0*({!17y6W}smvHo8k;sy5FN}~_5V-J0mc$p@GYv`5-zJH}t21NJ|3J3$KzEOf$&=cw%25_$EEXME3{`o7CkWj zp44M;G_RiO6*@OiI?Iy*rVRud4H{aWxlX4jtz;PRHRZ& z`?pf0`LE>Ge}mzX-f?G!L&y^2pR3+{*%F4YV|1k7EIDsm;ar@Gg2hV}rDYB$N>l#z z3C4}cYiOjgwq~QHPD!EwS_)7PK-viR^Fmu6b2L&9ylZ@83nr5+Sh+2a|Gm9?IxDpxQB}_TsRz&iJyCXjbQZ5p}S7GFlB^e&E$vc5<>l74xLtibRz-;ktjA(qKimc0Ss zd6rRnXf^IsO?sYe;WSP)BLn?iCgGPN`b}~2B)vO?nwwsZW-VoRz~*43#R_pS8S;dS z?~5D4U-{Veesgy7^4OI018$tKj`2TKI>}NH36w2~WfBdXhlBlp?QoXG3ZM^3EyWa| zzmm3!slZhClOReMK+Td^ODIGwCk?WT0#UA1ZC~#M4$i>72afCdi)QO!3;+@rMsH?M zFb3nIa={EE{lBX*tMk>5{05&)Dd3@8)|1jp(t$(Pq^xS0QoUY7of;n1p48S{0R0~%oDnuznk$$l+8mq)FtIVnw|I2OyYjZ*F5VQ77@7v9N??MRypbEups%p@%h_2GJv@i)b>GfF z>+~d}w6tY6WKwHg4g(#jm$aXOJ`P{7a3#_r2hJ@Z#)`SxHhIlY(U$Jycx0oDEh)SJ z(nGxoP)-F3dX&UnAp}HOPEA3mPRY=Qmw~9@hbdI+qG{{ixCPor=Y07PH7+hjqSz%# zs>o!%sXR_w*#A`;!tf~G*x+U&PpxaqBE4|F!X^H0-2w%U^yBF-Z~aZKo!uAm(N?hD zquWyF%F^?Lm^~UF?acT|?zPmijbfToy0Ld(nX7Gmve44wGN}Nb_I^HJ-;_CjsK5O= zh8CM>6o)MQ+X~z^ConRU2&BhSkok6XU|FKIC-lT%#{jF~X(z0}%Nk_A;^j_{ecZ!J zU>!f_r@S3Eot4G^E#B#0Y@@=3gS1`f##v5+qK|`@@7ozyEr`IG60MfXXdOdz zPx&H%XoiOJE)!~|BAvPb==g=+p_o*aX0cNHpU!g60?@@Rbkt`1V{mZiDbIn7OA|j? zkTIhgSC!GJ3>}Mt3OkkWXmM8DK23MoZo`X06EDyv1A#d>3msD<9tp=wtZbnOnK(^6 zZ&9JVId7BHdX%-yCFI5n0LWpW;Ws3UvmeW@A*4Y4{246?(^d*{MB7MSUaG{eki91K z*#HVBMAqDhFz6UpkcHNHEz0Rq8}pIXW1+G=PT4SUca@_NxHY;_lGl8z`)X!KP?y8O z9iw;R(9&mIyoWmNf>zMMxfV{6J$cor$!sHEnESh=fAMlAQ(S-q9Ssa%(sA3XoB6(7 z;a6)*HphUNk-KXS?^h?XoutC7?awo?zW@^_(=RgLR9lXjL{>2Ftf(kn-rA9fdRA1k zs+t-Qrq?!d5#$jljUW7(& zIX$~$v6>I$?JL|A=Mw6kECQBpF+GTOsO>68wpD2Bj#NHGWIc1Tv2FKD`W;@n#z|AUQWOEmyXq zes{heJJq@bZy*<2<~%}1*(wqJ5h(flx3Tsp+@ylXQ26^}_o^w~(nE16${N4Uxgb7% zAlO|5-SODMs-W(MulB8ADM61DA$(;CH8l%9S7!2Nxg2sZDAI%uejotS#^V>#+Xd9* zP<=%1X2#O&4T+aP)(xx`2}YJz;7BBvve=d(a}8$)g6$xD@hP=!+g4c zt=6=(w)yd36bBU*{-kv2K&w&YO2SsTdXbiswZk+Dq8ec+WP80s6bnjdT$?4Mfme;D zn(s+mN`ocqm^*#t34JW#AiuvJ@Z7o)<}73p;1=VofadAX4EF6`in2;EmA!KmdUI|j zKl=CyY9C@G|MyUejUD+a1DHK86k7VOBaHjEkAMPTTJ+`rf@_lR+y;9xzI>ua!_x?T z@q-~ljLnz8pG{spV4j5G$u?s5{3Lir8m~?x38rUtf+N$79DhU#r3xjME>98d23yqx zRsKM8>6{>Xe}8pt0SXa3p&&K+uV*Bo3B*AnU#GC&!-}18EN;}j0l4tWD<8S{j~qpJ zbJTdUfNBqv(Jai5X!U`${>0`>0*~g}?Fr4C;UPOSxE>xsP`-n#A%}E-;}3NO*8ond z5v(yK(IiIk2qq0Jw78{brMT=DlXnuf8d1NWO+2#->Iv@wWsKuxW_{FPCOL&1OK58& zcO~L#@&q9O+XS#C0_@-s+MANY#ufp+YYpzq(umvsn(`H0mM$OdUW}Oq58O=nx1kje8A*BwbdZ#I4R@ z5*Dq8%Ue^ZT_weRrSc$@$DIq58IlpRy6B}xx{A1(fK` z;@|SvutRmQK z&$s#!D|N3NZ*ayqU8e^W|PNksB^2C2bPH#=+@B})ejBTi1S=4TC_3jyANl! zidTJ@?0p)7WNB{8Uc`m-IXfPzBp6R@zvVu5dV1bct14zB;J#RTl`(1`a9aJPg`_7z zvR)~ZcA|_vP$S_*y`!2a#k<7!T~00kf_R+enl4BUv)aP7qD#H$aV;^c9K#=|wsYH( z0}gK*zS6YxsLO6eouq@-cv}eXlSjS0=){Jf56OhH`nkvx5eA$e;xPMiqb!ZZ#r}8N zZ{zprPRDBeene*cenP3q!{Yl1kuF%m5bR+NKsTlDR)~d4G3AdQU|k0%(!FCW4=$a? zKZ}*v_bE1Dq%y%iZeX$Ghn%H49e8^HvP*~U`GnDaNO!WQwTbW(c~?3JZgnUZiMvPR zdqHH!Q4YR&gcn>#5ma6C8Xs5x0r207!^mI?JV@u}8Tr?0ye-2C+`xl?8h3ikVIjz+ieKS8!ZDYviKw z_xxEMs8h{Ojcuk2r`Ac@kqv%W?!U}wB06O#MskX2>kLIRWDOUMPRikb1Y@wOX&oV= zAV)Uk)edgME7$f?zR?j2J#5nk+TPd=1@V$@cFmB{lmtEJE}u=|4Jei}L?4sx zdOs_vH8k?=L%dS7U`cjmV%jZ{ao+SCk-aXn+R50bqnP1j+#mRo+a;i2DGjqro=&Q- zEbOSp9*B90z&Jx=j0s08t$p9gOReh#hmILFfm!#Xp`068CXD&cg)=Jwh1Qd(&W&RW z8Iz3Wh0Iy171Idn!kPIoS}oVuVX2;U2)AsGhM%RW&Q%N-**vlcXQQU@LR6Ej?L*Dg z4HMQUHXyoQ)#H6~@Qvf0@cuslia>S0ITcXp$8=N(>P$ig+jc$Rg4O`ls&z`=F7Yi? z#rf!=!ejRB%->VXf1QXU?_hK5l`z$$i~I_snXsl7_Ozm^kdpuJWywkLe%y_inUTi7o*Oas>>DxJ$UhP? z{~pW^5mb-9mXjRwT27VsT2Ajqm3`2n%taBCEy@_Kt@Pb|;3^De;8`2B+S~)*X`h|o zuF#HMw9+2T#zn~<1PE`g%$zoHY6o3r-x+^N3c4xdY1%aWrVXlE;4*^Ti&nC`FXSO0 z%%m0U%|YhRV66Egon%&6^2B7I&g4k0odv&zx4C)L@>Hy{LAj zAyeDJG^s5tGG0W9W+cal+HtBBJJ2+f?h@PPQoQ$i=`t5M{YyJK{etPK=z}gC@+g0= zq)dKo2WMtaa0rdp@8L95 z=IAaETiqr&?&JWEILsCL zFV)C2ln5tyotN^Z>&u;Yhg9GNna6rLIO)$cxZ zRsSCyI{A+JMDPy^;zLhjuThYV(UqgVIUN?I`BU>VoP33;9dh#X>#6n|gBUBc#+IJg zn>MsrrA3QX!P|2wHKSar3c{s_y(cyHz7bpf|I3TB{{pHraA1>RHxrXD$`u1PF)^31 z7X>Mk7PwFWF_UMwBm&COla0700x=nrwYV*Rs2y~Lt0_-roD-y(n#>qMN(et{yYrMj zKCCxy{cQH{R{r+VgtwOhVWaE2FBbp2hOw)E?Q^6sjyP{9c{5+^x4ZSf=lk_`^TLl8 z(M)GjAqJOblq157|Jm=Wk!+%nQJC0)8c{AMGnjy3HS-9Ae>}?(AcMdp4x@ij-IFFL zeCAZt)PBl5RwAs;gu|k#YWme691IeO@Cii(HTlMcF#f7e)W8q17gmK97_*zR{Z1^~PzPhoQvrErTW9f-Q z2^UFF`~QA={Ko?WdWZ=YEFi|om@$b?Cv&D?$v`ToIThjAe}$ExUAYM-3!ng%!ve?} zyTgo~xq@eKMd9&6s}xnlbSjIUBRdxG14sUk0?z_|oFq6n9-#z}q_juTMa~$d3oljZ z;7?xni_KGbQ8_-(0yhnDAYtJ&Z!*sW(+4ZA5I*mLICh?fQR`p07U%hlSX{XmSBXq* zoe$nM_AWEVe=OXyF|$TWi4$Fnd`2!tml|??QjoC8hgH&uN}2lu1a*kJ|CPnMQm~Mf z4urukawaLklE!!&EK9JYx)=+Ku_TyiSt=2t1Q@v}fvbbeYL;II_^2dJ*CEzs0t*G& ze6a5)#@(qwa#C$InwN?{k2N}3Z4I{4qCol#S9_j~Qyh#MmdQw6kMO~zN?lKq5(6jQ zB=Nenk{{Db8fxV_qm>(?~~_iJiYp zX(&!HP2xbn4>W5q70BDzkn%~@p5h!f=&@SE}R0+Od`U^7mZ~Tf8T(;n&ZsaYS=9b^e;3t{P3W)$q|!1@Y~>e{5jliY@$4lMT%MfKx$D%6 zY?9NKcuAN(e1fn!Sgw55o|}Qo<(mGE=OLvjGMCsTEW`Ec$;6J3fnx|ORZ19d6P8QD z4K0tzl0>W|IyB@#tyX7hwVyY_U|k4<7WmIWb|Tvr7cYg)hjy$);_Ij}fB(lF&n;tq z0cGuMi)*LOPX|WNw$wC2NigZku`CFB2)B7g85uL`%PbOta9Dx_LSS}qz5;VZ8T=)c za8Qs?3R9KV|5ho2n|CX}#bCX$I|lZv-G|k3J>OSXKR(X=_4R(edhplgyOrOHuw2>J z{>?R+u9p7Fyc+Umdv~|Bf4}?T;YAjYFr+02Dh0q=XH@A3LxH z;U>&W57=Z7QDV1d;ORqGuD&KGevU>FEidzP#$4p*%xWM;S~RpEgaCsq!iW9$HXOEl zE38jsQjWdiSqFS51$WcTNE4GkG*vnsFXp&Cn2CRqOcecM{B{@3#pvy8;I}yb{k=iBp#%^b#IeVis(ib(m7Iwv!wcWpuVz;0Tb$;7H zwrxTT8c_?fOXVmh3L;5QW0*h~M}k^3+s?^$1s76;Q!Q%*9X8wBfwK*s@%|V`6P#hY z6wa%J9&Nx5+ZdXjf9J?Qyye$Pag4!m|FUn_eUn2HYM6+8FwQ@e$IJfk~wq22hO>Gf3*;u;0g~w3`*!x7=G!7 z)C;4bRKyh%4jHTC*d&`%>)aLcnKbqeZWv7&ibbY#W_-*2Ez;Hgi_A1@aN5_KnuUDY*DSj@ouwpfC(1Llmus!`7a2dAw47*pJR~Iga41+urwNOicFH6rvoqMEAMHsnQ4X;u@DT@QJ7QrQ;y#60rS&k9i{60p5b-}o$cHY8W&pL zN+0!B+<>G4h#13Lfs+AR^!VOtsG_oAidv)>e=1efWJeRRXAZ?(r)620Px ziL!A|eTzXKLk7Mt*nQrk>G@Wlvs9+2MJn$8IjKb|w~=O~jr?a?&nOF~&szGfrIZ&!}f$^z61z_x{8Qrpolft(27}QYXUmgi%;qx3RVv_a;M~wU#m) zf2va@kCSM7(q#)cWi(>)I@-4+TKkrGaGEMjRPZ_6=Wpqe@i=0Ad1@}T4&1=)oRnZwE11M%rEIVsSa$Q zF}VV5!D*&(%{FV8YtuNYT_)D6xwEXnqztpm{#Fcx0MqAXmr0RbrYCpy1UJm~_bfX) zTybgR!ZWkZ>ggNw$w|vGI$ce>`H?vP&}}}NeO5*0nHcOg{VD1Stzj!UKlB;Fe+b~( zxHc1f`hK;r2lZFKdsF{nRb`Rj0aV-4irp7c_bsm;*2~BFUEROGsk`+*+~2MD_DM_M z+pnf?cH0kr)V|&r;GVu*-Ppw!8{zfzMdw)eK$VXF-aB)Mr|l+zkQd)=>gla3 zY9DHb+RHz<*Cy02U0BtxT(DalDh4$>8>%-l$mwRgck}u(*F~hUtGdoW_n0BkOA%Oy znPwIn1ZL>mhF{&=@C)+le>Qfp@^>$cL`do>t$#bv@m0>s0c6CWZ-5;Sxmx#HiJ2hN z!}}!?;_bOe#IsUevUj>+W!<270x#qAk1p)dkx6U)We)gCvOvCVE@-goNdvLQtX|}l z@s@Kp(UG@ZGQ@1-0LYLqBKLZdmL^*GU80FHYHxcV1=lBt&sduHe@y!9F0sNYTHu6{ zQUNFRgkm?z5W0xWE;!B)Z2-DpOW>bc%5*NauQor5W-cXhx0SAa96 z0wJBzsrxLaU;0bUpBx&KE_SRz+oMHQ+~XJf*9n9DkT`vN>3+W3`%eyog`*ol;l2&# zoQzxCZ68+48vEvNx^)rZV)1ytURCjvvPU1O7}acdx9dFsf4uBwOAaB&p@cK9Sao{> zn~ZZzxZbA<6g4wqid9fiF{f?I?c?p;k51p*wNLBa96l=OsoTO= zJ#b%9{CE<@LYV@J?R&NEeyoUV^O{lZHr7VWwzI5X%;kSSt0q~^8m`w9MV&yj*?9YR z!gweOKl7Kpe=JzYX=R}S;)zMhanCvw93*xCXwKxc(}eirz-#I7)@@nu^{qkj+qI9T zHvYf2_CG&n<56w5_EL8^6g_aPz=Rnho`(tRz;mTlaRcs#0b7OJ06DBGUfl~+-qgtw zSskmIl)-~-NeMFqkITFx#vW?uX2az0uqbk}4`2!Df8~JxiRq8ZU*W?*4Fr*y73jvC z`Z=$_6T;=&c_-=W1m>$tGao>Q&`A??*)%S&0^`%)jq}2wr2*JXIJ*g|h*gBaWd?&& z;Ve$uA==cS_1BxgC#uFL%A8LWeLfKjWaLlf5WufX`AVQQ?G_%1zaWuywySOY$xa@6Pz~!IL zxScB~-mXPccyiaGI}BUN8u$Pz_al9G)lPbw2e~!Ax4w7j0%$aDF>;b~jt7%IG zOkI+6iiD6yyBDZ*$F2t!sdJ+naplj$OU3t(8QUcRkOCxA_MPmc&vbEH4p+UltGbtz zNNU>Cx*ql0e8?X;Kz%NxA--c@pe=?4qY|^CW9SP=+#NKhGe-@Dk2l~89LP}tNagvN z$WrUsPJ3<*?QMRNl6UOGN{o*dIyF9ds;!hhC$iNAY-V)NPY|2Po*8_~Zq)+~a0okh zWKbfBU^laZ1slW)o; zf4#Al&9uM12Ouc{BtU{9C~I9mSr-a82l&qY04`>4XT|JqXMepo`~0=!GmMeuoXjrX z%w&O-5HqRaFQK!G>)DU<7k~fa+lyEKI$uyC<_w)Lq#*MbFTQ_Se)7fF_Jy3k+<)}X zZ@>ET;)j>7_D}qL@sH16Q{m1XA=EKc;``h*Ep?q$6Up;rdfBLDw z>~?iszFpr|4{Y^G!ce_^I)3&Igs)FCrKo-;ox-jn9cE`P~C1&CT;t^vz1 zGXe4$Y3^qe9vWU8S25ru#lR0%3_@vyG0&nHgapdFD|EK#MmS?TX0xrU6J$J1X!gvFKrwWAOfN&Oi3WFppm#jvwd7~8w^zlK@eFw zLoyqRb;K%+v39Hy3NqkXqD_!dfZEt?A*EKQ*%x7@YK)@ADw7hQs<_njx; zl;-60av7ROSy^`&4Vyg-zMxSom?4U_$7u|@Lg@U)&*602=2Z1Sm%<3ZDjle3vvHZ~ z^*CI<0~MrPqscv1FPBkPMGC9xvBSPW8`=_52@ckt%ae|8lNb%lD8xp>-OY$+%8@h< zSwlpP4a4&eZZW3$-G3p&t&C_SDr#45+hJnBWv^FdfJfBJE1PC#r7NxL7Q@wa+hq^K zGOM^Ads~^mtwEFOaC!3LnzpISZQQOp+(v{}AXZd%l{}tVb>p+&q5;}vge1ekL1ASq zw1k&b9uUU3wDSboDbTJ(Vsy!dD;qkgYv4*C_Y`Zn4kPqTpMPR)Y?rCk;lxxxm#^Al zphu>Hai@|9Yd$03v1;Lkow^P?KYtCH2uoNF&g>5CqEIlRR92h75I+acm+<*FA0SS{ z^VRL*;g{9T4ZNYu79c-=`TYx1a-?+r)$;BA^7id|d0T$HIj3a)+s$?jVd3ij!E(x& z&8RMjK}EF)tAAgATb7l*056N(F9bx*Uae5*ddlkE<{W}$XF~hoesue`tQ*3MZ9T>v zum-<#Sd+#4#W|ik-0i0-xr6st_60n8S^nHB5LT;xce!1zZKaVF3?3wE{-5&ocKO~` zD(!1SiFt9ox?g`hhj<$Z{%CkH6+H9B@9XU^<`tdauYVp4xoW<;+LoVe?;4}HB}4Oo z5or6x!)m*AC*4%9?n1TA|E})uP$Wgb!8qACzNqB-FClX$klGcNzX}QiVJ3};q-K7e z&CkYb5L!@$46LGt5UnE_4-lpW_p|X0Ke8GNWIszlxbmI7AC)%fo%FgHP0 zgd-xn1eW89G!2n?W(Y;At0anAs###{Q^bRLY5`ufpI7)J)d?dfN5_<{vC7|L6R8l*GU0KtI|nM!eMh6 zQQbr+C*$xLs4hZ(VmxDwl<$ZyJ*F#vYV$6ZtHQ!{jD#~>vl7Xm03ytc5r{Ao>ep3={-fq0~NEY07 z0z8>2jkJzP7z8p30t~-5$q1@|6g{qUVmFqgNEM<90yQ3g1eH{-H!)eLK#)T!-BM%Q zV95N0K57EJ8M3S;6R#jpxuqQ^XChQ!r% z3=*|@YWW1Uw=BkFEO(``tLyF}Ak6^;X)J@t1B804oXTO93fn);0auWms zv3qq;7D!jr8A{ zA~iK=-6iKuE;)=DhB&8VQ-Vz+(#!^8Mw1*qv%tIjWG|y;<2T~wTIjyWqc2yS2_3n@rOo@`LYJB3gF2qOtBx^6$;170 zE#&}zu&nXz%(2cnvYoJ&~Z2eFD8#;@g`9QtKdSh z0*`{D0krhsxD3NytF(RZMus`su;egLF{2RR>BJ{lMD{dCE@AzrpMfpoq*Fcs;DR447@|_ zvEIGJEP07phj@ce>a(BOGY#3Ih+{-2ag5^mtg?~*edLHs!3HY;XTV^A_bR9bDEOvg zIyG!= z7;Ku|k8P&>;Y~L#vo)R6>K-3Z)LHjb_ga<4x=T+S=%uHMr73EHzn8?f8qRmLm=(Lo zh3kQA%RaW(p%ksK^;17@98J*E!~}h=Tz5z1h9&3bW%kO=x|d!RXjcg4=9}9Cj^P87 z-_;~PX#_RvSElnSYgr|+@)m7Y^(${V0n&(8v>qOk7u=+vsc5h>gA?B*;I_PW>_O~F`!OKVa?44|lV zEIjiBy|C@S-ZgRuGQFr&i?Kil>Y!%6hm{BL6wj1Cktt#)521Z>lhEoM;0<>w-!9|c zT^6ak9QHE;*3H@F5nE{1e|BV)FO#BtK1%PjqI~M|AG7W_t992|t-Cqz?j{E^XwEDd zgfdzLOCi#=q0XlbN6JYkO-@lEbZ@>?4M>;DzU*Y(QPj?q5}kaPi5R4zHV$7c~ztc&x983qGc6P-E>^x#k!+@~43oaa^>h$3ROsbHWKuYhNq^4UFvw24fd3NjIj(=pu)=RSIw(QhLTm zib|`i(%gqJRafP+l|J$Ict z70zx*%7nSDbk5E(Xf)VCmO|fnI##*1Wvwu2G3eOkGobp97pRz@1;!HJzaIV9f z=3iFa-4Ao*e{;Jrx0yYH+k7&OvZj#@XY`xPvwb1&4gK&pByP;H}y4S$`=xUiE0&jP{d%+y^qwCZ;>0Pe}6g27pd8(`ID{3hPFE?jD{;*OpokPv~5-WiO~s8rw;5;TnG6tq#SXrL+ag+ zLk>Cf{zJ|R0z)Dr0#V%D`sy2Lx0=-eRXm61wZAH3W$?oHxmLiHj|Ls6#+Dtu@?m? zlh4~Wf2);f5IFZc^3~f_zWVCo_g5F6e5u5Wkjw}{S68*>bv#l zfB5XLS6}@7a>J-x^Xzh?Bwc_0`L}P1Z$A6ReNgK+r?39}*FSxI^^Z4SoSyjC)gM3k zl1cwv)WB!PU@Pu5|IBk%JQi+=&@88_dg_b6fBoaLOHJ2TU;pKsZ?RPgQ<+xv^Mu=n zF7ooos|}|-qe`zfjATlP;;F0e_r)1*9v&a}Pwy``@cH4mI~?EI@AZ2BpAXyT!^82C zte=W+ZXX_tKY1?xRNSf%2a1pYW*k(H4d zgB4W{Afse;bAR#Ozw*@%ezRNVK$btbC+}BO128Sp?^fSl{Hq-(*Db6f3^7y z!2Al?ArToPYQ-}`bn)!{v7iW&NeX*c@V@ew{VhshK!(!TZv-R7gP&rs0)FMNU{$fxnkAx8S8T07okmbsg8lLBs`&8tuP)je6@VZSY~~q*xAtR`0nP#bNzhrX6-VZJ zG@0M*hRD33JSIggC&*BcTcG0NXSZLBm2O2dY%-~dIhYJy_1Sj?Sr zDu_%q@i>G<1?mILvLsk6f7c4IsB5k?(Ol_aZhKvE&r{Czsfwd|G!jC0LyZEv!2X+=oOVcG-HBMB0J_a(Nf2M^GIe-tE=b6z- z&`~YrV}s7Z#_bqvXhCAIp=j;u{1?TBghzeb1lhwDvr85HCG&Rx$ILtSO2iOagaq|3 z)8M6AYaU|S6j~Z7LL&!kc@7%fkBcM=K_-YE52{-^bmaRE??+hAD=@)d8uFRKgYZ6o4ysP+Q>KMyjCm=J z#yPE#1H30ec%O1gctQ+tIW{B45tSr?UUHCX8dTcMj99&vf=4MiZ%VAnh=Gl%*Qk6a zHW^_W$*N{1N>y-Uj0Z^L71DqVIk@Y<E@6bL zZ4DiBZcm#U@QRs=AkqoLXlUIW%g4paalKn=WxC?}Ze2jAhuNTjrX)~=2UD5-WpX=LVYR6uFw z`9=Hus|_%*;{|x2J`RdbCTS!(MH`*%XtskOmlGph^6Vi~4M!4b_^)0o75{A!gn=G0 zbPoRkcEF$W`R^WijRK`5r_*0sr2uf^`0vHSa2Tv@<=6}+1VhLg=spuJfYY|KYOQN9 z)HW0}VpV8=*5|CUmYae|eL7d_$5EY_MRg6!!DjSrC_%)BV@71(7l_8N;b4pzc5}Tw z&JM=V$XE;w;1^YLa)&BD4lH9at7Az(HxwV`I^?+>%5%AxrT9XglfXY#UZ@$Nf#of& zvr2k7ij&$KlR&KQ_`G*tup_QmaenUMd$q9zJu;+!gd_4Ek>x-_F>odUl<#muGY<&i z3V9(Q1o%K@N|Cr1^2OMtu^PNhDOV$!vv{bpG+ZX5xXi^>{~y_`6%_?r(POh&VbK9j zX?#h=Pp8CV#wIxv~2oVh(J z%55R;FacRm0>S$fblVa02RUdHpenkxU}VHepFQGa8)AS_B8X%-;#95W)5x^i4uxe~ zX`&(_&(FI-$%eCNve9j_u|{WZRG>E#Qh(cj#*l8iwv7MRvL!#5lQWl9N ziRPfy;7QAt77&S+wwch4=nHB^E1rtB&r?I?(pt8Lish%JMw^tAuqsDjb%**!mbm6& zRcTc~Nq4&!EDct{#>!1p$3aA)hVCoWfR7ZGIlU^XCeE+aKnoMP>Z7#e9pyf)-aE~I z0wZ&_z21{N0K?Z+wNKY)06#(teJ1+imPSk=j%LXVHO#3qzyD`ysas0Wpo{}Z*L*S1 zgcN3_p|Vz}^t?ub_v$Gl0|FaSfCpYmMx-suuszdap5Cn1;u0{5w+)Q#qw1Hj2}mZ2+m2&A!IrWg^X@j_74G zlcqo~5&LAG4(cuJ7}QR0QcWm&jf7u9HLBlzy|fv(L|9^f(2iTa zJ~pyEwnt#wdUNj7$s`~*#lJ26;87WrVYjI$z4ai9S7&Mf1Y0q9E)QeVvL`kTvu$jBo`x5n?6>`UrD!{pE&J z)5s0MWru!o@bvhIa?3ql8b#zVR}x+4QEpDgiNaJ#3Z}=RmT28)!<8hYoWeAOv9P3d zfdWy)Yq9hc=e5{DFL|1pQn`Fh=?kPGM5b)l<$NhtEj3w+!S6!(OxA<5%I7ix1S*>V zYm(`02;($~Kqqib&y#iOks8|FHuLg9)^k@$jF}>~I1I}Ee9u~6CQaDrvmolf0tF@A zBhqS<YTCYF$x$UZF;HO{Rh_fPzniten4m;ey z46>M#$Z5}d6yTP-z(vLY?*AYz*I#cnDK6L9giz24kuK;orwJjZ2jLYdLXmo2S*j67 zsq0o2PkTnxt(^CwU%g!2iqA&Pft$=1w|FnEP|h-c5MYH+9rWVrsuvefNSRZQ8=V8q zR7s%Y?sCHjTR(rlFFx${kB1*Gg;;N&;a{rO`={cEpAOI87oQ&YPw(BuJo}sH@~w#Th*{0B`T#-yNPm?5d4yAIq&iTt9CQ$GtlN1$hKJ z`nmXj1r`>E_wNtKw~f<1!FNwtdEp1_$~Y^aAd`aB+>=zUACCLYwL9g5jkB(IKNsIW z?sp$<+&kevyZ!O$@LatZzPR5$KOX*De6}dCKzsOLp#;x7!G7-CDd5+ehok*Fc>Maq z^Wow66M}L^5=72(>i@G%S(q5gr~PTnEC#YfIbW!oyB$_ZrGR zEhcnXwM2&GfCTv38AVoBgQ-4C4peL9z$V-zDW0L^h_ibsws>z^23Dq#sdM~GL~ zg9EI+w(M?oJrGL~9Z|?x$&6AnZQ*amXP4{QFXx~C>)H30FMhn3bEeKkb}`qAoqzuMPtS`_ zo_*(j(C5z&AAS4%H(y@<{QSjX#BY~heewlY{#wk!&zu7(Zkb;R;l;3!B+4?v^nTQf ze;w?tB*Lg81 zOy*50SY{bJP)bE~X_`@8?T7yO{M%yE&8}e3-STm#8pbbVcX+bj z&f&25Y|cc+L@7W2jd66&GA&>;IGz>bN+FSarZcMvbu1+rfxXI1DN~HPDwshsf1qSG zH<{+;*Eg{vF)+QI!6Hf&qdtuh10p7v+#lRDbjVPzG7c1Ybbz#zC@J`(>Lo?Y1n7<` zMy(E{$k`mk-_nqjP?j?R|IYCDQidXnm`oV$uTgH7W(v3Kt+9%&p)x{@zsBEVhch=E zR1u_wDwvk`NsCUE7LV*@8*3JEe`(=V`(%%kmZRy=nSviYIzDO<6|ls^M5UFEH?b9D zM%iFVdDA8-i@2m{;8ee)fabAOK~YBt%A!Yy>Vl#KJBgq)>0lkYEMZuo%c_feaD8d1 zCT3qCSDQAnd-P0A%)ViC9P~^j>sgWxY#KTcl2N}L6kH1)8J(Ad9D6yie-3qoFIwf3 zGH$!87Osce{iwhWB9lbVJkgt0!&^n8&Gb<_m=SOK&b?v#0%rd$iYgh&q=ehl!n$-X zAd*5=acg2Seqq-mPJ8$uiy9UO@FKqV!69?}B zrh~rtK>;v7j*7danPdf2$GxQ-w%#8EQgGdBOs`t-J2$3b)&bQzvk6$zl#F#uKYMX` z_Haf)9mx!guof9$Lj~u8)?#&Y_RDW%wuXQEYDO}l&Frlkc>|(leC4A2vrXsVEjG`H-hLu#q?1(Ypa$>bR*Ixw84?x?( zhwNEIlbWrc<~dDeb-D(G@MZxws1K zoPj&M{Flu#exm?`6tbEhCv%Hc%$mH3Ta(&l-+rpzj;=1|f6~-$Q*T?#RXp^CK)B;AZJQ7aC z?bp#;@TUW7W~jS`2tQH-Phj_`kU$Rz7uc%9KAmq!e?8xjp#x(a#9;e-xJr4f@1B;| z`EFk342qck7w9e)Zrlo;wKv7sE@w^S#S4ot1p-_i%pZ|$DR((F9CH%$$?I5Ih_t9t zbz}b?B>?@nrgH@R7R=VjsJxn{S+im6C@oUb>mfB$N+vBrMf>(_r*s>5%xwUjvns$m zlf(07f53|KM8H!Qxu!Q`_!#d|68rwW2CKkpwJx*^7x)0Ji$VCY!P-Bq+Vw;y7V8!_ zi7+{l@|hInqocJ?PpN$*QU3<3-wEg{z+LEYEuw73AnJ4q2=HC|`;Uik1*o4E=u#*u zgKL^aLbx2ZvR|}H@JB+kF7JQ0EpF_pasg%tf1F~3ilRaht2Zun|HosDPF^7Fa_q~+ z>hW&7`QHLV$i-@lZQfG?&@fOGHqA_d3(DjFI__;58VCvQi=6NFHo`~~I2$*&QBEt^ zK|F*j6>TIJ@R%tNeZka_>it8+g6^rRnFtPF4s2+Wnb=~4{J?>_l`IHoxWWn!oS>J( ze-8lp_|58s%|?!(c3}*3E|()X`zxU_eFoQ(^WgX@whG&ys*zckXYE|Yi>y2Zt3+ZU z^+cfd;#Y?>U;`9-X~0x@9mUmYvYs`T5~7dcsdsXwsJx+_DRM?^Sa~z}=*(aF=-!V) zbO&{GqlidGSsE!K@_E|25!Q8Zm3&;ae`KSzFCK%VGk9fpE0gSOvw#(q>fKu-N#EjbBN^ zH7Tk-@Y{-dl_dDv(=LDcgcZq(IoHM1To)Mf_Vvca7GD>?t`@h&@S=vKoacUTScKZ)E<(Er0f5@d#rQC0zG==%YlXGTv9~Vvm)|VLRpfV;zJBp4- zrfqc+@1o!xp|x+d^ETYRxQQYInHgegu$faCCn&6qON#jQ6BHsEiV+DOFH36#O1Q10 zy^Vq5U|o{DpL{czfmGD$%I3`Q);wSsxJe6D=dq|+J2`w{apBZNfMmH~PE(c~+%IkM|+foETw9B^b3&uVjqd#6oGDbhRx~@v__@JH4 zxZ@V4Bz0iuYs@FyOcgVS$t?F-)RK(@pbKK7>5*~5Ft|P{bz2u3zz#Y|Y&ybtwPc}8 z3qCfaFeZd53;BzNNZJ-lf1VgV?vX?R9ART}<0y!#Ul4`s*hu4)?B^6fDXr_Q0{4r> zQ;eCSqHZf|`UulaZlm0xPiUhgajjG`nOH7?Z3>SstJGhjDMwt$dKE;v=FuUv& z9W(cB4Mz`gJE==BDJMupdUr`4PsPcE;uLl0h<(@x8n`rprM!tE3q}*B*VXLzagLy2 zkgj6?sN*5w@n{v)`VF8fmW{(E35kH39I_U{R5L-6qlQ+k8FC{kwq9j4Jt(A(K~A7bk(@v9bnl)(Kjzx za=4%;k*>QFf9d;N#Z}8fM)OeVJJK)Sa(NJa_ZHg5u4KS%O4o1XG|m6Bx-CH2x0scc&Nb@N?<_DqgxW^yoSLU}hJGDYox$NvPzbS67I0i7&j zUnDzJ(7F^?U=E`uYh4m90pS_BREaoBSyaYY6_RC9e`V2F%87Apb_m~86or8$0c%WE zbUiPk2Wjx9nQe({;t=@Lx=V009S%A!yc6A|cUpr|N@+@7uZ&L(y{i60!e@8bkpYbk zBZ6?XnvTY^RT}GqeX$(>vPD|Q@6AwAY0|5$^?;5ZHPWe zzigVNf0fh0No<#r6TwN_=Lqvm%aP4pTD|XWc6f7&Ifg&pqK898Y&^ zJC&#)Gip^PVcs#V?fa<=+&e@^Tib^fCg#ho#&%QlV~LyKen8;#6^qOmP!Jmbiv$bGWV&0Ibo*0ZQ`8&|-eKF_%%~1So&KnN4pS$q|O{{1tsnF3qm$Z@^e! z*Bd7R5@50RVH3dz#U>JAZPC#OvibLUY9!e+6g5MULJktUhwoHZSH1PoO^q%%Dbc0G zM{=z@$=OMaOsk8*9(R{Qc3J^-7saK{w>7vNE1%+W)0I?pMQt8kVH~roV$ij}1hb)B!~{nM8B-tu&)ZkL-D6lOKFuBPDa)0>9${|@ z#U6+&V!OjqMVM*ktHHS`!%o)2%izsv2*<(Z_vT7A!RW=3$q3*IuQ5PiG0E(;)L>7H z-PxWb21X7hrNKjm;ia3I*hmf42-JxImDQ_%SF81p?o4ta*nW2FU;g%Y5WbbcMBc*Y z^7hlG_p9%|+l$3pUf4m>kY2LKX+pb zi}Elj7MpTE!Kei4!-RO!_%K13J_xfY!e93ji|Kqnv2c<*P0?rl)7AFF+s%zTbL*df zethHB?>4{PxUZ_d`|pfQ*W25x51Z>Du?&y?y7_o< z{=@b+cV^n>p4mM)Cy8(UJ*%BxA;R@xH)Gq8<-Xdk^uZ}DL|sI z*xb6WVF63x@&nmLd|DDrzVeN{mNfc*K!DGKGs_d=QHyWTdmdbnXc;FppF%xoe`GRm z@i&Vlh4~_4RPed#Qv@B6WlGQ)8cvu;rAYN*LPgQCm#yCjdMqdFV@}p*agqvl2mk)^ za*M>Xp*osMJ1Y<0uhwsG|8XuUYO_Uhy2YFHt>U;kvn{`GGtb4datTeZ&#Z%}!J2PrN$LGzVp;WBuLABY#s*PV;xu)BMfmNB*Y2@SSRvdhynu z#fWRDQ&ebN)%N=P!^O?U|9XCZbN%+q`PKD?E+_6fz2(E5KE^I(%01Yelke2+S*!#y z2<%9beMxx%+{l#H?-gPpwZqa5{czjI!U>}e%SWS9dMxpJdPKagrxNc@S-Go=FGav4 zbT!0D&COdsoK*3Ya1yA#mi{yW|8@TP%jVPT?Po}MalO5i-gQjF)AAsHJ*)4yhbGhq z$iX?rw`yk}@?wnhc`%U&Wj7>xJUk@ESj)gEST70BV_pDb#cbhQuwqT~;D-PrHtcg= zFrd)vV3HC1{A@gJ5040n(>p>9x*HUB!a5=-zS+o5c!zp*g6-mKvtuw$-P1Bnu-4O8 zJ7}i5*Qrx5J$E`&f@1Ruq}X8XFq% z7A5)^Wl0MTnsy_B>NV#jaP)S$AR+mfY zYc6}0x#rFLI=fS4^??wFgy|S7ELRE7%DKmup9O28x;8tSQ0Jx0gCD9aJ}11F1QYjw zGATBc1;HHt=|pIMm{1}wU`Y|pZkcE$T3oP1BnR2Sk7HNSXNTxC!VV14Ng%##E37d; zipm(D6P0*-H!9F`J$V!&F)Jr6D+1k_A7&c7u*^}^_ z1m=_BHwk8|+v&7eyt`$a#A3?F#Nx<$sT|IuF;?k8L=>;*{k_&0Y&We{?e_?Jt$jXB z`|j%%?k!+{IR^x)e$3|X1sw>wZoenQ;&WM$E1|P^9|GXiyR)Y+PRIOusNI!ICMq#eU>Mo4f?3?XZ$#cN6wA z-U66?wK{bCA*Y4?(HFpKt#P;noZla`4r(+YtBL#~AC7@9LZ|XL^^{XnPkBb_8Dmx2 zaG6qr9kfP{{2#G6A%T-&HxmIjlMyWw1T`@>Fqcu}1Spl&0TF*hR#hBJNt`%|6Ejt= zlAWsMA$cW=l$Vqp|NAsB#{!t18O*Vi@**ymBOHxBzi#x9;&nlaKRx-w`IF!NQOknT z(n`sS^H+r?rBSNT7Jf2boL?0$H(&nwi*L?f{OfGXnc9f*Y^xR9eEH?K&#P~~_`Cn0 zH_wk>{q38tzdC>a_wyIWCw@5p%Wwb4RX7*3@R@U1il63tLU{F9yd=s>!gTZ0i+}$6 zi!;ME=U@Hf@84phQm#v*+vllr4?Q9EmW!<*9JXkSt+b_vas5-G8VN>-Mk+ODg(-=t zANzg%ShPM>nsyIg`^jFMKl$kih3`l~;YnE3?zSx%Xd#+{y>T=_~Ty+QVMN~ zU;Lx*3T8?n1bnUfeRHG?r$8Y`PsZKc?p*K6a2F0CfiKQ2p7bs$|%l$y3=KrHx1a#}t345bw-1q@h|;b&wm3U+T`DHbLOCM>o< z17_V)jAeh}B2zlUX0#CngD+IeF$7(V|G3g(Zr`DF=`7~6vn^vR;NtisES#GvWT}*n zW+cVd0Grjc-M^{-uSxd9K`3Di%V@K8#;|q4aS0B`3rs2NiT;C;$Zb^cNhGS))_-0# z#~)r7)rWum=}A{MO9~Ny)vO)x1c%V#I%pgstfuF#-{hJeHzF@ib$FQp7Ma z>5>QwD`SLCpw#8nC}*=_vS7jt$^rCHz(LJ{)Us?!YjwDQR_UeuWMDx+QBu-Iu>m{r z+%qJlwh4=UhV9Chl(a(l9FqwG)DEv)j#mvp6H?anSdqvV6&WKmb^AsQ6kcfFTGc zI$-k%Fs*XVG)H2Kct7`;7TYpoOGV&G29HV;lUR00%o-Bo9sw{qGe!Cw<5N9m#K2BuNY`C!MYI>{ zh(|ig*T5&{ZR4P2(5#i)|DvL#;L#2b#cSAMho#|v@^A%53!bbsvfzWna3XCmlUg&_ z{P&ub=vQAy1#y@{O^-EkUXi4)bHQ#Yt9gG5$*No2J{Bdb0$ zpt;O41GZImzoOfwTt{Z$x-SOU^#znvOx?Eb940(Pf~Poy2F~PD(n=4*{59YJ0!lJ? z@S<8ihmg}aLUNWUgm4;Na*$C98p@1JL&1IA1`oc$XaS_q!il_5lMjVNUZ{TsbEr#6 z-rP;hf#@tpM0~8@#Or_~9?(AByO$tIPCg8Xl1K)S<&SKig1?+b?QcEZ}3ps2p zWS}2B+4bpkZ7GiA%=QEO{81LTW$ExPoH+$S_M_0&DrnNkmf!VgJPF@`zM^z!(+qqr z?c|>}zWOU0+G|MX$^u)n*#uYP@Xcc?x*{CJJW?Y87c-2y?b=<$KMZNvMocdrk- z+t>As@6N!Z`Ec{Fe}A*TKGgH>4)tH}E*^IK+v}_9w+r{|uhnOmOYVQ)zu(`!KCaMz zxQFlV9r!M&-&aLvPQA6xg_UvcUm4Pq0l# zP3{y^21oJf9F-B#I$Tx7Og4tR=LKmf?@>YXcu!~^@!nM2%4}0wYq3iMVibU z$|<=7tc}C29q!x&6sI6?Z+=IDKjp8W=Gk$oSwjS(# z%NtZ?@djImHjtI#b8~`!=YQD*~>qPF5DqRsf0sDAaFNyp0l(= zmI+~`S}In;np2tgln}~ia{^ob2{zf>1ih*%`F3gkgg%MT<`FNvOVOqORP$JlX8jdKZr;=H5{ zOMcel!WVxpz1Bwan-ByjDppQw69xQTNNRv`bXi)v9*Su1H$(|e6UQ6G#Y!#`qA8+~ zrb1!AVf->T0Zy|L;Bp0&ORa-)SvwF4$dYKW7RoiL?Cm+S8lXRez(s?s*sE23?` zMP<*GzlF!PhA;ogoNXBA;rdni^wH=<{nSkAw6s~)sJk#!Xq_i$(`yb`ex=DE+9LSU z!|-s{siK3_V@u%VX=e}#8};dwj}s13(?;)?xU^{dRiGf z8Bk!lAX1p|Y_Pd*oXl9Mm#zr`B7fcz9h+66qgHjnKYED{YH%gZ&U@qgy7aqovE zS{R(k=TfZV!!dbA3` zdKm@WDt(gD0_9a2Qd*F56n|(ltI{iN{Yp*Es_{KhwR^X0cpdwe-v3g}rlDZ3E@PRx zj7`#I!(Q0@q=5IrLMFv+0~o*gnZgXUCV*>b29D*lnw>gwD%PtJrg6e?JGZJM z-8xT5)Ti21C#lt~nlgEDEG0d~JiclwC~CdLg-@{sOw*^>Dpmn$w113^0W$N|n@ z*hK;sOMPLNsL=f8iXb?krD_rvU{9SEU~==#8K;};!^4Ne#eeQ$|MMAV8+Ub0%gw`K z|NiFszWSxQPX`}9+#as);ZK(j?joQ2#y7=7R!jVyHfCgSEz#YLd++-m1XH@-sy`j4 zbl;&j`c%3C_@-&gr<;3ss=9Zl>w9;qxon71-ZjN?Wx2XJ-xsK5RI1Vevi5ynB3uBf z?#OiKC;~}I8-MlxfEx&^SrN?htZEj<{VnO?8YR~#52OctQBXo^QH@eFlmLT8YhF`m zn>GeqWt)hqi8v~Ryn6cG#pSV$RDx?% z6TakJ#e0L;4T{BzVNwM+k@(%G%L^F@#F>xG7h7w z(W-$J2!9ftK7_oA#wgyW!`;NrVeiykbUmh$3t)K~n>!Z`qJlLvb~{$6vC-;b2My?P z!%V>ew%%0>>@uRez*b2SwLUAHYpfnciw<{>++Cm^8z&~`*iBLz2i9B1knH{q>dIL~ zSKWM~QNF|X?v!k&AL`0$b6%4sI`L$d5P4X(9Dk(D=XpciLg>ZhIRg*>Mw}tBq~}zs8I4H08K&_}i&YGXEC{1E!;X)zt9d>%Z`z?=3!JpO`mMmR zmmk?{>5oka7*`e+9)5@NhSOVl-iBJ$+rZk0p-uv5H~R@V3205WDJBq+C*EWdx zoPVW>5f~Hn@r(ha7J=ci)PiLgHs0J1iDFqBb*_(N*-nE|4RI($w4@p6_6iNMd3kJB zn%6pFX1ohZ-1^d4W{+fZtJ-qItA0=J!|vv0i>et}hCUqLr3nmxZsVBk<=ux{hx$BR zAKvc{5BL6js!0y@Y?r&6%MUlZ3P*z9D}RW|Jy9>~u;1Ojh9~N;@2?-K4|lJspZnXZ z{pIyNdhArV_DZzwQY9Nn+cNE9QvU;J$+@V0)A&(JTJoshGWliy@FSYjrX`~)QPyb+ z;c;Dn>jsJKis@qcyF zlN`azz82zx@&ejlMYT>DuX`9kqk83~hNOa9YyJ2TQ7Z6=p7pd83>LIj>*FEFYJSt= zuDZ3Z93*@+tFrFuZQuO`T&;suBr`hXbl)=29N1M)Q#=@H(hb3^T=>-)rDpRcY9<>j z=JEn3t!poRTulFt!|Il|$vaYx_kTkAcFc_Iywzg3BTC*0?|V;phi}*2SD1RjeRixN z{3R-I95$_xzRcJ=Kjau(&q2BSl2A>3<>I2yr5Q_+Qk%J#ipMJO0vBs(l}FY6`c0=f zcEi~>xG)ROCv)~qFK1u$s7$71n&XtVclUX6ZM*OM=w)<#_no4s{<5`z(0?~)Tgo

MyW_!{A4^DO`@~-@a@6xqu#r2!ob9WbQ1+CKI)we2ctie{$Mof9l3XZ zI{xkbao0dR8XTUU^apR=zdPs}hF?!l4vzh=hrQ!|f^Ua|;iz{q@;~bjddElIkE35- z^aZVg5tb7n6k^SB0ChqgTA+`T@_oXAXeqta^>{JMF4DPIh>EHT6*0z^`rd?Wf*?YR zQe-?!y9sA1o}?crh?{iczUp{fs#mpt;4xygjuOTR;G3!usUwXqDL6Sx7#EQsmKQ?V z7bk^A6HSa|{*N<^j*aI*km#?42+fsdeqm=JL|_P`ONaYmEVPCtHy9;A6jKd60RxKQ zuPZn(N-AJQ5-`#!)s|OXZaQX(Wtg#**t4KlD4?M9>NsEzpVUqf<}@5(gH=#}3-HGf z5Kb6A6gXb_z*$QK#UjAaOD6Uxg2jI?f)GYafXWi%Q2+=~%wY}5z4wF?&SVYEB4j|K zBfJV@r-a;N>{YyHR)7%zzSU(E6HGSRd~@)>bQ5X3e+@YEVBNd=sNyJ-kHIholdp;3 zau@r$i0s{ylP~L$sHGMNwYqA5=OW|`Miob1QW0yL6uheIiIYNZDMeYeakr%un_bHd zuNrxV5o9b5&qhfo789-1d;<5yy>l)RoJc5+t%uJkZVth)Qvw#7&FvXNJ^2KK?X%KN2v(mE3Dda2wJi$T zY%2#F093662+S>Mo6W#<71akyX-myGnVkxBE28BPUk78pCKySSGKI-H7(+C#&5A61 ztZ0l5CsY-i!^?1|W2r5FCs$FDtSm{t^a{d-%B5Eo%5g%d0tA*H;oSs)$@p-3-Q^IU zXZe0BsEvo|#q?&9oX#dGq7^{n@y*0P4DW8S=pasK$>G3DzfI@!Y<%P2AKc!~rcT{s zmgEr-mT-{ynP|%p;F6wAZ$iE$r8vV=NfmS8^*`knemTCoT0HlEOZeh*v78T2lcB@n zo|jmh1e)nWJj)*a*Rz5@xYcpyNQ8TMhfLxuR&{FOW=5_qn->fJ?XA-^?c(!ehI%~{ zP>u=Y0_U!|;`Az)cz78aZ(0$Cexa|TD9a&k9V$Nc!irXf8IC8tO7XHR>oq6Mk{x+n zhuuU&JP6h>c8V>3j`^Zt-iD{JLgrVg5?Qp{RPMe8p;-?$% z^KXK`*@Oyg1^=snl>{g@wnjL>k&MWnJfEyKChu19;I#v_C7%orR2$m5ziUQYJP<(- znjDBxv$n3Ur_@~|?3YrtLrV3NQmS`Ksa`MfMoPmw5^g_#Y=8E!S4QL+nRGzGOb&%SiU!NoX$VCH@C;b9Y5jT zM2=c6cdh(IyLc$8e@H6#g1&YuB5f6VTPj_n{Tyw%*OXdpJ$KgHQrGWCe_UHGwx0UU zwk+>b)Fvu_A`v`5BsB63RwE=lz>(bzd9hUuF8u=Sw)ntRJqKdclAjOrSaf=$&fguk zw7bAH%Boj?4)J?hqg2^5jJ zF2#!)cbsC~DtanV*;lbDeIeDXPG{MtEJ%&G#=)?Eyv(28<`k;NQs(KR2?z}W->Aa}TbL7a5D_=OK z{MXzm|8aWh#VYh&`G4g-`sZ1CJAcRs#ONsYXhpV+ql0@MnMv$Nr7lNgsF zIsqwvtyxWvBQ+4c=U4a$7spk0m2GLY63l7<2_(eq0a)!J%(hU(kSs|?z`y5JXNKv{ zS9g**%(y>Zm&@f>&t-=)yWl8Cm&B1|S1RtRV&SY4p^7K=$7U+vzl4hFJ_zYR~2RvmuOuxA`{uZW^}@cG?Tg*4G4#S zV^SDpfJH6PE-E~O?@`5G0IJoX*~OfAlB_NEptxAfX=Yqtk{H8FAzB!MOC<0JHz~Fw z7F-CxQE_3xh}or-FjR~*rIIF$zLUTzU`a4YM8_pHHxr(yjWVH!Z1&(^%3@E@LpJ~5 z39MKQVIf$c68J(R3 zzH=W)3UciyH~smSUoC82f>B(2fuD=Vhlh`ow{H)EkrcilFtvC~z#jH?x!AZjZ`}0O zQWUXjzq(D9Sp0N@DIkPsdjkmR^Bata5UQsexPvHdZx9R8XKR*^TApD@L&W9DG``7O z({O0|<7#<-*KFJeH~sP5t((4oZ~oc1|9yS`@8*eZGvub+`AE)0=znk9R24nnaKHg)0a1a$A5FBB& z(&~_}WYiX)MS=UOosv5@{bu=o=`f*R+|M_S|6{TI`=MFCYc|d5&-r4u*bun$rG@TQ z9E+j)R4kLpD^d|T=VL_PF!@Nw{hF4P zJmi?Sb8;HW!DEfGwZPNR;2@q}YM+neN*Zv4c2%I} z@hZ^8qOgPLkgeq2%AeEVkRayKiUwa&Jq>==jF`NlU^{J?k<-b7kbDSy8f^7JM#&bT zm%D~v(#ooh5Dun)73!NnXVw8n)2f$Aom{>!lTe}WW|Gy@7i7{)^sLSwOO76PV2L<{ zl>%7|16XW`d|MlXd}+vVTj^ovVF?m44S)sRqcV>uLkiUaFr+-Rg?sT`VHKaPR7Sm#-a)Udl?^XC<9~#Y$${(RbSvzM`&UI}MUr z0b0=_FknEnZF)-3bvdY~&0mkRR#2k{5qBijcCVwehI)j>qHmkCEKqVeU!Z!ke|*^< zB~X`6IH$b{-}-m%gm;3(aeP3#*dZA@fEDOK0Ygt>tvXX|G*hi!WxxqWB^i(g3F|Y- zI4@A;LoDQfG?s+h1(FK+e8En(pXxo~=oNXrMXM(%U4~&Mnd?>5iE)oQk*?H=7+!O; z%8H#ARtbg!?KzFw9?^CS;w9!2o5IK6|AdFlr*E6}dOlmA?%l1#?Br=Q%ez=3SWKWf zTPs6g_7&0(+IrRjY(%w&or} z7%67wXa$S-p@i>&)sk54>@g1LM-plLykkiz;>{N_MF#;Yc;=@ z?467}rTL>ysxD3GRQFOk1(ERMEpaoAY<_w)sB+A9Y!XQKgM`GrSERO+dXiy zxlLt%d=_`H%-M@AR-!&1%FHep>j*3=_ER8@=F{Nkl??;~BS&GAs*gnmJjVKC>5EOU zmtnA-(Xt)CA6{R3U@90Maz26!10GWio-K_L5;>H{2Zm?iv)@eyVqAOx*9h6XSGb>_ znaA_*XwDwnE?%09%6rME;mTx``l{K;XZtnIwe!o@{=vR^SOm>~7UVeqQ?{4ihq zaC3KaizP1XX65rveN0w%v5bY?w$VAVj|Ywe`(Qi3L{fs{QS~(TiHVx9VjVc-*s%*w zYup}@(-0O#VKOt8x?5-=4Fjs@{I4!Q$X$ zvvCs?DOyf&bGBLEeV(n>4F`(5%*J&Srpcd3`R1LWp$Oo``7CkqjD4dTHdfe4>aL~uhHm6>}1@fKrjfCJaeI{HU8O)45jR>_;aH1OOIRMRV_BF&V()R6sOHoeZb{^XnOG+fSZ5wXk-~c7Rr(0Sm9QLX2EO;BB#rDJ zQWS0{ffurWxgX9kO~D!gZwW(GRc!l5PPS$ki~u{PRvH#nN`0|;g1JMCQ1}7{j3mG~ zBf?h%W{M}fw-f*2ufM)(Sw#eNz~V|%3tNV32JS14Gp)cDk-^4DJzHaRX_vHCbZ9>6j*e`~uc7V~psj7F_)><4;a9(vVlEB1j(8rwXl1RW$ELs)~pvHL) zaaa|Dq;9l|{!4L9{E2CJPY`7ir_?df)NTXgi_k0=ptu~(uJ2Qbnqvy`^Dxdyr>+XXMvlBIFPV# znm3teg6Y%t&iK3s^4NJAMy-G0TAb%IVsYhvUR)(IwRJvt*Vwzv7_)HC#>^TiB~ElP z@)@}pU24enNkPIUA67{tDrN2u5Y!>={#O?3O2I-_IuHiG$l2foOB&;Cuq?rn>S8P` z#*$#7WvN7n5@6(_1g;J;t66>>;G>c>U58kk2`m(7^TEEK7s=OQOKyJlmh@EEx?#K%}oj zY3;|PvR7R-J3nNtl(jfyJ=0jF@Pkl)62Xsc7JGo;Aq>Xog4pA%`9#=*{DcY0O%-9- zJXI87mC4CP|pc4TWq;85YPFy8=N=D-bkQjRb~4EPIlV zRNX#OAO^o01nMG}%aJ6eG(VAt$#H~H=XVQTIFBVUK{6DxG9+`J1q&&M1p-Y5l?xhg@VC9UTW zqI^Avj8@PoLdS(uz?n%z`1qo+Y=V5LwtXI!B9I`#`kjU?QwEu)lB)H{=r3zwY-2$o zOK7hCYOB_)AT+VY_3Zj<>ZTd+Cdi@`pu8dueI^xZTv($nOEiTN(p^q}S>&V|pd#QU z2z4lx$E^j8q`EH|uhigVJRO#INli9&k!^v^F81tLj96W61J@Z9rX-8n-|nLNu?ZcP zfK*z>iLLxXG9rg?DxSSWg3FULI(MCVkxg>i5-$nUhffeT2g{Yu+H*5-xm?rV@jRq7 zMdlK_gk`v1J(<`MGH?ukVWmn5<88unNw}fq5m}Oml|+Yz{2)p#gkcj7pEtr_T?m5~ z_|HLhBHI=hFNMvA=2s&1b<~*u>y>E8E(?xhB)q(qEZZL*8uf?zZ-KKRmq1;t__l z1VN<$SnG^xPd{9!H1F%=xE678{QhGH)*#%3dFcV03?fSG)(kv-=*rdCD5B+M ze$JSS{G3@0#7K*Oh8Bc?#fL=>9`@hcaMyD6a74bg;2aQv7(ih7fUqP-XCHJ~hH59G_$N}k#NOEL zOf+L}65Q&gFKTuz?20XGyMG_WZb2LB{I-K^+k_Z2q84O-m&#F26hxAq#xQ{}js&%6 zww;sh3NEAwr&`tsI&8ML17{mNt&C* z?Rv~Z-VIPHa#eBDofrDLOE*|xiv-S_So;Bo>X+WgICNeO`KqHGoHxx~U}XS7by*og z0>29-&)#Pi}CeUwk0^y*C&;io;>0cF}3tD?~hD4ZA!GuGVVr* z{G9W|By;A351exWYau$p6&`>Xl+dFv{L&4n7e+&=h$|)>GFHd2Nj9g}xhv!|Y3v=` zFq$$Hi+1PC1uzpmf|+!#Z8s@05i(x8sonHJPORpC_ig&9P)ga3$~Yl%K1iWOAVv1> z0}`$(d%X9)JMo>i@!B&W0_uind+pHV6F4+l>Wq=^zQsp^&hn>VH8VE@ZA$ zhh~*3a4d5VT?#CU6qpM=Y9BsRMJ4l+1@i!{an}X@<$QE@Oo935#>@oyL1cxLuw@g0 zh$d%$_Z`#THfREfAlgIYAeIGFk`hoIT(@dD?{@X=&DF=M2uHyE!E#7Gfv62Am6OGX ztJmM-$r8SVr-S9ulONpB55Q>Kd4(r;lUG-N@dqX)gw*$9uy%DKl;%Mk27R)fh(#w9 zWSV9~LDLK&jsZ3gaXjIrOq7Nw>Y87)yZoDfy-qfczALPELNqF9zKfw<@YE;ekC%%B ziMo@-uIid6EM{PSTP(rY0dvM+)!Hq&gZGmSR)=gZUS5m{?8;q5j_(YdeyNU&j2}%} zPP9B85)yql6s)7ughfp|Ws;mPsdI5UK}}0kP_)i>MCq#2ffw_Y_q5o|G((D52nOnZ zD9ow*DM#=3fcfdNj#71g&v3hg&UWqxjSDSrrH^_mZa`82M2z9Bz{vnDdVFs+R8iS5 zMJ>_`l_+YuqlwrvhvKf&vaHOf{P`6sDl(r!*~q89#h{NN1K$_yKJU@=e5=n{DpS-V z6?gxf)FPGJNHfw#{xdCdd*g;M^cgLGNO$`YV`b-t7~>*<87HpyXVfz=dUo5Vdw=2t zQ)PPLR?12fsT1LO!YHh*+gRI-dy}EgT1%M?)v1!lNwhubvIU$n8Zmht?OQUfeM>wz zO_e6A*g|U@gs9*5P#9&m3v+1@Sf?Sbr@58TNXDKgZTrX8&RNwXXBy!CcF2-{04CE< zBv{Fj4YI4VI}Y9!%dT>xJ`q5FMlGOcLaEQW1@yq=@{Jw5r<>6q@ls@b2`HMe3Nn)Q zrJW}b#cdI-vt@~Dwdq{i{4QGNm-L)e2R6`{T!FUWG}E|dn>Ea}X&luq6YJI7S=L}u zhS_C*D+WS<>GQJ7q{uGQlRJBVf*WT0dzKv?uDG;u;h9-y_4Ez;oovx#e!ZFP zRuB8#da-xi;z~@n_wbiYSDV?xyVc#Dzi1Ee|KjDVZ?Z@8W7jfH>UxNOYhJg9j69^b zr<#L|Q$1bn9@g7URS|%BMd#1^w&c3qYO#1&b{v;acoQPcH_P13fGm0#v|IMws|lxF zC%vVAd%K^nH#On=cf0L1nLfUK=l}0!cMsQQf=}PC7WSb2>UVGIU#zMu5^7)x&!EIKQj=_cwKaxBiFwyY=2aY3Y0W)%4A7`@xUe*Bb-e)0eAz`=sd#MsJoY zzbC-|WcBe8F1oh|R5w{~{4ZDYg&p^<+F-C>?c6AIJ>yJFUsvvicu(d(xL9Ip;&&sw zp1$ZD>mEpO`h)MiH-~`Q?h*)@@!h7L-?}3Aq2{Q){DXUMLjBf%g;o8|1-r+g;!v}- zp?W2QoNl&zH?c2sZA2Qovg-_#j~NoZ6@hiwX=cGeV294__|?4~zaX$~XBR7f`NBwq zq^{CBxC0$u<;)ylMhpfKz~doV>)tCd6J&aL!9+s5Js632R;o)jPdBWrI}}ggWt{)f zg-tp#>8-!a0oF->8p!v}1szsBc_7x<)r%Z6-tz7yI`g(mhM4Uf02vZS?Rpv7m?Wp$N8ZT!1+XgGv4iS z$=XhLwe(+juW5ar^P29`ZsmUso^jg@ytQ89NB_mVx-{Q^y?{>!d?R{`US#;eIK&yu zIKXNO-k}3hV^_mPv;Bo$kTRRbWe_dU3mU`5oY%Gx+`Z;}`iJdqwY7-slk>2i59)wi zm|Z+wJL^h4*PG>fvC8&yFy-{FZn*ynfTmO+q%%5opXKyRf2sMCgJaSKk2Pw0w6KbM z0Av3;VXz;65~pu3-OqP>|H*-{aC8GG+_%A;lW~i??ZawWgWvp3w=N`HEFSOIt15s} z_Ut1SqnhpRcD)CLm)&j2A?7&LaOM@OZckv7agGVs8&!d#W=2f03M(q+v~9V4yuJI; z>6^RuX}#M6`1Jod&^cp(TN^MP6HGC6d-$pc?kkFaA5WrKC{sYOeX-Wvj}>ukUNfrQ z&f19Cc9!*Q0BE2aXk(Fhj)i zFku~kc&@Z8Zou6zV5@LDAcvL3t9yaUn>t$}t8-P8I(V=zDPe}-ah-R>*h3B7Z5W>( z7DrC@0W2ZC9PmFe{ZaiZd>E*KATqN8-I!B9=M{KDxO_YBBwd}re06E&1LzPs>4Gks z#syYjeEPd_UKq4A0GkPCH$fG#iZHm$U~npboW*H7M4KD5{(2MmMAi62ne&OF&nE%_ zM*dVT5yX(#W2Br*RD~{)c%R4%d?FjcCo)-i-}%1BCsJUHI@u>eQ07nAv~L~-B_CE7 zs_q3ML|H{M8|)KDb1brp%c6wK-nIo?{^^X{xq{;DS~P_xcP+ZZu$8QV4`2iOgR)0| zf^TTu`JHHk@ASORE>i&#r}Qgmb%9dl4$PGnRu1# z3Bu94X-fr6U6OQ)gpfzu7pQdSt_K!>sdJ|rarMu`TgCT}8QUc}tc;u}`%-q&XS%qp zhpS%ORozQUBsJ~nU5^@WKIG3FpgtGU5Z|#e&=$jjQL$NxOaIg&ad*<3&YU$AKHh*Y za3DtoAeHB5B1^4j@4+>+xBE#--mwuYF+N)8)cEA7wo>|>$W|AynbAEzL2M!`duH${ zyH^i1z#;71nL&vpg6SkS*@eWRQ^iGlsy4SxS-$=YiufO4BsGPX@dN=Av!2dkUYGGS z0V;pJSxt`{#}U2rSM)KtG`qU0y1D_ufGt^0fCLaM9g+w-&=O%UydvdYE@J1`=hcv# z%l)yCwYeBLPHArcIx1c0| zrceqVZ#h`Wv)nk;R4|rM)$ePl_{*(?CO&_*(5lbV0wwkvxF8@oQJ}0D7a148bK*cO zG~*<=s3pKA5+;13xG=>U36JB0bH`h2+4$S+`b!XBA8WU6(>zJtv8 zituDM3)KR~egk{p0wV}_g#4k33&om*X#~qKR>>*=XUu1?pJ53c2a7ZLRvYg40~vqd z+|A`+!yjgCjxT-#-}**4H+OmR5&q!8&Jtn2jX@zy%)l9WY%q-}{^RNa$^l;HDt-g_ z>a)Y&-26$wptFWKNZL*sgbJP%#1pp9SV|E02V)9h^{;9WK@3RtSJi>*7CbtfL&{X{ngI6A664y;l$2m8 z;$FzDz}-SsXAEDJ>`^em1%U8uDB_PJ7m8vXt`v%ac8u+p3imlfi<29~4wipBnphYR zf4l`FsDC_-WIP|8}$bbvFNQefMd3_uexyeVG4c{@3|S z3IVNa%Svp>15hU>FA|Mo#m>Q(n3#{6 zwfya2vAJ2VqDG3;x8+rMpR2F-W0?QrpZ|heV?{F7#L*C>)x+)Whf`R}B|2@3No=TK z<6wAEooWSMM6gG}mO3jmmF{zVVt|tKE-NP9v*Pu7wduU^+Poy~9(#X{d?gTlJAm&{ z$94l`4uR~u0cu`(gn{*hoY@X=*OPkpP4l_leJ8au!rFhwHi}-&OGZ?Yb)(n}r(1IJ+3~0jz^bu%j%togbOKD^D%_kY z$BZIB4(1vwN-B{Prk>A%VWbBfI1%<|Mw++l4~?r|NO`tx)6^w)NhYUxfP9H zTes?9#-4dLP%fmZ3gqfSr^$+8@TD?EUxZm&`(SpbW9Ky9L(xDB3v%uwBz+^c%yux% zdR^#VWBT_>C+);Q2HLJKVTb3n)CDD_OtY+gt}H35VyFdPi8fxiU%#Pjsq)I$$aq|0 z$FgO(Tuj{Wl8@ew6TFRE{w~gmohkd$%^@P#ubhgOx@XcwD^l#-XA^ zId%Cr=3vgp7V(ptttST`cTb4SuZy&gyFx9<%lAuSv|AIqCd`T^EOjoF1dJaER!M<0aq<;3|5(Tk-u7CJtF0hGnPA41 zl^nfg96m!N4*;!)z!sCK2ds`OF`1-<3H<_6LU_`CRiWAlW-8(OHDb3_@gbO^AoMt6 zR7$fn(2Y?Z9mpm>;YLH>=$zMszP#|Ii513mDBp-{T6+fL@!Snzj3;{FZIS4jnF0C2#^}a{a1GqLJX|SXOqxvU3ApoHJup zdLb04BwqjG_>^&KNjd@MVvfUS`hd2u&j&Ad83yw%%9jQoF@xkSLS&z^YvqeJj9nA=nJ3IU^hw$~%UA+=mLUoC(+4gOEcm1J3=R;afv|_x<<)NH8 zaLjilzoUYNXw)du+LmHa=)SFQ!IBq|wiWJu8Kq*> z!ZidL+S}K%9?nc;h<}CWbkg8EXBG5!gb}T~QI!g4=BC(Mestt}oNY5GpaPIv3#qM+LLoKP^T2vQ z@&7*CRP}&N{!2P&3`Rp8rH(c>QAZk~v~)2@9UV=Ssfn(JDbiE}bwNu1|F(GWs9E_0 z`-S7B)V0vsKR+nSJs7^>XEA3hRmLX$T;eEqSv} zr@b;@OH(g?hAPCDshC=KoffTkH$Qvx37&J#D2Q1 zkO(=U84tx%Hi+zF6!^6$l`Jx^yKGxlHK)uolVA>T&atGXjcmpzxSwWi$`4xk z&h+vV%!d8%b@td0@`iDg>!NQxR$}9eN5=W~h5Mf+!bD#0$KUocU^PRYRA2>I%#|>b zT83Y{)#~SjgaycHwgj(VcoR+`d0zFP(Y)y-ZX%MqvImt9XkJi6bEPK;Ey$vQHVK*w z@O%ys{B5eIdjqZY;>a7fY8IWm2ZPuE=1ANrVGA1lDkcg&rb)UVXd4%2r3xsU*7uyz z$;|sL?$rUxF4YZ_W58J{1%{0Gr|bt@lNOe`(aCpZs>G9MJp?IclaiA0Ov`Iy8m)t< z$v+SkLMfeMS60ZuUh3vUxw2w+RnZSuG@%MEsh!*|o~^#NTk&v@xA9!%Y#;c2RFQ@)`zd>5vQKmRAerWvUBi_N4R)Ut0UL=p zb3zm3yp-r7TF`m-((J%qjYe24n@X=Twat}7+(-rAxYHZt(Fv{PAX-y_wV*RSm_}}V z4daC2ySV3f^COgc{6r$0J;?IuX?>hIIT$8UL&<#9!^#XVn}d0d3k{o z&9~a4)I6zkb3lw30xjlP>jj2nop;nK(U}RsD(qRNb*Yxn=d;rz1R7?)K4Y$UuR{VO-7}ox+T2wBLMJFc<6Cm2jB_%2hS*h9>Kx?A;~$! zJiYkCXLg*B_7&};+;Br1`A!OP3UT%5?D%)=R}1ImrRz_|heb54(1@6|ba?mZ2* zI1s5BRsAq+ODuM!v%fcNe%Csw*8!*n74`TU)|_f%+c+}=2(sAXLb zyb4eML(RY*b**C6-?ZORJj!P5Ztg?Ra{PqFc8iL5Geh)-qIeraAVOH;sk2rY>+Zmm zf|&xGpID1$EbVFDtAx)-T9361xV4FlI(Ho z7;v*z2{$+WNQL%OUN)EW#u3c$+wFx1DUS2s,\\ - \pre{^2}D_{tv}^{uw} =& c_Ic_J<\Phi_I|\frac{1}{2}[\hat{E}^{tv}_{uw}+\hat{E}^{uv}_{tw}]|\Phi_J>, + \pre{^1}D^t_u =& c_Ic_J<\Phi_I|\hat{E}^t_u|\Phi_J>,\\ + \pre{^2}D^{tv}_{uw} =& c_Ic_J<\Phi_I|\frac{1}{2}[\hat{E}^{tv}_{uw}+\hat{E}^{uv}_{tw}]|\Phi_J>, \end{aligned} \end{equation} with $\hat{E}_{tv}^{uw}$ as the 2-electron excitation operator. In order to simplify the expression, @@ -418,13 +418,13 @@ \section{Augmented Hessian} \begin{equation} \begin{aligned} A_r^i=&2F_r^i,\\ - A_r^u=& \pre{^c}F_r^v D_v^u + v^{tw}_{rv}D_{tv}^{uw},\\ + A_r^u=& \pre{^c}F_r^v D_v^u + v^{tw}_{rv}D^{tv}_{uw},\\ A_r^a=&0,\\ \end{aligned} \end{equation} with \begin{equation} - F_r^s = \pre{^c}F_r^s + D_t^u[v^{su}_{rt}-\frac{1}{2}v^{ts}_{ru}], + F_r^s = \pre{^c}F_r^s + D^t_u[v^{su}_{rt}-\frac{1}{2}v^{ru}_{ts}], \end{equation} the $\bf{F}$ matrix denotes the generalized Fock matrix calculated with density matrices. Since matrix $\bf{g}$ is asymmetric, $g_{rk}=-g_{kr}$, and we don't need the internal rotation parts of doubly occupied orbitals and virtual orbitals, @@ -458,26 +458,26 @@ \subsection{First Order Approximation} More specifically, \begin{equation} \begin{aligned} - \pre{^{SCI}}H_{ab}^{ij} =& 4(\delta_{ij}F_a^b-\delta_{ab}F_i^j),\\ - \pre{^{SCI}}H_{ab}^{iu} =& -2\delta_{ab}F_i^vD_v^u,\\ - \pre{^{SCI}}H_{au}^{ij} =& \delta_{ij}(4F_a^u-2F_a^vD_v^u),\\ - \pre{^{SCI}}H_{tb}^{iu} =& 0,\\ - \pre{^{SCI}}H_{tu}^{ij} =& (2D_t^u-4\delta_{tu}) F_i^j\\ - &+2\delta_{ij}[2F_t^u-(D_{tv}^{uw}-D_t^uD_v^w)F_v^w\\ + \pre{^{SCI}}H_{ai}^{bj} =& 4(\delta_i^j F_a^b-\delta_a^b F_i^j),\\ + \pre{^{SCI}}H_{ai}^{bu} =& -2\delta_a^b F_i^vD_v^u,\\ + \pre{^{SCI}}H_{ai}^{uj} =& \delta_i^j(4F_a^u-2F_a^vD_v^u),\\ + \pre{^{SCI}}H_{ti}^{bu} =& 0,\\ + \pre{^{SCI}}H_{ti}^{uj} =& (2D_t^u-4\delta_t^u) F_i^j\\ + &+2\delta_i^j[2F_t^u-(D_{tv}^{uw}-D_t^uD_v^w)F_v^w\\ &-D_t^vF_v^u-F_t^vD_v^u],\\ - \pre{^{SCI}}H_{ab}^{tu} =&2\delta_{ab}(D_{tv}^{uw}-D_t^uD_v^w)F_v^w + 2D_t^uF_a^b. + \pre{^{SCI}}H_{ab}^{tu} =&2\delta^a_b (D_{tv}^{uw}-D_t^uD_v^w)F_v^w + 2D_t^uF_a^b. \end{aligned} \end{equation} \subsection{Second Order Approximation} In general, the second-order Hessian matrix elements are calculated as \begin{equation} - \pre{^{SO}}H_{rs}^{kl} = (1-\perm{rk})(1-\perm{sl})[2G^{kl}_{rs}-\delta_{kl}(A_r^s+A_s^r)], + \pre{^{SO}}H_{rs}^{kl} = (1-\perm{rk})(1-\perm{sl})[2G^{kl}_{rs}-\delta^k_l(A_r^s+A_s^r)], \end{equation} matrices $\bf{G}$ are defined as \begin{equation} \begin{aligned} -G^{ij}_{rs} =& 2[F_r^s\delta_{ij}+L^{ij}_{rs}],\\ +G^{ij}_{rs} =& 2[F_r^s\delta_i^j+L^{ij}_{rs}],\\ G^{tj}_{rs} =& D_t^vL^{vj}_{rs} = G^{jt}_{sr},\\ G^{tu}_{rs} =& \pre{^c}F_r^sD_t^u + [v^{sw}_{rv}D_{tv}^{uw}+2v^{vw}_{rs}D_{tu}^{vw}],\\ \end{aligned} @@ -970,7 +970,7 @@ \subsection{Spin-restricted open-shell CCSD/DSCD} \begin{aligned} ~^{αβ}\bar T^{ij}_{at} &= \frac{1}{3} ( ~^{ββ}T^{ij}_{at} + 2 ~^{αβ}T^{ij}_{at} + ~^{αβ}T^{ji}_{at})\\ ~^{αβ}\bar T^{tj}_{ab} &= \frac{1}{3} ( ~^{αα}T^{tj}_{ab} + 2 ~^{αβ}T^{tj}_{ab} + ~^{αβ}T^{tj}_{ba})\\ -~^{αβ}\bar T^{tj}_{au} &= ~^{αβ}T^{tj}_{au} + \frac{\delta_{tu}}{2m_s + 2}\left( ~^{β}T^j_a - ~^{α}T^j_a - ~^{αβ}T^{vj}_{av} \right) +~^{αβ}\bar T^{tj}_{au} &= ~^{αβ}T^{tj}_{au} + \frac{\delta^t_u}{2m_s + 2}\left( ~^{β}T^j_a - ~^{α}T^j_a - ~^{αβ}T^{vj}_{av} \right) \end{aligned} \end{equation} The projection corrections for the remaining amplitudes are defined From 9ff287fb46dba974603d53a7ce5a9eac7ba2dc7e Mon Sep 17 00:00:00 2001 From: Daniel Kats Date: Mon, 17 Jun 2024 08:26:46 +0200 Subject: [PATCH 20/44] Make header of FDump type stable --- src/dump.jl | 276 +- src/dumptools.jl | 4 +- src/ecinfos.jl | 13 +- src/tensortools.jl | 1 - test/2d_cc.jl | 4 +- test/df_mcscf.jl | 2 +- test/{ => files}/CH2.3B1.DZP.ROHF.FCIDUMP | 0 test/{ => files}/CH2O.3A1.VDZ.ROHF.FCIDUMP | 0 test/{ => files}/H2O.FCIDUMP | 0 test/{ => files}/H2OP_UHF.FCIDUMP | 0 test/{ => files}/H2O_CATION.FCIDUMP | 0 test/{ => files}/H2O_ST1.FCIDUMP | 0 test/{ => files}/H2O_UHF.FCIDUMP | 0 test/files/N_ST1.FCIDUMP | 35980 +++++++++++++++++++ test/files/N_int1a.npy | Bin 0 -> 1648 bytes test/files/N_int1b.npy | Bin 0 -> 1648 bytes test/files/N_int2aa.npy | Bin 0 -> 164720 bytes test/files/N_int2ab.npy | Bin 0 -> 307408 bytes test/files/N_int2bb.npy | Bin 0 -> 164720 bytes test/{ => files}/h2o.xyz | 0 test/{ => files}/orbs.matrop | 0 test/h2o.jl | 2 +- test/h2o_anion_st1.jl | 2 +- test/h2o_cation.jl | 4 +- test/h2o_matrop.jl | 3 +- test/h2o_st1.jl | 2 +- test/h2o_triplet.jl | 2 +- test/n_st1.jl | 36 + test/runtests.jl | 2 +- test/uccsdt.jl | 2 +- 30 files changed, 36263 insertions(+), 72 deletions(-) rename test/{ => files}/CH2.3B1.DZP.ROHF.FCIDUMP (100%) rename test/{ => files}/CH2O.3A1.VDZ.ROHF.FCIDUMP (100%) rename test/{ => files}/H2O.FCIDUMP (100%) rename test/{ => files}/H2OP_UHF.FCIDUMP (100%) rename test/{ => files}/H2O_CATION.FCIDUMP (100%) rename test/{ => files}/H2O_ST1.FCIDUMP (100%) rename test/{ => files}/H2O_UHF.FCIDUMP (100%) create mode 100644 test/files/N_ST1.FCIDUMP create mode 100644 test/files/N_int1a.npy create mode 100644 test/files/N_int1b.npy create mode 100644 test/files/N_int2aa.npy create mode 100644 test/files/N_int2ab.npy create mode 100644 test/files/N_int2bb.npy rename test/{ => files}/h2o.xyz (100%) rename test/{ => files}/orbs.matrop (100%) create mode 100644 test/n_st1.jl diff --git a/src/dump.jl b/src/dump.jl index 9209d61..f791688 100644 --- a/src/dump.jl +++ b/src/dump.jl @@ -14,7 +14,7 @@ using Printf using ..ElemCo.MNPY export FDump, fd_exists, read_fcidump, write_fcidump, transform_fcidump -export headvar, integ1, integ2, uppertriangular, uppertriangular_range +export headvar, headvars, integ1, integ2, uppertriangular, uppertriangular_range export reorder_orbs_int2, modify_header! export int1_npy_filename, int2_npy_filename @@ -24,6 +24,75 @@ const FDUMP_OPTIONAL=["IUHF", "ST", "III"] """prefered order of keys in fcidump header (optional keys are not included)""" const FDUMP_KEYS=["NORB", "NELEC", "MS2", "ISYM", "ORBSYM" ] +""" + FDumpHeader + + Header of fcidump file +""" +Base.@kwdef mutable struct FDumpHeader + ihead::Dict{String,Vector{Int}} = Dict{String,Vector{Int}}() + fhead::Dict{String,Vector{Float64}} = Dict{String,Vector{Float64}}() + shead::Dict{String,Vector{String}} = Dict{String,Vector{String}}() +end + +function Base.getindex(h::FDumpHeader, key::String) + if haskey(h.ihead, key) + return h.ihead[key] + elseif haskey(h.fhead, key) + return h.fhead[key] + else + return h.shead[key] + end +end +Base.getindex(h::FDumpHeader, key::String, ::Type{<:Int}) = h.ihead[key] +Base.getindex(h::FDumpHeader, key::String, ::Type{Float64}) = h.fhead[key] +Base.getindex(h::FDumpHeader, key::String, ::Type{String}) = h.shead[key] + +function Base.get(h::FDumpHeader, key::String, default) + if haskey(h.ihead, key) + return h.ihead[key] + elseif haskey(h.fhead, key) + return h.fhead[key] + elseif haskey(h.shead, key) + return h.shead[key] + else + return default + end +end +Base.get(h::FDumpHeader, key::String, ::Type{<:Int}, default) = get(h.ihead, key, default) +Base.get(h::FDumpHeader, key::String, ::Type{Float64}, default) = get(h.fhead, key, default) +Base.get(h::FDumpHeader, key::String, ::Type{String}, default) = get(h.shead, key, default) + +Base.setindex!(h::FDumpHeader, val::Vector{Int}, key::String) = h.ihead[key] = val +Base.setindex!(h::FDumpHeader, val::Vector{Float64}, key::String) = h.fhead[key] = val +Base.setindex!(h::FDumpHeader, val::Vector{String}, key::String) = h.shead[key] = val + +function Base.keys(h::FDumpHeader) + return unique([keys(h.ihead); keys(h.fhead); keys(h.shead)]) +end + +Base.isempty(h::FDumpHeader) = isempty(h.ihead) && isempty(h.fhead) && isempty(h.shead) +Base.empty!(h::FDumpHeader) = empty!(h.ihead) && empty!(h.fhead) && empty!(h.shead) + +function Base.iterate(h::FDumpHeader, state=1) + ikeys = collect(keys(h.ihead)) + if state <= length(ikeys) + return ikeys[state] => h.ihead[ikeys[state]], state+1 + end + fkeys = collect(keys(h.fhead)) + fstate = state - length(ikeys) + if fstate <= length(fkeys) + return fkeys[fstate] => h.fhead[fkeys[fstate]], state+1 + end + skeys = collect(keys(h.shead)) + sstate = fstate - length(fkeys) + if sstate <= length(skeys) + return skeys[sstate] => h.shead[skeys[sstate]], state+1 + end + return nothing +end + + """ FDump @@ -52,7 +121,7 @@ Base.@kwdef mutable struct FDump """ core energy """ int0::Float64 = 0.0 """ header of fcidump file, a dictionary of arrays. """ - head::Dict{String,AbstractArray} = Dict{String,AbstractArray}() + head::FDumpHeader = FDumpHeader() """`⟨true⟩` use an upper triangular index for last two indices of 2e⁻ integrals.""" triang::Bool = true """`⟨false⟩` a convinience variable, has to coincide with `head["IUHF"][1] > 0`. """ @@ -60,24 +129,24 @@ Base.@kwdef mutable struct FDump end """ - FDump(int2::Array{Float64},int1::Array{Float64},int0::Float64,head::Dict{String,AbstractArray}) + FDump(int2::Array{Float64}, int1::Array{Float64}, int0::Float64, head::FDumpHeader) Spin-free fcidump """ -FDump(int2::Array{Float64},int1::Array{Float64},int0::Float64,head::Dict{String,AbstractArray}) = FDump(int2,[],[],[],int1,[],[],int0,head) +FDump(int2::Array{Float64}, int1::Array{Float64}, int0::Float64, head::FDumpHeader) = FDump(int2,[],[],[],int1,[],[],int0,head) """ - FDump(int2aa::Array{Float64},int2bb::Array{Float64},int2ab::Array{Float64},int1::Array{Float64},int0::Float64,head::Dict{String,AbstractArray}) + FDump(int2aa::Array{Float64}, int2bb::Array{Float64}, int2ab::Array{Float64}, int1::Array{Float64}, int0::Float64, head::FDumpHeader) Spin-polarized fcidump """ -FDump(int2aa::Array{Float64},int2bb::Array{Float64},int2ab::Array{Float64},int1a::Array{Float64},int1b::Array{Float64},int0::Float64,head::Dict{String,AbstractArray}) = FDump([],int2aa,int2bb,int2ab,[],int1a,int1b,int0,head) +FDump(int2aa::Array{Float64}, int2bb::Array{Float64}, int2ab::Array{Float64}, int1a::Array{Float64}, int1b::Array{Float64}, int0::Float64, head::FDumpHeader) = FDump([],int2aa,int2bb,int2ab,[],int1a,int1b,int0,head) """ FDump(norb,nelec;ms2=0,isym=1,orbsym=[],uhf=false,simtra=false,triang=true) Create a new FDump object """ -function FDump(norb, nelec; ms2=0, isym=1, orbsym=[], +function FDump(norb::Int, nelec::Int; ms2::Int=0, isym::Int=1, orbsym::Vector{Int}=Int[], uhf=false, simtra=false, triang=true) fd = FDump() fd.head["NORB"] = [norb] @@ -101,7 +170,7 @@ end Modify header of FDump object """ -function modify_header!(fd::FDump, norb, nelec; ms2=-1, isym=-1, orbsym=[]) +function modify_header!(fd::FDump, norb::Int, nelec::Int; ms2::Int=-1, isym::Int=-1, orbsym::Vector{Int}=Int[]) fd.head["NORB"] = [norb] fd.head["NELEC"] = [nelec] if ms2 >= 0 @@ -169,12 +238,12 @@ function read_fcidump(fcidump::String) fdf = open(fcidump) fd = FDump() fd.head = read_header(fdf) - fd.uhf = (headvar(fd, "IUHF") > 0) - simtra = (headvar(fd, "ST") > 0) + fd.uhf = (headvar(fd, "IUHF", Int) > 0) + simtra = (headvar(fd, "ST", Int) > 0) if simtra println("Non-Hermitian") end - if isnothing(headvar(fd, "NPY2")) && isnothing(headvar(fd, "NPY2AA")) + if isnothing(headvar(fd, "NPY2", String)) && isnothing(headvar(fd, "NPY2AA", String)) # read integrals from fcidump file read_integrals!(fd,fdf) close(fdf) @@ -193,10 +262,11 @@ end """ function read_header(fdfile) # put some defaults... - head = Dict{String,AbstractArray}() + head = FDumpHeader() head["IUHF"] = [0] head["ST"] = [0] variable_name = "" + vartype = Int for line in eachline(fdfile) #skip empty lines line = strip(line) @@ -213,9 +283,11 @@ function read_header(fdfile) # after (before the next variable name) as a vector of values prev_el = "" elements = [] + newvec = true if variable_name != "" # in case the elements of the last variable continue on new line... - elements = head[variable_name] + elements = head[variable_name, vartype] + newvec = false end push!(line_array, "\n") for el in line_array @@ -227,7 +299,7 @@ function read_header(fdfile) end # case-insensitive variable names in the header variable_name = uppercase(prev_el) - elements = [] + newvec = true prev_el = "" else error("No variable name before '=':"*line) @@ -239,7 +311,16 @@ function read_header(fdfile) elem = tryparse(Float64,prev_el) if isnothing(elem) elem = strip(prev_el, ['"','\'']) + vartype = String + else + vartype = Float64 end + else + vartype = Int + end + if newvec + elements = Vector{vartype}() + newvec = false end push!(elements, elem) end @@ -273,10 +354,11 @@ function read_integrals!(fd::FDump, dir::AbstractString) fd.int1a = mmap_integrals(fd, dir, "NPY1A") fd.int1b = mmap_integrals(fd, dir, "NPY1B") end - if isnothing(headvar(fd, "ENUC")) + enuc = headvar(fd, "ENUC", Float64) + if isnothing(enuc) error("ENUC option not found in fcidump") end - fd.int0 = headvar(fd, "ENUC") + fd.int0 = enuc end """ @@ -406,28 +488,76 @@ end Read integrals from fcidump file """ function read_integrals!(fd::FDump, fdfile::IOStream) - norb = headvar(fd, "NORB") - simtra = (headvar(fd, "ST") > 0) + norb = headvar(fd, "NORB", Int) + if isnothing(norb) + error("NORB option not found in fcidump") + end + st = headvar(fd, "ST", Int) + if isnothing(st) + error("ST option not found in fcidump") + end + simtra = (st > 0) if fd.uhf print("UHF") - fd.int1a = zeros(norb,norb) - fd.int1b = zeros(norb,norb) + int1a = zeros(norb,norb) + int1b = zeros(norb,norb) if fd.triang - fd.int2aa = zeros(norb,norb,norb*(norb+1)÷2) - fd.int2bb = zeros(norb,norb,norb*(norb+1)÷2) + int2aa = zeros(norb,norb,(norb+1)*norb÷2) + int2bb = zeros(norb,norb,(norb+1)*norb÷2) else - fd.int2aa = zeros(norb,norb,norb,norb) - fd.int2bb = zeros(norb,norb,norb,norb) + int2aa = zeros(norb,norb,norb,norb) + int2bb = zeros(norb,norb,norb,norb) end - fd.int2ab = zeros(norb,norb,norb,norb) + int2ab = zeros(norb,norb,norb,norb) + fd.int0 = read_integrals!(int1a, int1b, int2aa, int2bb, int2ab, norb, fdfile, fd.triang, simtra) + fd.int1a = int1a + fd.int1b = int1b + fd.int2aa = int2aa + fd.int2bb = int2bb + fd.int2ab = int2ab else - fd.int1 = zeros(norb,norb) + int1 = zeros(norb,norb) if fd.triang - fd.int2 = zeros(norb,norb,norb*(norb+1)÷2) + int2 = zeros(norb,norb,(norb+1)*norb÷2) else - fd.int2 = zeros(norb,norb,norb,norb) + int2 = zeros(norb,norb,norb,norb) + end + fd.int0 = read_integrals!(int1, int2, norb, fdfile, fd.triang, simtra) + fd.int1 = int1 + fd.int2 = int2 + end +end + +function read_integrals!(int1, int2, norb, fdfile, triang, simtra) + int0 = 0.0 + for linestr in eachline(fdfile) + line = split(linestr) + if length(line) != 5 + # println("Last line: ",linestr) + # skip lines (in the case there is something left from header)... + continue + end + integ = parse(Float64,line[1]) + i1 = parse(Int,line[2]) + i2 = parse(Int,line[3]) + i3 = parse(Int,line[4]) + i4 = parse(Int,line[5]) + if i1 > norb || i2 > norb || i3 > norb || i4 > norb + error("Index larger than norb: "*linestr) + end + if i4 > 0 + set_int2!(int2, i1, i2, i3, i4, integ, triang, simtra, false) + elseif i2 > 0 + set_int1!(int1, i1, i2, integ, simtra) + elseif i1 <= 0 + int0 = integ end end + return int0 +end + +function read_integrals!(int1a, int1b, int2aa, int2bb, int2ab, norb, fdfile, triang, simtra) + int0 = 0.0 spincase = 0 # aa, bb, ab, a, b for linestr in eachline(fdfile) line = split(linestr) @@ -446,45 +576,40 @@ function read_integrals!(fd::FDump, fdfile::IOStream) end if i4 > 0 if spincase == 0 - if fd.uhf - set_int2!(fd.int2aa,i1,i2,i3,i4,integ,fd.triang,simtra,false) - else - set_int2!(fd.int2,i1,i2,i3,i4,integ,fd.triang,simtra,false) - end + set_int2!(int2aa, i1, i2, i3, i4, integ, triang, simtra, false) elseif spincase == 1 - set_int2!(fd.int2bb,i1,i2,i3,i4,integ,fd.triang,simtra,false) + set_int2!(int2bb, i1, i2, i3, i4, integ, triang, simtra, false) elseif spincase == 2 - set_int2!(fd.int2ab,i1,i2,i3,i4,integ,false,simtra,true) + set_int2!(int2ab, i1, i2, i3, i4, integ, false, simtra, true) else error("Unexpected 2-el integrals for spin-case "*string(spincase)) end elseif i2 > 0 - if !fd.uhf - set_int1!(fd.int1,i1,i2,integ,simtra) - elseif spincase == 3 - set_int1!(fd.int1a,i1,i2,integ,simtra) + if spincase == 3 + set_int1!(int1a, i1, i2, integ, simtra) elseif spincase == 4 - set_int1!(fd.int1b,i1,i2,integ,simtra) + set_int1!(int1b, i1, i2, integ, simtra) else error("Unexpected 1-el integrals for spin-case "*string(spincase)) end elseif i1 <= 0 - if fd.uhf && spincase < 5 + if spincase < 5 spincase += 1 else - fd.int0 = integ + int0 = integ end end end + return int0 end """ - headvar(head::Dict{String,AbstractArray}, key::String) + headvar(head::FDumpHeader, key::String) Check header for `key`, return value if a list, or the element or nothing if not there. """ -function headvar(head::Dict{String,AbstractArray}, key::String) +function headvar(head::FDumpHeader, key::String) val = get(head, key, nothing) if isnothing(val) return val @@ -495,6 +620,29 @@ function headvar(head::Dict{String,AbstractArray}, key::String) end end +""" + headvars(head::FDumpHeader, key::String, ::Type{T}) where {T} + + Check header for `key` of type `T`, return a vector of values or nothing if not there. +""" +function headvars(head::FDumpHeader, key::String, ::Type{T}) where {T} + return get(head, key, T, nothing) +end + +""" + headvar(head::FDumpHeader, key::String, ::Type{T}) where {T} + + Check header for `key` of type `T`, return the first element or nothing if not there. +""" +function headvar(head::FDumpHeader, key::String, ::Type{T}) where {T} + val = headvars(head, key, T) + if isnothing(val) + return nothing + else + return val[1] + end +end + """ headvar(fd::FDump, key::String) @@ -505,13 +653,31 @@ function headvar(fd::FDump, key::String ) return headvar(fd.head, key) end +""" + headvars(fd::FDump, key::String, ::Type{T}) where {T} + + Check header for `key`, return a vector of values or nothing if not there. +""" +function headvars(fd::FDump, key::String, ::Type{T}) where {T} + return headvars(fd.head, key, T) +end + +""" + headvar(fd::FDump, key::String, ::Type{T}) where {T} + + Check header for `key`, return the first element or nothing if not there. +""" +function headvar(fd::FDump, key::String, ::Type{T}) where {T} + return headvar(fd.head, key, T) +end + """ mmap_integrals(fd::FDump, dir::AbstractString, key::AbstractString) Memory-map integral file (from head[key]) """ function mmap_integrals(fd::FDump, dir::AbstractString, key::AbstractString) - file = headvar(fd, key) + file = headvar(fd, key, String) if isnothing(file) error(key*" option not found in fcidump") end @@ -579,7 +745,11 @@ end Write integrals to fdf file. """ function write_integrals(fd::FDump, fdf, tol) - simtra::Bool = (headvar(fd, "ST") > 0) + st = headvar(fd, "ST", Int) + if isnothing(st) + error("ST option not found in fcidump") + end + simtra::Bool = (st > 0) if !fd.uhf write_integrals2(fd.int2, fdf, tol, fd.triang, simtra) write_integrals1(fd.int1, fdf, tol, simtra) @@ -889,20 +1059,20 @@ end """ function int1_npy_filename(fd::FDump, spincase::Symbol=:α) if !fd.uhf - file = headvar(fd, "NPY1") + file = headvar(fd, "NPY1", String) if isnothing(file) file = "int1.npy" # fd.head["NPY1"] = [file] end else if spincase == :α - file = headvar(fd, "NPY1A") + file = headvar(fd, "NPY1A", String) if isnothing(file) file = "int1a.npy" # fd.head["NPY1A"] = [file] end else - file = headvar(fd, "NPY1B") + file = headvar(fd, "NPY1B", String) if isnothing(file) file = "int1b.npy" # fd.head["NPY1B"] = [file] @@ -920,26 +1090,26 @@ end """ function int2_npy_filename(fd::FDump, spincase::Symbol=:α) if !fd.uhf - file = headvar(fd, "NPY2") + file = headvar(fd, "NPY2", String) if isnothing(file) file = "int2.npy" # fd.head["NPY2"] = [file] end else if spincase == :α - file = headvar(fd, "NPY2AA") + file = headvar(fd, "NPY2AA", String) if isnothing(file) file = "int2aa.npy" # fd.head["NPY2AA"] = [file] end elseif spincase == :β - file = headvar(fd, "NPY2BB") + file = headvar(fd, "NPY2BB", String) if isnothing(file) file = "int2bb.npy" # fd.head["NPY2BB"] = [file] end else - file = headvar(fd, "NPY2AB") + file = headvar(fd, "NPY2AB", String) if isnothing(file) file = "int2ab.npy" # fd.head["NPY2AB"] = [file] diff --git a/src/dumptools.jl b/src/dumptools.jl index 93a0f08..b064b22 100644 --- a/src/dumptools.jl +++ b/src/dumptools.jl @@ -33,8 +33,8 @@ function freeze_orbs_in_dump(EC::ECInfo, freeze_orbs) ncore_orbs = freeze_nocc!(EC, freeze_occ) nfrozvirt = freeze_nvirt!(EC, 0, freeze_virt) nonfrozen = setdiff(SP[':'], freeze_occ, freeze_virt) - nelec = headvar(EC.fd, "NELEC") - 2*ncore_orbs - norbs = headvar(EC.fd, "NORB") - ncore_orbs - nfrozvirt + nelec = headvar(EC.fd, "NELEC", Int) - 2*ncore_orbs + norbs = headvar(EC.fd, "NORB", Int) - ncore_orbs - nfrozvirt @assert length(nonfrozen) == norbs if EC.fd.uhf core_fock_a = full_fock_a - gen_fock(EC, :α) diff --git a/src/ecinfos.jl b/src/ecinfos.jl index 5a77812..f7a3b1e 100644 --- a/src/ecinfos.jl +++ b/src/ecinfos.jl @@ -101,13 +101,18 @@ function setup_space_fd!(EC::ECInfo) charge = EC.options.wf.charge ms2 = EC.options.wf.ms2 - norb = headvar(EC.fd, "NORB") - nelec_from_fcidump = headvar(EC.fd, "NELEC") + norb = headvar(EC.fd, "NORB", Int) + @assert !isnothing(norb) + nelec_from_fcidump = headvar(EC.fd, "NELEC", Int) + @assert !isnothing(nelec_from_fcidump) nelec = (nelec < 0) ? nelec_from_fcidump : nelec nelec -= charge - ms2_default = (nelec == nelec_from_fcidump) ? headvar(EC.fd, "MS2") : mod(nelec,2) + ms2_from_fcidump = headvar(EC.fd, "MS2", Int) + @assert !isnothing(ms2_from_fcidump) + ms2_default = (nelec == nelec_from_fcidump) ? ms2_from_fcidump : mod(nelec,2) ms2 = (ms2 < 0) ? ms2_default : ms2 - orbsym = convert(Vector{Int},headvar(EC.fd, "ORBSYM")) + orbsym = headvars(EC.fd, "ORBSYM", Int) + @assert !isnothing(orbsym) setup_space!(EC, norb, nelec, ms2, orbsym) end diff --git a/src/tensortools.jl b/src/tensortools.jl index 95c7261..c4eb252 100644 --- a/src/tensortools.jl +++ b/src/tensortools.jl @@ -141,7 +141,6 @@ end If `reverse`: the cartesian indices are reversed. """ function triinds(norb, sp1::AbstractArray{Int}, sp2::AbstractArray{Int}, reverseCartInd = false) - # triangular index (TODO: save in EC or FDump) tripp = [CartesianIndex(i,j) for j in 1:norb for i in 1:j] mask = falses(norb,norb) mask[sp1,sp2] .= true diff --git a/test/2d_cc.jl b/test/2d_cc.jl index 7d76784..a38ce0f 100644 --- a/test/2d_cc.jl +++ b/test/2d_cc.jl @@ -6,7 +6,7 @@ epsilon = 1.e-6 td_ccsd_ref = -39.044570270428 frt_ccsd_ref = -39.043778623741794 -fcidump = joinpath(@__DIR__,"CH2.3B1.DZP.ROHF.FCIDUMP") +fcidump = joinpath(@__DIR__,"files","CH2.3B1.DZP.ROHF.FCIDUMP") EC = ElemCo.ECInfo() energies = ElemCo.ccdriver(EC, "2d-ccsd"; fcidump, occa="-2.1+1.3", occb="1.1+1.2+1.3") @@ -23,7 +23,7 @@ end epsilon = 1.e-6 td_dcsd_ref = -113.824157087033 -fcidump = joinpath(@__DIR__,"CH2O.3A1.VDZ.ROHF.FCIDUMP") +fcidump = joinpath(@__DIR__,"files","CH2O.3A1.VDZ.ROHF.FCIDUMP") EC = ElemCo.ECInfo() @opt cc nomp2=1 maxit=200 diff --git a/test/df_mcscf.jl b/test/df_mcscf.jl index fc119f7..476f82f 100644 --- a/test/df_mcscf.jl +++ b/test/df_mcscf.jl @@ -4,7 +4,7 @@ using ElemCo epsilon = 1.e-6 EMCSCF_test = -75.39523234954376 -geometry="h2o.xyz" +geometry=joinpath(@__DIR__,"files","h2o.xyz") basis = Dict("ao"=>"cc-pVDZ", "jkfit"=>"cc-pvtz-jkfit", diff --git a/test/CH2.3B1.DZP.ROHF.FCIDUMP b/test/files/CH2.3B1.DZP.ROHF.FCIDUMP similarity index 100% rename from test/CH2.3B1.DZP.ROHF.FCIDUMP rename to test/files/CH2.3B1.DZP.ROHF.FCIDUMP diff --git a/test/CH2O.3A1.VDZ.ROHF.FCIDUMP b/test/files/CH2O.3A1.VDZ.ROHF.FCIDUMP similarity index 100% rename from test/CH2O.3A1.VDZ.ROHF.FCIDUMP rename to test/files/CH2O.3A1.VDZ.ROHF.FCIDUMP diff --git a/test/H2O.FCIDUMP b/test/files/H2O.FCIDUMP similarity index 100% rename from test/H2O.FCIDUMP rename to test/files/H2O.FCIDUMP diff --git a/test/H2OP_UHF.FCIDUMP b/test/files/H2OP_UHF.FCIDUMP similarity index 100% rename from test/H2OP_UHF.FCIDUMP rename to test/files/H2OP_UHF.FCIDUMP diff --git a/test/H2O_CATION.FCIDUMP b/test/files/H2O_CATION.FCIDUMP similarity index 100% rename from test/H2O_CATION.FCIDUMP rename to test/files/H2O_CATION.FCIDUMP diff --git a/test/H2O_ST1.FCIDUMP b/test/files/H2O_ST1.FCIDUMP similarity index 100% rename from test/H2O_ST1.FCIDUMP rename to test/files/H2O_ST1.FCIDUMP diff --git a/test/H2O_UHF.FCIDUMP b/test/files/H2O_UHF.FCIDUMP similarity index 100% rename from test/H2O_UHF.FCIDUMP rename to test/files/H2O_UHF.FCIDUMP diff --git a/test/files/N_ST1.FCIDUMP b/test/files/N_ST1.FCIDUMP new file mode 100644 index 0000000..a4652e4 --- /dev/null +++ b/test/files/N_ST1.FCIDUMP @@ -0,0 +1,35980 @@ +&FCI + NORB=14, + NELEC=7, + MS2=3, + ISYM=1, + ORBSYM=1,1,1,1,1,1,1,1,1,1,1,1,1,1, + ST=1, + III=0, + OCC=5, + CLOSED=2, + IUHF=1, + NPY1a="N_int1a.npy", + NPY1b="N_int1b.npy", + NPY2aa="N_int2aa.npy", + NPY2bb="N_int2bb.npy", + NPY2ab="N_int2ab.npy", + ENUC=0.46532452303179157E-001, + / + 4.0920073241756008 1 1 1 1 + -0.31125813037213695 1 1 1 2 + 0.34240977379313288E-001 1 2 1 2 + 0.60918103694179958E-002 1 3 1 3 + 0.60918103694175968E-002 1 4 1 4 + 0.60918103694179142E-002 1 5 1 5 + 0.43354550472747095E-002 1 3 1 6 + -0.52670299087541434E-002 1 4 1 6 + 0.47666585619477082E-003 1 5 1 6 + 0.77048980336009432E-002 1 6 1 6 + 0.31210805770171832E-002 1 3 1 7 + 0.20506040891168417E-002 1 4 1 7 + -0.57287750668512261E-002 1 5 1 7 + 0.77048980336009276E-002 1 7 1 7 + -0.42693875942504071E-002 1 3 1 8 + -0.38494679729929784E-002 1 4 1 8 + -0.37039047990025872E-002 1 5 1 8 + 0.77048980336007038E-002 1 8 1 8 + 0.27817101735216987 1 1 1 9 + -0.31018598822468425E-001 1 2 1 9 + 0.28154580071718602E-001 1 9 1 9 + 0.11650369284249028E-003 1 10 1 10 + 0.16727413637223543E-009 1 10 1 11 + 0.11650363320891863E-003 1 11 1 11 + 0.18725915483186948E-009 1 11 1 12 + 0.11650374026366393E-003 1 12 1 12 + -0.31652338528366213E-008 1 10 1 13 + 0.58830841208228003E-008 1 11 1 13 + -0.34508605684082254E-008 1 12 1 13 + 0.11639434065409957E-003 1 13 1 13 + -0.42541617104114401E-008 1 10 1 14 + 0.33167608598152469E-008 1 12 1 14 + 0.11639408975328966E-003 1 14 1 14 + -0.48851000110240866 1 1 2 1 + 0.63387701289962392E-001 1 2 2 1 + -0.57325429718523876E-001 1 9 2 1 + 0.92534425200611517E-001 2 1 2 1 + 0.97767761686893762 1 1 2 2 + -0.44791383152810893E-001 1 2 2 2 + 0.39563064435363247E-001 1 9 2 2 + 0.98926031829349882E-002 2 1 2 2 + 0.67923060489951659 2 2 2 2 + 0.17396620383542706E-003 1 3 2 3 + -0.82943255186439377E-003 1 6 2 3 + -0.59710590914720230E-003 1 7 2 3 + 0.81679293374827087E-003 1 8 2 3 + 0.11824665548150493 2 3 2 3 + 0.17396620383533208E-003 1 4 2 4 + 0.10076557155653961E-002 1 6 2 4 + -0.39230894195718777E-003 1 7 2 4 + 0.73645649864735336E-003 1 8 2 4 + 0.11824665548150350 2 4 2 4 + 0.17396620383530585E-003 1 5 2 5 + -0.91192775194062604E-004 1 6 2 5 + 0.10959939547156817E-002 1 7 2 5 + 0.70860824891506163E-003 1 8 2 5 + 0.11824665548150501 2 5 2 5 + 0.25073110783829337E-002 1 3 2 6 + -0.30460660522116374E-002 1 4 2 6 + 0.27566877499404785E-003 1 5 2 6 + 0.28825936860294643E-002 1 6 2 6 + 0.23370954940713690E-001 2 3 2 6 + -0.28392756314302096E-001 2 4 2 6 + 0.25695425567628803E-002 2 5 2 6 + 0.23393351843144259E-001 2 6 2 6 + 0.18050054312521962E-002 1 3 2 7 + 0.11859198847539629E-002 1 4 2 7 + -0.33131057833730277E-002 1 5 2 7 + 0.28825936860294972E-002 1 7 2 7 + 0.16824677625860186E-001 2 3 2 7 + 0.11054105104404381E-001 2 4 2 7 + -0.30881866492198481E-001 2 5 2 7 + 0.23393351843144922E-001 2 7 2 7 + -0.24691024808811035E-002 1 3 2 8 + -0.22262515905066599E-002 1 4 2 8 + -0.21420684644515762E-002 1 5 2 8 + 0.28825936860295397E-002 1 8 2 8 + -0.23014807904049056E-001 2 3 2 8 + -0.20751164886161827E-001 2 4 2 8 + -0.19966483614354859E-001 2 5 2 8 + 0.23393351843144554E-001 2 8 2 8 + -0.33915761218095558 1 1 2 9 + -0.50986060464752769E-003 1 2 2 9 + 0.39189318323449077E-003 1 9 2 9 + 0.28214109052569776E-001 2 1 2 9 + -0.17256208937178658 2 2 2 9 + 0.36651427873104804E-002 2 9 2 9 + -0.80247723978634194E-003 1 10 2 10 + 0.34911769000943945E-009 1 11 2 10 + -0.66061565709127778E-008 1 13 2 10 + -0.88788568683347506E-008 1 14 2 10 + 0.29412209352815563E-001 2 10 2 10 + 0.34911769067349539E-009 1 10 2 11 + -0.80247736424745968E-003 1 11 2 11 + 0.39082840440623876E-009 1 12 2 11 + 0.12278579286766146E-007 1 13 2 11 + -0.14261712932015083E-009 1 14 2 11 + 0.59260939426726585E-008 2 10 2 11 + 0.29412207240151377E-001 2 11 2 11 + 0.39082840498718337E-009 1 11 2 12 + -0.80247714081363799E-003 1 12 2 12 + -0.72022878183224977E-008 1 13 2 12 + 0.69224084431390275E-008 1 14 2 12 + 0.10195820875429954E-008 2 10 2 12 + 0.66341119164632336E-008 2 11 2 12 + 0.29412211032826405E-001 2 12 2 12 + -0.66061565710005317E-008 1 10 2 13 + 0.12278579286656634E-007 1 11 2 13 + -0.72022878186223772E-008 1 12 2 13 + -0.80270546863498620E-003 1 13 2 13 + -0.11213612305252016E-006 2 10 2 13 + 0.20842259233353041E-006 2 11 2 13 + -0.12225514554431830E-006 2 12 2 13 + 0.29408335285045474E-001 2 13 2 13 + -0.88788568699303638E-008 1 10 2 14 + -0.14261712996634402E-009 1 11 2 14 + 0.69224084441898364E-008 1 12 2 14 + -0.80270599228982054E-003 1 14 2 14 + -0.15071404619544673E-006 2 10 2 14 + -0.24208526961250091E-008 2 11 2 14 + 0.11750433658074414E-006 2 12 2 14 + 0.52414687211658831E-009 2 13 2 14 + 0.29408326396272597E-001 2 14 2 14 + 0.27991655352045446E-001 1 3 3 1 + 0.19587564655718859E-001 1 6 3 1 + 0.14101026750688955E-001 1 7 3 1 + -0.19289072226748506E-001 1 8 3 1 + 0.58093921053218714E-001 2 3 3 1 + 0.17715416303002288E-001 2 6 3 1 + 0.12753272986149112E-001 2 7 3 1 + -0.17445453306813120E-001 2 8 3 1 + 0.49891500334672892E-001 3 1 3 1 + 0.22288806428538369E-002 1 3 3 2 + 0.47773338044047745E-003 1 6 3 2 + 0.34391877171523048E-003 1 7 3 2 + -0.47045326166948633E-003 1 8 3 2 + 0.13425180984013879 2 3 3 2 + 0.23882940605570866E-001 2 6 3 2 + 0.17193254510379355E-001 2 7 3 2 + -0.23518991483890216E-001 2 8 3 2 + 0.60148835492237124E-001 3 1 3 2 + 0.15025696419877266 3 2 3 2 + 0.95447783455293655 1 1 3 3 + -0.40251555419257339E-001 1 2 3 3 + 0.35181335364548073E-001 1 9 3 3 + -0.19195447446037738E-003 1 10 3 3 + 0.63151535790605833E-003 1 11 3 3 + -0.59001681954055636E-003 1 12 3 3 + -0.43041396210977763E-003 1 13 3 3 + -0.13413927760263662E-003 1 14 3 3 + 0.16019425962977674E-001 2 1 3 3 + 0.66276807218545342 2 2 3 3 + -0.17272851354990609 2 9 3 3 + -0.75480559040847269E-002 2 10 3 3 + 0.24832242105847304E-001 2 11 3 3 + -0.23200351643462437E-001 2 12 3 3 + -0.16928222246636024E-001 2 13 3 3 + -0.52754901772474822E-002 2 14 3 3 + 0.69672367594212292 3 3 3 3 + -0.61380851662003682E-004 1 10 3 4 + -0.11627706063903023E-003 1 11 3 4 + 0.62724193506192506E-004 1 12 3 4 + -0.45250121309202526E-003 1 13 3 4 + 0.71695720701787338E-003 1 14 3 4 + -0.24134645812241202E-002 2 10 3 4 + -0.45719840144584191E-002 2 11 3 4 + 0.24661261944173181E-002 2 12 3 4 + -0.17796397518215250E-001 2 13 3 4 + 0.28197231066481584E-001 2 14 3 4 + -0.15955301185393120E-006 3 3 3 4 + 0.35144186233278925E-001 3 4 3 4 + 0.57452131287452797E-003 1 10 3 5 + -0.39830855662764312E-003 1 11 3 5 + -0.45676058429850353E-003 1 12 3 5 + -0.18554509699858881E-003 1 13 3 5 + -0.92578896669584862E-004 1 14 3 5 + 0.22590904636371891E-001 2 10 3 5 + -0.15661966267649916E-001 2 11 3 5 + -0.17960472012842246E-001 2 12 3 5 + -0.72971321023119831E-002 2 13 3 5 + -0.36407659773548427E-002 2 14 3 5 + -0.10586730167216253E-006 3 3 3 5 + -0.38961390863738673E-007 3 4 3 5 + 0.35145020440658405E-001 3 5 3 5 + 0.24432970256287997 1 1 3 6 + 0.34250489150957509E-002 1 2 3 6 + -0.31827970945772660E-002 1 9 3 6 + -0.68583122700610499E-004 1 10 3 6 + 0.92203030713966733E-003 1 11 3 6 + -0.90615509958052217E-003 1 12 3 6 + 0.12511960947869327E-003 1 13 3 6 + -0.12843947138989262E-002 1 14 3 6 + -0.16927591343173731E-001 2 1 3 6 + 0.12121654494732455 2 2 3 6 + -0.87565804115614029E-002 2 9 3 6 + -0.47960709494505150E-003 2 10 3 6 + 0.64472634746883927E-002 2 11 3 6 + -0.63362246339542959E-002 2 12 3 6 + 0.87493460021633698E-003 2 13 3 6 + -0.89821987131211475E-002 2 14 3 6 + 0.13166960405092948 3 3 3 6 + -0.85998049610877172E-002 3 4 3 6 + 0.77827818131832741E-003 3 5 3 6 + 0.25723108654979523E-001 3 6 3 6 + 0.17589219141753923 1 1 3 7 + 0.24656820397565972E-002 1 2 3 7 + -0.22912857091470749E-002 1 9 3 7 + -0.11716979290215159E-002 1 10 3 7 + 0.11711522665335890E-002 1 11 3 7 + 0.26367161863991647E-003 1 12 3 7 + -0.35257609234960150E-003 1 13 3 7 + 0.46156108950272195E-003 1 14 3 7 + -0.12186120252837369E-001 2 1 3 7 + 0.87263412934253298E-001 2 2 3 7 + -0.63038349482591660E-002 2 9 3 7 + -0.81930560893576990E-002 2 10 3 7 + 0.81892643929831616E-002 2 11 3 7 + 0.18436919128021747E-002 2 12 3 7 + -0.24657649898749100E-002 2 13 3 7 + 0.32278115823187806E-002 2 14 3 7 + 0.94788550677266839E-001 3 3 3 7 + 0.33481728238832988E-002 3 4 3 7 + -0.93535252603431564E-002 3 5 3 7 + 0.97326318732838309E-002 3 6 3 7 + 0.19210134320431296E-001 3 7 3 7 + -0.24060639302085735 1 1 3 8 + -0.33728550263719907E-002 1 2 3 8 + 0.31342948508127971E-002 1 9 3 8 + -0.31278725844655108E-003 1 10 3 8 + -0.22560578376816680E-003 1 11 3 8 + 0.11580179142694214E-002 1 12 3 8 + 0.12449596564635113E-002 1 13 3 8 + -0.53814204192272649E-003 1 14 3 8 + 0.16669633912249831E-001 2 1 3 8 + -0.11936934129701458 2 2 3 8 + 0.86231399863494918E-002 2 9 3 8 + -0.21871418580020389E-002 2 10 3 8 + -0.15776019826903413E-002 2 11 3 8 + 0.80974530132978170E-002 2 12 3 8 + 0.87064702404386091E-002 2 13 3 8 + -0.37634571482603324E-002 2 14 3 8 + -0.12966318815378847 3 3 3 8 + -0.62853248029099045E-002 3 4 3 8 + -0.60475042476282014E-002 3 5 3 8 + -0.13313459426929269E-001 3 6 3 8 + -0.95843050802771352E-002 3 7 3 8 + 0.25314201331922401E-001 3 8 3 8 + -0.52799560130370321E-002 1 3 3 9 + -0.27064555438034194E-002 1 6 3 9 + -0.19483689112714652E-002 1 7 3 9 + 0.26652122088932258E-002 1 8 3 9 + -0.31273527356597830E-001 2 3 3 9 + -0.15817261620777557E-001 2 6 3 9 + -0.11386797346045309E-001 2 7 3 9 + 0.15576224364547206E-001 2 8 3 9 + -0.26656614455583844E-001 3 1 3 9 + -0.30340702359993466E-001 3 2 3 9 + 0.27566980450947617E-001 3 9 3 9 + 0.80388658300793107E-003 1 3 3 10 + 0.25702979238526540E-003 1 4 3 10 + -0.24059561999021312E-002 1 5 3 10 + 0.17740486359529183E-003 1 6 3 10 + 0.30305486130644860E-002 1 7 3 10 + 0.80900646737979646E-003 1 8 3 10 + -0.14860043315662605E-001 2 3 3 10 + -0.47513998908424015E-002 2 4 3 10 + 0.44475125834954818E-001 2 5 3 10 + -0.85275606814136319E-003 2 6 3 10 + -0.14567591383358790E-001 2 7 3 10 + -0.38888298104688694E-002 2 8 3 10 + -0.83237248019276937E-002 3 1 3 10 + -0.17666509355830352E-001 3 2 3 10 + 0.41677568439374658E-002 3 9 3 10 + 0.28711948688798009E-001 3 10 3 10 + -0.26446775254457535E-002 1 3 3 11 + 0.48691012612796545E-003 1 4 3 11 + 0.16680147463701241E-002 1 5 3 11 + -0.23847932847636888E-002 1 6 3 11 + -0.30291471575692895E-002 1 7 3 11 + 0.58354562313585854E-003 1 8 3 11 + 0.48887764175995621E-001 2 3 3 11 + -0.90008961612204810E-002 2 4 3 11 + -0.30833989728984192E-001 2 5 3 11 + 0.11463500244966764E-001 2 6 3 11 + 0.14560846693699179E-001 2 7 3 11 + -0.28050338568826696E-002 2 8 3 11 + 0.27384020926658720E-001 3 1 3 11 + 0.58120655262867194E-001 3 2 3 11 + -0.13711371741739616E-001 3 9 3 11 + -0.17903703995528011E-001 3 10 3 11 + 0.39169261406465976E-001 3 11 3 11 + 0.24708720920516201E-002 1 3 3 12 + -0.26262817195871869E-003 1 4 3 12 + 0.19128143427127782E-002 1 5 3 12 + 0.23437194396949347E-002 1 6 3 12 + -0.68196649423006345E-003 1 7 3 12 + -0.29951881767428584E-002 1 8 3 12 + -0.45674997684790747E-001 2 3 3 12 + 0.48550285845460348E-002 2 4 3 12 + -0.35359128771363185E-001 2 5 3 12 + -0.11266072502649469E-001 2 6 3 12 + 0.32781629399420251E-002 2 7 3 12 + 0.14397598615792435E-001 2 8 3 12 + -0.25584406696026980E-001 3 1 3 12 + -0.54301112677913300E-001 3 2 3 12 + 0.12810281355056140E-001 3 9 3 12 + -0.79884127605441974E-002 3 10 3 12 + -0.10335196396874493E-001 3 11 3 12 + 0.38631147773900483E-001 3 12 3 12 + 0.18031147495766030E-002 1 3 3 13 + 0.18955559139175401E-002 1 4 3 13 + 0.77723257578445233E-003 1 5 3 13 + -0.32363339256373964E-003 1 6 3 13 + 0.91208493634855074E-003 1 7 3 13 + -0.32205072061309127E-002 1 8 3 13 + -0.33328018657357676E-001 2 3 3 13 + -0.35037115951006684E-001 2 4 3 13 + -0.14366369165510167E-001 2 5 3 13 + 0.15556648920048515E-002 2 6 3 13 + -0.43841844512528859E-002 2 7 3 13 + 0.15480325011469781E-001 2 8 3 13 + -0.18668866608300732E-001 3 1 3 13 + -0.39622918103292055E-001 3 2 3 13 + 0.93480339310303105E-002 3 9 3 13 + 0.19856807583052246E-003 3 10 3 13 + -0.75882990515587717E-002 3 11 3 13 + 0.16205841830683368E-001 3 12 3 13 + 0.31528482798939952E-001 3 13 3 13 + 0.56190650182050793E-003 1 3 3 14 + -0.30033883114841150E-002 1 4 3 14 + 0.38777384010536722E-003 1 5 3 14 + 0.33224961711529671E-002 1 6 3 14 + -0.11939589155944080E-002 1 7 3 14 + 0.13920970665912088E-002 1 8 3 14 + -0.10386237509859437E-001 2 3 3 14 + 0.55514041650567496E-001 2 4 3 14 + -0.71677738468886882E-002 2 5 3 14 + -0.15970584002305888E-001 2 6 3 14 + 0.57391379962399743E-002 2 7 3 14 + -0.66915189231127473E-002 2 8 3 14 + -0.58178762505755842E-002 3 1 3 14 + -0.12347923100589015E-001 3 2 3 14 + 0.29131521632443889E-002 3 9 3 14 + -0.37306880111892793E-002 3 10 3 14 + -0.68515464218854181E-002 3 11 3 14 + 0.86892274571774390E-002 3 12 3 14 + -0.13031369955501510E-001 3 13 3 14 + 0.37594517819890955E-001 3 14 3 14 + 0.27991655352044821E-001 1 4 4 1 + -0.23796415314276315E-001 1 6 4 1 + 0.92646192247124153E-002 1 7 4 1 + -0.17391877435914610E-001 1 8 4 1 + 0.58093921053217853E-001 2 4 4 1 + -0.21521991693258438E-001 2 6 4 1 + 0.83791216181977584E-002 2 7 4 1 + -0.15729589384051536E-001 2 8 4 1 + -0.26614338677873341E-002 3 10 4 1 + -0.50417368157478415E-002 3 11 4 1 + 0.27194587283665447E-002 3 12 4 1 + -0.19626156357987045E-001 3 13 4 1 + 0.31096381719317071E-001 3 14 4 1 + 0.49891500334672038E-001 4 1 4 1 + 0.22288806428537003E-002 1 4 4 2 + -0.58038567480305501E-003 1 6 4 2 + 0.22596059992712858E-003 1 7 4 2 + -0.42418138986177311E-003 1 8 4 2 + 0.13425180984013715 2 4 4 2 + -0.29014754185402437E-001 2 6 4 2 + 0.11296266512256061E-001 2 7 4 2 + -0.21205759017114297E-001 2 8 4 2 + -0.56487219390426212E-002 3 10 4 2 + -0.10700758267749249E-001 3 11 4 2 + 0.57718949720243903E-002 3 12 4 2 + -0.41654738162021678E-001 3 13 4 2 + 0.65999245090891875E-001 3 14 4 2 + 0.60148835492236208E-001 4 1 4 2 + 0.15025696419877080 4 2 4 2 + -0.61380851662003682E-004 1 10 4 3 + -0.11627706063903023E-003 1 11 4 3 + 0.62724193506192506E-004 1 12 4 3 + -0.45250121309202526E-003 1 13 4 3 + 0.71695720701787295E-003 1 14 4 3 + -0.24134645812241206E-002 2 10 4 3 + -0.45719840144584165E-002 2 11 4 3 + 0.24661261944173168E-002 2 12 4 3 + -0.17796397518215247E-001 2 13 4 3 + 0.28197231066481580E-001 2 14 4 3 + -0.15955301185983499E-006 3 3 4 3 + 0.35144186233278918E-001 3 4 4 3 + -0.38961390864174842E-007 3 5 4 3 + -0.85998049610877085E-002 3 6 4 3 + 0.33481728238833035E-002 3 7 4 3 + -0.62853248029099114E-002 3 8 4 3 + 0.35144186233278911E-001 4 3 4 3 + 0.95447783455292567 1 1 4 4 + -0.40251555419256853E-001 1 2 4 4 + 0.35181335364547789E-001 1 9 4 4 + -0.16410015736253721E-004 1 10 4 4 + -0.51231248096204863E-003 1 11 4 4 + 0.65827887701154356E-003 1 12 4 4 + -0.38061811678995167E-003 1 13 4 4 + -0.38220790532232402E-003 1 14 4 4 + 0.16019425962977115E-001 2 1 4 4 + 0.66276807218544553 2 2 4 4 + -0.17272851354990298 2 9 4 4 + -0.64545857362030166E-003 2 10 4 4 + -0.20144686285760612E-001 2 11 4 4 + 0.25884431914584848E-001 2 12 4 4 + -0.14968983832321023E-001 2 13 4 4 + -0.15032043928415478E-001 2 14 4 4 + 0.62643361354300042 3 3 4 4 + 0.17133897118343118E-006 3 4 4 4 + -0.94458429383476358E-007 3 5 4 4 + 0.11751243038049909 3 6 4 4 + 0.84596761268285373E-001 3 7 4 4 + -0.11572161712284521 3 8 4 4 + 0.17133897117545411E-006 4 3 4 4 + 0.69672365163624195 4 4 4 4 + 0.60519293305386524E-003 1 10 4 5 + 0.48005606688747741E-003 1 11 4 5 + 0.36707888543425165E-003 1 12 4 5 + -0.82807030168434816E-004 1 13 4 5 + 0.45236543008974657E-004 1 14 4 5 + 0.23797006964331246E-001 2 10 4 5 + 0.18876489120618695E-001 2 11 4 5 + 0.14434007112588534E-001 2 12 4 5 + -0.32566973679563319E-002 2 13 4 5 + 0.17792091515389441E-002 2 14 4 5 + -0.38961390212245677E-007 3 3 4 5 + -0.94458430680312481E-007 3 4 4 5 + -0.11785963836739514E-007 3 5 4 5 + -0.14591206768888703E-007 3 6 4 5 + 0.11193810143584894E-007 3 7 4 5 + -0.25913709851539169E-007 3 8 4 5 + -0.94458430679344891E-007 4 3 4 5 + -0.37988689984861365E-008 4 4 4 5 + 0.35145044746522476E-001 4 5 4 5 + -0.29682970690807020 1 1 4 6 + -0.41610015276468950E-002 1 2 4 6 + 0.38666961847917294E-002 1 9 4 6 + 0.31747628731888871E-004 1 10 4 6 + 0.70690318572626341E-003 1 11 4 6 + -0.88113107196821226E-003 1 12 4 6 + 0.99892365223432395E-006 1 13 4 6 + 0.15006361817969951E-002 1 14 4 6 + 0.20564883943083881E-001 2 1 4 6 + -0.14726278111791688 2 2 4 6 + 0.10638138424499686E-001 2 9 4 6 + 0.22204487304623897E-003 2 10 4 6 + 0.49430009005697476E-002 2 11 4 6 + -0.61613222637742146E-002 2 12 4 6 + 0.69286083127642165E-005 2 13 4 6 + 0.10494498100040961E-001 2 14 4 6 + -0.14276266600548210 3 3 4 6 + 0.70788343788908085E-002 3 4 4 6 + -0.14591207167992358E-007 3 5 4 6 + -0.16424433568845730E-001 3 6 4 6 + -0.52141048443673371E-002 3 7 4 6 + 0.59508703870491952E-002 3 8 4 6 + 0.70788343788907963E-002 4 3 4 6 + -0.15996200934258104 4 4 4 6 + 0.77828379014705993E-003 4 5 4 6 + 0.32157260791152539E-001 4 6 4 6 + 0.11556422144962721 1 1 4 7 + 0.16199958791256659E-002 1 2 4 7 + -0.15054144641796802E-002 1 9 4 7 + -0.10771647938360761E-002 1 10 4 7 + -0.12146723845908977E-002 1 11 4 7 + -0.16258187657344062E-003 1 12 4 7 + -0.50139482645413403E-003 1 13 4 7 + 0.34860732835172831E-003 1 14 4 7 + -0.80064924324449172E-002 2 1 4 7 + 0.57333576297570264E-001 2 2 4 7 + -0.41417289310654234E-002 2 9 4 7 + -0.75320404269259324E-002 2 10 4 7 + -0.84935338054929928E-002 2 11 4 7 + -0.11368697584932096E-002 2 12 4 7 + -0.35064027292853722E-002 2 13 4 7 + 0.24378997614000592E-002 2 14 4 7 + 0.55581578791070438E-001 3 3 4 7 + 0.50959596748176616E-002 3 4 4 7 + 0.11193810153171021E-007 3 5 4 7 + -0.21530419787308547E-003 3 6 4 7 + 0.46033808841278966E-002 3 7 4 7 + -0.71476875745659328E-002 3 8 4 7 + 0.50959596748176659E-002 4 3 4 7 + 0.62277707754297605E-001 4 4 4 7 + -0.93535238359087561E-002 4 5 4 7 + -0.77685197313830025E-002 4 6 4 7 + 0.15228150122426320E-001 4 7 4 7 + -0.21694132556118659 1 1 4 8 + -0.30411147067210954E-002 1 2 4 8 + 0.28260183409839165E-002 1 9 4 8 + -0.55906918127251494E-003 1 10 4 8 + 0.20143074788446969E-003 1 11 4 8 + -0.12140416895151970E-002 1 12 4 8 + 0.10806871148822705E-002 1 13 4 8 + -0.51272288290106244E-003 1 14 4 8 + 0.15030076433711816E-001 2 1 4 8 + -0.10762865777259334 2 2 4 8 + 0.77750029650131124E-002 2 9 4 8 + -0.39092638643982392E-002 2 10 4 8 + 0.14084495429252280E-002 2 11 4 8 + -0.84891047771318614E-002 2 12 4 8 + 0.75575630768985116E-002 2 13 4 8 + -0.35856370426758130E-002 2 14 4 8 + -0.10433975883928034 3 3 4 8 + -0.69709047716461211E-002 3 4 4 8 + -0.25913709928748624E-007 3 5 4 8 + -0.17807010387337475E-002 3 6 4 8 + -0.77909971949291371E-002 3 7 4 8 + 0.11821052684718836E-001 3 8 4 8 + -0.69709047716461281E-002 4 3 4 8 + -0.11690997449172401 4 4 4 8 + -0.60474918650810479E-002 4 5 4 8 + 0.14583344337594374E-001 4 6 4 8 + -0.56777005335854423E-002 4 7 4 8 + 0.22862033393752687E-001 4 8 4 8 + -0.52799560130369037E-002 1 4 4 9 + 0.32880014071155089E-002 1 6 4 9 + -0.12801121784493826E-002 1 7 4 9 + 0.24030727622812932E-002 1 8 4 9 + -0.31273527356597344E-001 2 4 4 9 + 0.19215973668921228E-001 2 6 4 9 + -0.74813234146174365E-002 2 7 4 9 + 0.14044210207624884E-001 2 8 4 9 + 0.13325838786554813E-002 3 10 4 9 + 0.25244081651067517E-002 3 11 4 9 + -0.13616195278709458E-002 3 12 4 9 + 0.98273188318725099E-002 3 13 4 9 + -0.15570760569349086E-001 3 14 4 9 + -0.26656614455583413E-001 4 1 4 9 + -0.30340702359992998E-001 4 2 4 9 + 0.27566980450947420E-001 4 9 4 9 + 0.25702979238526025E-003 1 3 4 10 + 0.68754447775229641E-004 1 4 4 10 + -0.25344109315901652E-002 1 5 4 10 + -0.82134959637631522E-004 1 6 4 10 + 0.27860441641452374E-002 1 7 4 10 + 0.14460063876236111E-002 1 8 4 10 + -0.47513998908423971E-002 2 3 4 10 + -0.12707837593357633E-002 2 4 4 10 + 0.46849617795156402E-001 2 5 4 10 + 0.39479876997747330E-003 2 6 4 10 + -0.13392277816504341E-001 2 7 4 10 + -0.69508331732190693E-002 2 8 4 10 + -0.26614338677873163E-002 3 1 4 10 + -0.56487219390426195E-002 3 2 4 10 + 0.13325838786554720E-002 3 9 4 10 + 0.18819368765360799E-001 3 10 4 10 + -0.68289665925214517E-002 3 11 4 10 + -0.75417714502547094E-002 3 12 4 10 + -0.23121410363864778E-002 3 13 4 10 + -0.34719759542938093E-002 3 14 4 10 + -0.71184318531703373E-003 4 1 4 10 + -0.15108142391155278E-002 4 2 4 10 + 0.35644583829691500E-003 4 9 4 10 + 0.28691887282692868E-001 4 10 4 10 + 0.48691012612796247E-003 1 3 4 11 + 0.21454256614905614E-002 1 4 4 11 + -0.20103717589956332E-002 1 5 4 11 + -0.18283783705970384E-002 1 6 4 11 + 0.31416921391426620E-002 1 7 4 11 + -0.52097255021759346E-003 1 8 4 11 + -0.90008961612205070E-002 2 3 4 11 + -0.39659185145292222E-001 2 4 4 11 + 0.37162511081077342E-001 2 5 4 11 + 0.87888586435713057E-002 2 6 4 11 + -0.15101855533481217E-001 2 7 4 11 + 0.25042871443451131E-002 2 8 4 11 + -0.50417368157478449E-002 3 1 4 11 + -0.10700758267749267E-001 3 2 4 11 + 0.25244081651067322E-002 3 9 4 11 + 0.95264543491432666E-002 3 10 4 11 + -0.10705788666647795E-001 3 11 4 11 + -0.95475226008043899E-002 3 12 4 11 + 0.49933713156626331E-002 3 13 4 11 + -0.96183531954792002E-002 3 14 4 11 + -0.22214678774277696E-001 4 1 4 11 + -0.47149126688424026E-001 4 2 4 11 + 0.11123012697881790E-001 4 9 4 11 + 0.15979806167948619E-001 4 10 4 11 + 0.35798719897203110E-001 4 11 4 11 + -0.26262817195871874E-003 1 3 4 12 + -0.27567251555341114E-002 1 4 4 12 + -0.15372377072521764E-002 1 5 4 12 + 0.22790278434792906E-002 1 6 4 12 + 0.42052037672902126E-003 1 7 4 12 + 0.31400530309888099E-002 1 8 4 12 + 0.48550285845460122E-002 2 3 4 12 + 0.50959174796935860E-001 2 4 4 12 + 0.28416493281784114E-001 2 5 4 12 + -0.10955079487618594E-001 2 6 4 12 + -0.20213986370034706E-002 2 7 4 12 + -0.15093982838339811E-001 2 8 4 12 + 0.27194587283665378E-002 3 1 4 12 + 0.57718949720243712E-002 3 2 4 12 + -0.13616195278709393E-002 3 9 4 12 + 0.32195814173370391E-002 3 10 4 12 + -0.95567622409118997E-002 3 11 4 12 + -0.85298062388196247E-002 3 12 4 12 + -0.11999906619882124E-001 3 13 4 12 + 0.11086829357484585E-001 3 14 4 12 + 0.28544275468000514E-001 4 1 4 12 + 0.60583237447626642E-001 4 2 4 12 + -0.14292297578771450E-001 4 9 4 12 + 0.10833149493821064E-001 4 10 4 12 + -0.87871078773692369E-002 4 11 4 12 + 0.39222173901638110E-001 4 12 4 12 + 0.18955559139176507E-002 1 3 4 13 + 0.15943776106557609E-002 1 4 4 13 + 0.34688108922433999E-003 1 5 4 13 + -0.25603240888846565E-005 1 6 4 13 + 0.12970101069632895E-002 1 7 4 13 + -0.27955246644803537E-002 1 8 4 13 + -0.35037115951006795E-001 2 3 4 13 + -0.29470476198044351E-001 2 4 4 13 + -0.64117020589125892E-002 2 5 4 13 + 0.12326199915840410E-004 2 6 4 13 + -0.62344778306345338E-002 2 7 4 13 + 0.13437549572310721E-001 2 8 4 13 + -0.19626156357987000E-001 3 1 4 13 + -0.41654738162021740E-001 3 2 4 13 + 0.98273188318725290E-002 3 9 4 13 + 0.14874699312701679E-002 3 10 4 13 + -0.58145840374832442E-002 3 11 4 13 + 0.61489784984641149E-002 3 12 4 13 + 0.19969605248294282E-001 3 13 4 13 + -0.99166462290711990E-002 3 14 4 13 + -0.16507940428941489E-001 4 1 4 13 + -0.35036646793763157E-001 4 2 4 13 + 0.82659121107669289E-002 4 9 4 13 + -0.84033536217542875E-003 4 10 4 13 + 0.10854147015065147E-001 4 11 4 13 + -0.16153178690844427E-001 4 12 4 13 + 0.27978833713469556E-001 4 13 4 13 + -0.30033883114843076E-002 1 3 4 14 + 0.16011282228805188E-002 1 4 4 14 + -0.18951626800227993E-003 1 5 4 14 + -0.38818947697807013E-002 1 6 4 14 + -0.90177272170859611E-003 1 7 4 14 + 0.13263193112897707E-002 1 8 4 14 + 0.55514041650567371E-001 2 3 4 14 + -0.29594784958124253E-001 2 4 4 14 + 0.35028942778944803E-002 2 5 4 14 + 0.18659485626229311E-001 2 6 4 14 + 0.43346527613334924E-002 2 7 4 14 + -0.63753568746175420E-002 2 8 4 14 + 0.31096381719316772E-001 3 1 4 14 + 0.65999245090891792E-001 3 2 4 14 + -0.15570760569349100E-001 3 9 4 14 + -0.42426431377537580E-002 3 10 4 14 + 0.13955206997497268E-001 3 11 4 14 + -0.13075919298858645E-001 3 12 4 14 + -0.82876000028651916E-002 3 13 4 14 + -0.19553379108188062E-001 3 14 4 14 + -0.16577644864445868E-001 4 1 4 14 + -0.35184523732182331E-001 4 2 4 14 + 0.83008741633156576E-002 4 9 4 14 + -0.54065552860601337E-003 4 10 4 14 + 0.70063579248378629E-002 4 11 4 14 + -0.99236751017806549E-002 4 12 4 14 + -0.95417334205988181E-002 4 13 4 14 + 0.43943743692988702E-001 4 14 4 14 + 0.27991655352045397E-001 1 5 5 1 + 0.21535740021702450E-002 1 6 5 1 + -0.25882577675567245E-001 1 7 5 1 + -0.16734223729224250E-001 1 8 5 1 + 0.58093921053218367E-001 2 5 5 1 + 0.19477388158425219E-002 2 6 5 1 + -0.23408761965903437E-001 2 7 5 1 + -0.15134793175231885E-001 2 8 5 1 + 0.24912291127218173E-001 3 10 5 1 + -0.17271342892917013E-001 3 11 5 1 + -0.19806066961264034E-001 3 12 5 1 + -0.80473473032455223E-002 3 13 5 1 + -0.40150163763360688E-002 3 14 5 1 + 0.26242346246226775E-001 4 10 5 1 + 0.20816214545805303E-001 4 11 5 1 + 0.15917210950489414E-001 4 12 5 1 + -0.35915339212875784E-002 4 13 5 1 + 0.19621718123939225E-002 4 14 5 1 + 0.49891500334672878E-001 5 1 5 1 + 0.22288806428537120E-002 1 5 5 2 + 0.52524864942096557E-004 1 6 5 2 + -0.63126639502147897E-003 1 7 5 2 + -0.40814146177563926E-003 1 8 5 2 + 0.13425180984013890 2 5 5 2 + 0.26258333227003709E-002 2 6 5 2 + -0.31558393103462298E-001 2 7 5 2 + -0.20403887794632841E-001 2 8 5 2 + 0.52874611304480047E-001 3 10 5 2 + -0.36657231855337834E-001 3 11 5 2 + -0.42036996210873666E-001 3 12 5 2 + -0.17079784779184082E-001 3 13 5 2 + -0.85215402374032561E-002 3 14 5 2 + 0.55697554441291965E-001 4 10 5 2 + 0.44180963332597703E-001 4 11 5 2 + 0.33783176927317561E-001 4 12 5 2 + -0.76227071943789342E-002 4 13 5 2 + 0.41645193994096800E-002 4 14 5 2 + 0.60148835492236763E-001 5 1 5 2 + 0.15025696419877280 5 2 5 2 + 0.57452131287452797E-003 1 10 5 3 + -0.39830855662764290E-003 1 11 5 3 + -0.45676058429850353E-003 1 12 5 3 + -0.18554509699858881E-003 1 13 5 3 + -0.92578896669584808E-004 1 14 5 3 + 0.22590904636371895E-001 2 10 5 3 + -0.15661966267649916E-001 2 11 5 3 + -0.17960472012842246E-001 2 12 5 3 + -0.72971321023119840E-002 2 13 5 3 + -0.36407659773548405E-002 2 14 5 3 + -0.10586730166535334E-006 3 3 5 3 + -0.38961390851279255E-007 3 4 5 3 + 0.35145020440658405E-001 3 5 5 3 + 0.77827818131831917E-003 3 6 5 3 + -0.93535252603431599E-002 3 7 5 3 + -0.60475042476281918E-002 3 8 5 3 + -0.38961390863534829E-007 4 3 5 3 + -0.94458429412830563E-007 4 4 5 3 + -0.11785963837619703E-007 4 5 5 3 + -0.14591207157042221E-007 4 6 5 3 + 0.11193810147793677E-007 4 7 5 3 + -0.25913709920662533E-007 4 8 5 3 + 0.35145020440658405E-001 5 3 5 3 + 0.60519293305386524E-003 1 10 5 4 + 0.48005606688747763E-003 1 11 5 4 + 0.36707888543425143E-003 1 12 5 4 + -0.82807030168434816E-004 1 13 5 4 + 0.45236543008974684E-004 1 14 5 4 + 0.23797006964331239E-001 2 10 5 4 + 0.18876489120618692E-001 2 11 5 4 + 0.14434007112588541E-001 2 12 5 4 + -0.32566973679563336E-002 2 13 5 4 + 0.17792091515389445E-002 2 14 5 4 + -0.38961390193552434E-007 3 3 5 4 + -0.94458430680551966E-007 3 4 5 4 + -0.11785963847021440E-007 3 5 5 4 + -0.14591206793433148E-007 3 6 5 4 + 0.11193810125995992E-007 3 7 5 4 + -0.25913709828212556E-007 3 8 5 4 + -0.94458430679584403E-007 4 3 5 4 + -0.37988689780704504E-008 4 4 5 4 + 0.35145044746522476E-001 4 5 5 4 + 0.77828379014709061E-003 4 6 5 4 + -0.93535238359087666E-002 4 7 5 4 + -0.60474918650810245E-002 4 8 5 4 + -0.11785963837722681E-007 5 3 5 4 + 0.35145044746522476E-001 5 4 5 4 + 0.95447783455293578 1 1 5 5 + -0.40251555419257221E-001 1 2 5 5 + 0.35181335364548143E-001 1 9 5 5 + 0.20836449019662819E-003 1 10 5 5 + -0.11920287694403384E-003 1 11 5 5 + -0.68262057471102250E-004 1 12 5 5 + 0.81103207889892553E-003 1 13 5 5 + 0.51634718292498073E-003 1 14 5 5 + 0.16019425962977507E-001 2 1 5 5 + 0.66276807218545253 2 2 5 5 + -0.17272851354990540 2 9 5 5 + 0.81935144777052250E-002 2 10 5 5 + -0.46875558200864470E-002 2 11 5 5 + -0.26840802711242213E-002 2 12 5 5 + 0.31897206078955201E-001 2 13 5 5 + 0.20307534105662960E-001 2 14 5 5 + 0.62643444775038692 3 3 5 5 + -0.11785965785710377E-007 3 4 5 5 + 0.20032573536800663E-006 3 5 5 5 + 0.11751221707020106 3 6 5 5 + 0.84596736901896827E-001 3 7 5 5 + -0.11572143874453271 3 8 5 5 + -0.11785965791975405E-007 4 3 5 5 + 0.62643447205624347 4 4 5 5 + 0.42760261451794292E-007 4 5 5 5 + -0.14276249242717029 4 6 5 5 + 0.55581499574094001E-001 4 7 5 5 + -0.10433956736385340 4 8 5 5 + 0.20032573537732558E-006 5 3 5 5 + 0.42760261471341133E-007 5 4 5 5 + 0.69672281742887876 5 5 5 5 + 0.26863068719662840E-001 1 1 5 6 + 0.37657036131630859E-003 1 2 5 6 + -0.34993574737542186E-003 1 9 5 6 + -0.17429534674322193E-003 1 10 5 6 + -0.12580126593979353E-002 1 11 5 6 + -0.11512593262707376E-002 1 12 5 6 + 0.53482143015636894E-005 1 13 5 6 + -0.11481447769710685E-003 1 14 5 6 + -0.18611206281520308E-002 2 1 5 6 + 0.13327271890089143E-001 2 2 5 6 + -0.96275081939543839E-003 2 9 5 6 + -0.12187566131853706E-002 2 10 5 6 + -0.87966132791912049E-002 2 11 5 6 + -0.80501393916816502E-002 2 12 5 6 + 0.37425043963631992E-004 2 13 5 6 + -0.80291372981735807E-003 2 14 5 6 + 0.12920008176619389E-001 3 3 5 6 + -0.14591206945616069E-007 3 4 5 6 + 0.70786210685911911E-002 3 5 5 6 + 0.14864107315252328E-002 3 6 5 6 + -0.57995142378038248E-002 3 7 5 6 + -0.51231721585536178E-002 3 8 5 6 + -0.14591206943837382E-007 4 3 5 6 + 0.12920013785448407E-001 4 4 5 6 + -0.85996313827754155E-002 4 5 5 6 + -0.18058011640362406E-002 4 6 5 6 + 0.83219970252174508E-002 4 7 5 6 + 0.42499406183983540E-002 4 8 5 6 + 0.70786210685911876E-002 5 3 5 6 + -0.85996313827754172E-002 5 4 5 6 + 0.14476537072168401E-001 5 5 5 6 + 0.12367074861199322E-001 5 6 5 6 + -0.32285190201966735 1 1 5 7 + -0.45257844017733348E-002 1 2 5 7 + 0.42056781674441723E-002 1 9 5 7 + 0.53692059742916005E-003 1 10 5 7 + 0.12374962129559387E-003 1 11 5 7 + -0.82213551383717798E-004 1 12 5 7 + -0.15741964208687109E-002 1 13 5 7 + -0.92033971287945149E-003 1 14 5 7 + 0.22367747369351088E-001 2 1 5 7 + -0.16017287985043357 2 2 5 7 + 0.11570753008768806E-001 2 9 5 7 + 0.37543289152547716E-002 2 10 5 7 + 0.86538873219242835E-003 2 11 5 7 + -0.57489509502354195E-003 2 12 5 7 + -0.11008896793508737E-001 2 13 5 7 + -0.64362363856208665E-002 2 14 5 7 + -0.15527805323219629 3 3 5 7 + 0.11193810531373455E-007 3 4 5 7 + 0.50959353084282684E-002 3 5 5 7 + -0.10994767365593700E-001 3 6 5 7 + -0.12860482384428325E-001 3 7 5 7 + 0.81928252145342818E-002 3 8 5 7 + 0.11193810520801313E-007 4 3 5 7 + -0.15527805180776005 4 4 5 7 + 0.33480936069070870E-002 4 5 5 7 + 0.14083974890311674E-001 4 6 5 7 + -0.84495623687480450E-002 4 7 5 7 + 0.81249785238623525E-002 4 8 5 7 + 0.50959353084282823E-002 5 3 5 7 + 0.33480936069071195E-002 5 4 5 7 + -0.17398562408735718 5 5 5 7 + -0.19641121419008969E-002 5 6 5 7 + 0.35809159864477608E-001 5 7 5 7 + -0.20873794053761194 1 1 5 8 + -0.29261184754793522E-002 1 2 5 8 + 0.27191557297463380E-002 1 9 5 8 + -0.16203996279041722E-002 1 10 5 8 + 0.85801626266472519E-004 1 11 5 8 + 0.23043317201086686E-003 1 12 5 8 + -0.55236593199707682E-003 1 13 5 8 + -0.49352453641203866E-003 1 14 5 8 + 0.14461731497123180E-001 2 1 5 8 + -0.10355880470520246 2 2 5 8 + 0.74810002307884784E-002 2 9 5 8 + -0.11330624996773651E-001 2 10 5 8 + 0.59999290726516180E-003 2 11 5 8 + 0.16112947707737967E-002 2 12 5 8 + -0.38629256622591851E-002 2 13 5 8 + -0.34514509325549803E-002 2 14 5 8 + -0.10039412340092695 3 3 5 8 + -0.25913709395372540E-007 3 4 5 8 + -0.69707263933332098E-002 3 5 5 8 + -0.78906733775750831E-002 3 6 5 8 + 0.10844263917369275E-002 3 7 5 8 + 0.11374071652902213E-001 3 8 5 8 + -0.25913709401792943E-007 4 3 5 8 + -0.10039411101837881 4 4 5 8 + -0.62851333274835932E-002 4 5 5 8 + 0.84621600065295181E-002 4 6 5 8 + 0.22738358327761246E-002 4 7 5 8 + 0.10255363532783269E-001 4 8 5 8 + -0.69707263933331993E-002 5 3 5 8 + -0.62851333274835724E-002 5 4 5 8 + -0.11248928387887548 5 5 5 8 + -0.12698849106655237E-002 5 6 5 8 + 0.15262005613862040E-001 5 7 5 8 + 0.22071209581657234E-001 5 8 5 8 + -0.52799560130370200E-002 1 5 5 9 + -0.29756390851085046E-003 1 6 5 9 + 0.35762509055719096E-002 1 7 5 9 + 0.23122033483617614E-002 1 8 5 9 + -0.31273527356597539E-001 2 5 5 9 + -0.17390443381171536E-002 2 6 5 9 + 0.20900582063682723E-001 2 7 5 9 + 0.13513144660813351E-001 2 8 5 9 + -0.12473733119206245E-001 3 10 5 9 + 0.86478613389562829E-002 3 11 5 9 + 0.99170236949057463E-002 3 12 5 9 + 0.40294948726630857E-002 3 13 5 9 + 0.20103921568570991E-002 3 14 5 9 + -0.13139705806555987E-001 4 10 5 9 + -0.10422811656478516E-001 4 11 5 9 + -0.79698428124551773E-002 4 12 5 9 + 0.17983711722561870E-002 4 13 5 9 + -0.98252109624838695E-003 4 14 5 9 + -0.26656614455583604E-001 5 1 5 9 + -0.30340702359993175E-001 5 2 5 9 + 0.27566980450947635E-001 5 9 5 9 + -0.24059561999021377E-002 1 3 5 10 + -0.25344109315902311E-002 1 4 5 10 + -0.87264103078318032E-003 1 5 5 10 + 0.45080884043034952E-003 1 6 5 10 + -0.13886943805316999E-002 1 7 5 10 + 0.41911129964787436E-002 1 8 5 10 + 0.44475125834954853E-001 2 3 5 10 + 0.46849617795156194E-001 2 4 5 10 + 0.16130827074998667E-001 2 5 5 10 + -0.21669991700257168E-002 2 6 5 10 + 0.66753599579435314E-002 2 7 5 10 + -0.20146313558610469E-001 2 8 5 10 + 0.24912291127218090E-001 3 1 5 10 + 0.52874611304480117E-001 3 2 5 10 + -0.12473733119206276E-001 3 9 5 10 + -0.14468234018169264E-002 3 10 5 10 + 0.80157532202582010E-002 3 11 5 10 + -0.15348403221806004E-001 3 12 5 10 + -0.15747898380949144E-001 3 13 5 10 + 0.17299560306202298E-001 3 14 5 10 + 0.26242346246226813E-001 4 1 5 10 + 0.55697554441291784E-001 4 2 5 10 + -0.13139705806555940E-001 4 9 5 10 + 0.42241203410318760E-002 4 10 5 10 + -0.11655165822550552E-001 4 11 5 10 + 0.19970772018696924E-001 4 12 5 10 + -0.13719497040726898E-001 4 13 5 10 + 0.11534291793684797E-001 4 14 5 10 + 0.90355679872449208E-002 5 1 5 10 + 0.19177323594946245E-001 5 2 5 10 + -0.45242026822344596E-002 5 9 5 10 + 0.47979376188463825E-001 5 10 5 10 + 0.16680147463699307E-002 1 3 5 11 + -0.20103717589956154E-002 1 4 5 11 + 0.49925186395509663E-003 1 5 5 11 + 0.32537999900412911E-002 1 6 5 11 + -0.32010395495807423E-003 1 7 5 11 + -0.22193402896514364E-003 1 8 5 11 + -0.30833989728984306E-001 2 3 5 11 + 0.37162511081077376E-001 2 4 5 11 + -0.92285790307028888E-002 2 5 5 11 + -0.15640740392890210E-001 2 6 5 11 + 0.15386878447602224E-002 2 7 5 11 + 0.10668087013259372E-002 2 8 5 11 + -0.17271342892917044E-001 3 1 5 11 + -0.36657231855337924E-001 3 2 5 11 + 0.86478613389563211E-002 3 9 5 11 + 0.17975627040516832E-002 3 10 5 11 + -0.13567664910955670E-001 3 11 5 11 + 0.88017089975537741E-002 3 12 5 11 + -0.63814723023431089E-002 3 13 5 11 + 0.12766005065589645E-001 3 14 5 11 + 0.20816214545805352E-001 4 1 5 11 + 0.44180963332597765E-001 4 2 5 11 + -0.10422811656478506E-001 4 9 5 11 + -0.56987727896661150E-002 4 10 5 11 + -0.13410058744742718E-001 4 11 5 11 + 0.76633552392258173E-002 4 12 5 11 + 0.60252066433997579E-002 4 13 5 11 + -0.15799203792665195E-001 4 14 5 11 + -0.51693421523806874E-002 5 1 5 11 + -0.10971528574442568E-001 5 2 5 11 + 0.25883590438576681E-002 5 9 5 11 + 0.19239054555992648E-002 5 10 5 11 + 0.30415228136881776E-001 5 11 5 11 + 0.19128143427128361E-002 1 3 5 12 + -0.15372377072521576E-002 1 4 5 12 + 0.28585306348270361E-003 1 5 5 12 + 0.29776848005548910E-002 1 6 5 12 + 0.21265016895050324E-003 1 7 5 12 + -0.59600553423321315E-003 1 8 5 12 + -0.35359128771363067E-001 2 3 5 12 + 0.28416493281784218E-001 2 4 5 12 + -0.52841771121462178E-002 2 5 5 12 + -0.14313479665114908E-001 2 6 5 12 + -0.10221847691546172E-002 2 7 5 12 + 0.28649486280290285E-002 2 8 5 12 + -0.19806066961263941E-001 3 1 5 12 + -0.42036996210873576E-001 3 2 5 12 + 0.99170236949057584E-002 3 9 5 12 + -0.39829270690598263E-002 3 10 5 12 + -0.79857099015199131E-002 3 11 5 12 + 0.16899851219463118E-001 3 12 5 12 + -0.16575092354821847E-002 3 13 5 12 + 0.10834618184649970E-001 3 14 5 12 + 0.15917210950489494E-001 4 1 5 12 + 0.33783176927317686E-001 4 2 5 12 + -0.79698428124551843E-002 4 9 5 12 + 0.56955155721111709E-002 4 10 5 12 + -0.35097255951847470E-002 4 11 5 12 + 0.98120258901545476E-002 4 12 5 12 + 0.58024392097494291E-002 4 13 5 12 + -0.15935159802161477E-001 4 14 5 12 + -0.29598687719742081E-002 5 1 5 12 + -0.62821247697145803E-002 5 2 5 12 + 0.14820162237156147E-002 5 9 5 12 + -0.28447354208791290E-002 5 10 5 12 + 0.19122312813619126E-001 5 11 5 12 + 0.27529892646913155E-001 5 12 5 12 + 0.77723257578446166E-003 1 3 5 13 + 0.34688108922437024E-003 1 4 5 13 + -0.33974923602324131E-002 1 5 5 13 + -0.13844479984419704E-004 1 6 5 13 + 0.40721683006399332E-002 1 7 5 13 + 0.14288900851764927E-002 1 8 5 13 + -0.14366369165510196E-001 2 3 5 13 + -0.64117020589125745E-002 2 4 5 13 + 0.62798494855402121E-001 2 5 5 13 + 0.66539884960808716E-004 2 6 5 13 + -0.19574103892636276E-001 2 7 5 13 + -0.68683770107036161E-002 2 8 5 13 + -0.80473473032455795E-002 3 1 5 13 + -0.17079784779184107E-001 3 2 5 13 + 0.40294948726630753E-002 3 9 5 13 + 0.12972527665242848E-001 3 10 5 13 + -0.17340133635336891E-001 3 11 5 13 + -0.99881706146179305E-002 3 12 5 13 + -0.17313234407693569E-002 3 13 5 13 + -0.53031190930179955E-002 3 14 5 13 + -0.35915339212875754E-002 4 1 5 13 + -0.76227071943789221E-002 4 2 5 13 + 0.17983711722561932E-002 4 9 5 13 + 0.13511376033392251E-001 4 10 5 13 + 0.18034853182263340E-001 4 11 5 13 + 0.10082877232478953E-001 4 12 5 13 + 0.25234432558233193E-002 4 13 5 13 + -0.27890721586348918E-002 4 14 5 13 + 0.35176807037242248E-001 5 1 5 13 + 0.74659564897055358E-001 5 2 5 13 + -0.17613946041797234E-001 5 9 5 13 + 0.64162294563531723E-003 5 10 5 13 + -0.32655796836334053E-002 5 11 5 13 + -0.52820505672162223E-004 5 12 5 13 + 0.45870908978882144E-001 5 13 5 13 + 0.38777384010536841E-003 1 3 5 14 + -0.18951626800227169E-003 1 4 5 14 + -0.21630347247010855E-002 1 5 5 14 + 0.29699509463344695E-003 1 6 5 14 + 0.23807499140508586E-002 1 7 5 14 + 0.12766874719596626E-002 1 8 5 14 + -0.71677738468886951E-002 2 3 5 14 + 0.35028942778944821E-002 2 4 5 14 + 0.39981022467983782E-001 2 5 5 14 + -0.14276042694024668E-002 2 6 5 14 + -0.11443797048342355E-001 2 7 5 14 + -0.61367614320025242E-002 2 8 5 14 + -0.40150163763360896E-002 3 1 5 14 + -0.85215402374032752E-002 3 2 5 14 + 0.20103921568570848E-002 3 9 5 14 + 0.16602121121216534E-001 3 10 5 14 + -0.54938121315162751E-002 3 11 5 14 + -0.28774306971440641E-002 3 12 5 14 + -0.44107085514727747E-002 3 13 5 14 + -0.15403946592075949E-003 3 14 5 14 + 0.19621718123939160E-002 4 1 5 14 + 0.41645193994096870E-002 4 2 5 14 + -0.98252109624837850E-003 4 9 5 14 + 0.14965560820949684E-001 4 10 5 14 + 0.33191995798410425E-002 4 11 5 14 + 0.24958077159954861E-002 4 12 5 14 + -0.15339129589454045E-002 4 13 5 14 + -0.31495307422668797E-002 4 14 5 14 + 0.22395521115021497E-001 5 1 5 14 + 0.47532446832771441E-001 5 2 5 14 + -0.11214026326559960E-001 5 9 5 14 + 0.42711495418954453E-002 5 10 5 14 + -0.15481461905451728E-003 5 11 5 14 + 0.12345988952339705E-002 5 12 5 14 + 0.22573104050777830E-001 5 13 5 14 + 0.23839952536853688E-001 5 14 5 14 + 0.21386008659285617E-001 1 3 6 1 + -0.25981297466833773E-001 1 4 6 1 + 0.23513056915617208E-002 1 5 6 1 + 0.37474954893527292E-001 1 6 6 1 + 0.39288637693213689E-001 2 3 6 1 + -0.47730728965679731E-001 2 4 6 1 + 0.43196277946726024E-002 2 5 6 1 + 0.31239207335394762E-001 2 6 6 1 + 0.36638118267729759E-001 3 1 6 1 + 0.40595803625518560E-001 3 2 6 1 + -0.19098013401175864E-001 3 9 6 1 + -0.15821023077586527E-002 3 10 6 1 + 0.21268298895210137E-001 3 11 6 1 + -0.20902026030761370E-001 3 12 6 1 + 0.28862140619555668E-002 3 13 6 1 + -0.29629761308448799E-001 3 14 6 1 + -0.44510682872355940E-001 4 1 6 1 + -0.49318770356048182E-001 4 2 6 1 + 0.23201672416142360E-001 4 9 6 1 + 0.73244715324291662E-003 4 10 6 1 + 0.16306017722934461E-001 4 11 6 1 + -0.20325000344559634E-001 4 12 6 1 + 0.22896971852860241E-004 4 13 6 1 + 0.34618377066176771E-001 4 14 6 1 + 0.40282138375371960E-002 5 1 6 1 + 0.44633454348087616E-002 5 2 6 1 + -0.20997498094722654E-002 5 9 6 1 + -0.40204448459276359E-002 5 10 6 1 + -0.29018354225057930E-001 5 11 6 1 + -0.26555882185527537E-001 5 12 6 1 + 0.12343794340343724E-003 5 13 6 1 + -0.26486037887488078E-002 5 14 6 1 + 0.67245011753453654E-001 6 1 6 1 + 0.40181744017430332E-002 1 3 6 2 + -0.48815740266696739E-002 1 4 6 2 + 0.44178212452016441E-003 1 5 6 2 + 0.55198202490330207E-002 1 6 6 2 + 0.21114231556291024E-001 2 3 6 2 + -0.25651122637576365E-001 2 4 6 2 + 0.23214248914888037E-002 2 5 6 2 + 0.33915169167716253E-001 2 6 6 2 + 0.19226279626362378E-001 3 1 6 2 + 0.21626217221148179E-001 3 2 6 2 + -0.23957786832446742E-001 3 9 6 2 + -0.70098281941906044E-003 3 10 6 2 + 0.94240739669824766E-002 3 11 6 2 + -0.92618175723349558E-002 3 12 6 2 + 0.12788426217549766E-002 3 13 6 2 + -0.13127657281361978E-001 3 14 6 2 + -0.23357499667716473E-001 4 1 6 2 + -0.26273120508676698E-001 4 2 6 2 + 0.29105682890973959E-001 4 9 6 2 + 0.32448603187902565E-003 4 10 6 2 + 0.72252583683697766E-002 4 11 6 2 + -0.90060369436697294E-002 4 12 6 2 + 0.10217281677440850E-004 4 13 6 2 + 0.15337830979041071E-001 4 14 6 2 + 0.21138521653686366E-002 5 1 6 2 + 0.23777156574262947E-002 5 2 6 2 + -0.26340623645027417E-002 5 9 6 2 + -0.17814728024351195E-002 5 10 6 2 + -0.12858149692985155E-001 5 11 6 2 + -0.11767024277013833E-001 5 12 6 2 + 0.54660511523614802E-004 5 13 6 2 + -0.11735090125512908E-002 5 14 6 2 + 0.33876433898398305E-001 6 1 6 2 + 0.44436986492288243E-001 6 2 6 2 + 0.28726812918679656 1 1 6 3 + 0.15392877398689095E-002 1 2 6 3 + -0.17324596425130818E-002 1 9 6 3 + -0.72593246423212959E-004 1 10 6 3 + 0.97597533857661739E-003 1 11 6 3 + -0.95917319098896673E-003 1 12 6 3 + 0.13243760798739831E-003 1 13 6 3 + -0.13594754972942485E-002 1 14 6 3 + -0.18813352518400571E-001 2 1 6 3 + 0.10206978794937815 2 2 6 3 + -0.48715317088048993E-001 2 9 6 3 + -0.35694154315629381E-003 2 10 6 3 + 0.47991993521622695E-002 2 11 6 3 + -0.47165957120530663E-002 2 12 6 3 + 0.65121745587230816E-003 2 13 6 3 + -0.66843658030047715E-002 2 14 6 3 + 0.10733949945612543 3 3 6 3 + -0.71342833919879325E-002 3 4 6 3 + 0.64566687068256579E-003 3 5 6 3 + 0.56884504897488260E-001 3 6 6 3 + 0.30684410106594000E-001 3 7 6 3 + -0.41973823030702184E-001 3 8 6 3 + -0.71342833919880904E-002 4 3 6 3 + 0.95593143205055450E-001 4 4 6 3 + 0.59652686124754411E-007 4 5 6 3 + -0.51781343362942531E-001 4 6 6 3 + 0.12435707555737419E-001 4 7 6 3 + -0.25898074218070985E-001 4 8 6 3 + 0.64566687068254986E-003 5 3 6 3 + 0.59652686100209964E-007 5 4 6 3 + 0.95594015273584659E-001 5 5 6 3 + 0.46862220599009517E-002 5 6 6 3 + -0.48293495125036640E-001 5 7 6 3 + -0.32137828610581121E-001 5 8 6 3 + 0.88045901139996996E-001 6 3 6 3 + -0.34899446811466367 1 1 6 4 + -0.18700400478524311E-002 1 2 6 4 + 0.21047194938766836E-002 1 9 6 4 + 0.33602122660049220E-004 1 10 6 4 + 0.74826146944501960E-003 1 11 6 4 + -0.93268058473479950E-003 1 12 6 4 + 0.10606517172624556E-005 1 13 6 4 + 0.15883546376007840E-002 1 14 6 4 + 0.22855845422878347E-001 2 1 6 4 + -0.12400189139257620 2 2 6 4 + 0.59182952958647055E-001 2 9 6 4 + 0.16520415947454450E-003 2 10 6 4 + 0.36794501704298147E-002 2 11 6 4 + -0.45862788133548453E-002 2 12 6 4 + 0.52475503554899594E-005 2 13 6 4 + 0.78097060911082169E-002 2 14 6 4 + -0.11613393041672956 3 3 6 4 + 0.58721661019728024E-002 3 4 6 4 + 0.59652685750990774E-007 3 5 6 4 + -0.51781343362942392E-001 3 6 6 4 + -0.29553184844850353E-001 3 7 6 4 + 0.39045527986273018E-001 3 8 6 4 + 0.58721661019727903E-002 4 3 6 4 + -0.13040358707050365 4 4 6 4 + 0.64564394031531790E-003 4 5 6 4 + 0.77169468949801742E-001 4 6 6 4 + -0.24492099989374509E-001 4 7 6 4 + 0.45977426201369159E-001 4 8 6 4 + 0.59652685773179940E-007 5 3 6 4 + 0.64564394031536051E-003 5 4 6 4 + -0.11613464005045786 5 5 6 4 + -0.56931674470683483E-002 5 6 6 4 + 0.59519766606712064E-001 5 7 6 4 + 0.37729833793983279E-001 5 8 6 4 + -0.87138253157039172E-001 6 3 6 4 + 0.12218167710845095 6 4 6 4 + 0.31583976137030831E-001 1 1 6 5 + 0.16923849986998454E-003 1 2 6 5 + -0.19047697411607076E-003 1 9 6 5 + -0.18449264877683713E-003 1 10 6 5 + -0.13316146244613024E-002 1 11 6 5 + -0.12186157928219341E-002 1 12 6 5 + 0.56594973848666702E-005 1 13 6 5 + -0.12152737604994433E-003 1 14 6 5 + -0.20684524895983546E-002 2 1 6 5 + 0.11222162918075661E-001 2 2 6 5 + -0.53560533038328846E-002 2 9 6 5 + -0.90721092708226337E-003 2 10 6 5 + -0.65479944035297458E-002 2 11 6 5 + -0.59923439835657694E-002 2 12 6 5 + 0.27813848646433037E-004 2 13 6 5 + -0.59754695194488025E-003 2 14 6 5 + 0.10510127671944196E-001 3 3 6 5 + 0.59652685972919481E-007 3 4 6 5 + 0.58730381705003722E-002 3 5 6 5 + 0.46862220599009933E-002 3 6 6 5 + -0.46544424795578448E-002 3 7 6 5 + -0.88913902903197672E-002 3 8 6 5 + 0.59652685974698170E-007 4 3 6 5 + 0.10510104741577221E-001 4 4 6 5 + -0.71349930257158757E-002 4 5 6 5 + -0.56931674470683596E-002 4 6 6 5 + 0.11120343284693428E-001 4 7 6 5 + 0.23480614122459108E-002 4 8 6 5 + 0.58730381705003687E-002 5 3 6 5 + -0.71349930257158757E-002 5 4 6 5 + 0.11801573705974960E-001 5 5 6 5 + 0.14776913534934714E-001 5 6 6 5 + -0.61923101172192416E-002 5 7 6 5 + -0.40036031706676255E-002 5 8 6 5 + 0.78860333882767100E-002 6 3 6 5 + -0.95805337301004666E-002 6 4 6 5 + 0.17186752208670105E-001 6 5 6 5 + 0.84283712188564353 1 1 6 6 + -0.48984494291222425E-001 1 2 6 6 + 0.42197858812375220E-001 1 9 6 6 + -0.48763236576826367E-004 1 10 6 6 + -0.28987413582385613E-004 1 11 6 6 + 0.14563001048978818E-004 1 12 6 6 + 0.48059571957071089E-004 1 13 6 6 + -0.12044827903502562E-002 1 14 6 6 + 0.15903504434053251E-001 2 1 6 6 + 0.53248915077379388 2 2 6 6 + -0.17152652675046434 2 9 6 6 + -0.86663526748655855E-003 2 10 6 6 + -0.51510392766947980E-003 2 11 6 6 + 0.25888991797544468E-003 2 12 6 6 + 0.85414139496762869E-003 2 13 6 6 + -0.21406695374986729E-001 2 14 6 6 + 0.52962616434411214 3 3 6 6 + -0.22574996270962957E-001 3 4 6 6 + 0.20430497100664921E-002 3 5 6 6 + 0.11980952645903610 3 6 6 6 + 0.81751915719106616E-001 3 7 6 6 + -0.11183006285897203 3 8 6 6 + -0.22574996270962971E-001 4 3 6 6 + 0.53846975482292680 4 4 6 6 + -0.24820471216324006E-002 4 5 6 6 + -0.14555343154954112 4 6 6 6 + 0.53712433665175620E-001 4 7 6 6 + -0.10083090732483573 4 8 6 6 + 0.20430497100665090E-002 5 3 6 6 + -0.24820471216323516E-002 5 4 6 6 + 0.51126861345997010 5 5 6 6 + 0.13172582528243812E-001 5 6 6 6 + -0.15005647753909104 5 7 6 6 + -0.97018106114333577E-001 5 8 6 6 + 0.62829688554805321E-001 6 3 6 6 + -0.76330130372839949E-001 6 4 6 6 + 0.69078773507628092E-002 6 5 6 6 + 0.47021824173655791 6 6 6 6 + 0.75655146642958728E-004 1 10 6 7 + 0.10271566377426954E-002 1 11 6 7 + 0.17456859811439119E-003 1 12 6 7 + 0.32231833680881745E-004 1 13 6 7 + -0.24374497527625131E-004 1 14 6 7 + 0.13443556615506673E-002 2 10 6 7 + 0.18252140826877043E-001 2 11 6 7 + 0.31020109726335489E-002 2 12 6 7 + 0.57270142732033049E-003 2 13 6 7 + -0.43320113661788598E-003 2 14 6 7 + 0.13377626666181612E-001 3 3 6 7 + -0.37313898775805038E-002 3 4 6 7 + -0.11541986217501585E-001 3 5 6 7 + 0.22493802784043153E-002 3 6 6 7 + 0.31245921672954980E-002 3 7 6 7 + 0.46968547929813868E-009 3 8 6 7 + -0.37313898775805021E-002 4 3 6 7 + -0.10677946099430586E-001 4 4 6 7 + 0.15398655782420246E-001 4 5 6 7 + 0.14778885302741153E-002 4 6 6 7 + -0.37959839151662975E-002 4 7 6 7 + 0.27054702106452460E-009 4 8 6 7 + -0.11541986217501585E-001 5 3 6 7 + 0.15398655782420249E-001 5 4 6 7 + -0.26996805667510019E-002 5 5 6 7 + -0.41287670730470070E-002 5 6 6 7 + 0.34353106430203711E-003 5 7 6 7 + -0.26345772552612266E-008 5 8 6 7 + 0.13727849975693053E-002 6 3 6 7 + 0.90194919376668454E-003 6 4 6 7 + -0.25197664989602183E-002 6 5 6 7 + -0.25551354257647066E-007 6 6 6 7 + 0.22121321168951113E-001 6 7 6 7 + 0.72682703304311239E-004 1 10 6 8 + -0.17794157709093123E-003 1 11 6 8 + 0.10263184482655451E-002 1 12 6 8 + -0.49676679430189454E-004 1 13 6 8 + 0.11773939568963590E-004 1 14 6 8 + 0.12915384966833063E-002 2 10 6 8 + -0.31619456017576730E-002 2 11 6 8 + 0.18237245143792338E-001 2 12 6 8 + -0.88275031598508929E-003 2 13 6 8 + 0.20916943216349061E-003 2 14 6 8 + -0.18299533206800150E-001 3 3 6 8 + 0.28659834290026987E-002 3 4 6 8 + -0.89438545524783350E-002 3 5 6 8 + -0.30769787439901605E-002 3 6 6 8 + 0.46968545275973659E-009 3 7 6 8 + 0.31245914677825674E-002 3 8 6 8 + 0.28659834290026974E-002 4 3 6 8 + 0.20044997931444701E-001 4 4 6 8 + 0.87364773840420250E-002 4 5 6 8 + -0.27743348017346047E-002 4 6 6 8 + 0.27054708399174811E-009 4 7 6 8 + -0.37959842879706938E-002 4 8 6 8 + -0.89438545524783333E-002 5 3 6 8 + 0.87364773840420250E-002 5 4 6 8 + -0.17454647246448432E-002 5 5 6 8 + -0.26694293387036290E-002 5 6 6 8 + -0.26345772520466510E-008 5 7 6 8 + 0.34353489247105533E-003 5 8 6 8 + -0.18778656890124775E-002 6 3 6 8 + -0.16931623787796628E-002 6 4 6 8 + -0.16291397675377468E-002 6 5 6 8 + -0.16324004510335143E-007 6 6 6 8 + -0.42994867717199694E-009 6 7 6 8 + 0.22121321673037549E-001 6 8 6 8 + -0.16713480130557340E-002 1 3 6 9 + 0.20304765882040348E-002 1 4 6 9 + -0.18375799609397702E-003 1 5 6 9 + -0.18709592480828656E-002 1 6 6 9 + -0.54278251647395567E-001 2 3 6 9 + 0.65941215329039016E-001 2 4 6 9 + -0.59676755985566144E-002 2 5 6 9 + -0.17778322751955733E-001 2 6 6 9 + -0.25937748897001001E-001 3 1 6 9 + -0.61719848587941578E-001 3 2 6 9 + 0.67482725288401137E-002 3 9 6 9 + 0.19498786727284161E-002 3 10 6 9 + -0.26212494357345354E-001 3 11 6 9 + 0.25761083610115563E-001 3 12 6 9 + -0.35571549678372026E-002 3 13 6 9 + 0.36517422188515829E-001 3 14 6 9 + 0.31511086544913670E-001 4 1 6 9 + 0.74981815041723521E-001 4 2 6 9 + -0.81982981842163155E-002 4 9 6 9 + -0.90270365515860102E-003 4 10 6 9 + -0.20096640759902681E-001 4 11 6 9 + 0.25049896841657499E-001 4 12 6 9 + -0.28235220009372462E-004 4 13 6 9 + -0.42665665225039118E-001 4 14 6 9 + -0.28517512350925206E-002 5 1 6 9 + -0.67858492708569116E-002 5 2 6 9 + 0.74194544003341415E-003 5 9 6 9 + 0.49550682205006021E-002 5 10 6 9 + 0.35764186815571995E-001 5 11 6 9 + 0.32729270616714261E-001 5 12 6 9 + -0.15212566228111707E-003 5 13 6 9 + 0.32642977003902634E-002 5 14 6 9 + -0.44035799656072752E-001 6 1 6 9 + -0.80947549626006528E-002 6 2 6 9 + 0.82281635134619585E-001 6 9 6 9 + -0.84796495769075281E-004 1 3 6 10 + 0.39251851904441468E-004 1 4 6 10 + -0.21550314356361081E-003 1 5 6 10 + -0.81603015741016168E-004 1 6 6 10 + 0.12659407420206761E-003 1 7 6 10 + 0.12162036488708893E-003 1 8 6 10 + -0.28509803179504323E-003 2 3 6 10 + 0.13194339362151050E-003 2 4 6 10 + -0.72464265989613096E-003 2 5 6 10 + -0.78547301336946219E-003 2 6 6 10 + 0.12184611262738361E-002 2 7 6 10 + 0.11705900576501076E-002 2 8 6 10 + -0.58476371017692668E-003 3 1 6 10 + -0.29422215855015078E-003 3 2 6 10 + 0.79908354977334763E-003 3 9 6 10 + 0.53767476405334742E-003 3 10 6 10 + -0.65378913596945249E-003 3 11 6 10 + -0.21957101808409071E-003 3 12 6 10 + 0.19461433195743175E-004 3 13 6 10 + 0.97499987296110287E-004 3 14 6 10 + 0.27071829270247915E-003 4 1 6 10 + 0.13617094568826708E-003 4 2 6 10 + -0.36992996245428458E-003 4 9 6 10 + -0.95416019188940488E-003 4 10 6 10 + -0.65582581542834818E-003 4 11 6 10 + -0.47941029786767702E-003 4 12 6 10 + 0.20991902694597964E-004 4 13 6 10 + -0.60750072399946796E-004 4 14 6 10 + -0.14860133762713335E-002 5 1 6 10 + -0.74781737105817530E-003 5 2 6 10 + 0.20306753500649952E-002 5 9 6 10 + -0.79280306952092047E-005 5 10 6 10 + 0.53985763414233926E-003 5 11 6 10 + -0.87934126261979208E-003 5 12 6 10 + -0.42739510658729561E-004 5 13 6 10 + 0.44402168600413069E-004 5 14 6 10 + -0.77491986594987973E-003 6 1 6 10 + -0.10598268276582653E-002 6 2 6 10 + -0.16378171616497308E-003 6 9 6 10 + 0.34212639474383100E-002 6 10 6 10 + 0.11400219169918791E-002 1 3 6 11 + 0.87403302190956485E-003 1 4 6 11 + -0.15554389295019681E-002 1 5 6 11 + -0.48505376896871078E-004 1 6 6 11 + 0.17187487337602374E-002 1 7 6 11 + -0.29775087731946089E-003 1 8 6 11 + 0.38334067089909087E-002 2 3 6 11 + 0.29389944826660858E-002 2 4 6 11 + -0.52302720036797191E-002 2 5 6 11 + -0.46686572448335336E-003 2 6 6 11 + 0.16542885132142523E-001 2 7 6 11 + -0.28658393654783787E-002 2 8 6 11 + 0.78610659043908300E-002 3 1 6 11 + 0.39560001732993596E-002 3 2 6 11 + -0.10742351835637627E-001 3 9 6 11 + -0.66687151988166558E-003 3 10 6 11 + 0.21006027264350597E-002 3 11 6 11 + 0.46267173652178164E-004 3 12 6 11 + -0.29537229512248425E-003 3 13 6 11 + -0.30587794019647609E-003 3 14 6 11 + 0.60269356280038804E-002 4 1 6 11 + 0.30329853279535885E-002 4 2 6 11 + -0.82359632982275961E-002 4 9 6 11 + -0.66581932959028844E-003 4 10 6 11 + -0.23468640132518347E-002 4 11 6 11 + 0.47353653275373256E-004 4 12 6 11 + -0.43024832512167518E-003 4 13 6 11 + -0.23733305000721766E-003 4 14 6 11 + -0.10725596143192557E-001 5 1 6 11 + -0.53975384742707307E-002 5 2 6 11 + 0.14656805756989336E-001 5 9 6 11 + 0.54842119602292239E-003 5 10 6 11 + 0.24814669275355009E-003 5 11 6 11 + -0.14650133436712204E-005 5 12 6 11 + -0.94033734078497605E-003 5 13 6 11 + 0.37584570935464911E-003 5 14 6 11 + -0.46057355183207427E-003 6 1 6 11 + -0.62993540212783752E-003 6 2 6 11 + -0.97334679060645524E-004 6 9 6 11 + 0.85083062310156710E-003 6 10 6 11 + 0.17228923832670572E-001 6 11 6 11 + -0.11203944957117039E-002 1 3 6 12 + -0.10894515117601958E-002 1 4 6 12 + -0.14234465439782443E-002 1 5 6 12 + 0.24374354649055075E-004 1 6 6 12 + 0.29210694263755475E-003 1 7 6 12 + 0.17173461096264037E-002 1 8 6 12 + -0.37674357383617922E-002 2 3 6 12 + -0.36633209930730564E-002 2 4 6 12 + -0.47864423821756819E-002 2 5 6 12 + 0.23464185063011437E-003 2 6 6 12 + 0.28115173647313158E-002 2 7 6 12 + 0.16529384431529542E-001 2 8 6 12 + -0.77256891443144978E-002 3 1 6 12 + -0.38879144039849481E-002 3 2 6 12 + 0.10557364577920341E-001 3 9 6 12 + -0.22709740784272877E-003 3 10 6 12 + 0.45099585058768572E-004 3 11 6 12 + 0.21064482289136735E-002 3 12 6 12 + 0.67150346933193741E-003 3 13 6 12 + 0.35027830326390713E-003 3 14 6 12 + -0.75124052408186270E-002 4 1 6 12 + -0.37804821633665069E-002 4 2 6 12 + 0.10265885767005739E-001 4 9 6 12 + -0.48725925456964540E-003 4 10 6 12 + 0.46577687402520496E-004 4 11 6 12 + -0.23270463727716843E-002 4 12 6 12 + 0.61605651692011275E-003 4 13 6 12 + 0.35010024656311080E-003 4 14 6 12 + -0.98154318983635011E-002 5 1 6 12 + -0.49395142548602760E-002 5 2 6 12 + 0.13413043915938030E-001 5 9 6 12 + -0.89761479133198944E-003 5 10 6 12 + 0.58035216822918732E-006 5 11 6 12 + 0.31554932374163770E-003 5 12 6 12 + -0.54198603996817997E-003 5 13 6 12 + 0.41503350318276220E-003 5 14 6 12 + 0.23150968146588822E-003 6 1 6 12 + 0.31659811297409944E-003 6 2 6 12 + 0.48939575771105212E-004 6 9 6 12 + 0.11194904233609768E-002 6 10 6 12 + -0.48045016293645400E-004 6 11 6 12 + 0.17183439051473497E-001 6 12 6 12 + 0.15469972022461853E-003 1 3 6 13 + 0.12370161962294342E-005 1 4 6 13 + 0.66117193753213984E-005 1 5 6 13 + 0.80426102019044802E-004 1 6 6 13 + 0.53931368485778724E-004 1 7 6 13 + -0.83125244250105656E-004 1 8 6 13 + 0.52015429267467355E-003 2 3 6 13 + 0.42082089085725624E-005 2 4 6 13 + 0.22208334037640452E-004 2 5 6 13 + 0.77414881021702151E-003 2 6 6 13 + 0.51907127453210242E-003 2 7 6 13 + -0.80008294682812613E-003 2 8 6 13 + 0.10667821367274653E-002 3 1 6 13 + 0.53679530029218149E-003 3 2 6 13 + -0.14577748085603014E-002 3 9 6 13 + 0.18533156624923968E-004 3 10 6 13 + -0.28778014728784106E-003 3 11 6 13 + 0.65688358527460193E-003 3 12 6 13 + 0.58582239456156664E-003 3 13 6 13 + -0.86332894321894534E-004 3 14 6 13 + 0.84681512671326640E-005 4 1 6 13 + 0.43339459601328707E-005 4 2 6 13 + -0.11587110401430784E-004 4 9 6 13 + 0.20479093847323093E-004 4 10 6 13 + -0.42252694155479691E-003 4 11 6 13 + 0.60480205988088149E-003 4 12 6 13 + -0.89044169855064057E-003 4 13 6 13 + 0.78520274205881647E-004 4 14 6 13 + 0.45621896536727272E-004 5 1 6 13 + 0.22922934923410196E-004 5 2 6 13 + -0.62336017465751319E-004 5 9 6 13 + -0.39962995576366127E-004 5 10 6 13 + -0.92407254265612518E-003 5 11 6 13 + -0.53337203110462078E-003 5 12 6 13 + 0.45856941038345741E-004 5 13 6 13 + 0.84784630573331469E-005 5 14 6 13 + 0.76375117218058718E-003 6 1 6 13 + 0.10445471563619911E-002 6 2 6 13 + 0.16142271418828342E-003 6 9 6 13 + -0.45201915605065314E-004 6 10 6 13 + 0.52122764524467635E-003 6 11 6 13 + -0.57406417142518817E-003 6 12 6 13 + 0.33240493383638490E-002 6 13 6 13 + -0.15880205206058790E-002 1 3 6 14 + 0.18553788726697435E-002 1 4 6 14 + -0.14195691565917711E-003 1 5 6 14 + -0.20156598351143470E-002 1 6 6 14 + -0.40790130619144306E-004 1 7 6 14 + 0.19698818766847104E-004 1 8 6 14 + -0.53388713686647700E-002 2 3 6 14 + 0.62376770707212046E-002 2 4 6 14 + -0.47727339060950715E-003 2 5 6 14 + -0.19401903563776010E-001 2 6 6 14 + -0.39263057366689696E-003 2 7 6 14 + 0.18958304155514442E-003 2 8 6 14 + -0.10951480321858418E-001 3 1 6 14 + -0.55097851098499335E-002 3 2 6 14 + 0.14965183670925721E-001 3 9 6 14 + 0.98047412312412028E-004 3 10 6 14 + -0.32539112795220793E-003 3 11 6 14 + 0.36800940449483919E-003 3 12 6 14 + -0.87530612430719240E-004 3 13 6 14 + 0.24664995648335012E-002 3 14 6 14 + 0.12795322052770113E-001 4 1 6 14 + 0.64373723626581303E-002 4 2 6 14 + -0.17484777282319907E-001 4 9 6 14 + -0.60019065020885766E-004 4 10 6 14 + -0.25100443891151102E-003 4 11 6 14 + 0.36677563971055185E-003 4 12 6 14 + 0.77570838434897822E-004 4 13 6 14 + -0.29539151565046782E-002 4 14 6 14 + -0.97895461038616282E-003 5 1 6 14 + -0.49254892402236610E-003 5 2 6 14 + 0.13377461371807359E-002 5 9 6 14 + 0.47500633162689192E-004 5 10 6 14 + 0.40226074216440539E-003 5 11 6 14 + 0.43802151297880161E-003 5 12 6 14 + 0.88811705560362116E-005 5 13 6 14 + 0.25562912540749635E-003 5 14 6 14 + -0.19141303703034566E-001 6 1 6 14 + -0.26178692244881247E-001 6 2 6 14 + -0.40456070109940118E-002 6 9 6 14 + 0.74247257966703116E-003 6 10 6 14 + 0.10008662893336192E-003 6 11 6 14 + -0.12497298306167202E-003 6 12 6 14 + -0.76190506283462282E-003 6 13 6 14 + 0.21912238143798241E-001 6 14 6 14 + 0.15395720983976817E-001 1 3 7 1 + 0.10115255798623945E-001 1 4 7 1 + -0.28259002077254364E-001 1 5 7 1 + 0.37474954893528013E-001 1 7 7 1 + 0.28283767831667663E-001 2 3 7 1 + 0.18582926182149722E-001 2 4 7 1 + -0.51915142833487735E-001 2 5 7 1 + 0.31239207335395609E-001 2 7 7 1 + 0.26375667157648591E-001 3 1 7 1 + 0.29224792512530098E-001 3 2 7 1 + -0.13748600328237864E-001 3 9 7 1 + -0.27027336885035419E-001 3 10 7 1 + 0.27014811535351072E-001 3 11 7 1 + 0.60820059635471723E-002 3 12 7 1 + -0.81338087052046735E-002 3 13 7 1 + 0.10647675416392414E-001 3 14 7 1 + 0.17329270934219525E-001 4 1 7 1 + 0.19201195724034038E-001 4 2 7 1 + -0.90330689506462180E-002 4 9 7 1 + -0.24846768842694440E-001 4 10 7 1 + -0.28018570060942685E-001 4 11 7 1 + -0.37503017686822114E-002 4 12 7 1 + -0.11566654770358979E-001 4 13 7 1 + 0.80419690390596300E-002 4 14 7 1 + -0.48412804685970381E-001 5 1 7 1 + -0.53642403183224892E-001 5 2 7 1 + 0.25235695401298257E-001 5 9 7 1 + 0.12384868646310429E-001 5 10 7 1 + 0.28546996227253865E-002 5 11 7 1 + -0.18964554793522090E-002 5 12 7 1 + -0.36315258012888832E-001 5 13 7 1 + -0.21231347167463981E-001 5 14 7 1 + 0.12020308407895400E-002 6 10 7 1 + 0.16319830368004978E-001 6 11 7 1 + 0.27736086235926618E-002 6 12 7 1 + 0.51205975230195406E-003 6 13 7 1 + -0.38735827254686266E-003 6 14 7 1 + 0.67245011753455097E-001 7 1 7 1 + 0.28926712291090658E-002 1 3 7 2 + 0.19005351846926397E-002 1 4 7 2 + -0.53095273912330994E-002 1 5 7 2 + 0.55198202490330849E-002 1 7 7 2 + 0.15200069494529483E-001 2 3 7 2 + 0.99867093755497526E-002 2 4 7 2 + -0.27899881783214540E-001 2 5 7 2 + 0.33915169167716801E-001 2 7 7 2 + 0.13840938784005979E-001 3 1 7 2 + 0.15568646379048657E-001 3 2 7 2 + -0.17247136075846926E-001 3 9 7 2 + -0.11975927218607886E-001 3 10 7 2 + 0.11970346921100867E-001 3 11 7 2 + 0.26949911269128339E-002 3 12 7 2 + -0.36036307425332771E-002 3 13 7 2 + 0.47175701540297351E-002 3 14 7 2 + 0.90937369181364348E-002 4 1 7 2 + 0.10228870783401418E-001 4 2 7 2 + -0.11331667635600774E-001 4 9 7 2 + -0.11009703320153594E-001 4 10 7 2 + -0.12415171765461322E-001 4 11 7 2 + -0.16617469193705853E-002 4 12 7 2 + -0.51247037414075573E-002 4 13 7 2 + 0.35630807038630197E-002 4 14 7 2 + -0.25405183573763496E-001 5 1 7 2 + -0.28576408394478392E-001 5 2 7 2 + 0.31657293263582839E-001 5 9 7 2 + 0.54878756095881817E-002 5 10 7 2 + 0.12648356102906626E-002 5 11 7 2 + -0.84030234295777786E-003 5 12 7 2 + -0.16089686300674859E-001 5 13 7 2 + -0.94066917302731146E-002 5 14 7 2 + 0.16440528233216958E-002 6 10 7 2 + 0.22321086680822430E-001 6 11 7 2 + 0.37935415880284520E-002 6 12 7 2 + 0.70037606969999605E-003 6 13 7 2 + -0.52977039897636371E-003 6 14 7 2 + 0.33876433898399207E-001 7 1 7 2 + 0.44436986492288680E-001 7 2 7 2 + 0.20680343092579279 1 1 7 3 + 0.11081284467161306E-002 1 2 7 3 + -0.12471922974062874E-002 1 9 7 3 + -0.12402501628655182E-002 1 10 7 3 + 0.12396711860883534E-002 1 11 7 3 + 0.27909949915217645E-003 1 12 7 3 + -0.37318147991372539E-003 1 13 7 3 + 0.48854441610007122E-003 1 14 7 3 + -0.13543673845877836E-001 2 1 7 3 + 0.73479722242610845E-001 2 2 7 3 + -0.35070004949610961E-001 2 9 7 3 + -0.60987271763039115E-002 2 10 7 3 + 0.60958666288786923E-002 2 11 7 3 + 0.13724388753699405E-002 2 12 7 3 + -0.18348379584735076E-002 2 13 7 3 + 0.24021317084529934E-002 2 14 7 3 + 0.77273317693631216E-001 3 3 7 3 + 0.27774769906865220E-002 3 4 7 3 + -0.77605409599571969E-002 3 5 7 3 + 0.30684410106594159E-001 3 6 7 3 + 0.36351127016277164E-001 3 7 7 3 + -0.30216518771561778E-001 3 8 7 3 + 0.27774769906865606E-002 4 3 7 3 + 0.68817496687122282E-001 4 4 7 3 + -0.45763235140532166E-007 4 5 7 3 + -0.29553184844850693E-001 4 6 7 3 + 0.14513127292893089E-001 4 7 7 3 + -0.26250474435748527E-001 4 8 7 3 + -0.77605409599572107E-002 5 3 7 3 + -0.45763235158121070E-007 5 4 7 3 + 0.68817596303322306E-001 5 5 7 3 + -0.46544424795578673E-002 5 6 7 3 + -0.40545620345625748E-001 5 7 7 3 + -0.15230091493987800E-001 5 8 7 3 + 0.51636188339904264E-001 6 3 7 3 + -0.53892264845333708E-001 6 4 7 3 + -0.35093707213118865E-002 6 5 7 3 + 0.42485472067519028E-001 6 6 7 3 + 0.19069234974212097E-002 6 7 7 3 + 0.39718039528016144E-009 6 8 7 3 + 0.53492119712123039E-001 7 3 7 3 + 0.13587344210931154 1 1 7 4 + 0.72805961526135941E-003 1 2 7 4 + -0.81942697788995656E-003 1 9 7 4 + -0.11401859727842771E-002 1 10 7 4 + -0.12857400588749766E-002 1 11 7 4 + -0.17209274394446407E-003 1 12 7 4 + -0.53070547941818454E-003 1 13 7 4 + 0.36898715078704895E-003 1 14 7 4 + -0.88984286963092237E-002 2 1 7 4 + 0.48277452369357522E-001 2 2 7 4 + -0.23041601708262034E-001 2 9 7 4 + -0.56066756734790254E-002 2 10 7 4 + -0.63224274382953196E-002 2 11 7 4 + -0.84622554567001127E-003 2 12 7 4 + -0.26094205322809557E-002 2 13 7 4 + 0.18142776098586907E-002 2 14 7 4 + 0.45214130241838943E-001 3 3 7 4 + 0.42276448874899912E-002 3 4 7 4 + -0.45763235107713140E-007 3 5 7 4 + 0.12435707555737618E-001 3 6 7 4 + 0.14513127292893110E-001 3 7 7 4 + -0.20846806568208941E-001 3 8 7 4 + 0.42276448874899956E-002 4 3 7 4 + 0.50769970086520226E-001 4 4 7 4 + -0.77605467834191560E-002 4 5 7 4 + -0.24492099989374697E-001 4 6 7 4 + 0.23797035844318339E-001 4 7 7 4 + -0.17900103757157792E-001 4 8 7 4 + -0.45763235109865622E-007 5 3 7 4 + -0.77605467834191673E-002 5 4 7 4 + 0.45214454101644222E-001 5 5 7 4 + 0.11120343284693454E-001 5 6 7 4 + -0.26639231018426184E-001 5 7 7 4 + -0.81817964824785656E-002 5 8 7 4 + 0.25086719309348107E-001 6 3 7 4 + -0.41215680247366181E-001 6 4 7 4 + 0.13918689544169431E-001 6 5 7 4 + 0.27913697894210301E-001 6 6 7 4 + -0.23166704855228392E-002 6 7 7 4 + 0.22878289803908267E-009 6 8 7 4 + 0.24422873701658313E-001 7 3 7 4 + 0.32365921566210355E-001 7 4 7 4 + -0.37958979577491131 1 1 7 5 + -0.20339810074638041E-002 1 2 7 5 + 0.22892341164030606E-002 1 9 7 5 + 0.56833811313916627E-003 1 10 7 5 + 0.13098549989076105E-003 1 11 7 5 + -0.87022446617310837E-004 1 12 7 5 + -0.16662168197633020E-002 1 13 7 5 + -0.97413951990064831E-003 1 14 7 5 + 0.24859550763660618E-001 2 1 7 5 + -0.13487277573106499 2 2 7 5 + 0.64371349919357404E-001 2 9 7 5 + 0.27947489571012764E-002 2 10 7 5 + 0.64405781150926155E-003 2 11 7 5 + -0.42790742240721955E-003 2 12 7 5 + -0.81925628420391142E-002 2 13 7 5 + -0.47897212034057786E-002 2 14 7 5 + -0.12631586929274280 3 3 7 5 + -0.45763234769499660E-007 3 4 7 5 + 0.42277445036892460E-002 3 5 7 5 + -0.48293495125036834E-001 3 6 7 5 + -0.40545620345625616E-001 3 7 7 5 + 0.44478989627350023E-001 3 8 7 5 + -0.45763234780071803E-007 4 3 7 5 + -0.12631587511620326 4 4 7 5 + 0.27778008504920522E-002 4 5 7 5 + 0.59519766606712508E-001 4 6 7 5 + -0.26639231018426177E-001 4 7 7 5 + 0.40966592951458401E-001 4 8 7 5 + 0.42277445036892590E-002 5 3 7 5 + 0.27778008504920847E-002 5 4 7 5 + -0.14183482394866320 5 5 7 5 + -0.61923101172192191E-002 5 6 7 5 + 0.88682724521632408E-001 5 7 7 5 + 0.48116622528719163E-001 5 8 7 5 + -0.85592222884479638E-001 6 3 7 5 + 0.10495555832311265 6 4 7 5 + -0.10420508092537549E-001 6 5 7 5 + -0.77982520761675847E-001 6 6 7 5 + 0.20965410432219011E-003 6 7 7 5 + -0.22278792220727486E-008 6 8 7 5 + -0.68230758306823014E-001 7 3 7 5 + -0.44828899668104299E-001 7 4 7 5 + 0.14155628917878721 7 5 7 5 + 0.75655146642958701E-004 1 10 7 6 + 0.10271566377426941E-002 1 11 7 6 + 0.17456859811439156E-003 1 12 7 6 + 0.32231833680881623E-004 1 13 7 6 + -0.24374497527625097E-004 1 14 7 6 + 0.13443556615506677E-002 2 10 7 6 + 0.18252140826877077E-001 2 11 7 6 + 0.31020109726335385E-002 2 12 7 6 + 0.57270142732033374E-003 2 13 7 6 + -0.43320113661788652E-003 2 14 7 6 + 0.13377626666181667E-001 3 3 7 6 + -0.37313898775805077E-002 3 4 7 6 + -0.11541986217501595E-001 3 5 7 6 + 0.22493802784042546E-002 3 6 7 6 + 0.31245921672954373E-002 3 7 7 6 + 0.46968552924490663E-009 3 8 7 6 + -0.37313898775805060E-002 4 3 7 6 + -0.10677946099430567E-001 4 4 7 6 + 0.15398655782420256E-001 4 5 7 6 + 0.14778885302741576E-002 4 6 7 6 + -0.37959839151662949E-002 4 7 7 6 + 0.27054705228626916E-009 4 8 7 6 + -0.11541986217501597E-001 5 3 7 6 + 0.15398655782420259E-001 5 4 7 6 + -0.26996805667509659E-002 5 5 7 6 + -0.41287670730469992E-002 5 6 7 6 + 0.34353106430209853E-003 5 7 7 6 + -0.26345772165616334E-008 5 8 7 6 + 0.13727849975692442E-002 6 3 7 6 + 0.90194919376672671E-003 6 4 7 6 + -0.25197664989602105E-002 6 5 7 6 + -0.25551354171188173E-007 6 6 7 6 + 0.22121321168951134E-001 6 7 7 6 + -0.42994868675950062E-009 6 8 7 6 + 0.19069234974211633E-002 7 3 7 6 + -0.23166704855228444E-002 7 4 7 6 + 0.20965410432224958E-003 7 5 7 6 + 0.22121321168951154E-001 7 6 7 6 + 0.84283712188564797 1 1 7 7 + -0.48984494291222008E-001 1 2 7 7 + 0.42197858812374908E-001 1 9 7 7 + -0.79629274802289253E-003 1 10 7 7 + 0.40568869894155510E-004 1 11 7 7 + 0.85538602435857432E-004 1 12 7 7 + 0.61347330642950971E-003 1 13 7 7 + 0.66139781395819651E-003 1 14 7 7 + 0.15903504434053015E-001 2 1 7 7 + 0.53248915077379488 2 2 7 7 + -0.17152652675046415 2 9 7 7 + -0.14149663429757986E-001 2 10 7 7 + 0.72079978877563535E-003 2 11 7 7 + 0.15199835781899876E-002 2 12 7 7 + 0.10902893259080771E-001 2 13 7 7 + 0.11754604205099889E-001 2 14 7 7 + 0.52067433224346671 3 3 7 7 + 0.63272816770155510E-002 3 4 7 7 + -0.17676816146097486E-001 3 5 7 7 + 0.11356059663499898 3 6 7 7 + 0.86250626620814091E-001 3 7 7 7 + -0.11183002077478388 3 8 7 7 + 0.63272816770155354E-002 4 3 7 7 + 0.51520109915918655 4 4 7 7 + -0.11614030357359660E-001 4 5 7 7 + -0.13796177094145015 4 6 7 7 + 0.56668167117539754E-001 4 7 7 7 + -0.10083086696317127 4 8 7 7 + -0.17676816146097469E-001 5 3 7 7 + -0.11614030357359612E-001 5 4 7 7 + 0.54348910122435889 5 5 7 7 + 0.12485525860769533E-001 5 6 7 7 + -0.15831373458119613 5 7 7 7 + -0.97017955662530936E-001 5 8 7 7 + 0.59016056781888170E-001 6 3 7 7 + -0.71697049198338400E-001 6 4 7 7 + 0.64885737602173319E-002 6 5 7 7 + 0.42597741672733797 6 6 7 7 + 0.21074033576610824E-007 6 7 7 7 + 0.11416705458916582E-007 6 8 7 7 + 0.45231000072783190E-001 7 3 7 7 + 0.29717559405327464E-001 7 4 7 7 + -0.83021819431972260E-001 7 5 7 7 + 0.21074033664764607E-007 7 6 7 7 + 0.47021883700365014 7 7 7 7 + 0.63763990081275182E-003 1 10 7 8 + -0.69689151737842902E-004 1 11 7 8 + -0.17399788994422504E-004 1 12 7 8 + 0.82507077957549792E-003 1 13 7 8 + 0.85730667366983928E-005 1 14 7 8 + 0.11330666536695282E-001 2 10 7 8 + -0.12384798856770378E-002 2 11 7 8 + -0.30911172561224194E-003 2 12 7 8 + 0.14663640612420030E-001 2 13 7 8 + 0.15243860321711419E-003 2 14 7 8 + -0.13173468716655123E-001 3 3 7 8 + -0.10266468098733279E-001 3 4 7 8 + 0.63759497462442380E-002 3 5 7 8 + 0.46968544754169135E-009 3 6 7 8 + -0.30769366598015057E-002 3 7 7 8 + 0.22492656335220281E-002 3 8 7 8 + -0.10266468098733278E-001 4 3 7 8 + -0.78038723250290314E-002 4 4 7 8 + 0.71467005263977307E-002 4 5 7 8 + 0.27054713734849311E-009 4 6 7 8 + -0.27742944400701384E-002 4 7 7 8 + 0.14777908848095643E-002 4 8 7 8 + 0.63759497462442380E-002 5 3 7 8 + 0.71467005263977316E-002 5 4 7 8 + 0.20977341041680628E-001 5 5 7 8 + -0.26345772430435427E-008 5 6 7 8 + -0.26692788869005957E-002 5 7 7 8 + -0.41287088581454653E-002 5 8 7 8 + 0.39718035670092012E-009 6 3 7 8 + 0.22878302896761316E-009 6 4 7 8 + -0.22278792564876054E-008 6 5 7 8 + -0.42994963056939345E-009 6 6 7 8 + 0.11416705458389340E-007 6 7 7 8 + 0.44773205427799323E-008 6 8 7 8 + -0.18778301013329844E-002 7 3 7 8 + -0.16931282477194139E-002 7 4 7 8 + -0.16290125408825499E-002 7 5 7 8 + 0.11416705458578606E-007 7 6 7 8 + -0.43257920319399050E-006 7 7 7 8 + 0.22120726405949583E-001 7 8 7 8 + -0.12031982258157306E-002 1 3 7 9 + -0.79052210956820021E-003 1 4 7 9 + 0.22084825516168892E-002 1 5 7 9 + -0.18709592480828569E-002 1 7 7 9 + -0.39074744201907749E-001 2 3 7 9 + -0.25672784878308649E-001 2 4 7 9 + 0.71722089450641791E-001 2 5 7 9 + -0.17778322751956729E-001 2 7 7 9 + -0.18672504595535579E-001 3 1 7 9 + -0.44431926647549129E-001 3 2 7 9 + 0.48580603624112347E-002 3 9 7 9 + 0.33310323231321576E-001 3 10 7 9 + -0.33294879609710969E-001 3 11 7 9 + -0.74958828568023710E-002 3 12 7 9 + 0.10024550888414072E-001 3 13 7 9 + -0.13122818171866274E-001 3 14 7 9 + -0.12268159482846042E-001 4 1 7 9 + -0.29192546690955092E-001 4 2 7 9 + 0.31918299443130758E-002 4 9 7 9 + 0.30622842193707530E-001 4 10 7 9 + 0.34531991614033003E-001 4 11 7 9 + 0.46221203146357389E-002 4 12 7 9 + 0.14255415544001400E-001 4 13 7 9 + -0.99113926411259438E-002 4 14 7 9 + 0.34273571643832726E-001 5 1 7 9 + 0.81555252185740182E-001 5 2 7 9 + -0.89170190870361994E-002 5 9 7 9 + -0.15263971164288468E-001 5 10 7 9 + -0.35183051918394846E-002 5 11 7 9 + 0.23373149524271420E-002 5 12 7 9 + 0.44757007813370893E-001 5 13 7 9 + 0.26166734832273185E-001 5 14 7 9 + 0.25402565468400699E-003 6 10 7 9 + 0.34488840115218500E-002 6 11 7 9 + 0.58614919997150388E-003 6 12 7 9 + 0.10820825252263500E-003 6 13 7 9 + -0.81870672854201122E-004 6 14 7 9 + -0.44035799656073189E-001 7 1 7 9 + -0.80947549626019556E-002 7 2 7 9 + 0.82281635134619363E-001 7 9 7 9 + -0.14487173391874240E-002 1 3 7 10 + -0.13318340150363451E-002 1 4 7 10 + 0.66386474550555108E-003 1 5 7 10 + 0.12659407420207022E-003 1 6 7 10 + -0.13324358839854353E-002 1 7 7 10 + 0.10669714919311595E-002 1 8 7 10 + -0.48714168312568541E-002 2 3 7 10 + -0.44783848122128354E-002 2 4 7 10 + 0.22323530437276229E-002 2 5 7 10 + 0.12184611262738415E-002 2 6 7 10 + -0.12824596110617944E-001 2 7 7 10 + 0.10269582632937405E-001 2 8 7 10 + -0.99896882176046756E-002 3 1 7 10 + -0.50272062915642591E-002 3 2 7 10 + 0.13651169589468168E-001 3 9 7 10 + 0.13383598935336853E-002 3 10 7 10 + -0.65603792976990510E-003 3 11 7 10 + 0.21161795298465301E-003 3 12 7 10 + 0.73357849120970825E-004 3 13 7 10 + -0.93494575575105566E-003 3 14 7 10 + -0.91837188917863865E-002 4 1 7 10 + -0.46216055992795158E-002 4 2 7 10 + 0.12549790421508573E-001 4 9 7 10 + 0.90893903941744359E-003 4 10 7 10 + 0.70104648910084596E-003 4 11 7 10 + -0.46877472087351960E-003 4 12 7 10 + -0.70109805279781499E-005 4 13 7 10 + -0.71228121735037949E-003 4 14 7 10 + 0.45776299220013118E-002 5 1 7 10 + 0.23037335312709540E-002 5 2 7 10 + -0.62554693646217924E-002 5 9 7 10 + -0.26182953486198783E-002 5 10 7 10 + -0.10872228107771385E-003 5 11 7 10 + 0.10018424226700068E-003 5 12 7 10 + -0.54964516464271968E-004 5 13 7 10 + 0.44604867699965100E-003 5 14 7 10 + 0.12020308407895350E-002 6 1 7 10 + 0.16440528233217012E-002 6 2 7 10 + 0.25402565468399143E-003 6 9 7 10 + -0.22606971372963482E-003 6 10 7 10 + -0.93803924930641516E-002 6 11 7 10 + 0.50944666230696095E-002 6 12 7 10 + -0.21904005886829792E-003 6 13 7 10 + -0.48050165891723895E-003 6 14 7 10 + -0.12651641672151404E-001 7 1 7 10 + -0.17304051596087215E-001 7 2 7 10 + -0.26736665308846933E-002 7 9 7 10 + 0.16699663364291219E-001 7 10 7 10 + 0.14480418552983881E-002 1 3 7 11 + -0.15018527268622006E-002 1 4 7 11 + 0.15300468135994127E-003 1 5 7 11 + 0.17187487337601958E-002 1 6 7 11 + 0.67879258904853928E-004 1 7 7 11 + -0.11661849870906295E-003 1 8 7 11 + 0.48691248863922607E-002 2 3 7 11 + -0.50501053748793837E-002 2 4 7 11 + 0.51442547282208075E-003 2 5 7 11 + 0.16542885132142734E-001 2 6 7 11 + 0.65330231626731445E-003 2 7 7 11 + -0.11224955530619654E-002 2 8 7 11 + 0.99850565107196185E-002 3 1 7 11 + 0.50248447903421898E-002 3 2 7 11 + -0.13644833827718842E-001 3 9 7 11 + -0.64588387826375391E-003 3 10 7 11 + 0.16714182599584398E-002 3 11 7 11 + -0.44121267832178423E-003 3 12 7 11 + 0.34507810823875066E-003 3 13 7 11 + -0.31388740663594166E-003 3 14 7 11 + -0.10356063880651004E-001 4 1 7 11 + -0.52116062691928179E-002 4 2 7 11 + 0.14151836776918591E-001 4 9 7 11 + 0.68854291010851849E-003 4 10 7 11 + 0.10969836864614115E-002 4 11 7 11 + -0.48331802744828848E-003 4 12 7 11 + -0.38147193808320712E-003 4 13 7 11 + 0.46918652135566710E-003 4 14 7 11 + 0.10551308953600186E-002 5 1 7 11 + 0.53088856529912075E-003 5 2 7 11 + -0.14418440062367599E-002 5 9 7 11 + -0.10766589606654878E-003 5 10 7 11 + -0.24050905281977290E-002 5 11 7 11 + -0.83882430463449933E-003 5 12 7 11 + 0.50028509702343913E-004 5 13 7 11 + -0.59345246980583082E-005 5 14 7 11 + 0.16319830368005207E-001 6 1 7 11 + 0.22321086680822576E-001 6 2 7 11 + 0.34488840115213465E-002 6 9 7 11 + -0.32903583200982666E-002 6 10 7 11 + 0.31225925383836277E-003 6 11 7 11 + -0.23363407630412416E-003 6 12 7 11 + 0.19694469618034053E-002 6 13 7 11 + -0.10228797325555726E-001 6 14 7 11 + 0.64446750559614559E-003 7 1 7 11 + 0.88149254338574135E-003 7 2 7 11 + 0.13618398260133833E-003 7 9 7 11 + 0.12434743140310707E-004 7 10 7 11 + 0.16895056888503603E-001 7 11 7 11 + 0.32601111225812854E-003 1 3 7 12 + -0.20101965509360188E-003 1 4 7 12 + -0.10165026724154282E-003 1 5 7 12 + 0.29210694263757220E-003 1 6 7 12 + 0.14313229781987626E-003 1 7 7 12 + -0.29111163608920858E-004 1 8 7 12 + 0.10962553781994498E-002 2 3 7 12 + -0.67592432615561711E-003 2 4 7 12 + -0.34178930731822794E-003 2 5 7 12 + 0.28115173647313167E-002 2 6 7 12 + 0.13776419341339466E-002 2 7 7 12 + -0.28016697144723839E-003 2 8 7 12 + 0.22479979690086679E-002 3 1 7 12 + 0.11313104416993730E-002 3 2 7 12 + -0.30719539330314833E-002 3 9 7 12 + 0.20529818499325257E-003 3 10 7 12 + -0.42709574261720075E-003 3 11 7 12 + 0.29471827579272668E-003 3 12 7 12 + 0.61816582221828462E-003 3 13 7 12 + 0.16233346715106792E-004 3 14 7 12 + -0.13861629146082132E-002 4 1 7 12 + -0.69754401867499539E-003 4 2 7 12 + 0.18942219298691359E-002 4 9 7 12 + -0.46169921035385173E-003 4 10 7 12 + -0.47391649478866220E-003 4 11 7 12 + 0.14139602425839858E-003 4 12 7 12 + -0.69725629906053029E-003 4 13 7 12 + 0.12277588461766305E-003 4 14 7 12 + -0.70095513430170773E-003 5 1 7 12 + -0.35272294032868891E-003 5 2 7 12 + 0.95786816093377657E-003 5 9 7 12 + 0.99273778363939271E-004 5 10 7 12 + -0.82776803054966002E-003 5 11 7 12 + -0.11290325862181427E-002 5 12 7 12 + -0.13910049989490748E-004 5 13 7 12 + -0.67912955375617074E-004 5 14 7 12 + 0.27736086235925707E-002 6 1 7 12 + 0.37935415880284641E-002 6 2 7 12 + 0.58614919997149921E-003 6 9 7 12 + 0.15029719503952645E-002 6 10 7 12 + 0.70171404071530069E-003 6 11 7 12 + -0.48484033548626142E-005 6 12 7 12 + 0.29565264077543187E-002 6 13 7 12 + -0.17324740149072052E-002 6 14 7 12 + 0.13590662161061195E-002 7 1 7 12 + 0.18588332665408743E-002 7 2 7 12 + 0.28721247505867915E-003 7 9 7 12 + -0.84837043229499557E-003 7 10 7 12 + 0.23649719385314687E-002 7 11 7 12 + 0.37385236984165018E-002 7 12 7 12 + -0.43592083808901568E-003 1 3 7 13 + -0.61992317751259954E-003 1 4 7 13 + -0.19463295679762360E-002 1 5 7 13 + 0.53931368485775492E-004 1 6 7 13 + 0.10266221720397907E-002 1 7 7 13 + 0.13807299459141636E-002 1 8 7 13 + -0.14654791858267943E-002 2 3 7 13 + -0.20841761460932613E-002 2 4 7 13 + -0.65434782944423448E-002 2 5 7 13 + 0.51907127453211738E-003 2 6 7 13 + 0.98818119402597476E-002 2 7 7 13 + 0.13290351311637730E-001 2 8 7 13 + -0.30063361425526113E-002 3 1 7 13 + -0.15124067751184878E-002 3 2 7 13 + 0.41081320249373261E-002 3 9 7 13 + 0.50339089409148834E-004 3 10 7 13 + 0.35104376148025563E-003 3 11 7 13 + 0.63064169705183046E-003 3 12 7 13 + 0.14385963471736510E-002 3 13 7 13 + -0.25174346587787769E-003 3 14 7 13 + -0.42751623450953038E-002 4 1 7 13 + -0.21508942620393681E-002 4 2 7 13 + 0.58420085901533959E-002 4 9 7 13 + -0.31662273057996742E-004 4 10 7 13 + -0.38662262988951114E-003 4 11 7 13 + -0.70917772274547140E-003 4 12 7 13 + 0.10025316320231650E-002 4 13 7 13 + -0.28359010365021316E-003 4 14 7 13 + -0.13422510551427506E-001 5 1 7 13 + -0.67529581264106795E-002 5 2 7 13 + 0.18341838295148710E-001 5 9 7 13 + -0.76329307378118706E-004 5 10 7 13 + 0.51434932064318748E-004 5 11 7 13 + -0.11380411624175557E-004 5 12 7 13 + -0.25528415541075781E-002 5 13 7 13 + -0.11900681531696222E-002 5 14 7 13 + 0.51205975230197401E-003 6 1 7 13 + 0.70037606970000776E-003 6 2 7 13 + 0.10820825252259414E-003 6 9 7 13 + 0.87628069844143078E-003 6 10 7 13 + 0.49288629165969780E-002 6 11 7 13 + 0.94686475178214838E-002 6 12 7 13 + -0.25284212701245110E-003 6 13 7 13 + -0.37686783763110285E-003 6 14 7 13 + 0.97490618433636166E-002 7 1 7 13 + 0.13333378567509640E-001 7 2 7 13 + 0.20605017700183704E-002 7 9 7 13 + 0.51481810225636223E-003 7 10 7 13 + 0.62340402125604865E-005 7 11 7 13 + 0.56244427814276625E-003 7 12 7 13 + 0.16854288700406096E-001 7 13 7 13 + 0.57067360601670844E-003 1 3 7 14 + 0.43101763786814476E-003 1 4 7 14 + -0.11379045284341950E-002 1 5 7 14 + -0.40790130619143290E-004 1 6 7 14 + 0.11068206395780527E-002 1 7 7 14 + 0.14350672593497365E-004 1 8 7 14 + 0.19186185406169793E-002 2 3 7 14 + 0.14490900995250584E-002 2 4 7 14 + -0.38256007667878027E-002 2 5 7 14 + -0.39263057366689853E-003 2 6 7 14 + 0.10653758952339616E-001 2 7 7 14 + 0.13815980471352049E-003 2 8 7 14 + 0.39354995005549199E-002 3 1 7 14 + 0.19800334127582919E-002 3 2 7 14 + -0.53778652964262012E-002 3 9 7 14 + -0.93459306749912115E-003 3 10 7 14 + -0.29142687993076065E-003 3 11 7 14 + 0.20493146746800111E-004 3 12 7 14 + -0.25200371351761976E-003 3 13 7 14 + 0.86997754788331019E-003 3 14 7 14 + 0.29724012070437588E-002 4 1 7 14 + 0.14954756979580425E-002 4 2 7 14 + -0.40617896752197496E-002 4 9 7 14 + -0.71481633994524378E-003 4 10 7 14 + 0.44229787572033536E-003 4 11 7 14 + 0.11834491825162238E-003 4 12 7 14 + -0.28539263448270859E-003 4 13 7 14 + 0.53803420638698623E-003 4 14 7 14 + -0.78473360361338181E-002 5 1 7 14 + -0.39480692909096655E-002 5 2 7 14 + 0.10723375823993601E-001 5 9 7 14 + 0.44533600605545687E-003 5 10 7 14 + -0.33226868534252504E-005 5 11 7 14 + -0.67178490702773973E-004 5 12 7 14 + -0.11908552258519545E-002 5 13 7 14 + -0.15975875156489174E-002 5 14 7 14 + -0.38735827254686884E-003 6 1 7 14 + -0.52977039897636436E-003 6 2 7 14 + -0.81870672854199387E-004 6 9 7 14 + 0.32155260064549391E-003 6 10 7 14 + 0.30224512798461851E-002 6 11 7 14 + 0.59267145319023167E-003 6 12 7 14 + 0.63898623985700299E-004 6 13 7 14 + 0.17150099025857479E-003 6 14 7 14 + 0.10510632286409721E-001 7 1 7 14 + 0.14374955113148014E-001 7 2 7 14 + 0.22214596932528027E-002 7 9 7 14 + -0.67249855193090890E-002 7 10 7 14 + 0.15389383418672992E-004 7 11 7 14 + 0.67077060752590394E-003 7 12 7 14 + 0.52978140713646274E-002 7 13 7 14 + 0.88823816621271777E-002 7 14 7 14 + -0.21060109968820632E-001 1 3 8 1 + -0.18988723099740271E-001 1 4 8 1 + -0.18270686523305216E-001 1 5 8 1 + 0.37474954893527694E-001 1 8 8 1 + -0.38689923095349465E-001 2 3 8 1 + -0.34884539420520874E-001 2 4 8 1 + -0.33565420956132748E-001 2 5 8 1 + 0.31239207335395088E-001 2 8 8 1 + -0.36079794601318743E-001 3 1 8 1 + -0.39977169290767223E-001 3 2 8 1 + 0.18806981182070293E-001 3 9 8 1 + -0.72149744758768968E-002 3 10 8 1 + -0.52041648897901494E-002 3 11 8 1 + 0.26711921406652035E-001 3 12 8 1 + 0.28720171096287390E-001 3 13 8 1 + -0.12414555465545199E-001 3 14 8 1 + -0.32531132562661907E-001 4 1 8 1 + -0.36045177309030008E-001 4 2 8 1 + 0.16957202908107948E-001 4 9 8 1 + -0.12895924889428124E-001 4 10 8 1 + 0.46462423253450201E-002 4 11 8 1 + -0.28003973240407622E-001 4 12 8 1 + 0.24930316325252420E-001 4 13 8 1 + -0.11828016864071467E-001 4 14 8 1 + -0.31301005453526876E-001 5 1 8 1 + -0.34682170666823449E-001 5 2 8 1 + 0.16315985915364348E-001 5 9 8 1 + -0.37377553454905822E-001 5 10 8 1 + 0.19792423660641044E-002 5 11 8 1 + 0.53153563185369904E-002 5 12 8 1 + -0.12742677077645736E-001 5 13 8 1 + -0.11385320596313695E-001 5 14 8 1 + 0.11548057770168080E-002 6 10 8 1 + -0.28271976713233910E-002 6 11 8 1 + 0.16306511303729988E-001 6 12 8 1 + -0.78929980535581820E-003 6 13 8 1 + 0.18701306303846367E-003 6 14 8 1 + 0.10131134468453535E-001 7 10 8 1 + -0.11073981644274941E-002 7 11 8 1 + -0.27636804947166676E-003 7 12 8 1 + 0.13111854808605982E-001 7 13 8 1 + 0.13632494334923012E-003 7 14 8 1 + 0.67245011753454695E-001 8 1 8 1 + -0.39569419484858370E-002 1 3 8 2 + -0.35677532117725495E-002 1 4 8 2 + -0.34328427552721267E-002 1 5 8 2 + 0.55198202490331222E-002 1 8 8 2 + -0.20792474442844058E-001 2 3 8 2 + -0.18747411116946743E-001 2 4 8 2 + -0.18038499473719303E-001 2 5 8 2 + 0.33915169167716516E-001 2 8 8 2 + -0.18933292774417847E-001 3 1 8 2 + -0.21296658022685204E-001 3 2 8 2 + 0.23592697138548079E-001 3 9 8 2 + -0.31970008263595825E-002 3 10 8 2 + -0.23059092757035261E-002 3 11 8 2 + 0.11836096784550772E-001 3 12 8 2 + 0.12724588914417285E-001 3 13 8 2 + -0.55002840835109692E-002 3 14 8 2 + -0.17071091005317427E-001 4 1 8 2 + -0.19202005247899171E-001 4 2 8 2 + 0.21272215282976958E-001 4 9 8 2 + -0.57142483526419841E-002 4 10 8 2 + 0.20588303136832974E-002 4 11 8 2 + -0.12408727874510356E-001 4 12 8 2 + 0.11045589556657407E-001 4 13 8 2 + -0.52404848231214982E-002 4 14 8 2 + -0.16425567466052428E-001 5 1 8 2 + -0.18475903653997271E-001 5 2 8 2 + 0.20467831093753230E-001 5 9 8 2 + -0.16562103369043433E-001 5 10 8 2 + 0.87697498837408991E-003 5 11 8 2 + 0.23552581070332835E-002 5 12 8 2 + -0.56456654019830859E-002 5 13 8 2 + -0.50442510289412795E-002 5 14 8 2 + 0.15794610355383165E-002 6 10 8 2 + -0.38668375286035738E-002 6 11 8 2 + 0.22302870383100967E-001 6 12 8 2 + -0.10795407479255552E-002 6 13 8 2 + 0.25580217350938098E-003 6 14 8 2 + 0.13856605569009249E-001 7 10 8 2 + -0.15145666915035573E-002 7 11 8 2 + -0.37802603546806940E-003 7 12 8 2 + 0.17932467676279078E-001 7 13 8 2 + 0.18641632190644146E-003 7 14 8 2 + 0.33876433898398665E-001 8 1 8 2 + 0.44436986492288472E-001 8 2 8 2 + -0.28289048637341385 1 1 8 3 + -0.15158307280129842E-002 1 2 8 3 + 0.17060589083800141E-002 1 9 8 3 + -0.33108811833091180E-003 1 10 8 3 + -0.23880165467193124E-003 1 11 8 3 + 0.12257666299731614E-002 1 12 8 3 + 0.13177320706311655E-002 1 13 8 3 + -0.56959677651542728E-003 1 14 8 3 + 0.18526658210608841E-001 2 1 8 3 + -0.10051435931570105 2 2 8 3 + 0.47972950511025736E-001 2 9 8 3 + -0.16280783957965551E-002 2 10 8 3 + -0.11742331104353551E-002 2 11 8 3 + 0.60274761607999484E-002 2 12 8 3 + 0.64790881182256767E-002 2 13 8 3 + -0.28006049001529955E-002 2 14 8 3 + -0.10570343682535008 3 3 8 3 + -0.52139228099733394E-002 3 4 8 3 + -0.50173705467460739E-002 3 5 8 3 + -0.41973823030702281E-001 3 6 8 3 + -0.30216518771561472E-001 3 7 8 3 + 0.55595255468461391E-001 3 8 8 3 + -0.52139228099733750E-002 4 3 8 3 + -0.94136640869036198E-001 4 4 8 3 + 0.10594205136519473E-006 4 5 8 3 + 0.39045527986272838E-001 4 6 8 3 + -0.20846806568208788E-001 4 7 8 3 + 0.37268216070050243E-001 4 8 8 3 + -0.50173705467460869E-002 5 3 8 3 + 0.10594205138852134E-006 5 4 8 3 + -0.94137370126433681E-001 5 5 8 3 + -0.88913902903197273E-002 5 6 8 3 + 0.44478989627350016E-001 5 7 8 3 + 0.35859398285724035E-001 5 8 8 3 + -0.70634186634475182E-001 6 3 8 3 + 0.72140185585496647E-001 6 4 8 3 + -0.12659608422085878E-001 6 5 8 3 + -0.58116720089395946E-001 6 6 8 3 + 0.39718043789472992E-009 6 7 8 3 + 0.19069229058916372E-002 6 8 8 3 + -0.50848732462846151E-001 7 3 8 3 + -0.34545925561851799E-001 7 4 8 3 + 0.80765154040165751E-001 7 5 8 3 + 0.39718048784149781E-009 7 6 8 3 + -0.58116684501717503E-001 7 7 8 3 + 0.13726880503437207E-002 7 8 8 3 + 0.85876309605000395E-001 8 3 8 3 + -0.25506652725215484 1 1 8 4 + -0.13667397750025709E-002 1 2 8 4 + 0.15382578842671976E-002 1 9 8 4 + -0.59177893740528138E-003 1 10 8 4 + 0.21321859236771517E-003 1 11 8 4 + -0.12850735667437661E-002 1 12 8 4 + 0.11438623104580248E-002 1 13 8 4 + -0.54269494616387374E-003 1 14 8 4 + 0.16704451365430341E-001 2 1 8 4 + -0.90628175228873953E-001 2 2 8 4 + 0.43254525967815684E-001 2 9 8 4 + -0.29099803202035498E-002 2 10 8 4 + 0.10484946552816708E-002 2 11 8 4 + -0.63191608075293549E-002 2 12 8 4 + 0.56242466843358175E-002 2 13 8 4 + -0.26683635594585147E-002 2 14 8 4 + -0.84877539223449885E-001 3 3 8 4 + -0.57829104275879508E-002 3 4 8 4 + 0.10594205125989775E-006 3 5 8 4 + -0.25898074218071131E-001 3 6 8 4 + -0.26250474435748371E-001 3 7 8 4 + 0.37268216070050049E-001 3 8 8 4 + -0.57829104275879577E-002 4 3 8 4 + -0.95307158958773008E-001 4 4 8 4 + -0.50174211698499217E-002 4 5 8 4 + 0.45977426201369145E-001 4 6 8 4 + -0.17900103757157660E-001 4 7 8 4 + 0.47864382588104160E-001 4 8 8 4 + 0.10594205125693004E-006 5 3 8 4 + -0.50174211698499147E-002 5 4 8 4 + -0.84878322025284961E-001 5 5 8 4 + 0.23480614122459538E-002 5 6 8 4 + 0.40966592951458221E-001 5 7 8 4 + 0.32332398465493815E-001 5 8 8 4 + -0.50015447397408347E-001 6 3 8 4 + 0.77371508065143896E-001 6 4 8 4 + 0.44618220609351068E-003 6 5 8 4 + -0.52400591506002209E-001 6 6 8 4 + 0.22878288158070531E-009 6 7 8 4 + -0.23166708007775747E-002 6 8 8 4 + -0.44709951676567813E-001 7 3 8 4 + -0.30122506980730036E-001 7 4 8 4 + 0.73808207379054261E-001 7 5 8 4 + 0.22878291280244986E-009 7 6 8 4 + -0.52400557374942702E-001 7 7 8 4 + 0.90186662176960290E-003 7 8 8 4 + 0.62715379455381456E-001 8 3 8 4 + 0.72866731782455618E-001 8 4 8 4 + -0.24542148187288998 1 1 8 5 + -0.13150580929975118E-002 1 2 8 5 + 0.14800904435659590E-002 1 9 8 5 + -0.17152017088328333E-002 1 10 8 5 + 0.90819962628032379E-004 1 11 8 5 + 0.24391512479969736E-003 1 12 8 5 + -0.58465236636172260E-003 1 13 8 5 + -0.52237000591904051E-003 1 14 8 5 + 0.16072791879605017E-001 2 1 8 5 + -0.87201175723532517E-001 2 2 8 5 + 0.41618906153987154E-001 2 9 8 5 + -0.84342019632530768E-002 2 10 8 5 + 0.44657636038184509E-003 2 11 8 5 + 0.11994132635721236E-002 2 12 8 5 + -0.28746334927378134E-002 2 13 8 5 + -0.25683862770711180E-002 2 14 8 5 + -0.81668599550310902E-001 3 3 8 5 + 0.10594205174705170E-006 3 4 8 5 + -0.57836396849849387E-002 3 5 8 5 + -0.32137828610581197E-001 3 6 8 5 + -0.15230091493987824E-001 3 7 8 5 + 0.35859398285724271E-001 3 8 8 5 + 0.10594205174063130E-006 4 3 8 5 + -0.81668650173413876E-001 4 4 8 5 + -0.52147056118090652E-002 4 5 8 5 + 0.37729833793983272E-001 4 6 8 5 + -0.81817964824785604E-002 4 7 8 5 + 0.32332398465493871E-001 4 8 8 5 + -0.57836396849849283E-002 5 3 8 5 + -0.52147056118090444E-002 5 4 8 5 + -0.91702719298637186E-001 5 5 8 5 + -0.40036031706676082E-002 5 6 8 5 + 0.48116622528719129E-001 5 7 8 5 + 0.45371249325660216E-001 5 8 8 5 + -0.56384983843587151E-001 6 3 8 5 + 0.66997507581436924E-001 6 4 8 5 + -0.67373214306697031E-002 6 5 8 5 + -0.50419126177887311E-001 6 6 8 5 + -0.22278792476541403E-008 6 7 8 5 + 0.20965734153920550E-003 6 8 8 5 + -0.31544609379712547E-001 7 3 8 5 + -0.18637428797733231E-001 7 4 8 5 + 0.80971239443576287E-001 7 5 8 5 + -0.22278792089545466E-008 7 6 8 5 + -0.50418998951233106E-001 7 7 8 5 + -0.25197172706554723E-002 7 8 8 5 + 0.60344724918546019E-001 8 3 8 5 + 0.54409433398204331E-001 8 4 8 5 + 0.68671289069663174E-001 8 5 8 5 + 0.72682703304311185E-004 1 10 8 6 + -0.17794157709093139E-003 1 11 8 6 + 0.10263184482655447E-002 1 12 8 6 + -0.49676679430189508E-004 1 13 8 6 + 0.11773939568963561E-004 1 14 8 6 + 0.12915384966833096E-002 2 10 8 6 + -0.31619456017576678E-002 2 11 8 6 + 0.18237245143792352E-001 2 12 8 6 + -0.88275031598508810E-003 2 13 8 6 + 0.20916943216349159E-003 2 14 8 6 + -0.18299533206800157E-001 3 3 8 6 + 0.28659834290026983E-002 3 4 8 6 + -0.89438545524783402E-002 3 5 8 6 + -0.30769787439901544E-002 3 6 8 6 + 0.46968543939186861E-009 3 7 8 6 + 0.31245914677825557E-002 3 8 8 6 + 0.28659834290026965E-002 4 3 8 6 + 0.20044997931444698E-001 4 4 8 6 + 0.87364773840420303E-002 4 5 8 6 + -0.27743348017346078E-002 4 6 8 6 + 0.27054710103709374E-009 4 7 8 6 + -0.37959842879706847E-002 4 8 8 6 + -0.89438545524783385E-002 5 3 8 6 + 0.87364773840420303E-002 5 4 8 6 + -0.17454647246448454E-002 5 5 8 6 + -0.26694293387036203E-002 5 6 8 6 + -0.26345772550042444E-008 5 7 8 6 + 0.34353489247105408E-003 5 8 8 6 + -0.18778656890124713E-002 6 3 8 6 + -0.16931623787796658E-002 6 4 8 6 + -0.16291397675377379E-002 6 5 8 6 + -0.16324004518170889E-007 6 6 8 6 + -0.42994869327576200E-009 6 7 8 6 + 0.22121321673037556E-001 6 8 8 6 + 0.39718039574692793E-009 7 3 8 6 + 0.22878290431667589E-009 7 4 8 6 + -0.22278792264429083E-008 7 5 8 6 + -0.42994868216445958E-009 7 6 8 6 + 0.11416705441973680E-007 7 7 8 6 + 0.44773205442674793E-008 7 8 8 6 + 0.19069229058916283E-002 8 3 8 6 + -0.23166708007775726E-002 8 4 8 6 + 0.20965734153920331E-003 8 5 8 6 + 0.22121321673037559E-001 8 6 8 6 + 0.63763990081275204E-003 1 10 8 7 + -0.69689151737842929E-004 1 11 8 7 + -0.17399788994422467E-004 1 12 8 7 + 0.82507077957549835E-003 1 13 8 7 + 0.85730667366979930E-005 1 14 8 7 + 0.11330666536695275E-001 2 10 8 7 + -0.12384798856770367E-002 2 11 8 7 + -0.30911172561224346E-003 2 12 8 7 + 0.14663640612420014E-001 2 13 8 7 + 0.15243860321712661E-003 2 14 8 7 + -0.13173468716654854E-001 3 3 8 7 + -0.10266468098733265E-001 3 4 8 7 + 0.63759497462442380E-002 3 5 8 7 + 0.46968511913484914E-009 3 6 8 7 + -0.30769366598017559E-002 3 7 8 7 + 0.22492656335220871E-002 3 8 8 7 + -0.10266468098733264E-001 4 3 8 7 + -0.78038723250287659E-002 4 4 8 7 + 0.71467005263977290E-002 4 5 8 7 + 0.27054753603839306E-009 4 6 8 7 + -0.27742944400703053E-002 4 7 8 7 + 0.14777908848096187E-002 4 8 8 7 + 0.63759497462442388E-002 5 3 8 7 + 0.71467005263977298E-002 5 4 8 7 + 0.20977341041680881E-001 5 5 8 7 + -0.26345772797869155E-008 5 6 8 7 + -0.26692788869001616E-002 5 7 8 7 + -0.41287088581452459E-002 5 8 8 7 + 0.39718002829407792E-009 6 3 8 7 + 0.22878342765751305E-009 6 4 8 7 + -0.22278792932309781E-008 6 5 8 7 + -0.42994899729382924E-009 6 6 8 7 + 0.11416705458006515E-007 6 7 8 7 + 0.44773205414498184E-008 6 8 8 7 + -0.18778301013332346E-002 7 3 8 7 + -0.16931282477195804E-002 7 4 8 7 + -0.16290125408821158E-002 7 5 8 7 + 0.11416705458195780E-007 7 6 8 7 + -0.43257920255166334E-006 7 7 8 7 + 0.22120726405949573E-001 7 8 8 7 + 0.13726880503440631E-002 8 3 8 7 + 0.90186662176990973E-003 8 4 8 7 + -0.25197172706551913E-002 8 5 8 7 + 0.44773205436964683E-008 8 6 8 7 + 0.22120726405949562E-001 8 7 8 7 + 0.84283712188564708 1 1 8 8 + -0.48984494291222327E-001 1 2 8 8 + 0.42197858812375637E-001 1 9 8 8 + 0.84505598459968720E-003 1 10 8 8 + -0.11581456311767799E-004 1 11 8 8 + -0.10010160348493399E-003 1 12 8 8 + -0.66153287838727941E-003 1 13 8 8 + 0.54308497639209998E-003 1 14 8 8 + 0.15903504434053081E-001 2 1 8 8 + 0.53248915077379499 2 2 8 8 + -0.17152652675046592 2 9 8 8 + 0.15016298697244482E-001 2 10 8 8 + -0.20569586110615978E-003 2 11 8 8 + -0.17788734961664812E-002 2 12 8 8 + -0.11757034654049975E-001 2 13 8 8 + 0.96520911698868561E-002 2 14 8 8 + 0.52906403603943952 3 3 8 8 + 0.16247714593942666E-001 3 4 8 8 + 0.15633766436034185E-001 3 5 8 8 + 0.11356059593548623 3 6 8 8 + 0.81751801074224958E-001 3 7 8 8 + -0.11798380189564704 3 8 8 8 + 0.16247714593942648E-001 4 3 8 8 + 0.52569367864488659 4 4 8 8 + 0.14096077478993708E-001 4 5 8 8 + -0.13796177131425524 4 6 8 8 + 0.53712336019711281E-001 4 7 8 8 + -0.10637940643904907 4 8 8 8 + 0.15633766436034199E-001 5 3 8 8 + 0.14096077478993755E-001 5 4 8 8 + 0.52460681794268782 5 5 8 8 + 0.12485529688938533E-001 5 6 8 8 + -0.15005641932419087 5 7 8 8 + -0.10235689839062963 5 8 8 8 + 0.59016056190358074E-001 6 3 8 8 + -0.71697049513592362E-001 6 4 8 8 + 0.64885769974342899E-002 6 5 8 8 + 0.42597741723142463 6 6 8 8 + 0.44773204690521977E-008 6 7 8 8 + 0.49072990549349363E-008 6 8 8 8 + 0.42485375120293753E-001 7 3 8 8 + 0.27913615322213616E-001 7 4 8 8 + -0.77982471533371400E-001 7 5 8 8 + 0.44773205544247775E-008 7 6 8 8 + 0.42597682196433995 7 7 8 8 + 0.43300915008214459E-006 7 8 8 8 + -0.61872266738302928E-001 8 3 8 8 + -0.55786772092622519E-001 8 4 8 8 + -0.53677349562148188E-001 8 5 8 8 + 0.49072990486023773E-008 8 6 8 8 + 0.43300915073438691E-006 8 7 8 8 + 0.47021883649956214 8 8 8 8 + 0.16458785513417610E-002 1 3 8 9 + 0.14839966226909702E-002 1 4 8 9 + 0.14278810087657542E-002 1 5 8 9 + -0.18709592480827535E-002 1 8 8 9 + 0.53451112211775550E-001 2 3 8 9 + 0.48193877936306799E-001 2 4 8 9 + 0.46371482247205012E-001 2 5 8 9 + -0.17778322751956059E-001 2 8 8 9 + 0.25542486810755355E-001 3 1 8 9 + 0.60779307594483904E-001 3 2 8 9 + -0.66454364543258263E-002 3 9 8 9 + 0.88922272002069525E-002 3 10 8 9 + 0.64139489331134867E-002 3 11 8 9 + -0.32921569017304295E-001 3 12 8 9 + -0.35396376097080830E-001 3 13 8 9 + 0.15300398240366733E-001 3 14 8 9 + 0.23030231563190513E-001 4 1 8 9 + 0.54801301788749118E-001 4 2 8 9 + -0.59918183188470220E-002 4 9 8 9 + 0.15893814614722841E-001 4 10 8 9 + -0.57263572946303970E-002 4 11 8 9 + 0.34514006686641820E-001 4 12 8 9 + -0.30725567040765612E-001 4 13 8 9 + 0.14577529535380057E-001 4 14 8 9 + 0.22159370023987393E-001 5 1 8 9 + 0.52729054017590871E-001 5 2 8 9 + -0.57652446472163639E-002 5 9 8 9 + 0.46066621702846575E-001 5 10 8 9 + -0.24393448449633501E-002 5 11 8 9 + -0.65510059362878610E-002 5 12 8 9 + 0.15704795250415932E-001 5 13 8 9 + 0.14031904827855442E-001 5 14 8 9 + 0.24404578674567119E-003 6 10 8 9 + -0.59747398904043435E-003 6 11 8 9 + 0.34460690996742306E-002 6 12 8 9 + -0.16680557170273280E-003 6 13 8 9 + 0.39515355572221159E-004 6 14 8 9 + 0.21410310845423747E-002 7 10 8 9 + -0.23404463507796939E-003 7 11 8 9 + -0.58395370033030536E-004 7 12 8 9 + 0.27712607246573899E-002 7 13 8 9 + 0.28822457718169705E-004 7 14 8 9 + -0.44035799656073009E-001 8 1 8 9 + -0.80947549626010466E-002 8 2 8 9 + 0.82281635134619696E-001 8 9 8 9 + -0.38673858677767145E-003 1 3 8 10 + -0.69124771525623670E-003 1 4 8 10 + -0.20035023114184222E-002 1 5 8 10 + 0.12162036488708392E-003 1 6 8 10 + 0.10669714919310962E-002 1 7 8 10 + 0.14140388997265327E-002 1 8 8 10 + -0.13004467645006419E-002 2 3 8 10 + -0.23243769135157513E-002 2 4 8 10 + -0.67368883977244253E-002 2 5 8 10 + 0.11705900576501238E-002 2 6 8 10 + 0.10269582632937318E-001 2 7 8 10 + 0.13610069123987240E-001 2 8 8 10 + -0.26667582904917231E-002 3 1 8 10 + -0.13420335945384019E-002 3 2 8 10 + 0.36441979903843492E-002 3 9 8 10 + -0.18544351174504610E-002 3 10 8 10 + 0.42824342420285717E-003 3 11 8 10 + 0.63306894927152226E-003 3 12 8 10 + 0.56013495715156932E-004 3 13 8 10 + -0.25689919977243026E-003 3 14 8 10 + -0.47665179827789082E-002 4 1 8 10 + -0.23987100496574163E-002 4 2 8 10 + 0.65135732044764383E-002 4 9 8 10 + -0.19560025253747911E-002 4 10 8 10 + -0.28512724943681889E-003 4 11 8 10 + -0.64854367490931909E-003 4 12 8 10 + 0.49355251125269658E-004 4 13 8 10 + -0.24344337027113789E-003 4 14 8 10 + -0.13815272044064467E-001 5 1 8 10 + -0.69523422351819133E-002 5 2 8 10 + 0.18878919409541405E-001 5 9 8 10 + -0.17951214758894917E-002 5 10 8 10 + 0.42962103982401926E-004 5 11 8 10 + 0.19698707481810867E-004 5 12 8 10 + 0.15040882175775916E-004 5 13 8 10 + -0.11160022114642082E-002 5 14 8 10 + 0.11548057770168396E-002 6 1 8 10 + 0.15794610355383285E-002 6 2 8 10 + 0.24404578674563099E-003 6 9 8 10 + 0.13641515108855941E-002 6 10 8 10 + 0.49731861937229137E-002 6 11 8 10 + 0.95067616514209943E-002 6 12 8 10 + -0.12740494166499543E-003 6 13 8 10 + -0.80303801647619829E-003 6 14 8 10 + 0.10131134468453481E-001 7 1 8 10 + 0.13856605569009195E-001 7 2 8 10 + 0.21410310845426149E-002 7 9 8 10 + 0.47046819618420520E-003 7 10 8 10 + 0.51429757652478097E-003 7 11 8 10 + 0.60136436605977425E-003 7 12 8 10 + 0.75619915864976409E-002 7 13 8 10 + 0.52346364612281199E-002 7 14 8 10 + 0.13426561538100974E-001 8 1 8 10 + 0.18363878423745369E-001 8 2 8 10 + 0.28374482470500091E-002 8 9 8 10 + 0.17723081699234419E-001 8 10 8 10 + -0.27894267126618089E-003 1 3 8 11 + 0.24905576781285836E-003 1 4 8 11 + 0.10608637094839218E-003 1 5 8 11 + -0.29775087731947477E-003 1 6 8 11 + -0.11661849870907260E-003 1 7 8 11 + -0.19373882007986177E-004 1 8 8 11 + -0.93791173254568257E-003 2 3 8 11 + 0.83750931432596744E-003 2 4 8 11 + 0.35669883541864032E-003 2 5 8 11 + -0.28658393654783197E-002 2 6 8 11 + -0.11224955530619628E-002 2 7 8 11 + -0.18643659178395214E-003 2 8 8 11 + -0.19235278012709985E-002 3 1 8 11 + -0.96791611281528043E-003 3 2 8 11 + 0.26285343572992016E-002 3 9 8 11 + 0.42238148684830911E-003 3 10 8 11 + -0.94183443992199066E-003 3 11 8 11 + 0.63137889045035097E-003 3 12 8 11 + 0.61804856216884365E-003 3 13 8 11 + 0.61385381951927181E-004 3 14 8 11 + 0.17173215947110995E-002 4 1 8 11 + 0.86428562547129922E-003 4 2 8 11 + -0.23467776297227010E-002 4 9 8 11 + -0.27811415046039635E-003 4 10 8 11 + -0.64177726594040333E-003 4 11 8 11 + 0.53305395425169949E-003 4 12 8 11 + -0.67125371027809168E-003 4 13 8 11 + -0.10720270914390844E-003 4 14 8 11 + 0.73155359085624112E-003 5 1 8 11 + 0.36811058696112548E-003 5 2 8 11 + -0.99967950920560916E-003 5 9 8 11 + 0.42430265665842568E-004 5 10 8 11 + -0.31508721040523634E-003 5 11 8 11 + -0.63714686571673994E-003 5 12 8 11 + 0.13152453661579428E-003 5 13 8 11 + 0.72938158757573723E-004 5 14 8 11 + -0.28271976713233494E-002 6 1 8 11 + -0.38668375286035213E-002 6 2 8 11 + -0.59747398904057248E-003 6 9 8 11 + 0.15192574012469415E-002 6 10 8 11 + -0.82752829555265137E-003 6 11 8 11 + -0.35185597295670287E-003 6 12 8 11 + 0.27732976303565049E-002 6 13 8 11 + 0.18717096288973563E-002 6 14 8 11 + -0.11073981644274815E-002 7 1 8 11 + -0.15145666915035564E-002 7 2 8 11 + -0.23404463507799479E-003 7 9 8 11 + 0.46620270798064636E-003 7 10 8 11 + -0.23756509801969210E-002 7 11 8 11 + 0.27885779482873505E-002 7 12 8 11 + -0.48877219529204507E-003 7 13 8 11 + -0.48925920544066234E-003 7 14 8 11 + -0.18389395376406344E-003 8 1 8 11 + -0.25155714125789402E-003 8 2 8 11 + -0.38849303540713513E-004 8 9 8 11 + -0.86325749622813864E-003 8 10 8 11 + 0.37200254841141976E-002 8 11 8 11 + 0.14318011785557831E-002 1 3 8 12 + -0.15010735645156039E-002 1 4 8 12 + 0.28491351142515356E-003 1 5 8 12 + 0.17173461096263599E-002 1 6 8 12 + -0.29111163608918988E-004 1 7 8 12 + -0.16750665246895258E-003 1 8 8 12 + 0.48144884288661913E-002 2 3 8 12 + -0.50475017225828809E-002 2 4 8 12 + 0.95804314149129091E-003 2 5 8 12 + 0.16529384431529598E-001 2 6 8 12 + -0.28016697144723883E-003 2 7 8 12 + -0.16122837847641249E-002 2 8 8 12 + 0.98731012813291202E-002 3 1 8 12 + 0.49684657684773183E-002 3 2 8 12 + -0.13491835981502619E-001 3 9 8 12 + 0.62080623631594924E-003 3 10 8 12 + 0.64051307394278581E-003 3 11 8 12 + -0.18948698997845095E-002 3 12 8 12 + -0.28832449204460890E-003 3 13 8 12 + -0.39531119003761051E-003 3 14 8 12 + -0.10350670402280365E-001 4 1 8 12 + -0.52089163818624966E-002 4 2 8 12 + 0.14144471538967918E-001 4 9 8 12 + -0.63403541186388276E-003 4 10 8 12 + 0.53912399941294809E-003 4 11 8 12 + -0.15110771950766050E-002 4 12 8 12 + 0.35819827174679201E-003 4 13 8 12 + 0.55206920281431935E-003 4 14 8 12 + 0.19646314038426469E-002 5 1 8 12 + 0.98868151096043774E-003 5 2 8 12 + -0.26847203381896887E-002 5 9 8 12 + 0.18755267260056817E-004 5 10 8 12 + -0.65398418907368285E-003 5 11 8 12 + -0.19885446568261318E-002 5 12 8 12 + -0.42766515569550875E-004 5 13 8 12 + 0.33604799359005243E-004 5 14 8 12 + 0.16306511303730134E-001 6 1 8 12 + 0.22302870383101043E-001 6 2 8 12 + 0.34460690996739370E-002 6 9 8 12 + 0.23330533932805013E-002 6 10 8 12 + -0.37372435090123198E-003 6 11 8 12 + -0.11675861482689019E-002 6 12 8 12 + -0.10615937617657726E-002 6 13 8 12 + -0.10563672415266883E-001 6 14 8 12 + -0.27636804947167668E-003 7 1 8 12 + -0.37802603546806848E-003 7 2 8 12 + -0.58395370033037007E-004 7 9 8 12 + 0.42953028056979289E-003 7 10 8 12 + 0.10369684280716284E-001 7 11 8 12 + 0.23065238853915856E-002 7 12 8 12 + -0.37669546028643876E-003 7 13 8 12 + -0.38930212880702544E-003 7 14 8 12 + -0.15905758975720474E-002 8 1 8 12 + -0.21754313795150576E-002 8 2 8 12 + -0.33615205082979186E-003 8 9 8 12 + -0.27111863703327161E-003 8 10 8 12 + -0.23169181119569514E-002 8 11 8 12 + 0.16922048492174047E-001 8 12 8 12 + 0.15392613311029889E-002 1 3 8 13 + 0.13361586448088084E-002 1 4 8 13 + -0.68294143043897651E-003 1 5 8 13 + -0.83125244250112175E-004 1 6 8 13 + 0.13807299459142478E-002 1 7 8 13 + -0.11070482740589166E-002 1 8 8 13 + 0.51748979974317409E-002 2 3 8 13 + 0.44921554487119507E-002 2 4 8 13 + -0.22959851842004266E-002 2 5 8 13 + -0.80008294682811811E-003 2 6 8 13 + 0.13290351311637664E-001 2 7 8 13 + -0.10655960750476909E-001 2 8 8 13 + 0.10615281048116855E-001 3 1 8 13 + 0.53405709205848525E-002 3 2 8 13 + -0.14505753272365370E-001 3 9 8 13 + 0.38243028829602584E-004 3 10 8 13 + 0.63012102601787382E-003 3 11 8 13 + -0.29405347562856123E-003 3 12 8 13 + -0.19747312307475478E-002 3 13 8 13 + 0.86944666111784044E-003 3 14 8 13 + 0.92145183093126914E-002 4 1 8 13 + 0.46359568021763975E-002 4 2 8 13 + -0.12591638299405935E-001 4 9 8 13 + 0.36925411982917185E-004 4 10 8 13 + -0.68456453724868535E-003 4 11 8 13 + 0.36724995588761829E-003 4 12 8 13 + -0.19200853234099561E-002 4 13 8 13 + 0.66813553558536885E-003 4 14 8 13 + -0.47098270164236235E-002 5 1 8 13 + -0.23694941773245159E-002 5 2 8 13 + 0.64359597895552604E-002 5 9 8 13 + 0.48442891618207971E-004 5 10 8 13 + 0.13144280760930211E-003 5 11 8 13 + -0.45570270103236610E-004 5 12 8 13 + -0.16678893245840019E-002 5 13 8 13 + -0.43667692912371573E-003 5 14 8 13 + -0.78929980535580974E-003 6 1 8 13 + -0.10795407479255485E-002 6 2 8 13 + -0.16680557170275305E-003 6 9 8 13 + 0.11235223150744760E-003 6 10 8 13 + 0.95239395086896411E-002 6 11 8 13 + -0.51344456819223611E-002 6 12 8 13 + 0.73377407565744762E-003 6 13 8 13 + 0.23793486327442471E-003 6 14 8 13 + 0.13111854808605845E-001 7 1 8 13 + 0.17932467676278995E-001 7 2 8 13 + 0.27712607246576280E-002 7 9 8 13 + -0.74569157218512695E-002 7 10 8 13 + 0.10968500829323780E-003 7 11 8 13 + 0.54664195764762445E-003 7 12 8 13 + -0.53041752096357928E-003 7 13 8 13 + 0.66988081601931666E-002 7 14 8 13 + -0.10512813015544334E-001 8 1 8 13 + -0.14377925723871841E-001 8 2 8 13 + -0.22219244842066935E-002 8 9 8 13 + -0.46976510646894632E-003 8 10 8 13 + -0.52718489459272107E-003 8 11 8 13 + 0.11457535128017555E-004 8 12 8 13 + 0.17660526104954923E-001 8 13 8 13 + -0.66535493718788258E-003 1 3 8 14 + -0.63392868260371137E-003 1 4 8 14 + -0.61018938887545139E-003 1 5 8 14 + 0.19698818766845196E-004 1 6 8 14 + 0.14350672593478906E-004 1 7 8 14 + 0.90883919553618690E-003 1 8 8 14 + -0.22368566431184666E-002 2 3 8 14 + -0.21312505613695727E-002 2 4 8 14 + -0.20513756810158572E-002 2 5 8 14 + 0.18958304155514987E-003 2 6 8 14 + 0.13815980471357979E-003 2 7 8 14 + 0.87481446114365483E-002 2 8 8 14 + -0.45885493680077900E-002 3 1 8 14 + -0.23084733572565383E-002 3 2 8 14 + 0.62702329980182754E-002 3 9 8 14 + -0.25608479591567870E-003 3 10 8 14 + 0.57991258560229855E-004 3 11 8 14 + -0.37419334185063416E-003 3 12 8 14 + 0.86804036322222871E-003 3 13 8 14 + -0.10123587640561331E-002 3 14 8 14 + -0.43717633833715019E-002 4 1 8 14 + -0.21994777869124610E-002 4 2 8 14 + 0.59740101632827017E-002 4 9 8 14 + -0.24579377222440845E-003 4 10 8 14 + -0.10282197040777078E-003 4 11 8 14 + 0.52689471180346423E-003 4 12 8 14 + 0.66847414658318749E-003 4 13 8 14 + -0.89408768270082058E-003 4 14 8 14 + -0.42081313208881688E-002 5 1 8 14 + -0.21170575317092594E-002 5 2 8 14 + 0.57503871659147282E-002 5 9 8 14 + -0.11145022297057716E-002 5 10 8 14 + 0.72297764440233339E-004 5 11 8 14 + 0.35427133873128388E-004 5 12 8 14 + -0.43540772789992785E-003 5 13 8 14 + -0.89460096200481257E-003 5 14 8 14 + 0.18701306303847218E-003 6 1 8 14 + 0.25580217350938542E-003 6 2 8 14 + 0.39515355572212906E-004 6 9 8 14 + 0.11393809781454548E-003 6 10 8 14 + -0.22950712649303214E-003 6 11 8 14 + 0.18476652971858706E-002 6 12 8 14 + -0.16337521686623068E-003 6 13 8 14 + -0.10281114272152015E-003 6 14 8 14 + 0.13632494334933065E-003 7 1 8 14 + 0.18641632190648445E-003 7 2 8 14 + 0.28822457718042602E-004 7 9 8 14 + 0.46344506198287110E-002 7 10 8 14 + -0.37563475698667578E-003 7 11 8 14 + -0.17700310873644225E-003 7 12 8 14 + 0.60940125726012019E-002 7 13 8 14 + 0.12907641958448922E-003 7 14 8 14 + 0.86306714166252876E-002 8 1 8 14 + 0.11803737131733386E-001 8 2 8 14 + 0.18241473177407063E-002 8 9 8 14 + 0.59823127872944797E-002 8 10 8 14 + -0.11547922731018367E-003 8 11 8 14 + -0.54564157551321025E-003 8 12 8 14 + -0.45359083124487127E-002 8 13 8 14 + 0.70442325332672820E-002 8 14 8 14 + 0.43227098122393054 1 1 9 1 + -0.55281883420107397E-001 1 2 9 1 + 0.50257807552125333E-001 1 9 9 1 + -0.81588714316162742E-001 2 1 9 1 + -0.90074311558179139E-002 2 2 9 1 + -0.23427876797490706E-001 2 9 9 1 + -0.13804690311975048E-001 3 3 9 1 + 0.14254374645361525E-001 3 6 9 1 + 0.10261679883205697E-001 3 7 9 1 + -0.14037154026763263E-001 3 8 9 1 + -0.13804690311974926E-001 4 4 9 1 + -0.17317263532670990E-001 4 6 9 1 + 0.67421017210074242E-002 4 7 9 1 + -0.12656516576467679E-001 4 8 9 1 + -0.13804690311975098E-001 5 5 9 1 + 0.15672111971552264E-002 5 6 9 1 + -0.18835417544747577E-001 5 7 9 1 + -0.12177925057468309E-001 5 8 9 1 + 0.15704712097425709E-001 6 3 9 1 + -0.19079240223586036E-001 6 4 9 1 + 0.17266699704145778E-002 6 5 9 1 + -0.12742660222099193E-001 6 6 9 1 + 0.11305773294946484E-001 7 3 9 1 + 0.74280892072971479E-002 7 4 9 1 + -0.20751861595788689E-001 7 5 9 1 + -0.12742660222098535E-001 7 7 9 1 + -0.15465389969196044E-001 8 3 9 1 + -0.13944277033184398E-001 8 4 9 1 + -0.13416990343648688E-001 8 5 9 1 + -0.12742660222099005E-001 8 8 9 1 + 0.72361035032532064E-001 9 1 9 1 + -0.41373019531608490 1 1 9 2 + 0.84904358870787960E-003 1 2 9 2 + -0.30522081768477084E-003 1 9 9 2 + 0.29573013245925185E-001 2 1 9 2 + -0.13657247941924211 2 2 9 2 + 0.84348707403915660E-001 2 9 9 2 + -0.12983114407510823 3 3 9 2 + -0.66586770800549006E-001 3 6 9 2 + -0.47935608780563826E-001 3 7 9 2 + 0.65572063392920585E-001 3 8 9 2 + -0.12983114407510662 4 4 9 2 + 0.80894510382319415E-001 4 6 9 2 + -0.31494526640409727E-001 4 7 9 2 + 0.59122661595318371E-001 4 8 9 2 + -0.12983114407510779 5 5 9 2 + -0.73209478056611259E-002 5 6 9 2 + 0.87986296290653340E-001 5 7 9 2 + 0.56887006606899958E-001 5 8 9 2 + -0.10654550747703659 6 3 9 2 + 0.12943932491646676 6 4 9 2 + -0.11714250290098573E-001 6 5 9 2 + -0.64483857224415755E-001 6 6 9 2 + -0.76701778781915628E-001 7 3 9 2 + -0.50394399417606338E-001 7 4 9 2 + 0.14078689320124194 7 5 9 2 + -0.64483857224418073E-001 7 7 9 2 + 0.10492187391759683 8 3 9 2 + 0.94602184598120947E-001 8 4 9 2 + 0.91024912530098631E-001 8 5 9 2 + -0.64483857224416352E-001 8 8 9 2 + -0.24124990798418872E-001 9 1 9 2 + 0.16503227202052087 9 2 9 2 + -0.65014429533247573E-002 1 3 9 3 + -0.35737078982555561E-002 1 6 9 3 + -0.25727011784355382E-002 1 7 9 3 + 0.35192486140244363E-002 1 8 9 3 + -0.23264902818083539E-001 2 3 9 3 + -0.21668314856255828E-001 2 6 9 3 + -0.15598952335363616E-001 2 7 9 3 + 0.21338114137237147E-001 2 8 9 3 + -0.27878101395871567E-001 3 1 9 3 + -0.22332077821479182E-001 3 2 9 3 + 0.39444248880368654E-001 3 9 9 3 + 0.25121093524082725E-002 3 10 9 3 + -0.82646218204172704E-002 3 11 9 3 + 0.77215234276414831E-002 3 12 9 3 + 0.56331203204648727E-002 3 13 9 3 + 0.17555533527342376E-002 3 14 9 3 + 0.80327802581657603E-003 4 10 9 3 + 0.15216952723937970E-002 4 11 9 3 + -0.82084470890643718E-003 4 12 9 3 + 0.59221473965680093E-002 4 13 9 3 + -0.93832421093806451E-002 4 14 9 3 + -0.75187225782075351E-002 5 10 9 3 + 0.52126353152243069E-002 5 11 9 3 + 0.59776014391707500E-002 5 12 9 3 + 0.24283232807731652E-002 5 13 9 3 + 0.12116116633507587E-002 5 14 9 3 + -0.19965265755627976E-001 6 1 9 3 + -0.29808840067924964E-001 6 2 9 3 + -0.50497843954304053E-003 6 9 9 3 + 0.10117556580925900E-002 6 10 9 3 + -0.13601749174132842E-001 6 11 9 3 + 0.13367543199536943E-001 6 12 9 3 + -0.18457784486798575E-002 6 13 9 3 + 0.18947876849055505E-001 6 14 9 3 + -0.14372932595401906E-001 7 1 9 3 + -0.21459291065165205E-001 7 2 9 3 + -0.36353240485328584E-003 7 9 9 3 + 0.17284834984967159E-001 7 10 9 3 + -0.17276797028795556E-001 7 11 9 3 + -0.38896608379747660E-002 7 12 9 3 + 0.52013765982920944E-002 7 13 9 3 + -0.68091051188767212E-002 7 14 9 3 + 0.19661017587201460E-001 8 1 9 3 + 0.29354586911237959E-001 8 2 9 3 + 0.49728313675033225E-003 8 9 9 3 + 0.46142177055493797E-002 8 10 9 3 + 0.33281563963660798E-002 8 11 9 3 + -0.17083054355651092E-001 8 12 9 3 + -0.18366142308627112E-001 8 13 9 3 + 0.79389000157785317E-002 8 14 9 3 + 0.51321517309789684E-001 9 3 9 3 + -0.65014429533246185E-002 1 4 9 4 + 0.43416034026449273E-002 1 6 9 4 + -0.16903093099947082E-002 1 7 9 4 + 0.31731096157518175E-002 1 8 9 4 + -0.23264902818083182E-001 2 4 9 4 + 0.26324263814461558E-001 2 6 9 4 + -0.10248782322501558E-001 2 7 9 4 + 0.19239383907421147E-001 2 8 9 4 + 0.80327802581658296E-003 3 10 9 4 + 0.15216952723938210E-002 3 11 9 4 + -0.82084470890643935E-003 3 12 9 4 + 0.59221473965680007E-002 3 13 9 4 + -0.93832421093806521E-002 3 14 9 4 + -0.27878101395871126E-001 4 1 9 4 + -0.22332077821478835E-001 4 2 9 4 + 0.39444248880368252E-001 4 9 9 4 + 0.21477335570810487E-003 4 10 9 4 + 0.67045922232373675E-002 4 11 9 4 + -0.86148585492105013E-002 4 12 9 4 + 0.49813437447464998E-002 4 13 9 4 + 0.50021954709615650E-002 4 14 9 4 + -0.79201247347224085E-002 5 10 9 4 + -0.62824686685940580E-002 5 11 9 4 + -0.48039372858087155E-002 5 12 9 4 + 0.10837425530526956E-002 5 13 9 4 + -0.59204577078788743E-003 5 14 9 4 + 0.24255274411671756E-001 6 1 9 4 + 0.36213973036514233E-001 6 2 9 4 + 0.61348497801197335E-003 6 9 9 4 + -0.46836434007093862E-003 6 10 9 4 + -0.10428206596870849E-001 6 11 9 4 + 0.12998427584234281E-001 6 12 9 4 + -0.14708579198400300E-004 6 13 9 4 + -0.22137977707275058E-001 6 14 9 4 + -0.94432660821915284E-002 7 1 9 4 + -0.14099126543484873E-001 7 2 9 4 + -0.23884709719060890E-003 7 9 9 4 + 0.15890288354643834E-001 7 10 9 4 + 0.17918782629414539E-001 7 11 9 4 + 0.23984111349275739E-002 7 12 9 4 + 0.73967575347678753E-002 7 13 9 4 + -0.51427740254152534E-002 7 14 9 4 + 0.17727239761578441E-001 8 1 9 4 + 0.26467388982773163E-001 8 2 9 4 + 0.44837238741406041E-003 8 9 9 4 + 0.82473596779419726E-002 8 10 9 4 + -0.29714739728883745E-002 8 11 9 4 + 0.17909469410501679E-001 8 12 9 4 + -0.15942685368045998E-001 8 13 9 4 + 0.75638798773409767E-002 8 14 9 4 + 0.51321517309789080E-001 9 4 9 4 + -0.65014429533247469E-002 1 5 9 5 + -0.39291481898372184E-003 1 6 9 5 + 0.47222191166773697E-002 1 7 9 5 + 0.30531221498658278E-002 1 8 9 5 + -0.23264902818083286E-001 2 5 9 5 + -0.23823441231958864E-002 2 6 9 5 + 0.28632035284791971E-001 2 7 9 5 + 0.18511868882790886E-001 2 8 9 5 + -0.75187225782074995E-002 3 10 9 5 + 0.52126353152242748E-002 3 11 9 5 + 0.59776014391707362E-002 3 12 9 5 + 0.24283232807731790E-002 3 13 9 5 + 0.12116116633507676E-002 3 14 9 5 + -0.79201247347224762E-002 4 10 9 5 + -0.62824686685940814E-002 4 11 9 5 + -0.48039372858087103E-002 4 12 9 5 + 0.10837425530526887E-002 4 13 9 5 + -0.59204577078789458E-003 4 14 9 5 + -0.27878101395871331E-001 5 1 9 5 + -0.22332077821478918E-001 5 2 9 5 + 0.39444248880368626E-001 5 9 9 5 + -0.27268827081164122E-002 5 10 9 5 + 0.15600295971798081E-002 5 11 9 5 + 0.89333512156927286E-003 5 12 9 5 + -0.10614464065211326E-001 5 13 9 5 + -0.67577488236957193E-002 5 14 9 5 + -0.21951007199451341E-002 6 1 9 5 + -0.32773621495814712E-002 6 2 9 5 + -0.55520349679503042E-004 6 9 9 5 + 0.25711983611195754E-002 6 10 9 5 + 0.18558148193789446E-001 6 11 9 5 + 0.16983325397700345E-001 6 12 9 5 + -0.78910208990615830E-004 6 13 9 5 + 0.16937758649700706E-002 6 14 9 5 + 0.26381663612403652E-001 7 1 9 5 + 0.39388746484692018E-001 7 2 9 5 + 0.66726741765424336E-003 7 9 9 5 + -0.79205946179717393E-002 7 10 9 5 + -0.18255849080071774E-002 7 11 9 5 + 0.12128202473256219E-002 7 12 9 5 + 0.23223150333101281E-001 7 13 9 5 + 0.13577197357502983E-001 7 14 9 5 + 0.17056904716868389E-001 8 1 9 5 + 0.25466555315730739E-001 8 2 9 5 + 0.43141770476706596E-003 8 9 9 5 + 0.23904080869078873E-001 8 10 9 5 + -0.12657554305830943E-002 8 11 9 5 + -0.33993392748592065E-002 8 12 9 5 + 0.81487343343783162E-002 8 13 9 5 + 0.72806948754789574E-002 8 14 9 5 + 0.51321517309789622E-001 9 5 9 5 + -0.16055031592912003E-002 1 3 9 6 + 0.19504834132469250E-002 1 4 9 6 + -0.17651861908431001E-003 1 5 9 6 + -0.16776021428255056E-002 1 6 9 6 + -0.54176279395236525E-001 2 3 9 6 + 0.65817331931303819E-001 2 4 9 6 + -0.59564641593066415E-002 2 5 9 6 + -0.20541309102685958E-001 2 6 9 6 + -0.25871904043236468E-001 3 1 9 6 + -0.61617876335782529E-001 3 2 9 6 + 0.88129721347570029E-002 3 9 9 6 + 0.19464961214384531E-002 3 10 9 6 + -0.26167331296871429E-001 3 11 9 6 + 0.25716715802599297E-001 3 12 9 6 + -0.35510041429917512E-002 3 13 9 6 + 0.36453895099491471E-001 3 14 9 6 + 0.31431093369956559E-001 4 1 9 6 + 0.74857931643988324E-001 4 2 9 6 + -0.10706647240630338E-001 4 9 9 6 + -0.90112062900855427E-003 4 10 9 6 + -0.20062011779505423E-001 4 11 9 6 + 0.25006712201277047E-001 4 12 9 6 + -0.28217333635847707E-004 4 13 9 6 + -0.42591414570990388E-001 4 14 9 6 + -0.28445118580828531E-002 5 1 9 6 + -0.67746378316069396E-002 5 2 9 6 + 0.96895086269557416E-003 5 9 9 6 + 0.49465293521708097E-002 5 10 9 6 + 0.35702563631887445E-001 5 11 9 6 + 0.32672879243338837E-001 5 12 9 6 + -0.15184834714077075E-003 5 13 9 6 + 0.32586310378533256E-002 5 14 9 6 + -0.43842442550815389E-001 6 1 9 6 + -0.10857741313330877E-001 6 2 9 6 + 0.79186746070629532E-001 6 9 9 6 + -0.97185569333320084E-004 6 10 9 6 + -0.57755043501621134E-004 6 11 9 6 + 0.29041931838366589E-004 6 12 9 6 + 0.95786093625045793E-004 6 13 9 6 + -0.24006083241021026E-002 6 14 9 6 + 0.15072925847050525E-003 7 10 9 6 + 0.20464395306327094E-002 7 11 9 6 + 0.34779915390674828E-003 7 12 9 6 + 0.64205548599222757E-004 7 13 9 6 + -0.48581078127254545E-004 7 14 9 6 + 0.14480762719338709E-003 8 10 9 6 + -0.35451881446617718E-003 8 11 9 6 + 0.20447692286131025E-002 8 12 9 6 + -0.98976672689840770E-004 8 13 9 6 + 0.23445634424426212E-004 8 14 9 6 + 0.15597211663737742E-002 9 3 9 6 + -0.18948640784019564E-002 9 4 9 6 + 0.17148507298264798E-003 9 5 9 6 + 0.76091857006639466E-001 9 6 9 6 + -0.11557967207972081E-002 1 3 9 7 + -0.75937849836602716E-003 1 4 9 7 + 0.21214766082006853E-002 1 5 9 7 + -0.16776021428255039E-002 1 7 9 7 + -0.39001334695376567E-001 2 3 9 7 + -0.25624553558879923E-001 2 4 9 7 + 0.71587345556561557E-001 2 5 9 7 + -0.20541309102687023E-001 2 7 9 7 + -0.18625103090517056E-001 3 1 9 7 + -0.44358517141017947E-001 3 2 9 7 + 0.63444311740410578E-002 3 9 9 7 + 0.33252930449773066E-001 3 10 9 7 + -0.33237500423809532E-001 3 11 9 7 + -0.74829799425061754E-002 3 12 9 7 + 0.10007066311312814E-001 3 13 9 7 + -0.13100010176730051E-001 3 14 9 7 + -0.12237015871643869E-001 4 1 9 7 + -0.29144315371526366E-001 4 2 9 7 + 0.41684013557391347E-002 4 9 9 7 + 0.30570077726753384E-001 4 10 9 7 + 0.34472504654308261E-001 4 11 9 7 + 0.46141446382645199E-002 4 12 9 7 + 0.14230625992000782E-001 4 13 9 7 + -0.98941651728027390E-002 4 14 9 7 + 0.34186565700416519E-001 5 1 9 7 + 0.81420508291659935E-001 5 2 9 7 + -0.11645267793097566E-001 5 9 9 7 + -0.15237709581959150E-001 5 10 9 7 + -0.35122028862785647E-002 5 11 9 7 + 0.23332770304083511E-002 5 12 9 7 + 0.44679136718725546E-001 5 13 9 7 + 0.26121216823710786E-001 5 14 9 7 + 0.15072925847052154E-003 6 10 9 7 + 0.20464395306331522E-002 6 11 9 7 + 0.34779915390676806E-003 6 12 9 7 + 0.64205548599257926E-004 6 13 9 7 + -0.48581078127255338E-004 6 14 9 7 + -0.43842442550815840E-001 7 1 9 7 + -0.10857741313332250E-001 7 2 9 7 + 0.79186746070629241E-001 7 9 9 7 + -0.15864509777003930E-002 7 10 9 7 + 0.80804032164679172E-004 7 11 9 7 + 0.17042116646166075E-003 7 12 9 7 + 0.12226718113130558E-002 7 13 9 7 + 0.13181812952094123E-002 7 14 9 7 + 0.12704102316401617E-002 8 10 9 7 + -0.13887697062021500E-003 8 11 9 7 + -0.34647613493155232E-004 8 12 9 7 + 0.16444299541118145E-002 8 13 9 7 + 0.17104839412032902E-004 8 14 9 7 + 0.11228384067764779E-002 9 3 9 7 + 0.73772431423542440E-003 9 4 9 7 + -0.20609812884070070E-002 9 5 9 7 + 0.76091857006639133E-001 9 7 9 7 + 0.15810370990046580E-002 1 3 9 8 + 0.14255327122158028E-002 1 4 9 8 + 0.13716278433681896E-002 1 5 9 8 + -0.16776021428253933E-002 1 8 9 8 + 0.53350693901914562E-001 2 3 9 8 + 0.48103336363498436E-001 2 4 9 8 + 0.46284364399131715E-001 2 5 9 8 + -0.20541309102686311E-001 2 8 9 8 + 0.25477645358418250E-001 3 1 9 8 + 0.60678889284622908E-001 3 2 9 8 + -0.86786723631829838E-002 3 9 9 8 + 0.88769126442031342E-002 3 10 9 8 + 0.64028642523675395E-002 3 11 9 8 + -0.32864816591383073E-001 3 12 9 8 + -0.35334769746910445E-001 3 13 9 8 + 0.15273753151909090E-001 3 14 9 8 + 0.22971767652715348E-001 4 1 9 8 + 0.54710760215940762E-001 4 2 9 8 + -0.78250734028374007E-002 4 9 9 8 + 0.15866434099177040E-001 4 10 9 8 + -0.57165170386544919E-002 4 11 9 8 + 0.34454561044350428E-001 4 12 9 8 + -0.30672137937197638E-001 4 13 9 8 + 0.14552172275438242E-001 4 14 9 8 + 0.22103116858589830E-001 5 1 9 8 + 0.52641936169517574E-001 5 2 9 8 + -0.75291773129838651E-002 5 9 9 8 + 0.45987229283088821E-001 5 10 9 8 + -0.24351265811777640E-002 5 11 9 8 + -0.65397192704557379E-002 5 12 9 8 + 0.15677448772120319E-001 5 13 9 8 + 0.14007456184183040E-001 5 14 9 8 + 0.14480762719342122E-003 6 10 9 8 + -0.35451881446604865E-003 6 11 9 8 + 0.20447692286133718E-002 6 12 9 8 + -0.98976672689822705E-004 6 13 9 8 + 0.23445634424432785E-004 6 14 9 8 + 0.12704102316399310E-002 7 10 9 8 + -0.13887697062019104E-003 7 11 9 8 + -0.34647613493146613E-004 7 12 9 8 + 0.16444299541116148E-002 7 13 9 8 + 0.17104839412138456E-004 7 14 9 8 + -0.43842442550815652E-001 8 1 9 8 + -0.10857741313331301E-001 8 2 9 8 + 0.79186746070629602E-001 8 9 9 8 + 0.16836365470340898E-002 8 10 9 8 + -0.23048988663077980E-004 8 11 9 8 + -0.19946309830003148E-003 8 12 9 8 + -0.13184579049381280E-002 8 13 9 8 + 0.10824270288921462E-002 8 14 9 8 + -0.15359527721068044E-002 9 3 9 8 + -0.13848826965763010E-002 9 4 9 8 + -0.13325149610003537E-002 9 5 9 8 + 0.76091857006639493E-001 9 8 9 8 + 0.80291153489896516 1 1 9 9 + -0.50023967900116956E-001 1 2 9 9 + 0.43516312505099089E-001 1 9 9 9 + 0.18657238561829662E-001 2 1 9 9 + 0.54187838520557663 2 2 9 9 + -0.16350095498806505 2 9 9 9 + 0.53235645027197587 3 3 9 9 + 0.10906212027966528 3 6 9 9 + 0.78513480495465943E-001 3 7 9 9 + -0.10740013637492096 3 8 9 9 + 0.53235645027196332 4 4 9 9 + -0.13249669138795880 4 6 9 9 + 0.51584718876009648E-001 4 7 9 9 + -0.96836695226996061E-001 4 8 9 9 + 0.53235645027197298 5 5 9 9 + 0.11990941752285794E-001 5 6 9 9 + -0.14411229007871681 5 7 9 9 + -0.93174927726946424E-001 5 8 9 9 + 0.55822605454585505E-001 6 3 9 9 + -0.67817410008367593E-001 6 4 9 9 + 0.61374710921662428E-002 6 5 9 9 + 0.44089494915745697 6 6 9 9 + 0.40186519694703667E-001 7 3 9 9 + 0.26403240666119935E-001 7 4 9 9 + -0.73762764648187540E-001 7 5 9 9 + 0.44089494915745658 7 7 9 9 + -0.54971931805948324E-001 8 3 9 9 + -0.49565115892859939E-001 8 4 9 9 + -0.47690868428227139E-001 8 5 9 9 + 0.44089494915746186 8 8 9 9 + -0.15758072853215579E-001 9 1 9 9 + -0.60165061222494612E-001 9 2 9 9 + 0.44694824233871827 9 9 9 9 + -0.99618890327929388E-003 1 10 9 10 + -0.44892627291474625E-009 1 11 9 10 + 0.84947778975798561E-008 1 13 9 10 + 0.11417216089784688E-007 1 14 9 10 + -0.14142747336608153E-002 2 10 9 10 + -0.68314656717848003E-008 2 11 9 10 + -0.11753509091411384E-008 2 12 9 10 + 0.12926796047341029E-006 2 13 9 10 + 0.17373970878466707E-006 2 14 9 10 + 0.41194492690150165E-003 3 3 9 10 + 0.13177155392352278E-003 3 4 9 10 + -0.12330911782150477E-002 3 5 9 10 + 0.49456439478763028E-003 3 6 9 10 + 0.84494206092329271E-002 3 7 9 10 + 0.22555926653698754E-002 3 8 9 10 + 0.13177155392352338E-003 4 3 9 10 + 0.35165875195510485E-004 4 4 9 10 + -0.12989059610948755E-002 4 5 9 10 + -0.22893267028023260E-003 4 6 9 10 + 0.77677168122086884E-002 4 7 9 10 + 0.40315954272529689E-002 4 8 9 10 + -0.12330911782150455E-002 5 3 9 10 + -0.12989059610948746E-002 5 4 9 10 + -0.44711080209704082E-003 5 5 9 10 + 0.12568889898349851E-002 5 6 9 10 + -0.38718856829054091E-002 5 7 9 10 + 0.11685120187581220E-001 5 8 9 10 + 0.59680431567223058E-003 6 3 9 10 + -0.27625774707062815E-003 6 4 9 10 + 0.15167272815594349E-002 6 5 9 10 + -0.95311839306557518E-004 6 6 9 10 + 0.14782393299467059E-003 6 7 9 10 + 0.14201643598787573E-003 6 8 9 10 + 0.10196181155356587E-001 7 3 9 10 + 0.93735475854751574E-002 7 4 9 10 + -0.46723294354444082E-002 7 5 9 10 + 0.14782393299467032E-003 7 6 9 10 + -0.15558721977751973E-002 7 7 9 10 + 0.12459225323503307E-002 7 8 9 10 + 0.27218950798062361E-002 8 3 9 10 + 0.48650531603614475E-002 8 4 9 10 + 0.14100799554280433E-001 8 5 9 10 + 0.14201643598787806E-003 8 6 9 10 + 0.12459225323503255E-002 8 7 9 10 + 0.16511840370818721E-002 8 8 9 10 + 0.17151579824540394E-001 9 10 9 10 + -0.44892627333948116E-009 1 10 9 11 + -0.99618874323617037E-003 1 11 9 11 + -0.50256158168408904E-009 1 12 9 11 + -0.15788878574444256E-007 1 13 9 11 + 0.18338966500019900E-009 1 14 9 11 + -0.68314656757474702E-008 2 10 9 11 + -0.14142722982295193E-002 2 11 9 11 + -0.76476526455584696E-008 2 12 9 11 + -0.24026480222509685E-006 2 13 9 11 + 0.27907036792166357E-008 2 14 9 11 + -0.13553445051216206E-002 3 3 9 11 + 0.24961419649989188E-003 3 4 9 11 + 0.85489531359091760E-003 3 5 9 11 + -0.66490021050187873E-002 3 6 9 11 + -0.84454820312862295E-002 3 7 9 11 + 0.16268929248508767E-002 3 8 9 11 + 0.24961419649989361E-003 4 3 9 11 + 0.10995975161987356E-002 4 4 9 11 + -0.10303194042527431E-002 4 5 9 11 + -0.50976631468394830E-002 4 6 9 11 + 0.87593236807188470E-002 4 7 9 11 + -0.14525772203977322E-002 4 8 9 11 + 0.85489531359091413E-003 5 3 9 11 + -0.10303194042527422E-002 5 4 9 11 + 0.25574698892291703E-003 5 5 9 11 + 0.90718580410469735E-002 5 6 9 11 + -0.89237956608888367E-003 5 7 9 11 + -0.61873367920771112E-003 5 8 9 11 + -0.80235596463401684E-002 6 3 9 11 + -0.61515099109767128E-002 6 4 9 11 + 0.10947295726685452E-001 6 5 9 11 + -0.56641768356737876E-004 6 6 9 11 + 0.20069939443674452E-002 6 7 9 11 + -0.34768538825531541E-003 6 8 9 11 + -0.10191427177456679E-001 7 3 9 11 + 0.10570151888406928E-001 7 4 9 11 + -0.10768588068204425E-002 7 5 9 11 + 0.20069939443674734E-002 7 6 9 11 + 0.79246831211756644E-004 7 7 9 11 + -0.13619962965015286E-003 7 8 9 11 + 0.19632197472267965E-002 8 3 9 11 + -0.17528728930528306E-002 8 4 9 11 + -0.74664397681381230E-003 8 5 9 11 + -0.34768538825531129E-003 8 6 9 11 + -0.13619962965015207E-003 8 7 9 11 + -0.22605062854924202E-004 8 8 9 11 + 0.42815464476028290E-008 9 10 9 11 + 0.17151578298160636E-001 9 11 9 11 + -0.50256157903842030E-009 1 11 9 12 + -0.99618903054710822E-003 1 12 9 12 + 0.92613359550526671E-008 1 13 9 12 + -0.89014424078074436E-008 1 14 9 12 + -0.11753509131035639E-008 2 10 9 12 + -0.76476526559826559E-008 2 11 9 12 + -0.14142766703387824E-002 2 12 9 12 + 0.14093293838691657E-006 2 13 9 12 + -0.13545631432780108E-006 2 14 9 12 + 0.12663087711846440E-002 3 3 9 12 + -0.13469959850232372E-003 3 4 9 12 + 0.98032306192409775E-003 3 5 9 12 + 0.65345267472874989E-002 3 6 9 12 + -0.19014085508034439E-002 3 7 9 12 + -0.83507621490027314E-002 3 8 9 12 + -0.13469959850232382E-003 4 3 9 12 + -0.14128387871160401E-002 4 4 9 12 + -0.78785860739445527E-003 4 5 9 12 + 0.63540600561670154E-002 4 6 9 12 + 0.11724171424376537E-002 4 7 9 12 + 0.87547784809147884E-002 4 8 9 12 + 0.98032306192409602E-003 5 3 9 12 + -0.78785860739445397E-003 5 4 9 12 + 0.14653001593152386E-003 5 5 9 12 + 0.83020325684410815E-002 5 6 9 12 + 0.59286041143982737E-003 5 7 9 12 + -0.16617141007819786E-002 5 8 9 12 + 0.78854202127007049E-002 6 3 9 12 + 0.76676415897132038E-002 6 4 9 12 + 0.10018323402995825E-001 6 5 9 12 + 0.28481759805293647E-004 6 6 9 12 + 0.34109524455482905E-003 6 7 9 12 + 0.20053558426272504E-002 6 8 9 12 + -0.22944905081208698E-002 7 3 9 12 + 0.14147915079783890E-002 7 4 9 12 + 0.71542230178670908E-003 7 5 9 12 + 0.34109524455482103E-003 7 6 9 12 + 0.16713626447006867E-003 7 7 9 12 + -0.33980030591519460E-004 7 8 9 12 + -0.10077124240104523E-001 8 3 9 12 + 0.10564667983592251E-001 8 4 9 12 + -0.20052426307157608E-002 8 5 9 12 + 0.20053558426272591E-002 8 6 9 12 + -0.33980030591520578E-004 8 7 9 12 + -0.19561802427549044E-003 8 8 9 12 + 0.73663833334203524E-009 9 10 9 12 + 0.47930828883507007E-008 9 11 9 12 + 0.17151581038332149E-001 9 12 9 12 + 0.84947779003998505E-008 1 10 9 13 + -0.15788878578755515E-007 1 11 9 13 + 0.92613359578417183E-008 1 12 9 13 + -0.99589542652639093E-003 1 13 9 13 + 0.12926796047118387E-006 2 10 9 13 + -0.24026480221569912E-006 2 11 9 13 + 0.14093293838475325E-006 2 12 9 13 + -0.14098087968537317E-002 2 13 9 13 + -0.60422474183887495E-009 2 14 9 13 + 0.92273127980350934E-003 3 3 9 13 + 0.97022745684196567E-003 3 4 9 13 + 0.39788051976183988E-003 3 5 9 13 + -0.90226409370960589E-003 3 6 9 13 + 0.25424587082526467E-002 3 7 9 13 + -0.89775557814628301E-002 3 8 9 13 + 0.97022745684196524E-003 4 3 9 13 + 0.81619127029171823E-003 4 4 9 13 + 0.17755466439277025E-003 4 5 9 13 + -0.72121586661334796E-005 4 6 9 13 + 0.36156252630504112E-002 4 7 9 13 + -0.77929799345075454E-002 4 8 9 13 + 0.39788051976184010E-003 5 3 9 13 + 0.17755466439277042E-003 5 4 9 13 + -0.17389225500956697E-002 5 5 9 13 + -0.38563093670494528E-004 5 6 9 13 + 0.11351729852436042E-001 5 7 9 13 + 0.39831744540121481E-002 5 8 9 13 + -0.10887884357248662E-002 6 3 9 13 + -0.87059093389504529E-005 6 4 9 13 + -0.46533926179855848E-004 6 5 9 13 + 0.93939304704221039E-004 6 6 9 13 + 0.62968125213317942E-004 6 7 9 13 + -0.97068817819556216E-004 6 8 9 13 + 0.30680456086420401E-002 7 3 9 13 + 0.43630680079174587E-002 7 4 9 13 + 0.13698420751276991E-001 7 5 9 13 + 0.62968125213320666E-004 7 6 9 13 + 0.11990986023543279E-002 7 7 9 13 + 0.16127246930214081E-002 7 8 9 13 + -0.10833442659863107E-001 8 3 9 13 + -0.94039894619276643E-002 8 4 9 13 + 0.48065957811424167E-002 8 5 9 13 + -0.97068817819555267E-004 8 6 9 13 + 0.16127246930213899E-002 8 7 9 13 + -0.12930379070613040E-002 8 8 9 13 + -0.81017281252659013E-007 9 10 9 13 + 0.15058333858315362E-006 9 11 9 13 + -0.88328178653580038E-007 9 12 9 13 + 0.17148780847462117E-001 9 13 9 13 + 0.11417216093270553E-007 1 10 9 14 + 0.18338966479706489E-009 1 11 9 14 + -0.89014424107261786E-008 1 12 9 14 + -0.99589475316486944E-003 1 14 9 14 + 0.17373970877275114E-006 2 10 9 14 + 0.27907036831274187E-008 2 11 9 14 + -0.13545631432641211E-006 2 12 9 14 + -0.60422473663067181E-009 2 13 9 14 + -0.14097985500797952E-002 2 14 9 14 + 0.28763250846327844E-003 3 3 9 14 + -0.15372430594349598E-002 3 4 9 14 + 0.19857650145933202E-003 3 5 9 14 + 0.92619353457717938E-002 3 6 9 14 + -0.33283822328142192E-002 3 7 9 14 + 0.38806035594837647E-002 3 8 9 14 + -0.15372430594349589E-002 4 3 9 14 + 0.81945023541374340E-003 4 4 9 14 + -0.96964700875567614E-004 4 5 9 14 + -0.10821272521727132E-001 4 6 9 14 + -0.25138564023149666E-002 4 7 9 14 + 0.36973112659810957E-002 4 8 9 14 + 0.19857650145933299E-003 5 3 9 14 + -0.96964700875567993E-004 5 4 9 14 + -0.11070827438768335E-002 5 5 9 14 + 0.82794534133265546E-003 5 6 9 14 + 0.66366886881607705E-002 5 7 9 14 + 0.35588581010604185E-002 5 8 9 14 + 0.11176613381673734E-001 6 3 9 14 + -0.13058302775927226E-001 6 4 9 14 + 0.99910382400890917E-003 6 5 9 14 + -0.23543239098283647E-002 6 6 9 14 + -0.47644404365784007E-004 6 7 9 14 + 0.22993880769859256E-004 6 8 9 14 + -0.40164455374810245E-002 7 3 9 14 + -0.30335359054927528E-002 7 4 9 14 + 0.80086615842206530E-002 7 5 9 14 + -0.47644404365784448E-004 7 6 9 14 + 0.12927667332696719E-002 7 7 9 14 + 0.16774801085416171E-004 7 8 9 14 + 0.46828206786522488E-002 8 3 9 14 + 0.44616399272512037E-002 8 4 9 14 + 0.42945613100963424E-002 8 5 9 14 + 0.22993880769859947E-004 8 6 9 14 + 0.16774801085426461E-004 8 7 9 14 + 0.10615571765579806E-002 8 8 9 14 + -0.10888946341097271E-006 9 10 9 14 + -0.17490430242686203E-008 9 11 9 14 + 0.84895764374504287E-007 9 12 9 14 + 0.37869104803351260E-009 9 13 9 14 + 0.17148774425408429E-001 9 14 9 14 + 0.87164667484235692E-003 1 10 10 1 + -0.77157610620846244E-009 1 13 10 1 + -0.10370195953812812E-008 1 14 10 1 + 0.77125212916293795E-002 2 10 10 1 + 0.23064371387897394E-009 2 11 10 1 + -0.43643404566841616E-008 2 13 10 1 + -0.58657941051015396E-008 2 14 10 1 + -0.16420394106929628E-002 3 3 10 1 + -0.52502601782610425E-003 3 4 10 1 + 0.49144995584573803E-002 3 5 10 1 + -0.15354111751483357E-003 3 6 10 1 + -0.26229262108113578E-002 3 7 10 1 + -0.70019202885833660E-003 3 8 10 1 + -0.52502601782610425E-003 4 3 10 1 + -0.14042784733698835E-003 4 4 10 1 + 0.51768826016949767E-002 4 5 10 1 + 0.71085032771554894E-004 4 6 10 1 + -0.24113085225245974E-002 4 7 10 1 + -0.12515123885204727E-002 4 8 10 1 + 0.49144995584573803E-002 5 3 10 1 + 0.51768826016949767E-002 5 4 10 1 + 0.17824672580299939E-002 5 5 10 1 + -0.39017290286804882E-003 5 6 10 1 + 0.12019120342136658E-002 5 7 10 1 + -0.36273876569545838E-002 5 8 10 1 + -0.15755124123743603E-003 6 3 10 1 + 0.72939526699715242E-004 6 4 10 1 + -0.40037020490166404E-003 6 5 10 1 + -0.24132864705598899E-003 6 6 10 1 + 0.37433476531031494E-003 6 7 10 1 + 0.35962805509077398E-003 6 8 10 1 + -0.26914784446553600E-002 7 3 10 1 + -0.24743297014727986E-002 7 4 10 1 + 0.12333295499236719E-002 7 5 10 1 + 0.37433476531031489E-003 7 6 10 1 + -0.39399542154332154E-002 7 7 10 1 + 0.31550271730362649E-002 7 8 10 1 + -0.71849288874269732E-003 8 3 10 1 + -0.12842221446532393E-002 8 4 10 1 + -0.37221897378832448E-002 8 5 10 1 + 0.35962805509077387E-003 8 6 10 1 + 0.31550271730362649E-002 8 7 10 1 + 0.41812828624891709E-002 8 8 10 1 + -0.25124683527119884E-002 9 10 10 1 + -0.25602434808132836E-009 9 11 10 1 + 0.48446038848732497E-008 9 13 10 1 + 0.65112814129811736E-008 9 14 10 1 + 0.16267896568422234E-002 10 1 10 1 + 0.56390824779600703E-003 1 10 10 2 + -0.18076336220202057E-008 1 13 10 2 + -0.24295095086832727E-008 1 14 10 2 + 0.62907470388746153E-001 2 10 10 2 + 0.35423705804619665E-008 2 11 10 2 + 0.60946346452074356E-009 2 12 10 2 + -0.67030274010097109E-007 2 13 10 2 + -0.90090539442045297E-007 2 14 10 2 + -0.12644464544474258E-001 3 3 10 2 + -0.40429605316454013E-002 3 4 10 2 + 0.37843975785499834E-001 3 5 10 2 + -0.44710659824466026E-003 3 6 10 2 + -0.76374337259304407E-002 3 7 10 2 + -0.20388111021677792E-002 3 8 10 2 + -0.40429605316454021E-002 4 3 10 2 + -0.10813403837093612E-002 4 4 10 2 + 0.39864443748042253E-001 4 5 10 2 + 0.20701635932866808E-003 4 6 10 2 + -0.70212479692059971E-002 4 7 10 2 + -0.36441478402016439E-002 4 8 10 2 + 0.37843975785499834E-001 5 3 10 2 + 0.39864443748042246E-001 5 4 10 2 + 0.13725804928183918E-001 5 5 10 2 + -0.11361066319101037E-002 5 6 10 2 + 0.34996837774959803E-002 5 7 10 2 + -0.10562246891942156E-001 5 8 10 2 + -0.32444104645590257E-003 6 3 10 2 + 0.15017564575697361E-003 6 4 10 2 + -0.82456094580699664E-003 6 5 10 2 + -0.15460000128422015E-002 6 6 10 2 + 0.23980862960947366E-002 6 7 10 2 + 0.23038710862681353E-002 6 8 10 2 + -0.55431048128766524E-002 7 3 10 2 + -0.50958832157590893E-002 7 4 10 2 + 0.25401038193424846E-002 7 5 10 2 + 0.23980862960947371E-002 7 6 10 2 + -0.25240384051897363E-001 7 7 10 2 + 0.20211916521996335E-001 7 8 10 2 + -0.14797476399622950E-002 8 3 10 2 + -0.26448642960069553E-002 8 4 10 2 + -0.76658238584215816E-002 8 5 10 2 + 0.23038710862681383E-002 8 6 10 2 + 0.20211916521996328E-001 8 7 10 2 + 0.26786384064739543E-001 8 8 10 2 + 0.21148545979297324E-002 9 10 10 2 + -0.47656579441435931E-008 9 11 10 2 + -0.81992952430967129E-009 9 12 10 2 + 0.90177849386032668E-007 9 13 10 2 + 0.12120151994958966E-006 9 14 10 2 + 0.90789067792117258E-002 10 1 10 2 + 0.96402731424676744E-001 10 2 10 2 + -0.41627899438325116E-003 1 3 10 3 + -0.13310157924325004E-003 1 4 10 3 + 0.12458928593270377E-002 1 5 10 3 + -0.33935484565370555E-004 1 6 10 3 + -0.57971332029834919E-003 1 7 10 3 + -0.15475483802490463E-003 1 8 10 3 + -0.25927938295002062E-001 2 3 10 3 + -0.82902391468582266E-002 2 4 10 3 + 0.77600461215312222E-001 2 5 10 3 + -0.10556588378256751E-002 2 6 10 3 + -0.18033475470739628E-001 2 7 10 3 + -0.48140453703116766E-002 2 8 10 3 + -0.95438903793188760E-002 3 1 10 3 + -0.28734404335169807E-001 3 2 10 3 + 0.41962865740632835E-002 3 9 10 3 + 0.54382132935283670E-001 3 10 10 3 + -0.37506138375215464E-001 3 11 10 3 + -0.16734720491612055E-001 3 12 10 3 + 0.41597181371921810E-003 3 13 10 3 + -0.78155492602608040E-002 3 14 10 3 + -0.30515652394158496E-002 4 1 10 3 + -0.91875611950584454E-002 4 2 10 3 + 0.13416863435893858E-002 4 9 10 3 + 0.39426577139945254E-001 4 10 10 3 + 0.24689669654976071E-001 4 11 10 3 + 0.98585952159866604E-002 4 12 10 3 + 0.42155987222286520E-002 4 13 10 3 + -0.91113133283668712E-002 4 14 10 3 + 0.28564140186447338E-001 5 1 10 3 + 0.85999946684837472E-001 5 2 10 3 + -0.12559060612575793E-001 5 9 10 3 + -0.30310666971452823E-002 5 10 10 3 + 0.19661224795136678E-002 5 11 10 3 + -0.50546038973712099E-002 5 12 10 3 + 0.35487029522984867E-001 5 13 10 3 + 0.34578644598891373E-001 5 14 10 3 + -0.17934426559193151E-002 6 1 10 3 + -0.90388558910337036E-003 6 2 10 3 + 0.32089263869882309E-002 6 9 10 3 + 0.55945962708334814E-003 6 10 10 3 + -0.19228479628402070E-002 6 11 10 3 + -0.78569735320560389E-003 6 12 10 3 + -0.16376202181346940E-005 6 13 10 3 + 0.22428604800048450E-003 6 14 10 3 + -0.30637598818398257E-001 7 1 10 3 + -0.15441811305988696E-001 7 2 10 3 + 0.54818420137615287E-001 7 9 10 3 + 0.23505346025441947E-002 7 10 10 3 + -0.88903577963889147E-003 7 11 10 3 + 0.15070122326564617E-003 7 12 10 3 + -0.87820373500037202E-003 7 13 10 3 + -0.18983248635653165E-002 7 14 10 3 + -0.81787357812815979E-002 8 1 10 3 + -0.41222163862023910E-002 8 2 10 3 + 0.14633827761185679E-001 8 9 10 3 + -0.32638459602840398E-002 8 10 10 3 + 0.61463905805989863E-003 8 11 10 3 + 0.74780263991609146E-003 8 12 10 3 + -0.67930669983483436E-003 8 13 10 3 + -0.48951354396542296E-003 8 14 10 3 + 0.25406390825340797E-002 9 3 10 3 + 0.81238049075048726E-003 9 4 10 3 + -0.76040500715770475E-002 9 5 10 3 + 0.32055438356982675E-002 9 6 10 3 + 0.54761027356066777E-001 9 7 10 3 + 0.14618513205181859E-001 9 8 10 3 + 0.80052317181769334E-001 10 3 10 3 + -0.13310157924325668E-003 1 3 10 4 + -0.35599832091479184E-004 1 4 10 4 + 0.13124103947212626E-002 1 5 10 4 + 0.15711258633930610E-004 1 6 10 4 + -0.53294206494478328E-003 1 7 10 4 + -0.27660645599814055E-003 1 8 10 4 + -0.82902391468582370E-002 2 3 10 4 + -0.22173277778550372E-002 2 4 10 4 + 0.81743504820392415E-001 2 5 10 4 + 0.48874905803420919E-003 2 6 10 4 + -0.16578535912794082E-001 2 7 10 4 + -0.86045545539836961E-002 2 8 10 4 + -0.30515652394158331E-002 3 1 10 4 + -0.91875611950584593E-002 3 2 10 4 + 0.13416863435893693E-002 3 9 10 4 + 0.39426578464101816E-001 3 10 10 4 + -0.19039402228211336E-001 3 11 10 4 + -0.18913757339235192E-001 3 12 10 4 + -0.59432536598966893E-002 3 13 10 4 + -0.70508236465412532E-002 3 14 10 4 + -0.81619746518374261E-003 4 1 10 4 + -0.24573582576348017E-002 4 2 10 4 + 0.35890800995437512E-003 4 9 10 4 + 0.54339186584937853E-001 4 10 10 4 + 0.33475689038071202E-001 4 11 10 4 + 0.22694268803595499E-001 4 12 10 4 + -0.17605390447675776E-002 4 13 10 4 + -0.11325476855687199E-002 4 14 10 4 + 0.30089167572538204E-001 5 1 10 4 + 0.90591441466527964E-001 5 2 10 4 + -0.13229595688160055E-001 5 9 10 4 + 0.88492120105976065E-002 5 10 10 4 + -0.10214470544526982E-001 5 11 10 4 + 0.78000749380598778E-002 5 12 10 4 + 0.36185012687913430E-001 5 13 10 4 + 0.32344758185301227E-001 5 14 10 4 + 0.83029337151447886E-003 6 1 10 4 + 0.41843631993576164E-003 6 2 10 4 + -0.14856092120857447E-002 6 9 10 4 + -0.12956695942351673E-002 6 10 10 4 + -0.17890770081307795E-002 6 11 10 4 + -0.13321540940002291E-002 6 12 10 4 + 0.20075496403537409E-004 6 13 10 4 + -0.91979100564890990E-004 6 14 10 4 + -0.28165755071784458E-001 7 1 10 4 + -0.14195961416443335E-001 7 2 10 4 + 0.50395666255848542E-001 7 9 10 4 + 0.16049745553184367E-002 7 10 10 4 + 0.87604024726746130E-003 7 11 10 4 + -0.64330157248738019E-003 7 12 10 4 + -0.11157716075460337E-002 7 13 10 4 + -0.15715017751431705E-002 7 14 10 4 + -0.14618537733049879E-001 8 1 10 4 + -0.73679697334066057E-002 8 2 10 4 + 0.26156264041628605E-001 8 9 10 4 + -0.35240324007918262E-002 8 10 10 4 + -0.27012281892541053E-003 8 11 10 4 + -0.67898731478310663E-003 8 12 10 4 + -0.45433905880537523E-003 8 13 10 4 + -0.60336390034244631E-003 8 14 10 4 + 0.81238049075048118E-003 9 3 10 4 + 0.21723552736556295E-003 9 4 10 4 + -0.80100146163265429E-002 9 5 10 4 + -0.14840261859356981E-002 9 6 10 4 + 0.50342901788894397E-001 9 7 10 4 + 0.26128883526082804E-001 9 8 10 4 + 0.60033786838686293E-001 10 3 10 4 + 0.79986485887182837E-001 10 4 10 4 + 0.12458928593270505E-002 1 3 10 5 + 0.13124103947212155E-002 1 4 10 5 + 0.45187882647473681E-003 1 5 10 5 + -0.86235158028216384E-004 1 6 10 5 + 0.26564364903962291E-003 1 7 10 5 + -0.80171730905392836E-003 1 8 10 5 + 0.77600461215312166E-001 2 3 10 5 + 0.81743504820392318E-001 2 4 10 5 + 0.28145266072857774E-001 2 5 10 5 + -0.26825671363774044E-002 2 6 10 5 + 0.82635161520125209E-002 2 7 10 5 + -0.24939488625000339E-001 2 8 10 5 + 0.28564140186447280E-001 3 1 10 5 + 0.85999946684837444E-001 3 2 10 5 + -0.12559060612575780E-001 3 9 10 5 + -0.30310461116357539E-002 3 10 10 5 + 0.18591501386998360E-001 3 11 10 5 + -0.35442169291343507E-001 3 12 10 5 + -0.41301406906002612E-001 3 13 10 5 + 0.36443347106006579E-001 3 14 10 5 + 0.30089167572538256E-001 4 1 10 5 + 0.90591441466527908E-001 4 2 10 5 + -0.13229595688160040E-001 4 9 10 5 + 0.88492352782526800E-002 4 10 10 5 + -0.26139952318673158E-001 4 11 10 5 + 0.45967481500293735E-001 4 12 10 5 + -0.36620907248526451E-001 4 13 10 5 + 0.23170745124689064E-001 4 14 10 5 + 0.10360087844502838E-001 5 1 10 5 + 0.31191762592805351E-001 5 2 10 5 + -0.45551945840177320E-002 5 9 10 5 + 0.94746985631379635E-001 5 10 10 5 + 0.40304581532561862E-002 5 11 10 5 + -0.59595467951749723E-002 5 12 10 5 + 0.13444004087439882E-002 5 13 10 5 + 0.89478727320455205E-002 5 14 10 5 + -0.45574888443862009E-002 6 1 10 5 + -0.22970407687868083E-002 6 2 10 5 + 0.81545014770588262E-002 6 9 10 5 + -0.75690976021550041E-004 6 10 10 5 + 0.14877490183898125E-002 6 11 10 5 + -0.26165382508074753E-002 6 12 10 5 + 0.36546934285064453E-004 6 13 10 5 + 0.22936435799688173E-003 6 14 10 5 + 0.14039206675881748E-001 7 1 10 5 + 0.70760318036571981E-002 7 2 10 5 + -0.25119689028482852E-001 7 9 10 5 + -0.46455268947100314E-002 7 10 10 5 + -0.17536433094553943E-003 7 11 10 5 + 0.16441502248297038E-003 7 12 10 5 + -0.10673804949072616E-002 7 13 10 5 + 0.88116011207038289E-003 7 14 10 5 + -0.42370383760438488E-001 8 1 10 5 + -0.21355278435433347E-001 8 2 10 5 + 0.75811345686290874E-001 8 9 10 5 + -0.32129237442542779E-002 8 10 10 5 + 0.64191754850041424E-004 8 11 10 5 + -0.18117147389251944E-005 8 12 10 5 + 0.15230145482044318E-002 8 13 10 5 + -0.22178174313043355E-002 8 14 10 5 + -0.76040500715771004E-002 9 3 10 5 + -0.80100146163265620E-002 9 4 10 5 + -0.27578746098996898E-002 9 5 10 5 + 0.81459626087290338E-002 9 6 10 5 + -0.25093427446153532E-001 9 7 10 5 + 0.75731953266533120E-001 9 8 10 5 + -0.46152894069641072E-002 10 3 10 5 + 0.13474326947818409E-001 10 4 10 5 + 0.14151459507429542 10 5 10 5 + -0.15735481378134346E-003 1 3 10 6 + 0.72849447779252825E-004 1 4 10 6 + -0.39986817689257828E-003 1 5 10 6 + -0.15999743463810076E-003 1 6 10 6 + 0.24817818152892302E-003 1 7 10 6 + 0.23842786256398724E-003 1 8 10 6 + -0.12451240203670770E-002 2 3 10 6 + 0.57646338099816166E-003 2 4 10 6 + -0.31640372555949191E-002 2 5 10 6 + -0.65276386467274497E-003 2 6 10 6 + 0.10125176370650169E-002 2 7 10 6 + 0.97273835232185790E-003 2 8 10 6 + -0.65732202818919491E-003 3 1 10 6 + -0.12542481471221846E-002 3 2 10 6 + 0.55380644275068692E-003 3 9 10 6 + 0.69031345856634561E-003 3 10 10 6 + -0.17656390885484453E-002 3 11 10 6 + 0.64529649350348163E-003 3 12 10 6 + 0.57328282509953258E-003 3 13 10 6 + 0.82018436109147601E-003 3 14 10 6 + 0.30431588857729051E-003 4 1 10 6 + 0.58069093306491822E-003 4 2 10 6 + -0.25640041657797995E-003 4 9 10 6 + -0.40309117479063955E-002 4 10 10 6 + -0.30084737773899825E-002 4 11 10 6 + -0.19847480002477065E-002 4 12 10 6 + 0.42546148298466981E-003 4 13 10 6 + -0.93545635591398783E-003 4 14 10 6 + -0.16703784096003011E-002 5 1 10 6 + -0.31872119667569632E-002 5 2 10 6 + 0.14072977795864976E-002 5 9 10 6 + -0.63507830412526530E-003 5 10 10 6 + 0.23427590497864404E-002 5 11 10 6 + -0.21075433273926017E-002 5 12 10 6 + -0.15505593035683967E-002 5 13 10 6 + -0.75233806475616925E-003 5 14 10 6 + -0.85331428484696436E-003 6 1 10 6 + -0.92711767896154810E-003 6 2 10 6 + 0.81974351834556607E-003 6 9 10 6 + 0.30762395998560890E-002 6 10 10 6 + 0.73186373531842488E-003 6 11 10 6 + 0.96297290302084038E-003 6 12 10 6 + -0.38888540763401971E-004 6 13 10 6 + 0.63872198968920090E-003 6 14 10 6 + 0.13236149481163945E-002 7 1 10 6 + 0.14381093341128770E-002 7 2 10 6 + -0.12715536462014525E-002 7 9 10 6 + -0.19445973604295159E-003 7 10 10 6 + -0.29378102334786352E-002 7 11 10 6 + 0.13562472153663290E-002 7 12 10 6 + 0.73438221676254672E-003 7 13 10 6 + 0.26238333263593912E-003 7 14 10 6 + 0.12716132746937064E-002 8 1 10 6 + 0.13816093302100609E-002 8 2 10 6 + -0.12215972400203962E-002 8 9 10 6 + 0.11733454403503709E-002 8 10 10 6 + 0.13678196027993113E-002 8 11 10 6 + 0.21335639317453894E-002 8 12 10 6 + 0.92398780147124465E-004 8 13 10 6 + 0.81761518926651777E-004 8 14 10 6 + 0.76647855106991736E-003 9 3 10 6 + -0.35483479419463426E-003 9 4 10 6 + 0.19478207906410830E-002 9 5 10 6 + 0.88633966517721570E-003 9 6 10 6 + -0.13748500424149380E-002 9 7 10 6 + -0.13208353995726463E-002 9 8 10 6 + 0.71209832159635001E-003 10 3 10 6 + -0.43724211502521636E-002 10 4 10 6 + -0.70284124945160624E-003 10 5 10 6 + 0.27312152522738680E-002 10 6 10 6 + -0.26881030936520391E-002 1 3 10 7 + -0.24712267819271879E-002 1 4 10 7 + 0.12317809424267053E-002 1 5 10 7 + 0.24817818152892540E-003 1 6 10 7 + -0.26121287899948794E-002 1 7 10 7 + 0.20917346151754653E-002 1 8 10 7 + -0.21270146012546943E-001 2 3 10 7 + -0.19554071559669310E-001 2 4 10 7 + 0.97466717913370030E-002 2 5 10 7 + 0.10125176370650215E-002 2 6 10 7 + -0.10656962646132381E-001 2 7 10 7 + 0.85338663778771178E-002 2 8 10 7 + -0.11229073972069291E-001 3 1 10 7 + -0.21425935472854350E-001 3 2 10 7 + 0.94605167873045449E-002 3 9 10 7 + 0.10591940287763356E-001 3 10 10 7 + -0.10971002839418730E-001 3 11 10 7 + 0.47414680277468200E-002 3 12 10 7 + 0.98710227038327145E-002 3 13 10 7 + -0.10060437643371518E-001 3 14 10 7 + -0.10323111658677228E-001 4 1 10 7 + -0.19697292346735989E-001 4 2 10 7 + 0.86972428247074698E-002 4 9 10 7 + 0.72733194286708517E-002 4 10 10 7 + 0.12376523209186719E-001 4 11 10 7 + -0.77681864769150568E-002 4 12 10 7 + 0.96625875602624131E-002 4 13 10 7 + -0.65571100437356328E-002 4 14 10 7 + 0.51455461189224656E-002 5 1 10 7 + 0.98180522788803327E-002 5 2 10 7 + -0.43351139780218820E-002 5 9 10 7 + -0.21157685046834841E-001 5 10 10 7 + -0.15706689599833208E-002 5 11 10 7 + 0.14225419266241780E-002 5 12 10 7 + 0.78531481829905783E-002 5 13 10 7 + 0.50132285727466806E-002 5 14 10 7 + 0.13236149481163902E-002 6 1 10 7 + 0.14381093341128812E-002 6 2 10 7 + -0.12715536462014365E-002 6 9 10 7 + -0.19445869526579876E-003 6 10 10 7 + -0.79607267002094976E-002 6 11 10 7 + 0.43184280521430841E-002 6 12 10 7 + -0.16900132261939843E-003 6 13 10 7 + -0.39911644798955363E-003 6 14 10 7 + -0.13931334578160847E-001 7 1 10 7 + -0.15136418131601654E-001 7 2 10 7 + 0.13383382388755711E-001 7 9 10 7 + 0.14498097916205410E-001 7 10 10 7 + 0.10694878637544243E-004 7 11 10 7 + -0.72972983720414328E-003 7 12 10 7 + 0.44288607567624194E-003 7 13 10 7 + -0.57846562503141288E-002 7 14 10 7 + 0.11155897591697822E-001 8 1 10 7 + 0.12120889313949000E-001 8 2 10 7 + -0.10717100158625295E-001 8 9 10 7 + 0.40467794405454199E-003 8 10 10 7 + 0.40186809454498772E-003 8 11 10 7 + 0.37249522350967759E-003 8 12 10 7 + -0.61482755901798285E-002 8 13 10 7 + 0.39970998186373667E-002 8 14 10 7 + 0.13094182182803617E-001 9 3 10 7 + 0.12037740757842814E-001 9 4 10 7 + -0.60002392313718515E-002 9 5 10 7 + -0.13748500424149491E-002 9 6 10 7 + 0.14470597941939983E-001 9 7 10 7 + -0.11587721011527741E-001 9 8 10 7 + 0.11604114996773886E-001 10 3 10 7 + 0.79693549445718492E-002 10 4 10 7 + -0.23184916592924973E-001 10 5 10 7 + -0.16284871757911535E-003 10 6 10 7 + 0.12296532468119599E-001 10 7 10 7 + -0.71759150776663143E-003 1 3 10 8 + -0.12826114108936411E-002 1 4 10 8 + -0.37175228351069046E-002 1 5 10 8 + 0.23842786256398547E-003 1 6 10 8 + 0.20917346151753838E-002 1 7 10 8 + 0.27721262246330190E-002 1 8 10 8 + -0.56780778406279589E-002 2 3 10 8 + -0.10148911706147375E-001 2 4 10 8 + -0.29415653720664819E-001 2 5 10 8 + 0.97273835232184814E-003 2 6 10 8 + 0.85338663778770953E-002 2 7 10 8 + 0.11309726510804747E-001 2 8 10 8 + -0.29976112114806831E-002 3 1 10 8 + -0.57196646706657184E-002 3 2 10 8 + 0.25254900924296443E-002 3 9 10 8 + -0.14740468062567945E-001 3 10 10 8 + 0.68593214816750339E-002 3 11 10 8 + 0.11560479836479183E-001 3 12 10 8 + 0.76132993227010139E-002 3 13 10 8 + -0.30475082757787631E-002 3 14 10 8 + -0.53578816784163128E-002 4 1 10 8 + -0.10223244842289040E-001 4 2 10 8 + 0.45140237712114816E-002 4 9 10 8 + -0.16302608293717082E-001 4 10 10 8 + -0.57948249874937010E-002 4 11 10 8 + -0.12611140833086915E-001 4 12 10 8 + 0.54330753618727391E-002 4 13 10 8 + -0.16547829073607252E-002 4 14 10 8 + -0.15529292567752949E-001 5 1 10 8 + -0.29631107558122306E-001 5 2 10 8 + 0.13083469686006972E-001 5 9 10 8 + -0.14764569542554555E-001 5 10 10 8 + 0.66564597390866397E-003 5 11 10 8 + 0.58219996732536471E-003 5 12 10 8 + -0.13034997784801793E-001 5 13 10 8 + -0.12435723623466141E-001 5 14 10 8 + 0.12716132746937413E-002 6 1 10 8 + 0.13816093302100531E-002 6 2 10 8 + -0.12215972400204469E-002 6 9 10 8 + 0.11733463904453510E-002 6 10 10 8 + 0.42165389535736807E-002 6 11 10 8 + 0.80502701565251297E-002 6 12 10 8 + -0.10534389989140160E-003 6 13 10 8 + -0.67451936663920830E-003 6 14 10 8 + 0.11155897591697769E-001 7 1 10 8 + 0.12120889313948972E-001 7 2 10 8 + -0.10717100158625153E-001 7 9 10 8 + 0.40466920435078610E-003 7 10 10 8 + 0.44154946712936911E-003 7 11 10 8 + 0.51421223193597162E-003 7 12 10 8 + 0.62387086251177752E-002 7 13 10 8 + 0.44921088411143621E-002 7 14 10 8 + 0.14784648863007460E-001 8 1 10 8 + 0.16063535810562874E-001 8 2 10 8 + -0.14203125907100642E-001 8 9 10 8 + 0.15378379100187200E-001 8 10 10 8 + -0.74255524865322355E-003 8 11 10 8 + -0.23324248681771799E-003 8 12 10 8 + -0.40406121463282084E-003 8 13 10 8 + 0.51458486733223932E-002 8 14 10 8 + 0.34955098075946833E-002 9 3 10 8 + 0.62478102446770359E-002 9 4 10 8 + 0.18108631145544504E-001 9 5 10 8 + -0.13208353995726963E-002 9 6 10 8 + -0.11587721011527474E-001 9 7 10 8 + -0.15356937607116502E-001 9 8 10 8 + -0.16149878905401566E-001 10 3 10 8 + -0.17870638169134128E-001 10 4 10 8 + -0.16182371810919364E-001 10 5 10 8 + 0.98254031991012666E-003 10 6 10 8 + 0.33887895222110858E-003 10 7 10 8 + 0.13033676501139981E-001 10 8 10 8 + -0.14220359879464010E-002 1 10 10 9 + -0.15454077694801005E-001 2 10 10 9 + 0.28129183476250997E-008 2 11 10 9 + 0.48396146132118315E-009 2 12 10 9 + -0.53227262710729214E-007 2 13 10 9 + -0.71538911009675880E-007 2 14 10 9 + 0.25558323512059173E-002 3 3 10 9 + 0.81716802585398297E-003 3 4 10 9 + -0.76493079964214698E-002 3 5 10 9 + 0.40911809124518966E-003 3 6 10 9 + 0.69887782061140696E-002 3 7 10 9 + 0.18656569924390683E-002 3 8 10 9 + 0.81716802585398362E-003 4 3 10 9 + 0.21861476124925117E-003 4 4 10 9 + -0.80577131714802044E-002 4 5 10 9 + -0.18941583398832465E-003 4 6 10 9 + 0.64249243497135431E-002 4 7 10 9 + 0.33346491376811957E-002 4 8 10 9 + -0.76493079964214681E-002 5 3 10 9 + -0.80577131714802026E-002 5 4 10 9 + -0.27744471124552333E-002 5 5 10 9 + 0.10396149210338940E-002 5 6 10 9 + -0.32024769781435754E-002 5 7 10 9 + 0.96651699448980742E-002 5 8 10 9 + 0.51135801212978996E-003 6 3 10 9 + -0.23674091077872022E-003 6 4 10 9 + 0.12994532127583438E-002 6 5 10 9 + 0.23963638318683122E-003 6 6 10 9 + -0.37172373553438288E-003 6 7 10 9 + -0.35711949243885497E-003 6 8 10 9 + 0.87355387522377280E-002 7 3 10 9 + 0.80307551229800121E-002 7 4 10 9 + -0.40029207306825744E-002 7 5 10 9 + -0.37172373553438315E-003 7 6 10 9 + 0.39124776224974027E-002 7 7 10 9 + -0.31330131327986775E-002 7 8 10 9 + 0.23319594068754285E-002 8 3 10 9 + 0.41681068707896743E-002 8 4 10 9 + 0.12080849311597287E-001 8 5 10 9 + -0.35711949243885264E-003 8 6 10 9 + -0.31330131327986827E-002 8 7 10 9 + -0.41521140056841755E-002 8 8 10 9 + 0.13649865801252459E-001 9 10 10 9 + 0.15837635357174305E-008 9 11 10 9 + 0.27248586931728050E-009 9 12 10 9 + -0.29968661366912679E-007 9 13 10 9 + -0.40278708504772496E-007 9 14 10 9 + -0.29383154373790903E-002 10 1 10 9 + -0.11924948363210352E-001 10 2 10 9 + 0.10148151777964525E-001 10 9 10 9 + 0.78365847670230548 1 1 10 10 + -0.37281098028569146E-001 1 2 10 10 + 0.33374722893944712E-001 1 9 10 10 + -0.52455378395474674E-004 1 10 10 10 + 0.14800837567213633E-004 1 11 10 10 + -0.55498535076696536E-004 1 12 10 10 + 0.15875876118379776E-004 1 13 10 10 + -0.38257703531087986E-003 1 14 10 10 + 0.31855171435126249E-001 2 1 10 10 + 0.64137889135073212 2 2 10 10 + -0.15187785911062579 2 9 10 10 + 0.41720779214818740E-002 2 10 10 10 + -0.11772715681059598E-002 2 11 10 10 + 0.44144333213475186E-002 2 12 10 10 + -0.12628446271221931E-002 2 13 10 10 + 0.30431452177381430E-001 2 14 10 10 + 0.61484460221466974 3 3 10 10 + 0.25399150518218921E-001 3 4 10 10 + -0.19526401804115931E-002 3 5 10 10 + 0.10044698564461989 3 6 10 10 + 0.77206663174729850E-001 3 7 10 10 + -0.10573450079157473 3 8 10 10 + 0.25399149053534027E-001 4 3 10 10 + 0.61481696781180450 4 4 10 10 + 0.57008151580903738E-002 4 5 10 10 + -0.12357835185535174 4 6 10 10 + 0.50878490806810756E-001 4 7 10 10 + -0.96795407959480440E-001 4 8 10 10 + -0.19526629505947810E-002 5 3 10 10 + 0.57007894211142151E-002 5 4 10 10 + 0.64084821331335406 5 5 10 10 + 0.10698985556781846E-001 5 6 10 10 + -0.14254576440548192 5 7 10 10 + -0.92688324312571721E-001 5 8 10 10 + 0.75244289499726946E-001 6 3 10 10 + -0.92355706023206821E-001 6 4 10 10 + 0.80626857437017876E-002 6 5 10 10 + 0.47135742455603208 6 6 10 10 + -0.46028923591098255E-003 6 7 10 10 + 0.27773305956581558E-002 6 8 10 10 + 0.57151266203955095E-001 7 3 10 10 + 0.37642233917707754E-001 7 4 10 10 + -0.10540882945492951 7 5 10 10 + -0.46029048762398142E-003 7 6 10 10 + 0.49839328750749629 7 7 10 10 + 0.95787142032201244E-003 7 8 10 10 + -0.78252644344286859E-001 8 3 10 10 + -0.71446151696630475E-001 8 4 10 10 + -0.68472126689610932E-001 8 5 10 10 + 0.27773294530059763E-002 8 6 10 10 + 0.95788193131494579E-003 8 7 10 10 + 0.50047693960170203 8 8 10 10 + -0.27663279934653680E-001 9 1 10 10 + -0.98971816006465527E-001 9 2 10 10 + 0.50533115050360278 9 9 10 10 + 0.32561481964434746E-003 9 10 10 10 + -0.91862121723128168E-004 9 11 10 10 + 0.34443792463978299E-003 9 12 10 10 + -0.98543923155588927E-004 9 13 10 10 + 0.23750146172123198E-002 9 14 10 10 + 0.70498654195983042E-003 10 1 10 10 + 0.73899892569818234E-002 10 2 10 10 + -0.10442771808703395E-002 10 9 10 10 + 0.67355146977708891 10 10 10 10 + -0.38179356247735389E-009 1 1 10 11 + 0.14800865300737281E-004 1 10 10 11 + 0.32837697274909602E-003 1 11 10 11 + -0.10446978825606953E-003 1 12 10 11 + -0.16083013621806325E-004 1 13 10 11 + 0.25161109005967544E-004 1 14 10 11 + 0.25273899064931744E-009 2 1 10 11 + 0.36374209134636395E-008 2 2 10 11 + 0.32423598793170196E-008 2 9 10 11 + -0.11772710569967267E-002 2 10 10 11 + -0.26119392116479796E-001 2 11 10 11 + 0.83093883862764509E-002 2 12 10 11 + 0.12793859313115171E-002 2 13 10 11 + -0.20013807963394931E-002 2 14 10 11 + -0.24162039076771981E-001 3 3 10 11 + 0.18200084175431193E-002 3 4 10 11 + 0.66217634209748376E-002 3 5 10 11 + -0.33963276214630466E-002 3 6 10 11 + -0.33484150965975633E-002 3 7 10 11 + 0.21879527124434410E-002 3 8 10 11 + 0.18200029428125689E-002 4 3 10 11 + 0.21565563571501939E-001 4 4 10 11 + -0.11710054259214148E-001 4 5 10 11 + -0.33992371840997856E-002 4 6 10 11 + 0.35736220577566508E-002 4 7 10 11 + -0.14483346446928767E-002 4 8 10 11 + 0.66217998155094354E-002 5 3 10 11 + -0.11710049472751647E-001 5 4 10 11 + 0.25964848531473540E-002 5 5 10 11 + 0.27988363835994121E-002 5 6 10 11 + -0.55657756682106182E-003 5 7 10 11 + 0.21961531160630783E-003 5 8 10 11 + -0.20698961940924902E-002 6 3 10 11 + -0.20716284870376921E-002 6 4 10 11 + 0.17057439492787331E-002 6 5 10 11 + 0.17323418136456045E-002 6 6 10 11 + -0.12898518139761797E-001 6 7 10 11 + 0.66091520794780527E-002 6 8 10 11 + -0.20406725195873561E-002 7 3 10 11 + 0.21779489600118338E-002 7 4 10 11 + -0.33920324289732915E-003 7 5 10 11 + -0.12898524474225589E-001 7 6 10 11 + 0.25313763725723379E-004 7 7 10 11 + 0.99820040986697074E-003 7 8 10 11 + 0.13334023460861608E-002 8 3 10 11 + -0.88270488464002193E-003 8 4 10 11 + 0.13384439920582821E-003 8 5 10 11 + 0.66091507971995957E-002 8 6 10 11 + 0.99819091180792445E-003 8 7 10 11 + -0.17576506842291193E-002 8 8 10 11 + -0.28576179810584171E-009 9 1 10 11 + -0.43435979591035353E-008 9 2 10 11 + 0.20230656102575838E-008 9 9 10 11 + -0.91862102205520274E-004 9 10 10 11 + -0.20381099057413666E-002 9 11 10 11 + 0.64840596465049762E-003 9 12 10 11 + 0.99863294114765341E-004 9 13 10 11 + -0.15621020839641471E-003 9 14 10 11 + -0.19892867368075787E-003 10 1 10 11 + -0.20852570839034494E-002 10 2 10 11 + 0.29465423860036049E-003 10 9 10 11 + -0.86985450506694790E-008 10 10 10 11 + 0.34801409965594943E-001 10 11 10 11 + -0.55498831826860881E-004 1 10 10 12 + -0.10446971206780892E-003 1 11 10 12 + -0.30541293698370994E-003 1 12 10 12 + -0.43286517126103769E-005 1 13 10 12 + 0.47691148819205888E-004 1 14 10 12 + 0.62581720978412571E-009 2 2 10 12 + 0.55784661303651291E-009 2 9 10 12 + 0.44144278524515593E-002 2 10 10 12 + 0.83093897903722038E-002 2 11 10 12 + 0.24293190139155190E-001 2 12 10 12 + 0.34430301959703234E-003 2 13 10 12 + -0.37935541560082066E-002 2 14 10 12 + -0.10780789256150995E-001 3 3 10 12 + -0.29167261103263393E-002 3 4 10 12 + -0.13044342717559634E-001 3 5 10 12 + -0.11483998508070353E-002 3 6 10 12 + 0.10721868244955401E-002 3 7 10 12 + 0.32248825768883081E-002 3 8 10 12 + -0.29167218398310430E-002 4 3 10 12 + 0.14620022631552047E-001 4 4 10 12 + 0.17318966369785468E-001 4 5 10 12 + -0.24863738414809202E-002 4 6 10 12 + -0.23930705133543861E-002 4 7 10 12 + -0.32983040537385359E-002 4 8 10 12 + -0.13044344584706043E-001 5 3 10 12 + 0.17318944250328993E-001 5 4 10 12 + -0.38392317671014503E-002 5 5 10 12 + -0.45699402953636673E-002 5 6 10 12 + 0.51307478025841569E-003 5 7 10 12 + 0.99067528041870773E-004 5 8 10 12 + -0.69993194386405841E-003 6 3 10 12 + -0.15152898435971365E-002 6 4 10 12 + -0.27851460103882038E-002 6 5 10 12 + 0.22793838716548146E-002 6 6 10 12 + 0.67160402996762451E-002 6 7 10 12 + 0.12052651411871068E-001 6 8 10 12 + 0.65344274028943843E-003 7 3 10 12 + -0.14584388696765611E-002 7 4 10 12 + 0.31268236904602280E-003 7 5 10 12 + 0.67160370663396380E-002 7 6 10 12 + -0.17272915465936305E-002 7 7 10 12 + 0.10494280168858046E-002 7 8 10 12 + 0.19653830177862675E-002 8 3 10 12 + -0.20101727231514972E-002 8 4 10 12 + 0.60355452850808631E-004 8 5 10 12 + 0.12052647352856908E-001 8 6 10 12 + 0.10494327106983967E-002 8 7 10 12 + -0.55209148319709637E-003 8 8 10 12 + -0.74731433853626221E-009 9 2 10 12 + 0.34806790359042167E-009 9 9 10 12 + 0.34443771580008420E-003 9 10 10 12 + 0.64840601826839572E-003 9 11 10 12 + 0.18955781384591367E-002 9 12 10 12 + 0.26880698181037951E-004 9 13 10 12 + -0.29606546393592047E-003 9 14 10 12 + 0.74592349997623197E-003 10 1 10 12 + 0.78190713048374525E-002 10 2 10 12 + -0.11048512145964524E-002 10 9 10 12 + 0.17567649649180887E-007 10 10 10 12 + -0.23402618636838128E-003 10 11 10 12 + 0.33566865985665065E-001 10 12 10 12 + 0.72244723858112848E-008 1 1 10 13 + -0.18216709323644190E-008 1 2 10 13 + -0.20938828227735161E-009 1 9 10 13 + 0.15875512403751190E-004 1 10 10 13 + -0.16081916863861272E-004 1 11 10 13 + -0.43283727709652796E-005 1 12 10 13 + -0.16901563214134299E-004 1 13 10 13 + -0.28774106215578026E-005 1 14 10 13 + -0.47824365901765689E-008 2 1 10 13 + -0.68828851250724203E-007 2 2 10 13 + -0.61353343486432606E-007 2 9 10 13 + -0.12628513301290545E-002 2 10 10 13 + 0.12794061437848747E-002 2 11 10 13 + 0.34430816029430434E-003 2 12 10 13 + 0.13437808163729772E-002 2 13 10 13 + 0.22827605621078738E-003 2 14 10 13 + 0.26798897851590376E-003 3 3 10 13 + -0.55647510512183275E-003 3 4 10 13 + -0.18726746699359352E-002 3 5 10 13 + 0.97766477072351268E-004 3 6 10 13 + 0.31844394206686914E-003 3 7 10 13 + 0.24235960044969340E-003 3 8 10 13 + -0.55652160299295801E-003 4 3 10 13 + -0.11341902167951695E-002 4 4 10 13 + -0.14020297102832965E-003 4 5 10 13 + 0.10673465969076713E-003 4 6 10 13 + -0.99562237643218397E-004 4 7 10 13 + 0.22180112540932722E-003 4 8 10 13 + -0.18730879587844122E-002 5 3 10 13 + -0.14057551047610644E-003 5 4 10 13 + 0.86602435369947830E-003 5 5 10 13 + -0.21284476518303674E-003 5 6 10 13 + -0.33905542503937511E-003 5 7 10 13 + 0.16276716497612320E-003 5 8 10 13 + 0.59579626947669825E-004 6 3 10 13 + 0.65039616156865654E-004 6 4 10 13 + -0.12970428636073370E-003 6 5 10 13 + -0.92060902893101887E-004 6 6 10 13 + 0.66911698459195287E-003 6 7 10 13 + -0.15320375008799183E-004 6 8 10 13 + 0.19406759628040607E-003 7 3 10 13 + -0.60629115611196240E-004 7 4 10 13 + -0.20637022673616429E-003 7 5 10 13 + 0.66910920823499520E-003 7 6 10 13 + 0.10483672822910399E-002 7 7 10 13 + 0.10697291129803548E-003 7 8 10 13 + 0.14774967620395595E-003 8 3 10 13 + 0.13521764405454014E-003 8 4 10 13 + 0.99230556409745125E-004 8 5 10 13 + -0.15322586558438397E-004 8 6 10 13 + 0.10714555582706205E-003 8 7 10 13 + -0.95639896954460998E-003 8 8 10 13 + 0.54073085534232075E-008 9 1 10 13 + 0.82191445947832499E-007 9 2 10 13 + -0.38281320207964502E-007 9 9 10 13 + -0.98544179121773834E-004 9 10 10 13 + 0.99864065964650346E-004 9 11 10 13 + 0.26880894487878962E-004 9 12 10 13 + 0.10504450954377687E-003 9 13 10 13 + 0.17976404195774241E-004 9 14 10 13 + -0.21338744594440222E-003 10 1 10 13 + -0.22368702125837386E-002 10 2 10 13 + 0.31607761379657959E-003 10 9 10 13 + -0.28784821529348233E-007 10 10 10 13 + -0.52764240788705176E-003 10 11 10 13 + 0.24701600333197063E-003 10 12 10 13 + 0.20520372553874386E-001 10 13 10 13 + 0.97098898073253380E-008 1 1 10 14 + -0.24483760121655849E-008 1 2 10 14 + -0.28142366157881969E-009 1 9 10 14 + -0.38256576229426788E-003 1 10 10 14 + 0.25160276428026942E-004 1 11 10 14 + 0.47689502319200392E-004 1 12 10 14 + -0.28777517079206402E-005 1 13 10 14 + 0.46392905844227711E-004 1 14 10 14 + -0.64277268733531313E-008 2 1 10 14 + -0.92507877357983309E-007 2 2 10 14 + -0.82460587883685053E-007 2 9 10 14 + 0.30431659931105998E-001 2 10 10 14 + -0.20013961401621769E-002 2 11 10 14 + -0.37935844998389328E-002 2 12 10 14 + 0.22826977023032827E-003 2 13 10 14 + -0.36896567605303500E-002 2 14 10 14 + -0.50349822508344230E-002 3 3 10 14 + -0.52059635889258613E-002 3 4 10 14 + 0.22877029875006505E-001 3 5 10 14 + 0.50399363216092701E-003 3 6 10 14 + -0.48096595001602994E-002 3 7 10 14 + -0.13195996557449378E-002 3 8 10 14 + -0.52059480487643885E-002 4 3 10 14 + -0.72965945060327346E-003 4 4 10 14 + 0.17882234387744500E-001 4 5 10 14 + -0.31178707978693178E-003 4 6 10 14 + -0.36714681970699825E-002 4 7 10 14 + -0.12585428205159036E-002 4 8 10 14 + 0.22877045447811651E-001 5 3 10 14 + 0.17882180040957079E-001 5 4 10 14 + 0.57644039636763327E-002 5 5 10 14 + 0.23657641932559381E-003 5 6 10 14 + 0.22924545149208327E-002 5 7 10 14 + -0.57387116552293643E-002 5 8 10 14 + 0.30698363845478561E-003 6 3 10 14 + -0.18982470132110552E-003 6 4 10 14 + 0.14414375036306157E-003 6 5 10 14 + 0.15119337701895966E-002 6 6 10 14 + -0.16181421928333236E-003 6 7 10 14 + -0.70151635048565798E-003 6 8 10 14 + -0.29310559945902263E-002 7 3 10 14 + -0.22374144331814504E-002 7 4 10 14 + 0.13971759392282406E-002 7 5 10 14 + -0.16182483005468287E-003 7 6 10 14 + -0.13692207296999083E-001 7 7 10 14 + 0.10046961923706032E-001 7 8 10 14 + -0.80419788273252747E-003 8 3 10 14 + -0.76697496382221444E-003 8 4 10 14 + -0.34971558178017921E-002 8 5 10 14 + -0.70152950356720421E-003 8 6 10 14 + 0.10046968540891653E-001 8 7 10 14 + 0.12180149083094283E-001 8 8 10 14 + 0.72675720445304818E-008 9 1 10 14 + 0.11046757325368807E-006 9 2 10 14 + -0.51451151915050037E-007 9 9 10 14 + 0.23750225506637109E-002 9 10 10 14 + -0.15621079432802984E-003 9 11 10 14 + -0.29606662266994750E-003 9 12 10 14 + 0.17976164154229345E-004 9 13 10 14 + -0.28812756190595260E-003 9 14 10 14 + 0.51421544906557065E-002 10 1 10 14 + 0.53903803649718959E-001 10 2 10 14 + -0.76170209686670775E-002 10 9 10 14 + 0.45460400439066900E-007 10 10 10 14 + -0.14030784473643038E-003 10 11 10 14 + 0.75157430302614256E-003 10 12 10 14 + -0.81237147333486511E-003 10 13 10 14 + 0.38593720404267083E-001 10 14 10 14 + 0.87164666030573100E-003 1 11 11 1 + 0.14340953463340687E-008 1 13 11 1 + 0.23064371339315800E-009 2 10 11 1 + 0.77125212094044824E-002 2 11 11 1 + 0.25819978643738676E-009 2 12 11 1 + 0.81118120263769134E-008 2 13 11 1 + 0.54021042471476509E-002 3 3 11 1 + -0.99459296547831913E-003 3 4 11 1 + -0.34071536237627958E-002 3 5 11 1 + 0.20640279058496474E-002 3 6 11 1 + 0.26217121268171028E-002 3 7 11 1 + -0.50505319452216735E-003 3 8 11 1 + -0.99459296547831913E-003 4 3 11 1 + -0.43823354730738364E-002 4 4 11 1 + 0.41064584184200385E-002 4 5 11 1 + 0.15824530044313734E-002 4 6 11 1 + -0.27191213649598732E-002 4 7 11 1 + 0.45090166957561107E-003 4 8 11 1 + -0.34071536237627953E-002 5 3 11 1 + 0.41064584184200385E-002 5 4 11 1 + -0.10197687740737549E-002 5 5 11 1 + -0.28161490608164582E-002 5 6 11 1 + 0.27704502856740751E-003 5 7 11 1 + 0.19208157249708555E-003 5 8 11 1 + 0.21179729372865974E-002 6 3 11 1 + 0.16238112881501294E-002 6 4 11 1 + -0.28897510258798251E-002 6 5 11 1 + -0.14343152597192513E-003 6 6 11 1 + 0.50823006270456885E-002 6 7 11 1 + -0.88044223086530978E-003 6 8 11 1 + 0.26902310463718672E-002 7 3 11 1 + -0.27901890392439525E-002 7 4 11 1 + 0.28428090716257470E-003 7 5 11 1 + 0.50823006270456867E-002 7 6 11 1 + 0.20069641316084231E-003 7 7 11 1 + -0.34486860956152562E-003 7 8 11 1 + -0.51824906542593174E-003 8 3 11 1 + 0.46268951405885653E-003 8 4 11 1 + 0.19709990885864541E-003 8 5 11 1 + -0.88044223086530999E-003 8 6 11 1 + -0.34486860956152562E-003 8 7 11 1 + -0.57264887188915255E-004 8 8 11 1 + -0.25602434772405752E-009 9 10 11 1 + -0.25124682614388067E-002 9 11 11 1 + -0.28661276427408591E-009 9 12 11 1 + -0.90044570194109784E-008 9 13 11 1 + 0.10458781746368308E-009 9 14 11 1 + 0.19078673389542323E-009 10 9 11 1 + -0.19892893320556780E-003 10 10 11 1 + -0.44135096777098027E-002 10 11 11 1 + 0.14040842565192176E-002 10 12 11 1 + 0.21618344292307392E-003 10 13 11 1 + -0.33818466302579377E-003 10 14 11 1 + 0.16267896874025433E-002 11 1 11 1 + 0.56390821373992865E-003 1 11 11 2 + 0.10694184347365259E-009 1 12 11 2 + 0.33597709216081150E-008 1 13 11 2 + 0.35423705844733437E-008 2 10 11 2 + 0.62907469125884630E-001 2 11 11 2 + 0.39655940182383881E-008 2 12 11 2 + 0.12458628935475867E-006 2 13 11 2 + -0.14470842671929470E-008 2 14 11 2 + 0.41598735712892229E-001 3 3 11 2 + -0.76588558191457001E-002 3 4 11 2 + -0.26236700839686794E-001 3 5 11 2 + 0.60100338436010941E-002 3 6 11 2 + 0.76339131426032877E-002 3 7 11 2 + -0.14706510319192057E-002 3 8 11 2 + -0.76588558191456983E-002 4 3 11 2 + -0.33746069402553681E-001 4 4 11 2 + 0.31621667906828986E-001 4 5 11 2 + 0.46077883388688243E-002 4 6 11 2 + -0.79175226540690695E-002 4 7 11 2 + 0.13129057427884322E-002 4 8 11 2 + -0.26236700839686797E-001 5 3 11 2 + 0.31621667906828986E-001 5 4 11 2 + -0.78526663103381904E-002 5 5 11 2 + -0.82000625724663011E-002 5 6 11 2 + 0.80674465339451305E-003 5 7 11 2 + 0.55932010834938185E-003 5 8 11 2 + 0.43619697210749708E-002 6 3 11 2 + 0.33442376087288914E-002 6 4 11 2 + -0.59514436968048428E-002 6 5 11 2 + -0.91885861198494920E-003 6 6 11 2 + 0.32558539149115072E-001 6 7 11 2 + -0.56403419691521779E-002 6 8 11 2 + 0.55405153784988202E-002 7 3 11 2 + -0.57464162868713963E-002 7 4 11 2 + 0.58541373271134615E-003 7 5 11 2 + 0.32558539149115107E-001 7 6 11 2 + 0.12857231019744913E-002 7 7 11 2 + -0.22093039401918551E-002 7 8 11 2 + -0.10672821596642195E-002 8 3 11 2 + 0.95295085514487477E-003 8 4 11 2 + 0.40590356146606526E-003 8 5 11 2 + -0.56403419691521727E-002 8 6 11 2 + -0.22093039401918542E-002 8 7 11 2 + -0.36686448998951305E-003 8 8 11 2 + -0.47656579483186616E-008 9 10 11 2 + 0.21148562968964198E-002 9 11 11 2 + -0.53350332695517341E-008 9 12 11 2 + -0.16760969283033295E-006 9 13 11 2 + 0.19468061204173377E-008 9 14 11 2 + 0.11586472205679178E-008 10 2 11 2 + 0.48787260710912384E-008 10 9 11 2 + -0.20852649581616684E-002 10 10 11 2 + -0.46264406060850097E-001 10 11 11 2 + 0.14718238327511226E-001 10 12 11 2 + 0.22662712843045966E-002 10 13 11 2 + -0.35451090430389646E-002 10 14 11 2 + 0.90789067873918682E-002 11 1 11 2 + 0.96402731011617879E-001 11 2 11 2 + 0.13695065917964386E-002 1 3 11 3 + -0.25214341600968566E-003 1 4 11 3 + -0.86376013086564307E-003 1 5 11 3 + 0.45618685677980831E-003 1 6 11 3 + 0.57944508141330388E-003 1 7 11 3 + -0.11162598042457490E-003 1 8 11 3 + 0.85299733763533295E-001 2 3 11 3 + -0.15704765264584194E-001 2 4 11 3 + -0.53799318009585644E-001 2 5 11 3 + 0.14190866640774572E-001 2 6 11 3 + 0.18025135864145243E-001 2 7 11 3 + -0.34724255606635810E-002 2 8 11 3 + 0.31398205043900916E-001 3 1 11 3 + 0.94532624850404867E-001 3 2 11 3 + -0.13805197011356435E-001 3 9 11 3 + -0.37506179879957774E-001 3 10 11 3 + 0.76289053914009725E-001 3 11 11 3 + -0.21652284876499235E-001 3 12 11 3 + -0.15897132332173925E-001 3 13 11 3 + -0.14353509473378559E-001 3 14 11 3 + -0.57807903578854921E-002 4 1 11 3 + -0.17404627371112952E-001 4 2 11 3 + 0.25416549945267803E-002 4 9 11 3 + -0.19039399057155293E-001 4 10 11 3 + -0.22428816722752262E-001 4 11 11 3 + -0.20024024802636719E-001 4 12 11 3 + -0.15308760797936657E-001 4 13 11 3 + 0.36056577000732976E-001 4 14 11 3 + -0.19803117770152777E-001 5 1 11 3 + -0.59622560135939286E-001 5 2 11 3 + 0.87070140272499652E-002 5 9 11 3 + 0.18591509921890334E-001 5 10 11 3 + -0.28422595654753843E-001 5 11 11 3 + -0.21587826317601824E-001 5 12 11 3 + -0.39497412253681613E-001 5 13 11 3 + -0.16792770745574694E-001 5 14 11 3 + 0.24109279036753636E-001 6 1 11 3 + 0.12151440362790278E-001 6 2 11 3 + -0.43137603362566557E-001 6 9 11 3 + -0.78023810870245485E-003 6 10 11 3 + 0.37594856197008010E-002 6 11 11 3 + 0.42496971360959652E-004 6 12 11 3 + -0.26548949136117993E-003 6 13 11 3 + -0.14980525083722819E-002 6 14 11 3 + 0.30623403774333664E-001 7 1 11 3 + 0.15434636091546928E-001 7 2 11 3 + -0.54793023576130591E-001 7 9 11 3 + -0.17758702397956145E-002 7 10 11 3 + 0.30318872158761833E-002 7 11 11 3 + -0.27235652326813495E-003 7 12 11 3 + 0.97281545106507519E-003 7 13 11 3 + 0.36095945895141647E-003 7 14 11 3 + -0.58993364933505807E-002 8 1 11 3 + -0.29733009794844409E-002 8 2 11 3 + 0.10555411471550794E-001 8 9 11 3 + 0.11266336333317242E-002 8 10 11 3 + -0.13952915983095737E-002 8 11 11 3 + 0.17011192548180957E-002 8 12 11 3 + 0.18049203993507643E-002 8 13 11 3 + -0.26111922673797637E-004 8 14 11 3 + -0.83584470900340303E-002 9 3 11 3 + 0.15389421018138494E-002 9 4 11 3 + 0.52717880035179545E-002 9 5 11 3 + -0.43092440302092631E-001 9 6 11 3 + -0.54735644390229148E-001 9 7 11 3 + 0.10544326790804847E-001 9 8 11 3 + -0.57108614259645238E-001 10 3 11 3 + -0.31249834692845181E-001 10 4 11 3 + 0.29167258088630497E-001 10 5 11 3 + -0.18920880612814477E-002 10 6 11 3 + -0.12090835149444439E-001 10 7 11 3 + 0.75577116908039010E-002 10 8 11 3 + 0.11340884642155348 11 3 11 3 + -0.25214341600968517E-003 1 3 11 4 + -0.11109822318285580E-002 1 4 11 4 + 0.10410431613339856E-002 1 5 11 4 + 0.34975026728367140E-003 1 6 11 4 + -0.60097408092795119E-003 1 7 11 4 + 0.99657093573696871E-004 1 8 11 4 + -0.15704765264584229E-001 2 3 11 4 + -0.69197553948798049E-001 2 4 11 4 + 0.64841390408737903E-001 2 5 11 4 + 0.10879883677297211E-001 2 6 11 4 + -0.18694842336736558E-001 2 7 11 4 + 0.31000811560338293E-002 2 8 11 4 + -0.57807903578854921E-002 3 1 11 4 + -0.17404627371112986E-001 3 2 11 4 + 0.25416549945267482E-002 3 9 11 4 + 0.24689682724952654E-001 3 10 11 4 + -0.22428800948584553E-001 3 11 11 4 + -0.19999347416269773E-001 3 12 11 4 + 0.13587950690342550E-001 3 13 11 4 + -0.26970953673197282E-001 3 14 11 4 + -0.25471086667596815E-001 4 1 11 4 + -0.76687495491929852E-001 4 2 11 4 + 0.11199089718845144E-001 4 9 11 4 + 0.33475735010225272E-001 4 10 11 4 + 0.69228723089989300E-001 4 11 11 4 + -0.18408866316476150E-001 4 12 11 4 + 0.22738847560827412E-001 4 13 11 4 + 0.14678022012545339E-001 4 14 11 4 + 0.23867629466134924E-001 5 1 11 4 + 0.71859842660258258E-001 5 2 11 4 + -0.10494119102748436E-001 5 9 11 4 + -0.26139935742935480E-001 5 10 11 4 + -0.28092582327943302E-001 5 11 11 4 + -0.10586081890476539E-001 5 12 11 4 + 0.41257021151726157E-001 5 13 11 4 + 0.12485544847331101E-001 5 14 11 4 + 0.18484146360815173E-001 6 1 11 4 + 0.93162834020956709E-002 6 2 11 4 + -0.33072817522364989E-001 6 9 11 4 + -0.91625074676447314E-003 6 10 11 4 + -0.41474543386420416E-002 6 11 11 4 + 0.62235268394604599E-004 6 12 11 4 + -0.53587943033738591E-003 6 13 11 4 + -0.10967447026644032E-002 6 14 11 4 + -0.31761236281013294E-001 7 1 11 4 + -0.16008158568716648E-001 7 2 11 4 + 0.56828890385120165E-001 7 9 11 4 + 0.19681495361020609E-002 7 10 11 4 + 0.19896025148412088E-002 7 11 11 4 + -0.56929191493824255E-003 7 12 11 4 + -0.10112321670818030E-002 7 13 11 4 + -0.24075255465705604E-003 7 14 11 4 + 0.52668719691363062E-002 8 1 11 4 + 0.26546243253720188E-002 8 2 11 4 + -0.94237633087027404E-002 8 9 11 4 + -0.88261660788821993E-003 8 10 11 4 + -0.83347414981646095E-003 8 11 11 4 + 0.13627820227967015E-002 8 12 11 4 + -0.19687596403445513E-002 8 13 11 4 + -0.23857478740012069E-004 8 14 11 4 + 0.15389421018137880E-002 9 3 11 4 + 0.67806692442006289E-002 9 4 11 4 + -0.63537761148640005E-002 9 5 11 4 + -0.33038188541967731E-001 9 6 11 4 + 0.56769403425395423E-001 9 7 11 4 + -0.94139230527268362E-002 9 8 11 4 + 0.39852898030785455E-001 10 3 11 4 + 0.50971617880347861E-001 10 4 11 4 + -0.40624722239058088E-001 10 5 11 4 + -0.32688987087261074E-002 10 6 11 4 + 0.13643626256187934E-001 10 7 11 4 + -0.63923143459451021E-002 10 8 11 4 + -0.34151829004689042E-001 11 3 11 4 + 0.10265872628277550 11 4 11 4 + -0.86376013086582435E-003 1 3 11 5 + 0.10410431613339910E-002 1 4 11 5 + -0.25852435996791934E-003 1 5 11 5 + -0.62241902308994503E-003 1 6 11 5 + 0.61232171792222984E-004 1 7 11 5 + 0.42453554436850863E-004 1 8 11 5 + -0.53799318009585567E-001 2 3 11 5 + 0.64841390408737987E-001 2 4 11 5 + -0.16102179814734267E-001 2 5 11 5 + -0.19361947195055719E-001 2 6 11 5 + 0.19047988002937144E-002 2 7 11 5 + 0.13206326063644506E-002 2 8 11 5 + -0.19803117770152801E-001 3 1 11 5 + -0.59622560135939189E-001 3 2 11 5 + 0.87070140272500329E-002 3 9 11 5 + 0.19660652090466688E-002 3 10 11 5 + -0.28422580485728363E-001 3 11 11 5 + 0.23296271653936221E-001 3 12 11 5 + -0.10197762533323051E-001 3 13 11 5 + 0.32027658430572585E-001 3 14 11 5 + 0.23867629466134958E-001 4 1 11 5 + 0.71859842660258369E-001 4 2 11 5 + -0.10494119102748452E-001 4 9 11 5 + -0.10214462623244788E-001 4 10 11 5 + -0.28092597713451448E-001 4 11 11 5 + 0.19287092805287145E-001 4 12 11 5 + 0.91473833179038511E-002 4 13 11 5 + -0.38630426838966836E-001 4 14 11 5 + -0.59271183763037029E-002 5 1 11 5 + -0.17845129358473946E-001 5 2 11 5 + 0.26061072925111927E-002 5 9 11 5 + 0.40304536858443074E-002 5 10 11 5 + 0.57950525004642137E-001 5 11 11 5 + 0.40061161062389751E-001 5 12 11 5 + -0.68414051632066861E-002 5 13 11 5 + -0.32451614061325526E-003 5 14 11 5 + -0.32894573238189152E-001 6 1 11 5 + -0.16579356495150681E-001 6 2 11 5 + 0.58856719095415955E-001 6 9 11 5 + 0.73977711882181139E-003 6 10 11 5 + 0.44856253216819260E-003 6 11 11 5 + 0.88416615304177322E-004 6 12 11 5 + -0.11984132149416202E-002 6 13 11 5 + 0.19496722327740428E-002 6 14 11 5 + 0.32360357494756833E-002 7 1 11 5 + 0.16309465658241522E-002 7 2 11 5 + -0.57900932492892824E-002 7 9 11 5 + -0.26760163699919950E-003 7 10 11 5 + -0.42086985419838817E-002 7 11 11 5 + -0.12234890940261743E-002 7 12 11 5 + 0.16554731918736685E-003 7 13 11 5 + 0.10474382237181093E-003 7 14 11 5 + 0.22436299494660982E-002 8 1 11 5 + 0.11307988934126027E-002 8 2 11 5 + -0.40144242674754966E-002 8 9 11 5 + 0.11059674069374500E-003 8 10 11 5 + -0.18317242901841628E-003 8 11 11 5 + -0.20569003711384424E-002 8 12 11 5 + 0.26578292256483903E-003 8 13 11 5 + 0.12078725303189900E-003 8 14 11 5 + 0.52717880035180360E-002 9 3 11 5 + -0.63537761148640187E-002 9 4 11 5 + 0.15777778458333296E-002 9 5 11 5 + 0.58795095911731411E-001 9 6 11 5 + -0.57839909437283621E-002 9 7 11 5 + -0.40102060036899100E-002 9 8 11 5 + 0.21346249845086538E-002 10 3 11 5 + -0.14730160378105659E-001 10 4 11 5 + 0.61370063835012277E-002 10 5 11 5 + 0.25426785344659130E-002 10 6 11 5 + -0.17295483159048065E-002 10 7 11 5 + 0.73328061062000703E-003 10 8 11 5 + -0.43277511229526548E-001 11 3 11 5 + -0.42775121296652042E-001 11 4 11 5 + 0.85485821872402501E-001 11 5 11 5 + 0.21153167948388656E-002 1 3 11 6 + 0.16217750375042423E-002 1 4 11 6 + -0.28861271474970728E-002 1 5 11 6 + -0.95092913672547834E-004 1 6 11 6 + 0.33694871210487405E-002 1 7 11 6 + -0.58371965041381624E-003 1 8 11 6 + 0.16737861073583212E-001 2 3 11 6 + 0.12832617934333960E-001 2 4 11 6 + -0.22837052870339065E-001 2 5 11 6 + -0.38796070047214970E-003 2 6 11 6 + 0.13746840238891795E-001 2 7 11 6 + -0.23814605297343412E-002 2 8 11 6 + 0.88363607822378176E-002 3 1 11 6 + 0.16860454537891662E-001 3 2 11 6 + -0.74446510689886655E-002 3 9 11 6 + -0.12242471131618738E-001 3 10 11 6 + 0.17275386881322428E-001 3 11 11 6 + 0.95197314856569387E-003 3 12 11 6 + -0.61331989064988641E-002 3 13 11 6 + 0.44616497196701289E-002 3 14 11 6 + 0.67746776435985579E-002 4 1 11 6 + 0.12926608779621464E-001 4 2 11 6 + -0.57076806568418532E-002 4 9 11 6 + -0.11011609515872276E-001 4 10 11 6 + -0.18811559204856276E-001 4 11 11 6 + 0.80884404773463663E-003 4 12 11 6 + -0.76154686360088691E-002 4 13 11 6 + 0.28813276741013610E-002 4 14 11 6 + -0.12056284361187662E-001 5 1 11 6 + -0.23004319340930075E-001 5 2 11 6 + 0.10157444374917472E-001 5 9 11 6 + 0.92009762032095547E-002 5 10 11 6 + 0.20819767209193690E-002 5 11 11 6 + -0.82369070824131626E-003 5 12 11 6 + -0.16402790148990251E-001 5 13 11 6 + -0.64452209581864501E-002 5 14 11 6 + -0.50716108860775102E-003 6 1 11 6 + -0.55103037811663369E-003 6 2 11 6 + 0.48721244576800638E-003 6 9 11 6 + 0.73186350117788426E-003 6 10 11 6 + 0.14953334378920805E-001 6 11 11 6 + -0.41327757371768171E-004 6 12 11 6 + 0.44835794907792869E-003 6 13 11 6 + 0.86097249041073909E-004 6 14 11 6 + 0.17970568755293473E-001 7 1 11 6 + 0.19525041787571695E-001 7 2 11 6 + -0.17263735033342737E-001 7 9 11 6 + -0.79607329108516162E-002 7 10 11 6 + 0.26858521487569748E-003 7 11 11 6 + 0.58704705362453704E-003 7 12 11 6 + 0.41872824299630856E-002 7 13 11 6 + 0.23651685874888210E-002 7 14 11 6 + -0.31131664444177436E-002 8 1 11 6 + -0.33824586928595255E-002 8 2 11 6 + 0.29907168010308285E-002 8 9 11 6 + 0.42165524148997900E-002 8 10 11 6 + -0.71178633655128527E-003 8 11 11 6 + -0.32106671328739226E-003 8 12 11 6 + 0.80727367691961066E-002 8 13 11 6 + -0.16020120121606392E-003 8 14 11 6 + -0.10304048407483786E-001 9 3 11 6 + -0.78999239554850328E-002 9 4 11 6 + 0.14058786811717702E-001 9 5 11 6 + 0.52679208132705056E-003 9 6 11 6 + -0.18666179514231437E-001 9 7 11 6 + 0.32336719756052143E-002 9 8 11 6 + -0.13498447574577285E-001 10 3 11 6 + -0.12134867194412778E-001 10 4 11 6 + 0.10140304025576448E-001 10 5 11 6 + 0.61289661339473998E-003 10 6 11 6 + -0.65410671179969597E-002 10 7 11 6 + 0.34599051747505566E-002 10 8 11 6 + 0.18934269774588189E-001 11 3 11 6 + -0.20612149530246475E-001 11 4 11 6 + 0.22823925603340151E-002 11 5 11 6 + 0.12677744925171040E-001 11 6 11 6 + 0.26868579146357664E-002 1 3 11 7 + -0.27866893567931230E-002 1 4 11 7 + 0.28392642513407111E-003 1 5 11 7 + 0.33694871210487301E-002 1 6 11 7 + 0.13305845815941497E-003 1 7 11 7 + -0.22864283659191189E-003 1 8 11 7 + 0.21260306330416649E-001 2 3 11 7 + -0.22050218520547515E-001 2 4 11 7 + 0.22466643010880904E-002 2 5 11 7 + 0.13746840238891819E-001 2 6 11 7 + 0.54284800724080763E-003 2 7 11 7 + -0.93282350806650884E-003 2 8 11 7 + 0.11223872570056996E-001 3 1 11 7 + 0.21416026234366576E-001 3 2 11 7 + -0.94561410269315763E-002 3 9 11 7 + -0.28394676896844055E-002 3 10 11 7 + 0.14122364960796229E-001 3 11 11 7 + -0.10259031662787700E-001 3 12 11 7 + 0.13038741877892603E-002 3 13 11 7 + -0.12202198423284839E-001 3 14 11 7 + -0.11640900510581928E-001 4 1 11 7 + -0.22211719414860949E-001 4 2 11 7 + 0.98074761523147640E-002 4 9 11 7 + 0.23628274783297739E-002 4 10 11 7 + 0.92662276986599981E-002 4 11 11 7 + -0.88427133055006893E-002 4 12 11 7 + -0.20144710666068358E-002 4 13 11 7 + 0.15600009362350771E-001 4 14 11 7 + 0.11860526391341485E-002 5 1 11 7 + 0.22631273935651303E-002 5 2 11 7 + -0.99927161461747663E-003 5 9 11 7 + -0.72493116741248508E-003 5 10 11 7 + -0.18893216073876458E-001 5 11 11 7 + -0.13270742269969615E-001 5 12 11 7 + -0.22197173232649519E-004 5 13 11 7 + -0.10931020667020955E-002 5 14 11 7 + 0.17970568755293740E-001 6 1 11 7 + 0.19525041787571661E-001 6 2 11 7 + -0.17263735033343417E-001 6 9 11 7 + -0.29378059101323852E-002 6 10 11 7 + 0.26858248164707862E-003 6 11 11 7 + -0.18441201353900925E-003 6 12 11 7 + 0.17464739173972362E-002 6 13 11 7 + -0.85639266485903962E-002 6 14 11 7 + 0.70964670485070664E-003 7 1 11 7 + 0.77103823435923442E-003 7 2 11 7 + -0.68173944468909327E-003 7 9 11 7 + 0.10696865376855328E-004 7 10 11 7 + 0.14665888419971660E-001 7 11 11 7 + 0.20343820070454354E-002 7 12 11 7 + 0.52845429112757112E-005 7 13 11 7 + 0.13213840018830340E-004 7 14 11 7 + -0.12194225023103421E-002 8 1 11 7 + -0.13248946465081032E-002 8 2 11 7 + 0.11714516599847272E-002 8 9 11 7 + 0.44154030214009986E-003 8 10 11 7 + -0.20433001581291795E-002 8 11 11 7 + 0.87855535650378826E-002 8 12 11 7 + 0.83761958196092864E-004 8 13 11 7 + -0.32515798225073340E-003 8 14 11 7 + -0.13088104228008362E-001 9 3 11 7 + 0.13574422004810788E-001 9 4 11 7 + -0.13830125163878989E-002 9 5 11 7 + -0.18666179514232103E-001 9 6 11 7 + -0.73711939512574533E-003 9 7 11 7 + 0.12666193244425057E-002 9 8 11 7 + -0.30826195910595442E-002 10 3 11 7 + 0.25503248154887127E-002 10 4 11 7 + -0.79262960229147515E-003 10 5 11 7 + -0.25852578235127394E-002 10 6 11 7 + 0.89570008740887830E-005 10 7 11 7 + 0.36879219274468794E-003 10 8 11 7 + 0.15482833916713987E-001 11 3 11 7 + 0.10158846527039810E-001 11 4 11 7 + -0.20696824087662602E-001 11 5 11 7 + 0.22490844268441496E-003 11 6 11 7 + 0.12436719951439718E-001 11 7 11 7 + -0.51760082750391240E-003 1 3 11 8 + 0.46210794702475317E-003 1 4 11 8 + 0.19685350017644492E-003 1 5 11 8 + -0.58371965041382112E-003 1 6 11 8 + -0.22864283659191883E-003 1 7 11 8 + -0.37965544486869166E-004 1 8 11 8 + -0.40956523515653506E-002 2 3 11 8 + 0.36564941306714326E-002 2 4 11 8 + 0.15576575268910517E-002 2 5 11 8 + -0.23814605297342978E-002 2 6 11 8 + -0.93282350806651307E-003 2 7 11 8 + -0.15488730676864947E-003 2 8 11 8 + -0.21621859575087295E-002 3 1 11 8 + -0.41256567318349487E-002 3 2 11 8 + 0.18216625138628424E-002 3 9 11 8 + 0.21648302796970120E-002 3 10 11 8 + -0.50561105258560817E-002 3 11 11 8 + 0.30921430670318955E-002 3 12 11 8 + 0.17919695303349908E-002 3 13 11 8 + 0.19909304716631301E-002 3 14 11 8 + 0.19303737739229943E-002 4 1 11 8 + 0.36832704418167644E-002 4 2 11 8 + -0.16263307813827116E-002 4 9 11 8 + -0.17883633009485318E-003 4 10 11 8 + -0.23583585828361856E-002 4 11 11 8 + 0.32587936722660942E-002 4 12 11 8 + -0.18638882644118177E-002 4 13 11 8 + -0.28689290592816942E-002 4 14 11 8 + 0.82232072008429392E-003 5 1 11 8 + 0.15690692784335368E-002 5 2 11 8 + -0.69281439555058896E-003 5 9 11 8 + 0.24016050776720692E-003 5 10 11 8 + 0.93713533343560017E-003 5 11 11 8 + -0.10767065799185424E-003 5 12 11 8 + 0.14291735512143436E-002 5 13 11 8 + 0.10276564041746103E-002 5 14 11 8 + -0.31131664444176959E-002 6 1 11 8 + -0.33824586928594990E-002 6 2 11 8 + 0.29907168010306351E-002 6 9 11 8 + 0.13678351965089645E-002 6 10 11 8 + -0.71179339269667710E-003 6 11 11 8 + -0.30302504407115770E-003 6 12 11 8 + 0.25050834088989741E-002 6 13 11 8 + 0.15727991908489755E-002 6 14 11 8 + -0.12194225023103278E-002 7 1 11 8 + -0.13248946465081067E-002 7 2 11 8 + 0.11714516599847164E-002 7 9 11 8 + 0.40187472449044570E-003 7 10 11 8 + -0.20433010203756295E-002 7 11 11 8 + 0.25328356307614637E-002 7 12 11 8 + -0.40981714745317937E-003 7 13 11 8 + -0.41887477253828482E-003 7 14 11 8 + -0.20248561624294643E-003 8 1 11 8 + -0.22000785624259135E-003 8 2 11 8 + 0.19452699892102995E-003 8 9 11 8 + -0.74255700125197793E-003 8 10 11 8 + 0.33334926176191867E-002 8 11 11 8 + -0.19930504823025890E-002 8 12 11 8 + -0.45352413323042904E-003 8 13 11 8 + -0.99312463810693533E-004 8 14 11 8 + 0.25212845529296707E-002 9 3 11 8 + -0.22510271245483296E-002 9 4 11 8 + -0.95889031692808046E-003 9 5 11 8 + 0.32336719756047927E-002 9 6 11 8 + 0.12666193244424957E-002 9 7 11 8 + 0.21032731379866688E-003 9 8 11 8 + 0.23570878509086082E-002 10 3 11 8 + -0.17084499855986776E-003 10 4 11 8 + 0.26192199695140910E-003 10 5 11 8 + 0.12163973980613295E-002 10 6 11 8 + 0.33754011105478770E-003 10 7 11 8 + -0.62185475367706002E-003 10 8 11 8 + -0.55095676842436487E-002 11 3 11 8 + -0.25500554667122434E-002 11 4 11 8 + 0.10690501148224176E-002 11 5 11 8 + -0.59605143369531003E-003 11 6 11 8 + -0.17109501983078796E-002 11 7 11 8 + 0.29469597511241753E-002 11 8 11 8 + -0.14220359871923423E-002 1 11 11 9 + 0.28129183389793260E-008 2 10 11 9 + -0.15454078697612244E-001 2 11 11 9 + 0.31489907788786442E-008 2 12 11 9 + 0.98931225487225153E-007 2 13 11 9 + -0.11490977138412374E-008 2 14 11 9 + -0.84083093075904905E-002 3 3 11 9 + 0.15480236527076752E-002 3 4 11 9 + 0.53031515510498783E-002 3 5 11 9 + -0.54995953945159420E-002 3 6 11 9 + -0.69855479823337100E-002 3 7 11 9 + 0.13457247052590462E-002 3 8 11 9 + 0.15480236527076769E-002 4 3 11 9 + 0.68209876375462898E-002 4 4 11 9 + -0.63916267238224838E-002 4 5 11 9 + -0.42164418805101227E-002 4 6 11 9 + 0.72450860038279427E-002 4 7 11 9 + -0.12014165807402808E-002 4 8 11 9 + 0.53031515510498749E-002 5 3 11 9 + -0.63916267238224838E-002 5 4 11 9 + 0.15873216700441775E-002 5 5 11 9 + 0.75036207392984054E-002 5 6 11 9 + -0.73820013570503678E-003 5 7 11 9 + -0.51180625284642128E-003 5 8 11 9 + -0.68741529358373223E-002 6 3 11 9 + -0.52702886446473517E-002 6 4 11 9 + 0.93790584249368834E-002 6 5 11 9 + 0.14243031568448396E-003 6 6 11 9 + -0.50468470052802668E-002 6 7 11 9 + 0.87430043795709209E-003 6 8 11 9 + -0.87314931285041586E-002 7 3 11 9 + 0.90559142115160252E-002 7 4 11 9 + -0.92267937643659569E-003 7 5 11 9 + -0.50468470052802391E-002 7 6 11 9 + -0.19930243991878393E-003 7 7 11 9 + 0.34245406656012271E-003 7 8 11 9 + 0.16820515276349658E-002 8 3 11 9 + -0.15017122533953792E-002 8 4 11 9 + -0.63971655045252235E-003 8 5 11 9 + 0.87430043795709621E-003 8 6 11 9 + 0.34245406656012353E-003 8 7 11 9 + 0.56872124234405885E-004 8 8 11 9 + 0.15837635712572820E-008 9 10 11 9 + 0.13649865236637762E-001 9 11 11 9 + 0.17729833122890816E-008 9 12 11 9 + 0.55701462861828772E-007 9 13 11 9 + -0.64697898058795375E-009 9 14 11 9 + 0.19078673352599895E-009 10 1 11 9 + 0.48787260734390218E-008 10 2 11 9 + -0.11140193766725855E-008 10 9 11 9 + 0.29465474660591277E-003 10 10 11 9 + 0.65373345135288962E-002 10 11 11 9 + -0.20797529605206971E-002 10 12 11 9 + -0.32024629274479444E-003 10 13 11 9 + 0.50095952703743370E-003 10 14 11 9 + -0.29383155053949736E-002 11 1 11 9 + -0.11924950102486303E-001 11 2 11 9 + 0.10148152175114888E-001 11 9 11 9 + -0.38179356214772102E-009 1 1 11 10 + 0.14800590954025971E-004 1 10 11 10 + 0.32837627909733152E-003 1 11 11 10 + -0.10446675149316393E-003 1 12 11 10 + -0.16083138524372113E-004 1 13 11 10 + 0.25161211727234691E-004 1 14 11 10 + 0.25273899064583754E-009 2 1 11 10 + 0.36374209135212708E-008 2 2 11 10 + 0.32423598792088227E-008 2 9 11 10 + -0.11772791318233468E-002 2 10 11 10 + -0.26119412532681224E-001 2 11 11 10 + 0.83094777670961930E-002 2 12 11 10 + 0.12793822550634642E-002 2 13 11 10 + -0.20013777729519754E-002 2 14 11 10 + -0.24162083955733969E-001 3 3 11 10 + 0.18200171982347621E-002 3 4 11 10 + 0.66217370721541472E-002 3 5 11 10 + -0.33963340809027853E-002 3 6 11 10 + -0.33484143603186409E-002 3 7 11 10 + 0.21879592233730294E-002 3 8 11 10 + 0.18200117235042115E-002 4 3 11 10 + 0.21565613281063940E-001 4 4 11 10 + -0.11710041014934473E-001 4 5 11 10 + -0.33992427273604139E-002 4 6 11 10 + 0.35736234207881900E-002 4 7 11 10 + -0.14483417292428936E-002 4 8 11 10 + 0.66217734666887450E-002 5 3 11 10 + -0.11710036228471972E-001 5 4 11 10 + 0.25964800225473390E-002 5 5 11 10 + 0.27988316343420748E-002 5 6 11 10 + -0.55657826545321243E-003 5 7 11 10 + 0.21961733582053958E-003 5 8 11 10 + -0.20699026535322290E-002 6 3 11 10 + -0.20716340302983204E-002 6 4 11 10 + 0.17057392000213961E-002 6 5 11 10 + 0.17323415277854018E-002 6 6 11 10 + -0.12898519291853400E-001 6 7 11 10 + 0.66091698160006011E-002 6 8 11 10 + -0.20406717833084342E-002 7 3 11 10 + 0.21779503230433730E-002 7 4 11 10 + -0.33920394152947976E-003 7 5 11 10 + -0.12898525626317192E-001 7 6 11 10 + 0.25316189318781314E-004 7 7 11 10 + 0.99819886236030236E-003 7 8 11 10 + 0.13334088570157493E-002 8 3 11 10 + -0.88271196919003877E-003 8 4 11 10 + 0.13384642342005999E-003 8 5 11 10 + 0.66091685337221441E-002 8 6 11 10 + 0.99818936430125607E-003 8 7 11 10 + -0.17576528239619746E-002 8 8 11 10 + -0.28576179810471100E-009 9 1 11 10 + -0.43435979592117322E-008 9 2 11 10 + 0.20230656104016882E-008 9 9 11 10 + -0.91861644789552297E-004 9 10 11 10 + -0.20381087492216243E-002 9 11 11 10 + 0.64840090148120364E-003 9 12 11 10 + 0.99863502363764576E-004 9 13 11 10 + -0.15621037966272096E-003 9 14 11 10 + -0.19892894802746918E-003 10 1 11 10 + -0.20852651587300692E-002 10 2 11 10 + 0.29465469601632849E-003 10 9 11 10 + 0.25634011129974231E-007 10 10 11 10 + 0.34801466794935947E-001 10 11 11 10 + -0.23397434001115426E-003 10 12 11 10 + -0.52724076143338271E-003 10 13 11 10 + -0.14026691665823516E-003 10 14 11 10 + -0.44135103713615663E-002 11 1 11 10 + -0.46264426477051535E-001 11 2 11 10 + 0.65373356700486546E-002 11 9 11 10 + 0.34801523624276950E-001 11 10 11 10 + 0.78365847683842416 1 1 11 11 + -0.37281098062889990E-001 1 2 11 11 + 0.33374722890000305E-001 1 9 11 11 + 0.32837634921810752E-003 1 10 11 11 + -0.32483116842666267E-004 1 11 11 11 + 0.42231229416316108E-005 1 12 11 11 + -0.11324348502696264E-003 1 13 11 11 + 0.17590673425180240E-003 1 14 11 11 + 0.31855171345024767E-001 2 1 11 11 + 0.64137889005399107 2 2 11 11 + -0.15187786026653557 2 9 11 11 + -0.26119411240404709E-001 2 10 11 11 + 0.25838548626396277E-002 2 11 11 11 + -0.33551694981102020E-003 2 12 11 11 + 0.90077345449084637E-002 2 13 11 11 + -0.13992266425610047E-001 2 14 11 11 + 0.62895738325664918 3 3 11 11 + -0.14448935855728285E-001 3 4 11 11 + -0.18310278351315077E-001 3 5 11 11 + 0.10848930475586298 3 6 11 11 + 0.78918578372857873E-001 3 7 11 11 + -0.10103842856009421 3 8 11 11 + -0.14448953303957339E-001 4 3 11 11 + 0.62440898955951130 4 4 11 11 + -0.18097695863209837E-001 4 5 11 11 + -0.13074569912051220 4 6 11 11 + 0.51844858783570778E-001 4 7 11 11 + -0.90033670929250936E-001 4 8 11 11 + -0.18310295130180218E-001 5 3 11 11 + -0.18097678844887406E-001 5 4 11 11 + 0.61714340719115057 5 5 11 11 + 0.12016518646244241E-001 5 6 11 11 + -0.14144767455254229 5 7 11 11 + -0.85074396923734974E-001 5 8 11 11 + 0.80145305736161035E-001 6 3 11 11 + -0.96723410051486700E-001 6 4 11 11 + 0.88656059690014350E-002 6 5 11 11 + 0.49947084408413717 6 6 11 11 + 0.63573708235273741E-003 6 7 11 11 + -0.16848326815091142E-002 6 8 11 11 + 0.58194716724998014E-001 7 3 11 11 + 0.38231266170300718E-001 7 4 11 11 + -0.10473976042195300 7 5 11 11 + 0.63574036952897001E-003 7 6 11 11 + 0.49879040822095777 7 7 11 11 + -0.48365177221725694E-002 7 8 11 11 + -0.75390848962070128E-001 8 3 11 11 + -0.67325444412770344E-001 8 4 11 11 + -0.63831972990187433E-001 8 5 11 11 + -0.16848241952840297E-002 8 6 11 11 + -0.48365166851731178E-002 8 7 11 11 + 0.47196639761573628 8 8 11 11 + -0.27663279832779181E-001 9 1 11 11 + -0.98971814457965046E-001 9 2 11 11 + 0.50533114978238092 9 9 11 11 + -0.20381086998737105E-002 9 10 11 11 + 0.20159224443518637E-003 9 11 11 11 + -0.26230291229162379E-004 9 12 11 11 + 0.70299270688524559E-003 9 13 11 11 + -0.10920270788622153E-002 9 14 11 11 + -0.44135097151851346E-002 10 1 11 11 + -0.46264406567962588E-001 10 2 11 11 + 0.65373343856194900E-002 10 9 11 11 + 0.60394858291853259 10 10 11 11 + -0.16827815134008759E-009 10 11 11 11 + -0.86875748786918597E-003 10 12 11 11 + 0.85503994182978954E-003 10 13 11 11 + -0.14131248141909251E-001 10 14 11 11 + 0.43660013183822880E-003 11 1 11 11 + 0.45766403879361640E-002 11 2 11 11 + -0.64667825576856868E-003 11 9 11 11 + 0.40728547262927674E-008 11 10 11 11 + 0.67355149304606587 11 11 11 11 + -0.42740879687117016E-009 1 1 11 12 + 0.10777231108053265E-009 1 2 11 12 + -0.10446698228921412E-003 1 10 11 12 + 0.42238920547595883E-005 1 11 11 12 + 0.10557485506860964E-004 1 12 11 12 + -0.32008344553172418E-003 1 13 11 12 + -0.10524306513242154E-004 1 14 11 12 + 0.28293486913382770E-009 2 1 11 12 + 0.40720000438344828E-008 2 2 11 12 + 0.36297397865939498E-008 2 9 11 12 + 0.83094735136881558E-002 2 10 11 12 + -0.33550277560021193E-003 2 11 11 12 + -0.83981140390895087E-003 2 12 11 12 + 0.25460486140018258E-001 2 13 11 12 + 0.83716979708603782E-003 2 14 11 12 + -0.13948681296194093E-001 3 3 11 12 + -0.12891826071883598E-001 3 4 11 12 + 0.55031090160337695E-003 3 5 11 12 + 0.23490199496346525E-003 3 6 11 12 + -0.22337602516408336E-002 3 7 11 12 + 0.32729562121964393E-002 3 8 11 12 + -0.12891797608755541E-001 4 3 11 12 + -0.11859265870894010E-001 4 4 11 12 + 0.28026890577495692E-002 4 5 11 12 + 0.24154039370118986E-003 4 6 11 12 + -0.24624743968247598E-002 4 7 11 12 + 0.27588272375706313E-002 4 8 11 12 + 0.55030135474835201E-003 5 3 11 12 + 0.28026950821635477E-002 5 4 11 12 + 0.25807957631798793E-001 5 5 11 12 + -0.22669118780641928E-005 5 6 11 12 + -0.42884404828579491E-002 5 7 11 12 + -0.33214003291308393E-002 5 8 11 12 + 0.14317200725852744E-003 6 3 11 12 + 0.14721202616706995E-003 6 4 11 12 + -0.13853029082687708E-005 6 5 11 12 + -0.97823055413032481E-004 6 6 11 12 + 0.47649501805732838E-003 6 7 11 12 + -0.73861205165686925E-003 6 8 11 12 + -0.13612804280579663E-002 7 3 11 12 + -0.15006839140506763E-002 7 4 11 12 + -0.26133269430423907E-002 7 5 11 12 + 0.47650261782652991E-003 7 6 11 12 + 0.48154526730937990E-002 7 7 11 12 + 0.13395465712697969E-001 7 8 11 12 + 0.19944787995656173E-002 8 3 11 12 + 0.16812092091773724E-002 8 4 11 12 + -0.20241257541308514E-002 8 5 11 12 + -0.73861769524971273E-003 8 6 11 12 + 0.13395466192396479E-001 8 7 11 12 + -0.47176241399337175E-002 8 8 11 12 + -0.31990306770265901E-009 9 1 11 12 + -0.48625477442395846E-008 9 2 11 12 + 0.22647706213816349E-008 9 9 11 12 + 0.64840073905709085E-003 9 10 11 12 + -0.26229749961302908E-004 9 11 11 12 + -0.65496624575071930E-004 9 12 11 12 + 0.19870690062962267E-002 9 13 11 12 + 0.65335500661138697E-004 9 14 11 12 + 0.14040844205838760E-002 10 1 11 12 + 0.14718240547616902E-001 10 2 11 12 + -0.20797524005413447E-002 10 9 11 12 + 0.46812409066065075E-003 10 10 11 12 + 0.43431853812859843E-003 10 11 11 12 + 0.36194596686544981E-003 10 12 11 12 + 0.44076783764352589E-003 10 13 11 12 + 0.49208968614296161E-002 10 14 11 12 + -0.56707354212975951E-004 11 1 11 12 + -0.59433680919712662E-003 11 2 11 12 + 0.84020794494342859E-004 11 9 11 12 + 0.43422184017200135E-003 11 10 11 12 + 0.10125905089925624E-008 11 11 11 12 + 0.34052131403816036E-001 11 12 11 12 + -0.13427816261104350E-007 1 1 11 13 + 0.33858614644032255E-008 1 2 11 13 + 0.38918100603904258E-009 1 9 11 13 + -0.16082029140110521E-004 1 10 11 13 + -0.11324050195476315E-003 1 11 11 13 + -0.32007400200453293E-003 1 12 11 13 + 0.74567294177618252E-005 1 13 11 13 + 0.21599917188568331E-004 1 14 11 13 + 0.88889093425726901E-008 2 1 11 13 + 0.12792922760793779E-006 2 2 11 13 + 0.11403482256983887E-006 2 9 11 13 + 0.12794027002309063E-002 2 10 11 13 + 0.90077895208160175E-002 2 11 11 13 + 0.25460660177546276E-001 2 12 11 13 + -0.59328102186508133E-003 2 13 11 13 + -0.17171412974338067E-002 2 14 11 13 + -0.10241291275118906E-001 3 3 11 13 + -0.55432000490202363E-003 3 4 11 13 + -0.16007475046151427E-001 3 5 11 13 + -0.15002586108687269E-002 3 6 11 13 + 0.17901074949131200E-002 3 7 11 13 + 0.32121371133142043E-002 3 8 11 13 + -0.55416214282492959E-003 4 3 11 13 + 0.14648930594140446E-001 4 4 11 13 + 0.16235952957093264E-001 4 5 11 13 + -0.21939219342274594E-002 4 6 11 13 + -0.19765691905394007E-002 4 7 11 13 + -0.34872869962705175E-002 4 8 11 13 + -0.16007316780724819E-001 5 3 11 13 + 0.16235791103453075E-001 5 4 11 13 + -0.44073105512556178E-002 5 5 11 13 + -0.47964439606319109E-002 5 6 11 13 + 0.26226716731354768E-003 5 7 11 13 + 0.67721097457048185E-003 5 8 11 13 + -0.91428102293247653E-003 6 3 11 13 + -0.13370103659647045E-002 6 4 11 13 + -0.29230267334139672E-002 6 5 11 13 + 0.10612981086062319E-002 6 6 11 13 + 0.70225944397171889E-002 6 7 11 13 + 0.12518835180979524E-001 6 8 11 13 + 0.10910228329129364E-002 7 3 11 13 + -0.12044429098137062E-002 7 4 11 13 + 0.15961819245237358E-003 7 5 11 13 + 0.70225620505638946E-002 7 6 11 13 + 0.12443906492545513E-004 7 7 11 13 + -0.38588505046759189E-003 7 8 11 13 + 0.19573090281863157E-002 8 3 11 13 + -0.21252949047886691E-002 8 4 11 13 + 0.41257790396197615E-003 8 5 11 13 + 0.12518756689264757E-001 8 6 11 13 + -0.38589442604167288E-003 8 7 11 13 + -0.10735699217725774E-002 8 8 11 13 + -0.10050332002121980E-007 9 1 11 13 + -0.15276570801295948E-006 9 2 11 13 + 0.71151844529680159E-007 9 9 11 13 + 0.99864283099494793E-004 9 10 11 13 + 0.70299480624006535E-003 9 11 11 13 + 0.19870756522342059E-002 9 12 11 13 + -0.46269798371794646E-004 9 13 11 13 + -0.13427150948925091E-003 9 14 11 13 + 0.21618343617506644E-003 10 1 11 13 + 0.22662711929912847E-002 10 2 11 13 + -0.32024631577683789E-003 10 9 11 13 + 0.10549216641433637E-002 10 10 11 13 + -0.42752718311207984E-003 10 11 11 13 + 0.13377820541848842E-001 10 12 11 13 + 0.33159375894627766E-003 10 13 11 13 + -0.13177424435101997E-002 10 14 11 13 + 0.15220813728779922E-002 11 1 11 13 + 0.15955520018384402E-001 11 2 11 13 + -0.22546307496169849E-002 11 9 11 13 + -0.42750743036661603E-003 11 10 11 13 + -0.38199392854575236E-007 11 11 11 13 + -0.57496961858039095E-003 11 12 11 13 + 0.34348670290481977E-001 11 13 11 13 + 0.15596570753677271E-009 1 1 11 14 + 0.25160368765269741E-004 1 10 11 14 + 0.17590117666887705E-003 1 11 11 14 + -0.10523859797484060E-004 1 12 11 14 + 0.21599387045312627E-004 1 13 11 14 + -0.33168903597933449E-006 1 14 11 14 + -0.10324571544853990E-009 2 1 11 14 + -0.14859128388855943E-008 2 2 11 14 + -0.13245277654138391E-008 2 9 11 14 + -0.20013933081448683E-002 2 10 11 14 + -0.13992368847933166E-001 2 11 11 14 + 0.83717802974156918E-003 2 12 11 14 + -0.17171510675990775E-002 2 13 11 14 + 0.26516694957758266E-004 2 14 11 14 + -0.92469076473706072E-002 3 3 11 14 + 0.29267344772712731E-002 3 4 11 14 + 0.49072089343944495E-002 3 5 11 14 + -0.16240896718241252E-002 3 6 11 14 + -0.15570424905308553E-002 3 7 11 14 + 0.30654321083926114E-003 3 8 11 14 + 0.29264111240841994E-002 4 3 11 14 + 0.94559231772854344E-002 4 4 11 14 + -0.84214525744137052E-002 4 5 11 14 + -0.12564856127319371E-002 4 6 11 14 + 0.23451350204025364E-002 4 7 11 14 + -0.54079828991876510E-003 4 8 11 14 + 0.49074549140148416E-002 5 3 11 14 + -0.84217244780952286E-002 5 4 11 14 + -0.20901934859073702E-003 5 5 11 14 + 0.20019155934429514E-002 5 6 11 14 + -0.23016564145195522E-004 5 7 11 14 + 0.37397928282258185E-003 5 8 11 14 + -0.98969710095526725E-003 6 3 11 14 + -0.76566606930485843E-003 6 4 11 14 + 0.12199242302249683E-002 6 5 11 14 + 0.20379681522151075E-003 6 6 11 14 + -0.73361185959385537E-002 6 7 11 14 + 0.16717889703582766E-002 6 8 11 14 + -0.94895012813039719E-003 7 3 11 14 + 0.14291592583749366E-002 7 4 11 14 + -0.14165937012045183E-004 7 5 11 14 + -0.73362682153950620E-002 7 6 11 14 + 0.31242493675558674E-004 7 7 11 14 + -0.88060196474880749E-003 7 8 11 14 + 0.18691396703874070E-003 8 3 11 14 + -0.32949396580726607E-003 8 4 11 14 + 0.22785016069669622E-003 8 5 11 14 + 0.16718115746104977E-002 8 6 11 14 + -0.88060027294798479E-003 8 7 11 14 + -0.23504130778099710E-003 8 8 11 14 + 0.11673577394845096E-009 9 1 11 14 + 0.17743914953190984E-008 9 2 11 14 + -0.82643690072008278E-009 9 9 11 14 + -0.15621097290215527E-003 9 10 11 14 + -0.10920309900438775E-002 9 11 11 14 + 0.65335815039931932E-004 9 12 11 14 + -0.13427188258064641E-003 9 13 11 14 + 0.20358233012788261E-005 9 14 11 14 + -0.33818465747615647E-003 10 1 11 14 + -0.35451089679418694E-002 10 2 11 14 + 0.50095954597924449E-003 10 9 11 14 + 0.28057176364391424E-003 10 10 11 14 + 0.70648496035501688E-002 10 11 11 14 + -0.19999203679034751E-002 10 12 11 14 + -0.32979040982122741E-003 10 13 11 14 + -0.69351752406289491E-003 10 14 11 14 + -0.23643423869335071E-002 11 1 11 14 + -0.24784804341016927E-001 11 2 11 14 + 0.35022828453008877E-002 11 9 11 14 + 0.70663777291896908E-002 11 10 11 14 + 0.11024462778601966E-007 11 11 11 14 + -0.10686920606545278E-002 11 12 11 14 + -0.20163284769257636E-002 11 13 11 14 + 0.24280003328311282E-001 11 14 11 14 + 0.87164668640202561E-003 1 12 12 1 + -0.84120216209807792E-009 1 13 12 1 + 0.80851322557299858E-009 1 14 12 1 + 0.25819978583036740E-009 2 11 12 1 + 0.77125213570154883E-002 2 12 12 1 + -0.47581730421324768E-008 2 13 12 1 + 0.45732714538705695E-008 2 14 12 1 + -0.50470899755105320E-002 3 3 12 1 + 0.53647183645707337E-003 3 4 12 1 + -0.39071844503524257E-002 3 5 12 1 + -0.20284801964597097E-002 3 6 12 1 + 0.59024000479235977E-003 3 7 12 1 + 0.25923193528508983E-002 3 8 12 1 + 0.53647183645707348E-003 4 3 12 1 + 0.56309890737523162E-002 4 4 12 1 + 0.31400213627187303E-002 4 5 12 1 + -0.19724862453364541E-002 4 6 12 1 + -0.36395746414496404E-003 4 7 12 1 + -0.27177036216482178E-002 4 8 12 1 + -0.39071844503524257E-002 5 3 12 1 + 0.31400213627187298E-002 5 4 12 1 + -0.58389909824201340E-003 5 5 12 1 + -0.25771728420423802E-002 5 6 12 1 + -0.18404682839303851E-003 5 7 12 1 + 0.51584015936584902E-003 5 8 12 1 + -0.20814982878681544E-002 6 3 12 1 + -0.20240357581030413E-002 6 4 12 1 + -0.26445293085935770E-002 6 5 12 1 + 0.72099880900002169E-004 6 6 12 1 + 0.86375365339962204E-003 6 7 12 1 + 0.50781527777670242E-002 6 8 12 1 + 0.60566788530461971E-003 7 3 12 1 + -0.37346833151598747E-003 7 4 12 1 + -0.18885572362663155E-003 7 5 12 1 + 0.86375365339962237E-003 7 6 12 1 + 0.42323861484381664E-003 7 7 12 1 + -0.86063868474295591E-004 7 8 12 1 + 0.26600680685546383E-002 8 3 12 1 + -0.27887354988767872E-002 8 4 12 1 + 0.52932211215467946E-003 8 5 12 1 + 0.50781527777670234E-002 8 6 12 1 + -0.86063868474295550E-004 8 7 12 1 + -0.49533849574398764E-003 8 8 12 1 + -0.28661276647003759E-009 9 11 12 1 + -0.25124684252932996E-002 9 12 12 1 + 0.52817748373253381E-008 9 13 12 1 + -0.50765261913366290E-008 9 14 12 1 + 0.74592627690563205E-003 10 10 12 1 + 0.14040835435646019E-002 10 11 12 1 + 0.41049123525648034E-002 10 12 12 1 + 0.58179908142662083E-004 10 13 12 1 + -0.64101508303904947E-003 10 14 12 1 + 0.21358091258418544E-009 11 9 12 1 + 0.14040865803275075E-002 11 10 12 1 + -0.56714551420634610E-004 11 11 12 1 + -0.14190366164275542E-003 11 12 12 1 + 0.43021865357446157E-002 11 13 12 1 + 0.14146002216435801E-003 11 14 12 1 + 0.16267896325403871E-002 12 1 12 1 + 0.10694184480954910E-009 1 11 12 2 + 0.56390827487779588E-003 1 12 12 2 + -0.19707522036850937E-008 1 13 12 2 + 0.18941691923312967E-008 1 14 12 2 + 0.60946346995221681E-009 2 10 12 2 + 0.39655940148341974E-008 2 11 12 2 + 0.62907471392986566E-001 2 12 12 2 + -0.73079001508155042E-007 2 13 12 2 + 0.70239167076699834E-007 2 14 12 2 + -0.38864969696488415E-001 3 3 12 2 + 0.41311156024131570E-002 3 4 12 2 + -0.30087164882563789E-001 3 5 12 2 + -0.59065064651159195E-002 3 6 12 2 + 0.17186464401702413E-002 3 7 12 2 + 0.75483457251768618E-002 3 8 12 2 + 0.41311156024131553E-002 4 3 12 2 + 0.43361276859430545E-001 4 4 12 2 + 0.24179652565754321E-001 4 5 12 2 + -0.57435106225089605E-002 4 6 12 2 + -0.10597842782403219E-002 4 7 12 2 + -0.79133828929949038E-002 4 8 12 2 + -0.30087164882563789E-001 5 3 12 2 + 0.24179652565754328E-001 5 4 12 2 + -0.44963071629441241E-002 5 5 12 2 + -0.75042088128859539E-002 5 6 12 2 + -0.53591945282646181E-003 5 7 12 2 + 0.15020222179993978E-002 5 8 12 2 + -0.42868775432146891E-002 6 3 12 2 + -0.41684671720895912E-002 6 4 12 2 + -0.54464134047700731E-002 6 5 12 2 + 0.46187881529393191E-003 6 6 12 2 + 0.55334304145860233E-002 6 7 12 2 + 0.32531967096924116E-001 6 8 12 2 + 0.12473934027380073E-002 7 3 12 2 + -0.76914006541712351E-003 7 4 12 2 + -0.38893178021013941E-003 7 5 12 2 + 0.55334304145860129E-002 7 6 12 2 + 0.27113767466588547E-002 7 7 12 2 + -0.55135545088074768E-003 7 8 12 2 + 0.54783688726789941E-002 8 3 12 2 + -0.57434389233923973E-002 8 4 12 2 + 0.10901407107977248E-002 8 5 12 2 + 0.32531967096924130E-001 8 6 12 2 + -0.55135545088074930E-003 8 7 12 2 + -0.31732555619538973E-002 8 8 12 2 + -0.81992952300557338E-009 9 10 12 2 + -0.53350332537961057E-008 9 11 12 2 + 0.21148532468954389E-002 9 12 12 2 + 0.98315384918230851E-007 9 13 12 2 + -0.94494869936515005E-007 9 14 12 2 + 0.19934484685230927E-009 10 2 12 2 + 0.83938284745674824E-009 10 9 12 2 + 0.78191555598243027E-002 10 10 12 2 + 0.14718216695711403E-001 10 11 12 2 + 0.43029575404486188E-001 10 12 12 2 + 0.60990206922572948E-003 10 13 12 2 + -0.67196157676624102E-002 10 14 12 2 + 0.12970761236425193E-008 11 2 12 2 + 0.54616101706410086E-008 11 9 12 2 + 0.14718306076531143E-001 11 10 12 2 + -0.59455518011580647E-003 11 11 12 2 + -0.14874889071958724E-002 11 12 12 2 + 0.45098651512383070E-001 11 13 12 2 + 0.14829044723540165E-002 11 14 12 2 + 0.90789067727069205E-002 12 1 12 2 + 0.96402731753146731E-001 12 2 12 2 + -0.12795059407851935E-002 1 3 12 3 + 0.13600369897317799E-003 1 4 12 3 + -0.99052451064769102E-003 1 5 12 3 + -0.44833005308285564E-003 1 6 12 3 + 0.13045344379238445E-003 1 7 12 3 + 0.57294887622626254E-003 1 8 12 3 + -0.79694046432541882E-001 2 3 12 3 + 0.84710046523686008E-002 2 4 12 3 + -0.61694835658708466E-001 2 5 12 3 + -0.13946454278277572E-001 2 6 12 3 + 0.40580858648049060E-002 2 7 12 3 + 0.17823060557090584E-001 2 8 12 3 + -0.29334784728863791E-001 3 1 12 3 + -0.88320161425664442E-001 3 2 12 3 + 0.12897928584786680E-001 3 9 12 3 + -0.16734664056073545E-001 3 10 12 3 + -0.21652355674892744E-001 3 11 12 3 + 0.75162558451817379E-001 3 12 12 3 + 0.33950306845747007E-001 3 13 12 3 + 0.18203267381422972E-001 3 14 12 3 + 0.31180905992984412E-002 4 1 12 3 + 0.93878710398469824E-002 4 2 12 3 + -0.13709010865176497E-002 4 9 12 3 + -0.18913770759397250E-001 4 10 12 3 + -0.19999302548934530E-001 4 11 12 3 + -0.17869730934250556E-001 4 12 12 3 + 0.18133394124062719E-001 4 13 12 3 + -0.34384852588773010E-001 4 14 12 3 + -0.22709405814624505E-001 5 1 12 3 + -0.68372703098218954E-001 5 2 12 3 + 0.99848701319466601E-002 5 9 12 3 + -0.35442125026788986E-001 5 10 12 3 + 0.23296327741256454E-001 5 11 12 3 + 0.35403281501557304E-001 5 12 12 3 + -0.23335131108885587E-001 5 13 12 3 + -0.99957917814366519E-002 5 14 12 3 + -0.23694075523539158E-001 6 1 12 3 + -0.11942199347963057E-001 6 2 12 3 + 0.42394696528202894E-001 6 9 12 3 + -0.12835780773769203E-003 6 10 12 3 + 0.14447047390734311E-003 6 11 12 3 + 0.37714460625474472E-002 6 12 12 3 + 0.72152712055191266E-003 6 13 12 3 + 0.15091398140438144E-002 6 14 12 3 + 0.68944259015696211E-002 7 1 12 3 + 0.34749140517757143E-002 7 2 12 3 + -0.12335871392827210E-001 7 9 12 3 + 0.70262614096672639E-003 7 10 12 3 + -0.15053088445035562E-002 7 11 12 3 + 0.21414705597271052E-003 7 12 12 3 + 0.18230629456568454E-002 7 13 12 3 + 0.22351543983736957E-003 7 14 12 3 + 0.30280058459621163E-001 8 1 12 3 + 0.15261558725848908E-001 8 2 12 3 + -0.54178694374923154E-001 8 9 12 3 + 0.18187755015890430E-002 8 10 12 3 + 0.90335747066659189E-003 8 11 12 3 + -0.33462883237802840E-002 8 12 12 3 + -0.84645738074260075E-003 8 13 12 3 + 0.13434571925259475E-003 8 14 12 3 + 0.78091706573718946E-002 9 3 12 3 + -0.83012626755314320E-003 9 4 12 3 + 0.60454478762116508E-002 9 5 12 3 + 0.42350328720686628E-001 9 6 12 3 + -0.12322968478531015E-001 9 7 12 3 + -0.54121941949001932E-001 9 8 12 3 + -0.25480971787141402E-001 10 3 12 3 + -0.30285756648377734E-001 10 4 12 3 + -0.55535891096326499E-001 10 5 12 3 + 0.73650970384988039E-003 10 6 12 3 + 0.52324762157288937E-002 10 7 12 3 + 0.12746186388796703E-001 10 8 12 3 + -0.32969444154517497E-001 11 3 12 3 + -0.30451127364399911E-001 11 4 12 3 + 0.37790890397638902E-001 11 5 12 3 + 0.10501764488208586E-002 11 6 12 3 + -0.11323127828969473E-001 11 7 12 3 + 0.33641216472481360E-002 11 8 12 3 + 0.11169396912973426 12 3 12 3 + 0.13600369897317661E-003 1 3 12 4 + 0.14275325450149329E-002 1 4 12 4 + 0.79603836210530039E-003 1 5 12 4 + -0.43595470330998746E-003 1 6 12 4 + -0.80441156669035219E-004 1 7 12 4 + -0.60066065883556947E-003 1 8 12 4 + 0.84710046523686130E-002 2 3 12 4 + 0.88913889414103803E-001 2 4 12 4 + 0.49581264972996669E-001 2 5 12 4 + -0.13561502249498064E-001 2 6 12 4 + -0.25023335500055301E-002 2 7 12 4 + -0.18685088840767482E-001 2 8 12 4 + 0.31180905992984329E-002 3 1 12 4 + 0.93878710398469720E-002 3 2 12 4 + -0.13709010865175857E-002 3 9 12 4 + 0.98585740742949835E-002 3 10 12 4 + -0.20024031399796857E-001 3 11 12 4 + -0.17869697710740005E-001 3 12 12 4 + -0.30390432661750063E-001 3 13 12 4 + 0.30217940938490451E-001 3 14 12 4 + 0.32728533168549560E-001 4 1 12 4 + 0.98537952064794584E-001 4 2 12 4 + -0.14390074102652453E-001 4 9 12 4 + 0.22694201026965507E-001 4 10 12 4 + -0.18408806562650759E-001 4 11 12 4 + 0.76401005397483068E-001 4 12 12 4 + -0.33839909216907715E-001 4 13 12 4 + -0.20789614195896859E-001 4 14 12 4 + 0.18250487019846887E-001 5 1 12 4 + 0.54947948618530106E-001 5 2 12 4 + -0.80243612430705852E-002 5 9 12 4 + 0.45967491948797713E-001 5 10 12 4 + 0.19287008529134984E-001 5 11 12 4 + 0.20554961046817772E-001 5 12 12 4 + 0.22361640598708359E-001 5 13 12 4 + 0.10561694293909312E-001 5 14 12 4 + -0.23039982891348912E-001 6 1 12 4 + -0.11612459705549173E-001 6 2 12 4 + 0.41224365599870763E-001 6 9 12 4 + -0.64664391975809382E-003 6 10 12 4 + 0.13000609948298438E-003 6 11 12 4 + -0.41068996853647517E-002 6 12 12 4 + 0.75838885473073967E-003 6 13 12 4 + 0.14619905164470440E-002 6 14 12 4 + -0.42512633020802687E-002 7 1 12 4 + -0.21426818323726222E-002 7 2 12 4 + 0.76065880427816602E-002 7 9 12 4 + -0.12612740168134241E-002 7 10 12 4 + -0.13904024472607146E-002 7 11 12 4 + 0.33756326053652251E-004 7 12 12 4 + -0.19600268681512550E-002 7 13 12 4 + 0.53342132643929090E-004 7 14 12 4 + -0.31744686930232004E-001 8 1 12 4 + -0.15999833876938034E-001 8 2 12 4 + 0.56799277846695258E-001 8 9 12 4 + -0.19461066802260035E-002 8 10 12 4 + 0.83263144677547416E-003 8 11 12 4 + -0.26130717397101970E-002 8 12 12 4 + 0.11375630309895979E-002 8 13 12 4 + 0.55477460078841897E-005 8 14 12 4 + -0.83012626755312412E-003 9 3 12 4 + -0.87126350730914008E-002 9 4 12 4 + -0.48584557164241165E-002 9 5 12 4 + 0.41181180959490311E-001 9 6 12 4 + 0.75986123664104404E-002 9 7 12 4 + 0.56739832204403866E-001 9 8 12 4 + 0.16497587872944603E-001 10 3 12 4 + 0.34555320336739956E-001 10 4 12 4 + 0.71964201430394517E-001 10 5 12 4 + -0.21519816221381230E-002 10 6 12 4 + -0.85606857728549590E-002 10 7 12 4 + -0.13908703838403601E-001 10 8 12 4 + -0.30491293961521670E-001 11 3 12 4 + -0.28030565001757667E-001 11 4 12 4 + 0.30910746095196309E-001 11 5 12 4 + 0.89149649394224776E-003 11 6 12 4 + -0.97497977253131144E-002 11 7 12 4 + 0.35583711647898691E-002 11 8 12 4 + -0.27209622406170930E-001 12 3 12 4 + 0.11357983689332804 12 4 12 4 + -0.99052451064763486E-003 1 3 12 5 + 0.79603836210533486E-003 1 4 12 5 + -0.14802660422956997E-003 1 5 12 5 + -0.56960101046491635E-003 1 6 12 5 + -0.40677699870976823E-004 1 7 12 5 + 0.11400984135241199E-003 1 8 12 5 + -0.61694835658708334E-001 2 3 12 5 + 0.49581264972996614E-001 2 4 12 5 + -0.92198429815633347E-002 2 5 12 5 + -0.17718905939562053E-001 2 6 12 5 + -0.12653884512516928E-002 2 7 12 5 + 0.35465694743060010E-002 2 8 12 5 + -0.22709405814624412E-001 3 1 12 5 + -0.68372703098218843E-001 3 2 12 5 + 0.99848701319467260E-002 3 9 12 5 + -0.50545562568086429E-002 3 10 12 5 + -0.21587752968507939E-001 3 11 12 5 + 0.35403284732698811E-001 3 12 12 5 + -0.10618604060335449E-002 3 13 12 5 + 0.26665457774752460E-001 3 14 12 5 + 0.18250487019846984E-001 4 1 12 5 + 0.54947948618530085E-001 4 2 12 5 + -0.80243612430706893E-002 4 9 12 5 + 0.78001253809968215E-002 4 10 12 5 + -0.10586177059438014E-001 4 11 12 5 + 0.20554949700657014E-001 4 12 12 5 + 0.10917230808804326E-001 4 13 12 5 + -0.38716303124774878E-001 4 14 12 5 + -0.33937484396864815E-002 5 1 12 5 + -0.10217790639131696E-001 5 2 12 5 + 0.14921455178660817E-002 5 9 12 5 + -0.59595354540835938E-002 5 10 12 5 + 0.40061172106958025E-001 5 11 12 5 + 0.51904743801615610E-001 5 12 12 5 + -0.11057950497784869E-003 5 13 12 5 + 0.25865216229451165E-002 5 14 12 5 + -0.30103167996547348E-001 6 1 12 5 + -0.15172450551461002E-001 6 2 12 5 + 0.53862188066316354E-001 6 9 12 5 + -0.10205842313913353E-002 6 10 12 5 + -0.90211540682895436E-004 6 11 12 5 + 0.58645494266131742E-003 6 12 12 5 + -0.72473680675619019E-003 6 13 12 5 + 0.18767303550541029E-002 6 14 12 5 + -0.21497833481736884E-002 7 1 12 5 + -0.10835060250548568E-002 7 2 12 5 + 0.38465082537917417E-002 7 9 12 5 + 0.24391488078522717E-003 7 10 12 5 + -0.21891257449146535E-002 7 11 12 5 + -0.15964018722957854E-002 7 12 12 5 + 0.84472076637217853E-004 7 13 12 5 + -0.10628229961244854E-003 7 14 12 5 + 0.60253716941226151E-002 8 1 12 5 + 0.30368789533102556E-002 8 2 12 5 + -0.10780915191017731E-001 8 9 12 5 + 0.80611010585092649E-004 8 10 12 5 + -0.58635621997541810E-003 8 11 12 5 + -0.36082944408541828E-002 8 12 12 5 + -0.21288987366773531E-003 8 13 12 5 + 0.15021815268210836E-003 8 14 12 5 + 0.60454478762116751E-002 9 3 12 5 + -0.48584557164241867E-002 9 4 12 5 + 0.90346441571973336E-003 9 5 12 5 + 0.53805796692940923E-001 9 6 12 5 + 0.38424703317729513E-002 9 7 12 5 + -0.10769628525185608E-001 9 8 12 5 + -0.61262330851200291E-002 10 3 12 5 + 0.99046847469455284E-002 10 4 12 5 + -0.90743468283794402E-002 10 5 12 5 + -0.22487862961641449E-002 10 6 12 5 + 0.15662725651424045E-002 10 7 12 5 + 0.64311227042864643E-003 10 8 12 5 + -0.35189869384589845E-001 11 3 12 5 + -0.17662533354729809E-001 11 4 12 5 + 0.61000020355728643E-001 11 5 12 5 + -0.91243723558054053E-003 11 6 12 5 + -0.14621043710249769E-001 11 7 12 5 + -0.56880012250532475E-004 11 8 12 5 + 0.53906715014793015E-001 12 3 12 5 + 0.31297884857320248E-001 12 4 12 5 + 0.76279594956318073E-001 12 5 12 5 + -0.20788870079001685E-002 1 3 12 6 + -0.20214986644203226E-002 1 4 12 6 + -0.26412128223376758E-002 1 5 12 6 + 0.47801325109312910E-004 1 6 12 6 + 0.57265538373765562E-003 1 7 12 6 + 0.33667371580984374E-002 1 8 12 6 + -0.16449585674185852E-001 2 3 12 6 + -0.15995531368296071E-001 2 4 12 6 + -0.20899117219776955E-001 2 5 12 6 + 0.19502497995490861E-003 2 6 12 6 + 0.23363205933318613E-002 2 7 12 6 + 0.13735620870925001E-001 2 8 12 6 + -0.86841816565029623E-002 3 1 12 6 + -0.16570064339809006E-001 3 2 12 6 + 0.73164312172575383E-002 3 9 12 6 + -0.53818592568518576E-002 3 10 12 6 + 0.16859746349191108E-004 3 11 12 6 + 0.17337348553846998E-001 3 12 12 6 + 0.12900348880162577E-001 3 13 12 6 + -0.32879953759202530E-002 3 14 12 6 + -0.84444523934787546E-002 4 1 12 6 + -0.16112692538589522E-001 4 2 12 6 + 0.71144796931283541E-002 4 9 12 6 + -0.82702216396104734E-002 4 10 12 6 + 0.18736824834098703E-003 4 11 12 6 + -0.18601436891631618E-001 4 12 12 6 + 0.10982566560474683E-001 4 13 12 6 + -0.28697288041390242E-002 4 14 12 6 + -0.11033198176722932E-001 5 1 12 6 + -0.21052189092461548E-001 5 2 12 6 + 0.92954909129773396E-002 5 9 12 6 + -0.16741095262761213E-001 5 10 12 6 + 0.81438645559582827E-003 5 11 12 6 + 0.27963847733382670E-002 5 12 12 6 + -0.91537128209555722E-002 5 13 12 6 + -0.46759746628579459E-002 5 14 12 6 + 0.25493665192614603E-003 6 1 12 6 + 0.27698124229889377E-003 6 2 12 6 + -0.24490299685743858E-003 6 9 12 6 + 0.96297295955039084E-003 6 10 12 6 + -0.41326712398212643E-004 6 11 12 6 + 0.14914209827154256E-001 6 12 12 6 + -0.49380092929871694E-003 6 13 12 6 + -0.10755104868433863E-003 6 14 12 6 + 0.30541570646927599E-002 7 1 12 6 + 0.33183448166289979E-002 7 2 12 6 + -0.29340283280688954E-002 7 9 12 6 + 0.43184342187445445E-002 7 10 12 6 + -0.18444232850406631E-003 7 11 12 6 + -0.41606693762514999E-005 7 12 12 6 + 0.80293953552742232E-002 7 13 12 6 + 0.46862986957935744E-003 7 14 12 6 + 0.17955902352202020E-001 8 1 12 6 + 0.19509106822496399E-001 8 2 12 6 + -0.17249645580929659E-001 8 9 12 6 + 0.80502497269999262E-002 8 10 12 6 + -0.30303059922808000E-003 8 11 12 6 + -0.10042707662103762E-002 8 12 12 6 + -0.43444037277144210E-002 8 13 12 6 + 0.13695350782910308E-002 8 14 12 6 + 0.10126609838874121E-001 9 3 12 6 + 0.98470215103568914E-002 9 4 12 6 + 0.12865772394739646E-001 9 5 12 6 + -0.26480064079019173E-003 9 6 12 6 + -0.31723783741336312E-002 9 7 12 6 + -0.18650945451990520E-001 9 8 12 6 + -0.59404592022147219E-002 10 3 12 6 + -0.91151164790410581E-002 10 4 12 6 + -0.18460018722236723E-001 10 5 12 6 + 0.80645543921025397E-003 10 6 12 6 + 0.35423956478180191E-002 10 7 12 6 + 0.65937582321040624E-002 10 8 12 6 + 0.14257132651388140E-004 11 3 12 6 + 0.20302582933306722E-003 11 4 12 6 + 0.90222271873177857E-003 11 5 12 6 + -0.34609453476344027E-004 11 6 12 6 + -0.13522026573895140E-003 11 7 12 6 + -0.25419967034253483E-003 11 8 12 6 + 0.19002346387480766E-001 12 3 12 6 + -0.20381290204224682E-001 12 4 12 6 + 0.30672903922579395E-002 12 5 12 6 + 0.12644980602835013E-001 12 6 12 6 + 0.60490770601185045E-003 1 3 12 7 + -0.37300056766009987E-003 1 4 12 7 + -0.18861942504014097E-003 1 5 12 7 + 0.57265538373765790E-003 1 6 12 7 + 0.28060068722424045E-003 1 7 12 7 + -0.57058876772752079E-004 1 8 12 7 + 0.47864392387149792E-002 2 3 12 7 + -0.29514524890566435E-002 2 4 12 7 + -0.14924992258023280E-002 2 5 12 7 + 0.23363205933319251E-002 2 6 12 7 + 0.11447951788138492E-002 2 7 12 7 + -0.23278552100891440E-003 2 8 12 7 + 0.25268945627623897E-002 3 1 12 7 + 0.48214943022149024E-002 3 2 12 7 + -0.21289075395012559E-002 3 9 12 7 + -0.31926069850182629E-003 3 10 12 7 + 0.10459559391361158E-002 3 11 12 7 + -0.47975412263401377E-003 3 12 12 7 + 0.16329626969691857E-002 3 13 12 7 + -0.15106069098073304E-002 3 14 12 7 + -0.15581438271747110E-002 4 1 12 7 + -0.29730721815760218E-002 4 2 12 7 + 0.13127450976068544E-002 4 9 12 7 + -0.21019994040522333E-002 4 10 12 7 + -0.13136307855519615E-002 4 11 12 7 + -0.86949015427854198E-003 4 12 12 7 + -0.26894458563398163E-002 4 13 12 7 + 0.30525989167360171E-002 4 14 12 7 + -0.78792429210030593E-003 5 1 12 7 + -0.15034328588127888E-002 5 2 12 7 + 0.66383309060470122E-003 5 9 12 7 + 0.69362864141579370E-003 5 10 12 7 + -0.44166774648919487E-002 5 11 12 7 + -0.53547990665758494E-002 5 12 12 7 + -0.11471774034333402E-002 5 13 12 7 + -0.10111975055392571E-002 5 14 12 7 + 0.30541570646926562E-002 6 1 12 7 + 0.33183448166290725E-002 6 2 12 7 + -0.29340283280686421E-002 6 9 12 7 + 0.13562587588916454E-002 6 10 12 7 + 0.58700410051331319E-003 6 11 12 7 + -0.41580808566373322E-005 6 12 12 7 + 0.26584651709436495E-002 6 13 12 7 + -0.14490531315852332E-002 6 14 12 7 + 0.14965346055104837E-002 7 1 12 7 + 0.16259865112207769E-002 7 2 12 7 + -0.14376717077115696E-002 7 9 12 7 + -0.72974153562903083E-003 7 10 12 7 + 0.20343817825261342E-002 7 11 12 7 + 0.33494005639848109E-002 7 12 12 7 + 0.48382084313557019E-003 7 13 12 7 + 0.57699402618888174E-003 7 14 12 7 + -0.30431576263549663E-003 8 1 12 7 + -0.33064458502974709E-003 8 2 12 7 + 0.29235038305324188E-003 8 9 12 7 + 0.51422465754679455E-003 8 10 12 7 + 0.25328351037134508E-002 8 11 12 7 + 0.19838387661092220E-002 8 12 12 7 + 0.45383794251452537E-003 8 13 12 7 + -0.15600029789720489E-003 8 14 12 7 + -0.29466144444446163E-002 9 3 12 7 + 0.18169343026653683E-002 9 4 12 7 + 0.91878517699654804E-003 9 5 12 7 + -0.31723783741335241E-002 9 6 12 7 + -0.15544630163086023E-002 9 7 12 7 + 0.31609813959312580E-003 9 8 12 7 + -0.37385766022943282E-003 10 3 12 7 + -0.22836017661857625E-002 10 4 12 7 + 0.75876988553482902E-003 10 5 12 7 + 0.12095340238627121E-002 10 6 12 7 + -0.61110094053817951E-003 10 7 12 7 + 0.42707252342299182E-003 10 8 12 7 + 0.12006951584851849E-002 11 3 12 7 + -0.14090062057015426E-002 11 4 12 7 + -0.48123985283684712E-002 11 5 12 7 + 0.47233711342254612E-003 11 6 12 7 + 0.17037918510401087E-002 11 7 12 7 + 0.22770927861875639E-002 11 8 12 7 + -0.56032534245402952E-003 12 3 12 7 + -0.97712985248329812E-003 12 4 12 7 + -0.58221683526535175E-002 12 5 12 7 + -0.34703468780261031E-005 12 6 12 7 + 0.29602774295531195E-002 12 7 12 7 + 0.26567335914274969E-002 1 3 12 8 + -0.27852371194212206E-002 1 4 12 8 + 0.52865826846625725E-003 1 5 12 8 + 0.33667371580983953E-002 1 6 12 8 + -0.57058876772750710E-004 1 7 12 8 + -0.32840201233355843E-003 1 8 12 8 + 0.21021958161279868E-001 2 3 12 8 + -0.22038717052802661E-001 2 4 12 8 + 0.41831122974868660E-002 2 5 12 8 + 0.13735620870924945E-001 2 6 12 8 + -0.23278552100890795E-003 2 7 12 8 + -0.13398201587687762E-002 2 8 12 8 + 0.11098033694200834E-001 3 1 12 8 + 0.21175935500890992E-001 3 2 12 8 + -0.93501296542810967E-002 3 9 12 8 + 0.17404577804200057E-002 3 10 12 8 + 0.10406946184674280E-001 3 11 12 8 + -0.15167197477034626E-001 3 12 12 8 + -0.79831312460071824E-003 3 13 12 8 + -0.12534949729242293E-001 3 14 12 8 + -0.11634833957185982E-001 4 1 12 8 + -0.22200131712082277E-001 4 2 12 8 + 0.98023599643158425E-002 4 9 12 8 + -0.99265877682907047E-003 4 10 12 8 + 0.81198340379577787E-002 4 11 12 8 + -0.11581270662955633E-001 4 12 12 8 + 0.22416315876391441E-003 4 13 12 8 + 0.15802503522749832E-001 4 14 12 8 + 0.22083761608837505E-002 5 1 12 8 + 0.42137506669560126E-002 5 2 12 8 + -0.18605609689418411E-002 5 9 12 8 + -0.17363734767977324E-003 5 10 12 8 + -0.13591317702376650E-001 5 11 12 8 + -0.16812607282228845E-001 5 12 12 8 + 0.65289720849701376E-003 5 13 12 8 + -0.36311281929459811E-003 5 14 12 8 + 0.17955902352202173E-001 6 1 12 8 + 0.19509106822496392E-001 6 2 12 8 + -0.17249645580930079E-001 6 9 12 8 + 0.21335502522164267E-002 6 10 12 8 + -0.32106288334994261E-003 6 11 12 8 + -0.10042804399744722E-002 6 12 12 8 + -0.98527745813542316E-003 6 13 12 8 + -0.88668265108588599E-002 6 14 12 8 + -0.30431576263550839E-003 7 1 12 8 + -0.33064458502973760E-003 7 2 12 8 + 0.29235038305328866E-003 7 9 12 8 + 0.37249984347694756E-003 7 10 12 8 + 0.87855522402684079E-002 7 11 12 8 + 0.19838394461856169E-002 7 12 12 8 + -0.30768613908282040E-003 7 13 12 8 + -0.33109582323224810E-003 7 14 12 8 + -0.17514712574366533E-002 8 1 12 8 + -0.19029677535197086E-002 8 2 12 8 + 0.16825747045690438E-002 8 9 12 8 + -0.23323084492238413E-003 8 10 12 8 + -0.19930513027567411E-002 8 11 12 8 + 0.14689107179152004E-001 8 12 12 8 + 0.99106600653196932E-005 8 13 12 8 + -0.46937624929011641E-003 8 14 12 8 + -0.12941348028429540E-001 9 3 12 8 + 0.13567357835849546E-001 9 4 12 8 + -0.25751799056113588E-002 9 5 12 8 + -0.18650945451990687E-001 9 6 12 8 + 0.31609813959314483E-003 9 7 12 8 + 0.18192636570988139E-002 9 8 12 8 + 0.18674541840201498E-002 10 3 12 8 + -0.10376106797482926E-002 10 4 12 8 + -0.19420432967875496E-003 10 5 12 8 + 0.19340607906813021E-002 10 6 12 8 + 0.31546478641683633E-003 10 7 12 8 + -0.19535469470683274E-003 10 8 12 8 + 0.11467552365549593E-001 11 3 12 8 + 0.89434920613415334E-002 11 4 12 8 + -0.14994233884441382E-001 11 5 12 8 + -0.26840524573610241E-003 11 6 12 8 + 0.72014215245900055E-002 11 7 12 8 + -0.16691836731023704E-002 11 8 12 8 + -0.16618615901030424E-001 12 3 12 8 + -0.12683265207589209E-001 12 4 12 8 + -0.18432357066256878E-001 12 5 12 8 + -0.84096505791594488E-003 12 6 12 8 + 0.16611543269032577E-002 12 7 12 8 + 0.12456165866129963E-001 12 8 12 8 + -0.14220359885460671E-002 1 12 12 9 + 0.48396145307241359E-009 2 10 12 9 + 0.31489907942697863E-008 2 11 12 9 + -0.15454076897356358E-001 2 12 12 9 + -0.58030423841390341E-007 2 13 12 9 + 0.55775373885817406E-007 2 14 12 9 + 0.78557128558224224E-002 3 3 12 9 + -0.83494885737784414E-003 3 4 12 9 + 0.60814592905137511E-002 3 5 12 9 + 0.54048723269925743E-002 3 6 12 9 + -0.15726881017645356E-002 3 7 12 9 + -0.69072369712134566E-002 3 8 12 9 + -0.83494885737784425E-003 4 3 12 9 + -0.87645236396018088E-002 4 4 12 9 + -0.48873728386042408E-002 4 5 12 9 + 0.52556918634741765E-002 4 6 12 9 + 0.96976775133772973E-003 4 7 12 9 + 0.72413047014199556E-002 4 8 12 9 + 0.60814592905137493E-002 5 3 12 9 + -0.48873728386042399E-002 5 4 12 9 + 0.90881078377973027E-003 5 5 12 9 + 0.68668684088778196E-002 5 6 12 9 + 0.49039606187782842E-003 5 7 12 9 + -0.13744542023090443E-002 5 8 12 9 + 0.67557657924057803E-002 6 3 12 9 + 0.65692733970203658E-002 6 4 12 9 + 0.85831592434325622E-002 6 5 12 9 + -0.71589562785711854E-004 6 6 12 9 + -0.85772816048775100E-003 6 7 12 9 + -0.50427281839349261E-002 6 8 12 9 + -0.19657700590819615E-002 7 3 12 9 + 0.12121421168784651E-002 7 4 12 9 + 0.61295795222471002E-003 7 5 12 9 + -0.85772816048775903E-003 7 6 12 9 + -0.42028623418623412E-003 7 7 12 9 + 0.85468455788131726E-004 7 8 12 9 + -0.86335990623152489E-002 8 3 12 9 + 0.90511942040974180E-002 8 4 12 9 + -0.17179827322428268E-002 8 5 12 9 + -0.50427281839349174E-002 8 6 12 9 + 0.85468455788130615E-004 8 7 12 9 + 0.49187579697217707E-003 8 8 12 9 + 0.27248589637745189E-009 9 10 12 9 + 0.17729831676679407E-008 9 11 12 9 + 0.13649866250239558E-001 9 12 12 9 + -0.32672995611610753E-007 9 13 12 9 + 0.31403329925982164E-007 9 14 12 9 + 0.83938284451926776E-009 10 2 12 9 + -0.19166659384619433E-009 10 9 12 9 + -0.11048566502829035E-002 10 10 12 9 + -0.20797515649512779E-002 10 11 12 9 + -0.60802225901372678E-002 10 12 12 9 + -0.86189139663371631E-004 10 13 12 9 + 0.94953006841685494E-003 10 14 12 9 + 0.21358091481009452E-009 11 1 12 9 + 0.54616101551598685E-008 11 2 12 9 + -0.12471162628529629E-008 11 9 12 9 + -0.20797566281205719E-002 11 10 12 9 + 0.84034882632027215E-004 11 11 12 9 + 0.21016357785260187E-003 11 12 12 9 + -0.63727940787203542E-002 11 13 12 9 + -0.20954379534664892E-003 11 14 12 9 + -0.29383153832922512E-002 12 1 12 9 + -0.11924946980122071E-001 12 2 12 9 + 0.10148151462146969E-001 12 9 12 9 + -0.55495896302265395E-004 1 10 12 10 + -0.10446742897756385E-003 1 11 12 10 + -0.30541643120629179E-003 1 12 12 10 + -0.43285039610948537E-005 1 13 12 10 + 0.47690928250453491E-004 1 14 12 10 + 0.62581720981494966E-009 2 2 12 10 + 0.55784661313664633E-009 2 9 12 10 + 0.44145142535315400E-002 2 10 12 10 + 0.83094569883998323E-002 2 11 12 10 + 0.24293087293958387E-001 2 12 12 10 + 0.34430736835654538E-003 2 13 12 10 + -0.37935606479921084E-002 2 14 12 10 + -0.10780728232560577E-001 3 3 12 10 + -0.29167447961443434E-002 3 4 12 10 + -0.13044293029186263E-001 3 5 12 10 + -0.11483899933705879E-002 3 6 12 10 + 0.10721834463552418E-002 3 7 12 10 + 0.32248730769854593E-002 3 8 12 10 + -0.29167405256490470E-002 4 3 12 10 + 0.14619949344871160E-001 4 4 12 10 + 0.17318999290658083E-001 4 5 12 10 + -0.24863656662080184E-002 4 6 12 10 + -0.23930806392255095E-002 4 7 12 10 + -0.32982979364823660E-002 4 8 12 10 + -0.13044294896332673E-001 5 3 12 10 + 0.17318977171201608E-001 5 4 12 10 + -0.38392195040109827E-002 5 5 12 10 + -0.45699390749539192E-002 5 6 12 10 + 0.51307866381301805E-003 5 7 12 10 + 0.99057731291006060E-004 5 8 12 10 + -0.69992208642761101E-003 6 3 12 10 + -0.15152816683242350E-002 6 4 12 10 + -0.27851447899784557E-002 6 5 12 10 + 0.22793839406712656E-002 6 6 12 10 + 0.67160511107475116E-002 6 7 12 10 + 0.12052630590144497E-001 6 8 12 10 + 0.65343936214914001E-003 7 3 12 10 + -0.14584489955476844E-002 7 4 12 10 + 0.31268625260062521E-003 7 5 12 10 + 0.67160478774109054E-002 7 6 12 10 + -0.17273058291006871E-002 7 7 12 10 + 0.10494384222861845E-002 7 8 12 10 + 0.19653735178834187E-002 8 3 12 10 + -0.20101666058953273E-002 8 4 12 10 + 0.60345656099943911E-004 8 5 12 10 + 0.12052626531130338E-001 8 6 12 10 + 0.10494431160987768E-002 8 7 12 10 + -0.55207726970649151E-003 8 8 12 10 + -0.74731433843612879E-009 9 2 12 10 + 0.34806790334338294E-009 9 9 12 10 + 0.34443282142457808E-003 9 10 12 10 + 0.64840221169119915E-003 9 11 12 10 + 0.18955839643471201E-002 9 12 12 10 + 0.26880451836176726E-004 9 13 12 10 + -0.29606509618349171E-003 9 14 12 10 + 0.74592643550082740E-003 10 1 12 10 + 0.78191577059174341E-002 10 2 12 10 + -0.11048561089719586E-002 10 9 12 10 + -0.98864030419979079E-008 10 10 12 10 + -0.23409605218391069E-003 10 11 12 10 + 0.33566791117257293E-001 10 12 12 10 + 0.24679655035714975E-003 10 13 12 10 + 0.75150135004070846E-003 10 14 12 10 + 0.14040865396094625E-002 11 1 12 10 + 0.14718305525538850E-001 11 2 12 10 + -0.20797567670978920E-002 11 9 12 10 + -0.23404420582668134E-003 11 10 12 10 + -0.86870067301363704E-003 11 11 12 10 + 0.36193987724867781E-003 11 12 12 10 + 0.13376983690402858E-001 11 13 12 10 + -0.20003678686857213E-002 11 14 12 10 + 0.41049088583422219E-002 12 1 12 10 + 0.43029472559289399E-001 12 2 12 10 + -0.60802167642492995E-002 12 9 12 10 + 0.33566716248849521E-001 12 10 12 10 + -0.42740879703978746E-009 1 1 12 11 + 0.10777231109460718E-009 1 2 12 11 + -0.10446773596187475E-003 1 10 12 11 + 0.42162838024490546E-005 1 11 12 11 + 0.10556016687374364E-004 1 12 12 11 + -0.32008378588806885E-003 1 13 12 11 + -0.10524316986830267E-004 1 14 12 11 + 0.28293486914790218E-009 2 1 12 11 + 0.40720000438499486E-008 2 2 12 11 + 0.36297397866963052E-008 2 9 12 11 + 0.83094513308960422E-002 2 10 12 11 + -0.33572670873211532E-003 2 11 12 11 + -0.83985463556509969E-003 2 12 12 11 + 0.25460476122334937E-001 2 13 12 11 + 0.83716948881768730E-003 2 14 12 11 + -0.13948757850299552E-001 3 3 12 11 + -0.12891805381166785E-001 3 4 12 11 + 0.55038088122017967E-003 3 5 12 11 + 0.23489160599112976E-003 3 6 12 11 + -0.22337754813200553E-002 3 7 12 11 + 0.32729559061005086E-002 3 8 12 11 + -0.12891776918038726E-001 4 3 12 11 + -0.11859201259249325E-001 4 4 12 11 + 0.28025920409991099E-002 4 5 12 11 + 0.24153282597077057E-003 4 6 12 11 + -0.24624552040447378E-002 4 7 12 11 + 0.27588278056534872E-002 4 8 12 11 + 0.55037133436515472E-003 5 3 12 11 + 0.28025980654130885E-002 5 4 12 11 + 0.25807969574259560E-001 5 5 12 11 + -0.22460054743027981E-005 5 6 12 11 + -0.42884417306655181E-002 5 7 12 11 + -0.33213995526313361E-002 5 8 12 11 + 0.14316161828619199E-003 6 3 12 11 + 0.14720445843665068E-003 6 4 12 11 + -0.13643965045073760E-005 6 5 12 11 + -0.97821779613754844E-004 6 6 12 11 + 0.47645029187297165E-003 6 7 12 11 + -0.73861310480972204E-003 6 8 12 11 + -0.13612956577371881E-002 7 3 12 11 + -0.15006647212706542E-002 7 4 12 11 + -0.26133281908499602E-002 7 5 12 11 + 0.47645789164217319E-003 7 6 12 11 + 0.48154523989800205E-002 7 7 12 11 + 0.13395464582263844E-001 7 8 12 11 + 0.19944784934696870E-002 8 3 12 11 + 0.16812097772602283E-002 8 4 12 11 + -0.20241249776313482E-002 8 5 12 11 + -0.73861874840256553E-003 8 6 12 11 + 0.13395465061962354E-001 8 7 12 11 + -0.47176251416192186E-002 8 8 12 11 + -0.31990306771380180E-009 9 1 12 11 + -0.48625477441372292E-008 9 2 12 11 + 0.22647706211488526E-008 9 9 12 11 + 0.64840199564919010E-003 9 10 12 11 + -0.26217064786105988E-004 9 11 12 11 + -0.65494175624688925E-004 9 12 12 11 + 0.19870695737695034E-002 9 13 12 11 + 0.65335518123664060E-004 9 14 12 11 + 0.14040836669112153E-002 10 1 12 11 + 0.14718218364824788E-001 10 2 12 11 + -0.20797511439492452E-002 10 9 12 11 + 0.46802257608742073E-003 10 10 12 11 + 0.43450344363855269E-003 10 11 12 11 + 0.36185457508498424E-003 10 12 12 11 + 0.43908803486245962E-003 10 13 12 11 + 0.49208415132936875E-002 10 14 12 11 + -0.56714962465286485E-004 11 1 12 11 + -0.59456074232903001E-003 11 2 12 11 + 0.84033479669539765E-004 11 9 12 11 + 0.43440674568195566E-003 11 10 12 11 + -0.76737675360052101E-008 11 11 12 11 + 0.34052113732201073E-001 11 12 12 11 + -0.57494746178196751E-003 11 13 12 11 + -0.10684426763710151E-002 11 14 12 11 + -0.14190513046224187E-003 12 1 12 11 + -0.14875321388520227E-002 12 2 12 11 + 0.21016602680299840E-003 12 9 12 11 + 0.36184848546820991E-003 12 10 12 11 + 0.34052096060586109E-001 12 11 12 11 + 0.78365847659407639 1 1 12 12 + -0.37281098001277421E-001 1 2 12 12 + 0.33374722897082182E-001 1 9 12 12 + -0.30541607797768380E-003 1 10 12 12 + 0.10556165169347148E-004 1 11 12 12 + 0.82998393927379479E-004 1 12 12 12 + 0.95717448981976481E-004 1 13 12 12 + 0.20791919123205288E-003 1 14 12 12 + 0.31855171506776456E-001 2 1 12 12 + 0.64137889238192403 2 2 12 12 + -0.15187785819143843 2 9 12 12 + 0.24293093803711838E-001 2 10 12 12 + -0.83985189914737837E-003 2 11 12 12 + -0.66018500452805755E-002 2 12 12 12 + -0.76136384142031638E-002 2 13 12 12 + -0.16538541199794910E-001 2 14 12 12 + 0.62823164984268354 3 3 12 12 + -0.11511908012663179E-001 3 4 12 12 + 0.22807356570082753E-001 3 5 12 12 + 0.10851934885374434 3 6 12 12 + 0.71837884843352448E-001 3 7 12 12 + -0.10594140617084306 3 8 12 12 + -0.11511944762077689E-001 4 3 12 12 + 0.62902946719518926 4 4 12 12 + 0.13241823972852104E-001 4 5 12 12 + -0.13064381105034126 4 6 12 12 + 0.46929955646752661E-001 4 7 12 12 + -0.94505966939530769E-001 4 8 12 12 + 0.22807352996030664E-001 5 3 12 12 + 0.13241836523144302E-001 5 4 12 12 + 0.61324866895203656 5 5 12 12 + 0.12362934106522713E-001 5 6 12 12 + -0.13488274058196137 5 7 12 12 + -0.93681402942231873E-001 5 8 12 12 + 0.80163620967731469E-001 6 3 12 12 + -0.96661304385542948E-001 6 4 12 12 + 0.90767707694422561E-002 6 5 12 12 + 0.49937823671093717 6 6 12 12 + -0.98369702576326354E-005 6 7 12 12 + -0.23771433232318041E-002 6 8 12 12 + 0.53879340536153258E-001 7 3 12 12 + 0.35235870723279009E-001 7 4 12 12 + -0.10073893523226730 7 5 12 12 + -0.98400833964203227E-005 7 6 12 12 + 0.47200404871442575 7 7 12 12 + 0.46957696333415622E-002 7 8 12 12 + -0.78378859825123007E-001 8 3 12 12 + -0.70050963346007106E-001 8 4 12 12 + -0.69077560662210269E-001 8 5 12 12 + -0.23771316888712723E-002 8 6 12 12 + 0.46957688154332577E-002 8 7 12 12 + 0.49884536762705611 8 8 12 12 + -0.27663280015665429E-001 9 1 12 12 + -0.98971817237849563E-001 9 2 12 12 + 0.50533115107713300 9 9 12 12 + 0.18955842129338011E-002 9 10 12 12 + -0.65494071129603990E-004 9 11 12 12 + -0.51512816920162038E-003 9 12 12 12 + -0.59420488017228280E-003 9 13 12 12 + -0.12907317629104549E-002 9 14 12 12 + 0.41049121637853434E-002 10 1 12 12 + 0.43029572849942535E-001 10 2 12 12 + -0.60802232344722837E-002 10 9 12 12 + 0.60641794116918979 10 10 12 12 + -0.72382613075358212E-003 10 11 12 12 + -0.65918832257404057E-007 10 12 12 12 + -0.91109168976092551E-003 10 13 12 12 + 0.15652572155480195E-001 10 14 12 12 + -0.14190374099744006E-003 11 1 12 12 + -0.14874899810151179E-002 11 2 12 12 + 0.21016330700217132E-003 11 9 12 12 + -0.72376128626030014E-003 11 10 12 12 + 0.60544721573091964 11 11 12 12 + 0.94778260052403527E-008 11 12 12 12 + -0.21175601047223459E-002 11 13 12 12 + -0.56442172956341094E-003 11 14 12 12 + -0.11155401721760594E-002 12 1 12 12 + -0.11693597935155130E-001 12 2 12 12 + 0.16523376743091216E-002 12 9 12 12 + 0.64708334289876995E-007 12 10 12 12 + 0.17774082708164503E-007 12 11 12 12 + 0.67355149501886802 12 12 12 12 + 0.78763995163159015E-008 1 1 12 13 + -0.19860562146862196E-008 1 2 12 13 + -0.22828322744615542E-009 1 9 12 13 + -0.43282399555505864E-005 1 10 12 13 + -0.32007430795448000E-003 1 11 12 13 + 0.95714853589356938E-004 1 12 12 13 + -0.26682104706447220E-004 1 13 12 13 + -0.16031748251554927E-004 1 14 12 13 + -0.52139976485924245E-008 2 1 12 13 + -0.75039880205552692E-007 2 2 12 13 + -0.66889791886562699E-007 2 9 12 13 + 0.34431223379203699E-003 2 10 12 13 + 0.25460650793948405E-001 2 11 12 13 + -0.76136862454574085E-002 2 12 12 13 + 0.21230500481109328E-002 2 13 12 13 + 0.12747080219288251E-002 2 14 12 13 + 0.21871566833906866E-001 3 3 12 13 + -0.39480480346496772E-002 3 4 12 13 + -0.78586283210297179E-002 3 5 12 13 + 0.34174478404297389E-002 3 6 12 13 + 0.32132890721640111E-002 3 7 12 13 + -0.14991451689038791E-002 3 8 12 13 + -0.39482977413226395E-002 4 3 12 13 + -0.21800482854744670E-001 4 4 12 13 + 0.10719553599940493E-001 4 5 12 13 + 0.31407840062319154E-002 4 6 12 13 + -0.36179553503211037E-002 4 7 12 13 + 0.18655678769718895E-002 4 8 12 13 + -0.78584934650908836E-002 5 3 12 13 + 0.10719496281125153E-001 5 4 12 13 + -0.71276825583739813E-004 5 5 12 13 + -0.27665343765856717E-002 5 6 12 13 + -0.65319469380101412E-004 5 7 12 13 + -0.22759521128793412E-003 5 8 12 13 + 0.20826488677509556E-002 6 3 12 13 + 0.19140523187877708E-002 6 4 12 13 + -0.16859659560989409E-002 6 5 12 13 + -0.11688435601735305E-002 6 6 12 13 + 0.12649067608273949E-001 6 7 12 13 + -0.63076777634773181E-002 6 8 12 13 + 0.19580920459238080E-002 7 3 12 13 + -0.22048500888104004E-002 7 4 12 13 + -0.39769984563913089E-004 7 5 12 13 + 0.12648991168175739E-001 7 6 12 13 + 0.11452307358947274E-002 7 7 12 13 + 0.17295827000496811E-003 7 8 12 13 + -0.91343117956317252E-003 8 3 12 13 + 0.11370070663113494E-002 8 4 12 13 + -0.13863791121423126E-003 8 5 12 13 + -0.63076336265975169E-002 8 6 12 13 + 0.17294275500241927E-003 8 7 12 13 + 0.23511878913630348E-004 8 8 12 13 + 0.58952572679823425E-008 9 1 12 13 + 0.89608298510944554E-007 9 2 12 13 + -0.41735778355573929E-007 9 9 12 13 + 0.26880637631652509E-004 9 10 12 13 + 0.19870762439211645E-002 9 11 12 13 + -0.59420670669509698E-003 9 12 12 13 + 0.16552970163835785E-003 9 13 12 13 + 0.99617565126609115E-004 9 14 12 13 + 0.58179916125110289E-004 10 1 12 13 + 0.60990217724337281E-003 10 2 12 13 + -0.86189112417974599E-004 10 9 12 13 + -0.49383729435496045E-003 10 10 12 13 + -0.13817780016159043E-001 10 11 12 13 + 0.45548682483386853E-003 10 12 12 13 + 0.61938265154718960E-003 10 13 12 13 + -0.29994553305874919E-003 10 14 12 13 + 0.43021865173564905E-002 11 1 12 13 + 0.45098651263556618E-001 11 2 12 13 + -0.63727941414820971E-002 11 9 12 13 + -0.13816935319233349E-001 11 10 12 13 + 0.11499380394264537E-002 11 11 12 13 + 0.10587478436014386E-002 11 12 12 13 + 0.61615520970627238E-003 11 13 12 13 + -0.69591310834734091E-002 11 14 12 13 + -0.12865154892059791E-002 12 1 12 13 + -0.13486162354765775E-001 12 2 12 13 + 0.19057004244684061E-002 12 9 12 13 + 0.45564285047490147E-003 12 10 12 13 + 0.10588289426514803E-002 12 11 12 13 + 0.10964664842677629E-007 12 12 12 13 + 0.33934100985644075E-001 12 13 12 13 + -0.75703237979057540E-008 1 1 12 14 + 0.19088784683003400E-008 1 2 12 14 + 0.21941221100535831E-009 1 9 12 14 + 0.47689304047595176E-004 1 10 12 14 + -0.10523869212303224E-004 1 11 12 14 + 0.20791350527696659E-003 1 12 12 14 + -0.16031402773253378E-004 1 13 12 14 + -0.50366767211464276E-005 1 14 12 14 + 0.50113828283350204E-008 2 1 12 14 + 0.72123846810233536E-007 2 2 12 14 + 0.64290468680212911E-007 2 9 12 14 + -0.37935905809022025E-002 2 10 12 14 + 0.83717774098557285E-003 2 11 12 14 + -0.16538645987926280E-001 2 12 12 14 + 0.12747143888496293E-002 2 13 12 14 + 0.40001245236952654E-003 2 14 12 14 + 0.11727014896502000E-001 3 3 12 14 + -0.13423949410693264E-002 3 4 12 14 + 0.53693901398848163E-002 3 5 12 14 + 0.18472076011475354E-002 3 6 12 14 + 0.94314856627147233E-004 3 7 12 14 + -0.19790624862821931E-002 3 8 12 14 + -0.13420486175673763E-002 4 3 12 14 + -0.13393111020844364E-001 4 4 12 14 + -0.90687982907199979E-002 4 5 12 14 + 0.18451908305834772E-002 4 6 12 14 + 0.62011622812908483E-003 4 7 12 14 + 0.27761065716403526E-002 4 8 12 14 + 0.53695901118534532E-002 5 3 12 14 + -0.90690656347428861E-002 5 4 12 14 + 0.16662814767945636E-002 5 5 12 14 + 0.21945702466265584E-002 5 6 12 14 + -0.34776028306865631E-003 5 7 12 14 + 0.17762677029118989E-003 5 8 12 14 + 0.11257922177980969E-002 6 3 12 14 + 0.11242901866365203E-002 6 4 12 14 + 0.13373557724073340E-002 6 5 12 14 + -0.25463098582943170E-003 6 6 12 14 + -0.11603161289591554E-002 6 7 12 14 + -0.88729421642863102E-002 6 8 12 14 + 0.57501112290435892E-004 7 3 12 14 + 0.37794715722886730E-003 7 4 12 14 + -0.21189500671086630E-003 7 5 12 14 + -0.11603445748263840E-002 7 6 12 14 + 0.13657514791507971E-002 7 7 12 14 + -0.57644787514929277E-003 7 8 12 14 + -0.12061943620014040E-002 8 3 12 14 + 0.16917718741325583E-002 8 4 12 14 + 0.10824076109532607E-003 8 5 12 14 + -0.88730883007354482E-002 8 6 12 14 + -0.57645055849213443E-003 8 7 12 14 + -0.11110234706707325E-002 8 8 12 14 + -0.56661688395369578E-008 9 1 12 14 + -0.86126139124181252E-007 9 2 12 14 + 0.40113935216451362E-007 9 9 12 14 + -0.29606623922577097E-003 9 10 12 14 + 0.65335833247576024E-004 9 11 12 14 + -0.12907357644351110E-002 9 12 12 14 + 0.99617808258967952E-004 9 13 12 14 + 0.31382710924767181E-004 9 14 12 14 + -0.64101509495553528E-003 10 1 12 14 + -0.67196159289150178E-002 10 2 12 14 + 0.94953002774395142E-003 10 9 12 14 + -0.15031235764007968E-002 10 10 12 14 + -0.29205537741411576E-002 10 11 12 14 + -0.78256329063201759E-002 10 12 12 14 + 0.37394116042814058E-004 10 13 12 14 + -0.10538020887785600E-002 10 14 12 14 + 0.14146002159850905E-003 11 1 12 14 + 0.14829044646970358E-002 11 2 12 14 + -0.20954379727797448E-003 11 9 12 14 + -0.29209473458428337E-002 11 10 12 14 + 0.21372345955018518E-002 11 11 12 14 + 0.28215257739930771E-003 11 12 12 14 + -0.79626230336284683E-002 11 13 12 14 + -0.38205944540172648E-003 11 14 12 14 + -0.27945996113948380E-002 12 1 12 14 + -0.29294970720347587E-001 12 2 12 14 + 0.41395976763897360E-002 12 9 12 14 + -0.78269345978152667E-002 12 10 12 14 + 0.28220084017963369E-003 12 11 12 14 + 0.16512166466550521E-007 12 12 12 14 + 0.28286955977063102E-002 12 13 12 14 + 0.25929443885989258E-001 12 14 12 14 + -0.77157610617491644E-009 1 10 13 1 + 0.14340953462165392E-008 1 11 13 1 + -0.84120216220640053E-009 1 12 13 1 + 0.87162001850679758E-003 1 13 13 1 + -0.43643404561529495E-008 2 10 13 1 + 0.81118120257057953E-008 2 11 13 1 + -0.47581730413876404E-008 2 12 13 1 + 0.77123705128238542E-002 2 13 13 1 + -0.36828667463719299E-002 3 3 13 1 + -0.38717115410905473E-002 3 4 13 1 + -0.15875237977479831E-002 3 5 13 1 + 0.28010134104952331E-003 3 6 13 1 + -0.78938694953822517E-003 3 7 13 1 + 0.27872807118305230E-002 3 8 13 1 + -0.38717115410905473E-002 4 3 13 1 + -0.32565698361347721E-002 4 4 13 1 + -0.70851272988041122E-003 4 5 13 1 + 0.22186215271300251E-005 4 6 13 1 + -0.11225366254503878E-002 4 7 13 1 + 0.24194714877765248E-002 4 8 13 1 + -0.15875237977479831E-002 5 3 13 1 + -0.70851272988041122E-003 5 4 13 1 + 0.69394365825059265E-002 5 5 13 1 + 0.11981014113490945E-004 5 6 13 1 + -0.35243776932314449E-002 5 7 13 1 + -0.12366729689442825E-002 5 8 13 1 + 0.28741933955822834E-003 6 3 13 1 + 0.22803495921581566E-005 6 4 13 1 + 0.12292297196793927E-004 6 5 13 1 + 0.23785081311260156E-003 6 6 13 1 + 0.15946361540412402E-003 6 7 13 1 + -0.24580324474248534E-003 6 8 13 1 + -0.80999233710234912E-003 7 3 13 1 + -0.11518472784144383E-002 7 4 13 1 + -0.36163980921260362E-002 7 5 13 1 + 0.15946361540412389E-003 7 6 13 1 + 0.30360936119653540E-002 7 7 13 1 + 0.40833533493613103E-002 7 8 13 1 + 0.28600531259981776E-002 8 3 13 1 + 0.24826466833522791E-002 8 4 13 1 + -0.12689594033089282E-002 8 5 13 1 + -0.24580324474248540E-003 8 6 13 1 + 0.40833533493613103E-002 8 7 13 1 + -0.32739444250786784E-002 8 8 13 1 + 0.48446038841360680E-008 9 10 13 1 + -0.90044570205131437E-008 9 11 13 1 + 0.52817748377764584E-008 9 12 13 1 + -0.25123009818126146E-002 9 13 13 1 + 0.16220816404667854E-008 10 1 13 1 + 0.43418249273962314E-009 10 2 13 1 + -0.36101494604339808E-008 10 9 13 1 + -0.21338404237320813E-003 10 10 13 1 + 0.21617317968000124E-003 10 11 13 1 + 0.58177297862135133E-004 10 12 13 1 + 0.22709209769959904E-003 10 13 13 1 + 0.38598878712717212E-004 10 14 13 1 + -0.30148934283094520E-008 11 1 13 1 + -0.80699633945223669E-009 11 2 13 1 + 0.67100296368399822E-008 11 9 13 1 + 0.21617305477743547E-003 11 10 13 1 + 0.15220534578825858E-002 11 11 13 1 + 0.43020981650924448E-002 11 12 13 1 + -0.10024205177143753E-003 11 13 13 1 + -0.29019884383077389E-003 11 14 13 1 + 0.17684562441071187E-008 12 1 13 1 + 0.47336257324976327E-009 12 2 13 1 + -0.39359247979650783E-008 12 9 13 1 + 0.58177445613650663E-004 12 10 13 1 + 0.43020978247361001E-002 12 11 13 1 + -0.12864912020352319E-002 12 12 13 1 + 0.35870866081662663E-003 12 13 13 1 + 0.21541668696982601E-003 12 14 13 1 + 0.16268456963594955E-002 13 1 13 1 + -0.18076336211611499E-008 1 10 13 2 + 0.33597709205868477E-008 1 11 13 2 + -0.19707522034834436E-008 1 12 13 2 + 0.56384579784711595E-003 1 13 13 2 + -0.67030274007962851E-007 2 10 13 2 + 0.12458628935290626E-006 2 11 13 2 + -0.73079001507542002E-007 2 12 13 2 + 0.62905154633420932E-001 2 13 13 2 + 0.31331281953765859E-009 2 14 13 2 + -0.28359420019291252E-001 3 3 13 2 + -0.29813648419269201E-001 3 4 13 2 + -0.12224552793860565E-001 3 5 13 2 + 0.81562337832234981E-003 3 6 13 2 + -0.22987742942686146E-002 3 7 13 2 + 0.81166951527321292E-002 3 8 13 2 + -0.29813648419269197E-001 4 3 13 2 + -0.25076858158382596E-001 4 4 13 2 + -0.54558186428564749E-002 4 5 13 2 + 0.64257019374388197E-005 4 6 13 2 + -0.32688563224512199E-002 4 7 13 2 + 0.70455634288208967E-002 4 8 13 2 + -0.12224552793860565E-001 5 3 13 2 + -0.54558186428564767E-002 5 4 13 2 + 0.53436278177671936E-001 5 5 13 2 + 0.34903347593447611E-004 5 6 13 2 + -0.10263126485969118E-001 5 7 13 2 + -0.36012652985830179E-002 5 8 13 2 + 0.59190623397832099E-003 6 3 13 2 + 0.47446439801645626E-005 6 4 13 2 + 0.25292152276248656E-004 6 5 13 2 + 0.15237190544391589E-002 6 6 13 2 + 0.10215700930934091E-002 6 7 13 2 + -0.15746777351890809E-002 6 8 13 2 + -0.16678472628672118E-002 7 3 13 2 + -0.23718741254468035E-002 7 4 13 2 + -0.74467925344994940E-002 7 5 13 2 + 0.10215700930934126E-002 7 6 13 2 + 0.19449822386578310E-001 7 7 13 2 + 0.26158761471542325E-001 7 8 13 2 + 0.58893130305191959E-002 8 3 13 2 + 0.51122470362582025E-002 8 4 13 2 + -0.26129731290616466E-002 8 5 13 2 + -0.15746777351890798E-002 8 6 13 2 + 0.26158761471542308E-001 8 7 13 2 + -0.20973541441020156E-001 8 8 13 2 + 0.90177849382752798E-007 9 10 13 2 + -0.16760969281800129E-006 9 11 13 2 + 0.98315384920603325E-007 9 12 13 2 + 0.21179700534168866E-002 9 13 13 2 + -0.42150963889785139E-009 9 14 13 2 + 0.43418249215211946E-009 10 1 13 2 + -0.21924424965325030E-007 10 2 13 2 + -0.92317373801386681E-007 10 9 13 2 + -0.22367669446143584E-002 10 10 13 2 + 0.22659598866156851E-002 10 11 13 2 + 0.60982287054382528E-003 10 12 13 2 + 0.23804744552615967E-002 10 13 13 2 + 0.40455842674657228E-003 10 14 13 2 + -0.80699633859500378E-009 11 1 13 2 + 0.40749986376310130E-007 11 2 13 2 + 0.17158633489432071E-006 11 9 13 2 + 0.22659562103676321E-002 11 10 13 2 + 0.15954673047799465E-001 11 11 13 2 + 0.45095970252992980E-001 11 12 13 2 + -0.10507959074982668E-002 11 13 13 2 + -0.30420286125742084E-002 11 14 13 2 + 0.47336257252179242E-009 12 1 13 2 + -0.23902857470781861E-007 12 2 13 2 + -0.10064797730770358E-006 12 9 13 2 + 0.60982721930333836E-003 12 10 13 2 + 0.45095960235309658E-001 12 11 13 2 + -0.13485425456218553E-001 12 12 13 2 + 0.37601954413867614E-002 12 13 13 2 + 0.22581231256987781E-002 12 14 13 2 + 0.90789217793059360E-002 13 1 13 2 + 0.96401973981796396E-001 13 2 13 2 + -0.93364646800783431E-003 1 3 13 3 + -0.98152211063600651E-003 1 4 13 3 + -0.40245546245138136E-003 1 5 13 3 + 0.61907536359917542E-004 1 6 13 3 + -0.17447010466953956E-003 1 7 13 3 + 0.61604312058575572E-003 1 8 13 3 + -0.58152024477577897E-001 2 3 13 3 + -0.61133973782101843E-001 2 4 13 3 + -0.25066891795264688E-001 2 5 13 3 + 0.19258011664230463E-002 2 6 13 3 + -0.54274178546292939E-002 2 7 13 3 + 0.19163828981367075E-001 2 8 13 3 + -0.21405627825885169E-001 3 1 13 3 + -0.64446923923512298E-001 3 2 13 3 + 0.94124428882947034E-002 3 9 13 3 + 0.41585938866451927E-003 3 10 13 3 + -0.15896387295989890E-001 3 11 13 3 + 0.33948922786645894E-001 3 12 13 3 + 0.60283895072699503E-001 3 13 13 3 + -0.27302315142732469E-001 3 14 13 3 + -0.22503234382540590E-001 4 1 13 3 + -0.67751595993116809E-001 4 2 13 3 + 0.98949669785667049E-002 4 9 13 3 + -0.59432759618025808E-002 4 10 13 3 + 0.13588010689288050E-001 4 11 13 3 + -0.30390349349599749E-001 4 12 13 3 + 0.41838683489704022E-001 4 13 13 3 + -0.16892314646495186E-001 4 14 13 3 + -0.92270353414813586E-002 5 1 13 3 + -0.27780307408938606E-001 5 2 13 3 + 0.40572129428141680E-002 5 9 13 3 + -0.41301629759908323E-001 5 10 13 3 + -0.10196682309464578E-001 5 11 13 3 + -0.10612553954789999E-002 5 12 13 3 + -0.36271403921948452E-002 5 13 13 3 + -0.89827017335523153E-002 5 14 13 3 + 0.32717549908792202E-002 6 1 13 3 + 0.16489788961731751E-002 6 2 13 3 + -0.58540012322122505E-002 6 9 13 3 + 0.79421590650606520E-004 6 10 13 3 + -0.92833815337056572E-003 6 11 13 3 + 0.19979729778578066E-002 6 12 13 3 + 0.65800805995796261E-003 6 13 13 3 + -0.23050641709378375E-003 6 14 13 3 + -0.92203637462227629E-002 7 1 13 3 + -0.46468641459096868E-002 7 2 13 3 + 0.16497596967721521E-001 7 9 13 3 + 0.11316001794593031E-002 7 10 13 3 + 0.45191558672098359E-003 7 11 13 3 + 0.73373045133451169E-003 7 12 13 3 + 0.25586168656593880E-002 7 13 13 3 + -0.52790988049822860E-003 7 14 13 3 + 0.32556721423004059E-001 8 1 13 3 + 0.16408092884314558E-001 8 2 13 3 + -0.58252309859935257E-001 8 9 13 3 + 0.87228066712928976E-003 8 10 13 3 + 0.75080098264523280E-003 8 11 13 3 + -0.34619958453074395E-003 8 12 13 3 + -0.35142564448912210E-002 8 13 13 3 + 0.17199249598321210E-002 8 14 13 3 + 0.56975292777292344E-002 9 3 13 3 + 0.59897955432621939E-002 9 4 13 3 + 0.24560413509242618E-002 9 5 13 3 + -0.58478504073667991E-002 9 6 13 3 + 0.16480112390620263E-001 9 7 13 3 + -0.58190703509764859E-001 9 8 13 3 + 0.63326312655321616E-003 10 3 13 3 + -0.95743885853127909E-002 10 4 13 3 + -0.66855138284961799E-001 10 5 13 3 + 0.63324298255439592E-003 10 6 13 3 + 0.10929265034171047E-001 10 7 13 3 + 0.84295664941151458E-002 10 8 13 3 + -0.24205220576605038E-001 11 3 13 3 + 0.22182590063967965E-001 11 4 13 3 + -0.14012972540444519E-001 11 5 13 3 + -0.67661647647469462E-002 11 6 13 3 + 0.14107116662714933E-002 11 7 13 3 + 0.19247219508113798E-002 11 8 13 3 + 0.51693387801709512E-001 12 3 13 3 + -0.48780875391467686E-001 12 4 13 3 + -0.46560656603035976E-003 12 5 13 3 + 0.14226818388688448E-001 12 6 13 3 + 0.17485273260854125E-002 12 7 13 3 + -0.85618821708685329E-003 12 8 13 3 + 0.89039307346459054E-001 13 3 13 3 + -0.98152211063590980E-003 1 3 13 4 + -0.82557773323327409E-003 1 4 13 4 + -0.17961593410287374E-003 1 5 13 4 + 0.49012961164744194E-006 1 6 13 4 + -0.24810221751506487E-003 1 7 13 4 + 0.53474979505220349E-003 1 8 13 4 + -0.61133973782102113E-001 2 3 13 4 + -0.51421013145742170E-001 2 4 13 4 + -0.11187355203115723E-001 2 5 13 4 + 0.15235740571654399E-004 2 6 13 4 + -0.77179397883765924E-002 2 7 13 4 + 0.16634944432666790E-001 2 8 13 4 + -0.22503234382540559E-001 3 1 13 4 + -0.67751595993117059E-001 3 2 13 4 + 0.98949669785666720E-002 3 9 13 4 + 0.42156604936357612E-002 3 10 13 4 + -0.15308986231151768E-001 3 11 13 4 + 0.18133928933599108E-001 3 12 13 4 + 0.41838651384291291E-001 3 13 13 4 + -0.21247808334266555E-001 3 14 13 4 + -0.18927895772830525E-001 4 1 13 4 + -0.56987183741460987E-001 4 2 13 4 + 0.83227722042318788E-002 4 9 13 4 + -0.17604583069301210E-002 4 10 13 4 + 0.22737951329289303E-001 4 11 13 4 + -0.33838615186363261E-001 4 12 13 4 + 0.52846034690874448E-001 4 13 13 4 + -0.19991093451940313E-001 4 14 13 4 + -0.41180309446147909E-002 5 1 13 4 + -0.12398360338582068E-001 5 2 13 4 + 0.18107486199534411E-002 5 9 13 4 + -0.36621321891914277E-001 5 10 13 4 + 0.91461611683025575E-002 5 11 13 4 + 0.10916468716574710E-001 5 12 13 4 + 0.52867448907788954E-002 5 13 13 4 + -0.28506111515799394E-002 5 14 13 4 + 0.25947425553396853E-004 6 1 13 4 + 0.13126822333249344E-004 6 2 13 4 + -0.46421865909196480E-004 6 9 13 4 + 0.64855396201821353E-004 6 10 13 4 + -0.12100163417799808E-002 6 11 13 4 + 0.17410036270703864E-002 6 12 13 4 + -0.11653232005148990E-002 6 13 13 4 + 0.11860768712607996E-003 6 14 13 4 + -0.13111767094837332E-001 7 1 13 4 + -0.66081656991496185E-002 7 2 13 4 + 0.23460304972708932E-001 7 9 13 4 + 0.10366327844152073E-002 7 10 13 4 + -0.56145916597116069E-003 7 11 13 4 + -0.91906435462986251E-003 7 12 13 4 + 0.17986116017167000E-002 7 13 13 4 + -0.66211087750326259E-003 7 14 13 4 + 0.28260590784784975E-001 8 1 13 4 + 0.14242984417013464E-001 8 2 13 4 + -0.50565425017774800E-001 8 9 13 4 + 0.63094653021240562E-003 8 10 13 4 + -0.80649088672363819E-003 8 11 13 4 + 0.34720365148648897E-003 8 12 13 4 + -0.34542481290087412E-002 8 13 13 4 + 0.13851568139661777E-002 8 14 13 4 + 0.59897955432621670E-002 9 3 13 4 + 0.50382038382114393E-002 9 4 13 4 + 0.10961200007499428E-002 9 5 13 4 + -0.46403979535671721E-004 9 6 13 4 + 0.23435515420708312E-001 9 7 13 4 + -0.50511995914206825E-001 9 8 13 4 + 0.69437892845942420E-002 10 3 13 4 + -0.26806619895222688E-002 10 4 13 4 + -0.59522732099713822E-001 10 5 13 4 + 0.46932497649189323E-003 10 6 13 4 + 0.10706231325205599E-001 10 7 13 4 + 0.60146666409598756E-002 10 8 13 4 + -0.24803162991605184E-001 11 3 13 4 + 0.34622651875051563E-001 11 4 13 4 + 0.12268337842806652E-001 11 5 13 4 + -0.83952366526671741E-002 11 6 13 4 + -0.21944582944947891E-002 11 7 13 4 + -0.19991254408573641E-002 11 8 13 4 + 0.30118344559197707E-001 12 3 13 4 + -0.51525345712426548E-001 12 4 13 4 + 0.16031260315629608E-001 12 5 13 4 + 0.12107513670624955E-001 12 6 13 4 + -0.29112539119091484E-002 12 7 13 4 + 0.21316853850361137E-003 12 8 13 4 + 0.63707729625701065E-001 13 3 13 4 + 0.77713235668279340E-001 13 4 13 4 + -0.40245546245136249E-003 1 3 13 5 + -0.17961593410284154E-003 1 4 13 5 + 0.17592242012411025E-002 1 5 13 5 + 0.26481284224461734E-005 1 6 13 5 + -0.77895565700187132E-003 1 7 13 5 + -0.27332881533124510E-003 1 8 13 5 + -0.25066891795264733E-001 2 3 13 5 + -0.11187355203115737E-001 2 4 13 5 + 0.10957303762332039 2 5 13 5 + 0.82382292110531806E-004 2 6 13 5 + -0.24231691762829667E-001 2 7 13 5 + -0.85026994146576353E-002 2 8 13 5 + -0.92270353414814037E-002 3 1 13 5 + -0.27780307408938644E-001 3 2 13 5 + 0.40572129428141646E-002 3 9 13 5 + 0.35487553941198673E-001 3 10 13 5 + -0.39496618191284520E-001 3 11 13 5 + -0.23334769932839654E-001 3 12 13 5 + -0.36271697991018081E-002 3 13 13 5 + -0.11368732597601116E-001 3 14 13 5 + -0.41180309446147865E-002 4 1 13 5 + -0.12398360338582085E-001 4 2 13 5 + 0.18107486199534419E-002 4 9 13 5 + 0.36185271637205009E-001 4 10 13 5 + 0.41256091651474612E-001 4 11 13 5 + 0.22360982145260118E-001 4 12 13 5 + 0.52867378484924253E-002 4 13 13 5 + -0.62064948426679032E-002 4 14 13 5 + 0.40333523598715768E-001 5 1 13 5 + 0.12143410766497363 5 2 13 5 + -0.17735215092526697E-001 5 9 13 5 + 0.13444320959612509E-002 5 10 13 5 + -0.68412539678526126E-002 5 11 13 5 + -0.11048947642123861E-003 5 12 13 5 + 0.90332612027435491E-001 5 13 13 5 + 0.47293409374433333E-001 5 14 13 5 + 0.13993055181030299E-003 6 1 13 5 + 0.70502918673338597E-004 6 2 13 5 + -0.25037347749162645E-003 6 9 13 5 + -0.20589744396108426E-003 6 10 13 5 + -0.26184638399354915E-002 6 11 13 5 + -0.14767864848946907E-002 6 12 13 5 + 0.34476366536298939E-004 6 13 13 5 + 0.35400501862432586E-004 6 14 13 5 + -0.41166381970530630E-001 7 1 13 5 + -0.20747274170868236E-001 7 2 13 5 + 0.73657192738592323E-001 7 9 13 5 + 0.79803912395498013E-003 7 10 13 5 + 0.42756368532776502E-004 7 11 13 5 + -0.13638612833399681E-003 7 12 13 5 + -0.45164695266380851E-002 7 13 13 5 + -0.24753764709022977E-002 7 14 13 5 + -0.14444895978153472E-001 8 1 13 5 + -0.72799878059371121E-002 8 2 13 5 + 0.25845619040045179E-001 8 9 13 5 + -0.13934139820910429E-002 8 10 13 5 + 0.27290100804272413E-003 8 11 13 5 + 0.31894765714444084E-004 8 12 13 5 + -0.29557235287139445E-002 8 13 13 5 + -0.83880067859823761E-003 8 14 13 5 + 0.24560413509242349E-002 9 3 13 5 + 0.10961200007499365E-002 9 4 13 5 + -0.10735733115940680E-001 9 5 13 5 + -0.25009616235128015E-003 9 6 13 5 + 0.73579321643946968E-001 9 7 13 5 + 0.25818272561749567E-001 9 8 13 5 + 0.58002055798940702E-001 10 3 13 5 + 0.58858908291726207E-001 10 4 13 5 + 0.20472095590699231E-002 10 5 13 5 + -0.17137172368707513E-002 10 6 13 5 + 0.87061518234098304E-002 10 7 13 5 + -0.14443452649068612E-001 10 8 13 5 + -0.61653896809629245E-001 11 3 13 5 + 0.64478259620937464E-001 11 4 13 5 + -0.10417079447425896E-001 11 5 13 5 + -0.18080916648140766E-001 11 6 13 5 + -0.29469314402216930E-004 11 7 13 5 + 0.15705500226412734E-002 11 8 13 5 + -0.36681730427107311E-001 12 3 13 5 + 0.34639745511489524E-001 12 4 13 5 + -0.16824847572692632E-003 12 5 13 5 + -0.10088513265882082E-001 12 6 13 5 + -0.12696534817778463E-002 12 7 13 5 + 0.72755848978100872E-003 12 8 13 5 + -0.55229867505272945E-002 13 3 13 5 + 0.80500394834480023E-002 13 4 13 5 + 0.13479431507598885 13 5 13 5 + 0.28705999474541532E-003 1 3 13 6 + 0.22759416666027413E-005 1 4 13 6 + 0.12277646884061777E-004 1 5 13 6 + 0.15769170328276349E-003 1 6 13 6 + 0.10572183806597205E-003 1 7 13 6 + -0.16296380126117573E-003 1 8 13 6 + 0.22714408296777358E-002 2 3 13 6 + 0.17978006292833709E-004 2 4 13 6 + 0.97164543847414307E-004 2 5 13 6 + 0.64335738695274610E-003 2 6 13 6 + 0.43132214575532230E-003 2 7 13 6 + -0.66486079168593065E-003 2 8 13 6 + 0.11991424112482621E-002 3 1 13 6 + 0.22880818372952435E-002 3 2 13 6 + -0.10102906713848206E-002 3 9 13 6 + -0.17010563170319039E-003 3 10 13 6 + -0.54268959928863953E-004 3 11 13 6 + 0.11943166712666611E-002 3 12 13 6 + 0.12016568029661985E-002 3 13 13 6 + -0.44500627458673569E-003 3 14 13 6 + 0.95070767375059732E-005 4 1 13 6 + 0.18103743344394020E-004 4 2 13 6 + -0.79945285050288083E-005 4 9 13 6 + 0.14763941651848797E-004 4 10 13 6 + -0.14331061860502307E-002 4 11 13 6 + 0.19711690370982022E-002 4 12 13 6 + -0.33563849276324297E-002 4 13 13 6 + 0.12103601402719333E-002 4 14 13 6 + 0.51287824045467657E-004 5 1 13 6 + 0.97879144733184045E-004 5 2 13 6 + -0.43217607064240310E-004 5 9 13 6 + 0.67275506870502347E-003 5 10 13 6 + -0.33793608808189847E-002 5 11 13 6 + -0.22563973673416439E-002 5 12 13 6 + -0.63828731822514480E-004 5 13 13 6 + -0.68692358870599713E-004 5 14 13 6 + 0.84101677344430587E-003 6 1 13 6 + 0.91375573309771560E-003 6 2 13 6 + -0.80792914370494712E-003 6 9 13 6 + -0.38887055657126784E-004 6 10 13 6 + 0.44837136616540717E-003 6 11 13 6 + -0.49379278687107845E-003 6 12 13 6 + 0.29924953232532197E-002 6 13 13 6 + -0.65544601336637318E-003 6 14 13 6 + 0.56385022188214728E-003 7 1 13 6 + 0.61262694092321381E-003 7 2 13 6 + -0.54167489637914020E-003 7 9 13 6 + -0.16905941798011148E-003 7 10 13 6 + 0.17462336991822323E-002 7 11 13 6 + 0.26579880142635270E-002 7 12 13 6 + -0.21750446998832594E-003 7 13 13 6 + 0.47132357579547632E-004 7 14 13 6 + -0.86913836236688811E-003 8 1 13 6 + -0.94431859278335786E-003 8 2 13 6 + 0.83495173598927691E-003 8 9 13 6 + -0.10534771109984003E-003 8 10 13 6 + 0.25046046116649601E-002 8 11 13 6 + -0.98504690540651045E-003 8 12 13 6 + 0.63113145085253429E-003 8 13 13 6 + -0.13342296183424900E-003 8 14 13 6 + -0.13982943115044030E-002 9 3 13 6 + -0.11115997301964403E-004 9 4 13 6 + -0.59791798589103873E-004 9 5 13 6 + -0.87356576426826887E-003 9 6 13 6 + -0.58567760030251727E-003 9 7 13 6 + 0.90278063500218695E-003 9 8 13 6 + -0.19027640854624907E-003 10 3 13 6 + 0.14360344208062314E-004 10 4 13 6 + 0.74926499856645655E-003 10 5 13 6 + -0.32573680815462635E-004 10 6 13 6 + -0.11902068173121199E-003 10 7 13 6 + -0.83286669326246190E-004 10 8 13 6 + -0.31978304002188472E-004 11 3 13 6 + -0.15464586748328117E-002 11 4 13 6 + -0.36537015531044963E-002 11 5 13 6 + 0.37550166999865625E-003 11 6 13 6 + 0.15232606547760633E-002 11 7 13 6 + 0.22363903902074293E-002 11 8 13 6 + 0.12589602065439624E-002 12 3 13 6 + 0.21247558319480481E-002 12 4 13 6 + -0.24477621429932349E-002 12 5 13 6 + -0.41352954474460272E-003 12 6 13 6 + 0.23599267774528573E-002 12 7 13 6 + -0.90873060177616076E-003 12 8 13 6 + 0.12738424683625934E-002 13 3 13 6 + -0.36312664295966848E-002 13 4 13 6 + -0.75209306324560909E-004 13 5 13 6 + 0.26609413081425904E-002 13 6 13 6 + -0.80898723229899747E-003 1 3 13 7 + -0.11504142279191519E-002 1 4 13 7 + -0.36119008569681344E-002 1 5 13 7 + 0.10572183806597245E-003 1 6 13 7 + 0.20128866642799294E-002 1 7 13 7 + 0.27072051911587519E-002 1 8 13 7 + -0.64014840900423137E-002 2 3 13 7 + -0.91031078908580271E-002 2 4 13 7 + -0.28580635734859357E-001 2 5 13 7 + 0.43132214575531650E-003 2 6 13 7 + 0.82122572167016971E-002 2 7 13 7 + 0.11044973178957794E-001 2 8 13 7 + -0.33794025367625932E-002 3 1 13 7 + -0.64484116793340077E-002 3 2 13 7 + 0.28472582864643142E-002 3 9 13 7 + -0.85576522126700558E-002 3 10 13 7 + 0.60792526104501976E-002 3 11 13 7 + 0.11619554428873587E-001 3 12 13 7 + 0.11679974002651711E-001 3 13 13 7 + -0.25756055167835416E-002 3 14 13 7 + -0.48056533955018561E-002 4 1 13 7 + -0.91698260068041344E-002 4 2 13 7 + 0.40488849909686144E-002 4 9 13 7 + -0.10073111659258373E-001 4 10 13 7 + -0.61374337199299736E-002 4 11 13 7 + -0.12232179987578477E-001 4 12 13 7 + 0.82836597087766542E-002 4 13 13 7 + -0.23050529067409984E-002 4 14 13 7 + -0.15088081840419406E-001 5 1 13 7 + -0.28790115566827690E-001 5 2 13 7 + 0.12712112063822292E-001 5 9 13 7 + -0.92512759355366028E-002 5 10 13 7 + 0.11036632053706187E-002 5 11 13 7 + 0.87779945293359088E-003 5 12 13 7 + -0.20505375044582025E-001 5 13 13 7 + -0.12347458259290922E-001 5 14 13 7 + 0.56385022188217102E-003 6 1 13 7 + 0.61262694092320687E-003 6 2 13 7 + -0.54167489637922108E-003 6 9 13 7 + 0.73433705320714610E-003 6 10 13 7 + 0.41870960737591962E-002 6 11 13 7 + 0.80290453157612733E-002 6 12 13 7 + -0.21750595958186603E-003 6 13 13 7 + -0.31639092225449765E-003 6 14 13 7 + 0.10735326335603755E-001 7 1 13 7 + 0.11663823843951589E-001 7 2 13 7 + -0.10312978022638648E-001 7 9 13 7 + 0.44286785480726897E-003 7 10 13 7 + 0.52794630388173114E-005 7 11 13 7 + 0.48381049925925903E-003 7 12 13 7 + 0.14632219997354770E-001 7 13 13 7 + 0.45575575568329212E-002 7 14 13 7 + 0.14438330053850573E-001 8 1 13 7 + 0.15687089543599146E-001 8 2 13 7 + -0.13870289915991194E-001 8 9 13 7 + 0.62388638729111651E-002 8 10 13 7 + -0.40983333197554955E-003 8 11 13 7 + -0.30770095690692550E-003 8 12 13 7 + -0.45630886592308649E-003 8 13 13 7 + 0.52532702767276356E-002 8 14 13 7 + 0.39405028598191215E-002 9 3 13 7 + 0.56036339355831164E-002 9 4 13 7 + 0.17593424101774818E-001 9 5 13 7 + -0.58567760030257409E-003 9 6 13 7 + -0.11150807981344012E-001 9 7 13 7 + -0.14997120686536969E-001 9 8 13 7 + -0.94861950370795731E-002 10 3 13 7 + -0.11157220993746402E-001 10 4 13 7 + -0.10242327123065751E-001 10 5 13 7 + 0.59243857152826063E-003 10 6 13 7 + 0.37093582822716076E-003 10 7 13 7 + 0.49155809115313002E-002 10 8 13 7 + 0.67010243000350227E-002 11 3 13 7 + -0.67620432571222754E-002 11 4 13 7 + 0.12177755924936704E-002 11 5 13 7 + 0.34455155871253021E-002 11 6 13 7 + 0.43299657375370076E-005 11 7 13 7 + -0.33087828413668391E-003 11 8 13 7 + 0.12811975677478597E-001 12 3 13 7 + -0.13483029132984265E-001 12 4 13 7 + 0.97365194119498498E-003 12 5 13 7 + 0.65897931532139884E-002 12 6 13 7 + 0.40518706425206189E-003 12 7 13 7 + -0.23869163570330710E-003 12 8 13 7 + 0.12799994521137460E-001 13 3 13 7 + 0.90797396784701827E-002 13 4 13 7 + -0.22469003017112479E-001 13 5 13 7 + -0.18216830255774009E-003 13 6 13 7 + 0.12410151294303442E-001 13 7 13 7 + 0.28564975378373601E-002 1 3 13 8 + 0.24795578752616642E-002 1 4 13 8 + -0.12673824876346747E-002 1 5 13 8 + -0.16296380126118047E-003 1 6 13 8 + 0.27072051911588091E-002 1 7 13 8 + -0.21705783675627270E-002 1 8 13 8 + 0.22603221016465953E-001 2 3 13 8 + 0.19620481717094230E-001 2 4 13 8 + -0.10028702138554245E-001 2 5 13 8 + -0.66486079168592848E-003 2 6 13 8 + 0.11044973178957869E-001 2 7 13 8 + -0.88556146036544471E-002 2 8 13 8 + 0.11932517254851225E-001 3 1 13 8 + 0.22768893939619061E-001 3 2 13 8 + -0.10053475206741038E-001 3 9 13 8 + -0.66136020898752441E-002 3 10 13 8 + 0.11455714549895069E-001 3 11 13 8 + -0.53844907911413534E-002 3 12 13 8 + -0.16051931253528811E-001 3 13 13 8 + 0.98032998682992065E-002 3 14 13 8 + 0.10357917539765548E-001 4 1 13 8 + 0.19764283070558678E-001 4 2 13 8 + -0.87268078350603139E-002 4 9 13 8 + -0.45181847630007248E-002 4 10 13 8 + -0.12518881385050348E-001 4 11 13 8 + 0.74701520074336725E-002 4 12 13 8 + -0.15953283742357282E-001 4 13 13 8 + 0.69732206408576729E-002 4 14 13 8 + -0.52942680736193211E-002 5 1 13 8 + -0.10102211131678333E-001 5 2 13 8 + 0.44605733083570827E-002 5 9 13 8 + 0.13706276496604577E-001 5 10 13 8 + 0.13637888311970531E-002 5 11 13 8 + -0.15915023821762206E-002 5 12 13 8 + -0.13442525533580054E-001 5 13 13 8 + -0.51469833461311315E-002 5 14 13 8 + -0.86913836236687803E-003 6 1 13 8 + -0.94431859278335862E-003 6 2 13 8 + 0.83495173598924612E-003 6 9 13 8 + 0.92398646667152788E-004 6 10 13 8 + 0.80723885008947924E-002 6 11 13 8 + -0.43442465730484719E-002 6 12 13 8 + 0.63114070326610863E-003 6 13 13 8 + 0.19755866342268598E-003 6 14 13 8 + 0.14438330053850404E-001 7 1 13 8 + 0.15687089543599202E-001 7 2 13 8 + -0.13870289915990829E-001 7 9 13 8 + -0.61484074441038716E-002 7 10 13 8 + 0.83761364920298203E-004 7 11 13 8 + 0.45384892558838499E-003 7 12 13 8 + -0.45630050961875104E-003 7 13 13 8 + 0.57520927688341156E-002 7 14 13 8 + -0.11576343109048147E-001 8 1 13 8 + -0.12577579577049377E-001 8 2 13 8 + 0.11120907166343485E-001 8 9 13 8 + -0.40404447887030782E-003 8 10 13 8 + -0.45353247044543628E-003 8 11 13 8 + 0.99128615140161279E-005 8 12 13 8 + 0.15325801294923294E-001 8 13 13 8 + -0.39021112458147026E-002 8 14 13 8 + -0.13913864243002852E-001 9 3 13 8 + -0.12077854903700435E-001 9 4 13 8 + 0.61733478531800666E-002 9 5 13 8 + 0.90278063500214174E-003 9 6 13 8 + -0.14997120686536806E-001 9 7 13 8 + 0.12024373745612339E-001 9 8 13 8 + -0.73311518185396590E-002 10 3 13 8 + -0.50094492337890055E-002 10 4 13 8 + 0.15180848153190832E-001 10 5 13 8 + 0.72445195306831758E-004 10 6 13 8 + -0.48397673124324870E-002 10 7 13 8 + -0.33834058703421796E-003 10 8 13 8 + 0.12630513923227954E-001 11 3 13 8 + -0.13803076488146238E-001 11 4 13 8 + 0.14981289461525895E-002 11 5 13 8 + 0.66211857614012475E-002 11 6 13 8 + 0.57838314823152110E-004 11 7 13 8 + -0.37987170908314159E-003 11 8 13 8 + -0.59368946962553987E-002 12 3 13 8 + 0.82404650825356248E-002 12 4 13 8 + -0.17588219857407193E-002 12 5 13 8 + -0.35542046188404611E-002 12 6 13 8 + 0.36104491045528553E-003 12 7 13 8 + 0.83659864513194857E-005 12 8 13 8 + -0.17591456467672548E-001 13 3 13 8 + -0.17487446547956073E-001 13 4 13 8 + -0.14730359737709964E-001 13 5 13 8 + 0.52849807846119085E-003 13 6 13 8 + -0.38219185457833072E-003 13 7 13 8 + 0.12991076484891666E-001 13 8 13 8 + -0.14220346051820440E-002 1 13 13 9 + -0.53227262713071836E-007 2 10 13 9 + 0.98931225501142037E-007 2 11 13 9 + -0.58030423841906978E-007 2 12 13 9 + -0.15455916585047563E-001 2 13 13 9 + 0.24879505108153569E-009 2 14 13 9 + 0.57331132481118329E-002 3 3 13 9 + 0.60269766680539315E-002 3 4 13 9 + 0.24712158259305472E-002 3 5 13 9 + -0.74633701965762429E-003 3 6 13 9 + 0.21033956636031972E-002 3 7 13 9 + -0.74269238749506755E-002 3 8 13 9 + 0.60269766680539315E-002 4 3 13 9 + 0.50693341025231948E-002 4 4 13 9 + 0.11029169510825502E-002 4 5 13 9 + -0.59004017333418664E-005 4 6 13 9 + 0.29910774006167984E-002 4 7 13 9 + -0.64468506284052129E-002 4 8 13 9 + 0.24712158259305472E-002 5 3 13 9 + 0.11029169510825504E-002 5 4 13 9 + -0.10802447350635371E-001 5 5 13 9 + -0.31928863492617344E-004 5 6 13 9 + 0.93909656781442172E-002 5 7 13 9 + 0.32952148616473909E-002 5 8 13 9 + -0.93286136167288446E-003 6 3 13 9 + -0.73941524061588397E-005 6 4 13 9 + -0.39899696001978672E-004 6 5 13 9 + -0.23618215382980969E-003 6 6 13 9 + -0.15835416053011186E-003 6 7 13 9 + 0.24408744782437267E-003 6 8 13 9 + 0.26289825639925907E-002 7 3 13 9 + 0.37385201454838458E-002 7 4 13 9 + 0.11737656576985169E-001 7 5 13 9 + -0.15835416053010913E-003 7 6 13 9 + -0.30147999424089446E-002 7 7 13 9 + -0.40547046682458260E-002 7 8 13 9 + -0.92828107533509518E-002 8 3 13 9 + -0.80578601558253318E-002 8 4 13 9 + 0.41186361887776595E-002 8 5 13 9 + 0.24408744782437357E-003 8 6 13 9 + -0.40547046682458442E-002 8 7 13 9 + 0.32509820962366180E-002 8 8 13 9 + -0.29968661361516424E-007 9 10 13 9 + 0.55701462812647908E-007 9 11 13 9 + -0.32672995609701236E-007 9 12 13 9 + 0.13648830446882166E-001 9 13 13 9 + 0.14007945234114279E-009 9 14 13 9 + -0.36101494597352282E-008 10 1 13 9 + -0.92317373798744851E-007 10 2 13 9 + 0.21079958520623309E-007 10 9 13 9 + 0.31607095149284930E-003 10 10 13 9 + -0.32022620301154823E-003 10 11 13 9 + -0.86184030182977049E-004 10 12 13 9 + -0.33650237503486587E-003 10 13 13 9 + -0.57283262808743172E-004 10 14 13 9 + 0.67100296379909320E-008 11 1 13 9 + 0.17158633488228617E-006 11 2 13 9 + -0.39180412860497029E-007 11 9 13 9 + -0.32022599476254902E-003 11 10 13 9 + -0.22545761075511241E-002 11 11 13 9 + -0.63726210980340576E-002 11 12 13 9 + 0.14846547456165025E-003 11 13 13 9 + 0.43004174793434579E-003 11 14 13 9 + -0.39359247984656838E-008 12 1 13 9 + -0.10064797731256093E-006 12 2 13 9 + 0.22982187429334565E-007 12 9 13 9 + -0.86184276527838253E-004 12 10 13 9 + -0.63726205305607809E-002 12 11 13 9 + 0.19056528836681108E-002 12 12 13 9 + -0.53124013817265245E-003 12 13 13 9 + -0.31918389994296873E-003 12 14 13 9 + -0.29384401604681974E-002 13 1 13 9 + -0.11928137734776904E-001 13 2 13 9 + 0.10148880046302216E-001 13 9 13 9 + 0.72244723859533705E-008 1 1 13 10 + -0.18216709323623825E-008 1 2 13 10 + -0.20938828227987802E-009 1 9 13 10 + 0.15879110358912995E-004 1 10 13 10 + -0.16092891160682087E-004 1 11 13 10 + -0.43309843775151952E-005 1 12 13 10 + -0.16902173951463390E-004 1 13 13 10 + -0.28776220510635349E-005 1 14 13 10 + -0.47824365901745324E-008 2 1 13 10 + -0.68828851250682394E-007 2 2 13 10 + -0.61353343486588976E-007 2 9 13 10 + -0.12627454317788414E-002 2 10 13 10 + 0.12790831381119343E-002 2 11 13 10 + 0.34423129307038102E-003 2 12 13 10 + 0.13437628405860047E-002 2 13 13 10 + 0.22826983322166145E-003 2 14 13 10 + 0.26786741361788812E-003 3 3 13 10 + -0.55645376599106186E-003 3 4 13 10 + -0.18725116296134019E-002 3 5 13 10 + 0.97752157076571824E-004 3 6 13 10 + 0.31841157387679927E-003 3 7 13 10 + 0.24235534250484773E-003 3 8 13 10 + -0.55650026386218701E-003 4 3 13 10 + -0.11341029151967655E-002 4 4 13 10 + -0.14028714682430486E-003 4 5 13 10 + 0.10672427300256905E-003 4 6 13 10 + -0.99543682476709375E-004 4 7 13 10 + 0.22179818372854423E-003 4 8 13 10 + -0.18729249184618786E-002 5 3 13 10 + -0.14065968627208165E-003 5 4 13 10 + 0.86605861699909023E-003 5 5 13 10 + -0.21281502622612678E-003 5 6 13 10 + -0.33905185690225948E-003 5 7 13 10 + 0.16275444490935768E-003 5 8 13 10 + 0.59565306951890375E-004 6 3 13 10 + 0.65029229468667582E-004 6 4 13 10 + -0.12967454740382375E-003 6 5 13 10 + -0.92059089739532598E-004 6 6 13 10 + 0.66905395062746126E-003 6 7 13 10 + -0.15322783027008132E-004 6 8 13 10 + 0.19403522809033615E-003 7 3 13 10 + -0.60610560444687218E-004 7 4 13 10 + -0.20636665859904862E-003 7 5 13 10 + 0.66904617427050359E-003 7 6 13 10 + 0.10483450365878703E-002 7 7 13 10 + 0.10698719198580513E-003 7 8 13 10 + 0.14774541825911025E-003 8 3 13 10 + 0.13521470237375717E-003 8 4 13 10 + 0.99217836342979594E-004 8 5 13 10 + -0.15324994576647349E-004 8 6 13 10 + 0.10715983651483170E-003 8 7 13 10 + -0.95637853699500979E-003 8 8 13 10 + 0.54073085534206805E-008 9 1 13 10 + 0.82191445947676129E-007 9 2 13 10 + -0.38281320208077316E-007 9 9 13 10 + -0.98550177962199647E-004 9 10 13 10 + 0.99882363317598205E-004 9 11 13 10 + 0.26885248797553337E-004 9 12 13 10 + 0.10504552782101840E-003 9 13 13 10 + 0.17976756710413861E-004 9 14 13 10 + -0.21338384798924042E-003 10 1 13 10 + -0.22367643142335259E-002 10 2 13 10 + 0.31607161495615383E-003 10 9 13 10 + -0.19287115242840751E-006 10 10 13 10 + -0.52736747787432588E-003 10 11 13 10 + 0.24686988932909776E-003 10 12 13 10 + 0.20517513131994774E-001 10 13 13 10 + -0.81235749817261784E-003 10 14 13 10 + 0.21617246862625295E-003 11 1 13 10 + 0.22659482786316536E-002 11 2 13 10 + -0.32022799539185252E-003 11 9 13 10 + -0.52696583142065737E-003 11 10 13 10 + 0.85497505471787965E-003 11 11 13 10 + 0.44077070934058865E-003 11 12 13 10 + 0.33159714858971149E-003 11 13 13 10 + -0.32969624949580215E-003 11 14 13 10 + 0.58177296536112094E-004 12 1 13 10 + 0.60982520200180627E-003 12 2 13 10 + -0.86184785353699716E-004 12 9 13 10 + 0.24665043635427596E-003 12 10 13 10 + 0.43909090655952244E-003 12 11 13 10 + -0.91102819532016849E-003 12 12 13 10 + 0.61941126174089832E-003 12 13 13 10 + 0.37422530741992390E-004 12 14 13 10 + 0.22709148696227057E-003 13 1 13 10 + 0.23804564794746292E-002 13 2 13 10 + -0.33650135675764644E-003 13 9 13 10 + 0.20514653710115158E-001 13 10 13 10 + -0.13427816260810175E-007 1 1 13 11 + 0.33858614643907152E-008 1 2 13 11 + 0.38918100605211493E-009 1 9 13 11 + -0.16092878534365696E-004 1 10 13 11 + -0.11327001122255094E-003 1 11 13 11 + -0.32016776001058848E-003 1 12 13 11 + 0.74584103641556020E-005 1 13 13 11 + 0.21597525251101494E-004 1 14 13 11 + 0.88889093425601799E-008 2 1 13 11 + 0.12792922760802257E-006 2 2 13 11 + 0.11403482256969776E-006 2 9 13 11 + 0.12790833708060160E-002 2 10 13 11 + 0.90069209767028469E-002 2 11 13 11 + 0.25457900605034806E-001 2 12 13 11 + -0.59323154669322893E-003 2 13 13 11 + -0.17172116991537281E-002 2 14 13 11 + -0.10240485669571472E-001 3 3 13 11 + -0.55440944670915790E-003 3 4 13 11 + -0.16006461715901484E-001 3 5 13 11 + -0.15001452480307802E-002 3 6 13 11 + 0.17900189265071798E-002 3 7 13 11 + 0.32119625249149050E-002 3 8 13 11 + -0.55425158463206386E-003 4 3 13 11 + 0.14647961501478396E-001 4 4 13 11 + 0.16234789670601397E-001 4 5 13 11 + -0.21938158320978034E-002 4 6 13 11 + -0.19764570756736961E-002 4 7 13 11 + -0.34870723162338879E-002 4 8 13 11 + -0.16006303450474876E-001 5 3 13 11 + 0.16234627816961205E-001 5 4 13 11 + -0.44071470641410017E-002 5 5 13 11 + -0.47961737770593777E-002 5 6 13 11 + 0.26226310533233378E-003 5 7 13 11 + 0.67719940557698385E-003 5 8 13 11 + -0.91416766009452984E-003 6 3 13 11 + -0.13369042638350485E-002 6 4 13 11 + -0.29227565498414335E-002 6 5 13 11 + 0.10613144894137598E-002 6 6 13 11 + 0.70223340391843397E-002 6 7 13 11 + 0.12518330302354467E-001 6 8 13 11 + 0.10909342645069962E-002 7 3 13 11 + -0.12043307949480013E-002 7 4 13 11 + 0.15961413047115968E-003 7 5 13 11 + 0.70223016500310454E-002 7 6 13 11 + 0.12437704519629170E-004 7 7 13 11 + -0.38589529240285771E-003 7 8 13 11 + 0.19571344397870164E-002 8 3 13 11 + -0.21250802247520396E-002 8 4 13 11 + 0.41256633496847809E-003 8 5 13 11 + 0.12518251810639701E-001 8 6 13 11 + -0.38590466797693869E-003 8 7 13 11 + -0.10735801006071897E-002 8 8 13 11 + -0.10050332002108908E-007 9 1 13 11 + -0.15276570801310059E-006 9 2 13 11 + 0.71151844529672404E-007 9 9 13 11 + 0.99882372203437454E-004 9 10 13 11 + 0.70304400679447221E-003 9 11 13 11 + 0.19872319741704621E-002 9 12 13 11 + -0.46272600999601994E-004 9 13 13 11 + -0.13426752143199690E-003 9 14 13 11 + 0.21617258678081127E-003 10 1 13 11 + 0.22659518635663942E-002 10 2 13 11 + -0.32022822667289523E-003 10 9 13 11 + 0.10546974493815444E-002 10 10 13 11 + -0.42758537047249911E-003 10 11 13 11 + 0.13376642019946929E-001 10 12 13 11 + 0.33168659567943062E-003 10 13 13 11 + -0.13177581273778544E-002 10 14 13 11 + 0.15220518636102046E-002 11 1 13 11 + 0.15954651474271230E-001 11 2 13 11 + -0.22545815490625782E-002 11 9 13 11 + -0.42756561772703524E-003 11 10 13 11 + 0.28842056509178986E-006 11 11 13 11 + -0.57500970461016939E-003 11 12 13 11 + 0.34345637384430798E-001 11 13 13 11 + -0.20162726376062754E-002 11 14 13 11 + 0.43020927777385606E-002 12 1 13 11 + 0.45095891939871596E-001 12 2 13 11 + -0.63726377567841115E-002 12 9 13 11 + 0.13375805168500947E-001 12 10 13 11 + -0.57498754781174801E-003 12 11 13 11 + -0.21173358185712279E-002 12 12 13 11 + 0.61619135525449334E-003 12 13 13 11 + -0.79625046645207774E-002 12 14 13 11 + -0.10024037082504365E-003 13 1 13 11 + -0.10507464323264179E-002 13 2 13 11 + 0.14846267193384223E-003 13 9 13 11 + 0.33168998532286494E-003 13 10 13 11 + 0.34342604478379612E-001 13 11 13 11 + 0.78763995163752583E-008 1 1 13 12 + -0.19860562146943388E-008 1 2 13 12 + -0.22828322743949248E-009 1 9 13 12 + -0.43309993136160996E-005 1 10 13 12 + -0.32016772560419088E-003 1 11 13 12 + 0.95740527841791815E-004 1 12 13 12 + -0.26687847281451797E-004 1 13 13 12 + -0.16030808934949486E-004 1 14 13 12 + -0.52139976486005441E-008 2 1 13 12 + -0.75039880205742745E-007 2 2 13 12 + -0.66889791886803521E-007 2 9 13 12 + 0.34423101780860042E-003 2 10 13 12 + 0.25457901239120260E-001 2 11 13 12 + -0.76129305770697075E-002 2 12 13 12 + 0.21228810273222452E-002 2 13 13 12 + 0.12747356687655379E-002 2 14 13 12 + 0.21870070254661794E-001 3 3 13 12 + -0.39477138480219914E-002 3 4 13 12 + -0.78581059535917236E-002 3 5 13 12 + 0.34172439064858269E-002 3 6 13 12 + 0.32131111755630245E-002 3 7 13 12 + -0.14990644002610585E-002 3 8 13 12 + -0.39479635546949537E-002 4 3 13 12 + -0.21799083623126759E-001 4 4 13 12 + 0.10718785583901051E-001 4 5 13 12 + 0.31406237294104257E-002 4 6 13 12 + -0.36177434483018467E-002 4 7 13 12 + 0.18654667092869613E-002 4 8 13 12 + -0.78579710976528893E-002 5 3 13 12 + 0.10718728265085711E-001 5 4 13 12 + -0.71179477956579321E-004 5 5 13 12 + -0.27663723347243971E-002 5 6 13 12 + -0.65332272818097300E-004 5 7 13 12 + -0.22758588846532259E-003 5 8 13 12 + 0.20824449338070431E-002 6 3 13 12 + 0.19138920419662811E-002 6 4 13 12 + -0.16858039142376659E-002 6 5 13 12 + -0.11688336191531562E-002 6 6 13 12 + 0.12648562649889471E-001 6 7 13 12 + -0.63074410891532920E-002 6 8 13 12 + 0.19579141493228213E-002 7 3 13 12 + -0.22046381867911434E-002 7 4 13 12 + -0.39782788001908970E-004 7 5 13 12 + 0.12648486209791265E-001 7 6 13 12 + 0.11452181071444432E-002 7 7 13 12 + 0.17295592909804121E-003 7 8 13 12 + -0.91335041092035184E-003 8 3 13 12 + 0.11369058986264214E-002 8 4 13 12 + -0.13862858839161973E-003 8 5 13 12 + -0.63073969522734908E-002 8 6 13 12 + 0.17294041409549236E-003 8 7 13 12 + 0.23514566643539655E-004 8 8 13 12 + 0.58952572679890054E-008 9 1 13 12 + 0.89608298510703732E-007 9 2 13 12 + -0.41735778356035826E-007 9 9 13 12 + 0.26885238286185764E-004 9 10 13 12 + 0.19872319983841305E-002 9 11 13 12 + -0.59424951316059836E-003 9 12 13 12 + 0.16553927618543317E-003 9 13 13 12 + 0.99615999011920010E-004 9 14 13 12 + 0.58177156767044776E-004 10 1 13 12 + 0.60982096125993630E-003 10 2 13 12 + -0.86184511763441344E-004 10 9 13 12 + -0.49371465386401341E-003 10 10 13 12 + -0.13816611197964727E-001 10 11 13 12 + 0.45536777844117326E-003 10 12 13 12 + 0.61951568743176500E-003 10 13 13 12 + -0.29995286708889838E-003 10 14 13 12 + 0.43020930997067792E-002 11 1 13 12 + 0.45095901708728466E-001 11 2 13 12 + -0.63726383870191311E-002 11 9 13 12 + -0.13815766501039032E-001 11 10 13 12 + 0.11498258801841007E-002 11 11 13 12 + 0.10587948527183075E-002 11 12 13 12 + 0.61607733432936490E-003 11 13 13 12 + -0.69591229560037040E-002 11 14 13 12 + -0.12864898149535444E-002 12 1 13 12 + -0.13485406686378074E-001 12 2 13 12 + 0.19056576180029045E-002 12 9 13 12 + 0.45552380408220625E-003 12 10 13 12 + 0.10588759517683487E-002 12 11 13 12 + -0.17528546282310120E-006 12 12 13 12 + 0.33931061762690833E-001 12 13 13 12 + 0.28286268747471314E-002 12 14 13 12 + 0.35870291824162133E-003 13 1 13 12 + 0.37600264205980764E-002 13 2 13 12 + -0.53123056362556803E-003 13 9 13 12 + 0.61954429762547296E-003 13 10 13 12 + 0.61611347987760255E-003 13 11 13 12 + 0.33928022539737583E-001 13 12 13 12 + 0.78365872629267341 1 1 13 13 + -0.37281160963477805E-001 1 2 13 13 + 0.33374715660019053E-001 1 9 13 13 + -0.16902112212438369E-004 1 10 13 13 + 0.74582404384212688E-005 1 11 13 13 + -0.26687266768455027E-004 1 12 13 13 + 0.49532337575006346E-004 1 13 13 13 + -0.38637464927861941E-003 1 14 13 13 + 0.31855006211977177E-001 2 1 13 13 + 0.64137651345834135 2 2 13 13 + -0.15187997873991421 2 9 13 13 + 0.13437639783925642E-002 2 10 13 13 + -0.59323467830439550E-003 2 11 13 13 + 0.21228917257665354E-002 2 12 13 13 + -0.39377642161551648E-002 2 13 13 13 + 0.30715505888967244E-001 2 14 13 13 + 0.61864584719658355 3 3 13 13 + 0.26952596061486710E-001 3 4 13 13 + -0.23366606452606487E-002 3 5 13 13 + 0.10069516888289720 3 6 13 13 + 0.77734836499902413E-001 3 7 13 13 + -0.10637124762298188 3 8 13 13 + 0.26952631574143050E-001 4 3 13 13 + 0.61385445361262281 4 4 13 13 + 0.34057515941877817E-002 4 5 13 13 + -0.12325155077516728 4 6 13 13 + 0.51368814972622162E-001 4 7 13 13 + -0.96626741749218037E-001 4 8 13 13 + -0.23366281174936076E-002 5 3 13 13 + 0.34057593838493724E-002 5 4 13 13 + 0.63800337153953735 5 5 13 13 + 0.10976026826890549E-001 5 6 13 13 + -0.14223044970266391 5 7 13 13 + -0.92047907964134063E-001 5 8 13 13 + 0.75395453540433643E-001 6 3 13 13 + -0.92156385087930212E-001 6 4 13 13 + 0.82314587779334873E-002 6 5 13 13 + 0.47115891101580565 6 6 13 13 + -0.51486174651380230E-003 6 7 13 13 + 0.14939143315262056E-002 6 8 13 13 + 0.57470998034776906E-001 7 3 13 13 + 0.37939528940416342E-001 7 4 13 13 + -0.10521298490098084 7 5 13 13 + -0.51485995502204972E-003 7 6 13 13 + 0.49871186800099671 7 7 13 13 + -0.10801351726166366E-002 7 8 13 13 + -0.78637635929404884E-001 8 3 13 13 + -0.71340608104490694E-001 8 4 13 13 + -0.68079407166471553E-001 8 5 13 13 + 0.14939032039119342E-002 8 6 13 13 + -0.10801452225056105E-002 8 7 13 13 + 0.50035367385314200 8 8 13 13 + -0.27663093123488868E-001 9 1 13 13 + -0.98968976464461053E-001 9 2 13 13 + 0.50532982796431436 9 9 13 13 + 0.10504557127021833E-003 9 10 13 13 + -0.46272720585856582E-004 9 11 13 13 + 0.16553968472491365E-003 9 12 13 13 + -0.30790177995114460E-003 9 13 13 13 + 0.24019709482692437E-002 9 14 13 13 + 0.22709206470380281E-003 10 1 13 13 + 0.23804740087659529E-002 10 2 13 13 + -0.33650248765486692E-003 10 9 13 13 + 0.63251271523182362 10 10 13 13 + -0.66313425966383927E-003 10 11 13 13 + -0.12387569003745812E-002 10 12 13 13 + -0.31246844489740267E-006 10 13 13 13 + -0.15215275673454050E-002 10 14 13 13 + -0.10024196095634629E-003 11 1 13 13 + -0.10507946785980381E-002 11 2 13 13 + 0.14846578452830725E-003 11 9 13 13 + -0.66320887188395163E-003 11 10 13 13 + 0.60485785715965168 11 11 13 13 + -0.12322211138654721E-002 11 12 13 13 + 0.66611694434860574E-006 11 13 13 13 + 0.28383320378529847E-003 11 14 13 13 + 0.35870835056725817E-003 12 1 13 13 + 0.37601912431253510E-002 12 2 13 13 + -0.53124119710396022E-003 12 9 13 13 + -0.12388442516367390E-002 12 10 13 13 + -0.12321260249112467E-002 12 11 13 13 + 0.60568700248001894 12 12 13 13 + -0.38504106093453801E-006 12 13 13 13 + -0.63396401941118673E-003 12 14 13 13 + -0.66547873030780853E-003 13 1 13 13 + -0.69758092314640384E-002 13 2 13 13 + 0.98615311871089748E-003 13 9 13 13 + -0.14734036361109397E-006 13 10 13 13 + 0.33375556150117276E-006 13 11 13 13 + -0.20533476586006108E-006 13 12 13 13 + 0.67353980729399077 13 13 13 13 + -0.28779417641601230E-005 1 10 13 14 + 0.21597236907192672E-004 1 11 13 14 + -0.16030558411528905E-004 1 12 13 14 + -0.38637467875723752E-003 1 13 13 14 + -0.47881964553364925E-004 1 14 13 14 + 0.32171686044949431E-009 2 2 13 14 + 0.28677871725807143E-009 2 9 13 14 + 0.22826394113537797E-003 2 10 13 14 + -0.17172170131280599E-002 2 11 13 14 + 0.12747402857350150E-002 2 12 13 14 + 0.30715505345697326E-001 2 13 13 14 + 0.38065192482996243E-002 2 14 13 14 + -0.17588262846120393E-001 3 3 13 14 + -0.12284969861563664E-001 3 4 13 14 + -0.65552623104551226E-002 3 5 13 14 + -0.44829332794933679E-003 3 6 13 14 + -0.12995699944790939E-002 3 7 13 14 + 0.44811240382720231E-002 3 8 13 14 + -0.12285004495444391E-001 4 3 13 14 + -0.12878300311871302E-001 4 4 13 14 + -0.29173339596721775E-002 4 5 13 14 + 0.40267474002306751E-003 4 6 13 14 + -0.14677902532627628E-002 4 7 13 14 + 0.34474276773138685E-002 4 8 13 14 + -0.65552357605541747E-002 5 3 13 14 + -0.29173257224297477E-002 5 4 13 14 + 0.30466563984777331E-001 5 5 13 14 + 0.44862138002499698E-004 5 6 13 14 + -0.61407133575432614E-002 5 7 13 14 + -0.22496902605461532E-002 5 8 13 14 + -0.27302581749311171E-003 6 3 13 14 + 0.24520821488183088E-003 6 4 13 14 + 0.27306457209025281E-004 6 5 13 14 + -0.15515364639270080E-002 6 6 13 14 + -0.31866866214873214E-003 6 7 13 14 + 0.75885225390718902E-004 6 8 13 14 + -0.79137167674832743E-003 7 3 13 14 + -0.89381033033150649E-003 7 4 13 14 + -0.37396217793841794E-002 7 5 13 14 + -0.31867750308122215E-003 7 6 13 14 + 0.10788388943464365E-001 7 7 13 14 + 0.13025684165041561E-001 7 8 13 14 + 0.27289659237695689E-002 8 3 13 14 + 0.20994138617261592E-002 8 4 13 14 + -0.13699525539106984E-002 8 5 13 14 + 0.75892905726230613E-004 8 6 13 14 + 0.13025676966004783E-001 8 7 13 14 + -0.92368520467595722E-002 8 8 13 14 + -0.38417902901306877E-009 9 2 13 14 + 0.17893191945195223E-009 9 9 13 14 + 0.17976531710427493E-004 9 10 13 14 + -0.13426772435569224E-003 9 11 13 14 + 0.99616175319229325E-004 9 12 13 14 + 0.24019709275225221E-002 9 13 13 14 + 0.29765746427874577E-003 9 14 13 14 + 0.38598867289990522E-004 10 1 13 14 + 0.40455827217544750E-003 10 2 13 14 + -0.57283301796365940E-004 10 9 13 14 + 0.16246310551741910E-002 10 10 13 14 + 0.16474091886883660E-002 10 11 13 14 + 0.26251848896523429E-003 10 12 13 14 + 0.76060936163444893E-003 10 13 13 14 + -0.28179053148947505E-004 10 14 13 14 + -0.29019897305798616E-003 11 1 13 14 + -0.30420303612632106E-002 11 2 13 14 + 0.43004130686084038E-003 11 9 13 14 + 0.16475126287168031E-002 11 10 13 14 + 0.40323865968363839E-002 11 11 13 14 + 0.14920771442856848E-001 11 12 13 14 + -0.14190194722078805E-003 11 13 13 14 + -0.53110707846813635E-003 11 14 13 14 + 0.21541673771750241E-003 12 1 13 14 + 0.22581238124109691E-002 12 2 13 14 + -0.31918372673289284E-003 12 9 13 14 + 0.26255132563675170E-003 12 10 13 14 + 0.14920852959741712E-001 12 11 13 14 + -0.56570208100652332E-002 12 12 13 14 + 0.31706523850024961E-003 12 13 13 14 + 0.32791405923329254E-003 12 14 13 14 + 0.51909330615239682E-002 13 1 13 14 + 0.54413374533425714E-001 13 2 13 14 + -0.76924712744787993E-002 13 9 13 14 + 0.76072557200269864E-003 13 10 13 14 + -0.14190203325484713E-003 13 11 13 14 + 0.31697325654691204E-003 13 12 13 14 + 0.21164911848380540E-008 13 13 13 14 + 0.38677588982735711E-001 13 14 13 14 + -0.10370195954025255E-008 1 10 14 1 + 0.80851322539150203E-009 1 12 14 1 + 0.87161995734572517E-003 1 14 14 1 + -0.58657941045099590E-008 2 10 14 1 + 0.45732714525677733E-008 2 12 14 1 + 0.77123701668725571E-002 2 14 14 1 + -0.11477097773833617E-002 3 3 14 1 + 0.61344780832911002E-002 3 4 14 1 + -0.79205305771141391E-003 3 5 14 1 + -0.28755526405771867E-002 3 6 14 1 + 0.10333488991943970E-002 3 7 14 1 + -0.12048291784281121E-002 3 8 14 1 + 0.61344780832911002E-002 4 3 14 1 + -0.32703235354948237E-002 4 4 14 1 + 0.38708415863945752E-003 4 5 14 1 + 0.33596982938481263E-002 4 6 14 1 + 0.78046717265921025E-003 4 7 14 1 + -0.11479025055502984E-002 4 8 14 1 + -0.79205305771141380E-003 5 3 14 1 + 0.38708415863945758E-003 5 4 14 1 + 0.44180333128781861E-002 5 5 14 1 + -0.25704423957872595E-003 5 6 14 1 + -0.20604907001463457E-002 5 7 14 1 + -0.11049436366470881E-002 5 8 14 1 + -0.29506334239725093E-002 6 3 14 1 + 0.34474167496519152E-002 6 4 14 1 + -0.26375713793156340E-003 6 5 14 1 + -0.59610693120664736E-002 6 6 14 1 + -0.12063297350166156E-003 6 7 14 1 + 0.58237874619922126E-004 6 8 14 1 + 0.10603322257917462E-002 7 3 14 1 + 0.80084699509453089E-003 7 4 14 1 + -0.21142905071675423E-002 7 5 14 1 + -0.12063297350166153E-003 7 6 14 1 + 0.32732643690647763E-002 7 7 14 1 + 0.42457180825612754E-004 7 8 14 1 + -0.12362839130208127E-002 8 3 14 1 + -0.11778745688131097E-002 8 4 14 1 + -0.11337891061540899E-002 8 5 14 1 + 0.58237874619922098E-004 8 6 14 1 + 0.42457180825612361E-004 8 7 14 1 + 0.26878049430017650E-002 8 8 14 1 + 0.65112814121327716E-008 9 10 14 1 + 0.10458781826679755E-009 9 11 14 1 + -0.50765261904642082E-008 9 12 14 1 + -0.25123005977919820E-002 9 14 14 1 + 0.21801225196327130E-008 10 1 14 1 + 0.58355325514151948E-009 10 2 14 1 + -0.48521405717845256E-008 10 9 14 1 + 0.51420490000046743E-002 10 10 14 1 + -0.33817687192675289E-003 10 11 14 1 + -0.64099967541896659E-003 10 12 14 1 + 0.38602070531173479E-004 10 13 14 1 + -0.62348131451443593E-003 10 14 14 1 + -0.33817676920548575E-003 11 10 14 1 + -0.23642903801761022E-002 11 11 14 1 + 0.14145584188700490E-003 11 12 14 1 + -0.29019388285548127E-003 11 13 14 1 + 0.44745296034381126E-005 11 14 14 1 + -0.16997344088477811E-008 12 1 14 1 + -0.45496779823995792E-009 12 2 14 1 + 0.37829755944986529E-008 12 9 14 1 + -0.64099989598771898E-003 12 10 14 1 + 0.14145583141341681E-003 12 11 14 1 + -0.27945464033561841E-002 12 12 14 1 + 0.21541345405247267E-003 12 13 14 1 + 0.67620038323783986E-004 12 14 14 1 + 0.38601859101667747E-004 13 10 14 1 + -0.29019627479294805E-003 13 11 14 1 + 0.21541439336907810E-003 13 12 14 1 + 0.51909333373789399E-002 13 13 14 1 + 0.64330052964002354E-003 13 14 14 1 + 0.16268458249381606E-002 14 1 14 1 + -0.24295095089579873E-008 1 10 14 2 + 0.18941691925483443E-008 1 12 14 2 + 0.56384565456014512E-003 1 14 14 2 + -0.90090539448035805E-007 2 10 14 2 + -0.14470842633265619E-008 2 11 14 2 + 0.70239167075522802E-007 2 12 14 2 + 0.31331281601436849E-009 2 13 14 2 + 0.62905149320084550E-001 2 14 14 2 + -0.88378079240178011E-002 3 3 14 2 + 0.47237803662876499E-001 3 4 14 2 + -0.60991369956571676E-002 3 5 14 2 + -0.83737131633618862E-002 3 6 14 2 + 0.30091258360464856E-002 3 7 14 2 + -0.35085374001301798E-002 3 8 14 2 + 0.47237803662876492E-001 4 3 14 2 + -0.25182710621108224E-001 4 4 14 2 + 0.29806840793685637E-002 4 5 14 2 + 0.97835940062179876E-002 4 6 14 2 + 0.22727320515336666E-002 4 7 14 2 + -0.33427309149295817E-002 4 8 14 2 + -0.60991369956571659E-002 5 3 14 2 + 0.29806840793685642E-002 5 4 14 2 + 0.34020518545126069E-001 5 5 14 2 + -0.74850862463803145E-003 5 6 14 2 + -0.60002203990746688E-002 5 7 14 2 + -0.32176786092713806E-002 5 8 14 2 + -0.60758802532455119E-002 6 3 14 2 + 0.70988019972852432E-002 6 4 14 2 + -0.54314184676555364E-003 6 5 14 2 + -0.38187785939233131E-001 6 6 14 2 + -0.77279811112652757E-003 6 7 14 2 + 0.37309208471159337E-003 6 8 14 2 + 0.21834459621806984E-002 7 3 14 2 + 0.16491098999922979E-002 7 4 14 2 + -0.43537052168595818E-002 7 5 14 2 + -0.77279811112652811E-003 7 6 14 2 + 0.20969188034043500E-001 7 7 14 2 + 0.27198131239375536E-003 7 8 14 2 + -0.25456851520228429E-002 8 3 14 2 + -0.24254574317122833E-002 8 4 14 2 + -0.23346139537875179E-002 8 5 14 2 + 0.37309208471159435E-003 8 6 14 2 + 0.27198131239376783E-003 8 7 14 2 + 0.17218597905189627E-001 8 8 14 2 + 0.12120151995012088E-006 9 10 14 2 + 0.19468061179838828E-008 9 11 14 2 + -0.94494869933972185E-007 9 12 14 2 + -0.42150960210289676E-009 9 13 14 2 + 0.21179772016075632E-002 9 14 14 2 + 0.58355325469145516E-009 10 1 14 2 + -0.29467032694851499E-007 10 2 14 2 + -0.12407709984422206E-006 10 9 14 2 + 0.53900602951392110E-001 10 10 14 2 + -0.35448726528240805E-002 10 11 14 2 + -0.67191482841144267E-002 10 12 14 2 + 0.40465526990654760E-003 10 13 14 2 + -0.65356330558795353E-002 10 14 14 2 + -0.47331583417469009E-009 11 2 14 2 + -0.19929952750739903E-008 11 9 14 2 + -0.35448696294365632E-002 11 10 14 2 + -0.24783226400793758E-001 11 11 14 2 + 0.14827776383017814E-002 11 12 14 2 + -0.30418780913178635E-002 11 13 14 2 + 0.46909585488059694E-004 11 14 14 2 + -0.45496779686271549E-009 12 1 14 2 + 0.22973997571476480E-007 12 2 14 2 + 0.96736818279646263E-007 12 9 14 2 + -0.67191547760983286E-002 12 10 14 2 + 0.14827773300334309E-002 12 11 14 2 + -0.29293356331976526E-001 12 12 14 2 + 0.22580250355546316E-002 12 13 14 2 + 0.70880553017908983E-003 12 14 14 2 + 0.10247876342366403E-009 13 2 14 2 + 0.43151019081751388E-009 13 9 14 2 + 0.40464904691742170E-003 13 10 14 2 + -0.30419484930377851E-002 13 11 14 2 + 0.22580526823913444E-002 13 12 14 2 + 0.54413382903158419E-001 13 13 14 2 + 0.67433287578026286E-002 13 14 14 2 + 0.90789218137224976E-002 14 1 14 2 + 0.96401972243896503E-001 14 2 14 2 + -0.29095743147932411E-003 1 3 14 3 + 0.15551585377485814E-002 1 4 14 3 + -0.20079503508907079E-003 1 5 14 3 + -0.63555270703915157E-003 1 6 14 3 + 0.22838992402100263E-003 1 7 14 3 + -0.26629073768620918E-003 1 8 14 3 + -0.18122247703940535E-001 2 3 14 3 + 0.96862839692838182E-001 2 4 14 3 + -0.12506503417436666E-001 2 5 14 3 + -0.19770721040717254E-001 2 6 14 3 + 0.71047273699820926E-002 2 7 14 3 + -0.82837602337139295E-002 2 8 14 3 + -0.66707401838754163E-002 3 1 14 3 + -0.20083933294670113E-001 3 2 14 3 + 0.29331972502190831E-002 3 9 14 3 + -0.78152543156350760E-002 3 10 14 3 + -0.14352837736612802E-001 3 11 14 3 + 0.18202525891648762E-001 3 12 14 3 + -0.27302226062659852E-001 3 13 14 3 + 0.72992354682709801E-001 3 14 14 3 + 0.35654928568549758E-001 4 1 14 3 + 0.10734804313316250 4 2 14 3 + -0.15677951692755328E-001 4 9 14 3 + -0.70506369021017820E-002 4 10 14 3 + -0.26971417203040887E-001 4 11 14 3 + 0.30218349788678611E-001 4 12 14 3 + -0.21247865536320194E-001 4 13 14 3 + -0.40966712972647104E-001 4 14 14 3 + -0.46035852515305059E-002 5 1 14 3 + -0.13860269807951230E-001 5 2 14 3 + 0.20241988084335723E-002 5 9 14 3 + 0.36441889894776112E-001 5 10 14 3 + 0.32027577324336483E-001 5 11 14 3 + 0.26665362538059952E-001 5 12 14 3 + -0.11368681823907474E-001 5 13 14 3 + -0.32247875746248137E-003 5 14 14 3 + -0.33587810186640921E-001 6 1 14 3 + -0.16927794319773325E-001 6 2 14 3 + 0.60097187045884883E-001 6 9 14 3 + 0.17649158076975350E-003 6 10 14 3 + 0.20574213189299671E-003 6 11 14 3 + -0.39035560024354332E-004 6 12 14 3 + -0.12592559403759845E-003 6 13 14 3 + 0.45140303557475543E-002 6 14 14 3 + 0.12070024256007826E-001 7 1 14 3 + 0.60831595277718491E-002 7 2 14 3 + -0.21596358768464385E-001 7 9 14 3 + -0.19290360036824104E-002 7 10 14 3 + -0.16001234169595886E-002 7 11 14 3 + -0.14841900519310035E-003 7 12 14 3 + -0.50518774349927347E-003 7 13 14 3 + 0.13923960864269428E-002 7 14 14 3 + -0.14072943269822617E-001 8 1 14 3 + -0.70925253941121315E-002 8 2 14 3 + 0.25180100787078687E-001 8 9 14 3 + -0.56058421382866467E-003 8 10 14 3 + 0.27022915148490229E-003 8 11 14 3 + -0.17094698161465175E-002 8 12 14 3 + 0.18427090050453475E-002 8 13 14 3 + -0.15406429027901838E-002 8 14 14 3 + 0.17755984397089183E-002 9 3 14 3 + -0.94904332327868917E-002 9 4 14 3 + 0.12254183149272408E-002 9 5 14 3 + 0.60033659956860524E-001 9 6 14 3 + -0.21573550773328162E-001 9 7 14 3 + 0.25153455698621048E-001 9 8 14 3 + -0.11900115564706602E-001 10 3 14 3 + -0.10629484594349226E-001 10 4 14 3 + 0.55585676694580401E-001 10 5 14 3 + 0.89917595456511922E-003 10 6 14 3 + -0.11054527891302872E-001 10 7 14 3 + -0.33511932898349977E-002 10 8 14 3 + -0.21854800788105949E-001 11 3 14 3 + -0.44324017680758970E-001 11 4 14 3 + 0.51289230689319419E-001 11 5 14 3 + 0.49732697917596012E-002 11 6 14 3 + -0.13488434433608485E-001 11 7 14 3 + 0.21997742411961050E-002 11 8 14 3 + 0.27716565815894312E-001 12 3 14 3 + 0.49349461369684475E-001 12 4 14 3 + 0.42496202128162436E-001 12 5 14 3 + -0.36773092392085142E-002 12 6 14 3 + -0.16752592617155378E-002 12 7 14 3 + -0.13849108355351202E-001 12 8 14 3 + -0.41573171249890815E-001 13 3 14 3 + -0.32579027641515552E-001 13 4 14 3 + -0.17434295328490598E-001 13 5 14 3 + -0.48459897430243965E-003 13 6 14 3 + -0.28290497944049374E-002 13 7 14 3 + 0.10776562212226714E-001 13 8 14 3 + 0.10839019154552865 14 3 14 3 + 0.15551585377483594E-002 1 3 14 4 + -0.82906295310128668E-003 1 4 14 4 + 0.98129867660124679E-004 1 5 14 4 + 0.74255845695586967E-003 1 6 14 4 + 0.17249822053154700E-003 1 7 14 4 + -0.25370862101756599E-003 1 8 14 4 + 0.96862839692838001E-001 2 3 14 4 + -0.51638066488528603E-001 2 4 14 4 + 0.61120012577608757E-002 2 5 14 4 + 0.23099457018695362E-001 2 6 14 4 + 0.53660550950585754E-002 2 7 14 4 + -0.78923459522977722E-002 2 8 14 4 + 0.35654928568549432E-001 3 1 14 4 + 0.10734804313316243 3 2 14 4 + -0.15677951692755456E-001 3 9 14 4 + -0.91111546822645571E-002 3 10 14 4 + 0.36056698129349016E-001 3 11 14 4 + -0.34385069929923837E-001 3 12 14 4 + -0.16892309226647622E-001 3 13 14 4 + -0.40966731189069176E-001 3 14 14 4 + -0.19007836040427675E-001 4 1 14 4 + -0.57227805262586681E-001 4 2 14 4 + 0.83580401280737779E-002 4 9 14 4 + -0.11324487057927937E-002 4 10 14 4 + 0.14677398298450941E-001 4 11 14 4 + -0.20788845973064896E-001 4 12 14 4 + -0.19991190791533397E-001 4 13 14 4 + 0.86295045293230455E-001 4 14 14 4 + 0.22498179480563273E-002 5 1 14 4 + 0.67736263792760728E-002 5 2 14 4 + -0.98929705532639742E-003 5 9 14 4 + 0.23169576739902172E-001 5 10 14 4 + -0.38630099897713668E-001 5 11 14 4 + -0.38715988682699910E-001 5 12 14 4 + -0.62064238871893142E-002 5 13 14 4 + -0.65983356202506498E-002 5 14 14 4 + 0.39242830292913353E-001 6 1 14 4 + 0.19777802371507055E-001 6 2 14 4 + -0.70215469258508981E-001 6 9 14 4 + -0.15580217571173306E-003 6 10 14 4 + 0.96975809580982642E-004 6 11 14 4 + 0.59961288798591789E-005 6 12 14 4 + 0.20150923309010931E-003 6 13 14 4 + -0.53968290111895282E-002 6 14 14 4 + 0.91162399812997740E-002 7 1 14 4 + 0.45944830375881001E-002 7 2 14 4 + -0.16311283806599363E-001 7 9 14 4 + -0.13501009011818699E-002 7 10 14 4 + 0.21069353634133878E-002 7 11 14 4 + 0.44020393803773723E-003 7 12 14 4 + -0.50473137443793543E-003 7 13 14 4 + 0.84598191037442492E-003 7 14 14 4 + -0.13408044796378808E-001 8 1 14 4 + -0.67574739008017162E-002 8 2 14 4 + 0.23990422703547853E-001 8 9 14 4 + -0.39813010657494078E-003 8 10 14 4 + -0.40635454804725378E-003 8 11 14 4 + 0.22035435147988052E-002 8 12 14 4 + 0.13555939663249246E-002 8 13 14 4 + -0.13509382729383244E-002 8 14 14 4 + -0.94904332327868258E-002 9 3 14 4 + 0.50593614357195430E-002 9 4 14 4 + -0.59882172986590505E-003 9 5 14 4 + -0.70141218604460251E-001 9 6 14 4 + -0.16294056338276158E-001 9 7 14 4 + 0.23965065443606038E-001 9 8 14 4 + -0.13979824872877670E-001 10 3 14 4 + -0.17243408627555003E-002 10 4 14 4 + 0.34806030070906435E-001 10 5 14 4 + -0.10305084592257742E-002 10 6 14 4 + -0.71949297275671238E-002 10 7 14 4 + -0.18094696436645281E-002 10 8 14 4 + 0.58158068132584707E-001 11 3 14 4 + 0.22349062386158403E-001 11 4 14 4 + -0.61461322944015309E-001 11 5 14 4 + 0.32156365336895613E-002 11 6 14 4 + 0.17237758204408496E-001 11 7 14 4 + -0.31680808981850396E-002 11 8 14 4 + -0.55694003219838202E-001 12 3 14 4 + -0.31654785067181085E-001 12 4 14 4 + -0.61497132005313308E-001 12 5 14 4 + -0.32138329218222759E-002 12 6 14 4 + 0.33700269701560912E-002 12 7 14 4 + 0.17453977834734319E-001 12 8 14 4 + -0.25497023870277611E-001 13 3 14 4 + -0.30440550822874897E-001 13 4 14 4 + -0.96238465712223248E-002 13 5 14 4 + 0.13333490991561611E-002 13 6 14 4 + -0.25261941775287207E-002 13 7 14 4 + 0.76606790715972282E-002 13 8 14 4 + -0.62380065053528222E-001 14 3 14 4 + 0.12864634689347224 14 4 14 4 + -0.20079503508907133E-003 1 3 14 5 + 0.98129867660134436E-004 1 4 14 5 + 0.11200203845805503E-002 1 5 14 5 + -0.56811656549018584E-004 1 6 14 5 + -0.45540824688842759E-003 1 7 14 5 + -0.24421417775406025E-003 1 8 14 5 + -0.12506503417436650E-001 2 3 14 5 + 0.61120012577608705E-002 2 4 14 5 + 0.69760314192469100E-001 2 5 14 5 + -0.17672880088735778E-002 2 6 14 5 + -0.14166801133231788E-001 2 7 14 5 + -0.75970081081847812E-002 2 8 14 5 + -0.46035852515305285E-002 3 1 14 5 + -0.13860269807951228E-001 3 2 14 5 + 0.20241988084335402E-002 3 9 14 5 + 0.34577159230300358E-001 3 10 14 5 + -0.16793296610271898E-001 3 11 14 5 + -0.99962485896485098E-002 3 12 14 5 + -0.89826989650270417E-002 3 13 14 5 + -0.32248833623200362E-003 3 14 14 5 + 0.22498179480563217E-002 4 1 14 5 + 0.67736263792760754E-002 4 2 14 5 + -0.98929705532638376E-003 4 9 14 5 + 0.32343688065539396E-001 4 10 14 5 + 0.12486363420626185E-001 4 11 14 5 + 0.10562492123657168E-001 4 12 14 5 + -0.28505550899501509E-002 4 13 14 5 + -0.65983251139504024E-002 4 14 14 5 + 0.25678576224303137E-001 5 1 14 5 + 0.77311738557256773E-001 5 2 14 5 + -0.11291237378292610E-001 5 9 14 5 + 0.89474788076438910E-002 5 10 14 5 + -0.32456416328464384E-003 5 11 14 5 + 0.25864948898873643E-002 5 12 14 5 + 0.47293417633954032E-001 5 13 14 5 + 0.44175128591445768E-001 5 14 14 5 + -0.30024105399312738E-002 6 1 14 5 + -0.15131927520223994E-002 6 2 14 5 + 0.53720789104980309E-002 6 9 14 5 + -0.41163091893170189E-004 6 10 14 5 + -0.35674409245210352E-003 6 11 14 5 + -0.13043271388097076E-003 6 12 14 5 + 0.23570537025452188E-006 6 13 14 5 + 0.46434797491935292E-003 6 14 14 5 + -0.24067505328403266E-001 7 1 14 5 + -0.12129695815162555E-001 7 2 14 5 + 0.43062925152055877E-001 7 9 14 5 + 0.94334779830336469E-003 7 10 14 5 + -0.12330742108140102E-003 7 11 14 5 + -0.17040695097139731E-003 7 12 14 5 + -0.24066540945449247E-002 7 13 14 5 + -0.25575864804696503E-002 7 14 14 5 + -0.12906222246027416E-001 8 1 14 5 + -0.65044977051235279E-002 8 2 14 5 + 0.23092539880947706E-001 8 9 14 5 + -0.23486853382835549E-002 8 10 14 5 + 0.17670766445757478E-003 8 11 14 5 + -0.88996703234747202E-005 8 12 14 5 + -0.94962078668850967E-003 8 13 14 5 + -0.13703636430799848E-002 8 14 14 5 + 0.12254183149272041E-002 9 3 14 5 + -0.59882172986587675E-003 9 4 14 5 + -0.68349598754283277E-002 9 5 14 5 + 0.53664122479610936E-002 9 6 14 5 + 0.43017407143493482E-001 9 7 14 5 + 0.23068091237275306E-001 9 8 14 5 + 0.52553682707975197E-001 10 3 14 5 + 0.49722885429890923E-001 10 4 14 5 + 0.13624201997793964E-001 10 5 14 5 + -0.83790332524975256E-003 10 6 14 5 + 0.55105276940503939E-002 10 7 14 5 + -0.13668406750285489E-001 10 8 14 5 + -0.28092255224330315E-001 11 3 14 5 + 0.21652708688116230E-001 11 4 14 5 + -0.49426568484337951E-003 11 5 14 5 + -0.71778107599932035E-002 11 6 14 5 + -0.12104749630854385E-002 11 7 14 5 + 0.11314259098746113E-002 11 8 14 5 + -0.17114609673941093E-001 12 3 14 5 + 0.18628378701570997E-001 12 4 14 5 + 0.39384176175985101E-002 12 5 14 5 + -0.52214408799216789E-002 12 6 14 5 + -0.11136915011350371E-002 12 7 14 5 + -0.40561728897707804E-003 12 8 14 5 + -0.13554692147106579E-001 13 3 14 5 + -0.41672532825846858E-002 13 4 14 5 + 0.72013722957609536E-001 13 5 14 5 + -0.76935116557678339E-004 13 6 14 5 + -0.13564044200666226E-001 13 7 14 5 + -0.56599272036959251E-002 13 8 14 5 + -0.49092762777372748E-003 14 3 14 5 + -0.10047129991934172E-001 14 4 14 5 + 0.64510304646037867E-001 14 5 14 5 + -0.29469636969569417E-002 1 3 14 6 + 0.34431305706749639E-002 1 4 14 6 + -0.26342849542178456E-003 1 5 14 6 + -0.39521040185948111E-002 1 6 14 6 + -0.79977951935561543E-004 1 7 14 6 + 0.38610722019027748E-004 1 8 14 6 + -0.23319041529531313E-001 2 3 14 6 + 0.27245190398594365E-001 2 4 14 6 + -0.20844723980738291E-002 2 5 14 6 + -0.16123961919901932E-001 2 6 14 6 + -0.32629766713324949E-003 2 7 14 6 + 0.15752190820530833E-003 2 8 14 6 + -0.12310423498209482E-001 3 1 14 6 + -0.23489955270716477E-001 3 2 14 6 + 0.10371856622211698E-001 3 9 14 6 + 0.12583338286979659E-002 3 10 14 6 + -0.11159833240213132E-001 3 11 14 6 + 0.10906534833781815E-001 3 12 14 6 + -0.14037862980610736E-002 3 13 14 6 + 0.21203622016634737E-001 3 14 14 6 + 0.14383073750775332E-001 4 1 14 6 + 0.27444885690531291E-001 4 2 14 6 + -0.12118132911599412E-001 4 9 14 6 + -0.35032977750287412E-003 4 10 14 6 + -0.80634015296719274E-002 4 11 14 6 + 0.10479704507206792E-001 4 12 14 6 + 0.45033390818015188E-003 4 13 14 6 + -0.25308031437536706E-001 4 14 14 6 + -0.11004261901487703E-002 5 1 14 6 + -0.20997479314866880E-002 5 2 14 6 + 0.92713215468296457E-003 5 9 14 6 + 0.17280108642807024E-002 5 10 14 6 + 0.14701652497516740E-001 5 11 14 6 + 0.13727042813858507E-001 5 12 14 6 + 0.25368309210920171E-003 5 13 14 6 + 0.21653442165923270E-002 5 14 14 6 + -0.21077747886515032E-001 6 1 14 6 + -0.22900750601007172E-001 6 2 14 6 + 0.20248500743488721E-001 6 9 14 6 + 0.63872109968791686E-003 6 10 14 6 + 0.86091232358607723E-004 6 11 14 6 + -0.10755669628638064E-003 6 12 14 6 + -0.65544631390817903E-003 6 13 14 6 + 0.18983446799604460E-001 6 14 14 6 + -0.42654609386327959E-003 7 1 14 6 + -0.46343749244271549E-003 7 2 14 6 + 0.40976451429007224E-003 7 9 14 6 + -0.39911213529730003E-003 7 10 14 6 + -0.85637970895259315E-002 7 11 14 6 + -0.14490479492818551E-002 7 12 14 6 + -0.31637549548514096E-003 7 13 14 6 + 0.14753966053182956E-003 7 14 14 6 + 0.20592496629064422E-003 8 1 14 6 + 0.22374104015954397E-003 8 2 14 6 + -0.19782807740888918E-003 8 9 14 6 + -0.67449969522053279E-003 8 10 14 6 + 0.15727555223833548E-002 8 11 14 6 + -0.88666787096830027E-002 8 12 14 6 + 0.19754608786306488E-003 8 13 14 6 + -0.88419788441280493E-004 8 14 14 6 + 0.14354549800341579E-001 9 3 14 6 + -0.16771333336554676E-001 9 4 14 6 + 0.12831618824723102E-002 9 5 14 6 + 0.21893499430380953E-001 9 6 14 6 + 0.44305410901701803E-003 9 7 14 6 + -0.21389779855667755E-003 9 8 14 6 + 0.13845724643860428E-002 10 3 14 6 + -0.38228981304688108E-003 10 4 14 6 + 0.19098745891148996E-002 10 5 14 6 + 0.53497050971008887E-003 10 6 14 6 + -0.31772692436961465E-003 10 7 14 6 + -0.54598104538354291E-003 10 8 14 6 + -0.12332494620633235E-001 11 3 14 6 + -0.89091417934248161E-002 11 4 14 6 + 0.16249063988126394E-001 11 5 14 6 + 0.72101852466319058E-004 11 6 14 6 + -0.68989264125606017E-002 11 7 14 6 + 0.12738450843349739E-002 11 8 14 6 + 0.12047665243330794E-001 12 3 14 6 + 0.11574919383943316E-001 12 4 14 6 + 0.15165751655933828E-001 12 5 14 6 + -0.90134761909047058E-004 12 6 14 6 + -0.11656270659598834E-002 12 7 14 6 + -0.71698328052749805E-002 12 8 14 6 + -0.15467621027241394E-002 13 3 14 6 + 0.49137075687132872E-003 13 4 14 6 + 0.28020242341559773E-003 13 5 14 6 + -0.54898726443992376E-003 13 6 14 6 + -0.25589858010853582E-003 13 7 14 6 + 0.15716988801132615E-003 13 8 14 6 + 0.23251152807548917E-001 14 3 14 6 + -0.27750945292221586E-001 14 4 14 6 + 0.23740630661041929E-002 14 5 14 6 + 0.16054655455410675E-001 14 6 14 6 + 0.10590124272633402E-002 1 3 14 7 + 0.79985023202621373E-003 1 4 14 7 + -0.21116608141847908E-002 1 5 14 7 + -0.79977951935560418E-004 1 6 14 7 + 0.21701274427030999E-002 1 7 14 7 + 0.28148646724767034E-004 1 8 14 7 + 0.83798429223504375E-002 2 3 14 7 + 0.63291234933911932E-002 2 4 14 7 + -0.16709367168631230E-001 2 5 14 7 + -0.32629766713324808E-003 2 6 14 7 + 0.88537735454538892E-002 2 7 14 7 + 0.11484536965685558E-003 2 8 14 7 + 0.44238383218015518E-002 3 1 14 7 + 0.84412577944917508E-002 3 2 14 7 + -0.37271901584063627E-002 3 9 14 7 + -0.97762041919555627E-002 3 10 14 7 + 0.57803603500088110E-002 3 11 14 7 + 0.18996005023502579E-002 3 12 14 7 + -0.27839308785730312E-002 3 13 14 7 + 0.56295201433162042E-002 3 14 14 7 + 0.33412338012018278E-002 4 1 14 7 + 0.63755090918241773E-002 4 2 14 7 + -0.28150703432297365E-002 4 9 14 7 + -0.85852439840214383E-002 4 10 14 7 + -0.59278598868600634E-002 4 11 14 7 + -0.49498344156284353E-003 4 12 14 7 + -0.37482763307090453E-002 4 13 14 7 + 0.33414418412555441E-002 4 14 14 7 + -0.88210923218844141E-002 5 1 14 7 + -0.16831835692753091E-001 5 2 14 7 + 0.74320017347957014E-002 5 9 14 7 + 0.44417580395674384E-002 5 10 14 7 + 0.99808637613115771E-003 5 11 14 7 + -0.42310658260538692E-003 5 12 14 7 + -0.12977544351844381E-001 5 13 14 7 + -0.10343441387248494E-001 5 14 14 7 + -0.42654609386328594E-003 6 1 14 7 + -0.46343749244271381E-003 6 2 14 7 + 0.40976451429008173E-003 6 9 14 7 + 0.26240529066393997E-003 6 10 14 7 + 0.23655469583932650E-002 6 11 14 7 + 0.46868235634915309E-003 6 12 14 7 + 0.47162486505497631E-004 6 13 14 7 + 0.14754025405716231E-003 6 14 14 7 + 0.11573939089534769E-001 7 1 14 7 + 0.12574969706262285E-001 7 2 14 7 + -0.11118599413376267E-001 7 9 14 7 + -0.57842258355550085E-002 7 10 14 7 + 0.13199082190130134E-004 7 11 14 7 + 0.57695283977719769E-003 7 12 14 7 + 0.45575452048366993E-002 7 13 14 7 + 0.77741190312732786E-002 7 14 14 7 + 0.15012291748049182E-003 8 1 14 7 + 0.16310188684974479E-003 8 2 14 7 + -0.14421259974883789E-003 8 9 14 7 + 0.44918023453707897E-002 8 10 14 7 + -0.41885605189262263E-003 8 11 14 7 + -0.33106348937785577E-003 8 12 14 7 + 0.57520961632536276E-002 8 13 14 7 + 0.11109231388846985E-003 8 14 14 7 + -0.51584299808569139E-002 9 3 14 7 + -0.38960546934252698E-002 9 4 14 7 + 0.10285823268304965E-001 9 5 14 7 + 0.44305410901702822E-003 9 6 14 7 + -0.12021877811419713E-001 9 7 14 7 + -0.15593021805486914E-003 9 8 14 7 + -0.10739935988021764E-001 10 3 14 7 + -0.94419294192193449E-002 10 4 14 7 + 0.48775821455823761E-002 10 5 14 7 + 0.20323602265438648E-003 10 6 14 7 + -0.48438965665600891E-002 10 7 14 7 + 0.37492747252570319E-002 10 8 14 7 + 0.64327466888909647E-002 11 3 14 7 + -0.66109103172374310E-002 11 4 14 7 + 0.11061528853563906E-002 11 5 14 7 + 0.17082642660359031E-002 11 6 14 7 + 0.11023538790290523E-004 11 7 14 7 + -0.34847161899024512E-003 11 8 14 7 + 0.21026227954408228E-002 12 3 14 7 + -0.55998622717053743E-003 12 4 14 7 + -0.46221039151506360E-003 12 5 14 7 + 0.34464077273828103E-003 12 6 14 7 + 0.48317625844017365E-003 12 7 14 7 + -0.27285718380307838E-003 12 8 14 7 + -0.30598370455536560E-002 13 3 14 7 + -0.41249945737296010E-002 13 4 14 7 + -0.14262065596894699E-001 13 5 14 7 + 0.30396220099344351E-004 13 6 14 7 + 0.38172886903049146E-002 13 7 14 7 + 0.48053807718945758E-002 13 8 14 7 + 0.61519386818598516E-002 14 3 14 7 + 0.36493895452429856E-002 14 4 14 7 + -0.11303440352069233E-001 14 5 14 7 + 0.12357892433041467E-003 14 6 14 7 + 0.66658564004193786E-002 14 7 14 7 + -0.12347477425376037E-002 1 3 14 8 + -0.11764095176755242E-002 1 4 14 8 + -0.11323809263767315E-002 1 5 14 8 + 0.38610722019026501E-004 1 6 14 8 + 0.28148646724754810E-004 1 7 14 8 + 0.17819765758916423E-002 1 8 14 8 + -0.97704686449428691E-002 2 3 14 8 + -0.93088134919626399E-002 2 4 14 8 + -0.89604601286186383E-002 2 5 14 8 + 0.15752190820530636E-003 2 6 14 8 + 0.11484536965680773E-003 2 7 14 8 + 0.72701883744484283E-002 2 8 14 8 + -0.51579421733575111E-002 3 1 14 8 + -0.98420853590809407E-002 3 2 14 8 + 0.43457161852059707E-002 3 9 14 8 + -0.23948856782251039E-002 3 10 14 8 + -0.72658329807265450E-003 3 11 14 8 + 0.43724564711228901E-002 3 12 14 8 + 0.86773615868871307E-002 3 13 14 8 + -0.58132104618878015E-002 3 14 14 8 + -0.49142442184433146E-002 4 1 14 8 + -0.93770407175055286E-002 4 2 14 8 + 0.41403792549509141E-002 4 9 14 8 + -0.35357989889800772E-002 4 10 14 8 + 0.63854590458086824E-003 4 11 14 8 + -0.43528992980558390E-002 4 12 14 8 + 0.72443570888537229E-002 4 13 14 8 + -0.50439349886162938E-002 4 14 14 8 + -0.47303228583894493E-002 5 1 14 8 + -0.90261419793120391E-002 5 2 14 8 + 0.39854407064596102E-002 5 9 14 8 + -0.11232493449889013E-001 5 10 14 8 + 0.51471354481433067E-003 5 11 14 8 + 0.10956409744689245E-002 5 12 14 8 + -0.41309540370547231E-002 5 13 14 8 + -0.52193285383082154E-002 5 14 14 8 + 0.20592496629065349E-003 6 1 14 8 + 0.22374104015954188E-003 6 2 14 8 + -0.19782807740889845E-003 6 9 14 8 + 0.81803063452580202E-004 6 10 14 8 + -0.16028245974997299E-003 6 11 14 8 + 0.13699258991893932E-002 6 12 14 8 + -0.13344830951894133E-003 6 13 14 8 + -0.88413261040346357E-004 6 14 14 8 + 0.15012291748060655E-003 7 1 14 8 + 0.16310188684971240E-003 7 2 14 8 + -0.14421259974913445E-003 7 9 14 8 + 0.39967823187492257E-002 7 10 14 8 + -0.32514207500973204E-003 7 11 14 8 + -0.15596350173901466E-003 7 12 14 8 + 0.52532856428896347E-002 7 13 14 8 + 0.11109287945751362E-003 7 14 14 8 + 0.95038087969807426E-002 8 1 14 8 + 0.10325780894745265E-001 8 2 14 8 + -0.91299013301131288E-002 8 9 14 8 + 0.51454191485645591E-002 8 10 14 8 + -0.99291689299497467E-004 8 11 14 8 + -0.46932941527637638E-003 8 12 14 8 + -0.39020985932766115E-002 8 13 14 8 + 0.61929457369077935E-002 8 14 14 8 + 0.60143832029663138E-002 9 3 14 8 + 0.57302489690092568E-002 9 4 14 8 + 0.55157484160237901E-002 9 5 14 8 + -0.21389779855668253E-003 9 6 14 8 + -0.15593021805500364E-003 9 7 14 8 + -0.98716216189619396E-002 9 8 14 8 + -0.26283144262748506E-002 10 3 14 8 + -0.38933691170981079E-002 10 4 14 8 + -0.12335808651487578E-001 10 5 14 8 + 0.49626484564684556E-004 10 6 14 8 + 0.33594315175579188E-002 10 7 14 8 + 0.43089550345924970E-002 10 8 14 8 + -0.81068647930668432E-003 11 3 14 8 + 0.71751039624864217E-003 11 4 14 8 + 0.56320303340599745E-003 11 5 14 8 + -0.90976534472998890E-004 11 6 14 8 + -0.27466530027378869E-003 11 7 14 8 + -0.83124925800007700E-004 11 8 14 8 + 0.48809955322260956E-002 12 3 14 8 + -0.48742462638514100E-002 12 4 14 8 + 0.12104319932779073E-002 12 5 14 8 + 0.89179568029452766E-003 12 6 14 8 + -0.13496069089977697E-003 12 7 14 8 + -0.39306408905328654E-003 12 8 14 8 + 0.95292461834970508E-002 13 3 14 8 + 0.79610397562367326E-002 13 4 14 8 + -0.45343469877530164E-002 13 5 14 8 + -0.10349605448695407E-003 13 6 14 8 + 0.44125433470160519E-002 13 7 14 8 + -0.32683015266426079E-002 13 8 14 8 + -0.63414946006218652E-002 14 3 14 8 + -0.55007855788538063E-002 14 4 14 8 + -0.56950912193833901E-002 14 5 14 8 + -0.74021906760105019E-004 14 6 14 8 + 0.93108773761480822E-004 14 7 14 8 + 0.53416589405483042E-002 14 8 14 8 + -0.14220346020093902E-002 1 14 14 9 + -0.71538911006524547E-007 2 10 14 9 + -0.11490977171251097E-008 2 11 14 9 + 0.55775373883597564E-007 2 12 14 9 + 0.24879513908482885E-009 2 13 14 9 + -0.15455920804249946E-001 2 14 14 9 + 0.17865909293723033E-002 3 3 14 9 + -0.95493693572222000E-002 3 4 14 9 + 0.12329084258606445E-002 3 5 14 9 + 0.76621202395875344E-002 3 6 14 9 + -0.27534261222772610E-002 3 7 14 9 + 0.32103655172541256E-002 3 8 14 9 + -0.95493693572222000E-002 4 3 14 9 + 0.50908587022355468E-002 4 4 14 9 + -0.60258438677223173E-003 4 5 14 9 + -0.89521717838240492E-002 4 6 14 9 + -0.20796065092744801E-002 4 7 14 9 + 0.30586692952103895E-002 4 8 14 9 + 0.12329084258606454E-002 5 3 14 9 + -0.60258438677223216E-003 5 4 14 9 + -0.68774496316077070E-002 5 5 14 9 + 0.68490882363596826E-003 5 6 14 9 + 0.54903271601539766E-002 5 7 14 9 + 0.29442168985151229E-002 5 8 14 9 + 0.95767982754894759E-002 6 3 14 9 + -0.11189202038024142E-001 6 4 14 9 + 0.85606730631222218E-003 6 5 14 9 + 0.59192517429137361E-002 6 6 14 9 + 0.11978639825754125E-003 6 7 14 9 + -0.57834813275153563E-004 6 8 14 9 + -0.34414894269440663E-002 7 3 14 9 + -0.25992860124522668E-002 7 4 14 9 + 0.68623000562138591E-002 7 5 14 9 + 0.11978639825754082E-003 7 6 14 9 + -0.32503087902635629E-002 7 7 14 9 + -0.42154485298792454E-004 7 8 14 9 + 0.40125826364226097E-002 8 3 14 9 + 0.38229979564804980E-002 8 4 14 9 + 0.36799201075510459E-002 8 5 14 9 + -0.57834813275152872E-004 8 6 14 9 + -0.42154485298782161E-004 8 7 14 9 + -0.26689429526509231E-002 8 8 14 9 + -0.40278708515473804E-007 9 10 14 9 + -0.64697894528529990E-009 9 11 14 9 + 0.31403329921230217E-007 9 12 14 9 + 0.14007894174983576E-009 9 13 14 9 + 0.13648828071335259E-001 9 14 14 9 + -0.48521405709543894E-008 10 1 14 9 + -0.12407709984470707E-006 10 2 14 9 + 0.28332046400967990E-007 10 9 14 9 + -0.76168144765257238E-002 10 10 14 9 + 0.50094427639000726E-003 10 11 14 9 + 0.94949990884882478E-003 10 12 14 9 + -0.57289510617642217E-004 10 13 14 9 + 0.92366763251357491E-003 10 14 14 9 + -0.19929952734820109E-008 11 2 14 9 + 0.45508506222018088E-009 11 9 14 9 + 0.50094410512370100E-003 11 10 14 9 + 0.35021810449363559E-002 11 11 14 9 + -0.20953561268388611E-003 11 12 14 9 + 0.43003203709832778E-003 11 13 14 9 + -0.66054926619681367E-005 11 14 14 9 + 0.37829755937131051E-008 12 1 14 9 + 0.96736818278098456E-007 12 2 14 9 + -0.22089104522753501E-007 12 9 14 9 + 0.94950027660125355E-003 12 10 14 9 + -0.20953559522136076E-003 12 11 14 9 + 0.41394935245833908E-002 12 12 14 9 + -0.31917757168522658E-003 12 13 14 9 + -0.10027490683393689E-003 12 14 14 9 + 0.43151015256996924E-009 13 2 14 9 + -0.57289158103002600E-004 13 10 14 9 + 0.43003602515558179E-003 13 11 14 9 + -0.31917913779991569E-003 13 12 14 9 + -0.76924718144496954E-002 13 13 14 9 + -0.95330080260777432E-003 13 14 14 9 + -0.29384404466364206E-002 14 1 14 9 + -0.11928145052562804E-001 14 2 14 9 + 0.10148881717262088E-001 14 9 14 9 + 0.97098898077756386E-008 1 1 14 10 + -0.24483760121952840E-008 1 2 14 10 + -0.28142366155369160E-009 1 9 14 10 + -0.38267727769491724E-003 1 10 14 10 + 0.25168615211187502E-004 1 11 14 10 + 0.47705569325790916E-004 1 12 14 10 + -0.28745890288166774E-005 1 13 14 10 + 0.46397704455900334E-004 1 14 14 10 + -0.64277268733828304E-008 2 1 14 10 + -0.92507877358317926E-007 2 2 14 10 + -0.82460587884241487E-007 2 9 14 10 + 0.30428377706502648E-001 2 10 14 10 + -0.20011507053693833E-002 2 11 14 10 + -0.37931116008130899E-002 2 12 14 10 + 0.22836285713231566E-003 2 13 14 10 + -0.36895155233451636E-002 2 14 14 10 + -0.50346633280333938E-002 3 3 14 10 + -0.52057768540111965E-002 3 4 14 10 + 0.22875438973330241E-001 3 5 14 10 + 0.50398447520555738E-003 3 6 14 10 + -0.48093920193873632E-002 3 7 14 10 + -0.13195024726038681E-002 3 8 14 10 + -0.52057613138497228E-002 4 3 14 10 + -0.72955242404767410E-003 4 4 14 10 + 0.17881024143382350E-001 4 5 14 10 + -0.31179551839318793E-003 4 6 14 10 + -0.36712709940249625E-002 4 7 14 10 + -0.12584593711564573E-002 4 8 14 10 + 0.22875454546135383E-001 5 3 14 10 + 0.17880969796594932E-001 5 4 14 10 + 0.57639780143197011E-002 5 5 14 10 + 0.23655791314175782E-003 5 6 14 10 + 0.22923268728806678E-002 5 7 14 10 + -0.57383795126816038E-002 5 8 14 10 + 0.30697448149941597E-003 6 3 14 10 + -0.18983313992736167E-003 6 4 14 10 + 0.14412524417922558E-003 6 5 14 10 + 0.15119326835946279E-002 6 6 14 10 + -0.16179818243430223E-003 6 7 14 10 + -0.70147898147362325E-003 6 8 14 10 + -0.29307885138172905E-002 7 3 14 10 + -0.22372172301364304E-002 7 4 14 10 + 0.13970482971880757E-002 7 5 14 10 + -0.16180879320565274E-003 7 6 14 10 + -0.13691681807294808E-001 7 7 14 10 + 0.10046581008236672E-001 7 8 14 10 + -0.80410069959145766E-003 8 3 14 10 + -0.76689151446276830E-003 8 4 14 10 + -0.34968236752540315E-002 8 5 14 10 + -0.70149213455516959E-003 8 6 14 10 + 0.10046587625422291E-001 8 7 14 10 + 0.12179624679984973E-001 8 8 14 10 + 0.72675720445556099E-008 9 1 14 10 + 0.11046757325313163E-006 9 2 14 10 + -0.51451151915671071E-007 9 9 14 10 + 0.23752084793548555E-002 9 10 14 10 + -0.15622469751117813E-003 9 11 14 10 + -0.29609341105512406E-003 9 12 14 10 + 0.17970891045931384E-004 9 13 14 10 + -0.28813556259088400E-003 9 14 14 10 + 0.51420429752550576E-002 10 1 14 10 + 0.53900521425115609E-001 10 2 14 10 + -0.76168350399759329E-002 10 9 14 10 + -0.19383956688688424E-006 10 10 14 10 + -0.14029176772198439E-003 10 11 14 10 + 0.75158937941623551E-003 10 12 14 10 + -0.81236327243937518E-003 10 13 14 10 + 0.38590635868878120E-001 10 14 14 10 + -0.33817632424263316E-003 11 1 14 10 + -0.35448636082461701E-002 11 2 14 10 + 0.50094562385428814E-003 11 9 14 10 + -0.14025083964379069E-003 11 10 14 10 + -0.14129926975102989E-001 11 11 14 10 + 0.49205068418850398E-002 11 12 14 10 + -0.13176769293888934E-002 11 13 14 10 + -0.69354183773050442E-003 11 14 14 10 + -0.64099901603245884E-003 12 1 14 10 + -0.67191428686365672E-002 12 2 14 10 + 0.94950328003167600E-003 12 9 14 10 + 0.75151642643080270E-003 12 10 14 10 + 0.49204514937491103E-002 12 11 14 10 + 0.15651252398444660E-001 12 12 14 10 + -0.29992032910737272E-003 12 13 14 10 + -0.10538685461830332E-002 12 14 14 10 + 0.38602041391822228E-004 13 1 14 10 + 0.40465151364856543E-003 13 2 14 10 + -0.57288535917058863E-004 13 9 14 10 + -0.81234929727713528E-003 13 10 14 10 + -0.13176926132565481E-002 13 11 14 10 + -0.29992766313752191E-003 13 12 14 10 + -0.15215261893074716E-002 13 13 14 10 + -0.28089048328662014E-004 13 14 14 10 + -0.62347651590276363E-003 14 1 14 10 + -0.65354918186943459E-002 14 2 14 10 + 0.92365963182862595E-003 14 9 14 10 + 0.38587551333489158E-001 14 10 14 10 + 0.15596570780134664E-009 1 1 14 11 + 0.25168604827163207E-004 1 10 14 11 + 0.17595615362021912E-003 1 11 14 11 + -0.10528289291144867E-004 1 12 14 11 + 0.21602239412836362E-004 1 13 14 11 + -0.33217550959842789E-006 1 14 14 11 + -0.10324571546143196E-009 2 1 14 11 + -0.14859128389759615E-008 2 2 14 11 + -0.13245277655816354E-008 2 9 14 11 + -0.20011508967395903E-002 2 10 14 11 + -0.13990750715358991E-001 2 11 14 11 + 0.83704765677975205E-003 2 12 14 11 + -0.17170671140750960E-002 2 13 14 11 + 0.26502376615439123E-004 2 14 14 11 + -0.92461813002796094E-002 3 3 14 11 + 0.29265493585251454E-002 3 4 14 11 + 0.49068807764060659E-002 3 5 14 11 + -0.16239885235605183E-002 3 6 14 11 + -0.15569464491656886E-002 3 7 14 11 + 0.30651330770437404E-003 3 8 14 11 + 0.29262260053380721E-002 4 3 14 11 + 0.94552487569750533E-002 4 4 14 11 + -0.84208332535708648E-002 4 5 14 11 + -0.12564079902065135E-002 4 6 14 11 + 0.23449945860281895E-002 4 7 14 11 + -0.54077043605861618E-003 4 8 14 11 + 0.49071267560264580E-002 5 3 14 11 + -0.84211051572523881E-002 5 4 14 11 + -0.20907127537135567E-003 5 5 14 11 + 0.20017955343426797E-002 5 6 14 11 + -0.23002714909244127E-004 5 7 14 11 + 0.37395912556130115E-003 5 8 14 11 + -0.98959595269166038E-003 6 3 14 11 + -0.76558844677943494E-003 6 4 14 11 + 0.12198041711246968E-002 6 5 14 11 + 0.20378946950523651E-003 6 6 14 11 + -0.73358085322574136E-002 6 7 14 11 + 0.16717127092047875E-002 6 8 14 11 + -0.94885408676523048E-003 7 3 14 11 + 0.14290188240005900E-002 7 4 14 11 + -0.14152087776093786E-004 7 5 14 11 + -0.73359581517139219E-002 7 6 14 11 + 0.31224475968498879E-004 7 7 14 11 + -0.88058082630322382E-003 7 8 14 11 + 0.18688406390385363E-003 8 3 14 11 + -0.32946611194711726E-003 8 4 14 11 + 0.22783000343541546E-003 8 5 14 11 + 0.16717353134570085E-002 8 6 14 11 + -0.88057913450240101E-003 8 7 14 11 + -0.23501594435766402E-003 8 8 14 11 + 0.11673577396006964E-009 9 1 14 11 + 0.17743914951513023E-008 9 2 14 11 + -0.82643690092590972E-009 9 9 14 11 + -0.15622470481899489E-003 9 10 14 11 + -0.10921226526532271E-002 9 11 14 11 + 0.65343200297500754E-004 9 12 14 11 + -0.13427663830908762E-003 9 13 14 11 + 0.20366343946535068E-005 9 14 14 11 + -0.33817642141426301E-003 10 1 14 11 + -0.35448665565365914E-002 10 2 14 11 + 0.50094581406240487E-003 10 9 14 11 + 0.28053039491117844E-003 10 10 14 11 + 0.70640834415331847E-002 10 11 14 11 + -0.19997631282607183E-002 10 12 14 11 + -0.32986271109784228E-003 10 13 14 11 + -0.69350740896746883E-003 10 14 14 11 + -0.23642874099821650E-002 11 1 14 11 + -0.24783186208442751E-001 11 2 14 11 + 0.35021911826915377E-002 11 9 14 11 + 0.70656115671727075E-002 11 10 14 11 + 0.52587988443875420E-008 11 11 14 11 + -0.10685351749247459E-002 11 12 14 11 + -0.20162912622969367E-002 11 13 14 11 + 0.24277156857428490E-001 11 14 14 11 + 0.14145559267069791E-003 12 1 14 11 + 0.14827740993921933E-002 12 2 14 11 + -0.20953641008906239E-003 12 9 14 11 + -0.20002106290429610E-002 12 10 14 11 + -0.10682857906412350E-002 12 11 14 11 + -0.56437535510248170E-003 12 12 14 11 + -0.69590145080980414E-002 12 13 14 11 + -0.38207753409488646E-003 12 14 14 11 + -0.29019599146325078E-003 13 1 14 11 + -0.30419446590502328E-002 13 2 14 11 + 0.43003699220592486E-003 13 9 14 11 + -0.32976855077241588E-003 13 10 14 11 + -0.20162354229774381E-002 13 11 14 11 + -0.69590063806283372E-002 13 12 14 11 + 0.28383190965306681E-003 13 13 14 11 + -0.53125508597227390E-003 13 14 14 11 + 0.44740431298193535E-005 14 1 14 11 + 0.46895267145740449E-004 14 2 14 11 + -0.66046815685886037E-005 14 9 14 11 + -0.69353172263507813E-003 14 10 14 11 + 0.24274310386545699E-001 14 11 14 11 + -0.75703237976558379E-008 1 1 14 12 + 0.19088784682929533E-008 1 2 14 12 + 0.21941221101350541E-009 1 9 14 12 + 0.47705591622938199E-004 1 10 14 12 + -0.10528288232375221E-004 1 11 14 12 + 0.20796975211675328E-003 1 12 14 12 + -0.16033881011383225E-004 1 13 14 12 + -0.50356068738600776E-005 1 14 14 12 + 0.50113828283276345E-008 2 1 14 12 + 0.72123846810408052E-007 2 2 14 12 + 0.64290468680080562E-007 2 9 14 12 + -0.37931111898924551E-002 2 10 14 12 + 0.83704767629209996E-003 2 11 14 12 + -0.16536990478818708E-001 2 12 14 12 + 0.12746414470486158E-002 2 13 14 12 + 0.40004394110620175E-003 2 14 14 12 + 0.11726213125677593E-001 3 3 14 12 + -0.13422914019754137E-002 3 4 14 12 + 0.53690916775772559E-002 3 5 14 12 + 0.18471014561506349E-002 3 6 14 12 + 0.94300064165132261E-004 3 7 14 12 + -0.19789571997883260E-002 3 8 14 12 + -0.13419450784734636E-002 4 3 14 12 + -0.13392280343639184E-001 4 4 14 12 + -0.90681969425103325E-002 4 5 14 12 + 0.18450980435689615E-002 4 6 14 12 + 0.62008006736910667E-003 4 7 14 12 + 0.27759570014816264E-002 4 8 14 12 + 0.53692916495458928E-002 5 3 14 12 + -0.90684642865332225E-002 5 4 14 12 + 0.16662525704137972E-002 5 5 14 12 + 0.21944561626263031E-002 5 6 14 12 + -0.34774837261536959E-003 5 7 14 12 + 0.17760297099681852E-003 5 8 14 12 + 0.11256860728011966E-002 6 3 14 12 + 0.11241973996220045E-002 6 4 14 12 + 0.13372416884070786E-002 6 5 14 12 + -0.25463788093854942E-003 6 6 14 12 + -0.11602809251197029E-002 6 7 14 12 + -0.88726133647406159E-002 6 8 14 12 + 0.57486319828420920E-004 7 3 14 12 + 0.37791099646888919E-003 7 4 14 12 + -0.21188309625757958E-003 7 5 14 12 + -0.11603093709869313E-002 7 6 14 12 + 0.13657011950124344E-002 7 7 14 12 + -0.57640567502825096E-003 7 8 14 12 + -0.12060890755075369E-002 8 3 14 12 + 0.16916223039738325E-002 8 4 14 12 + 0.10821696180095470E-003 8 5 14 12 + -0.88727595011897538E-002 8 6 14 12 + -0.57640835837109261E-003 8 7 14 12 + -0.11109662914232535E-002 8 8 14 12 + -0.56661688395288109E-008 9 1 14 12 + -0.86126139124313600E-007 9 2 14 12 + 0.40113935216213352E-007 9 9 14 12 + -0.29609339536337858E-003 9 10 14 12 + 0.65343201042636980E-004 9 11 14 12 + -0.12908295443188021E-002 9 12 14 12 + 0.99621940204599818E-004 9 13 14 12 + 0.31380927177366433E-004 9 14 14 12 + -0.64099880738019215E-003 10 1 14 12 + -0.67191365379052704E-002 10 2 14 12 + 0.94950287160634392E-003 10 9 14 12 + -0.15029706019551688E-002 10 10 14 12 + -0.29203196488051999E-002 10 11 14 12 + -0.78250897312851213E-002 10 12 14 12 + 0.37376421085205769E-004 10 13 14 12 + -0.10537815912066851E-002 10 14 14 12 + 0.14145560257843707E-003 11 1 14 12 + 0.14827744000035627E-002 11 2 14 12 + -0.20953642948291356E-003 11 9 14 12 + -0.29207132205068759E-002 11 10 14 12 + 0.21370764042043986E-002 11 11 14 12 + 0.28213505585961607E-003 11 12 14 12 + -0.79625916310451690E-002 11 13 14 12 + -0.38208561544386796E-003 11 14 14 12 + -0.27945433645550511E-002 12 1 14 12 + -0.29293315211240019E-001 12 2 14 12 + 0.41395038965060449E-002 12 9 14 12 + -0.78263914227802121E-002 12 10 14 12 + 0.28218331863994205E-003 12 11 14 12 + 0.19788648139267651E-006 12 12 14 12 + 0.28286519375194481E-002 12 13 14 12 + 0.25926422116720388E-001 12 14 14 12 + 0.21541420873169578E-003 13 1 14 12 + 0.22580501838977657E-002 13 2 14 12 + -0.31917976799734313E-003 13 9 14 12 + 0.37404835784384521E-004 13 10 14 12 + -0.79624732619374642E-002 13 11 14 12 + 0.28285832145602680E-002 13 12 14 12 + -0.63395705012561046E-003 13 13 14 12 + 0.32800685294169908E-003 13 14 14 12 + 0.67621108171070512E-004 14 1 14 12 + 0.70883701891576569E-003 14 2 14 12 + -0.10027669058133805E-003 14 9 14 12 + -0.10538480486111587E-002 14 10 14 12 + -0.38210370413703309E-003 14 11 14 12 + 0.25923400347451515E-001 14 12 14 12 + -0.28745676555493712E-005 1 10 14 13 + 0.21602481212182563E-004 1 11 14 13 + -0.16033975966264555E-004 1 12 14 13 + -0.38637438714771757E-003 1 13 14 13 + -0.47882201613562569E-004 1 14 14 13 + 0.32171686026604592E-009 2 2 14 13 + 0.28677871703876992E-009 2 9 14 13 + 0.22836325102649715E-003 2 10 14 13 + -0.17170626578841648E-002 2 11 14 13 + 0.12746396970972893E-002 2 12 14 13 + 0.30715513928618932E-001 2 13 14 13 + 0.38065122709242285E-002 2 14 14 13 + -0.17588166524086381E-001 3 3 14 13 + -0.12284997857541070E-001 3 4 14 13 + -0.65552333629291162E-002 3 5 14 13 + -0.44827857108700677E-003 3 6 14 13 + -0.12995680216511324E-002 3 7 14 13 + 0.44811135685690557E-002 3 8 14 13 + -0.12285032491421795E-001 4 3 14 13 + -0.12878405564901824E-001 4 4 14 13 + -0.29172652880496996E-002 4 5 14 13 + 0.40268661296651167E-003 4 6 14 13 + -0.14678080122219679E-002 4 7 14 13 + 0.34474345691758012E-002 4 8 14 13 + -0.65552068130281683E-002 5 3 14 13 + -0.29172570508072693E-002 5 4 14 13 + 0.30466572915773829E-001 5 5 14 13 + 0.44856225157850872E-004 5 6 14 13 + -0.61407087687028409E-002 5 7 14 13 + -0.22497009936356914E-002 5 8 14 13 + -0.27301106063078168E-003 6 3 14 13 + 0.24522008782527503E-003 6 4 14 13 + 0.27300544364376458E-004 6 5 14 13 + -0.15515368308559191E-002 6 6 14 13 + -0.31864085286901556E-003 6 7 14 13 + 0.75862075308137926E-004 6 8 14 13 + -0.79136970392036589E-003 7 3 14 13 + -0.89382808929071159E-003 7 4 14 13 + -0.37396171905437585E-002 7 5 14 13 + -0.31864969380150551E-003 7 6 14 13 + 0.10788373863017554E-001 7 7 14 13 + 0.13025695617358439E-001 7 8 14 13 + 0.27289554540666011E-002 8 3 14 13 + 0.20994207535880924E-002 8 4 14 13 + -0.13699632870002364E-002 8 5 14 13 + 0.75869755643649623E-004 8 6 14 13 + 0.13025688418321659E-001 8 7 14 13 + -0.92368365993838498E-002 8 8 14 13 + -0.38417902923237022E-009 9 2 14 13 + 0.17893191924737040E-009 9 9 14 13 + 0.17970906087472029E-004 9 10 14 13 + -0.13427646814136729E-003 9 11 14 13 + 0.99621873379543871E-004 9 12 14 13 + 0.24019704413244186E-002 9 13 14 13 + 0.29765785952732291E-003 9 14 14 13 + 0.38602241398601277E-004 10 1 14 13 + 0.40465758206656671E-003 10 2 14 13 + -0.57288927419321404E-004 10 9 14 13 + 0.16246207693814694E-002 10 10 14 13 + 0.16473349990679003E-002 10 11 14 13 + 0.26250648578328835E-003 10 12 14 13 + 0.76049249191235849E-003 10 13 14 13 + -0.28089461944895508E-004 10 14 14 13 + -0.29019372875299627E-003 11 1 14 13 + -0.30418760060193155E-002 11 2 14 13 + 0.43003256307516528E-003 11 9 14 13 + 0.16474384390963374E-002 11 10 14 13 + 0.40323543054420893E-002 11 11 14 13 + 0.14920790565732887E-001 11 12 14 13 + -0.14190403976766159E-003 11 13 14 13 + -0.53125943567121196E-003 11 14 14 13 + 0.21541332016276679E-003 12 1 14 13 + 0.22580232237732435E-002 12 2 14 13 + -0.31917802867257829E-003 12 9 14 13 + 0.26253932245480581E-003 12 10 14 13 + 0.14920872082617749E-001 12 11 14 13 + -0.56569775690633196E-002 12 12 14 13 + 0.31716344206554999E-003 12 13 14 13 + 0.32801140525285066E-003 12 14 14 13 + 0.51909333531334886E-002 13 1 14 13 + 0.54413383116347316E-001 13 2 14 13 + -0.76924717606769036E-002 13 9 14 13 + 0.76060870228060831E-003 13 10 14 13 + -0.14190412580172067E-003 13 11 14 13 + 0.31707146011221242E-003 13 12 14 13 + 0.23753205495909019E-008 13 13 14 13 + 0.38677582516390474E-001 13 14 14 13 + 0.64330029257982557E-003 14 1 14 13 + 0.67433217804272385E-002 14 2 14 13 + -0.95330040735930191E-003 14 9 14 13 + -0.27999457124605673E-004 14 10 14 13 + -0.53140744317534832E-003 14 11 14 13 + 0.32810419896125737E-003 14 12 14 13 + 0.38677576050045244E-001 14 13 14 13 + 0.78365872686533189 1 1 14 14 + -0.37281161107876985E-001 1 2 14 14 + 0.33374715643421010E-001 1 9 14 14 + 0.46397219367485938E-004 1 10 14 14 + -0.33212633230836333E-006 1 11 14 14 + -0.50357150240357899E-005 1 12 14 14 + -0.47882177649525258E-004 1 13 14 14 + 0.38512575910563886E-003 1 14 14 14 + 0.31855005832883629E-001 2 1 14 14 + 0.64137650800242896 2 2 14 14 + -0.15187998360325095 2 9 14 14 + -0.36895244631816619E-002 2 10 14 14 + 0.26503282918111908E-004 2 11 14 14 + 0.40004194797520155E-003 2 12 14 14 + 0.38065127125678946E-002 2 13 14 14 + -0.30616150440943752E-001 2 14 14 14 + 0.62683274416052170 3 3 14 14 + -0.26390902711323612E-001 3 4 14 14 + -0.20777739308872178E-003 3 5 14 14 + 0.11039513982784184 3 6 14 14 + 0.74800617827130600E-001 3 7 14 14 + -0.10140591973640414 3 8 14 14 + -0.26390882561651525E-001 4 3 14 14 + 0.63540234849194221 4 4 14 14 + -0.42506948619169781E-002 4 5 14 14 + -0.13389710916145509 4 6 14 14 + 0.48972048883164983E-001 4 7 14 14 + -0.91336285349221696E-001 4 8 14 14 + -0.20776679775530432E-003 5 3 14 14 + -0.42507064832169143E-002 5 4 14 14 + 0.60826856567502507 5 5 14 14 + 0.12057037365097015E-001 5 6 14 14 + -0.13730237635650622 5 7 14 14 + -0.88060077569874912E-001 5 8 14 14 + 0.81302786310864322E-001 6 3 14 14 + -0.98639135492731095E-001 6 4 14 14 + 0.88899496882479424E-002 6 5 14 14 + 0.50901186797939857 6 6 14 14 + 0.34925087032949842E-003 6 7 14 14 + -0.20926892244348453E-003 6 8 14 14 + 0.55684279256043016E-001 7 3 14 14 + 0.36480054182192821E-001 7 4 14 14 + -0.10221194782427584 7 5 14 14 + 0.34925015651351385E-003 7 6 14 14 + 0.48247767190243868 7 7 14 14 + 0.26301184111995857E-003 7 8 14 14 + -0.75613996494614755E-001 8 3 14 14 + -0.68118477844878372E-001 8 4 14 14 + -0.65650710760527295E-001 8 5 14 14 + -0.20927677276266806E-003 8 6 14 14 + 0.26301116092643538E-003 8 7 14 14 + 0.47873490564868210 8 8 14 14 + -0.27663092694863525E-001 9 1 14 14 + -0.98968969949332894E-001 9 2 14 14 + 0.50532982492983669 9 9 14 14 + -0.28813590397471883E-003 9 10 14 14 + 0.20366690034451648E-005 9 11 14 14 + 0.31380851066103599E-004 9 12 14 14 + 0.29765787639217986E-003 9 13 14 14 + -0.23942267237073113E-002 9 14 14 14 + -0.62348105526384293E-003 10 1 14 14 + -0.65356295477278512E-002 10 2 14 14 + 0.92366851737801141E-003 10 9 14 14 + 0.59636832088409408 10 10 14 14 + 0.13869953165876966E-002 10 11 14 14 + 0.21075672229284798E-002 10 12 14 14 + 0.55899894948284610E-004 10 13 14 14 + -0.50465504516192209E-006 10 14 14 14 + 0.44745033211327679E-005 11 1 14 14 + 0.46909229838687708E-004 11 2 14 14 + -0.66055823677662294E-005 11 9 14 14 + 0.13869665106254687E-002 11 10 14 14 + 0.62499387183538357 11 11 14 14 + 0.76411570556423735E-003 11 12 14 14 + 0.10629270384194995E-002 11 13 14 14 + -0.49077614240252475E-008 11 14 14 14 + 0.67620096123476427E-004 12 1 14 14 + 0.70880631231877249E-003 12 2 14 14 + -0.10027470955391762E-003 12 9 14 14 + 0.21074945862212266E-002 12 10 14 14 + 0.76412252128458624E-003 12 11 14 14 + 0.62169538296942217 12 12 14 14 + -0.65626427221200418E-003 12 13 14 14 + 0.35320052310834515E-006 12 14 14 14 + 0.64330051683234404E-003 13 1 14 14 + 0.67433285844928697E-002 13 2 14 14 + -0.95330084632165807E-003 13 9 14 14 + 0.55900245869040470E-004 13 10 14 14 + 0.10629327084551059E-002 13 11 14 14 + -0.65626820962800766E-003 13 12 14 14 + 0.59618461202897732 13 13 14 14 + 0.33464267253365428E-008 13 14 14 14 + -0.51741455538513396E-002 14 1 14 14 + -0.54237403121779978E-001 14 2 14 14 + 0.76676117214550784E-002 14 9 14 14 + -0.26814288649993711E-006 14 10 14 14 + -0.28536934406056673E-008 14 11 14 14 + 0.17007377442344238E-006 14 12 14 14 + 0.24237824612423263E-008 14 13 14 14 + 0.67353976738915167 14 14 14 14 + 0.0000000000000000 0 0 0 0 + 4.0914626268453507 1 1 1 1 + -0.31099231622129558 1 1 1 2 + 0.33856369446792260E-001 1 2 1 2 + 0.58123244072778319E-002 1 3 1 3 + 0.58123244072774425E-002 1 4 1 4 + 0.58123244072777469E-002 1 5 1 5 + 0.41968638449637096E-002 1 3 1 6 + -0.50986591149845039E-002 1 4 1 6 + 0.46142831056454695E-003 1 5 1 6 + 0.75609315420505779E-002 1 6 1 6 + 0.30213092023952254E-002 1 3 1 7 + 0.19850525649802459E-002 1 4 1 7 + -0.55456436964122146E-002 1 5 1 7 + 0.75609315420505615E-002 1 7 1 7 + -0.41329083658033774E-002 1 3 1 8 + -0.37264122870690457E-002 1 4 1 8 + -0.35855023213521887E-002 1 5 1 8 + 0.75609315420503299E-002 1 8 1 8 + 0.27835099331450164 1 1 1 9 + -0.30786059767963621E-001 1 2 1 9 + 0.28047970817975287E-001 1 9 1 9 + 0.10041331579162899E-003 1 10 1 10 + 0.17321544388632261E-009 1 10 1 11 + 0.10041325403996943E-003 1 11 1 11 + 0.19391029793755224E-009 1 11 1 12 + 0.10041336489712631E-003 1 12 1 12 + -0.32776578536020442E-008 1 10 1 13 + 0.60920417790997236E-008 1 11 1 13 + -0.35734295693993325E-008 1 12 1 13 + 0.10030007958989742E-003 1 13 1 13 + -0.44052626721796559E-008 1 10 1 14 + 0.34345668554075562E-008 1 12 1 14 + 0.10029981977749557E-003 1 14 1 14 + -0.48824418695156729 1 1 2 1 + 0.63003093357441378E-001 1 2 2 1 + -0.57092890664019069E-001 1 9 2 1 + 0.92149817268090503E-001 2 1 2 1 + 0.97883379806653636 1 1 2 2 + -0.45867596576809111E-001 1 2 2 2 + 0.40139188162014242E-001 1 9 2 2 + 0.88163897589367702E-002 2 1 2 2 + 0.67147745383579016 2 2 2 2 + -0.45201105955307319E-003 1 3 2 3 + -0.10654839271818869E-002 1 6 2 3 + -0.76703855858032864E-003 1 7 2 3 + 0.10492471519092308E-002 1 8 2 3 + 0.11342320764965987 2 3 2 3 + -0.45201105955315201E-003 1 4 2 4 + 0.12944283011977384E-002 1 6 2 4 + -0.50395764092639353E-003 1 7 2 4 + 0.94604746415322344E-003 1 8 2 4 + 0.11342320764965833 2 4 2 4 + -0.45201105955318367E-003 1 5 2 5 + -0.11714567510762370E-003 1 6 2 5 + 0.14079070569550521E-002 1 7 2 5 + 0.91027377475166199E-003 1 8 2 5 + 0.11342320764965980 2 5 2 5 + 0.23687495658082369E-002 1 3 2 6 + -0.28777313277190209E-002 1 4 2 6 + 0.26043449363099251E-003 1 5 2 6 + 0.27226930851567423E-002 1 6 2 6 + 0.23355571043046679E-001 2 3 2 6 + -0.28374066823062573E-001 2 4 2 6 + 0.25678511590495803E-002 2 5 2 6 + 0.23053925598361294E-001 2 6 2 6 + 0.17052554301788731E-002 1 3 2 7 + 0.11203824034096458E-002 1 4 2 7 + -0.31300136442993930E-002 1 5 2 7 + 0.27226930851567801E-002 1 7 2 7 + 0.16813602805873837E-001 2 3 2 7 + 0.11046828755527814E-001 2 4 2 7 + -0.30861538547744007E-001 2 5 2 7 + 0.23053925598361964E-001 2 7 2 7 + -0.23326524897322285E-002 1 3 2 8 + -0.21032222662189961E-002 1 4 2 8 + -0.20236913516026981E-002 1 5 2 8 + 0.27226930851568204E-002 1 8 2 8 + -0.22999658439659589E-001 2 3 2 8 + -0.20737505461551665E-001 2 4 2 8 + -0.19953340705069687E-001 2 5 2 8 + 0.23053925598361547E-001 2 8 2 8 + -0.33858943195345603 1 1 2 9 + -0.32945799086126463E-003 1 2 2 9 + 0.19337829469305524E-003 1 9 2 9 + 0.28394511666356037E-001 2 1 2 9 + -0.17318901872783135 2 2 2 9 + 0.30571772595610908E-002 2 9 2 9 + -0.92035658103788349E-003 1 10 2 10 + 0.36103844617570042E-009 1 11 2 10 + -0.68317262926509023E-008 1 13 2 10 + -0.91820288038402307E-008 1 14 2 10 + 0.27282959959163224E-001 2 10 2 10 + 0.36103844684716558E-009 1 10 2 11 + -0.92035670974877656E-003 1 11 2 11 + 0.40417338831067604E-009 1 12 2 11 + 0.12697836033806936E-007 1 13 2 11 + -0.14748684517358365E-009 1 14 2 11 + 0.66015792233789043E-008 2 10 2 11 + 0.27282957605687122E-001 2 11 2 11 + 0.40417338889898674E-009 1 11 2 12 + -0.92035647868572040E-003 1 12 2 12 + -0.74482126678406388E-008 1 13 2 12 + 0.71587767047165563E-008 1 14 2 12 + 0.11357990580051287E-008 2 10 2 12 + 0.73903005581785103E-008 2 11 2 12 + 0.27282961830669934E-001 2 12 2 12 + -0.68317262927501921E-008 1 10 2 13 + 0.12697836033696896E-007 1 11 2 13 + -0.74482126681449097E-008 1 12 2 13 + -0.92059260284712988E-003 1 13 2 13 + -0.12491794885008950E-006 2 10 2 13 + 0.23217962258524303E-006 2 11 2 13 + -0.13619038720431534E-006 2 12 2 13 + 0.27278644306130383E-001 2 13 2 13 + -0.91820288054403322E-008 1 10 2 14 + -0.14748684582570987E-009 1 11 2 14 + 0.71587767057953735E-008 1 12 2 14 + -0.92059314438235496E-003 1 14 2 14 + -0.16789317305543579E-006 2 10 2 14 + -0.26967933692418886E-008 2 11 2 14 + 0.13089805770106136E-006 2 12 2 14 + 0.58389172842958571E-009 2 13 2 14 + 0.27278634404171598E-001 2 14 2 14 + 0.27712169389905280E-001 1 3 3 1 + 0.19448973453407858E-001 1 6 3 1 + 0.14001255376066996E-001 1 7 3 1 + -0.19152592998301479E-001 1 8 3 1 + 0.57467943789830209E-001 2 3 3 1 + 0.17576854790427587E-001 2 6 3 1 + 0.12653522985075789E-001 2 7 3 1 + -0.17309003315664245E-001 2 8 3 1 + 0.49612014372532730E-001 3 1 3 1 + 0.16029033794653367E-002 1 3 3 2 + 0.24168200512298435E-003 1 6 3 2 + 0.17398612228210414E-003 1 7 3 2 + -0.23799904350852639E-003 1 8 3 2 + 0.12942836200829372 2 3 3 2 + 0.23867556707903855E-001 2 6 3 2 + 0.17182179690393005E-001 2 7 3 2 + -0.23503842019500745E-001 2 8 3 2 + 0.59522858228848619E-001 3 1 3 2 + 0.14543351636692758 3 2 3 2 + 0.95805422551482677 1 1 3 3 + -0.41275951734761618E-001 1 2 3 3 + 0.35693831323018746E-001 1 9 3 3 + -0.16881991417623613E-003 1 10 3 3 + 0.55540623330243774E-003 1 11 3 3 + -0.51890966014874417E-003 1 12 3 3 + -0.37851787181447292E-003 1 13 3 3 + -0.11796718911459491E-003 1 14 3 3 + 0.14995029647473398E-001 2 1 3 3 + 0.65522738607102549 2 2 3 3 + -0.17523957205998059 2 9 3 3 + -0.71369978531343695E-002 2 10 3 3 + 0.23479931244041071E-001 2 11 3 3 + -0.21936918277702330E-001 2 12 3 3 + -0.16006044400307506E-001 2 13 3 3 + -0.49881222443599604E-002 2 14 3 3 + 0.68716040040941118 3 3 3 3 + -0.53984198355380600E-004 1 10 3 4 + -0.10226500199420765E-003 1 11 3 4 + 0.55166679463175374E-004 1 12 3 4 + -0.39794534834694393E-003 1 13 3 4 + 0.63051680516823972E-003 1 14 3 4 + -0.22820436065699259E-002 2 10 3 4 + -0.43230223324654798E-002 2 11 3 4 + 0.23318508294066357E-002 2 12 3 4 + -0.16826968498865960E-001 2 13 3 4 + 0.26661229250764900E-001 2 14 3 4 + -0.22688118108047890E-006 3 3 3 4 + 0.33672974775200176E-001 3 4 3 4 + 0.50528253228050094E-003 1 10 3 5 + -0.35030635492071509E-003 1 11 3 5 + -0.40171336930713565E-003 1 12 3 5 + -0.16317587152197115E-003 1 13 3 5 + -0.81418816991268012E-004 1 14 3 5 + 0.21360671968218455E-001 2 10 3 5 + -0.14809065229802718E-001 2 11 3 5 + -0.16982393068581576E-001 2 12 3 5 + -0.68996465427721759E-002 2 13 3 5 + -0.34424634718142576E-002 2 14 3 5 + -0.15054117977793474E-006 3 3 3 5 + -0.55402316208829889E-007 3 4 3 5 + 0.33674161001358290E-001 3 5 3 5 + 0.24336966078436584 1 1 3 6 + 0.34214694873511164E-002 1 2 3 6 + -0.31545362261670962E-002 1 9 3 6 + -0.67408416369452807E-004 1 10 3 6 + 0.90624020431489280E-003 1 11 3 6 + -0.89063701418829475E-003 1 12 3 6 + 0.12297670383114827E-003 1 13 3 6 + -0.12623938094575037E-002 1 14 3 6 + -0.16931170770918363E-001 2 1 3 6 + 0.12336366212179484 2 2 3 6 + -0.74112520481989519E-002 2 9 3 6 + -0.48747157133747842E-003 2 10 3 6 + 0.65529435368713923E-002 2 11 3 6 + -0.64400823129677582E-002 2 12 3 6 + 0.88927894072288649E-003 2 13 3 6 + -0.91295099620278611E-002 2 14 3 6 + 0.13529197213573954 3 3 3 6 + -0.86274498587837860E-002 3 4 3 6 + 0.78077957972314037E-003 3 5 3 6 + 0.23991834499796683E-001 3 6 3 6 + 0.17520106033317273 1 1 3 7 + 0.24631052208785730E-002 1 2 3 7 + -0.22709407980540464E-002 1 9 3 7 + -0.11516321739463934E-002 1 10 3 7 + 0.11510957454514404E-002 1 11 3 7 + 0.25915625035612605E-003 1 12 3 7 + -0.34653629026812024E-003 1 13 3 7 + 0.45365500550763197E-003 1 14 3 7 + -0.12188697071715394E-001 2 1 3 7 + 0.88809115896628862E-001 2 2 3 7 + -0.53353372522122553E-002 2 9 3 7 + -0.83273523007300256E-002 2 10 3 7 + 0.83235001599863100E-002 2 11 3 7 + 0.18739111166213524E-002 2 12 3 7 + -0.25062103785272200E-002 2 13 3 7 + 0.32807460897174802E-002 2 14 3 7 + 0.97396283855673088E-001 3 3 3 7 + 0.33589389738640858E-002 3 4 3 7 + -0.93835680101979450E-002 3 5 3 7 + 0.85317074555010565E-002 3 6 3 7 + 0.18282502456214673E-001 3 7 3 7 + -0.23966098119800225 1 1 3 8 + -0.33693301450756080E-002 1 2 3 8 + 0.31064646462143288E-002 1 9 3 8 + -0.30743071774409710E-003 1 10 3 8 + -0.22174191636054725E-003 1 11 3 8 + 0.11381861839135754E-002 1 12 3 8 + 0.12236339999930242E-002 1 13 3 8 + -0.52892375667821048E-003 1 14 3 8 + 0.16673158793546215E-001 2 1 3 8 + -0.12148373882348590 2 2 3 8 + 0.72983129123510172E-002 2 9 3 8 + -0.22229914683949692E-002 2 10 3 8 + -0.16034656045269108E-002 2 11 3 8 + 0.82301860142138389E-002 2 12 3 8 + 0.88492633109379399E-002 2 13 3 8 + -0.38251828467387372E-002 2 14 3 8 + -0.13323036580788322 3 3 3 8 + -0.63055372097053910E-002 3 4 3 8 + -0.60669332509503890E-002 3 5 3 8 + -0.11670691043754788E-001 3 6 3 8 + -0.84016859849173915E-002 3 7 3 8 + 0.23633383749086401E-001 3 8 3 8 + -0.49899445288990735E-002 1 3 3 9 + -0.25467272756390107E-002 1 6 3 9 + -0.18333810288156441E-002 1 7 3 9 + 0.25079180196752138E-002 1 8 3 9 + -0.30998220164721698E-001 2 3 3 9 + -0.15491309456283730E-001 2 6 3 9 + -0.11152145398661413E-001 2 7 3 9 + 0.15255239344005057E-001 2 8 3 9 + -0.26366602971445885E-001 3 1 3 9 + -0.30065395168117338E-001 3 2 3 9 + 0.26951312339335887E-001 3 9 3 9 + 0.88834444649263638E-003 1 3 3 10 + 0.28403417690795596E-003 1 4 3 10 + -0.26587316078800121E-002 1 5 3 10 + 0.18496499328039709E-003 1 6 3 10 + 0.31597001870537220E-002 1 7 3 10 + 0.84348361729268454E-003 1 8 3 10 + -0.14139923081989043E-001 2 3 3 10 + -0.45211589205049682E-002 2 4 3 10 + 0.42319892279607009E-001 2 5 3 10 + -0.85863464577344496E-003 2 6 3 10 + -0.14667937840808665E-001 2 7 3 10 + -0.39156160971915571E-002 2 8 3 10 + -0.82392669384429885E-002 3 1 3 10 + -0.16946389122156787E-001 3 2 3 10 + 0.41471382556492881E-002 3 9 3 10 + 0.27017358452200359E-001 3 10 3 10 + -0.29225330020666313E-002 1 3 3 11 + 0.53806642555617235E-003 1 4 3 11 + 0.18432603563560651E-002 1 5 3 11 + -0.24864249883577438E-002 1 6 3 11 + -0.31582388610737946E-002 1 7 3 11 + 0.60841395820183269E-003 1 8 3 11 + 0.46518676720987119E-001 2 3 3 11 + -0.85647330192349398E-002 2 4 3 11 + -0.29339798475285297E-001 2 5 3 11 + 0.11542464611454467E-001 2 6 3 11 + 0.14661149245972342E-001 2 7 3 11 + -0.28243624711018988E-002 2 8 3 11 + 0.27106165450037842E-001 3 1 3 11 + 0.55751567807858692E-001 3 2 3 11 + -0.13643535935116297E-001 3 9 3 11 + -0.16785724985822550E-001 3 10 3 11 + 0.36821666446644107E-001 3 11 3 11 + 0.27304674083175567E-002 1 3 3 12 + -0.29022107776385505E-003 1 4 3 12 + 0.21137789635978640E-002 1 5 3 12 + 0.24436009122490335E-002 1 6 3 12 + -0.71102970128686198E-003 1 7 3 12 + -0.31228324815497626E-002 1 8 3 12 + -0.43461607781874301E-001 2 3 3 12 + 0.46197785164129174E-002 2 4 3 12 + -0.33645644680533278E-001 2 5 3 12 + -0.11343673488394969E-001 2 6 3 12 + 0.33007416140665986E-002 2 7 3 12 + 0.14496779888489872E-001 2 8 3 12 + -0.25324811379761045E-001 3 1 3 12 + -0.52087722774996854E-001 3 2 3 12 + 0.12746902420717448E-001 3 9 3 12 + -0.74895945311631747E-002 3 10 3 12 + -0.96897332462767601E-002 3 11 3 12 + 0.36317101752756376E-001 3 12 3 12 + 0.19925461003584637E-002 1 3 3 13 + 0.20947000412254837E-002 1 4 3 13 + 0.85888775485395833E-003 1 5 3 13 + -0.33742529134064418E-003 1 6 3 13 + 0.95095249130470625E-003 1 7 3 13 + -0.33577472492367384E-002 1 8 3 13 + -0.31712665539718965E-001 2 3 3 13 + -0.33338966745394334E-001 2 4 3 13 + -0.13670084961468400E-001 2 5 3 13 + 0.15663851412796963E-002 2 6 3 13 + -0.44144259080576252E-002 2 7 3 13 + 0.15587080264004755E-001 2 8 3 13 + -0.18479435257518870E-001 3 1 3 13 + -0.38007564985653344E-001 3 2 3 13 + 0.93018293022685584E-002 3 9 3 13 + 0.18616183961098594E-003 3 10 3 13 + -0.71143879470588920E-002 3 11 3 13 + 0.15193792069332236E-001 3 12 3 13 + 0.29657366547708050E-001 3 13 3 13 + 0.62093965894140257E-003 1 3 3 14 + -0.33189194488387557E-002 1 4 3 14 + 0.42851331620106343E-003 1 5 3 14 + 0.34640827541653676E-002 1 6 3 14 + -0.12448391368444830E-002 1 7 3 14 + 0.14514203044964545E-002 1 8 3 14 + -0.98828514407070297E-002 2 3 3 14 + 0.52823429676769770E-001 2 4 3 14 + -0.68203932038872345E-002 2 5 3 14 + -0.16080714204587697E-001 2 6 3 14 + 0.57787099200525306E-002 2 7 3 14 + -0.67376678875430383E-002 2 8 3 14 + -0.57588430934546898E-002 3 1 3 14 + -0.11844537031436607E-001 3 2 3 14 + 0.28987506222314247E-002 3 9 3 14 + -0.34977327622308903E-002 3 10 3 14 + -0.64236979400655305E-002 3 11 3 14 + 0.81466380377844694E-002 3 12 3 14 + -0.12217201009809367E-001 3 13 3 14 + 0.35344489473861311E-001 3 14 3 14 + 0.27712169389904666E-001 1 4 4 1 + -0.23628044520506673E-001 1 6 4 1 + 0.91990677005758196E-002 1 7 4 1 + -0.17268821749990681E-001 1 8 4 1 + 0.57467943789829369E-001 2 4 4 1 + -0.21353656968765820E-001 2 6 4 1 + 0.83135841368534424E-002 2 7 4 1 + -0.15606560059763873E-001 2 8 4 1 + -0.26344294832646438E-002 3 10 4 1 + -0.49905805163196343E-002 3 11 4 1 + 0.26918658225614082E-002 3 12 4 1 + -0.19427012230679101E-001 3 13 4 1 + 0.30780850581962432E-001 3 14 4 1 + 0.49612014372531883E-001 4 1 4 1 + 0.16029033794652163E-002 1 4 4 2 + -0.29361308917071288E-003 1 6 4 2 + 0.11431190095792282E-003 1 7 4 2 + -0.21459042435590303E-003 1 8 4 2 + 0.12942836200829200 2 4 4 2 + -0.28996064694162913E-001 2 6 4 2 + 0.11288990163379494E-001 2 7 4 2 + -0.21192099592504135E-001 2 8 4 2 + -0.54184809687051879E-002 3 10 4 2 + -0.10264595125763708E-001 3 11 4 2 + 0.55366449038912729E-002 3 12 4 2 + -0.39956588956409328E-001 3 13 4 2 + 0.63308633117094143E-001 3 14 4 2 + 0.59522858228847723E-001 4 1 4 2 + 0.14543351636692564 4 2 4 2 + -0.53984198355380600E-004 1 10 4 3 + -0.10226500199420764E-003 1 11 4 3 + 0.55166679463175374E-004 1 12 4 3 + -0.39794534834694393E-003 1 13 4 3 + 0.63051680516823928E-003 1 14 4 3 + -0.22820436065699263E-002 2 10 4 3 + -0.43230223324654772E-002 2 11 4 3 + 0.23318508294066344E-002 2 12 4 3 + -0.16826968498865957E-001 2 13 4 3 + 0.26661229250764897E-001 2 14 4 3 + -0.22688118108635649E-006 3 3 4 3 + 0.33672974775200169E-001 3 4 4 3 + -0.55402316209268652E-007 3 5 4 3 + -0.86274498587837773E-002 3 6 4 3 + 0.33589389738640906E-002 3 7 4 3 + -0.63055372097053980E-002 3 8 4 3 + 0.33672974775200162E-001 4 3 4 3 + 0.95805422551481556 1 1 4 4 + -0.41275951734761118E-001 1 2 4 4 + 0.35693831323018475E-001 1 9 4 4 + -0.14431089793188279E-004 1 10 4 4 + -0.45057140473349713E-003 1 11 4 4 + 0.57894552695438690E-003 1 12 4 4 + -0.33473095365199682E-003 1 13 4 4 + -0.33612561905527720E-003 1 14 4 4 + 0.14995029647472846E-001 2 1 4 4 + 0.65522738607101783 2 2 4 4 + -0.17523957205997728 2 9 4 4 + -0.61029245370666405E-003 2 10 4 4 + -0.19047674697766730E-001 2 11 4 4 + 0.24474837482957201E-001 2 12 4 4 + -0.14153600786082753E-001 2 13 4 4 + -0.14213181030927738E-001 2 14 4 4 + 0.61981204780880994 3 3 4 4 + 0.24364058073096515E-006 3 4 4 4 + -0.13431799221063446E-006 3 5 4 4 + 0.12108933365569696 3 6 4 4 + 0.87171753628201482E-001 3 7 4 4 + -0.11924400518994492 3 8 4 4 + 0.24364058072304359E-006 4 3 4 4 + 0.68716036584694329 4 4 4 4 + 0.53225738655227387E-003 1 10 4 5 + 0.42220132310385566E-003 1 11 4 5 + 0.32284014642715471E-003 1 12 4 5 + -0.72823494525767589E-004 1 13 4 5 + 0.39781927151415793E-004 1 14 4 5 + 0.22501088958807272E-001 2 10 4 5 + 0.17848525866756306E-001 2 11 4 5 + 0.13647974440967251E-001 2 12 4 5 + -0.30792955720806061E-002 2 13 4 5 + 0.16822810599430612E-002 2 14 4 5 + -0.55402315567494327E-007 3 3 4 5 + -0.13431799349878001E-006 3 4 4 5 + -0.16759404082783400E-007 3 5 4 5 + -0.16470238294917368E-007 3 6 4 5 + 0.12635330519318308E-007 3 7 4 5 + -0.29250834615106404E-007 3 8 4 5 + -0.13431799349781407E-006 4 3 4 5 + -0.54019158536065933E-008 4 4 4 5 + 0.33674195563809586E-001 4 5 4 5 + -0.29566337749029298 1 1 4 6 + -0.41566529753538518E-002 1 2 4 6 + 0.38323628016657110E-002 1 9 4 6 + 0.31203703472392317E-004 1 10 4 6 + 0.69479718478849465E-003 1 11 4 6 + -0.86604117338388560E-003 1 12 4 6 + 0.98207834804183380E-006 1 13 4 6 + 0.14749309549558338E-002 1 14 4 6 + 0.20569232495376923E-001 2 1 4 6 + -0.14987125710307181 2 2 4 6 + 0.90037345038825566E-002 2 9 4 6 + 0.22568814703749187E-003 2 10 4 6 + 0.50240243338927652E-002 2 11 4 6 + -0.62623185706101349E-002 2 12 4 6 + 0.70381429578508212E-005 2 13 4 6 + 0.10666615249097814E-001 2 14 4 6 + -0.14710814055825985 3 3 4 6 + 0.71015986619627552E-002 3 4 4 6 + -0.16470238709997870E-007 3 5 4 6 + -0.14397803933815958E-001 3 6 4 6 + -0.37893060877736071E-002 3 7 4 6 + 0.40079687097877084E-002 3 8 4 6 + 0.71015986619627431E-002 4 3 4 6 + -0.16436273936036511 4 4 4 6 + 0.78078591084762008E-003 4 5 4 6 + 0.29632069245600766E-001 4 6 4 6 + 0.11511013633623608 1 1 4 7 + 0.16183028644155997E-002 1 2 4 7 + -0.14920475046121193E-002 1 9 4 7 + -0.10587179350164796E-002 1 10 4 7 + -0.11938707674647351E-002 1 11 4 7 + -0.15979750143133833E-003 1 12 4 7 + -0.49280631897469251E-003 1 13 4 7 + 0.34263602129833072E-003 1 14 4 7 + -0.80081854471549824E-002 2 1 4 7 + 0.58349129961435202E-001 2 2 4 7 + -0.35054091415545408E-002 2 9 4 7 + -0.76555019026652302E-002 2 10 4 7 + -0.86327538808515514E-002 2 11 4 7 + -0.11555062815915805E-002 2 12 4 7 + -0.35639077058596523E-002 2 13 4 7 + 0.24778802464505861E-002 2 14 4 7 + 0.57273398457019363E-001 3 3 4 7 + 0.51123384508342416E-002 3 4 4 7 + 0.12635330527449184E-007 3 5 4 7 + -0.97015995402363131E-003 3 6 4 7 + 0.40353639836462236E-002 3 7 4 7 + -0.63662894311301895E-002 3 8 4 7 + 0.51123384508342459E-002 4 3 4 7 + 0.63991031815930827E-001 4 4 4 7 + -0.93835664023272387E-002 4 5 4 7 + -0.68099499513947920E-002 4 6 4 7 + 0.14791860816171253E-001 4 7 4 7 + -0.21608890060490701 1 1 4 8 + -0.30379365184307391E-002 1 2 4 8 + 0.28009254022617665E-002 1 9 4 8 + -0.54949495213381622E-003 1 10 4 8 + 0.19798139473528703E-003 1 11 4 8 + -0.11932509611270832E-002 1 12 4 8 + 0.10621757876710667E-002 1 13 4 8 + -0.50394027018316266E-003 1 14 4 8 + 0.15033254622002171E-001 2 1 4 8 + -0.10953509174717274 2 2 4 8 + 0.65804805004846586E-002 2 9 4 8 + -0.39733418981960332E-002 2 10 4 8 + 0.14315326735308879E-002 2 11 4 8 + -0.86282508991300123E-002 2 12 4 8 + 0.76815068760637435E-002 2 13 4 8 + -0.36444424537853907E-002 2 14 4 8 + -0.10751570555137209 3 3 4 8 + -0.69933149227569989E-002 3 4 4 8 + -0.29250834692219371E-007 3 5 4 8 + -0.35236314463197443E-003 3 6 4 8 + -0.67290932229402836E-002 3 7 4 8 + 0.10362439950170804E-001 3 8 4 8 + -0.69933149227570058E-002 4 3 4 8 + -0.12012629013360736 4 4 4 8 + -0.60669192737992867E-002 4 5 4 8 + 0.12783882991927224E-001 4 6 4 8 + -0.49771224982678433E-002 4 7 4 8 + 0.21483790643324140E-001 4 8 4 8 + -0.49899445288989564E-002 1 4 4 9 + 0.30939517499234039E-002 1 6 4 9 + -0.12045631446630949E-002 1 7 4 9 + 0.22612493905761599E-002 1 8 4 9 + -0.30998220164721226E-001 2 4 4 9 + 0.18819982987322244E-001 2 6 4 9 + -0.73271530140299156E-002 2 7 4 9 + 0.13754795969842514E-001 2 8 4 9 + 0.13259894197808603E-002 3 10 4 9 + 0.25119161508011705E-002 3 11 4 9 + -0.13548794672144466E-002 3 12 4 9 + 0.97787389516583514E-002 3 13 4 9 + -0.15493789535616930E-001 3 14 4 9 + -0.26366602971445469E-001 4 1 4 9 + -0.30065395168116880E-001 4 2 4 9 + 0.26951312339335710E-001 4 9 4 9 + 0.28403417690795119E-003 1 3 4 10 + 0.75977532842476435E-004 1 4 4 10 + -0.28006819769110600E-002 1 5 4 10 + -0.85634960415932276E-004 1 6 4 10 + 0.29047757743173655E-002 1 7 4 10 + 0.15076302595151711E-002 1 8 4 10 + -0.45211589205049639E-002 2 3 4 10 + -0.12091869645442579E-002 2 4 4 10 + 0.44579313632958459E-001 2 5 4 10 + 0.39752371237029388E-003 2 6 4 10 + -0.13484528740252955E-001 2 7 4 10 + -0.69987120405387874E-002 2 8 4 10 + -0.26344294832646256E-002 3 1 4 10 + -0.54184809687051862E-002 3 2 4 10 + 0.13259894197808516E-002 3 9 4 10 + 0.17644063469337917E-001 3 10 4 10 + -0.63217159014027861E-002 3 11 4 10 + -0.70176461425957787E-002 3 12 4 10 + -0.21489941635572467E-002 3 13 4 10 + -0.32589289785730862E-002 3 14 4 10 + -0.70462010024978697E-003 4 1 4 10 + -0.14492174443240225E-002 4 2 4 10 + 0.35468464890953480E-003 4 9 4 10 + 0.26998612754579071E-001 4 10 4 10 + 0.53806642555617019E-003 1 3 4 11 + 0.23708293081610944E-002 1 4 4 11 + -0.22215859713168905E-002 1 5 4 11 + -0.19062975438485751E-002 1 6 4 11 + 0.32755803882111999E-002 1 7 4 11 + -0.54317490248794711E-003 1 8 4 11 + -0.85647330192349675E-002 2 3 4 11 + -0.37737335705694833E-001 2 4 4 11 + 0.35361635609124975E-001 2 5 4 11 + 0.88493998426821593E-002 2 6 4 11 + -0.15205880076691951E-001 2 7 4 11 + 0.25215323906612875E-002 2 8 4 11 + -0.49905805163196378E-002 3 1 4 11 + -0.10264595125763727E-001 3 2 4 11 + 0.25119161508011518E-002 3 9 4 11 + 0.88508061673564196E-002 3 10 4 11 + -0.10037179402289173E-001 3 11 4 11 + -0.89513106190619515E-002 3 12 4 11 + 0.46282127186373472E-002 3 13 4 11 + -0.89013227984162235E-002 3 14 4 11 + -0.21989275127607164E-001 4 1 4 11 + -0.45227277248826636E-001 4 2 4 11 + 0.11067978944845614E-001 4 9 4 11 + 0.14981970801194601E-001 4 10 4 11 + 0.33661562928588018E-001 4 11 4 11 + -0.29022107776385499E-003 1 3 4 12 + -0.30463530157513897E-002 1 4 4 12 + -0.16987435081749344E-002 1 5 4 12 + 0.23761519114356071E-002 1 6 4 12 + 0.43844137826910801E-003 1 7 4 12 + 0.32738715422074112E-002 1 8 4 12 + 0.46197785164128939E-002 2 3 4 12 + 0.48489722908165105E-001 2 4 4 12 + 0.27039449765855733E-001 2 5 4 12 + -0.11030546530694333E-001 2 6 4 12 + -0.20353250428251017E-002 2 7 4 12 + -0.15197951124027522E-001 2 8 4 12 + 0.26918658225614017E-002 3 1 4 12 + 0.55366449038912529E-002 3 2 4 12 + -0.13548794672144401E-002 3 9 4 12 + 0.29653977706619707E-002 3 10 4 12 + -0.89598821019834188E-002 3 11 4 12 + -0.79971188058986717E-002 3 12 4 12 + -0.11160949813768710E-001 3 13 4 12 + 0.10275163315236686E-001 3 14 4 12 + 0.28254647607783238E-001 4 1 4 12 + 0.58113785558855886E-001 4 2 4 12 + -0.14221585308379242E-001 4 9 4 12 + 0.10156684660088155E-001 4 10 4 12 + -0.82383482945817509E-002 4 11 4 12 + 0.36871203065559091E-001 4 12 4 12 + 0.20947000412255951E-002 1 3 4 13 + 0.17618811166864204E-002 1 4 4 13 + 0.38332390620142973E-003 1 5 4 13 + -0.26697796997096548E-005 1 6 4 13 + 0.13522816798282884E-002 1 7 4 13 + -0.29146548575475772E-002 1 8 4 13 + -0.33338966745394417E-001 2 3 4 13 + -0.28042152019292776E-001 2 4 4 13 + -0.61009464025371723E-002 2 5 4 13 + 0.12405068309685840E-004 2 6 4 13 + -0.62774677344533533E-002 2 7 4 13 + 0.13530208067692796E-001 2 8 4 13 + -0.19427012230679056E-001 3 1 4 13 + -0.39956588956409370E-001 3 2 4 13 + 0.97787389516583688E-002 3 9 4 13 + 0.13758157739059368E-002 3 10 4 13 + -0.53980765924822854E-002 3 11 4 13 + 0.56753482500651120E-002 3 12 4 13 + 0.18721956012187530E-001 3 13 4 13 + -0.92890522396970182E-002 3 14 4 13 + -0.16340436922910831E-001 4 1 4 13 + -0.33608322615011586E-001 4 2 4 13 + 0.82250468467239615E-002 4 9 4 13 + -0.78785798355849581E-003 4 10 4 13 + 0.10176346099101646E-001 4 11 4 13 + -0.15144465640759356E-001 4 12 4 13 + 0.26329614302853695E-001 4 13 4 13 + -0.33189194488389543E-002 1 3 4 14 + 0.17693397943909109E-002 1 4 4 14 + -0.20942632863981417E-003 1 5 4 14 + -0.40473195452925860E-002 1 6 4 14 + -0.94020149914987063E-003 1 7 4 14 + 0.13828397998588658E-002 1 8 4 14 + 0.52823429676769708E-001 2 3 4 14 + -0.28160393556423309E-001 2 4 4 14 + 0.33331107931930124E-002 2 5 4 14 + 0.18788163464854270E-001 2 6 4 14 + 0.43645408291214539E-002 2 7 4 14 + -0.64193196963761232E-002 2 8 4 14 + 0.30780850581962123E-001 3 1 4 14 + 0.63308633117094129E-001 3 2 4 14 + -0.15493789535616939E-001 3 9 4 14 + -0.39738593639075358E-002 3 10 4 14 + 0.12967319641481550E-001 3 11 4 14 + -0.12140056876372646E-001 3 12 4 14 + -0.77778239793699416E-002 3 13 4 14 + -0.18331721273337938E-001 3 14 4 14 + -0.16409433292935476E-001 4 1 4 14 + -0.33750132330481387E-001 4 2 4 14 + 0.82598425602897121E-002 4 9 4 14 + -0.50692296644899032E-003 4 10 4 14 + 0.65688064336467834E-002 4 11 4 14 + -0.93039257186931859E-002 4 12 4 14 + -0.89455787907518330E-002 4 13 4 14 + 0.41296989621587440E-001 4 14 4 14 + 0.27712169389905231E-001 1 5 5 1 + 0.21383364565400213E-002 1 6 5 1 + -0.25699446305128236E-001 1 7 5 1 + -0.16615821251573851E-001 1 8 5 1 + 0.57467943789829883E-001 2 5 5 1 + 0.19325045344794666E-002 2 6 5 1 + -0.23225669826829803E-001 2 7 5 1 + -0.15016416062383006E-001 2 8 5 1 + 0.24659515719240292E-001 3 10 5 1 + -0.17096097282931072E-001 3 11 5 1 + -0.19605102340378950E-001 3 12 5 1 + -0.79656921241760166E-002 3 13 5 1 + -0.39742769002403724E-002 3 14 5 1 + 0.25976075200905883E-001 4 10 5 1 + 0.20605000333484044E-001 4 11 5 1 + 0.15755705149566656E-001 4 12 5 1 + -0.35550911043104884E-002 4 13 5 1 + 0.19422617517563885E-002 4 14 5 1 + 0.49612014372532709E-001 5 1 5 1 + 0.16029033794652228E-002 1 5 5 2 + 0.26571965028535469E-004 1 6 5 2 + -0.31935329278210854E-003 1 7 5 2 + -0.20647593593903896E-003 1 8 5 2 + 0.12942836200829369 2 5 5 2 + 0.26241419249870709E-002 2 6 5 2 + -0.31538065159007818E-001 2 7 5 2 + -0.20390744885347669E-001 2 8 5 2 + 0.50719377749132231E-001 3 10 5 2 + -0.35163040601638940E-001 3 11 5 2 + -0.40323512120043759E-001 3 12 5 2 + -0.16383500575142318E-001 3 13 5 2 + -0.81741595944018024E-002 3 14 5 2 + 0.53427250279094021E-001 4 10 5 2 + 0.42380087860645337E-001 4 11 5 2 + 0.32406133411389176E-001 4 12 5 2 + -0.73119515380035173E-002 4 13 5 2 + 0.39947359147082121E-002 4 14 5 2 + 0.59522858228848279E-001 5 1 5 2 + 0.14543351636692758 5 2 5 2 + 0.50528253228050094E-003 1 10 5 3 + -0.35030635492071488E-003 1 11 5 3 + -0.40171336930713565E-003 1 12 5 3 + -0.16317587152197115E-003 1 13 5 3 + -0.81418816991267958E-004 1 14 5 3 + 0.21360671968218458E-001 2 10 5 3 + -0.14809065229802720E-001 2 11 5 3 + -0.16982393068581576E-001 2 12 5 3 + -0.68996465427721768E-002 2 13 5 3 + -0.34424634718142554E-002 2 14 5 3 + -0.15054117977118460E-006 3 3 5 3 + -0.55402316196370563E-007 3 4 5 3 + 0.33674161001358290E-001 3 5 5 3 + 0.78077957972313202E-003 3 6 5 3 + -0.93835680101979485E-002 3 7 5 3 + -0.60669332509503794E-002 3 8 5 3 + -0.55402316208628732E-007 4 3 5 3 + -0.13431799223999881E-006 4 4 5 3 + -0.16759404083668241E-007 4 5 5 3 + -0.16470238699054648E-007 4 6 5 3 + 0.12635330522056144E-007 4 7 5 3 + -0.29250834684129366E-007 4 8 5 3 + 0.33674161001358290E-001 5 3 5 3 + 0.53225738655227387E-003 1 10 5 4 + 0.42220132310385588E-003 1 11 5 4 + 0.32284014642715449E-003 1 12 5 4 + -0.72823494525767589E-004 1 13 5 4 + 0.39781927151415820E-004 1 14 5 4 + 0.22501088958807265E-001 2 10 5 4 + 0.17848525866756303E-001 2 11 5 4 + 0.13647974440967258E-001 2 12 5 4 + -0.30792955720806074E-002 2 13 5 4 + 0.16822810599430617E-002 2 14 5 4 + -0.55402315548791111E-007 3 3 5 4 + -0.13431799349902340E-006 3 4 5 4 + -0.16759404093059613E-007 3 5 5 4 + -0.16470238319475927E-007 3 6 5 4 + 0.12635330501724771E-007 3 7 5 4 + -0.29250834591773161E-007 3 8 5 4 + -0.13431799349805749E-006 4 3 5 4 + -0.54019158332202341E-008 4 4 5 4 + 0.33674195563809586E-001 4 5 5 4 + 0.78078591084765076E-003 4 6 5 4 + -0.93835664023272491E-002 4 7 5 4 + -0.60669192737992633E-002 4 8 5 4 + -0.16759404083765508E-007 5 3 5 4 + 0.33674195563809586E-001 5 4 5 4 + 0.95805422551482577 1 1 5 5 + -0.41275951734761493E-001 1 2 5 5 + 0.35693831323018808E-001 1 9 5 5 + 0.18325100396941862E-003 1 10 5 5 + -0.10483482856896918E-003 1 11 5 5 + -0.60035866805749658E-004 1 12 5 5 + 0.71324882546566131E-003 1 13 5 5 + 0.45409280816989327E-003 1 14 5 5 + 0.14995029647473235E-001 2 1 5 5 + 0.65522738607102471 2 2 5 5 + -0.17523957205997981 2 9 5 5 + 0.77472903068411961E-002 2 10 5 5 + -0.44322565462741430E-002 2 11 5 5 + -0.25379192052566099E-002 2 12 5 5 + 0.30159645186388393E-001 2 13 5 5 + 0.19201303275287705E-001 2 14 5 5 + 0.61981323403497501 3 3 5 5 + -0.16759406014284736E-007 3 4 5 5 + 0.28485917624912869E-006 3 5 5 5 + 0.12108909287565080 3 6 5 5 + 0.87171726123949633E-001 3 7 5 5 + -0.11924380384036777 3 8 5 5 + -0.16759406020608906E-007 4 3 5 5 + 0.61981326859741870 4 4 5 5 + 0.60804233614747467E-007 4 5 5 5 + -0.14710794462681959 4 6 5 5 + 0.57273309038611470E-001 4 7 5 5 + -0.10751548941805576 4 8 5 5 + 0.28485917625845267E-006 5 3 5 5 + 0.60804233634271576E-007 5 4 5 5 + 0.68715917962080098 5 5 5 5 + 0.26757515984979129E-001 1 1 5 6 + 0.37617681762320524E-003 1 2 5 6 + -0.34682857848757694E-003 1 9 5 6 + -0.17131046317638791E-003 1 10 5 6 + -0.12364687120949563E-002 1 11 5 6 + -0.11315435920332445E-002 1 12 5 6 + 0.52564948462278380E-005 1 13 5 6 + -0.11284787750250646E-003 1 14 5 6 + -0.18615141718451341E-002 2 1 5 6 + 0.13563338793138386E-001 2 2 5 6 + -0.81483737335743601E-003 2 9 5 6 + -0.12387340087542497E-002 2 10 5 6 + -0.89408030014852986E-002 2 11 5 6 + -0.81820929532107761E-002 2 12 5 6 + 0.38040490189182480E-004 2 13 5 6 + -0.81608022166422057E-003 2 14 5 6 + 0.13313272871435680E-001 3 3 5 6 + -0.16470238480084806E-007 3 4 5 6 + 0.71013578819149490E-002 3 5 5 6 + 0.13030006681779966E-002 3 6 5 6 + -0.58960354029460021E-002 3 7 5 6 + -0.49236372632996701E-002 3 8 5 6 + -0.16470238478304068E-007 4 3 5 6 + 0.13313279202560455E-001 4 4 5 6 + -0.86272539273430301E-002 4 5 5 6 + -0.15829811196585361E-002 4 6 5 6 + 0.81958566954301749E-002 4 7 5 6 + 0.43839963197381798E-002 4 8 5 6 + 0.71013578819149456E-002 5 3 5 6 + -0.86272539273430319E-002 5 4 5 6 + 0.14874801026628167E-001 5 5 5 6 + 0.12283816959698421E-001 5 6 5 6 + -0.32158332390181921 1 1 5 7 + -0.45210546245772918E-002 1 2 5 7 + 0.41683348767052892E-002 1 9 5 7 + 0.52772595775015809E-003 1 10 5 7 + 0.12163002055482268E-003 1 11 5 7 + -0.80805522498642466E-004 1 12 5 7 + -0.15472313025068317E-002 1 13 5 7 + -0.90457487276365291E-003 1 14 5 7 + 0.22372477146547130E-001 2 1 5 7 + -0.16301003332119676 2 2 5 7 + 0.97930656609082380E-002 2 9 5 7 + 0.38158629131446941E-002 2 10 5 7 + 0.87957901798534468E-003 2 11 5 7 + -0.58431988489364753E-003 2 12 5 7 + -0.11189447937007954E-001 2 13 5 7 + -0.65417926027502042E-002 2 14 5 7 + -0.16000445717601933 3 3 5 7 + 0.12635330920310983E-007 3 4 5 7 + 0.51123109465814540E-002 3 5 5 7 + -0.88259737631266235E-002 3 6 5 7 + -0.11273608560116836E-001 3 7 5 7 + 0.60706998630072530E-002 3 8 5 7 + 0.12635330909678284E-007 4 3 5 7 + -0.16000445556814671 4 4 5 7 + 0.33588495554564370E-002 4 5 5 7 + 0.11445407691732173E-001 4 6 5 7 + -0.74069578806284092E-002 4 7 5 7 + 0.62077621927392529E-002 4 8 5 7 + 0.51123109465814678E-002 5 3 5 7 + 0.33588495554564696E-002 5 4 5 7 + -0.17877218053870439 5 5 5 7 + -0.17217575041063643E-002 5 6 5 7 + 0.32833357432713900E-001 5 7 5 7 + -0.20791774904400701 1 1 5 8 + -0.29230604666990812E-002 1 2 5 8 + 0.26950116514461368E-002 1 9 5 8 + -0.15926495147130521E-002 1 10 5 8 + 0.84332111616267977E-004 1 11 5 8 + 0.22648692434614387E-003 1 12 5 8 + -0.54290401810561432E-003 1 13 5 8 + -0.48507043465536871E-003 1 14 5 8 + 0.14464789505903452E-001 2 1 5 8 + -0.10539314908654723 2 2 5 8 + 0.63316472500847230E-002 2 9 5 8 + -0.11516353305855717E-001 2 10 5 8 + 0.60982968359022912E-003 2 11 5 8 + 0.16377061856465210E-002 2 12 5 8 + -0.39262824023208872E-002 2 13 5 8 + -0.35080609660386110E-002 2 14 5 8 + -0.10344995627090495 3 3 5 8 + -0.29250834140935183E-007 3 4 5 8 + -0.69931135731793638E-002 3 5 5 8 + -0.64844097192332554E-002 3 6 5 8 + 0.20618152373531014E-002 3 7 5 8 + 0.99706078919379083E-002 3 8 5 8 + -0.29250834147296785E-007 4 3 5 8 + -0.10344994229375279 4 4 5 8 + -0.63053210763897322E-002 4 5 5 8 + 0.67595385432278800E-002 4 6 5 8 + 0.29079253994550680E-002 4 7 5 8 + 0.89899390002858709E-002 4 8 5 8 + -0.69931135731793534E-002 5 3 5 8 + -0.63053210763897114E-002 5 4 5 8 + -0.11558399432757809 5 5 5 8 + -0.11131919481728214E-002 5 6 5 8 + 0.13378808483184625E-001 5 7 5 8 + 0.20790546312686380E-001 5 8 5 8 + -0.49899445288990648E-002 1 5 5 9 + -0.28000242744995088E-003 1 6 5 9 + 0.33651894806110394E-002 1 7 5 9 + 0.21757428632363483E-002 1 8 5 9 + -0.30998220164721417E-001 2 5 5 9 + -0.17032072077876278E-002 2 6 5 9 + 0.20469876033386757E-001 2 7 5 9 + 0.13234674287311756E-001 2 8 5 9 + -0.12412017557598192E-001 3 10 5 9 + 0.86050744569662538E-002 3 11 5 9 + 0.98679586419200722E-002 3 12 5 9 + 0.40095737071582822E-002 3 13 5 9 + 0.20004508736571813E-002 3 14 5 9 + -0.13074695922948756E-001 4 10 5 9 + -0.10371244258319720E-001 4 11 5 9 + -0.79304108992691181E-002 4 12 5 9 + 0.17894809974261393E-002 4 13 5 9 + -0.97766540402951184E-003 4 14 5 9 + -0.26366602971445649E-001 5 1 5 9 + -0.30065395168117053E-001 5 2 5 9 + 0.26951312339335926E-001 5 9 5 9 + -0.26587316078800173E-002 1 3 5 10 + -0.28006819769111290E-002 1 4 5 10 + -0.96432197933513672E-003 1 5 5 10 + 0.47002074912747926E-003 1 6 5 10 + -0.14478761880307482E-002 1 7 5 10 + 0.43697236056210809E-002 1 8 5 10 + 0.42319892279607051E-001 2 3 5 10 + 0.44579313632958265E-001 2 4 5 10 + 0.15349110046533578E-001 2 5 5 10 + -0.21819264662597845E-002 2 6 5 10 + 0.67213346521131636E-002 2 7 5 10 + -0.20285092225549979E-001 2 8 5 10 + 0.24659515719240209E-001 3 1 5 10 + 0.50719377749132315E-001 3 2 5 10 + -0.12412017557598224E-001 3 9 5 10 + -0.13564727986619374E-002 3 10 5 10 + 0.74845040837363186E-002 3 11 5 10 + -0.14333844329066866E-001 3 12 5 10 + -0.14622654452775654E-001 3 13 5 10 + 0.16215795128988363E-001 3 14 5 10 + 0.25976075200905915E-001 4 1 5 10 + 0.53427250279093855E-001 4 2 5 10 + -0.13074695922948710E-001 4 9 5 10 + 0.39603337612840496E-002 4 10 5 10 + -0.10897946139405153E-001 4 11 5 10 + 0.18653205904920176E-001 4 12 5 10 + -0.12728288647490225E-001 4 13 5 10 + 0.10830945877331591E-001 4 14 5 10 + 0.89438870386929648E-002 5 1 5 10 + 0.18395606566481155E-001 5 2 5 10 + -0.45018229045589034E-002 5 9 5 10 + 0.45081522592707306E-001 5 10 5 10 + 0.18432603563558728E-002 1 3 5 11 + -0.22215859713168719E-002 1 4 5 11 + 0.55170369390543622E-003 1 5 5 11 + 0.33924657435173010E-002 1 6 5 11 + -0.33374523563129322E-003 1 7 5 11 + -0.23139192386022975E-003 1 8 5 11 + -0.29339798475285415E-001 2 3 5 11 + 0.35361635609125010E-001 2 4 5 11 + -0.87813410152918058E-002 2 5 5 11 + -0.15748479544067849E-001 2 6 5 11 + 0.15492947658549902E-002 2 7 5 11 + 0.10741602486461453E-002 2 8 5 11 + -0.17096097282931103E-001 3 1 5 11 + -0.35163040601639037E-001 3 2 5 11 + 0.86050744569662885E-002 3 9 5 11 + 0.17160404919980923E-002 3 10 5 11 + -0.12720456349420801E-001 3 11 5 11 + 0.81691931036915032E-002 3 12 5 11 + -0.60370784494641954E-002 3 13 5 11 + 0.11878625919851107E-001 3 14 5 11 + 0.20605000333484096E-001 4 1 5 11 + 0.42380087860645399E-001 4 2 5 11 + -0.10371244258319709E-001 4 9 5 11 + -0.53723494733912761E-002 4 10 5 11 + -0.12572672310569731E-001 4 11 5 11 + 0.71296420191081190E-002 4 12 5 11 + 0.57082448651305396E-002 4 13 5 11 + -0.14718176161500318E-001 4 14 5 11 + -0.51168903224303479E-002 5 1 5 11 + -0.10524290559031485E-001 5 2 5 11 + 0.25755569902705193E-002 5 9 5 11 + 0.18037645136035401E-002 5 10 5 11 + 0.28614260741954535E-001 5 11 5 11 + 0.21137789635979204E-002 1 3 5 12 + -0.16987435081749166E-002 1 4 5 12 + 0.31588560743406091E-003 1 5 5 12 + 0.31045835034240929E-002 1 6 5 12 + 0.22171246837316016E-003 1 7 5 12 + -0.62140524924394341E-003 1 8 5 12 + -0.33645644680533167E-001 2 3 5 12 + 0.27039449765855830E-001 2 4 5 12 + -0.50281151262918048E-002 2 5 5 12 + -0.14412075662722967E-001 2 6 5 12 + -0.10292280392741725E-002 2 7 5 12 + 0.28846832496099315E-002 2 8 5 12 + -0.19605102340378856E-001 3 1 5 12 + -0.40323512120043675E-001 3 2 5 12 + 0.98679586419200844E-002 3 9 5 12 + -0.37903685529516408E-002 3 10 5 12 + -0.74040842105873540E-002 3 11 5 12 + 0.15844555238347442E-001 3 12 5 12 + -0.15951361630812799E-002 3 13 5 12 + 0.10090321650105262E-001 3 14 5 12 + 0.15755705149566736E-001 4 1 5 12 + 0.32406133411389294E-001 4 2 5 12 + -0.79304108992691198E-002 4 9 5 12 + 0.54104003402901989E-002 4 10 5 12 + -0.32353511342543694E-002 4 11 5 12 + 0.91993280590117986E-002 4 12 5 12 + 0.54612185454681762E-002 4 13 5 12 + -0.14849036859294753E-001 4 14 5 12 + -0.29298362280228509E-002 5 1 5 12 + -0.60260627838601673E-002 5 2 5 12 + 0.14746828876620996E-002 5 9 5 12 + -0.26670883518289004E-002 5 10 5 12 + 0.17928093103885278E-001 5 11 5 12 + 0.25909191909372353E-001 5 12 5 12 + 0.85888775485396787E-003 1 3 5 13 + 0.38332390620145966E-003 1 4 5 13 + -0.37544272170449413E-002 1 5 5 13 + -0.14434314425101028E-004 1 6 5 13 + 0.42457016895335624E-002 1 7 5 13 + 0.14897812635491009E-002 1 8 5 13 + -0.13670084961468440E-001 2 3 5 13 + -0.61009464025371584E-002 2 4 5 13 + 0.59754817559011845E-001 2 5 5 13 + 0.67001219101180224E-004 2 6 5 13 + -0.19709085288279391E-001 2 7 5 13 + -0.69157451408283959E-002 2 8 5 13 + -0.79656921241760738E-002 3 1 5 13 + -0.16383500575142349E-001 3 2 5 13 + 0.40095737071582710E-002 3 9 5 13 + 0.12020617266279980E-001 3 10 5 13 + -0.16203174020600977E-001 3 11 5 13 + -0.93232983337397293E-002 3 12 5 13 + -0.16231776416156429E-002 3 13 5 13 + -0.49674142871378229E-002 3 14 5 13 + -0.35550911043104858E-002 4 1 5 13 + -0.73119515380035060E-002 4 2 5 13 + 0.17894809974261460E-002 4 9 5 13 + 0.12533157559429802E-001 4 10 5 13 + 0.16849313768863693E-001 4 11 5 13 + 0.94320810613738922E-002 4 12 5 13 + 0.23658076191232528E-002 4 13 5 13 + -0.26086469701034152E-002 4 14 5 13 + 0.34819872180429721E-001 5 1 5 13 + 0.71615887600665090E-001 5 2 5 13 + -0.17526876148992506E-001 5 9 5 13 + 0.60150069458165536E-003 5 10 5 13 + -0.30615948787070138E-002 5 11 5 13 + -0.49539515043143294E-004 5 12 5 13 + 0.43103760583423092E-001 5 13 5 13 + 0.42851331620106446E-003 1 3 5 14 + -0.20942632863980615E-003 1 4 5 14 + -0.23902794533323737E-002 1 5 5 14 + 0.30965153266189303E-003 1 6 5 14 + 0.24822044607617890E-002 1 7 5 14 + 0.13310924705810905E-002 1 8 5 14 + -0.68203932038872397E-002 2 3 5 14 + 0.33331107931930150E-002 2 4 5 14 + 0.38043244997130451E-001 2 5 5 14 + -0.14374464031346903E-002 2 6 5 14 + -0.11522710845654429E-001 2 7 5 14 + -0.61790869078698490E-002 2 8 5 14 + -0.39742769002403941E-002 3 1 5 14 + -0.81741595944018197E-002 3 2 5 14 + 0.20004508736571670E-002 3 9 5 14 + 0.15568796659040225E-001 3 10 5 14 + -0.50605807209760899E-002 3 11 5 14 + -0.26300274908516302E-002 3 12 5 14 + -0.41395457199503508E-002 3 13 5 14 + -0.14444844864868888E-003 3 14 5 14 + 0.19422617517563818E-002 4 1 5 14 + 0.39947359147082190E-002 4 2 5 14 + -0.97766540402950339E-003 4 9 5 14 + 0.14014054853628281E-001 4 10 5 14 + 0.30175218035674964E-002 4 11 5 14 + 0.22489435399182778E-002 4 12 5 14 + -0.14442650229435513E-002 4 13 5 14 + -0.29527971288492304E-002 4 14 5 14 + 0.22168276386390209E-001 5 1 5 14 + 0.45594669361918111E-001 5 2 5 14 + -0.11158593182521052E-001 5 9 5 14 + 0.40043930393345714E-002 5 10 5 14 + -0.14511271304345512E-003 5 11 5 14 + 0.11574924868843516E-002 5 12 5 14 + 0.21162780714130969E-001 5 13 5 14 + 0.22449246845712107E-001 5 14 5 14 + 0.21247417456974615E-001 1 3 6 1 + -0.25812926673064132E-001 1 4 6 1 + 0.23360681459314971E-002 1 5 6 1 + 0.37330988401976926E-001 1 6 6 1 + 0.39052586317896196E-001 2 3 6 1 + -0.47443956380047392E-001 2 4 6 1 + 0.42936748947590411E-002 2 5 6 1 + 0.31079306734522038E-001 2 6 6 1 + 0.36499527065418765E-001 3 1 6 1 + 0.40359752250201067E-001 3 2 6 1 + -0.18938285133011455E-001 3 9 6 1 + -0.15745421780735474E-002 3 10 6 1 + 0.21166667191616081E-001 3 11 6 1 + -0.20802144558207274E-001 3 12 6 1 + 0.28724221631786623E-002 3 13 6 1 + -0.29488174725436401E-001 3 14 6 1 + -0.44342312078586299E-001 4 1 6 1 + -0.49031997770415843E-001 4 2 6 1 + 0.23007622758950255E-001 4 9 6 1 + 0.72894715246461588E-003 4 10 6 1 + 0.16228098549682927E-001 4 11 6 1 + -0.20227876276603319E-001 4 12 6 1 + 0.22787516242035245E-004 4 13 6 1 + 0.34452952290664883E-001 4 14 6 1 + 0.40129762919069714E-002 5 1 6 1 + 0.44373925348952003E-002 5 2 6 1 + -0.20821883284113658E-002 5 9 6 1 + -0.40012329372305063E-002 5 10 6 1 + -0.28879688471581920E-001 5 11 6 1 + -0.26428983482658337E-001 5 12 6 1 + 0.12284810896275592E-003 5 13 6 1 + -0.26359473507203616E-002 5 14 6 1 + 0.67101045261903289E-001 6 1 6 1 + 0.38796128891683363E-002 1 3 6 2 + -0.47132393021770578E-002 1 4 6 2 + 0.42654784315710907E-003 1 5 6 2 + 0.53599196481602992E-002 1 6 6 2 + 0.21098847658624013E-001 2 3 6 2 + -0.25632433146336842E-001 2 4 6 2 + 0.23197334937755036E-002 2 5 6 2 + 0.33575742922933284E-001 2 6 6 2 + 0.19087718113787681E-001 3 1 6 2 + 0.21610833323481168E-001 3 2 6 2 + -0.23631834667952913E-001 3 9 6 2 + -0.70686139705114222E-003 3 10 6 2 + 0.95030383334701821E-002 3 11 6 2 + -0.93394185580804555E-002 3 12 6 2 + 0.12895628710298214E-002 3 13 6 2 + -0.13237787483643787E-001 3 14 6 2 + -0.23189164943223855E-001 4 1 6 2 + -0.26254431017437175E-001 4 2 6 2 + 0.28709692209374974E-001 4 9 6 2 + 0.32721097427184618E-003 4 10 6 2 + 0.72857995674806292E-002 4 11 6 2 + -0.90815039867454695E-002 4 12 6 2 + 0.10296150071286281E-004 4 13 6 2 + 0.15466508817666031E-001 4 14 6 2 + 0.20986178840055811E-002 5 1 6 2 + 0.23760242597129946E-002 5 2 6 2 + -0.25982252341732164E-002 5 9 6 2 + -0.17964000986691871E-002 5 10 6 2 + -0.12965888844162794E-001 5 11 6 2 + -0.11865620274621892E-001 5 12 6 2 + 0.55121845663986296E-004 5 13 6 2 + -0.11833511462835144E-002 5 14 6 2 + 0.33716533297525587E-001 6 1 6 2 + 0.44097560247505274E-001 6 2 6 2 + 0.28630808740828245 1 1 6 3 + 0.15357083121242750E-002 1 2 6 3 + -0.17041987741029121E-002 1 9 6 3 + -0.71418540092055266E-004 1 10 6 3 + 0.96018523575184286E-003 1 11 6 3 + -0.94365510559673931E-003 1 12 6 3 + 0.13029470233985330E-003 1 13 6 3 + -0.13374745928528260E-002 1 14 6 3 + -0.18816931946145206E-001 2 1 6 3 + 0.10421690512384846 2 2 6 3 + -0.47369988724686542E-001 2 9 6 3 + -0.36480601954872073E-003 2 10 6 3 + 0.49048794143452690E-002 2 11 6 3 + -0.48204533910665287E-002 2 12 6 3 + 0.66556179637885767E-003 2 13 6 3 + -0.68316770519114868E-002 2 14 6 3 + 0.11096186754093548 3 3 6 3 + -0.71619282896840004E-002 3 4 6 3 + 0.64816826908737875E-003 3 5 6 3 + 0.55153230742305416E-001 3 6 6 3 + 0.29483485688811227E-001 3 7 6 3 + -0.40331054647527703E-001 3 8 6 3 + -0.71619282896841583E-002 4 3 6 3 + 0.99170046480253321E-001 4 4 6 3 + 0.57773654598724822E-007 4 5 6 3 + -0.49754713727912764E-001 4 6 6 3 + 0.11680851799586873E-001 4 7 6 3 + -0.24469736323969211E-001 4 8 6 3 + 0.64816826908736282E-003 5 3 6 3 + 0.57773654574166267E-007 5 4 6 3 + 0.99170891079034401E-001 5 5 6 3 + 0.45028119965537161E-002 5 6 6 3 + -0.46124701522569561E-001 5 7 6 3 + -0.30731564952239294E-001 5 8 6 3 + 0.86314626984814152E-001 6 3 6 3 + -0.34782813869688645 1 1 6 4 + -0.18656914955593878E-002 1 2 6 4 + 0.20703861107506652E-002 1 9 6 4 + 0.33058197400552665E-004 1 10 6 4 + 0.73615546850725085E-003 1 11 6 4 + -0.91759068615047284E-003 1 12 6 4 + 0.10438064130699655E-005 1 13 6 4 + 0.15626494107596227E-002 1 14 6 4 + 0.22860193975171389E-001 2 1 6 4 + -0.12661036737773113 2 2 6 4 + 0.57548549038029924E-001 2 9 6 4 + 0.16884743346579740E-003 2 10 6 4 + 0.37604736037528327E-002 2 11 6 4 + -0.46872751201907656E-002 2 12 6 4 + 0.53570850005765590E-005 2 13 6 4 + 0.79818232401650709E-002 2 14 6 4 + -0.12047940496950732 3 3 6 4 + 0.58949303850447492E-002 3 4 6 4 + 0.57773654208986018E-007 3 5 6 4 + -0.49754713727912618E-001 3 6 6 4 + -0.28128386088256623E-001 3 7 6 4 + 0.37102626309011531E-001 3 8 6 4 + 0.58949303850447370E-002 4 3 6 4 + -0.13480431708828772 4 4 6 4 + 0.64814606101587806E-003 4 5 6 4 + 0.74644277404249976E-001 4 6 6 4 + -0.23533530209386300E-001 4 7 6 4 + 0.44177964855702009E-001 4 8 6 4 + 0.57773654231168275E-007 5 3 6 4 + 0.64814606101592067E-003 5 4 6 4 + -0.12048009225010715 5 5 6 4 + -0.54703474026906443E-002 5 6 6 4 + 0.56881199408132563E-001 5 7 6 4 + 0.36027212330681638E-001 5 8 6 4 + -0.85111623522009405E-001 6 3 6 4 + 0.11965648556289918 6 4 6 4 + 0.31478423402347119E-001 1 1 6 5 + 0.16884495617688121E-003 1 2 6 5 + -0.18736980522822581E-003 1 9 6 5 + -0.18150776521000310E-003 1 10 6 5 + -0.13100706771583233E-002 1 11 6 5 + -0.11989000585844410E-002 1 12 6 5 + 0.55677779295308188E-005 1 13 6 5 + -0.11956077585534395E-003 1 14 6 5 + -0.20688460332914582E-002 2 1 6 5 + 0.11458229821124903E-001 2 2 6 5 + -0.52081398577948817E-002 2 9 6 5 + -0.92718832265114236E-003 2 10 6 5 + -0.66921841258238413E-002 2 11 6 5 + -0.61242975450948962E-002 2 12 6 5 + 0.28429294871983528E-004 2 13 6 5 + -0.61071344379174275E-003 2 14 6 5 + 0.10903392366760486E-001 3 3 6 5 + 0.57773654438447349E-007 3 4 6 5 + 0.58957749838241301E-002 3 5 6 5 + 0.45028119965537577E-002 3 6 6 5 + -0.47509636447000221E-002 3 7 6 5 + -0.86918553950658204E-002 3 8 6 5 + 0.57773654440228084E-007 4 3 6 5 + 0.10903370158689269E-001 4 4 6 5 + -0.71626155702834912E-002 4 5 6 5 + -0.54703474026906555E-002 4 6 6 5 + 0.10994202954906152E-001 4 7 6 5 + 0.24821171135857370E-002 4 8 6 5 + 0.58957749838241267E-002 5 3 6 5 + -0.71626155702834912E-002 5 4 6 5 + 0.12199837660434726E-001 5 5 6 5 + 0.14693655633433812E-001 5 6 6 5 + -0.59499554794247090E-002 5 7 6 5 + -0.38469102081749237E-002 5 8 6 5 + 0.77026233249294744E-002 6 3 6 5 + -0.93577136857227617E-002 6 4 6 5 + 0.17103494307169207E-001 6 5 6 5 + 0.84092143855982859 1 1 6 6 + -0.49573963570187438E-001 1 2 6 6 + 0.42415084318326753E-001 1 9 6 6 + -0.46786950395139814E-004 1 10 6 6 + -0.27812839143202787E-004 1 11 6 6 + 0.13972547329984404E-004 1 12 6 6 + 0.46111764089371391E-004 1 13 6 6 + -0.11556664099578015E-002 1 14 6 6 + 0.15314035155088241E-001 2 1 6 6 + 0.52655417225132284 2 2 6 6 + -0.17071595504852052 2 9 6 6 + -0.83356589749086687E-003 2 10 6 6 + -0.49545002924966186E-003 2 11 6 6 + 0.24900943272497571E-003 2 12 6 6 + 0.82154849366833144E-003 2 13 6 6 + -0.20589845275884408E-001 2 14 6 6 + 0.52222116676356545 3 3 6 6 + -0.22105412659606732E-001 3 4 6 6 + 0.20005532934167882E-002 3 5 6 6 + 0.12158807076867358 3 6 6 6 + 0.83139236974724862E-001 3 7 6 6 + -0.11372780477413207 3 8 6 6 + -0.22105412659606746E-001 4 3 6 6 + 0.53088080130100324 4 4 6 6 + -0.24304193437254570E-002 4 5 6 6 + -0.14771413807206760 4 6 6 6 + 0.54623925794059294E-001 4 7 6 6 + -0.10254199650288126 4 8 6 6 + 0.20005532934168051E-002 5 3 6 6 + -0.24304193437254080E-002 5 4 6 6 + 0.50424547240460693 5 5 6 6 + 0.13368124319215692E-001 5 6 6 6 + -0.15260291774790924 5 7 6 6 + -0.98664491594814663E-001 5 8 6 6 + 0.64608232864442797E-001 6 3 6 6 + -0.78490836895366428E-001 6 4 6 6 + 0.71034191417346905E-002 6 5 6 6 + 0.46803449005850745 6 6 6 6 + 0.72589689453057287E-004 1 10 6 7 + 0.98553726155800668E-003 1 11 6 7 + 0.16749524858653377E-003 1 12 6 7 + 0.30925981840133874E-004 1 13 6 7 + -0.23386609195067760E-004 1 14 6 7 + 0.12930621889135235E-002 2 10 6 7 + 0.17555734661231372E-001 2 11 6 7 + 0.29836544573646449E-002 2 12 6 7 + 0.55085118033747682E-003 2 13 6 7 + -0.41667066248396217E-003 2 14 6 7 + 0.13099389021175096E-001 3 3 6 7 + -0.36537811706617374E-002 3 4 6 7 + -0.11301928357397503E-001 3 5 6 7 + 0.21958780729861211E-002 3 6 6 7 + 0.30502712798650975E-002 3 7 6 7 + 0.32825708389377802E-009 3 8 6 7 + -0.36537811706617357E-002 4 3 6 7 + -0.10455859839471327E-001 4 4 6 7 + 0.15078384058683792E-001 4 5 6 7 + 0.14427346473074589E-002 4 6 6 7 + -0.37056936232455770E-002 4 7 6 7 + 0.18908180271986432E-009 4 8 6 7 + -0.11301928357397503E-001 5 3 6 7 + 0.15078384058683796E-001 5 4 6 7 + -0.26435291817037830E-002 5 5 6 7 + -0.40305611999594928E-002 5 6 6 7 + 0.33536137292397046E-003 5 7 6 7 + -0.18412718785853207E-008 5 8 6 7 + 0.13192827921511109E-002 6 3 6 7 + 0.86679531080002825E-003 6 4 6 7 + -0.24215606258727032E-002 6 5 6 7 + -0.24297232618378008E-007 6 6 6 7 + 0.22291453045891616E-001 6 7 6 7 + 0.69737680196039494E-004 1 10 6 8 + -0.17073156378570202E-003 1 11 6 8 + 0.98473303943495249E-003 1 12 6 8 + -0.47663773255490367E-004 1 13 6 8 + 0.11297034364416623E-004 1 14 6 8 + 0.12422602062797340E-002 2 10 6 8 + -0.30413023363962369E-002 2 11 6 8 + 0.17541407352315481E-001 2 12 6 8 + -0.84906879586339040E-003 2 13 6 8 + 0.20118975286034777E-003 2 14 6 8 + -0.17918927330447490E-001 3 3 6 8 + 0.28063753101258038E-002 3 4 6 8 + -0.87578342801903943E-002 3 5 6 8 + -0.30037898682722486E-002 3 6 6 8 + 0.32825706225631068E-009 3 7 6 8 + 0.30502707909845317E-002 3 8 6 8 + 0.28063753101258025E-002 4 3 6 8 + 0.19628087879206720E-001 4 4 6 8 + 0.85547702011141893E-002 4 5 6 8 + -0.27083459354517569E-002 4 6 6 8 + 0.18908186546568285E-009 4 7 6 8 + -0.37056938837936844E-002 4 8 6 8 + -0.87578342801903925E-002 5 3 6 8 + 0.85547702011141893E-002 5 4 6 8 + -0.17091605487594877E-002 5 5 6 8 + -0.26059349233734526E-002 5 6 6 8 + -0.18412718792047999E-008 5 7 6 8 + 0.33536404838165046E-003 5 8 6 8 + -0.18046768132945654E-002 6 3 6 8 + -0.16271735124968152E-002 6 4 6 8 + -0.15656453522075707E-002 6 5 6 8 + -0.15522783278601775E-007 6 6 6 8 + -0.40884576599469455E-009 6 7 6 8 + 0.22291453525236284E-001 6 8 6 8 + -0.14886402424368630E-002 1 3 6 9 + 0.18085097399913443E-002 1 4 6 9 + -0.16367001110374486E-003 1 5 6 9 + -0.17331172967790702E-002 1 6 6 9 + -0.53139014789737850E-001 2 3 6 9 + 0.64557186539209888E-001 2 4 6 9 + -0.58424210851911931E-002 2 5 6 9 + -0.17882217975080408E-001 2 6 6 9 + -0.25755041126382130E-001 3 1 6 9 + -0.60580611730283861E-001 3 2 6 9 + 0.66440664689914764E-002 3 9 6 9 + 0.19091384322325630E-002 3 10 6 9 + -0.25664869759059652E-001 3 11 6 9 + 0.25222892722134710E-001 3 12 6 9 + -0.34828360986150567E-002 3 13 6 9 + 0.35754406837531394E-001 3 14 6 9 + 0.31289119696700979E-001 4 1 6 9 + 0.73597786251894393E-001 4 2 6 9 + -0.80717009924771901E-002 4 9 6 9 + -0.88383992566286990E-003 4 10 6 9 + -0.19676786425309716E-001 4 11 6 9 + 0.24526556757053820E-001 4 12 6 9 + -0.27650533685547657E-004 4 13 6 9 + -0.41774180356436541E-001 4 14 6 9 + -0.28316632501022882E-002 5 1 6 9 + -0.66605947574914903E-002 5 2 6 9 + 0.73048840260670617E-003 5 9 6 9 + 0.48515479757796770E-002 5 10 6 9 + 0.35017010250992381E-001 5 11 6 9 + 0.32045499198615948E-001 5 12 6 9 + -0.14894492340566739E-003 5 13 6 9 + 0.31960936795297564E-002 5 14 6 9 + -0.43897957704768953E-001 6 1 6 9 + -0.81986501857253275E-002 6 2 6 9 + 0.82024387580007019E-001 6 9 6 9 + -0.79624205652374072E-004 1 3 6 10 + 0.36857213584571907E-004 1 4 6 10 + -0.20235958067546801E-003 1 5 6 10 + -0.76589240834699739E-004 1 6 6 10 + 0.11881672769003195E-003 1 7 6 10 + 0.11414857381334239E-003 1 8 6 10 + -0.28734443231039270E-003 2 3 6 10 + 0.13298489536862245E-003 2 4 6 10 + -0.73034617536067736E-003 2 5 6 10 + -0.77495970401848249E-003 2 6 6 10 + 0.12021502362510334E-002 2 7 6 10 + 0.11549200099029162E-002 2 8 6 10 + -0.57959142006022550E-003 3 1 6 10 + -0.29646855906550020E-003 3 2 6 10 + 0.78622176819562282E-003 3 9 6 10 + 0.55479234687015849E-003 3 10 6 10 + -0.67880676156525119E-003 3 11 6 10 + -0.22234751270459099E-003 3 12 6 10 + 0.22572812948662150E-004 3 13 6 10 + 0.10377574007595472E-003 3 14 6 10 + 0.26832365438260957E-003 4 1 6 10 + 0.13721244743537903E-003 4 2 6 10 + -0.36397543431863943E-003 4 9 6 10 + -0.99727826298204748E-003 4 10 6 10 + -0.68654406175079760E-003 4 11 6 10 + -0.50089292496060481E-003 4 12 6 10 + 0.23471646319250685E-004 4 13 6 10 + -0.66596202553398639E-004 4 14 6 10 + -0.14728698133831908E-002 5 1 6 10 + -0.75352088652272170E-003 5 2 6 10 + 0.19979911436374641E-002 5 9 6 10 + -0.11017546951074124E-004 5 10 6 10 + 0.56453441952624426E-003 5 11 6 10 + -0.91177900691584218E-003 5 12 6 10 + -0.50897489799109505E-004 5 13 6 10 + 0.42140798422601972E-004 5 14 6 10 + -0.76990609104356320E-003 6 1 6 10 + -0.10493135183072856E-002 6 2 6 10 + -0.15862001445288035E-003 6 9 6 10 + 0.33835799150183144E-002 6 10 6 10 + 0.10704920320840367E-002 1 3 6 11 + 0.82072570818179219E-003 1 4 6 11 + -0.14605727086707324E-002 1 5 6 11 + -0.45525394326898102E-004 1 6 6 11 + 0.16131566610791367E-002 1 7 6 11 + -0.27945842763948806E-003 1 8 6 11 + 0.38635778149049829E-002 2 3 6 11 + 0.29621264118497269E-002 2 4 6 11 + -0.52714375617279865E-002 2 5 6 11 + -0.46061616005570617E-003 2 6 6 11 + 0.16321434960321946E-001 2 7 6 11 + -0.28274759946287226E-002 2 8 6 11 + 0.77915360194829872E-002 3 1 6 11 + 0.39861712792134338E-002 3 2 6 11 + -0.10569451227886809E-001 3 9 6 11 + -0.73980648768754407E-003 3 10 6 11 + 0.22337104541542419E-002 3 11 6 11 + 0.51791413281632210E-004 3 12 6 11 + -0.33092629043320835E-003 3 13 6 11 + -0.29356542157235458E-003 3 14 6 11 + 0.59736283142761077E-002 4 1 6 11 + 0.30561172571372296E-002 4 2 6 11 + -0.81034035368465242E-002 4 9 6 11 + -0.73314120196514522E-003 4 10 6 11 + -0.24933550939670807E-002 4 11 6 11 + 0.52256854892626358E-004 4 12 6 11 + -0.47604207255476312E-003 4 13 6 11 + -0.23041909473716865E-003 4 14 6 11 + -0.10630729922361321E-001 5 1 6 11 + -0.54387040323189981E-002 5 2 6 11 + 0.14420901074049766E-001 5 9 6 11 + 0.60446373605224874E-003 5 10 6 11 + 0.26406104970160167E-003 5 11 6 11 + -0.52439559834590074E-005 5 12 6 11 + -0.10393284683364104E-002 5 13 6 11 + 0.35634165083175506E-003 5 14 6 11 + -0.45759356926210128E-003 6 1 6 11 + -0.62368583770019037E-003 6 2 6 11 + -0.94268259748364689E-004 6 9 6 11 + 0.84101636241878735E-003 6 10 6 11 + 0.17031966773750320E-001 6 11 6 11 + -0.10520621091081018E-002 1 3 6 12 + -0.10230053168241674E-002 1 4 6 12 + -0.13366305997753664E-002 1 5 6 12 + 0.22876521589215628E-004 1 6 6 12 + 0.27416122437636778E-003 1 7 6 12 + 0.16118402126185573E-002 1 8 6 12 + -0.37970857009738748E-002 2 3 6 12 + -0.36921561286072735E-002 2 4 6 12 + -0.48241144434763962E-002 2 5 6 12 + 0.23150198198161896E-003 2 6 6 12 + 0.27738811899273466E-002 2 7 6 12 + 0.16308114971385498E-001 2 8 6 12 + -0.76573567577108955E-002 3 1 6 12 + -0.39175643665970306E-002 3 2 6 12 + 0.10387441648051714E-001 3 9 6 12 + -0.25743896180362993E-003 3 10 6 12 + 0.46346019975606618E-004 3 11 6 12 + 0.22399899562614185E-002 3 12 6 12 + 0.74758798962103017E-003 3 13 6 12 + 0.34444078907445096E-003 3 14 6 12 + -0.74459590458825983E-002 4 1 6 12 + -0.38093172989007240E-002 4 2 6 12 + 0.10100653614488394E-001 4 9 6 12 + -0.53748856592094804E-003 4 10 6 12 + 0.48637809691104327E-004 4 11 6 12 + -0.24720680636628684E-002 4 12 6 12 + 0.68198174252509611E-003 4 13 6 12 + 0.34618301838456618E-003 4 14 6 12 + -0.97286159541606233E-002 5 1 6 12 + -0.49771863161609904E-002 5 2 6 12 + 0.13197157906195665E-001 5 9 6 12 + -0.99698106469484375E-003 5 10 6 12 + 0.42953755346346445E-005 5 11 6 12 + 0.33645584496475961E-003 5 12 6 12 + -0.59767831164442959E-003 5 13 6 12 + 0.40458344292484922E-003 5 14 6 12 + 0.23001184840604877E-003 6 1 6 12 + 0.31345824432560404E-003 6 2 6 12 + 0.47396013018192689E-004 6 9 6 12 + 0.11065766189329526E-002 6 10 6 12 + -0.47490827202413657E-004 6 11 6 12 + 0.16987006726263621E-001 6 12 6 12 + 0.14526405974960688E-003 1 3 6 13 + 0.11623141887078005E-005 1 4 6 13 + 0.62081032930391633E-005 1 5 6 13 + 0.75484597049384864E-004 1 6 6 13 + 0.50618225370519714E-004 1 7 6 13 + -0.78018351556913393E-004 1 8 6 13 + 0.52425061134616334E-003 2 3 6 13 + 0.42379636844781890E-005 2 4 6 13 + 0.22384790633957326E-004 2 5 6 13 + 0.76378719395830724E-003 2 6 6 13 + 0.51212230335637274E-003 2 7 6 13 + -0.78937286391587242E-003 2 8 6 13 + 0.10573464762524537E-002 3 1 6 13 + 0.54089161896367127E-003 3 2 6 13 + -0.14343112558024237E-002 3 9 6 13 + 0.18243057566820297E-004 3 10 6 13 + -0.29551773859926998E-003 3 11 6 13 + 0.67940447528055362E-003 3 12 6 13 + 0.60652264320395285E-003 3 13 6 13 + -0.90614550668425880E-004 3 14 6 13 + 0.83934492596110318E-005 4 1 6 13 + 0.43637007360384989E-005 4 2 6 13 + -0.11401080502809229E-004 4 9 6 13 + 0.21079415774410736E-004 4 10 6 13 + -0.44003188865259255E-003 4 11 6 13 + 0.62949328865257532E-003 4 12 6 13 + -0.92885758760611942E-003 4 13 6 13 + 0.86077901978711172E-004 4 14 6 13 + 0.45218280454445040E-004 5 1 6 13 + 0.23099391519727070E-004 5 2 6 13 + -0.61332473987038138E-004 5 9 6 13 + -0.37948946906467146E-004 5 10 6 13 + -0.96346795454905717E-003 5 11 6 13 + -0.55749986245037125E-003 5 12 6 13 + 0.46766110049126766E-004 5 13 6 13 + 0.83897743744263465E-005 5 14 6 13 + 0.75880966721092718E-003 6 1 6 13 + 0.10341855401032770E-002 6 2 6 13 + 0.15633516036085034E-003 6 9 6 13 + -0.44680528056073165E-004 6 10 6 13 + 0.51521469624397345E-003 6 11 6 13 + -0.56744233133689003E-003 6 12 6 13 + 0.32874895155758851E-002 6 13 6 13 + -0.14911524994662753E-002 1 3 6 14 + 0.17422015260193646E-002 1 4 6 14 + -0.13329794470408365E-003 1 5 6 14 + -0.18918146983647234E-002 1 6 6 14 + -0.38283907574266472E-004 1 7 6 14 + 0.18488780366606383E-004 1 8 6 14 + -0.53809579922550546E-002 2 3 6 14 + 0.62868520786398367E-002 2 4 6 14 + -0.48103444644619775E-003 2 5 6 14 + -0.19142217819438031E-001 2 6 6 14 + -0.38737544036595943E-003 2 7 6 14 + 0.18704470204467769E-003 2 8 6 14 + -0.10854612300718814E-001 3 1 6 14 + -0.55518717334402182E-002 3 2 6 14 + 0.14724306367757406E-001 3 9 6 14 + 0.10632652694439208E-003 3 10 6 14 + -0.38452310922560974E-003 3 11 6 14 + 0.42708922842168062E-003 3 12 6 14 + -0.96196432972489430E-004 3 13 6 14 + 0.26273312813352972E-002 3 14 6 14 + 0.12682144706119733E-001 4 1 6 14 + 0.64865473705767625E-002 4 2 6 14 + -0.17203344563422717E-001 4 9 6 14 + -0.63189474091846301E-004 4 10 6 14 + -0.29414531066077824E-003 4 11 6 14 + 0.42391145000683541E-003 4 12 6 14 + 0.81653147770213830E-004 4 13 6 14 + -0.31461479026222241E-002 4 14 6 14 + -0.97029563943106932E-003 5 1 6 14 + -0.49630997985905675E-003 5 2 6 14 + 0.13162141631433988E-002 5 9 6 14 + 0.56583092272954045E-004 5 10 6 14 + 0.47947313825884936E-003 5 11 6 14 + 0.51173823214976846E-003 5 12 6 14 + 0.10266480914738109E-004 5 13 6 14 + 0.27214634960661706E-003 5 14 6 14 + -0.19017458566284944E-001 6 1 6 14 + -0.25919006500543268E-001 6 2 6 14 + -0.39181024528614312E-002 6 9 6 14 + 0.73391023493502288E-003 6 10 6 14 + 0.98932426459767261E-004 6 11 6 14 + -0.12353303130146524E-003 6 12 6 14 + -0.75311857107932412E-003 6 13 6 14 + 0.21661315566186265E-001 6 14 6 14 + 0.15295949609354858E-001 1 3 7 1 + 0.10049704274487349E-001 1 4 7 1 + -0.28075870706815356E-001 1 5 7 1 + 0.37330988401977648E-001 1 7 7 1 + 0.28113835182234537E-001 2 3 7 1 + 0.18471277483180514E-001 2 4 7 1 + -0.51603229731248368E-001 2 5 7 1 + 0.31079306734522891E-001 2 7 7 1 + 0.26275895783026634E-001 3 1 7 1 + 0.29054859863096971E-001 3 2 7 1 + -0.13633612445782043E-001 3 9 7 1 + -0.26898185311046183E-001 3 10 7 1 + 0.26885719831846566E-001 3 11 7 1 + 0.60529427564903742E-002 3 12 7 1 + -0.80949411502485181E-002 3 13 7 1 + 0.10596795195142339E-001 3 14 7 1 + 0.17263719410082930E-001 4 1 7 1 + 0.19089547025064831E-001 4 2 7 1 + -0.89575199168599306E-002 4 9 7 1 + -0.24728037232522312E-001 4 10 7 1 + -0.27884681811874146E-001 4 11 7 1 + -0.37323807671421246E-002 4 12 7 1 + -0.11511383197493981E-001 4 13 7 1 + 0.80035402616183554E-002 4 14 7 1 + -0.48229673315531366E-001 5 1 7 1 + -0.53330490080985525E-001 5 2 7 1 + 0.25024633976337387E-001 5 9 7 1 + 0.12325686838811380E-001 5 10 7 1 + 0.28410583420521674E-002 5 11 7 1 + -0.18873931799295522E-002 5 12 7 1 + -0.36141724623995203E-001 5 13 7 1 + -0.21129892620753050E-001 5 14 7 1 + 0.11942534942775045E-002 6 10 7 1 + 0.16214238295323875E-001 6 11 7 1 + 0.27556629053314746E-002 6 12 7 1 + 0.50874660918669515E-003 6 13 7 1 + -0.38485204950198485E-003 6 14 7 1 + 0.67101045261904732E-001 7 1 7 1 + 0.27929212280357429E-002 1 3 7 2 + 0.18349977033483226E-002 1 4 7 2 + -0.51264352521594638E-002 1 5 7 2 + 0.53599196481603677E-002 1 7 7 2 + 0.15188994674543136E-001 2 3 7 2 + 0.99794330266731856E-002 2 4 7 2 + -0.27879553838760066E-001 2 5 7 2 + 0.33575742922933846E-001 2 7 7 2 + 0.13741188782932656E-001 3 1 7 2 + 0.15557571559062310E-001 3 2 7 2 + -0.17012484128463030E-001 3 9 7 2 + -0.12076273676057760E-001 3 10 7 2 + 0.12070649473374030E-001 3 11 7 2 + 0.27175698010374074E-002 3 12 7 2 + -0.36338721993380164E-002 3 13 7 2 + 0.47571420778422914E-002 3 14 7 2 + 0.90281994367921187E-002 4 1 7 2 + 0.10221594434524851E-001 4 2 7 2 + -0.11177497235013252E-001 4 9 7 2 + -0.11101954243902206E-001 4 10 7 2 + -0.12519196308672056E-001 4 11 7 2 + -0.16756733251922166E-002 4 12 7 2 + -0.51676936452263759E-002 4 13 7 2 + 0.35929687716509816E-002 4 14 7 2 + -0.25222091434689863E-001 5 1 7 2 + -0.28556080450023918E-001 5 2 7 2 + 0.31226587233286873E-001 5 9 7 2 + 0.55338503037578139E-002 5 10 7 2 + 0.12754425313854303E-002 5 11 7 2 + -0.84734561307733315E-003 5 12 7 2 + -0.16224667696317974E-001 5 13 7 2 + -0.94856055275851867E-002 5 14 7 2 + 0.16277419332988931E-002 6 10 7 2 + 0.22099636509001853E-001 6 11 7 2 + 0.37559054132244828E-002 6 12 7 2 + 0.69342709852426637E-003 6 13 7 2 + -0.52451526567542613E-003 6 14 7 2 + 0.33716533297526489E-001 7 1 7 2 + 0.44097560247505725E-001 7 2 7 2 + 0.20611229984142629 1 1 7 3 + 0.11055516278381063E-002 1 2 7 3 + -0.12268473863132588E-002 1 9 7 3 + -0.12201844077903957E-002 1 10 7 3 + 0.12196146650062046E-002 1 11 7 3 + 0.27458413086838603E-003 1 12 7 3 + -0.36714167783224414E-003 1 13 7 3 + 0.48063833210498124E-003 1 14 7 3 + -0.13546250664755861E-001 2 1 7 3 + 0.75025425204986410E-001 2 2 7 3 + -0.34101507253564048E-001 2 9 7 3 + -0.62330233876762373E-002 2 10 7 3 + 0.62301023958818398E-002 2 11 7 3 + 0.14026580791891181E-002 2 12 7 3 + -0.18752833471258178E-002 2 13 7 3 + 0.24550662158516930E-002 2 14 7 3 + 0.79881050872037465E-001 3 3 7 3 + 0.27882431406673091E-002 3 4 7 3 + -0.77905837098119855E-002 3 5 7 3 + 0.29483485688811387E-001 3 6 7 3 + 0.35423495152060537E-001 3 7 7 3 + -0.29033899676202034E-001 3 8 7 3 + 0.27882431406673477E-002 4 3 7 3 + 0.71392489047038377E-001 4 4 7 3 + -0.44321714764794233E-007 4 5 7 3 + -0.28128386088256963E-001 4 6 7 3 + 0.13945110392411416E-001 4 7 7 3 + -0.25188570463759673E-001 4 8 7 3 + -0.77905837098119993E-002 5 3 7 3 + -0.44321714782387770E-007 5 4 7 3 + 0.71392585525375113E-001 5 5 7 3 + -0.47509636447000446E-002 5 6 7 3 + -0.38958746521314258E-001 5 7 7 3 + -0.14252702648371626E-001 5 8 7 3 + 0.50435263922121491E-001 6 3 7 3 + -0.52467466088739978E-001 6 4 7 3 + -0.36058918864540642E-002 6 5 7 3 + 0.43872793323137267E-001 6 6 7 3 + 0.18326026099908092E-002 6 7 7 3 + 0.25575200477854820E-009 6 8 7 3 + 0.52564487847906412E-001 7 3 7 3 + 0.13541935699592042 1 1 7 4 + 0.72636660055129315E-003 1 2 7 4 + -0.80606001832239551E-003 1 9 7 4 + -0.11217391139646806E-002 1 10 7 4 + -0.12649384417488139E-002 1 11 7 4 + -0.16930836880236179E-003 1 12 7 4 + -0.52211697193874302E-003 1 13 7 4 + 0.36301584373365137E-003 1 14 7 4 + -0.89001217110192890E-002 2 1 7 4 + 0.49293006033222460E-001 2 2 7 4 + -0.22405281918751151E-001 2 9 7 4 + -0.57301371492183232E-002 2 10 7 4 + -0.64616475136538764E-002 2 11 7 4 + -0.86486206876838225E-003 2 12 7 4 + -0.26669255088552354E-002 2 13 7 4 + 0.18542580949092175E-002 2 14 7 4 + 0.46905949907787868E-001 3 3 7 4 + 0.42440236635065713E-002 3 4 7 4 + -0.44321714733428921E-007 3 5 7 4 + 0.11680851799587073E-001 3 6 7 4 + 0.13945110392411437E-001 3 7 7 4 + -0.20065408424773196E-001 3 8 7 4 + 0.42440236635065756E-002 4 3 7 4 + 0.52483294148153448E-001 4 4 7 4 + -0.77905893498376386E-002 4 5 7 4 + -0.23533530209386484E-001 4 6 7 4 + 0.23360746538063269E-001 4 7 7 4 + -0.17199525721840195E-001 4 8 7 4 + -0.44321714735597100E-007 5 3 7 4 + -0.77905893498376498E-002 5 4 7 4 + 0.46906263566161698E-001 5 5 7 4 + 0.10994202954906178E-001 5 6 7 4 + -0.25596626530306549E-001 5 7 7 4 + -0.75477069157996223E-002 5 8 7 4 + 0.24331863553197559E-001 6 3 7 4 + -0.40257110467377968E-001 6 4 7 4 + 0.13792549214382156E-001 6 5 7 4 + 0.28825190023093972E-001 6 6 7 4 + -0.22263801936021187E-002 6 7 7 4 + 0.14731767951512903E-009 6 8 7 4 + 0.23854856801176640E-001 7 3 7 4 + 0.31929632259955286E-001 7 4 7 4 + -0.37832121765706317 1 1 7 5 + -0.20292512302677616E-002 1 2 7 5 + 0.22518908256641771E-002 1 9 7 5 + 0.55914347346016431E-003 1 10 7 5 + 0.12886589914998985E-003 1 11 7 5 + -0.85614417732235505E-004 1 12 7 5 + -0.16392517014014228E-002 1 13 7 5 + -0.95837467978484973E-003 1 14 7 5 + 0.24864280540856661E-001 2 1 7 5 + -0.13770992920182817 2 2 7 5 + 0.62593662571496830E-001 2 9 7 5 + 0.28562829549911989E-002 2 10 7 5 + 0.65824809730217777E-003 2 11 7 5 + -0.43733221227732513E-003 2 12 7 5 + -0.83731139855383295E-002 2 13 7 5 + -0.48952774205351162E-002 2 14 7 5 + -0.13104227323656584 3 3 7 5 + -0.44321714380563432E-007 3 4 7 5 + 0.42441201418424316E-002 3 5 7 5 + -0.46124701522569762E-001 3 6 7 5 + -0.38958746521314133E-001 3 7 7 5 + 0.42356864275822997E-001 3 8 7 5 + -0.44321714391196131E-007 4 3 7 5 + -0.13104227887658992 4 4 7 5 + 0.27885567990414022E-002 4 5 7 5 + 0.56881199408133007E-001 4 6 7 5 + -0.25596626530306539E-001 4 7 7 5 + 0.39049376620335301E-001 4 8 7 5 + 0.42441201418424446E-002 5 3 7 5 + 0.27885567990414348E-002 5 4 7 5 + -0.14662138040001041 5 5 7 5 + -0.59499554794246864E-002 5 6 7 5 + 0.85706922089868715E-001 5 7 7 5 + 0.46233425398041747E-001 5 8 7 5 + -0.83423429282012559E-001 6 3 7 5 + 0.10231699112453316 6 4 7 5 + -0.10178153454743018E-001 6 5 7 5 + -0.80528960970494043E-001 6 6 7 5 + 0.20148441294412346E-003 6 7 7 5 + -0.14345738492307288E-008 6 8 7 5 + -0.66643884482511531E-001 7 3 7 5 + -0.43786295179984662E-001 7 4 7 5 + 0.13858048674702350 7 5 7 5 + 0.72589689453057260E-004 1 10 7 6 + 0.98553726155800538E-003 1 11 7 6 + 0.16749524858653415E-003 1 12 7 6 + 0.30925981840133752E-004 1 13 7 6 + -0.23386609195067726E-004 1 14 7 6 + 0.12930621889135239E-002 2 10 7 6 + 0.17555734661231406E-001 2 11 7 6 + 0.29836544573646345E-002 2 12 7 6 + 0.55085118033748018E-003 2 13 7 6 + -0.41667066248396271E-003 2 14 7 6 + 0.13099389021175151E-001 3 3 7 6 + -0.36537811706617413E-002 3 4 7 6 + -0.11301928357397514E-001 3 5 7 6 + 0.21958780729860604E-002 3 6 7 6 + 0.30502712798650368E-002 3 7 7 6 + 0.32825713384495195E-009 3 8 7 6 + -0.36537811706617396E-002 4 3 7 6 + -0.10455859839471308E-001 4 4 7 6 + 0.15078384058683803E-001 4 5 7 6 + 0.14427346473075012E-002 4 6 7 6 + -0.37056936232455744E-002 4 7 7 6 + 0.18908183394490020E-009 4 8 7 6 + -0.11301928357397515E-001 5 3 7 6 + 0.15078384058683806E-001 5 4 7 6 + -0.26435291817037470E-002 5 5 7 6 + -0.40305611999594849E-002 5 6 7 6 + 0.33536137292403188E-003 5 7 7 6 + -0.18412718398781510E-008 5 8 7 6 + 0.13192827921510498E-002 6 3 7 6 + 0.86679531080007042E-003 6 4 7 6 + -0.24215606258726954E-002 6 5 7 6 + -0.24297232531921924E-007 6 6 7 6 + 0.22291453045891637E-001 6 7 7 6 + -0.40884577558374817E-009 6 8 7 6 + 0.18326026099907628E-002 7 3 7 6 + -0.22263801936021239E-002 7 4 7 6 + 0.20148441294418293E-003 7 5 7 6 + 0.22291453045891658E-001 7 6 7 6 + 0.84092143855983337 1 1 7 7 + -0.49573963570187028E-001 1 2 7 7 + 0.42415084318326447E-001 1 9 7 7 + -0.76402816438751080E-003 1 10 7 7 + 0.38925368570194564E-004 1 11 7 7 + 0.82072667013326282E-004 1 12 7 7 + 0.58861014739145770E-003 1 13 7 7 + 0.63459242205536994E-003 1 14 7 7 + 0.15314035155087989E-001 2 1 7 7 + 0.52655417225132395 2 2 7 7 + -0.17071595504852030 2 9 7 7 + -0.13609789205931505E-001 2 10 7 7 + 0.69329998565927011E-003 2 11 7 7 + 0.14619889918588401E-002 2 12 7 7 + 0.10486855545529909E-001 2 13 7 7 + 0.11306067032710613E-001 2 14 7 7 + 0.51345555070358462 3 3 7 7 + 0.61956713756686731E-002 3 4 7 7 + -0.17309153722646877E-001 3 5 7 7 + 0.11548770608306880 3 6 7 7 + 0.87530958417391058E-001 3 7 7 7 + -0.11372777536203897 3 8 7 7 + 0.61956713756686575E-002 4 3 7 7 + 0.50809615873797742 4 4 7 7 + -0.11372473196270782E-001 4 5 7 7 + -0.14030296553921676 4 6 7 7 + 0.57509364611479985E-001 4 7 7 7 + -0.10254196829463749 4 8 7 7 + -0.17309153722646860E-001 5 3 7 7 + -0.11372473196270733E-001 5 4 7 7 + 0.53579573102761713 5 5 7 7 + 0.12697405390080548E-001 5 6 7 7 + -0.16066384648344448 5 7 7 7 + -0.98664386446001090E-001 5 8 7 7 + 0.60943166229957990E-001 6 3 7 7 + -0.74038243796104991E-001 6 4 7 7 + 0.67004532895283469E-002 6 5 7 7 + 0.42345331209656345 6 6 7 7 + 0.20039669538925745E-007 6 7 7 7 + 0.10856346223201115E-007 6 8 7 7 + 0.46511331869360163E-001 7 3 7 7 + 0.30558756899267694E-001 7 4 7 7 + -0.85371931334220608E-001 7 5 7 7 + 0.20039669627111526E-007 7 6 7 7 + 0.46803505610846574 7 7 7 7 + 0.61180311029188604E-003 1 10 7 8 + -0.66864968336841825E-004 1 11 7 8 + -0.16695019683186977E-004 1 12 7 8 + 0.79163137768022032E-003 1 13 7 8 + 0.82253620104821109E-005 1 14 7 8 + 0.10898345876888300E-001 2 10 7 8 + -0.11912228730937150E-002 2 11 7 8 + -0.29731939373672952E-003 2 12 7 8 + 0.14104094985789810E-001 2 13 7 8 + 0.14662003929785772E-003 2 14 7 8 + -0.12899452671275832E-001 3 3 7 8 + -0.10052917708159977E-001 3 4 7 8 + 0.62433468045406905E-002 3 5 7 8 + 0.32825705745737687E-009 3 6 7 8 + -0.30037604561786811E-002 3 7 7 8 + 0.21957979491647366E-002 3 8 7 8 + -0.10052917708159975E-001 4 3 7 8 + -0.76415442014065018E-002 4 4 7 8 + 0.69980625307590853E-002 4 5 7 8 + 0.18908191324784300E-009 4 6 7 8 + -0.27083177272079892E-002 4 7 7 8 + 0.14426664041586757E-002 4 8 7 8 + 0.62433468045406905E-002 5 3 7 8 + 0.69980625307590862E-002 5 4 7 8 + 0.20540996872678744E-001 5 5 7 8 + -0.18412718655926976E-008 5 6 7 8 + -0.26058297745595285E-002 5 7 7 8 + -0.40305205143197978E-002 5 8 7 8 + 0.25575196661499243E-009 6 3 7 8 + 0.14731780486752926E-009 6 4 7 8 + -0.14345738790376894E-008 6 5 7 8 + -0.40884673364354355E-009 6 6 7 8 + 0.10856346217562536E-007 6 7 7 8 + 0.42575629303145908E-008 6 8 7 8 + -0.18046538977101595E-002 7 3 7 8 + -0.16271515348572647E-002 7 4 7 8 + -0.15655634285414832E-002 7 5 7 8 + 0.10856346217751848E-007 7 6 7 8 + -0.41134718020207668E-006 7 7 7 8 + 0.22290887475282316E-001 7 8 7 8 + -0.10716674711589381E-002 1 3 7 9 + -0.70410412173091690E-003 1 4 7 9 + 0.19670565168805124E-002 1 5 7 9 + -0.17331172967790527E-002 1 7 7 9 + -0.38254611138530098E-001 2 3 7 9 + -0.25133943226553077E-001 2 4 7 9 + 0.70216726891412840E-001 2 5 7 9 + -0.17882217975081379E-001 2 7 7 9 + -0.18540973840878786E-001 3 1 7 9 + -0.43611793584171478E-001 3 2 7 9 + 0.47830427446860745E-002 3 9 7 9 + 0.32614412566492466E-001 3 10 7 9 + -0.32599289390720293E-001 3 11 7 9 + -0.73392828850711187E-002 3 12 7 9 + 0.98150846563832481E-002 3 13 7 9 + -0.12848626242623468E-001 3 14 7 9 + -0.12181741495008757E-001 4 1 7 9 + -0.28653705039199520E-001 4 2 7 9 + 0.31425420679295599E-002 4 9 7 9 + 0.29983077326336049E-001 4 10 7 9 + 0.33810559980517116E-001 4 11 7 9 + 0.45255541631423436E-002 4 12 7 9 + 0.13957556594626698E-001 4 13 7 9 + -0.97043009791910780E-002 4 14 7 9 + 0.34032145609096350E-001 5 1 7 9 + 0.80049889626511231E-001 5 2 7 9 + -0.87793234885428124E-002 5 9 7 9 + -0.14945086613000671E-001 5 10 7 9 + -0.34447948508065404E-002 5 11 7 9 + 0.22884825494001127E-002 5 12 7 9 + 0.43821828264796164E-001 5 13 7 9 + 0.25619992950674738E-001 5 14 7 9 + 0.24602336284081013E-003 6 10 7 9 + 0.33402365954705499E-002 6 11 7 9 + 0.56768420517401997E-003 6 12 7 9 + 0.10480019975618960E-003 6 13 7 9 + -0.79290290615323901E-004 6 14 7 9 + -0.43897957704769383E-001 7 1 7 9 + -0.81986501857266077E-002 7 2 7 9 + 0.82024387580006811E-001 7 9 7 9 + -0.13603601236092742E-002 1 3 7 10 + -0.12506054571860487E-002 1 4 7 10 + 0.62337657413754635E-003 1 5 7 10 + 0.11881672769003439E-003 1 6 7 10 + -0.12505775331337434E-002 1 7 7 10 + 0.10014213812801871E-002 1 8 7 10 + -0.49097577205712449E-002 2 3 7 10 + -0.45136325449133003E-002 2 4 7 10 + 0.22499188239248980E-002 2 5 7 10 + 0.12021502362510391E-002 2 6 7 10 + -0.12652919284647450E-001 2 7 7 10 + 0.10132110347570875E-001 2 8 7 10 + -0.99013310020265258E-002 3 1 7 10 + -0.50655471808786498E-002 3 2 7 10 + 0.13431450888365629E-001 3 9 7 10 + 0.14212841216640561E-002 3 10 7 10 + -0.72292192284163391E-003 3 11 7 10 + 0.23865328864280174E-003 3 12 7 10 + 0.12012127435577873E-003 3 13 7 10 + -0.10049794244491354E-002 3 14 7 10 + -0.91024903339360901E-002 4 1 7 10 + -0.46568533319799807E-002 4 2 7 10 + 0.12347798637824630E-001 4 9 7 10 + 0.96561966980764264E-003 4 10 7 10 + 0.77547847982450003E-003 4 11 7 10 + -0.51624061325501562E-003 4 12 7 10 + 0.36707412747456330E-004 4 13 7 10 + -0.76060457127112308E-003 4 14 7 10 + 0.45371417506333070E-002 5 1 7 10 + 0.23212993114682290E-002 5 2 7 10 + -0.61547867270812899E-002 5 9 7 10 + -0.27825032189158459E-002 5 10 7 10 + -0.11868361997752037E-003 5 11 7 10 + 0.10925066129409164E-003 5 12 7 10 + -0.20731804038666798E-004 5 13 7 10 + 0.48041877203252161E-003 5 14 7 10 + 0.11942534942774991E-002 6 1 7 10 + 0.16277419332988987E-002 6 2 7 10 + 0.24602336284079278E-003 6 9 7 10 + -0.22346200770883567E-003 6 10 7 10 + -0.92707690718172673E-002 6 11 7 10 + 0.50348641544153546E-002 6 12 7 10 + -0.21625635468020815E-003 6 13 7 10 + -0.47477187064736852E-003 6 14 7 10 + -0.12569783321299712E-001 7 1 7 10 + -0.17132374770116723E-001 7 2 7 10 + -0.25894422221515423E-002 7 9 7 10 + 0.16508810503276058E-001 7 10 7 10 + 0.13597255229077861E-002 1 3 7 11 + -0.14102550452003190E-002 1 4 7 11 + 0.14367195605684011E-003 1 5 7 11 + 0.16131566610790911E-002 1 6 7 11 + 0.63709383843264339E-004 1 7 7 11 + -0.10945353272194723E-003 1 8 7 11 + 0.49074491608008045E-002 2 3 7 11 + -0.50898514737269330E-002 2 4 7 11 + 0.51847871779282751E-003 2 5 7 11 + 0.16321434960322172E-001 2 6 7 11 + 0.64455598415770997E-003 2 7 7 11 + -0.11074707142872092E-002 2 8 7 11 + 0.98967401783290158E-002 3 1 7 11 + 0.50631690647507336E-002 3 2 7 11 + -0.13425216904472301E-001 3 9 7 11 + -0.67557723085401582E-003 3 10 7 11 + 0.17790238791957288E-002 3 11 7 11 + -0.49927878279905206E-003 3 12 7 11 + 0.35996741683491315E-003 3 13 7 11 + -0.37749171891222373E-003 3 14 7 11 + -0.10264466198989122E-001 4 1 7 11 + -0.52513523680403672E-002 4 2 7 11 + 0.13924059885658112E-001 4 9 7 11 + 0.71717724054438763E-003 4 10 7 11 + 0.11675955375937115E-002 4 11 7 11 + -0.53605056524694012E-003 4 12 7 11 + -0.40055816644802531E-003 4 13 7 11 + 0.55227654505699561E-003 4 14 7 11 + 0.10457981700569175E-002 5 1 7 11 + 0.53494181026986752E-003 5 2 7 11 + -0.14186365836121387E-002 5 9 7 11 + -0.11375883039202155E-003 5 10 7 11 + -0.25534580734723421E-002 5 11 7 11 + -0.92092357025761644E-003 5 12 7 11 + 0.51247313119617229E-004 5 13 7 11 + -0.11043527219534817E-004 5 14 7 11 + 0.16214238295324101E-001 6 1 7 11 + 0.22099636509002013E-001 6 2 7 11 + 0.33402365954700551E-002 6 9 7 11 + -0.32538413037477786E-002 6 10 7 11 + 0.30865752766977045E-003 6 11 7 11 + -0.23071934874019238E-003 6 12 7 11 + 0.19474269369457043E-002 6 13 7 11 + -0.10107716762058707E-001 6 14 7 11 + 0.64029763053455595E-003 7 1 7 11 + 0.87274621127613687E-003 7 2 7 11 + 0.13189542060557843E-003 7 9 7 11 + 0.12291132529101833E-004 7 10 7 11 + 0.16701958882052444E-001 7 11 7 11 + 0.30612800390559749E-003 1 3 7 12 + -0.18875918658636893E-003 1 4 7 12 + -0.95450360442596657E-004 1 5 7 12 + 0.27416122437638513E-003 1 6 7 12 + 0.13433890780733024E-003 1 7 7 12 + -0.27322965604337486E-004 1 8 7 12 + 0.11048822021949777E-002 2 3 7 12 + -0.68124554547443485E-003 2 4 7 12 + -0.34448056929555718E-003 2 5 7 12 + 0.27738811899273479E-002 2 6 7 12 + 0.13592002129914479E-002 2 7 7 12 + -0.27641576185065956E-003 2 8 7 12 + 0.22281148606561369E-002 3 1 7 12 + 0.11399372656949009E-002 3 2 7 12 + -0.30225103175670781E-002 3 9 7 12 + 0.20918688714308890E-003 3 10 7 12 + -0.43345857254904665E-003 3 11 7 12 + 0.30021796429434498E-003 3 12 7 12 + 0.64167504762889928E-003 3 13 7 12 + 0.97894169585404931E-005 3 14 7 12 + -0.13739024461009801E-002 4 1 7 12 + -0.70286523799381313E-003 4 2 7 12 + 0.18637338134725792E-002 4 9 7 12 + -0.48325118004462756E-003 4 10 7 12 + -0.49221212700756387E-003 4 11 7 12 + 0.14113302789770321E-003 4 12 7 12 + -0.72761174547837139E-003 4 13 7 12 + 0.13983694724356170E-003 4 14 7 12 + -0.69475522750276155E-003 5 1 7 12 + -0.35541420230601815E-003 5 2 7 12 + 0.94245088956491474E-003 5 9 7 12 + 0.10500649459019937E-003 5 10 7 12 + -0.86937231357037971E-003 5 11 7 12 + -0.11827235932164845E-002 5 12 7 12 + -0.19487616913373574E-004 5 13 7 12 + -0.74276854032398761E-004 5 14 7 12 + 0.27556629053313835E-002 6 1 7 12 + 0.37559054132244953E-002 6 2 7 12 + 0.56768420517401216E-003 6 9 7 12 + 0.14864816717964579E-002 6 10 7 12 + 0.69340083786744019E-003 6 11 7 12 + -0.47925111525572241E-005 6 12 7 12 + 0.29239552834498359E-002 6 13 7 12 + -0.17119474876742501E-002 6 14 7 12 + 0.13502728260935736E-002 7 1 7 12 + 0.18403915453983756E-002 7 2 7 12 + 0.27816467436843145E-003 7 9 7 12 + -0.83858467577028778E-003 7 10 7 12 + 0.23376893750668504E-002 7 11 7 12 + 0.36971722506571997E-002 7 12 7 12 + -0.40932890511778691E-003 1 3 7 13 + -0.58210857877169910E-003 1 4 7 13 + -0.18276047281953712E-002 1 5 7 13 + 0.50618225370516339E-004 1 6 7 13 + 0.96354523373237320E-003 1 7 7 13 + 0.12958956627198469E-002 1 8 7 13 + -0.14770366200643550E-002 2 3 7 13 + -0.21006047613312999E-002 2 4 7 13 + -0.65950620089904079E-002 2 5 7 13 + 0.51212230335638759E-003 2 6 7 13 + 0.97495475766677751E-002 2 7 7 13 + 0.13112466488942681E-001 2 8 7 13 + -0.29797442095813825E-002 3 1 7 13 + -0.15239642093560486E-002 3 2 7 13 + 0.40420074703513345E-002 3 9 7 13 + 0.12804622309799634E-004 3 10 7 13 + 0.38776787292689463E-003 3 11 7 13 + 0.69981423889529037E-003 3 12 7 13 + 0.15292662416602431E-002 3 13 7 13 + -0.27004773037038026E-003 3 14 7 13 + -0.42373477463544034E-002 4 1 7 13 + -0.21673228772774067E-002 4 2 7 13 + 0.57479766625660022E-002 4 9 7 13 + -0.78214780057027036E-004 4 10 7 13 + -0.42455689408850330E-003 4 11 7 13 + -0.78316258319609039E-003 4 12 7 13 + 0.10663731459921134E-002 4 13 7 13 + -0.30149709563193620E-003 4 14 7 13 + -0.13303785711646641E-001 5 1 7 13 + -0.68045418409587426E-002 5 2 7 13 + 0.18046610722980024E-001 5 9 7 13 + -0.12033359400242063E-003 5 10 7 13 + 0.57803285200011762E-004 5 11 7 13 + -0.76965042778533807E-005 5 12 7 13 + -0.27127289234297634E-002 5 13 7 13 + -0.12773462582564375E-002 5 14 7 13 + 0.50874660918671477E-003 6 1 7 13 + 0.69342709852427797E-003 6 2 7 13 + 0.10480019975614897E-003 6 9 7 13 + 0.86591709311920550E-003 6 10 7 13 + 0.48713223296024746E-002 6 11 7 13 + 0.93579151118677976E-002 6 12 7 13 + -0.24992623355854157E-003 6 13 7 13 + -0.37241805076885072E-003 6 14 7 13 + 0.96859849050561983E-002 7 1 7 13 + 0.13201114203917667E-001 7 2 7 13 + 0.19955625922172759E-002 7 9 7 13 + 0.50888195299289725E-003 7 10 7 13 + 0.61604971374653343E-005 7 11 7 13 + 0.55595770344660635E-003 7 12 7 13 + 0.16661695399320914E-001 7 13 7 13 + 0.53586346487301121E-003 1 3 7 14 + 0.40472625290652526E-003 1 4 7 14 + -0.10684932976600880E-002 1 5 7 14 + -0.38283907574265367E-004 1 6 7 14 + 0.10388162858433953E-002 1 7 7 14 + 0.13468692530177717E-004 1 8 7 14 + 0.19337408247487463E-002 2 3 7 14 + 0.14605117421431135E-002 2 4 7 14 + -0.38557579047902029E-002 2 5 7 14 + -0.38737544036596106E-003 2 6 7 14 + 0.10511162133651582E-001 2 7 7 14 + 0.13631135542140006E-003 2 8 7 14 + 0.39006893594112223E-002 3 1 7 14 + 0.19951556968900593E-002 3 2 7 14 + -0.52913043190338290E-002 3 9 7 14 + -0.10033014651455847E-002 3 10 7 14 + -0.27276848864543201E-003 3 11 7 14 + 0.29646528211456332E-004 3 12 7 14 + -0.27126071466686009E-003 3 13 7 14 + 0.91824541969525635E-003 3 14 7 14 + 0.29461098220821395E-002 4 1 7 14 + 0.15068973405760976E-002 4 2 7 14 + -0.39964119553166184E-002 4 9 7 14 + -0.77239816503898062E-003 4 10 7 14 + 0.42690423082140130E-003 4 11 7 14 + 0.11917548283028131E-003 4 12 7 14 + -0.30990272744993897E-003 4 13 7 14 + 0.56724253638467900E-003 4 14 7 14 + -0.77779248053597115E-002 5 1 7 14 + -0.39782264289120652E-002 5 2 7 14 + 0.10550774049934252E-001 5 9 7 14 + 0.47708016329995966E-003 5 10 7 14 + 0.11347836715376426E-005 5 11 7 14 + -0.70851286158319672E-004 5 12 7 14 + -0.12810149835943202E-002 5 13 7 14 + -0.16862696055996355E-002 5 14 7 14 + -0.38485204950199092E-003 6 1 7 14 + -0.52451526567542689E-003 6 2 7 14 + -0.79290290615320798E-004 6 9 7 14 + 0.31765592920520249E-003 6 10 7 14 + 0.29844837079548484E-002 6 11 7 14 + 0.58529070803925312E-003 6 12 7 14 + 0.63058089578791560E-004 6 13 7 14 + 0.16952322475015158E-003 6 14 7 14 + 0.10442627932675063E-001 7 1 7 14 + 0.14232358294459979E-001 7 2 7 14 + 0.21514481104040950E-002 7 9 7 14 + -0.66474225617505611E-002 7 10 7 14 + 0.15211409963664281E-004 7 11 7 14 + 0.66303401092620423E-003 7 12 7 14 + 0.52367183297491659E-002 7 13 7 14 + 0.87817214614879392E-002 7 14 7 14 + -0.20923630740373605E-001 1 3 8 1 + -0.18865667413816341E-001 1 4 8 1 + -0.18152284045654818E-001 1 5 8 1 + 0.37330988401977322E-001 1 8 8 1 + -0.38457468877188504E-001 2 3 8 1 + -0.34674948455015002E-001 2 4 8 1 + -0.33363755430296148E-001 2 5 8 1 + 0.31079306734522368E-001 2 8 8 1 + -0.35943315372871709E-001 3 1 8 1 + -0.39744715072606261E-001 3 2 8 1 + 0.18649686992852282E-001 3 9 8 1 + -0.71804973259640094E-002 3 10 8 1 + -0.51792965547241753E-002 3 11 8 1 + 0.26584277101845129E-001 3 12 8 1 + 0.28582931053181566E-001 3 13 8 1 + -0.12355232227639953E-001 3 14 8 1 + -0.32408076876737975E-001 4 1 8 1 + -0.35835586343524135E-001 4 2 8 1 + 0.16815379536402813E-001 4 9 8 1 + -0.12834301017536564E-001 4 10 8 1 + 0.46240399730746668E-002 4 11 8 1 + -0.27870154729189023E-001 4 12 8 1 + 0.24811186132185196E-001 4 13 8 1 + -0.11771496375502372E-001 4 14 8 1 + -0.31182602975876477E-001 5 1 8 1 + -0.34480505140986849E-001 5 2 8 1 + 0.16179525430238935E-001 5 9 8 1 + -0.37198942845763486E-001 5 10 8 1 + 0.19697844711690179E-002 5 11 8 1 + 0.52899566035262604E-002 5 12 8 1 + -0.12681785899273129E-001 5 13 8 1 + -0.11330915597692268E-001 5 14 8 1 + 0.11473339859430615E-002 6 10 8 1 + -0.28089052216434180E-002 6 11 8 1 + 0.16201005406722143E-001 6 12 8 1 + -0.78419291266262599E-003 6 13 8 1 + 0.18580302463822295E-003 6 14 8 1 + 0.10065584357802563E-001 7 10 8 1 + -0.11002331984403784E-002 7 11 8 1 + -0.27457985146708337E-003 7 12 8 1 + 0.13027020525411664E-001 7 13 8 1 + 0.13544296328591048E-003 7 14 8 1 + 0.67101045261904316E-001 8 1 8 1 + -0.38204919573369615E-002 1 3 8 2 + -0.34447238874848857E-002 1 4 8 2 + -0.33144656424232487E-002 1 5 8 2 + 0.53599196481604033E-002 1 8 8 2 + -0.20777324978454591E-001 2 3 8 2 + -0.18733751692336580E-001 2 4 8 2 + -0.18025356564434131E-001 2 5 8 2 + 0.33575742922933506E-001 2 8 8 2 + -0.18796842783268972E-001 3 1 8 2 + -0.21281508558295737E-001 3 2 8 2 + 0.23271712118005931E-001 3 9 8 2 + -0.32237871130822706E-002 3 10 8 2 + -0.23252378899227552E-002 3 11 8 2 + 0.11935278057248208E-001 3 12 8 2 + 0.12831344166952259E-001 3 13 8 2 + -0.55464330479412603E-002 3 14 8 2 + -0.16948061681029764E-001 4 1 8 2 + -0.19188345823289009E-001 4 2 8 2 + 0.20982801045194586E-001 4 9 8 2 + -0.57621272199617022E-002 4 10 8 2 + 0.20760755599994723E-002 4 11 8 2 + -0.12512696160198067E-001 4 12 8 2 + 0.11138248052039482E-001 4 13 8 2 + -0.52844476448800793E-002 4 14 8 2 + -0.16307190353203549E-001 5 1 8 2 + -0.18462760744712099E-001 5 2 8 2 + 0.20189360720251633E-001 5 9 8 2 + -0.16700882035982943E-001 5 10 8 2 + 0.88432653569429790E-003 5 11 8 2 + 0.23749927286141866E-002 5 12 8 2 + -0.56930335321078657E-002 5 13 8 2 + -0.50865765048086044E-002 5 14 8 2 + 0.15637909877911252E-002 6 10 8 2 + -0.38284741577539177E-002 6 11 8 2 + 0.22081600922956923E-001 6 12 8 2 + -0.10688306650133014E-002 6 13 8 2 + 0.25326383399891424E-003 6 14 8 2 + 0.13719133283642718E-001 7 10 8 2 + -0.14995418527288011E-002 7 11 8 2 + -0.37427482587149057E-003 7 12 8 2 + 0.17754582853584028E-001 7 13 8 2 + 0.18456787261432104E-003 7 14 8 2 + 0.33716533297525948E-001 8 1 8 2 + 0.44097560247505461E-001 8 2 8 2 + -0.28194507455055873 1 1 8 3 + -0.15123058467166014E-002 1 2 8 3 + 0.16782287037815460E-002 1 9 8 3 + -0.32573157762845782E-003 1 10 8 3 + -0.23493778726431169E-003 1 11 8 3 + 0.12059348996173154E-002 1 12 8 3 + 0.12964064141606784E-002 1 13 8 3 + -0.56037849127091126E-003 1 14 8 3 + 0.18530183091905225E-001 2 1 8 3 + -0.10262875684217236 2 2 8 3 + 0.46648123437027261E-001 2 9 8 3 + -0.16639280061894852E-002 2 10 8 3 + -0.12000967322719246E-002 2 11 8 3 + 0.61602091617159703E-002 2 12 8 3 + 0.66218811887250074E-002 2 13 8 3 + -0.28623305986314003E-002 2 14 8 3 + -0.10927061447944483 3 3 8 3 + -0.52341352167688260E-002 3 4 8 3 + -0.50367995500682616E-002 3 5 8 3 + -0.40331054647527800E-001 3 6 8 3 + -0.29033899676201728E-001 3 7 8 3 + 0.53914437885625388E-001 3 8 8 3 + -0.52341352167688615E-002 4 3 8 3 + -0.97659028936135914E-001 4 4 8 3 + 0.10260492660162549E-006 4 5 8 3 + 0.37102626309011351E-001 4 6 8 3 + -0.20065408424773043E-001 4 7 8 3 + 0.35809603335502212E-001 4 8 8 3 + -0.50367995500682746E-002 5 3 8 3 + 0.10260492662495873E-006 5 4 8 3 + -0.97659735222268743E-001 5 5 8 3 + -0.86918553950657805E-002 5 6 8 3 + 0.42356864275822984E-001 5 7 8 3 + 0.34455934524759729E-001 5 8 8 3 + -0.68991418251300701E-001 6 3 8 3 + 0.70197283908235167E-001 6 4 8 3 + -0.12460073526831931E-001 6 5 8 3 + -0.60014462004555992E-001 6 6 8 3 + 0.25575204248640944E-009 6 7 8 3 + 0.18326022290936015E-002 6 8 8 3 + -0.49666113367486407E-001 7 3 8 3 + -0.33764527418416054E-001 7 4 8 3 + 0.78643028688638719E-001 7 5 8 3 + 0.25575209243758331E-009 7 6 8 3 + -0.60014439088972596E-001 7 7 8 3 + 0.13192203659864290E-002 7 8 8 3 + 0.84195492022164392E-001 8 3 8 3 + -0.25421410229587527 1 1 8 4 + -0.13635615867122145E-002 1 2 8 4 + 0.15131649455450476E-002 1 9 8 4 + -0.58220470826658266E-003 1 10 8 4 + 0.20976923921853252E-003 1 11 8 4 + -0.12642828383556523E-002 1 12 8 4 + 0.11253509832468210E-002 1 13 8 4 + -0.53391233344597395E-003 1 14 8 4 + 0.16707629553720696E-001 2 1 8 4 + -0.92534609203453355E-001 2 2 8 4 + 0.42060003503287230E-001 2 9 8 4 + -0.29740583540013442E-002 2 10 8 4 + 0.10715777858873307E-002 2 11 8 4 + -0.64583069295275058E-002 2 12 8 4 + 0.57481904835010493E-002 2 13 8 4 + -0.27271689705680923E-002 2 14 8 4 + -0.88053485935541631E-001 3 3 8 4 + -0.58053205786988285E-002 3 4 8 4 + 0.10260492649642860E-006 3 5 8 4 + -0.24469736323969357E-001 3 6 8 4 + -0.25188570463759517E-001 3 7 8 4 + 0.35809603335502017E-001 3 8 8 4 + -0.58053205786988355E-002 4 3 8 4 + -0.98523474600656358E-001 4 4 8 4 + -0.50368485785681604E-002 4 5 8 4 + 0.44177964855701995E-001 4 6 8 4 + -0.17199525721840064E-001 4 7 8 4 + 0.46486139837675612E-001 4 8 8 4 + 0.10260492649346482E-006 5 3 8 4 + -0.50368485785681535E-002 5 4 8 4 + -0.88054244079487323E-001 5 5 8 4 + 0.24821171135857799E-002 5 6 8 4 + 0.39049376620335120E-001 5 7 8 4 + 0.31066973932996417E-001 5 8 8 4 + -0.48587109503306573E-001 6 3 8 4 + 0.75572046719476746E-001 6 4 8 4 + 0.58023790743333664E-003 6 5 8 4 + -0.54111680684047737E-001 6 6 8 4 + 0.14731766323494697E-009 6 7 8 4 + -0.22263803966005653E-002 6 8 8 4 + -0.43648047704578960E-001 7 3 8 4 + -0.29421928945412439E-001 7 4 8 4 + 0.71890991047931160E-001 7 5 8 4 + 0.14731769445998285E-009 7 6 8 4 + -0.54111658706408924E-001 7 7 8 4 + 0.86674214111871425E-003 7 8 8 4 + 0.61256766720833432E-001 8 3 8 4 + 0.71488489032027078E-001 8 4 8 4 + -0.24460129037928505 1 1 8 5 + -0.13120000842172404E-002 1 2 8 5 + 0.14559463652657580E-002 1 9 8 5 + -0.16874515956417132E-002 1 10 8 5 + 0.89350447977827837E-004 1 11 8 5 + 0.23996887713497437E-003 1 12 8 5 + -0.57519045247026010E-003 1 13 8 5 + -0.51391590416237061E-003 1 14 8 5 + 0.16075849888385289E-001 2 1 8 5 + -0.89035520104877294E-001 2 2 8 5 + 0.40469553173283393E-001 2 9 8 5 + -0.86199302723351436E-002 2 10 8 5 + 0.45641313670691241E-003 2 11 8 5 + 0.12258246784448480E-002 2 12 8 5 + -0.29379902327995150E-002 2 13 8 5 + -0.26249963105547487E-002 2 14 8 5 + -0.84724432420288903E-001 3 3 8 5 + 0.10260492700148560E-006 3 4 8 5 + -0.58060268648310927E-002 3 5 8 5 + -0.30731564952239370E-001 3 6 8 5 + -0.14252702648371651E-001 3 7 8 5 + 0.34455934524759965E-001 3 8 8 5 + 0.10260492699512400E-006 4 3 8 5 + -0.84724481448787858E-001 4 4 8 5 + -0.52348933607152042E-002 4 5 8 5 + 0.36027212330681631E-001 4 6 8 5 + -0.75477069157996162E-002 4 7 8 5 + 0.31066973932996473E-001 4 8 8 5 + -0.58060268648310823E-002 5 3 8 5 + -0.52348933607151834E-002 5 4 8 5 + -0.94797429747339790E-001 5 5 8 5 + -0.38469102081749060E-002 5 6 8 5 + 0.46233425398041712E-001 5 7 8 5 + 0.44090586056689363E-001 5 8 8 5 + -0.54978720185245321E-001 6 3 8 5 + 0.65294886118135290E-001 6 4 8 5 + -0.65806284681770005E-002 6 5 8 5 + -0.52065511658368403E-001 6 6 8 5 + -0.14345738709778433E-008 6 7 8 5 + 0.20148649744980066E-003 6 8 8 5 + -0.30567220534096374E-001 7 3 8 5 + -0.18003339231054287E-001 7 4 8 5 + 0.79088042312898871E-001 7 5 8 5 + -0.14345738322706735E-008 7 6 8 5 + -0.52065429734703253E-001 7 7 8 5 + -0.24215289268298044E-002 7 8 8 5 + 0.58941261157581720E-001 8 3 8 5 + 0.53144008865706936E-001 8 4 8 5 + 0.67390625800692328E-001 8 5 8 5 + 0.69737680196039440E-004 1 10 8 6 + -0.17073156378570218E-003 1 11 8 6 + 0.98473303943495205E-003 1 12 8 6 + -0.47663773255490421E-004 1 13 8 6 + 0.11297034364416593E-004 1 14 8 6 + 0.12422602062797372E-002 2 10 8 6 + -0.30413023363962317E-002 2 11 8 6 + 0.17541407352315495E-001 2 12 8 6 + -0.84906879586338921E-003 2 13 8 6 + 0.20118975286034874E-003 2 14 8 6 + -0.17918927330447497E-001 3 3 8 6 + 0.28063753101258034E-002 3 4 8 6 + -0.87578342801903995E-002 3 5 8 6 + -0.30037898682722425E-002 3 6 8 6 + 0.32825704888933089E-009 3 7 8 6 + 0.30502707909845200E-002 3 8 8 6 + 0.28063753101258016E-002 4 3 8 6 + 0.19628087879206717E-001 4 4 8 6 + 0.85547702011141945E-002 4 5 8 6 + -0.27083459354517599E-002 4 6 8 6 + 0.18908188251378915E-009 4 7 8 6 + -0.37056938837936753E-002 4 8 8 6 + -0.87578342801903977E-002 5 3 8 6 + 0.85547702011141945E-002 5 4 8 6 + -0.17091605487594898E-002 5 5 8 6 + -0.26059349233734440E-002 5 6 8 6 + -0.18412718821700772E-008 5 7 8 6 + 0.33536404838164921E-003 5 8 8 6 + -0.18046768132945592E-002 6 3 8 6 + -0.16271735124968182E-002 6 4 8 6 + -0.15656453522075618E-002 6 5 8 6 + -0.15522783286461831E-007 6 6 8 6 + -0.40884578210033680E-009 6 7 8 6 + 0.22291453525236291E-001 6 8 8 6 + 0.25575200524620293E-009 7 3 8 6 + 0.14731768579548289E-009 7 4 8 6 + -0.14345738536085722E-008 7 5 8 6 + -0.40884577099058432E-009 7 6 8 6 + 0.10856346206253309E-007 7 7 8 6 + 0.42575629318026110E-008 7 8 8 6 + 0.18326022290935929E-002 8 3 8 6 + -0.22263803966005632E-002 8 4 8 6 + 0.20148649744979844E-003 8 5 8 6 + 0.22291453525236295E-001 8 6 8 6 + 0.61180311029188626E-003 1 10 8 7 + -0.66864968336841852E-004 1 11 8 7 + -0.16695019683186937E-004 1 12 8 7 + 0.79163137768022075E-003 1 13 8 7 + 0.82253620104817111E-005 1 14 8 7 + 0.10898345876888293E-001 2 10 8 7 + -0.11912228730937139E-002 2 11 8 7 + -0.29731939373673104E-003 2 12 8 7 + 0.14104094985789795E-001 2 13 8 7 + 0.14662003929787014E-003 2 14 8 7 + -0.12899452671275562E-001 3 3 8 7 + -0.10052917708159963E-001 3 4 8 7 + 0.62433468045406905E-002 3 5 8 7 + 0.32825672903812385E-009 3 6 8 7 + -0.30037604561789313E-002 3 7 8 7 + 0.21957979491647956E-002 3 8 8 7 + -0.10052917708159961E-001 4 3 8 7 + -0.76415442014062364E-002 4 4 8 7 + 0.69980625307590836E-002 4 5 8 7 + 0.18908231192017828E-009 4 6 8 7 + -0.27083177272081561E-002 4 7 8 7 + 0.14426664041587301E-002 4 8 8 7 + 0.62433468045406913E-002 5 3 8 7 + 0.69980625307590845E-002 5 4 8 7 + 0.20540996872678997E-001 5 5 8 7 + -0.18412719023340340E-008 5 6 8 7 + -0.26058297745590944E-002 5 7 8 7 + -0.40305205143195784E-002 5 8 8 7 + 0.25575163819573942E-009 6 3 8 7 + 0.14731820353986451E-009 6 4 8 7 + -0.14345739157790258E-008 6 5 8 7 + -0.40884610037724935E-009 6 6 8 7 + 0.10856346217178337E-007 6 7 8 7 + 0.42575629289861420E-008 6 8 8 7 + -0.18046538977104097E-002 7 3 8 7 + -0.16271515348574312E-002 7 4 8 7 + -0.15655634285410491E-002 7 5 8 7 + 0.10856346217367649E-007 7 6 8 7 + -0.41134717955980521E-006 7 7 8 7 + 0.22290887475282305E-001 7 8 8 7 + 0.13192203659867713E-002 8 3 8 7 + 0.86674214111902108E-003 8 4 8 7 + -0.24215289268295233E-002 8 5 8 7 + 0.42575629312332650E-008 8 6 8 7 + 0.22290887475282295E-001 8 7 8 7 + 0.84092143855983215 1 1 8 8 + -0.49573963570187334E-001 1 2 8 8 + 0.42415084318327190E-001 1 9 8 8 + 0.81081511478261689E-003 1 10 8 8 + -0.11112529426992394E-004 1 11 8 8 + -0.96045214343402828E-004 1 12 8 8 + -0.63472191148152566E-003 1 13 8 8 + 0.52107398790247146E-003 1 14 8 8 + 0.15314035155088073E-001 2 1 8 8 + 0.52655417225132417 2 2 8 8 + -0.17071595504852213 2 9 8 8 + 0.14443355103422288E-001 2 10 8 8 + -0.19784995640963567E-003 2 11 8 8 + -0.17109984245848192E-002 2 12 8 8 + -0.11308404039199809E-001 2 13 8 8 + 0.92837782431738000E-002 2 14 8 8 + 0.52167072300203499 3 3 8 8 + 0.15909741283933413E-001 3 4 8 8 + 0.15308600429233233E-001 3 5 8 8 + 0.11548770559418846 3 6 8 8 + 0.83139156850904117E-001 3 7 8 8 + -0.11973523183789257 3 8 8 8 + 0.15909741283933396E-001 4 3 8 8 + 0.51837048043018641 4 4 8 8 + 0.13802892539997849E-001 4 5 8 8 + -0.14030296579976559 4 6 8 8 + 0.54623857550910718E-001 4 7 8 8 + -0.10795856922105501 4 8 8 8 + 0.15308600429233248E-001 5 3 8 8 + 0.13802892539997896E-001 5 4 8 8 + 0.51730623703695922 5 5 8 8 + 0.12697408065538218E-001 5 6 8 8 + -0.15260287706227088 5 7 8 8 + -0.10387631503468635 5 8 8 8 + 0.60943165849060295E-001 6 3 8 8 + -0.74038243999102693E-001 6 4 8 8 + 0.67004553740339749E-002 6 5 8 8 + 0.42345331257590824 6 6 8 8 + 0.42575628499646434E-008 6 7 8 8 + 0.46664370698785528E-008 6 8 8 8 + 0.43872730896972911E-001 7 3 8 8 + 0.28825136853413053E-001 7 4 8 8 + -0.80528929271451416E-001 7 5 8 8 + 0.42575629353528801E-008 7 6 8 8 + 0.42345274652595766 7 7 8 8 + 0.41175602415562923E-006 7 8 8 8 + -0.63623696680548458E-001 8 3 8 8 + -0.57365934874628460E-001 8 4 8 8 + -0.55196766206204916E-001 8 5 8 8 + 0.46664370635466225E-008 8 6 8 8 + 0.41175602480789595E-006 8 7 8 8 + 0.46803505562911946 8 8 8 8 + 0.14659550414108527E-002 1 3 8 9 + 0.13217696583365853E-002 1 4 8 9 + 0.12717884692212179E-002 1 5 8 9 + -0.17331172967789488E-002 1 8 8 9 + 0.52329236041002168E-001 2 3 8 9 + 0.47182344948561189E-001 2 4 8 9 + 0.45398199208108225E-001 2 5 8 9 + -0.17882217975080727E-001 2 8 8 9 + 0.25362563300824446E-001 3 1 8 9 + 0.59657431423710522E-001 3 2 8 9 + -0.65428183774890857E-002 3 9 8 9 + 0.87064541871714803E-002 3 10 8 9 + 0.62799446899592772E-002 3 11 8 9 + -0.32233775128877797E-001 3 12 8 9 + -0.34656779528077310E-001 3 13 8 9 + 0.14980698481409893E-001 3 14 8 9 + 0.22868004598836127E-001 4 1 8 9 + 0.53789768801003508E-001 4 2 8 9 + -0.58992933392070521E-002 4 9 8 9 + 0.15561765838871046E-001 4 10 8 9 + -0.56067281272135254E-002 4 11 8 9 + 0.33792952534592247E-001 4 12 8 9 + -0.30083573695488749E-001 4 13 8 9 + 0.14272938915935772E-001 4 14 8 9 + 0.22003277484442856E-001 5 1 8 9 + 0.51755770978494084E-001 5 2 8 9 + -0.56762183925441710E-002 5 9 8 9 + 0.45104206219186233E-001 5 10 8 9 + -0.23883800916653800E-002 5 11 8 9 + -0.64141441043004399E-002 5 12 8 9 + 0.15376646152373868E-001 5 13 8 9 + 0.13738707940891139E-001 5 14 8 9 + 0.23635785095844610E-003 6 10 8 9 + -0.57865226830831602E-003 6 11 8 9 + 0.33375103830093479E-002 6 12 8 9 + -0.16155055265915214E-003 6 13 8 9 + 0.38271343717937088E-004 6 14 8 9 + 0.20735826717834987E-002 7 10 8 9 + -0.22666949854682227E-003 7 11 8 9 + -0.56557040969554505E-004 7 12 8 9 + 0.26839185902712680E-002 7 13 8 9 + 0.27912840084237868E-004 7 14 8 9 + -0.43897957704769210E-001 8 1 8 9 + -0.81986501857257144E-002 8 2 8 9 + 0.82024387580007116E-001 8 9 8 9 + -0.36315157238628342E-003 1 3 8 10 + -0.64908864229929798E-003 1 4 8 10 + -0.18813082766600240E-002 1 5 8 10 + 0.11414857381333724E-003 1 6 8 10 + 0.10014213812801235E-002 1 7 8 10 + 0.13271667739685254E-002 1 8 8 10 + -0.13106813260219902E-002 2 3 8 10 + -0.23426706662547131E-002 2 4 8 10 + -0.67899139205590819E-002 2 5 8 10 + 0.11549200099029329E-002 2 6 8 10 + 0.10132110347570788E-001 2 7 8 10 + 0.13427878988665756E-001 2 8 8 10 + -0.26431712761003350E-002 3 1 8 10 + -0.13522681560597502E-002 3 2 8 10 + 0.35855438879773983E-002 3 9 8 10 + -0.19696278049524682E-002 3 10 8 10 + 0.47053065422926748E-003 3 11 8 10 + 0.70203123575315234E-003 3 12 8 10 + 0.92059720296635211E-004 3 13 8 10 + -0.27742962699394715E-003 3 14 8 10 + -0.47243589098219700E-002 4 1 8 10 + -0.24170038023963781E-002 4 2 8 10 + 0.64087358141374558E-002 4 9 8 10 + -0.20809265858575217E-002 4 10 8 10 + -0.31885526703321503E-003 4 11 8 10 + -0.72267448245521518E-003 4 12 8 10 + 0.75321488977284044E-004 4 13 8 10 + -0.25729489128480262E-003 4 14 8 10 + -0.13693078009306071E-001 5 1 8 10 + -0.70053677580165698E-002 5 2 8 10 + 0.18575058560539419E-001 5 9 8 10 + -0.19088814048624815E-002 5 10 8 10 + 0.47104021971631967E-004 5 11 8 10 + 0.22856222714239770E-004 5 12 8 10 + -0.43802162676775979E-004 5 13 8 10 + -0.12015462588173243E-002 5 14 8 10 + 0.11473339859430930E-002 6 1 8 10 + 0.15637909877911375E-002 6 2 8 10 + 0.23635785095840587E-003 6 9 8 10 + 0.13484179744542497E-002 6 10 8 10 + 0.49150147967600300E-002 6 11 8 10 + 0.93954265317232524E-002 6 12 8 10 + -0.12587925606082689E-003 6 13 8 10 + -0.79356143820616875E-003 6 14 8 10 + 0.10065584357802509E-001 7 1 8 10 + 0.13719133283642665E-001 7 2 8 10 + 0.20735826717837380E-002 7 9 8 10 + 0.46504205195953898E-003 7 10 8 10 + 0.50835299362172841E-003 7 11 8 10 + 0.59438816489257404E-003 7 12 8 10 + 0.74712538644580067E-002 7 13 8 10 + 0.51741231333069819E-002 7 14 8 10 + 0.13339689412342967E-001 8 1 8 10 + 0.18181688288423887E-001 8 2 8 10 + 0.27480622366047591E-002 8 9 8 10 + 0.17520425459582753E-001 8 10 8 10 + -0.26192915565635959E-003 1 3 8 11 + 0.23386649690004075E-003 1 4 8 11 + 0.99615796444490681E-004 1 5 8 11 + -0.27945842763950248E-003 1 6 8 11 + -0.10945353272195692E-003 1 7 8 11 + -0.18183989516370157E-004 1 8 8 11 + -0.94529732358607081E-003 2 3 8 11 + 0.84409814436995712E-003 2 4 8 11 + 0.35950794164974468E-003 2 5 8 11 + -0.28274759946286623E-002 2 6 8 11 + -0.11074707142872055E-002 2 7 8 11 + -0.18393982410199600E-003 2 8 8 11 + -0.19065142856611772E-002 3 1 8 11 + -0.97530170385566866E-003 3 2 8 11 + 0.25862269840729261E-002 3 9 8 11 + 0.44319884055853050E-003 3 10 8 11 + -0.98929845091259784E-003 3 11 8 11 + 0.66185764345583155E-003 3 12 8 11 + 0.64228514318251655E-003 3 13 8 11 + 0.72020322771066336E-004 3 14 8 11 + 0.17021323237982819E-002 4 1 8 11 + 0.87087445551528890E-003 4 2 8 11 + -0.23090061027906937E-002 4 9 8 11 + -0.28615714278252706E-003 4 10 8 11 + -0.66918599947185075E-003 4 11 8 11 + 0.56172849138385044E-003 4 12 8 11 + -0.69717476968651304E-003 4 13 8 11 + -0.12303367279155712E-003 4 14 8 11 + 0.72508301635233958E-003 5 1 8 11 + 0.37091969319222984E-003 5 2 8 11 + -0.98358920553771509E-003 5 9 8 11 + 0.44625679057708759E-004 5 10 8 11 + -0.31904216750638302E-003 5 11 8 11 + -0.65421280765079329E-003 5 12 8 11 + 0.14144981822379409E-003 5 13 8 11 + 0.79509516423004756E-004 5 14 8 11 + -0.28089052216433773E-002 6 1 8 11 + -0.38284741577538639E-002 6 2 8 11 + -0.57865226830845426E-003 6 9 8 11 + 0.15025471059691841E-002 6 10 8 11 + -0.81798415578331171E-003 6 11 8 11 + -0.34780279084794928E-003 6 12 8 11 + 0.27428957284427774E-002 6 13 8 11 + 0.18496296561533333E-002 6 14 8 11 + -0.11002331984403656E-002 7 1 8 11 + -0.14995418527287991E-002 7 2 8 11 + -0.22666949854684599E-003 7 9 8 11 + 0.46083674099235006E-003 7 10 8 11 + -0.23482532259063793E-002 7 11 8 11 + 0.27581906898736792E-002 7 12 8 11 + -0.48299454900625386E-003 7 13 8 11 + -0.48359026213245062E-003 7 14 8 11 + -0.18270406127244743E-003 8 1 8 11 + -0.24906037357593787E-003 8 2 8 11 + -0.37627160857235684E-004 8 9 8 11 + -0.85329985274690365E-003 8 10 8 11 + 0.36788874976145026E-002 8 11 8 11 + 0.13444749669491232E-002 1 3 8 12 + -0.14095236536234234E-002 1 4 8 12 + 0.26753666020451055E-003 1 5 8 12 + 0.16118402126185101E-002 1 6 8 12 + -0.27322965604335518E-004 1 7 8 12 + -0.15721542939656590E-003 1 8 8 12 + 0.48523844819726870E-002 2 3 8 12 + -0.50872261987764391E-002 2 4 8 12 + 0.96558344030171588E-003 2 5 8 12 + 0.16308114971385561E-001 2 6 8 12 + -0.27641576185065994E-003 2 7 8 12 + -0.15907021949731282E-002 2 8 8 12 + 0.97857750697224605E-002 3 1 8 12 + 0.50063618215838140E-002 3 2 8 12 + -0.13274681343836891E-001 3 9 8 12 + 0.64485417600171975E-003 3 10 8 12 + 0.70444694174289174E-003 3 11 8 12 + -0.20130409888400444E-002 3 12 8 12 + -0.29946758985718522E-003 3 13 8 12 + -0.46254034766159651E-003 3 14 8 12 + -0.10259120491388184E-001 4 1 8 12 + -0.52486408580560548E-002 4 2 8 12 + 0.13916813349816964E-001 4 9 8 12 + -0.65502706999527724E-003 4 10 8 12 + 0.59003107649826538E-003 4 11 8 12 + -0.16029846112763160E-002 4 12 8 12 + 0.36852369463622614E-003 4 13 8 12 + 0.63823748940930068E-003 4 14 8 12 + 0.19472545526220038E-002 5 1 8 12 + 0.99622180977086282E-003 5 2 8 12 + -0.26415091576515097E-002 5 9 8 12 + 0.18455363120035765E-004 5 10 8 12 + -0.73271908437980171E-003 5 11 8 12 + -0.21166145698524523E-002 5 12 8 12 + -0.40916540360080939E-004 5 13 8 12 + 0.32830521941593328E-004 5 14 8 12 + 0.16201005406722282E-001 6 1 8 12 + 0.22081600922957006E-001 6 2 8 12 + 0.33375103830090573E-002 6 9 8 12 + 0.23078315381648063E-002 6 10 8 12 + -0.36940856129687172E-003 6 11 8 12 + -0.11541196532392848E-002 6 12 8 12 + -0.10503055081704132E-002 6 13 8 12 + -0.10438926924652724E-001 6 14 8 12 + -0.27457985146709323E-003 7 1 8 12 + -0.37427482587148959E-003 7 2 8 12 + -0.56557040969560556E-004 7 9 8 12 + 0.42461597619013436E-003 7 10 8 12 + 0.10248292808750602E-001 7 11 8 12 + 0.22799234412029887E-002 7 12 8 12 + -0.37213545665801652E-003 7 13 8 12 + -0.38476208807129302E-003 7 14 8 12 + -0.15802846744996607E-002 8 1 8 12 + -0.21538497897240607E-002 8 2 8 12 + -0.32556068738663022E-003 8 9 8 12 + -0.26799062832504739E-003 8 10 8 12 + -0.22901899926141673E-002 8 11 8 12 + 0.16728639067472909E-001 8 12 8 12 + 0.14453668701982180E-002 1 3 8 13 + 0.12546545409135154E-002 1 4 8 13 + -0.64128190818640385E-003 1 5 8 13 + -0.78018351556919939E-004 1 6 8 13 + 0.12958956627199310E-002 1 7 8 13 + -0.10390298307818369E-002 1 8 8 13 + 0.52156952361144850E-002 2 3 8 13 + 0.45275649269546376E-002 2 4 8 13 + -0.23140873912312517E-002 2 5 8 13 + -0.78937286391586483E-003 2 6 8 13 + 0.13112466488942620E-001 2 7 8 13 + -0.10513334770626218E-001 2 8 8 13 + 0.10521386587212085E-001 3 1 8 13 + 0.53813681592675966E-002 3 2 8 13 + -0.14272270442732191E-001 3 9 8 13 + 0.92135999914774486E-005 3 10 8 13 + 0.69854433742718314E-003 3 11 8 13 + -0.32616631461803618E-003 3 12 8 13 + -0.20992958958950029E-002 3 13 8 13 + 0.93676282949849382E-003 3 14 8 13 + 0.91330142054173984E-002 4 1 8 13 + 0.46713662804190844E-002 4 2 8 13 + -0.12388965556903274E-001 4 9 8 13 + 0.17373368531154566E-004 4 10 8 13 + -0.75920244182727263E-003 4 11 8 13 + 0.41070972666546401E-003 4 12 8 13 + -0.20427437564875628E-002 4 13 8 13 + 0.71732179244394557E-003 4 14 8 13 + -0.46681674941710504E-002 5 1 8 13 + -0.23875963843553406E-002 5 2 8 13 + 0.63323671747334363E-002 5 9 8 13 + 0.11191584190840939E-003 5 10 8 13 + 0.14106770861266302E-003 5 11 8 13 + -0.53985853443504743E-004 5 12 8 13 + -0.17725579369739122E-002 5 13 8 13 + -0.47150590145344216E-003 5 14 8 13 + -0.78419291266261753E-003 6 1 8 13 + -0.10688306650132951E-002 6 2 8 13 + -0.16155055265917051E-003 6 9 8 13 + 0.11100018298399234E-003 6 10 8 13 + 0.94125134070068492E-002 6 11 8 13 + -0.50742728471714037E-002 6 12 8 13 + 0.72531108193634808E-003 6 13 8 13 + 0.23509648848481560E-003 6 14 8 13 + 0.13027020525411527E-001 7 1 8 13 + 0.17754582853583951E-001 7 2 8 13 + 0.26839185902714970E-002 7 9 8 13 + -0.73673894230756685E-002 7 10 8 13 + 0.10828011660553663E-003 7 11 8 13 + 0.54012027633819890E-003 7 12 8 13 + -0.52430059601317014E-003 7 13 8 13 + 0.66214140261187365E-002 7 14 8 13 + -0.10444794572267255E-001 8 1 8 13 + -0.14235299744021150E-001 8 2 8 13 + -0.21518977525781633E-002 8 9 8 13 + -0.46434603398260295E-003 8 10 8 13 + -0.52110641476332115E-003 8 11 8 13 + 0.11326969506372248E-004 8 12 8 13 + 0.17458635023864619E-001 8 13 8 13 + -0.62476812627910462E-003 1 3 8 14 + -0.59525958131654525E-003 1 4 8 14 + -0.57296738529099363E-003 1 5 8 14 + 0.18488780366604249E-004 1 6 8 14 + 0.13468692530159082E-004 1 7 8 14 + 0.85299841252122009E-003 1 8 8 14 + -0.22544929679867262E-002 2 3 8 14 + -0.21480510710048927E-002 2 4 8 14 + -0.20675509736600077E-002 2 5 8 14 + 0.18704470204468322E-003 2 6 8 14 + 0.13631135542145999E-003 2 7 8 14 + 0.86310556857865928E-002 2 8 8 14 + -0.45479625570990119E-002 3 1 8 14 + -0.23261096821247979E-002 3 2 8 14 + 0.61693078641165064E-002 3 9 8 14 + -0.27362081587365111E-003 3 10 8 14 + 0.56193210835582698E-004 3 11 8 14 + -0.36407630450171867E-003 3 12 8 14 + 0.93020538677781141E-003 3 13 8 14 + -0.10651746815276036E-002 3 14 8 14 + -0.43330942820843359E-002 4 1 8 14 + -0.22162782965477810E-002 4 2 8 14 + 0.58778534470047654E-002 4 9 8 14 + -0.26824158216008371E-003 4 10 8 14 + -0.10260694758612088E-003 4 11 8 14 + 0.52085593921619296E-003 4 12 8 14 + 0.71890125775406883E-003 4 13 8 14 + -0.94032989555714467E-003 4 14 8 14 + -0.41709093173037115E-002 5 1 8 14 + -0.21332328243534098E-002 5 2 8 14 + 0.56578292347903890E-002 5 9 8 14 + -0.11945113945532448E-002 5 10 8 14 + 0.76521157191201022E-004 5 11 8 14 + 0.41323141814502548E-004 5 12 8 14 + -0.46559028075616944E-003 5 13 8 14 + -0.94166596357454508E-003 5 14 8 14 + 0.18580302463823124E-003 6 1 8 14 + 0.25326383399891874E-003 6 2 8 14 + 0.38271343717926618E-004 6 9 8 14 + 0.11240903192516149E-003 6 10 8 14 + -0.22636710104998307E-003 6 11 8 14 + 0.18234445522434179E-002 6 12 8 14 + -0.16139689242484608E-003 6 13 8 14 + -0.10162524736803010E-003 6 14 8 14 + 0.13544296328601082E-003 7 1 8 14 + 0.18456787261436465E-003 7 2 8 14 + 0.27912840084113263E-004 7 9 8 14 + 0.45811409853123370E-002 7 10 8 14 + -0.37132990414383109E-003 7 11 8 14 + -0.17501120814992913E-003 7 12 8 14 + 0.60238774616489556E-002 7 13 8 14 + 0.12758832875680009E-003 7 14 8 14 + 0.85748306336103208E-002 8 1 8 14 + 0.11686648206083431E-001 8 2 8 14 + 0.17666543424568431E-002 8 9 8 14 + 0.59133179682644022E-002 8 10 8 14 + -0.11414695831840418E-003 8 11 8 14 + -0.53934944781212750E-003 8 12 8 14 + -0.44835990827379749E-002 8 13 8 14 + 0.69647714482600157E-002 8 14 8 14 + 0.43245095718626231 1 1 9 1 + -0.55049344365602597E-001 1 2 9 1 + 0.50151198298382021E-001 1 9 9 1 + -0.81356175261657948E-001 2 1 9 1 + -0.84313074291669197E-002 2 2 9 1 + -0.23626391686032141E-001 2 9 9 1 + -0.13292194353504374E-001 3 3 9 1 + 0.14282635513771694E-001 3 6 9 1 + 0.10282024794298726E-001 3 7 9 1 + -0.14064984231361731E-001 3 8 9 1 + -0.13292194353504233E-001 4 4 9 1 + -0.17351596915797008E-001 4 6 9 1 + 0.67554686805749858E-002 4 7 9 1 + -0.12681609515189828E-001 4 8 9 1 + -0.13292194353504429E-001 5 5 9 1 + 0.15703183660430715E-002 5 6 9 1 + -0.18872760835486460E-001 5 7 9 1 + -0.12202069135768510E-001 5 8 9 1 + 0.15732972965835878E-001 6 3 9 1 + -0.19113573606712054E-001 6 4 9 1 + 0.17297771393024229E-002 6 5 9 1 + -0.12525434716147660E-001 6 6 9 1 + 0.11326118206039513E-001 7 3 9 1 + 0.74414561668647095E-002 7 4 9 1 + -0.20789204886527572E-001 7 5 9 1 + -0.12525434716146994E-001 7 7 9 1 + -0.15493220173794512E-001 8 3 9 1 + -0.13969369971906547E-001 8 4 9 1 + -0.13441134421948889E-001 8 5 9 1 + -0.12525434716147452E-001 8 8 9 1 + 0.72254425778788739E-001 9 1 9 1 + -0.41316201508858535 1 1 9 2 + 0.10294462024941428E-002 1 2 9 2 + -0.50373570622620637E-003 1 9 9 2 + 0.29753415859711446E-001 2 1 9 2 + -0.13719940877528689 2 2 9 2 + 0.83740741876166272E-001 2 9 9 2 + -0.13234220258518273 3 3 9 2 + -0.65241442437186548E-001 3 6 9 2 + -0.46967111084516913E-001 3 7 9 2 + 0.64247236318922110E-001 3 8 9 2 + -0.13234220258518092 4 4 9 2 + 0.79260106461702284E-001 4 6 9 2 + -0.30858206850898844E-001 4 7 9 2 + 0.57928139130789917E-001 4 8 9 2 + -0.13234220258518220 5 5 9 2 + -0.71730343596231230E-002 5 6 9 2 + 0.86208608942792767E-001 5 7 9 2 + 0.55737653626196204E-001 5 8 9 2 + -0.10520017911367413 6 3 9 2 + 0.12780492099584964 6 4 9 2 + -0.11566336844060570E-001 6 5 9 2 + -0.63673285522471937E-001 6 6 9 2 + -0.75733281085868714E-001 7 3 9 2 + -0.49758079628095454E-001 7 4 9 2 + 0.13900920585338136 7 5 9 2 + -0.63673285522474254E-001 7 7 9 2 + 0.10359704684359836 8 3 9 2 + 0.93407662133592487E-001 8 4 9 2 + 0.89875559549394871E-001 8 5 9 2 + -0.63673285522472561E-001 8 8 9 2 + -0.24323505686960307E-001 9 1 9 2 + 0.16442430649277148 9 2 9 2 + -0.62114314691867987E-002 1 3 9 3 + -0.34139796300911474E-002 1 6 9 3 + -0.24577132959797171E-002 1 7 9 3 + 0.33619544248064243E-002 1 8 9 3 + -0.22989595626207410E-001 2 3 9 3 + -0.21342362691761999E-001 2 6 9 3 + -0.15364300387979720E-001 2 7 9 3 + 0.21017129116695000E-001 2 8 9 3 + -0.27588089911733608E-001 3 1 9 3 + -0.22056770629603054E-001 3 2 9 3 + 0.38828580768756928E-001 3 9 9 3 + 0.24914907641200943E-002 3 10 9 3 + -0.81967860137939514E-002 3 11 9 3 + 0.76581444933027914E-002 3 12 9 3 + 0.55869156917031197E-002 3 13 9 3 + 0.17411518117212731E-002 3 14 9 3 + 0.79668356694195558E-003 4 10 9 3 + 0.15092032580882168E-002 4 11 9 3 + -0.81410464824993806E-003 4 12 9 3 + 0.58735675163538500E-002 4 13 9 3 + -0.93062710756484836E-002 4 14 9 3 + -0.74570070165994838E-002 5 10 9 3 + 0.51698484332342734E-002 5 11 9 3 + 0.59285363861850768E-002 5 12 9 3 + 0.24084021152683609E-002 5 13 9 3 + 0.12016703801508411E-002 5 14 9 3 + -0.19805537487463568E-001 6 1 9 3 + -0.29482887903431135E-001 6 2 9 3 + -0.60918449939167810E-003 6 9 9 3 + 0.99889387651486529E-003 6 10 9 3 + -0.13428848566382023E-001 6 11 9 3 + 0.13197620269668316E-001 6 12 9 3 + -0.18223148959219796E-002 6 13 9 3 + 0.18706999545887188E-001 6 14 9 3 + -0.14257944712946086E-001 7 1 9 3 + -0.21224639117781309E-001 7 2 9 3 + -0.43855002257844617E-003 7 9 9 3 + 0.17065116283864618E-001 7 10 9 3 + -0.17057180105549016E-001 7 11 9 3 + -0.38402172225103608E-002 7 12 9 3 + 0.51352520437061028E-002 7 13 9 3 + -0.67225441414843490E-002 7 14 9 3 + 0.19503723397983449E-001 8 1 9 3 + 0.29033601890695811E-001 8 2 9 3 + 0.59990121358707285E-003 8 9 9 3 + 0.45555636031424296E-002 8 10 9 3 + 0.32858490231398047E-002 8 11 9 3 + -0.16865899717985366E-001 8 12 9 3 + -0.18132659478993934E-001 8 13 9 3 + 0.78379748818767619E-002 8 14 9 3 + 0.50705849198177957E-001 9 3 9 3 + -0.62114314691866712E-002 1 4 9 4 + 0.41475537454528227E-002 1 6 9 4 + -0.16147602762084205E-002 1 7 9 4 + 0.30312862440466841E-002 1 8 9 4 + -0.22989595626207063E-001 2 4 9 4 + 0.25928273132862573E-001 2 6 9 4 + -0.10094611921914036E-001 2 7 9 4 + 0.18949969669638776E-001 2 8 9 4 + 0.79668356694196187E-003 3 10 9 4 + 0.15092032580882400E-002 3 11 9 4 + -0.81410464824994012E-003 3 12 9 4 + 0.58735675163538430E-002 3 13 9 4 + -0.93062710756484958E-002 3 14 9 4 + -0.27588089911733182E-001 4 1 9 4 + -0.22056770629602717E-001 4 2 9 4 + 0.38828580768756539E-001 4 9 9 4 + 0.21301216632072466E-003 4 10 9 4 + 0.66495584702011895E-002 4 11 9 4 + -0.85441462788182938E-002 4 12 9 4 + 0.49404784807035307E-002 4 13 9 4 + 0.49611638679356203E-002 4 14 9 4 + -0.78551148511151782E-002 5 10 9 4 + -0.62309012704352624E-002 5 11 9 4 + -0.47645053726226520E-002 5 12 9 4 + 0.10748523782226484E-002 5 13 9 4 + -0.58719007856901221E-003 5 14 9 4 + 0.24061224754479651E-001 6 1 9 4 + 0.35817982354915248E-001 6 2 9 4 + 0.74008216975109792E-003 6 9 9 4 + -0.46240981193529346E-003 6 10 9 4 + -0.10295646835489777E-001 6 11 9 4 + 0.12833195431716935E-001 6 12 9 4 + -0.14522549299778742E-004 6 13 9 4 + -0.21856544988377868E-001 6 14 9 4 + -0.93677170484052410E-002 7 1 9 4 + -0.13944956142897352E-001 7 2 9 4 + -0.28813497357412491E-003 7 9 9 4 + 0.15688296570959891E-001 7 10 9 4 + 0.17691005738154061E-001 7 11 9 4 + 0.23679230185310171E-002 7 12 9 4 + 0.73027256071804816E-002 7 13 9 4 + -0.50773963055121222E-002 7 14 9 4 + 0.17585416389873307E-001 8 1 9 4 + 0.26177974744990791E-001 8 2 9 4 + 0.54089736705403022E-003 8 9 9 4 + 0.81425222876029893E-002 8 10 9 4 + -0.29337024459563672E-002 8 11 9 4 + 0.17681811221350728E-001 8 12 9 4 + -0.15740012625543337E-001 8 13 9 4 + 0.74677231610630404E-002 8 14 9 4 + 0.50705849198177368E-001 9 4 9 4 + -0.62114314691867926E-002 1 5 9 5 + -0.37535333792282225E-003 1 6 9 5 + 0.45111576917164992E-002 1 7 9 5 + 0.29166616647404147E-002 1 8 9 5 + -0.22989595626207164E-001 2 5 9 5 + -0.23465069928663611E-002 2 6 9 5 + 0.28201329254496005E-001 2 7 9 5 + 0.18233398509289289E-001 2 8 9 5 + -0.74570070165994474E-002 3 10 9 5 + 0.51698484332342448E-002 3 11 9 5 + 0.59285363861850630E-002 3 12 9 5 + 0.24084021152683752E-002 3 13 9 5 + 0.12016703801508496E-002 3 14 9 5 + -0.78551148511152441E-002 4 10 9 5 + -0.62309012704352858E-002 4 11 9 5 + -0.47645053726226520E-002 4 12 9 5 + 0.10748523782226410E-002 4 13 9 5 + -0.58719007856901937E-003 4 14 9 5 + -0.27588089911733376E-001 5 1 9 5 + -0.22056770629602797E-001 5 2 9 5 + 0.38828580768756921E-001 5 9 9 5 + -0.27045029304408556E-002 5 10 9 5 + 0.15472275435926589E-002 5 11 9 5 + 0.88600178551575778E-003 5 12 9 5 + -0.10527394172406597E-001 5 13 9 5 + -0.67023156796568104E-002 5 14 9 5 + -0.21775392388842345E-002 6 1 9 5 + -0.32415250192519458E-002 6 2 9 5 + -0.66977387106211038E-004 6 9 9 5 + 0.25385141546920443E-002 6 10 9 5 + 0.18322243510849878E-001 6 11 9 5 + 0.16767439387957980E-001 6 12 9 5 + -0.77906665511902649E-004 6 13 9 5 + 0.16722438909327335E-002 6 14 9 5 + 0.26170602187442781E-001 7 1 9 5 + 0.38958040454396048E-001 7 2 9 5 + 0.80496301614763044E-003 7 9 9 5 + -0.78199119804312368E-002 7 10 9 5 + -0.18023774853825562E-002 7 11 9 5 + 0.11974029759567600E-002 7 12 9 5 + 0.22927922760932595E-001 7 13 9 5 + 0.13404595583443634E-001 7 14 9 5 + 0.16920444231742975E-001 8 1 9 5 + 0.25188084942229141E-001 8 2 9 5 + 0.52044395943925872E-003 8 9 9 5 + 0.23600220020076886E-001 8 10 9 5 + -0.12496651269152002E-002 8 11 9 5 + -0.33561280943210274E-002 8 12 9 5 + 0.80451417195564912E-002 8 13 9 5 + 0.71881369443546183E-002 8 14 9 5 + 0.50705849198177916E-001 9 5 9 5 + -0.14227953886723293E-002 1 3 9 6 + 0.17285165650342343E-002 1 4 9 6 + -0.15643063409407785E-003 1 5 9 6 + -0.15397601915217102E-002 1 6 9 6 + -0.53037042537578807E-001 2 3 9 6 + 0.64433303141474690E-001 2 4 9 6 + -0.58312096459412202E-002 2 5 9 6 + -0.20645204325810632E-001 2 6 9 6 + -0.25689196272617596E-001 3 1 9 6 + -0.60478639478124811E-001 3 2 9 6 + 0.87087660749083657E-002 3 9 9 6 + 0.19057558809426000E-002 3 10 9 6 + -0.25619706698585726E-001 3 11 9 6 + 0.25178524914618444E-001 3 12 9 6 + -0.34766852737696053E-002 3 13 9 6 + 0.35690879748507036E-001 3 14 9 6 + 0.31209126521743867E-001 4 1 9 6 + 0.73473902854159195E-001 4 2 9 6 + -0.10580050048891213E-001 4 9 9 6 + -0.88225689951282316E-003 4 10 9 6 + -0.19642157444912458E-001 4 11 9 6 + 0.24483372116673369E-001 4 12 9 6 + -0.27632647312022901E-004 4 13 9 6 + -0.41699929702387811E-001 4 14 9 6 + -0.28244238730926207E-002 5 1 9 6 + -0.66493833182415182E-002 5 2 9 6 + 0.95749382526886617E-003 5 9 9 6 + 0.48430091074498846E-002 5 10 9 6 + 0.34955387067307830E-001 5 11 9 6 + 0.31989107825240524E-001 5 12 9 6 + -0.14866760826532106E-003 5 13 9 6 + 0.31904270169928186E-002 5 14 9 6 + -0.43704600599511589E-001 6 1 9 6 + -0.10961636536455552E-001 6 2 9 6 + 0.78929498516016966E-001 6 9 9 6 + -0.92023867621227368E-004 6 10 9 6 + -0.54688624189340306E-004 6 11 9 6 + 0.27498369085454067E-004 6 12 9 6 + 0.90698539797612728E-004 6 13 9 6 + -0.22731037659695216E-002 6 14 9 6 + 0.14272696662730660E-003 7 10 9 6 + 0.19377921145814177E-002 7 11 9 6 + 0.32933415910926117E-003 7 12 9 6 + 0.60797495832777594E-004 7 13 9 6 + -0.46000695888375956E-004 7 14 9 6 + 0.13711969140616198E-003 8 10 9 6 + -0.33569709373405891E-003 8 11 9 6 + 0.19362105119482230E-002 8 12 9 6 + -0.93721653646258233E-004 8 13 9 6 + 0.22201622570139921E-004 8 14 9 6 + 0.14555151065251365E-002 9 3 9 6 + -0.17682668866628318E-002 9 4 9 6 + 0.16002803555593997E-003 9 5 9 6 + 0.75834609452026899E-001 9 6 9 6 + -0.10242659661404156E-002 1 3 9 7 + -0.67296051052874385E-003 1 4 9 7 + 0.18800505734643082E-002 1 5 9 7 + -0.15397601915216996E-002 1 7 9 7 + -0.38181201631998916E-001 2 3 9 7 + -0.25085711907124351E-001 2 4 9 7 + 0.70081982997332606E-001 2 5 9 7 + -0.20645204325811673E-001 2 7 9 7 + -0.18493572335860263E-001 3 1 9 7 + -0.43538384077640296E-001 3 2 9 7 + 0.62694135563158976E-002 3 9 9 7 + 0.32557019784943957E-001 3 10 9 7 + -0.32541910204818857E-001 3 11 9 7 + -0.73263799707749232E-002 3 12 9 7 + 0.97976000792819908E-002 3 13 9 7 + -0.12825818247487245E-001 3 14 9 7 + -0.12150597883806584E-001 4 1 9 7 + -0.28605473719770794E-001 4 2 9 7 + 0.41191134793556192E-002 4 9 9 7 + 0.29930312859381903E-001 4 10 9 7 + 0.33751073020792374E-001 4 11 9 7 + 0.45175784867711247E-002 4 12 9 7 + 0.13932767042626080E-001 4 13 9 7 + -0.96870735108678732E-002 4 14 9 7 + 0.33945139665680142E-001 5 1 9 7 + 0.79915145732430984E-001 5 2 9 7 + -0.11507572194604179E-001 5 9 9 7 + -0.14918825030671353E-001 5 10 9 7 + -0.34386925452456205E-002 5 11 9 7 + 0.22844446273813219E-002 5 12 9 7 + 0.43743957170150817E-001 5 13 9 7 + 0.25574474942112339E-001 5 14 9 7 + 0.14272696662732471E-003 6 10 9 7 + 0.19377921145818521E-002 6 11 9 7 + 0.32933415910928415E-003 6 12 9 7 + 0.60797495832812533E-004 6 13 9 7 + -0.46000695888378104E-004 6 14 9 7 + -0.43704600599512033E-001 7 1 9 7 + -0.10961636536456900E-001 7 2 9 7 + 0.78929498516016688E-001 7 9 9 7 + -0.15022266689672420E-002 7 10 9 7 + 0.76515470168919282E-004 7 11 9 7 + 0.16137336577141308E-003 7 12 9 7 + 0.11577326335119611E-002 7 13 9 7 + 0.12481697123607046E-002 7 14 9 7 + 0.12029618188812846E-002 8 10 9 7 + -0.13150183408906619E-003 8 11 9 7 + -0.32809284429678775E-004 8 12 9 7 + 0.15570878197256836E-002 8 13 9 7 + 0.16195221778103555E-004 8 14 9 7 + 0.10478207890513174E-002 9 3 9 7 + 0.68843643785190833E-003 9 4 9 7 + -0.19232856899136198E-002 9 5 9 7 + 0.75834609452026580E-001 9 7 9 7 + 0.14011135890737497E-002 1 3 9 8 + 0.12633057478614179E-002 1 4 9 8 + 0.12155353038236533E-002 1 5 9 8 + -0.15397601915215888E-002 1 8 9 8 + 0.52228817731141179E-001 2 3 9 8 + 0.47091803375752826E-001 2 4 9 8 + 0.45311081360034929E-001 2 5 9 8 + -0.20645204325810979E-001 2 8 9 8 + 0.25297721848487342E-001 3 1 9 8 + 0.59557013113849526E-001 3 2 9 8 + -0.85760542863462432E-002 3 9 9 8 + 0.86911396311676620E-002 3 10 9 8 + 0.62688600092133300E-002 3 11 9 8 + -0.32177022702956574E-001 3 12 9 8 + -0.34595173177906925E-001 3 13 9 8 + 0.14954053392952251E-001 3 14 9 8 + 0.22809540688360962E-001 4 1 9 8 + 0.53699227228195152E-001 4 2 9 8 + -0.77325484231974308E-002 4 9 9 8 + 0.15534385323325245E-001 4 10 9 8 + -0.55968878712376203E-002 4 11 9 8 + 0.33733506892300855E-001 4 12 9 8 + -0.30030144591920774E-001 4 13 9 8 + 0.14247581655993958E-001 4 14 9 8 + 0.21947024319045293E-001 5 1 9 8 + 0.51668653130420787E-001 5 2 9 8 + -0.74401510583116722E-002 5 9 9 8 + 0.45024813799428479E-001 5 10 9 8 + -0.23841618278797939E-002 5 11 9 8 + -0.64028574384683169E-002 5 12 9 8 + 0.15349299674078255E-001 5 13 9 8 + 0.13714259297218737E-001 5 14 9 8 + 0.13711969140619613E-003 6 10 9 8 + -0.33569709373393027E-003 6 11 9 8 + 0.19362105119484891E-002 6 12 9 8 + -0.93721653646242038E-004 6 13 9 8 + 0.22201622570148717E-004 6 14 9 8 + 0.12029618188810548E-002 7 10 9 8 + -0.13150183408904391E-003 7 11 9 8 + -0.32809284429670582E-004 7 12 9 8 + 0.15570878197254927E-002 7 13 9 8 + 0.16195221778206619E-004 7 14 9 8 + -0.43704600599511853E-001 8 1 9 8 + -0.10961636536455968E-001 8 2 9 8 + 0.78929498516017021E-001 8 9 9 8 + 0.15942505365888395E-002 8 10 9 8 + -0.21826845979600158E-004 8 11 9 8 + -0.18887173485686984E-003 8 12 9 8 + -0.12484311733095975E-002 8 13 9 8 + 0.10249340536082831E-002 8 14 9 8 + -0.14333346952700638E-002 9 3 9 8 + -0.12923577169363311E-002 9 4 9 8 + -0.12434887063281609E-002 9 5 9 8 + 0.75834609452026913E-001 9 8 9 8 + 0.80195752143772092 1 1 9 9 + -0.50540692050264291E-001 1 2 9 9 + 0.43646581350709167E-001 1 9 9 9 + 0.18140514411682331E-001 2 1 9 9 + 0.53787482779390605 2 2 9 9 + -0.16306120946680797 2 9 9 9 + 0.52690490408511015 3 3 9 9 + 0.11115165793094003 3 6 9 9 + 0.80017732138540576E-001 3 7 9 9 + -0.10945783182529341 3 8 9 9 + 0.52690490408509782 4 4 9 9 + -0.13503521553011316 4 6 9 9 + 0.52573038303923174E-001 4 7 9 9 + -0.98692004111354398E-001 4 8 9 9 + 0.52690490408510715 5 5 9 9 + 0.12220678018199135E-001 5 6 9 9 + -0.14687335923232137 5 7 9 9 + -0.94960080254157628E-001 5 8 9 9 + 0.57912143105860257E-001 6 3 9 9 + -0.70355934150521951E-001 6 4 9 9 + 0.63672073580795831E-002 6 5 9 9 + 0.43951973878155370 6 6 9 9 + 0.41690771337778300E-001 7 3 9 9 + 0.27391560094033464E-001 7 4 9 9 + -0.76523833801792063E-001 7 5 9 9 + 0.43951973878155337 7 7 9 9 + -0.57029627256320770E-001 8 3 9 9 + -0.51420424777218282E-001 8 4 9 9 + -0.49476020955438342E-001 8 5 9 9 + 0.43951973878155864 8 8 9 9 + -0.15627804007605502E-001 9 1 9 9 + -0.59725315701237527E-001 9 2 9 9 + 0.44706757968524297 9 9 9 9 + -0.96074189790414479E-003 1 10 9 10 + -0.45530000600843056E-009 1 11 9 10 + 0.86153844431832268E-008 1 13 9 10 + 0.11579314617755467E-007 1 14 9 10 + -0.15020320709453355E-002 2 10 9 10 + -0.67585432616884851E-008 2 11 9 10 + -0.11628046380024392E-008 2 12 9 10 + 0.12788809096137551E-006 2 13 9 10 + 0.17188512605345513E-006 2 14 9 10 + 0.41795861657683919E-003 3 3 9 10 + 0.13369427522368836E-003 3 4 9 10 + -0.12510894000858474E-002 3 5 9 10 + 0.48723015176689106E-003 3 6 9 10 + 0.83241298162677144E-002 3 7 9 10 + 0.22221461866329824E-002 3 8 9 10 + 0.13369427522368896E-003 4 3 9 10 + 0.35680278493937828E-004 4 4 9 10 + -0.13178651339465733E-002 4 5 9 10 + -0.22553716212566705E-003 4 6 9 10 + 0.76525344844124718E-002 4 7 9 10 + 0.39718137229285480E-002 4 8 9 10 + -0.12510894000858452E-002 5 3 9 10 + -0.13178651339465725E-002 5 4 9 10 + -0.45363889507080482E-003 5 5 9 10 + 0.12382513837211886E-002 5 6 9 10 + -0.38144732049660195E-002 5 7 9 10 + 0.11511848757403315E-001 5 8 9 10 + 0.58947007265149141E-003 6 3 9 10 + -0.27286223891606262E-003 6 4 9 10 + 0.14980896754456382E-002 6 5 9 10 + -0.99274972895540414E-004 6 6 9 10 + 0.15397668386807082E-003 6 7 9 10 + 0.14792741611612182E-003 6 8 9 10 + 0.10070890362391373E-001 7 3 9 10 + 0.92583652576789400E-002 7 4 9 10 + -0.46149169575050181E-002 7 5 9 10 + 0.15397668386807055E-003 7 6 9 10 + -0.16206331826730208E-002 7 7 9 10 + 0.12977772777279916E-002 7 8 9 10 + 0.26884486010693431E-002 8 3 9 10 + 0.48052714560370266E-002 8 4 9 10 + 0.13927528124102528E-001 8 5 9 10 + 0.14792741611612415E-003 8 6 9 10 + 0.12977772777279864E-002 8 7 9 10 + 0.17199081555686773E-002 8 8 9 10 + 0.16913839485244792E-001 9 10 9 10 + -0.45530000643402858E-009 1 10 9 11 + -0.96074173558877238E-003 1 11 9 11 + -0.50969681428388212E-009 1 12 9 11 + -0.16013044777105262E-007 1 13 9 11 + 0.18599338154891574E-009 1 14 9 11 + -0.67585432656283794E-008 2 10 9 11 + -0.15020296615110315E-002 2 11 9 11 + -0.75660178567166632E-008 2 12 9 11 + -0.23770009806951825E-006 2 13 9 11 + 0.27609143416006921E-008 2 14 9 11 + -0.13751286239203080E-002 3 3 9 11 + 0.25325655677591540E-003 3 4 9 11 + 0.86737321028679498E-003 3 5 9 11 + -0.65504085213861961E-002 3 6 9 11 + -0.83202492559447342E-002 3 7 9 11 + 0.16027678260374465E-002 3 8 9 11 + 0.25325655677591714E-003 4 3 9 11 + 0.11156467562410818E-002 4 4 9 11 + -0.10453584085790132E-002 4 5 9 11 + -0.50220732287994752E-002 4 6 9 11 + 0.86294378600659995E-002 4 7 9 11 + -0.14310386987807882E-002 4 8 9 11 + 0.86737321028679151E-003 5 3 9 11 + -0.10453584085790123E-002 5 4 9 11 + 0.25948186767925884E-003 5 5 9 11 + 0.89373374679257260E-002 5 6 9 11 + -0.87914587402464944E-003 5 7 9 11 + -0.60955843863789267E-003 5 8 9 11 + -0.79249660627075773E-002 6 3 9 11 + -0.60759199929367050E-002 6 4 9 11 + 0.10812775153564205E-001 6 5 9 11 + -0.58998986865020001E-004 6 6 9 11 + 0.20905276128377016E-002 6 7 9 11 + -0.36215653824405477E-003 6 8 9 11 + -0.10066194402115184E-001 7 3 9 11 + 0.10440266067754080E-001 7 4 9 11 + -0.10636251147562083E-002 7 5 9 11 + 0.20905276128377298E-002 7 6 9 11 + 0.82547858096929742E-004 7 7 9 11 + -0.14186456798380491E-003 7 8 9 11 + 0.19390946484133665E-002 8 3 9 11 + -0.17313343714358866E-002 8 4 9 11 + -0.73746873624399385E-003 8 5 9 11 + -0.36215653824405065E-003 8 6 9 11 + -0.14186456798380412E-003 8 7 9 11 + -0.23548871231813153E-004 8 8 9 11 + 0.42729491564330828E-008 9 10 9 11 + 0.16913837961929981E-001 9 11 9 11 + -0.50969681162665302E-009 1 11 9 12 + -0.96074202697887204E-003 1 12 9 12 + 0.93928258833959730E-008 1 13 9 12 + -0.90278226653836192E-008 1 14 9 12 + -0.11628046418475548E-008 2 10 9 12 + -0.75660178667784683E-008 2 11 9 12 + -0.15020339869502549E-002 2 12 9 12 + 0.13942855118799712E-006 2 13 9 12 + -0.13401038729628272E-006 2 14 9 12 + 0.12847926621392587E-002 3 3 9 12 + -0.13666414042371643E-003 3 4 9 12 + 0.99463226566097571E-003 3 5 9 12 + 0.64376311591379225E-002 3 6 9 12 + -0.18732142017372157E-002 3 7 9 12 + -0.82269334249046987E-002 3 8 9 12 + -0.13666414042371654E-003 4 3 9 12 + -0.14334610314509976E-002 4 4 9 12 + -0.79935821253470729E-003 4 5 9 12 + 0.62598392397301590E-002 4 6 9 12 + 0.11550318030814368E-002 4 7 9 12 + 0.86249603635204300E-002 4 8 9 12 + 0.99463226566097397E-003 5 3 9 12 + -0.79935821253470599E-003 5 4 9 12 + 0.14866836931186749E-003 5 5 9 12 + 0.81789273019058917E-002 5 6 9 12 + 0.58406896270242980E-003 5 7 9 12 + -0.16370736724961883E-002 5 8 9 12 + 0.77885246245511285E-002 6 3 9 12 + 0.75734207732763474E-002 6 4 9 12 + 0.98952181364606352E-002 6 5 9 12 + 0.29663966359824746E-004 6 6 9 12 + 0.35529205236915150E-003 6 7 9 12 + 0.20888213721462368E-002 6 8 9 12 + -0.22662961590546415E-002 7 3 9 12 + 0.13974061686221721E-002 7 4 9 12 + 0.70663085304931150E-003 7 5 9 12 + 0.35529205236914347E-003 7 6 9 12 + 0.17409273019520049E-003 7 7 9 12 + -0.35396508389964483E-004 7 8 9 12 + -0.99532955160064902E-002 8 3 9 12 + 0.10434849866197892E-001 8 4 9 12 + -0.19806022024299705E-002 8 5 9 12 + 0.20888213721462455E-002 8 6 9 12 + -0.35396508389965601E-004 8 7 9 12 + -0.20375669655515839E-003 8 8 9 12 + 0.73515917278774466E-009 9 10 9 12 + 0.47834584385121705E-008 9 11 9 12 + 0.16913840696599267E-001 9 12 9 12 + 0.86153844459782353E-008 1 10 9 13 + -0.16013044781421947E-007 1 11 9 13 + 0.93928258862010665E-008 1 12 9 13 + -0.96044425444814514E-003 1 13 9 13 + 0.12788809095898447E-006 2 10 9 13 + -0.23770009806005617E-006 2 11 9 13 + 0.13942855118594492E-006 2 12 9 13 + -0.14976138057346854E-002 2 13 9 13 + -0.59777495163085484E-009 2 14 9 13 + 0.93622123176876238E-003 3 3 9 13 + 0.98440881354395441E-003 3 4 9 13 + 0.40369522522436268E-003 3 5 9 13 + -0.88888437537612867E-003 3 6 9 13 + 0.25047520059926303E-002 3 7 9 13 + -0.88444153067860597E-002 3 8 9 13 + 0.98440881354395398E-003 4 3 9 13 + 0.82811927980667999E-003 4 4 9 13 + 0.18014980448750152E-003 4 5 9 13 + -0.71061242852582336E-005 4 6 9 13 + 0.35620048406536163E-002 4 7 9 13 + -0.76774085732345416E-002 4 8 9 13 + 0.40369522522436290E-003 5 3 9 13 + 0.18014980448750168E-003 5 4 9 13 + -0.17643405115758751E-002 5 5 9 13 + -0.37990817624280401E-004 5 6 9 13 + 0.11183380301057200E-001 5 7 9 13 + 0.39241021257505103E-002 5 8 9 13 + -0.10754087173913888E-002 6 3 9 13 + -0.85998749580752051E-005 6 4 9 13 + -0.45961650133641728E-004 6 5 9 13 + 0.97845022446487441E-004 6 6 9 13 + 0.65590238011052382E-004 6 7 9 13 + -0.10110846309226642E-003 6 8 9 13 + 0.30303389063820237E-002 7 3 9 13 + 0.43094475855206642E-002 7 4 9 13 + 0.13530071199898150E-001 7 5 9 13 + 0.65590238011055120E-004 7 6 9 13 + 0.12489563245801829E-002 7 7 9 13 + 0.16797762877210189E-002 7 8 9 13 + -0.10700302185186337E-001 8 3 9 13 + -0.92884181006546596E-002 8 4 9 13 + 0.47475234528807789E-002 8 5 9 13 + -0.10110846309226547E-003 8 6 9 13 + 0.16797762877210007E-002 8 7 9 13 + -0.13468013470294261E-002 8 8 9 13 + -0.80854599573300426E-007 9 10 9 13 + 0.15028096913792856E-006 9 11 9 13 + -0.88150816784602782E-007 9 12 9 13 + 0.16911046128477179E-001 9 13 9 13 + 0.11579314621246265E-007 1 10 9 14 + 0.18599338135475905E-009 1 11 9 14 + -0.90278226683217350E-008 1 12 9 14 + -0.96044357152642043E-003 1 14 9 14 + 0.17188512604151638E-006 2 10 9 14 + 0.27609143455301917E-008 2 11 9 14 + -0.13401038729496884E-006 2 12 9 14 + -0.59777494625783204E-009 2 13 9 14 + -0.14976036683398335E-002 2 14 9 14 + 0.29183631474967984E-003 3 3 9 14 + -0.15597125421439526E-002 3 4 9 14 + 0.20147748367334111E-003 3 5 9 14 + 0.91245783164480704E-002 3 6 9 14 + -0.32790220356805726E-002 3 7 9 14 + 0.38230523230363867E-002 3 8 9 14 + -0.15597125421439517E-002 4 3 9 14 + 0.83142894624589072E-003 4 4 9 14 + -0.98382580500921198E-004 4 5 9 14 + -0.10660789272642742E-001 4 6 9 14 + -0.24765756624581148E-002 4 7 9 14 + 0.36424792005525343E-002 4 8 9 14 + 0.20147748367334208E-003 5 3 9 14 + -0.98382580500921591E-004 5 4 9 14 + -0.11232652609953829E-002 5 5 9 14 + 0.81566704188144900E-003 5 6 9 14 + 0.65382648612520048E-002 5 7 9 14 + 0.35060781336579017E-002 5 8 9 14 + 0.11039256352350011E-001 6 3 9 14 + -0.12897819526842836E-001 6 4 9 14 + 0.98682552455770282E-003 6 5 9 14 + -0.24522109222918321E-002 6 6 9 14 + -0.49625200234684932E-004 6 7 9 14 + 0.23952325517047647E-004 6 8 9 14 + -0.39670853403473774E-002 7 3 9 14 + -0.29962551656359010E-002 7 4 9 14 + 0.79102377573118873E-002 7 5 9 14 + -0.49625200234685366E-004 7 6 9 14 + 0.13465197703909249E-002 7 7 9 14 + 0.17470118176078719E-004 7 8 9 14 + 0.46252694422048704E-002 8 3 9 14 + 0.44068078618226432E-002 8 4 9 14 + 0.42417813426938256E-002 8 5 9 14 + 0.23952325517048338E-004 8 6 9 14 + 0.17470118176089008E-004 8 7 9 14 + 0.11056911519001960E-002 8 8 9 14 + -0.10867081474123162E-006 9 10 9 14 + -0.17455309677846325E-008 9 11 9 14 + 0.84725294749596756E-007 9 12 9 14 + 0.37793064181952548E-009 9 13 9 14 + 0.16911039719318906E-001 9 14 9 14 + 0.85555629779149561E-003 1 10 10 1 + -0.88400010697391371E-009 1 13 10 1 + -0.11881205571495102E-008 1 14 10 1 + 0.75946419503778381E-002 2 10 10 1 + 0.24256447005285094E-009 2 11 10 1 + -0.45899101784339005E-008 2 13 10 1 + -0.61689660406114343E-008 2 14 10 1 + -0.16189048504088217E-002 3 3 10 1 + -0.51762936451948114E-003 3 4 10 1 + 0.48452607778633533E-002 3 5 10 1 + -0.15236641118367589E-003 3 6 10 1 + -0.26028604557362355E-002 3 7 10 1 + -0.69483548815588256E-003 3 8 10 1 + -0.51762936451948114E-003 4 3 10 1 + -0.13844892139392291E-003 4 4 10 1 + 0.51039470551933856E-002 4 5 10 1 + 0.70541107512058339E-004 4 6 10 1 + -0.23928616637050007E-002 4 7 10 1 + -0.12419381593817740E-002 4 8 10 1 + 0.48452607778633533E-002 5 3 10 1 + 0.51039470551933856E-002 5 4 10 1 + 0.17573537718027844E-002 5 5 10 1 + -0.38718801930121477E-003 5 6 10 1 + 0.11927173945346639E-002 5 7 10 1 + -0.35996375437634637E-002 5 8 10 1 + -0.15637653490627835E-003 6 3 10 1 + 0.72395601440218687E-004 6 4 10 1 + -0.39738532133482999E-003 6 5 10 1 + -0.23935236087430244E-003 6 6 10 1 + 0.37126930812041349E-003 6 7 10 1 + 0.35668303198250220E-003 6 8 10 1 + -0.26714126895802377E-002 7 3 10 1 + -0.24558828426532019E-002 7 4 10 1 + 0.12241349102446700E-002 7 5 10 1 + 0.37126930812041343E-003 7 6 10 1 + -0.39076896317978334E-002 7 7 10 1 + 0.31291903825153991E-002 7 8 10 1 + -0.71313634804024328E-003 8 3 10 1 + -0.12746479155145405E-002 8 4 10 1 + -0.36944396246921247E-002 8 5 10 1 + 0.35668303198250210E-003 8 6 10 1 + 0.31291903825153991E-002 8 7 10 1 + 0.41470419926721005E-002 8 8 10 1 + -0.24770213473368392E-002 9 10 10 1 + -0.26239808117574379E-009 9 11 10 1 + 0.49652104304517702E-008 9 13 10 1 + 0.66733799409566395E-008 9 14 10 1 + 0.16106992797913621E-002 10 1 10 1 + 0.44602890654446548E-003 1 10 10 2 + 0.10744935422737423E-009 1 11 10 2 + -0.20332033437581226E-008 1 13 10 2 + -0.27326814441889273E-008 1 14 10 2 + 0.60778220995093814E-001 2 10 10 2 + 0.42178558611640047E-008 2 11 10 2 + 0.72568043498639380E-009 2 12 10 2 + -0.79812099807673790E-007 2 13 10 2 + -0.10726966630203288E-006 2 14 10 2 + -0.12233406493523903E-001 3 3 10 2 + -0.39115395569912070E-002 3 4 10 2 + 0.36613743117346401E-001 3 5 10 2 + -0.45497107463708718E-003 3 6 10 2 + -0.77717299373027664E-002 3 7 10 2 + -0.20746607125607095E-002 3 8 10 2 + -0.39115395569912078E-002 4 3 10 2 + -0.10461742637957237E-002 4 4 10 2 + 0.38568525742518282E-001 4 5 10 2 + 0.21065963331992095E-003 4 6 10 2 + -0.71447094449452950E-002 4 7 10 2 + -0.37082258739994378E-002 4 8 10 2 + 0.36613743117346401E-001 5 3 10 2 + 0.38568525742518275E-001 5 4 10 2 + 0.13279580757319888E-001 5 5 10 2 + -0.11560840274789828E-002 5 6 10 2 + 0.35612177753859028E-002 5 7 10 2 + -0.10747975201024223E-001 5 8 10 2 + -0.33230552284832949E-003 6 3 10 2 + 0.15381891974822648E-003 6 4 10 2 + -0.84453834137587563E-003 6 5 10 2 + -0.15129306428465100E-002 6 6 10 2 + 0.23467928234575928E-002 6 7 10 2 + 0.22545927958645632E-002 6 8 10 2 + -0.56774010242489781E-002 7 3 10 2 + -0.52193446914983871E-002 7 4 10 2 + 0.26016378172324071E-002 7 5 10 2 + 0.23467928234575932E-002 7 6 10 2 + -0.24700509828070882E-001 7 7 10 2 + 0.19779595862189355E-001 7 8 10 2 + -0.15155972503552251E-002 8 3 10 2 + -0.27089423298047493E-002 8 4 10 2 + -0.78515521675036493E-002 8 5 10 2 + 0.22545927958645662E-002 8 6 10 2 + 0.19779595862189348E-001 8 7 10 2 + 0.26213440470917351E-001 8 8 10 2 + 0.20270972606452119E-002 9 10 10 2 + -0.46927355340216676E-008 9 11 10 2 + -0.80738325305092857E-009 9 12 10 2 + 0.88797979873834766E-007 9 13 10 2 + 0.11934693721835276E-006 9 14 10 2 + 0.89610274379601836E-002 10 1 10 2 + 0.94273482031024411E-001 10 2 10 2 + -0.33182113089854579E-003 1 3 10 3 + -0.10609719472055950E-003 1 4 10 3 + 0.99311745134915679E-003 1 5 10 3 + -0.26375354880265285E-004 1 6 10 3 + -0.45056174630911318E-003 1 7 10 3 + -0.12027768811201665E-003 1 8 10 3 + -0.25207818061328498E-001 2 3 10 3 + -0.80599981765207933E-002 2 4 10 3 + 0.75445227659964406E-001 2 5 10 3 + -0.10615374154577567E-002 2 6 10 3 + -0.18133821928189502E-001 2 7 10 3 + -0.48408316570343647E-002 2 8 10 3 + -0.94594325158341708E-002 3 1 10 3 + -0.28014284101496242E-001 3 2 10 3 + 0.41756679857751057E-002 3 9 10 3 + 0.52687542698686016E-001 3 10 10 3 + -0.36388159365510007E-001 3 11 10 3 + -0.16235902262231032E-001 3 12 10 3 + 0.40356557749968158E-003 3 13 10 3 + -0.75825940113024145E-002 3 14 10 3 + -0.30245608548931592E-002 4 1 10 3 + -0.89573202247210122E-002 4 2 10 3 + 0.13350918847147648E-002 4 9 10 3 + 0.38251271843922373E-001 4 10 10 3 + 0.24014021473189224E-001 4 11 10 3 + 0.96044115693115911E-002 4 12 10 3 + 0.41039445648644209E-002 4 13 10 3 + -0.88425295545206499E-002 4 14 10 3 + 0.28311364778469458E-001 5 1 10 3 + 0.83844713129489656E-001 5 2 10 3 + -0.12497345050967740E-001 5 9 10 3 + -0.29407160939902933E-002 5 10 10 3 + 0.18846002674600770E-002 5 11 10 3 + -0.48620453812630244E-002 5 12 10 3 + 0.34535119124022004E-001 5 13 10 3 + 0.33545320136715059E-001 5 14 10 3 + -0.17858825262342098E-002 6 1 10 3 + -0.90976416673545213E-003 6 2 10 3 + 0.31681861464923780E-002 6 9 10 3 + 0.57657720990015920E-003 6 10 10 3 + -0.19957829306460851E-002 6 11 10 3 + -0.81603890716650505E-003 6 12 10 3 + -0.19277192762383655E-005 6 13 10 3 + 0.23256516263246455E-003 6 14 10 3 + -0.30508447244409022E-001 7 1 10 3 + -0.15542157763438570E-001 7 2 10 3 + 0.54122509472786177E-001 7 9 10 3 + 0.24334588306745655E-002 7 10 10 3 + -0.91872913222915348E-003 7 11 10 3 + 0.15458992541548248E-003 7 12 10 3 + -0.91573820209972122E-003 7 13 10 3 + -0.19670332612117800E-002 7 14 10 3 + -0.81442586313687105E-002 8 1 10 3 + -0.41490026729250782E-002 8 2 10 3 + 0.14448054748150207E-001 8 9 10 3 + -0.33790386477860470E-002 8 10 10 3 + 0.63545641177012002E-003 8 11 10 3 + 0.77185057960186187E-003 8 12 10 3 + -0.70833612867295961E-003 8 13 10 3 + -0.50704956392339537E-003 8 14 10 3 + 0.25200204942459016E-002 9 3 10 3 + 0.80578603187586627E-003 9 4 10 3 + -0.75423345099689953E-002 9 5 10 3 + 0.31648035952024146E-002 9 6 10 3 + 0.54065116691237668E-001 9 7 10 3 + 0.14432740192146387E-001 9 8 10 3 + 0.78357726945171680E-001 10 3 10 3 + -0.10609719472056579E-003 1 3 10 4 + -0.28376747024232390E-004 1 4 10 4 + 0.10461393494003680E-002 1 5 10 4 + 0.12211257855629857E-004 1 6 10 4 + -0.41421045477265522E-003 1 7 10 4 + -0.21498258410658047E-003 1 8 10 4 + -0.80599981765208037E-002 2 3 10 4 + -0.21557309830635319E-002 2 4 10 4 + 0.79473200658194465E-001 2 5 10 4 + 0.49147400042702971E-003 2 6 10 4 + -0.16670786836542696E-001 2 7 10 4 + -0.86524334213034151E-002 2 8 10 4 + -0.30245608548931423E-002 3 1 10 4 + -0.89573202247210260E-002 3 2 10 4 + 0.13350918847147490E-002 3 9 10 4 + 0.38251273168078935E-001 3 10 10 4 + -0.18532151537092669E-001 3 11 10 4 + -0.18389632031576258E-001 3 12 10 4 + -0.57801067870674582E-002 3 13 10 4 + -0.68377766708205296E-002 3 14 10 4 + -0.80897438011649585E-003 4 1 10 4 + -0.23957614628432964E-002 4 2 10 4 + 0.35714682056699497E-003 4 9 10 4 + 0.52645912056824055E-001 4 10 10 4 + 0.32477853671317183E-001 4 11 10 4 + 0.22017803969862592E-001 4 12 10 4 + -0.17080616661506447E-002 4 13 10 4 + -0.10988151234116966E-002 4 14 10 4 + 0.29822896527217310E-001 5 1 10 4 + 0.88321137304330014E-001 5 2 10 4 + -0.13164585804552823E-001 5 9 10 4 + 0.85854254308497802E-002 5 10 10 4 + -0.98880472282521434E-002 5 11 10 4 + 0.75149597062389058E-002 5 12 10 4 + 0.35206794213950982E-001 5 13 10 4 + 0.31393252217979818E-001 5 14 10 4 + 0.82679337073617812E-003 6 1 10 4 + 0.42116126232858217E-003 6 2 10 4 + -0.14667454825900135E-002 6 9 10 4 + -0.13387876653278099E-002 6 10 10 4 + -0.18563988805056363E-002 6 11 10 4 + -0.13823834053515317E-002 6 12 10 4 + 0.20675818330625049E-004 6 13 10 4 + -0.95149509635851525E-004 6 14 10 4 + -0.28047023461612329E-001 7 1 10 4 + -0.14288212340191949E-001 7 2 10 4 + 0.49755901388477068E-001 7 9 10 4 + 0.16616551857086359E-002 7 10 10 4 + 0.90467457770333044E-003 7 11 10 4 + -0.66485354217815597E-003 7 12 10 4 + -0.11623241145450639E-002 7 13 10 4 + -0.16290836002369072E-002 7 14 10 4 + -0.14556913861158318E-001 8 1 10 4 + -0.74158486007263238E-002 8 2 10 4 + 0.25824215265776808E-001 8 9 10 4 + -0.36489564612745568E-002 8 10 10 4 + -0.27816581124754129E-003 8 11 10 4 + -0.69997897291450110E-003 8 12 10 4 + -0.47389110225713781E-003 8 13 10 4 + -0.62581171027812157E-003 8 14 10 4 + 0.80578603187586074E-003 9 3 10 4 + 0.21547433797818277E-003 9 4 10 4 + -0.79450047327193109E-002 9 5 10 4 + -0.14651624564399669E-002 9 6 10 4 + 0.49703136921522922E-001 9 7 10 4 + 0.25796834750231007E-001 9 8 10 4 + 0.58858481542663411E-001 10 3 10 4 + 0.78293211359069040E-001 10 4 10 4 + 0.99311745134917067E-003 1 3 10 5 + 0.10461393494003179E-002 1 4 10 5 + 0.36019787792278046E-003 1 5 10 5 + -0.67023249331086619E-004 1 6 10 5 + 0.20646184154057460E-003 1 7 10 5 + -0.62310669991159115E-003 1 8 10 5 + 0.75445227659964365E-001 2 3 10 5 + 0.79473200658194396E-001 2 4 10 5 + 0.27363549044392685E-001 2 5 10 5 + -0.26974944326114722E-002 2 6 10 5 + 0.83094908461821531E-002 2 7 10 5 + -0.25078267291939849E-001 2 8 10 5 + 0.28311364778469399E-001 3 1 10 5 + 0.83844713129489643E-001 3 2 10 5 + -0.12497345050967728E-001 3 9 10 5 + -0.29406955084807650E-002 3 10 10 5 + 0.18060252250476479E-001 3 11 10 5 + -0.34427610398604376E-001 3 12 10 5 + -0.40176162977829125E-001 3 13 10 5 + 0.35359581928792648E-001 3 14 10 5 + 0.29822896527217358E-001 4 1 10 5 + 0.88321137304329986E-001 4 2 10 5 + -0.13164585804552809E-001 4 9 10 5 + 0.85854486985048536E-002 4 10 10 5 + -0.25382732635527760E-001 4 11 10 5 + 0.44649915386516983E-001 4 12 10 5 + -0.35629698855289778E-001 4 13 10 5 + 0.22467399208335858E-001 4 14 10 5 + 0.10268406895950882E-001 5 1 10 5 + 0.30410045564340262E-001 5 2 10 5 + -0.45328148063421749E-002 5 9 10 5 + 0.91849132035623102E-001 5 10 10 5 + 0.39103172112604613E-002 5 11 10 5 + -0.57818997261247437E-002 5 12 10 5 + 0.13042781576903264E-002 5 13 10 5 + 0.86811162294846457E-002 5 14 10 5 + -0.45382769356890713E-002 6 1 10 5 + -0.23119680650208760E-002 6 2 10 5 + 0.80509812323379011E-002 6 9 10 5 + -0.78780492277414959E-004 6 10 10 5 + 0.15437915584191389E-002 6 11 10 5 + -0.27159045241703299E-002 6 12 10 5 + 0.38560982954963433E-004 6 13 10 5 + 0.23844681710714661E-003 6 14 10 5 + 0.13980024868382700E-001 7 1 10 5 + 0.71220064978268303E-002 7 2 10 5 + -0.24800804477195054E-001 7 9 10 5 + -0.48097347650059991E-002 7 10 10 5 + -0.18145726527101221E-003 7 11 10 5 + 0.17014773870923045E-003 7 12 10 5 + -0.11113847815315636E-002 7 13 10 5 + 0.91290426931488569E-003 7 14 10 5 + -0.42191773151296151E-001 8 1 10 5 + -0.21494057102372857E-001 8 2 10 5 + 0.74848930202630531E-001 8 9 10 5 + -0.33266836732272678E-002 8 10 10 5 + 0.66387168241907615E-004 8 11 10 5 + -0.21116188789462484E-005 8 12 10 5 + 0.15864874984946333E-002 8 13 10 5 + -0.22978265961518087E-002 8 14 10 5 + -0.75423345099690491E-002 9 3 10 5 + -0.79450047327193300E-002 9 4 10 5 + -0.27354948322241331E-002 9 5 10 5 + 0.80424423640081087E-002 9 6 10 5 + -0.24774542894865734E-001 9 7 10 5 + 0.74769537782872778E-001 9 8 10 5 + -0.45249388038091183E-002 10 3 10 5 + 0.13210540368070582E-001 10 4 10 5 + 0.13861674147853892 10 5 10 5 + -0.15218252366464225E-003 1 3 10 6 + 0.70454809459383270E-004 1 4 10 6 + -0.38672461400443542E-003 1 5 10 6 + -0.15498365973178432E-003 1 6 10 6 + 0.24040083501688736E-003 1 7 10 6 + 0.23095607149024069E-003 1 8 10 6 + -0.12473704208824264E-002 2 3 10 6 + 0.57750488274527353E-003 2 4 10 6 + -0.31697407710594657E-002 2 5 10 6 + -0.64225055532176527E-003 2 6 10 6 + 0.99620674704221424E-003 2 7 10 6 + 0.95706830457466653E-003 2 8 10 6 + -0.65214973807249373E-003 3 1 10 6 + -0.12564945476375340E-002 3 2 10 6 + 0.54094466117296210E-003 3 9 10 6 + 0.70743104138315679E-003 3 10 10 6 + -0.17906567141442440E-002 3 11 10 6 + 0.64251999888298135E-003 3 12 10 6 + 0.57639420485245155E-003 3 13 10 6 + 0.82646011387132047E-003 3 14 10 6 + 0.30192125025742093E-003 4 1 10 6 + 0.58173243481203008E-003 4 2 10 6 + -0.25044588844233480E-003 4 9 10 6 + -0.40740298189990377E-002 4 10 10 6 + -0.30391920237124318E-002 4 11 10 6 + -0.20062306273406342E-002 4 12 10 6 + 0.42794122660932255E-003 4 13 10 6 + -0.94130248606743975E-003 4 14 10 6 + -0.16572348467121583E-002 5 1 10 6 + -0.31929154822215098E-002 5 2 10 6 + 0.13746135731589663E-002 5 9 10 6 + -0.63816782038113025E-003 5 10 10 6 + 0.23674358351703458E-002 5 11 10 6 + -0.21399810716886515E-002 5 12 10 6 + -0.15587172827087768E-002 5 13 10 6 + -0.75459943493398033E-003 5 14 10 6 + -0.84830050994064783E-003 6 1 10 6 + -0.91660436961056840E-003 6 2 10 6 + 0.82490522005765885E-003 6 9 10 6 + 0.30385555674360934E-002 6 10 10 6 + 0.72204947463564513E-003 6 11 10 6 + 0.95005909859281605E-003 6 12 10 6 + -0.38367153214409822E-004 6 13 10 6 + 0.63015964495719261E-003 6 14 10 6 + 0.13158376016043590E-002 7 1 10 6 + 0.14217984440900743E-002 7 2 10 6 + -0.12795559380446493E-002 7 9 10 6 + -0.19185203002215247E-003 7 10 10 6 + -0.29012932171281472E-002 7 11 10 6 + 0.13397569367675224E-002 7 12 10 6 + 0.72401861144032143E-003 7 13 10 6 + 0.25848666119564770E-003 7 14 10 6 + 0.12641414836199599E-002 8 1 10 6 + 0.13659392824628695E-002 8 2 10 6 + -0.12292851758076214E-002 8 9 10 6 + 0.11576119039190264E-002 8 10 10 6 + 0.13511093075215539E-002 8 11 10 6 + 0.21083420766296944E-002 8 12 10 6 + 0.91046731623669209E-004 8 13 10 6 + 0.80232453037267789E-004 8 14 10 6 + 0.75361676949219254E-003 9 3 10 6 + -0.34888026605898911E-003 9 4 10 6 + 0.19151365842135517E-002 9 5 10 6 + 0.89150136688930838E-003 9 6 10 6 + -0.13828523342581348E-002 9 7 10 6 + -0.13285233353598715E-002 9 8 10 6 + 0.72921590441316119E-003 10 3 10 6 + -0.44155392213448058E-002 10 4 10 6 + -0.70593076570747118E-003 10 5 10 6 + 0.26935312198538724E-002 10 6 10 6 + -0.25997458780738893E-002 1 3 10 7 + -0.23899982240768915E-002 1 4 10 7 + 0.11912927710587004E-002 1 5 10 7 + 0.24040083501688958E-003 1 6 10 7 + -0.25302704391431878E-002 1 7 10 7 + 0.20261845045244928E-002 1 8 10 7 + -0.21308486901861334E-001 2 3 10 7 + -0.19589319292369775E-001 2 4 10 7 + 0.97642375715342785E-002 2 5 10 7 + 0.99620674704221901E-003 2 6 10 7 + -0.10485285820161887E-001 2 7 10 7 + 0.83963940925105875E-002 2 8 10 7 + -0.11140716756491141E-001 3 1 10 7 + -0.21464276362168740E-001 3 2 10 7 + 0.92407980862020053E-002 3 9 10 7 + 0.10674864515893728E-001 3 10 10 7 + -0.11037886832490459E-001 3 11 10 7 + 0.47685033634049688E-002 3 12 10 7 + 0.99177861290675219E-002 3 13 10 7 + -0.10130471312069598E-001 3 14 10 7 + -0.10241883100826932E-001 4 1 10 7 + -0.19732540079436454E-001 4 2 10 7 + 0.84952510410235271E-002 4 9 10 7 + 0.73300000590610509E-002 4 10 10 7 + 0.12450955199910374E-001 4 11 10 7 + -0.78156523692965527E-002 4 12 10 7 + 0.97063059535378478E-002 4 13 10 7 + -0.66054333976563765E-002 4 14 10 7 + 0.51050579475544608E-002 5 1 10 7 + 0.98356180590776082E-002 5 2 10 7 + -0.42344313404813795E-002 5 9 10 7 + -0.21321892917130811E-001 5 10 10 7 + -0.15806302988831274E-002 5 11 10 7 + 0.14316083456512689E-002 5 12 10 7 + 0.78873808954161833E-002 5 13 10 7 + 0.50475986677795516E-002 5 14 10 7 + 0.13158376016043543E-002 6 1 10 7 + 0.14217984440900787E-002 6 2 10 7 + -0.12795559380446352E-002 6 9 10 7 + -0.19185098924499964E-003 6 10 10 7 + -0.78511032789626133E-002 6 11 10 7 + 0.42588255834888292E-002 6 12 10 7 + -0.16621761843130866E-003 6 13 10 7 + -0.39338665971968320E-003 6 14 10 7 + -0.13849476227309155E-001 7 1 10 7 + -0.14964741305631159E-001 7 2 10 7 + 0.13467606697488862E-001 7 9 10 7 + 0.14307245055190246E-001 7 10 10 7 + 0.10551268026335370E-004 7 11 10 7 + -0.71994408067943549E-003 7 12 10 7 + 0.43694992641277696E-003 7 13 10 7 + -0.57070932927556009E-002 7 14 10 7 + 0.11090347481046850E-001 8 1 10 7 + 0.11983417028582469E-001 8 2 10 7 + -0.10784548571384172E-001 8 9 10 7 + 0.39925179982987577E-003 8 10 10 7 + 0.39650212755669141E-003 8 11 10 7 + 0.36758091913001906E-003 8 12 10 7 + -0.60587492914042276E-002 8 13 10 7 + 0.39437901841209927E-002 8 14 10 7 + 0.12874463481701078E-001 9 3 10 7 + 0.11835748974158872E-001 9 4 10 7 + -0.58995565938313489E-002 9 5 10 7 + -0.13828523342581478E-002 9 6 10 7 + 0.14554822250673134E-001 9 7 10 7 + -0.11655169424286618E-001 9 8 10 7 + 0.11687039224904258E-001 10 3 10 7 + 0.80260355749620475E-002 10 4 10 7 + -0.23349124463220940E-001 10 5 10 7 + -0.16024101155831622E-003 10 6 10 7 + 0.12105679607104436E-001 10 7 10 7 + -0.69400449337524346E-003 1 3 10 8 + -0.12404523379367025E-002 1 4 10 8 + -0.35953288003485067E-002 1 5 10 8 + 0.23095607149023879E-003 1 6 10 8 + 0.20261845045244113E-002 1 7 10 8 + 0.26852540988750117E-002 1 8 10 8 + -0.56883124021493070E-002 2 3 10 8 + -0.10167205458886336E-001 2 4 10 8 + -0.29468679243499479E-001 2 5 10 8 + 0.95706830457465732E-003 2 6 10 8 + 0.83963940925105649E-002 2 7 10 8 + 0.11127536375483263E-001 2 8 10 8 + -0.29740241970892950E-002 3 1 10 8 + -0.57298992321870666E-002 3 2 10 8 + 0.24668359900226933E-002 3 9 10 8 + -0.14855660750069952E-001 3 10 10 8 + 0.69016087117014444E-002 3 11 10 8 + 0.11629442122960814E-001 3 12 10 8 + 0.76493455472824920E-002 3 13 10 8 + -0.30680387030002799E-002 3 14 10 8 + -0.53157226054593746E-002 4 1 10 8 + -0.10241538595028001E-001 4 2 10 8 + 0.44091863808724992E-002 4 9 10 8 + -0.16427532354199810E-001 4 10 10 8 + -0.58285530050900970E-002 4 11 10 8 + -0.12685271640632812E-001 4 12 10 8 + 0.54590415997247538E-002 4 13 10 8 + -0.16686344283743898E-002 4 14 10 8 + -0.15407098532994552E-001 5 1 10 8 + -0.29684133080956965E-001 5 2 10 8 + 0.12779608837004987E-001 5 9 10 8 + -0.14878329471527545E-001 5 10 10 8 + 0.66978789189789400E-003 5 11 10 8 + 0.58535748255779364E-003 5 12 10 8 + -0.13093840829654344E-001 5 13 10 8 + -0.12521267670819257E-001 5 14 10 8 + 0.12641414836199946E-002 6 1 10 8 + 0.13659392824628622E-002 6 2 10 8 + -0.12292851758076721E-002 6 9 10 8 + 0.11576128540140066E-002 6 10 10 8 + 0.41583675566107970E-002 6 11 10 8 + 0.79389350368273878E-002 6 12 10 8 + -0.10381821428723303E-003 6 13 10 8 + -0.66504278836917877E-003 6 14 10 8 + 0.11090347481046797E-001 7 1 10 8 + 0.11983417028582442E-001 7 2 10 8 + -0.10784548571384032E-001 7 9 10 8 + 0.39924306012611988E-003 7 10 10 8 + 0.43560488422631660E-003 7 11 10 8 + 0.50723603076877142E-003 7 12 10 8 + 0.61479709030781409E-002 7 13 10 8 + 0.44315955131932240E-002 7 14 10 8 + 0.14697776737249453E-001 8 1 10 8 + 0.15881345675241392E-001 8 2 10 8 + -0.14292511917545892E-001 8 9 10 8 + 0.15175722860535538E-001 8 10 10 8 + -0.73259760517198856E-003 8 11 10 8 + -0.23011447810949379E-003 8 12 10 8 + -0.39864214214647747E-003 8 13 10 8 + 0.50768538542923158E-002 8 14 10 8 + 0.34368557051877324E-002 9 3 10 8 + 0.61429728543380534E-002 9 4 10 8 + 0.17804770296542517E-001 9 5 10 8 + -0.13285233353599215E-002 9 6 10 8 + -0.11655169424286353E-001 9 7 10 8 + -0.15446323617561753E-001 9 8 10 8 + -0.16265071592903572E-001 10 3 10 8 + -0.17995562229616856E-001 10 4 10 8 + -0.16296131739892351E-001 10 5 10 8 + 0.96680678347878235E-003 10 6 10 8 + 0.33345280799644236E-003 10 7 10 8 + 0.12831020261488319E-001 10 8 10 8 + -0.13865889825712520E-002 1 10 10 9 + 0.16063109861351569E-009 1 13 10 9 + 0.21589263383824237E-009 1 14 10 9 + -0.15541835032085526E-001 2 10 10 9 + 0.28858407577157520E-008 2 11 10 9 + 0.49650773245797039E-009 2 12 10 9 + -0.54607132222758809E-007 2 13 10 9 + -0.73393493740886698E-007 2 14 10 9 + 0.25618460408812545E-002 3 3 10 9 + 0.81909074715414852E-003 3 4 10 9 + -0.76673062182922701E-002 3 5 10 9 + 0.40178384822445038E-003 3 6 10 9 + 0.68634874131488551E-002 3 7 10 9 + 0.18322105137021755E-002 3 8 10 9 + 0.81909074715414917E-003 4 3 10 9 + 0.21912916454767850E-003 4 4 10 9 + -0.80766723443319016E-002 4 5 10 9 + -0.18602032583375913E-003 4 6 10 9 + 0.63097420219173266E-002 4 7 10 9 + 0.32748674333567748E-002 4 8 10 9 + -0.76673062182922684E-002 5 3 10 9 + -0.80766723443318998E-002 5 4 10 9 + -0.27809752054289969E-002 5 5 10 9 + 0.10209773149200975E-002 5 6 10 9 + -0.31450645002041857E-002 5 7 10 9 + 0.94918985147201696E-002 5 8 10 9 + 0.50402376910905079E-003 6 3 10 9 + -0.23334540262415470E-003 6 4 10 9 + 0.12808156066445473E-002 6 5 10 9 + 0.23567324959784835E-003 6 6 10 9 + -0.36557098466098270E-003 6 7 10 9 + -0.35120851231060886E-003 6 8 10 9 + 0.86102479592725135E-002 7 3 10 9 + 0.79155727951837947E-002 7 4 10 9 + -0.39455082527431844E-002 7 5 10 9 + -0.36557098466098297E-003 7 6 10 9 + 0.38477166375995792E-002 7 7 10 9 + -0.30811583874210168E-002 7 8 10 9 + 0.22985129281385356E-002 8 3 10 9 + 0.41083251664652534E-002 8 4 10 9 + 0.11907577881419383E-001 8 5 10 9 + -0.35120851231060652E-003 8 6 10 9 + -0.30811583874210220E-002 8 7 10 9 + -0.40833898871973700E-002 8 8 10 9 + 0.13412125461956857E-001 9 10 10 9 + 0.15751662445471674E-008 9 11 10 9 + 0.27100670876674966E-009 9 12 10 9 + -0.29805979687552418E-007 9 13 10 9 + -0.40060059835027299E-007 9 14 10 9 + -0.29028684320039412E-002 10 1 10 9 + -0.12012705700494872E-001 10 2 10 9 + 0.99104114386689233E-002 10 9 10 9 + 0.78448063882631591 1 1 10 10 + -0.38091636314485866E-001 1 2 10 10 + 0.33655785293436519E-001 1 9 10 10 + -0.60880545368430754E-004 1 10 10 10 + 0.17178127338142703E-004 1 11 10 10 + -0.64412611059172492E-004 1 12 10 10 + 0.18425995161532208E-004 1 13 10 10 + -0.44402943834849669E-003 1 14 10 10 + 0.31044633149209525E-001 2 1 10 10 + 0.63498201930701481 2 2 10 10 + -0.15248669430254624 2 9 10 10 + 0.39943879765452625E-002 2 10 10 10 + -0.11271359329383752E-002 2 11 10 10 + 0.42264429554711071E-002 2 12 10 10 + -0.12090633150589503E-002 2 13 10 10 + 0.29135401020306068E-001 2 14 10 10 + 0.60853399895554605 3 3 10 10 + 0.24419671378918265E-001 3 4 10 10 + -0.18773449563321122E-002 3 5 10 10 + 0.10268423828845917 3 6 10 10 + 0.78960937589040589E-001 3 7 10 10 + -0.10813778966773513 3 8 10 10 + 0.24419669914233371E-001 4 3 10 10 + 0.60850746169808756 4 4 10 10 + 0.54809789249750497E-002 4 5 10 10 + -0.12634176631029365 4 6 10 10 + 0.52035551777086228E-001 4 7 10 10 + -0.99005188092522164E-001 4 8 10 10 + -0.18773677265153002E-002 5 3 10 10 + 0.54809531879988910E-002 5 4 10 10 + 0.63353483013440104 5 5 10 10 + 0.10934843278764523E-001 5 6 10 10 + -0.14579018009138972 5 7 10 10 + -0.94801429224970840E-001 5 8 10 10 + 0.77481542143566229E-001 6 3 10 10 + -0.95119120478148730E-001 6 4 10 10 + 0.82985434656844652E-002 6 5 10 10 + 0.46752203790930913 6 6 10 10 + -0.44959131454075835E-003 6 7 10 10 + 0.27127820450670633E-002 6 8 10 10 + 0.58905540618265834E-001 7 3 10 10 + 0.38799294887983227E-001 7 4 10 10 + -0.10865324514083731 7 5 10 10 + -0.44959256625375722E-003 7 6 10 10 + 0.49392953360868858 7 7 10 10 + 0.93560763026933648E-003 7 8 10 10 + -0.80655933220447257E-001 8 3 10 10 + -0.73655931829672200E-001 8 4 10 10 + -0.70585231602010051E-001 8 5 10 10 + 0.27127809024148838E-002 8 6 10 10 + 0.93561814126226983E-003 8 7 10 10 + 0.49596475575142468 8 8 10 10 + -0.27382217535161874E-001 9 1 10 10 + -0.99580651198385994E-001 9 2 10 10 + 0.50334491488144684 9 9 10 10 + 0.31245185484008299E-003 9 10 10 10 + -0.88148272193312117E-004 9 11 10 10 + 0.33051224736657767E-003 9 12 10 10 + -0.94560675680502450E-004 9 13 10 10 + 0.22790215773440207E-002 9 14 10 10 + 0.69656137498687429E-003 10 1 10 10 + 0.72122993120452119E-002 10 2 10 10 + -0.10574401456746041E-002 10 9 10 10 + 0.66771141010279467 10 10 10 10 + -0.14483155764318687E-008 1 1 10 11 + 0.14148691584981740E-009 1 2 10 11 + 0.17178154863297577E-004 1 10 10 11 + 0.38112055583243529E-003 1 11 10 11 + -0.12124933170174817E-003 1 12 10 11 + -0.18666616707149060E-004 1 13 10 11 + 0.29202671578605948E-004 1 14 10 11 + 0.29795549589613766E-009 2 1 10 11 + 0.45471915053344373E-008 2 2 10 11 + 0.44177914858091987E-008 2 9 10 11 + -0.11271354803994449E-002 2 10 10 11 + -0.25007058362470681E-001 2 11 10 11 + 0.79555151701562916E-002 2 12 10 11 + 0.12248949660813115E-002 2 13 10 11 + -0.19161415139331869E-002 2 14 10 11 + -0.23230334964449435E-001 3 3 10 11 + 0.17498389399313668E-002 3 4 10 11 + 0.63664273747771043E-002 3 5 10 11 + -0.34960172157616270E-002 3 6 10 11 + -0.34466982532543869E-002 3 7 10 11 + 0.22521745736288749E-002 3 8 10 11 + 0.17498334652008164E-002 4 3 10 11 + 0.20733985790339190E-001 4 4 10 11 + -0.11258510369932747E-001 4 5 10 11 + -0.34990107290866612E-002 4 6 10 11 + 0.36785140690479734E-002 4 7 10 11 + -0.14908455530778157E-002 4 8 10 11 + 0.63664637693117022E-002 5 3 10 11 + -0.11258505583470246E-001 5 4 10 11 + 0.24963624072867970E-002 5 5 10 11 + 0.28809870286168556E-002 5 6 10 11 + -0.57291256262543817E-003 5 7 10 11 + 0.22606257126404040E-003 5 8 10 11 + -0.21695857883910707E-002 6 3 10 11 + -0.21714020320245677E-002 6 4 10 11 + 0.17878945942961769E-002 6 5 10 11 + 0.16920802624010979E-002 6 6 10 11 + -0.12598739003480143E-001 6 7 10 11 + 0.64555456415582120E-002 6 8 10 11 + -0.21389556762441797E-002 7 3 10 11 + 0.22828409713031564E-002 7 4 10 11 + -0.35553823870170551E-003 7 5 10 11 + -0.12598745337943935E-001 7 6 10 11 + 0.24727054524072461E-004 7 7 10 11 + 0.97500028809966940E-003 7 8 10 11 + 0.13976242072715952E-002 8 3 10 11 + -0.92521579302496087E-003 8 4 10 11 + 0.14029165886356079E-003 8 5 10 11 + 0.64555443592797549E-002 8 6 10 11 + 0.97499079004062311E-003 8 7 10 11 + -0.17167978856252348E-002 8 8 10 11 + -0.32386002461653268E-009 9 1 10 11 + -0.31681663526139365E-008 9 2 10 11 + 0.35398269661952741E-008 9 9 10 11 + -0.88148319515161518E-004 9 10 10 11 + -0.19557134357811494E-002 9 11 10 11 + 0.62219248468661770E-003 9 12 10 11 + 0.95828254355876725E-004 9 13 10 11 + -0.14989681333520171E-003 9 14 10 11 + -0.19655138411819756E-003 10 1 10 11 + -0.20351215073061675E-002 10 2 10 11 + 0.29836802129071921E-003 10 9 10 11 + -0.12008752441449367E-008 10 10 10 11 + 0.33973483000713151E-001 10 11 10 11 + -0.24918160751357381E-009 1 1 10 12 + -0.64412905579771320E-004 1 10 10 12 + -0.12124925608591117E-003 1 11 10 12 + -0.35446853594519429E-003 1 12 10 12 + -0.50239700790908884E-005 1 13 10 12 + 0.55351751961272301E-004 1 14 10 12 + 0.78234287207862286E-009 2 2 10 12 + 0.76007914665235432E-009 2 9 10 12 + 0.42264381132805879E-002 2 10 10 12 + 0.79555164133503931E-002 2 11 10 12 + 0.23258636779306258E-001 2 12 10 12 + 0.32963741016714317E-003 2 13 10 12 + -0.36319895564280928E-002 2 14 10 12 + -0.10365084457023884E-001 3 3 10 12 + -0.28042437062748933E-002 3 4 10 12 + -0.12541347402713761E-001 3 5 10 12 + -0.11821069076452023E-002 3 6 10 12 + 0.11036582189733592E-002 3 7 10 12 + 0.33195386161394462E-002 3 8 10 12 + -0.28042394357795969E-002 4 3 10 12 + 0.14056270458519407E-001 4 4 10 12 + 0.16651144456181096E-001 4 5 10 12 + -0.25593525818203258E-002 4 6 10 12 + -0.24633116483954417E-002 4 7 10 12 + -0.33951142702073182E-002 4 8 10 12 + -0.12541349269860169E-001 5 3 10 12 + 0.16651122336724621E-001 5 4 10 12 + -0.36911837247317601E-002 5 5 10 12 + -0.47040765363811623E-002 5 6 10 12 + 0.52813441493765095E-003 5 7 10 12 + 0.10197595163926796E-003 5 8 10 12 + -0.73363900070222540E-003 6 3 10 12 + -0.15882685839365420E-002 6 4 10 12 + -0.29192822514056984E-002 6 5 10 12 + 0.22264065447181671E-002 6 6 10 12 + 0.65599497878134575E-002 6 7 10 12 + 0.11772532824792558E-001 6 8 10 12 + 0.68491413476725748E-003 7 3 10 12 + -0.15286800047176168E-002 7 4 10 12 + 0.32774200372525807E-003 7 5 10 12 + 0.65599465544768504E-002 7 6 10 12 + -0.16871466787546840E-002 7 7 10 12 + 0.10250381304951720E-002 7 8 10 12 + 0.20600390570374057E-002 8 3 10 12 + -0.21069829396202795E-002 8 4 10 12 + 0.63263876448205821E-004 8 5 10 12 + 0.11772528765778398E-001 8 6 10 12 + 0.10250428243077641E-002 8 7 10 12 + -0.53925824331119241E-003 8 8 10 12 + -0.54508180492272357E-009 9 2 10 12 + 0.60902608415186395E-009 9 9 10 12 + 0.33051275371267098E-003 9 10 10 12 + 0.62219235468623485E-003 9 11 10 12 + 0.18189437612590458E-002 9 12 10 12 + 0.25794598256541702E-004 9 13 10 12 + -0.28409951625263228E-003 9 14 10 12 + 0.73700942622332156E-003 10 1 10 12 + 0.76310815656664812E-002 10 2 10 12 + -0.11187761766838656E-002 10 9 10 12 + 0.28481348393247643E-007 10 10 10 12 + -0.22586926826591598E-003 10 11 10 12 + 0.32781975590552959E-001 10 12 10 12 + 0.27405665111588210E-007 1 1 10 13 + -0.26772772775119863E-008 1 2 10 13 + 0.51152289720390371E-009 1 9 10 13 + 0.18425634179595601E-004 1 10 10 13 + -0.18665528189453748E-004 1 11 10 13 + -0.50236932332125284E-005 1 12 10 13 + -0.19615561221376329E-004 1 13 10 13 + -0.33387702492078620E-005 1 14 10 13 + -0.56380429353240791E-008 2 1 10 13 + -0.86043925446201596E-007 2 2 10 13 + -0.83595370831652742E-007 2 9 10 13 + -0.12090692499379908E-002 2 10 10 13 + 0.12249128623163608E-002 2 11 10 13 + 0.32964196176877463E-003 2 12 10 13 + 0.12865246420548460E-002 2 13 10 13 + 0.21852974076311474E-003 2 14 10 13 + 0.25764095636167389E-003 3 3 10 13 + -0.53501936378452255E-003 3 4 10 13 + -0.18004450055306633E-002 3 5 10 13 + 0.10065099109174395E-003 3 6 10 13 + 0.32780645756259538E-003 3 7 10 13 + 0.24945885910387759E-003 3 8 10 13 + -0.53506586165564781E-003 4 3 10 13 + -0.10904624982001393E-002 4 4 10 13 + -0.13479114108108712E-003 4 5 10 13 + 0.10985057722820016E-003 4 6 10 13 + -0.10247634874999825E-003 4 7 10 13 + 0.22829761479597620E-003 4 8 10 13 + -0.18008582943791402E-002 5 3 10 13 + -0.13516368052886391E-003 5 4 10 13 + 0.83257113793964543E-003 5 5 10 13 + -0.21909182901812480E-003 5 6 10 13 + -0.34903975124974291E-003 5 7 10 13 + 0.16752410241383745E-003 5 8 10 13 + 0.62464140967062503E-004 6 3 10 13 + 0.68155533694298689E-004 6 4 10 13 + -0.13595135019582176E-003 6 5 10 13 + -0.89947806990589165E-004 6 6 10 13 + 0.65356406352768271E-003 6 7 10 13 + -0.14964442601063819E-004 6 8 10 13 + 0.20343011177613234E-003 7 3 10 13 + -0.63543226717976097E-004 7 4 10 13 + -0.21635455294653208E-003 7 5 10 13 + 0.65355628717072504E-003 7 6 10 13 + 0.10239685092350050E-002 7 7 10 13 + 0.10448266452464761E-003 7 8 10 13 + 0.15484893485814011E-003 8 3 10 13 + 0.14171413344118915E-003 8 4 10 13 + 0.10398749384745938E-003 8 5 10 13 + -0.14966654150703032E-004 8 6 10 13 + 0.10465530905367418E-003 8 7 10 13 + -0.93419916538243467E-003 8 8 10 13 + 0.61282197329039222E-008 9 1 10 13 + 0.59949418602613025E-007 9 2 10 13 + -0.66982137248423373E-007 9 9 10 13 + -0.94560055072050086E-004 9 10 10 13 + 0.95826382953298670E-004 9 11 10 13 + 0.25794122297279011E-004 9 12 10 13 + 0.10079966399791853E-003 9 13 10 13 + 0.17250663747929455E-004 9 14 10 13 + -0.21083732416855782E-003 10 1 10 13 + -0.21830881323926751E-002 10 2 10 13 + 0.32006173784630338E-003 10 9 10 13 + -0.56094462542621251E-007 10 10 10 13 + -0.50924563785542025E-003 10 11 10 13 + 0.23840287939492260E-003 10 12 10 13 + 0.20190014524908855E-001 10 13 10 13 + 0.36833970161404651E-007 1 1 10 14 + -0.35983345685913720E-008 1 2 10 14 + 0.68750087273663555E-009 1 9 10 14 + -0.44401825002921865E-003 1 10 10 14 + 0.29201845256056724E-004 1 11 10 14 + 0.55350117831882805E-004 1 12 10 14 + -0.33391087728932636E-005 1 13 10 14 + 0.53844086702569896E-004 1 14 10 14 + -0.75776854297796890E-008 2 1 10 14 + -0.11564541249312952E-006 2 2 10 14 + -0.11235448687858566E-006 2 9 10 14 + 0.29135584966596142E-001 2 10 10 14 + -0.19161550994381596E-002 2 11 10 14 + -0.36320164230226617E-002 2 12 10 14 + 0.21852417512145371E-003 2 13 10 14 + -0.35324910354357906E-002 2 14 10 14 + -0.48408498696373174E-002 3 3 10 14 + -0.50051813034605180E-002 3 4 10 14 + 0.21994838226293379E-001 3 5 10 14 + 0.51881678901657361E-003 3 6 10 14 + -0.49508298036492092E-002 3 7 10 14 + -0.13583547991622314E-002 3 8 10 14 + -0.50051657632990453E-002 4 3 10 14 + -0.70156023471533283E-003 4 4 10 14 + 0.17192658019170203E-001 4 5 10 14 + -0.32097417281570388E-003 4 6 10 14 + -0.37792329008234497E-002 4 7 10 14 + -0.12955038107797649E-002 4 8 10 14 + 0.21994853799098525E-001 5 3 10 14 + 0.17192603672382782E-001 5 4 10 14 + 0.55420735545961700E-002 5 5 10 14 + 0.24352426001928495E-003 5 6 10 14 + 0.23597135371652552E-002 5 7 10 14 + -0.59071903992554426E-002 5 8 10 14 + 0.32180679531043210E-003 6 3 10 14 + -0.19901179434987765E-003 6 4 10 14 + 0.15109159105675270E-003 6 5 10 14 + 0.14767508168023931E-002 6 6 10 14 + -0.15805288280839333E-003 6 7 10 14 + -0.68521082431806108E-003 6 8 10 14 + -0.30722262980791355E-002 7 3 10 14 + -0.23451791369349176E-002 7 4 10 14 + 0.14644349614726633E-002 7 5 10 14 + -0.15806349357974384E-003 7 6 10 14 + -0.13374004472430808E-001 7 7 10 14 + 0.98134427944723060E-002 7 8 10 14 + -0.84295302614982093E-003 8 3 10 14 + -0.80393595408607575E-003 8 4 10 14 + -0.36656345618278695E-002 8 5 10 14 + -0.68522397739960732E-003 8 6 10 14 + 0.98134494116579266E-002 8 7 10 14 + 0.11897013796241342E-001 8 8 10 14 + 0.82364965788457951E-008 9 1 10 14 + 0.80573674258785029E-007 9 2 10 14 + -0.90025842629824792E-007 9 9 10 14 + 0.22790023421489039E-002 9 10 10 14 + -0.14989539270402025E-003 9 11 10 14 + -0.28409670682285086E-003 9 12 10 14 + 0.17251245744987281E-004 9 13 10 14 + -0.27648184431595555E-003 9 14 10 14 + 0.50807020029207560E-002 10 1 10 14 + 0.52607728685209104E-001 10 2 10 14 + -0.77130411771818850E-002 10 9 10 14 + 0.29614124436537338E-007 10 10 10 14 + -0.13541920795380526E-003 10 11 10 14 + 0.72538007590401416E-003 10 12 10 14 + -0.78406479581606702E-003 10 13 10 14 + 0.37633589509598657E-001 10 14 10 14 + 0.85555628113678176E-003 1 11 11 1 + 0.16430530046110052E-008 1 13 11 1 + 0.24256446955873491E-009 2 10 11 1 + 0.75946418639031652E-002 2 11 11 1 + 0.27154477034865908E-009 2 12 11 1 + 0.85310687734163449E-008 2 13 11 1 + 0.53259951225440296E-002 3 3 11 1 + -0.98058090683349653E-003 3 4 11 1 + -0.33591514220558676E-002 3 5 11 1 + 0.20482378030248728E-002 3 6 11 1 + 0.26016556057349540E-002 3 7 11 1 + -0.50118932711454777E-003 3 8 11 1 + -0.98058090683349653E-003 4 3 11 1 + -0.43205943968452846E-002 4 4 11 1 + 0.40486036746364166E-002 4 5 11 1 + 0.15703470034936046E-002 4 6 11 1 + -0.26983197478337106E-002 4 7 11 1 + 0.44745231642642845E-003 4 8 11 1 + -0.33591514220558671E-002 5 3 11 1 + 0.40486036746364166E-002 5 4 11 1 + -0.10054007256986902E-002 5 5 11 1 + -0.27946051135134794E-002 5 6 11 1 + 0.27492542782663634E-003 5 7 11 1 + 0.19061205784688098E-003 5 8 11 1 + 0.21021828344618227E-002 6 3 11 1 + 0.16117052872123606E-002 6 4 11 1 + -0.28682070785768462E-002 6 5 11 1 + -0.14225695153274230E-003 6 6 11 1 + 0.50406812508610004E-002 6 7 11 1 + -0.87323221756008056E-003 6 8 11 1 + 0.26701745252897184E-002 7 3 11 1 + -0.27693874221177898E-002 7 4 11 1 + 0.28216130642180352E-003 7 5 11 1 + 0.50406812508609986E-002 7 6 11 1 + 0.19905291183688136E-003 7 7 11 1 + -0.34204442616052457E-003 7 8 11 1 + -0.51438519801831216E-003 8 3 11 1 + 0.45924016090967391E-003 8 4 11 1 + 0.19563039420844084E-003 8 5 11 1 + -0.87323221756008078E-003 8 6 11 1 + -0.34204442616052457E-003 8 7 11 1 + -0.56795960304139852E-004 8 8 11 1 + -0.26239808081778112E-009 9 10 11 1 + -0.24770212537914087E-002 9 11 11 1 + -0.29374799686268274E-009 9 12 11 1 + -0.92286232220778262E-008 9 13 11 1 + 0.10719153402111624E-009 9 14 11 1 + 0.18441300080162506E-009 10 9 11 1 + -0.19655164343463874E-003 10 10 11 1 + -0.43607660946264632E-002 10 11 11 1 + 0.13873047125011154E-002 10 12 11 1 + 0.21359983159748144E-003 10 13 11 1 + -0.33414309419776403E-003 10 14 11 1 + 0.16106993082335940E-002 11 1 11 1 + 0.10744935488848557E-009 1 10 11 2 + 0.44602886823861176E-003 1 11 11 2 + 0.12028682737756089E-009 1 12 11 2 + 0.37790276686487803E-008 1 13 11 2 + 0.42178558651729315E-008 2 10 11 2 + 0.60778219491420371E-001 2 11 11 2 + 0.47217826599618389E-008 2 12 11 2 + 0.14834331960647147E-006 2 13 11 2 + -0.17230249403098279E-008 2 14 11 2 + 0.40246424851085989E-001 3 3 11 2 + -0.74098941371527607E-002 3 4 11 2 + -0.25383799801839597E-001 3 5 11 2 + 0.61157139057840936E-002 3 6 11 2 + 0.77681489096064352E-002 3 7 11 2 + -0.14965146537557752E-002 3 8 11 2 + -0.74098941371527590E-002 4 3 11 2 + -0.32649057814559804E-001 4 4 11 2 + 0.30593704652966600E-001 4 5 11 2 + 0.46888117721918419E-002 4 6 11 2 + -0.80567427294276281E-002 4 7 11 2 + 0.13359888733940921E-002 4 8 11 2 + -0.25383799801839600E-001 5 3 11 2 + 0.30593704652966600E-001 5 4 11 2 + -0.75973670365258863E-002 5 5 11 2 + -0.83442522947603948E-002 5 6 11 2 + 0.82093493918742938E-003 5 7 11 2 + 0.56915688467444917E-003 5 8 11 2 + 0.44676497832579704E-002 6 3 11 2 + 0.34252610420519095E-002 6 4 11 2 + -0.60956334190989383E-002 6 5 11 2 + -0.89920471356513137E-003 6 6 11 2 + 0.31862132983469404E-001 6 7 11 2 + -0.55196987037907427E-002 6 8 11 2 + 0.56747511455019677E-002 7 3 11 2 + -0.58856363622299531E-002 7 4 11 2 + 0.59960401850426247E-003 7 5 11 2 + 0.31862132983469439E-001 7 6 11 2 + 0.12582232988581261E-002 7 7 11 2 + -0.21620469276085325E-002 7 8 11 2 + -0.10931457815007890E-002 8 3 11 2 + 0.97603398575053476E-003 8 4 11 2 + 0.41574033779113252E-003 8 5 11 2 + -0.55196987037907375E-002 8 6 11 2 + -0.21620469276085316E-002 8 7 11 2 + -0.35901858529298894E-003 8 8 11 2 + -0.46927355382213281E-008 9 10 11 2 + 0.20270989336149078E-002 9 11 11 2 + -0.52533984803445430E-008 9 12 11 2 + -0.16504498867469180E-006 9 13 11 2 + 0.19170167828207518E-008 9 14 11 2 + 0.18341325012632972E-008 10 2 11 2 + 0.49516484811829090E-008 10 9 11 2 + -0.20351293229940843E-002 10 10 11 2 + -0.45152072306840985E-001 10 11 11 2 + 0.14364364950489416E-001 10 12 11 2 + 0.22117780028360822E-002 10 13 11 2 + -0.34598680023149473E-002 10 14 11 2 + 0.89610274418905518E-002 11 1 11 2 + 0.94273481377153620E-001 11 2 11 2 + 0.10916511151755606E-002 1 3 11 3 + -0.20098711658147881E-003 1 4 11 3 + -0.68851452087970210E-003 1 5 11 3 + 0.35455515318575352E-003 1 6 11 3 + 0.45035337790879878E-003 1 7 11 3 + -0.86757645358600798E-004 1 8 11 3 + 0.82930646308524786E-001 2 3 11 3 + -0.15268602122598651E-001 2 4 11 3 + -0.52305126755886749E-001 2 5 11 3 + 0.14269831007262278E-001 2 6 11 3 + 0.18125438416418407E-001 2 7 11 3 + -0.34917541748828102E-002 2 8 11 3 + 0.31120349567280034E-001 3 1 11 3 + 0.92163537395396372E-001 3 2 11 3 + -0.13737361204733116E-001 3 9 11 3 + -0.36388200870252310E-001 3 10 11 3 + 0.73941458954187855E-001 3 11 11 3 + -0.21006821725901504E-001 3 12 11 3 + -0.15423221227674045E-001 3 13 11 3 + -0.13925660991558670E-001 3 14 11 3 + -0.57296340584572850E-002 4 1 11 3 + -0.16968464229127411E-001 4 2 11 3 + 0.25291629802211991E-002 4 9 11 3 + -0.18532148366036626E-001 4 10 11 3 + -0.21760207458393639E-001 4 11 11 3 + -0.19427144663708235E-001 4 12 11 3 + -0.14892253352935697E-001 4 13 11 3 + 0.35068689644717259E-001 4 14 11 3 + -0.19627872160166836E-001 5 1 11 3 + -0.58128368882240392E-001 5 2 11 3 + 0.86642271452599361E-002 5 9 11 3 + 0.18060260785368452E-001 5 10 11 3 + -0.27575387093218977E-001 5 11 11 3 + -0.21006200626669264E-001 5 12 11 3 + -0.38360452638945705E-001 5 13 11 3 + -0.16359539335034510E-001 5 14 11 3 + 0.24007647333159580E-001 6 1 11 3 + 0.12230404729277984E-001 6 2 11 3 + -0.42589978764280854E-001 6 9 11 3 + -0.80525573429825355E-003 6 10 11 3 + 0.38925933474199832E-002 6 11 11 3 + 0.43743406277797691E-004 6 12 11 3 + -0.27322708267260885E-003 6 13 11 3 + -0.15571844896456839E-002 6 14 11 3 + 0.30494312070829158E-001 7 1 11 3 + 0.15534938643820091E-001 7 2 11 3 + -0.54097433357139915E-001 7 9 11 3 + -0.18427542328673433E-002 7 10 11 3 + 0.31394928351134725E-002 7 11 11 3 + -0.27871935319998084E-003 7 12 11 3 + 0.10095395625117141E-002 7 13 11 3 + 0.37961785023674511E-003 7 14 11 3 + -0.58744681582846067E-002 8 1 11 3 + -0.29926295937036701E-002 8 2 11 3 + 0.10421407228396583E-001 8 9 11 3 + 0.11689208633581345E-002 8 10 11 3 + -0.14427556093001808E-002 8 11 11 3 + 0.17650531226182016E-002 8 12 11 3 + 0.18733437107600736E-002 8 13 11 3 + -0.27909970398444793E-004 8 14 11 3 + -0.82906112834107114E-002 9 3 11 3 + 0.15264500875082684E-002 9 4 11 3 + 0.52290011215279245E-002 9 5 11 3 + -0.42544815703806929E-001 9 6 11 3 + -0.54040054171238472E-001 9 7 11 3 + 0.10410322547650636E-001 9 8 11 3 + -0.55990635249939781E-001 10 3 11 3 + -0.30742584001726515E-001 10 4 11 3 + 0.28636008952108615E-001 10 5 11 3 + -0.19171056868772464E-002 10 6 11 3 + -0.12157719142516168E-001 10 7 11 3 + 0.75999989208303115E-002 10 8 11 3 + 0.11106125146173161 11 3 11 3 + -0.20098711658147748E-003 1 3 11 4 + -0.88557858515802526E-003 1 4 11 4 + 0.82982894901272822E-003 1 5 11 4 + 0.27183109403213477E-003 1 6 11 4 + -0.46708583185941317E-003 1 7 11 4 + 0.77454741303343248E-004 1 8 11 4 + -0.15268602122598689E-001 2 3 11 4 + -0.67275704509200659E-001 2 4 11 4 + 0.63040514936785544E-001 2 5 11 4 + 0.10940424876408065E-001 2 6 11 4 + -0.18798866879947293E-001 2 7 11 4 + 0.31173264023500037E-002 2 8 11 4 + -0.57296340584572850E-002 3 1 11 4 + -0.16968464229127445E-001 3 2 11 4 + 0.25291629802211679E-002 3 9 11 4 + 0.24014034543165808E-001 3 10 11 4 + -0.21760191684225931E-001 3 11 11 4 + -0.19403135434527336E-001 3 12 11 4 + 0.13222792093317264E-001 3 13 11 4 + -0.26253923276134305E-001 3 14 11 4 + -0.25245683020926283E-001 4 1 11 4 + -0.74765646052332463E-001 4 2 11 4 + 0.11144055965808967E-001 4 9 11 4 + 0.32477899643471253E-001 4 10 11 4 + 0.67091566121374208E-001 4 11 11 4 + -0.17860106733688666E-001 4 12 11 4 + 0.22061046644863910E-001 4 13 11 4 + 0.14240470521354258E-001 4 14 11 4 + 0.23656415253813665E-001 5 1 11 4 + 0.70058967188305898E-001 5 2 11 4 + -0.10442551704589640E-001 5 9 11 4 + -0.25382716059790082E-001 5 10 11 4 + -0.27255195893770318E-001 5 11 11 4 + -0.10311707429546161E-001 5 12 11 4 + 0.40071481738326510E-001 5 13 11 4 + 0.12183867071057555E-001 5 14 11 4 + 0.18406227187563639E-001 6 1 11 4 + 0.93768246012065244E-002 6 2 11 4 + -0.32652963187772020E-001 6 9 11 4 + -0.94696899308692256E-003 6 10 11 4 + -0.42939454193572880E-002 6 11 11 4 + 0.64295390683188431E-004 6 12 11 4 + -0.55338437743518161E-003 6 13 11 4 + -0.11398855744136705E-002 6 14 11 4 + -0.31627348031944759E-001 7 1 11 4 + -0.16112183111927383E-001 7 2 11 4 + 0.56107458751604278E-001 7 9 11 4 + 0.20425815268257149E-002 7 10 11 4 + 0.20602143659735088E-002 7 11 11 4 + -0.58758754715714423E-003 7 12 11 4 + -0.10491664312807952E-002 7 13 11 4 + -0.25614619955599012E-003 7 14 11 4 + 0.52446696168659528E-002 8 1 11 4 + 0.26718695716881932E-002 8 2 11 4 + -0.93041341412858688E-002 8 9 11 4 + -0.91634462548461607E-003 8 10 11 4 + -0.86088288334790837E-003 8 11 11 4 + 0.14136890998820188E-002 8 12 11 4 + -0.20433975449231389E-002 8 13 11 4 + -0.23642455918362181E-004 8 14 11 4 + 0.15264500875082079E-002 9 3 11 4 + 0.67256354911644509E-002 9 4 11 4 + -0.63022087167052048E-002 9 5 11 4 + -0.32618334207374762E-001 9 6 11 4 + 0.56047971791879536E-001 9 7 11 4 + -0.92942938853099646E-002 9 8 11 4 + 0.39177249848998612E-001 10 3 11 4 + 0.49973782513593842E-001 10 4 11 4 + -0.39867502555912690E-001 10 5 11 4 + -0.32996169550485567E-002 10 6 11 4 + 0.13718058246911590E-001 10 7 11 4 + -0.64260423635414980E-002 10 8 11 4 + -0.33483219740330417E-001 11 3 11 4 + 0.10052156931416041 11 4 11 4 + -0.68851452087988229E-003 1 3 11 5 + 0.82982894901273462E-003 1 4 11 5 + -0.20607253001757965E-003 1 5 11 5 + -0.48375326961393487E-003 1 6 11 5 + 0.47590891119004023E-004 1 7 11 5 + 0.32995659541764754E-004 1 8 11 5 + -0.52305126755886680E-001 2 3 11 5 + 0.63040514936785613E-001 2 4 11 5 + -0.15654941799323183E-001 2 5 11 5 + -0.19469686346233358E-001 2 6 11 5 + 0.19154057213884822E-002 2 7 11 5 + 0.13279841536846587E-002 2 8 11 5 + -0.19627872160166860E-001 3 1 11 5 + -0.58128368882240301E-001 3 2 11 5 + 0.86642271452600002E-002 3 9 11 5 + 0.18845429969930778E-002 3 10 11 5 + -0.27575371924193497E-001 3 11 11 5 + 0.22663755760073949E-001 3 12 11 5 + -0.98533686804441380E-002 3 13 11 5 + 0.31140279284834049E-001 3 14 11 5 + 0.23656415253813703E-001 4 1 11 5 + 0.70058967188305996E-001 4 2 11 5 + -0.10442551704589655E-001 4 9 11 5 + -0.98880393069699490E-002 4 10 11 5 + -0.27255211279278463E-001 4 11 11 5 + 0.18753379585169448E-001 4 12 11 5 + 0.88304215396346336E-002 4 13 11 5 + -0.37549399207801960E-001 4 14 11 5 + -0.58746665463533633E-002 5 1 11 5 + -0.17397891343062862E-001 5 2 11 5 + 0.25933052389240439E-002 5 9 11 5 + 0.39103127438485825E-002 5 10 11 5 + 0.56149557609714899E-001 5 11 11 5 + 0.38866941352655900E-001 5 12 11 5 + -0.66374203582802941E-002 5 13 11 5 + -0.31481423460219304E-003 5 14 11 5 + -0.32755907484713145E-001 6 1 11 5 + -0.16687095646328320E-001 6 2 11 5 + 0.58109542530836340E-001 6 9 11 5 + 0.76445390420571638E-003 6 10 11 5 + 0.46447688911624419E-003 6 11 11 5 + 0.92131638670582785E-004 6 12 11 5 + -0.12378086268345521E-002 6 13 11 5 + 0.20268846288684869E-002 6 14 11 5 + 0.32223944688024647E-002 7 1 11 5 + 0.16415534869189199E-002 7 2 11 5 + -0.57165829082563386E-002 7 9 11 5 + -0.27756297589900600E-003 7 10 11 5 + -0.43570660872584944E-002 7 11 11 5 + -0.12650933770468940E-002 7 12 11 5 + 0.17191567232305988E-003 7 13 11 5 + 0.10920129289677382E-003 7 14 11 5 + 0.22341720545710118E-002 8 1 11 5 + 0.11381504407328108E-002 8 2 11 5 + -0.39634595141775260E-002 8 9 11 5 + 0.11473865868297502E-003 8 10 11 5 + -0.18712738611956296E-003 8 11 11 5 + -0.21356352664445612E-002 8 12 11 5 + 0.27540782356819988E-003 8 13 11 5 + 0.12501064578286669E-003 8 14 11 5 + 0.52290011215280026E-002 9 3 11 5 + -0.63022087167052231E-002 9 4 11 5 + 0.15649757922461807E-002 9 5 11 5 + 0.58047919347151797E-001 9 6 11 5 + -0.57104806026954183E-002 9 7 11 5 + -0.39592412503919394E-002 9 8 11 5 + 0.20531027724550632E-002 10 3 11 5 + -0.14403737061830820E-001 10 4 11 5 + 0.60168654415055029E-002 10 5 11 5 + 0.25673553198498184E-002 10 6 11 5 + -0.17395096548046131E-002 10 7 11 5 + 0.73742252860923706E-003 10 8 11 5 + -0.42430302667991679E-001 11 3 11 5 + -0.41937734862479058E-001 11 4 11 5 + 0.83684854477475257E-001 11 5 11 5 + 0.20457869099310233E-002 1 3 11 6 + 0.15684677237764696E-002 1 4 11 6 + -0.27912609266658372E-002 1 5 11 6 + -0.92112931102574858E-004 1 6 11 6 + 0.32638950483676399E-002 1 7 11 6 + -0.56542720073384347E-003 1 8 11 6 + 0.16768032179497287E-001 2 3 11 6 + 0.12855749863517601E-001 2 4 11 6 + -0.22878218428387331E-001 2 5 11 6 + -0.38171113604450250E-003 2 6 11 6 + 0.13525390067071218E-001 2 7 11 6 + -0.23430971588846851E-002 2 8 11 6 + 0.87668308973299740E-002 3 1 11 6 + 0.16890625643805737E-001 3 2 11 6 + -0.72717504612378470E-002 3 9 11 6 + -0.12315406099424617E-001 3 10 11 6 + 0.17408494609041609E-001 3 11 11 6 + 0.95749738819514798E-003 3 12 11 6 + -0.61687529018095884E-002 3 13 11 6 + 0.44739622382942504E-002 3 14 11 6 + 0.67213703298707851E-002 4 1 11 6 + 0.12949740708805104E-001 4 2 11 6 + -0.55751208954607813E-002 4 9 11 6 + -0.11078931388247133E-001 4 10 11 6 + -0.18958050285571522E-001 4 11 11 6 + 0.81374724935188970E-003 4 12 11 6 + -0.76612623834419564E-002 4 13 11 6 + 0.28882416293714097E-002 4 14 11 6 + -0.11961418140356426E-001 5 1 11 6 + -0.23045484898978341E-001 5 2 11 6 + 0.99215396919779021E-002 5 9 11 6 + 0.92570187432388807E-002 5 10 11 6 + 0.20978910778674210E-002 5 11 11 6 + -0.82746965088110406E-003 5 12 11 6 + -0.16501781276541689E-001 5 13 11 6 + -0.64647250167093441E-002 5 14 11 6 + -0.50418110603777809E-003 6 1 11 6 + -0.54478081368898655E-003 6 2 11 6 + 0.49027886508028716E-003 6 9 11 6 + 0.72204924049510451E-003 6 10 11 6 + 0.14756377320000555E-001 6 11 11 6 + -0.40773568280536436E-004 6 12 11 6 + 0.44234500007722584E-003 6 13 11 6 + 0.84943046567479232E-004 6 14 11 6 + 0.17864976682612371E-001 7 1 11 6 + 0.19303591615751119E-001 7 2 11 6 + -0.17372382449394035E-001 7 9 11 6 + -0.78511094896047320E-002 7 10 11 6 + 0.26498348870710516E-003 7 11 11 6 + 0.57873385077667654E-003 7 12 11 6 + 0.41297418429685822E-002 7 13 11 6 + 0.23272010155974843E-002 7 14 11 6 + -0.30948739947377706E-002 8 1 11 6 + -0.33440953220098693E-002 8 2 11 6 + 0.30095385217629471E-002 8 9 11 6 + 0.41583810179369064E-002 8 10 11 6 + -0.70224219678194561E-003 8 11 11 6 + -0.31675092368303200E-003 8 12 11 6 + 0.79613106675133147E-002 8 13 11 6 + -0.15706117577301486E-003 8 14 11 6 + -0.10131147799732967E-001 9 3 11 6 + -0.77673641941039609E-002 9 4 11 6 + 0.13822882128778132E-001 9 5 11 6 + 0.52985850063933134E-003 9 6 11 6 + -0.18774826930282734E-001 9 7 11 6 + 0.32524936963373328E-002 9 8 11 6 + -0.13571382542383164E-001 10 3 11 6 + -0.12202189066787635E-001 10 4 11 6 + 0.10196346565605774E-001 10 5 11 6 + 0.60308235271196024E-003 10 6 11 6 + -0.64314436967500763E-002 10 7 11 6 + 0.34017337777876729E-002 10 8 11 6 + 0.19067377502307369E-001 11 3 11 6 + -0.20758640610961721E-001 11 4 11 6 + 0.22983069172820671E-002 11 5 11 6 + 0.12480787866250790E-001 11 6 11 6 + 0.25985415822451646E-002 1 3 11 7 + -0.26950916751312414E-002 1 4 11 7 + 0.27459369983096993E-003 1 5 11 7 + 0.32638950483676252E-002 1 6 11 7 + 0.12888858309782538E-003 1 7 11 7 + -0.22147787060479616E-003 1 8 11 7 + 0.21298630604825192E-001 2 3 11 7 + -0.22089964619395067E-001 2 4 11 7 + 0.22507175460588372E-002 2 5 11 7 + 0.13525390067071257E-001 2 6 11 7 + 0.53410167513120315E-003 2 7 11 7 + -0.91779866929175282E-003 2 8 11 7 + 0.11135556237666393E-001 3 1 11 7 + 0.21454350508775120E-001 3 2 11 7 + -0.92365241036850357E-002 3 9 11 7 + -0.28691610422746671E-002 3 10 11 7 + 0.14229970580033519E-001 3 11 11 7 + -0.10317097767264968E-001 3 12 11 7 + 0.13187634963854229E-002 3 13 11 7 + -0.12265802735561120E-001 3 14 11 7 + -0.11549302828920046E-001 4 1 11 7 + -0.22251465513708501E-001 4 2 11 7 + 0.95796992610542846E-002 4 9 11 7 + 0.23914618087656431E-002 4 10 11 7 + 0.93368395497922980E-002 4 11 11 7 + -0.88954458432993419E-002 4 12 11 7 + -0.20335572949716539E-002 4 13 11 7 + 0.15683099386052099E-001 4 14 11 7 + 0.11767199138310474E-002 5 1 11 7 + 0.22671806385358771E-002 5 2 11 7 + -0.97606419199285544E-003 5 9 11 7 + -0.73102410173795783E-003 5 10 11 7 + -0.19041583619151072E-001 5 11 11 7 + -0.13352841535592731E-001 5 12 11 7 + -0.20978369815376206E-004 5 13 11 7 + -0.10982110692235722E-002 5 14 11 7 + 0.17864976682612634E-001 6 1 11 7 + 0.19303591615751098E-001 6 2 11 7 + -0.17372382449394708E-001 6 9 11 7 + -0.29012888937818971E-002 6 10 11 7 + 0.26498075547848630E-003 6 11 11 7 + -0.18149728597507747E-003 6 12 11 7 + 0.17244538925395350E-002 6 13 11 7 + -0.84428460850933772E-002 6 14 11 7 + 0.70547682978911700E-003 7 1 11 7 + 0.76229190224962994E-003 7 2 11 7 + -0.68602800668485318E-003 7 9 11 7 + 0.10553254765646453E-004 7 10 11 7 + 0.14472790413520502E-001 7 11 11 7 + 0.20070994435808171E-002 7 12 11 7 + 0.52109998361805590E-005 7 13 11 7 + 0.13035866563821629E-004 7 14 11 7 + -0.12122575363232265E-002 8 1 11 7 + -0.13098698077333470E-002 8 2 11 7 + 0.11788267965158745E-002 8 9 11 7 + 0.43559571923704735E-003 8 10 11 7 + -0.20159024038386378E-002 8 11 11 7 + 0.86641620930722005E-002 8 12 11 7 + 0.82357066508391687E-004 8 13 11 7 + -0.32085312940788871E-003 8 14 11 7 + -0.12868487304761821E-001 9 3 11 7 + 0.13346645113550309E-001 9 4 11 7 + -0.13598050937632777E-002 9 5 11 7 + -0.18774826930283393E-001 9 6 11 7 + -0.74140795712150523E-003 9 7 11 7 + 0.12739944609736530E-002 9 8 11 7 + -0.31123129436498062E-002 10 3 11 7 + 0.25789591459245819E-002 10 4 11 7 + -0.79872253661694790E-003 10 5 11 7 + -0.25487408071622514E-002 10 6 11 7 + 0.88133902628799078E-005 10 7 11 7 + 0.36284760984163543E-003 10 8 11 7 + 0.15590439535951277E-001 11 3 11 7 + 0.10229458378172110E-001 11 4 11 7 + -0.20845191632937216E-001 11 5 11 7 + 0.22130671651582261E-003 11 6 11 7 + 0.12243621944988559E-001 11 7 11 7 + -0.50058731189409110E-003 1 3 11 8 + 0.44691867611193557E-003 1 4 11 8 + 0.19038292567254343E-003 1 5 11 8 + -0.56542720073384878E-003 1 6 11 8 + -0.22147787060480313E-003 1 7 11 8 + -0.36775651995253142E-004 1 8 11 8 + -0.41030379426057395E-002 2 3 11 8 + 0.36630829607154224E-002 2 4 11 8 + 0.15604666331221562E-002 2 5 11 8 + -0.23430971588846404E-002 2 6 11 8 + -0.91779866929175564E-003 2 7 11 8 + -0.15239053908669333E-003 2 8 11 8 + -0.21451724418989084E-002 3 1 11 8 + -0.41330423228753375E-002 3 2 11 8 + 0.17793551406365671E-002 3 9 11 8 + 0.21856476334072335E-002 3 10 11 8 + -0.51035745368466891E-002 3 11 11 8 + 0.31226218200373760E-002 3 12 11 8 + 0.18162061113486637E-002 3 13 11 8 + 0.20015654124822691E-002 3 14 11 8 + 0.19151845030101766E-002 4 1 11 8 + 0.36898592718607542E-002 4 2 11 8 + -0.15885592544507042E-002 4 9 11 8 + -0.18687932241698394E-003 4 10 11 8 + -0.23857673163676331E-002 4 11 11 8 + 0.32874682093982453E-002 4 12 11 8 + -0.18898093238202390E-002 4 13 11 8 + -0.28847600229293430E-002 4 14 11 8 + 0.81585014558039238E-003 5 1 11 8 + 0.15718783846646414E-002 5 2 11 8 + -0.67672409188269500E-003 5 9 11 8 + 0.24235592115907310E-003 5 10 11 8 + 0.93318037633445343E-003 5 11 11 8 + -0.12473659992590758E-003 5 12 11 8 + 0.14390988328223434E-002 5 13 11 8 + 0.10342277618400413E-002 5 14 11 8 + -0.30948739947377238E-002 6 1 11 8 + -0.33440953220098416E-002 6 2 11 8 + 0.30095385217627532E-002 6 9 11 8 + 0.13511249012312071E-002 6 10 11 8 + -0.70224925292733744E-003 6 11 11 8 + -0.29897186196240410E-003 6 12 11 8 + 0.24746815069852466E-002 6 13 11 8 + 0.15507192181049524E-002 6 14 11 8 + -0.12122575363232120E-002 7 1 11 8 + -0.13098698077333494E-002 7 2 11 8 + 0.11788267965158652E-002 7 9 11 8 + 0.39650875750214939E-003 7 10 11 8 + -0.20159032660850879E-002 7 11 11 8 + 0.25024483723477924E-002 7 12 11 8 + -0.40403950116738821E-003 7 13 11 8 + -0.41320582923007305E-003 7 14 11 8 + -0.20129572375133042E-003 8 1 11 8 + -0.21751108856063521E-003 8 2 11 8 + 0.19574914160450777E-003 8 9 11 8 + -0.73259935777074295E-003 8 10 11 8 + 0.32923546311194917E-002 8 11 11 8 + -0.19663223629598050E-002 8 12 11 8 + -0.44744565340102923E-003 8 13 11 8 + -0.97980194818914060E-004 8 14 11 8 + 0.24789771797033957E-002 9 3 11 8 + -0.22132555976163222E-002 9 4 11 8 + -0.94280001326018650E-003 9 5 11 8 + 0.32524936963369108E-002 9 6 11 8 + 0.12739944609736445E-002 9 7 11 8 + 0.21154945648214470E-003 9 8 11 8 + 0.23779052046188297E-002 10 3 11 8 + -0.17888799088199852E-003 10 4 11 8 + 0.26411741034327527E-003 10 5 11 8 + 0.11996871027835721E-002 10 6 11 8 + 0.33217414406649140E-003 10 7 11 8 + -0.61189711019582504E-003 10 8 11 8 + -0.55570316952342561E-002 11 3 11 8 + -0.25774642002436908E-002 11 4 11 8 + 0.10650951577212710E-002 11 5 11 8 + -0.58650729392597037E-003 11 6 11 8 + -0.16835524440173377E-002 11 7 11 8 + 0.29058217646244803E-002 11 8 11 8 + -0.13865889795449443E-002 1 11 11 9 + -0.29855811975196307E-009 1 13 11 9 + 0.28858407491013111E-008 2 10 11 9 + -0.15541836060893757E-001 2 11 11 9 + 0.32306255677160662E-008 2 12 11 9 + 0.10149592964280615E-006 2 13 11 9 + -0.11788870514526747E-008 2 14 11 9 + -0.84280934263891785E-002 3 3 11 9 + 0.15516660129836987E-002 3 4 11 9 + 0.53156294477457559E-002 3 5 11 9 + -0.54010018108833499E-002 3 6 11 9 + -0.68603152069922138E-002 3 7 11 9 + 0.13215996064456163E-002 3 8 11 9 + 0.15516660129837004E-002 4 3 11 9 + 0.68370368775886358E-002 4 4 11 9 + -0.64066657281487546E-002 4 5 11 9 + -0.41408519624701150E-002 4 6 11 9 + 0.71152001831750970E-002 4 7 11 9 + -0.11798780591233367E-002 4 8 11 9 + 0.53156294477457525E-002 5 3 11 9 + -0.64066657281487546E-002 5 4 11 9 + 0.15910565488005195E-002 5 5 11 9 + 0.73691001661771562E-002 5 6 11 9 + -0.72496644364080255E-003 5 7 11 9 + -0.50263101227660282E-003 5 8 11 9 + -0.67755593522047302E-002 6 3 11 9 + -0.51946987266073439E-002 6 4 11 9 + 0.92445378518156360E-002 6 5 11 9 + 0.14007309717620187E-003 6 6 11 9 + -0.49633133368100109E-002 6 7 11 9 + 0.85982928796835272E-003 6 8 11 9 + -0.86062603531626633E-002 7 3 11 9 + 0.89260283908631777E-002 7 4 11 9 + -0.90944568437236145E-003 7 5 11 9 + -0.49633133368099831E-002 7 6 11 9 + -0.19600141303361085E-003 7 7 11 9 + 0.33678912822647066E-003 7 8 11 9 + 0.16579264288215359E-002 8 3 11 9 + -0.14801737317784351E-002 8 4 11 9 + -0.63054130988270389E-003 8 5 11 9 + 0.85982928796835684E-003 8 6 11 9 + 0.33678912822647148E-003 8 7 11 9 + 0.55928315857516876E-004 8 8 11 9 + 0.15751662800843462E-008 9 10 11 9 + 0.13412124900407109E-001 9 11 11 9 + 0.17633588624503725E-008 9 12 11 9 + 0.55399093416603049E-007 9 13 11 9 + -0.64346692410605764E-009 9 14 11 9 + 0.18441300043167122E-009 10 1 11 9 + 0.49516484835638425E-008 10 2 11 9 + -0.11226166678460385E-008 10 9 11 9 + 0.29836859613572886E-003 10 10 11 9 + 0.66197309834891130E-002 10 11 11 9 + -0.21059666241028578E-002 10 12 11 9 + -0.32428397575614610E-003 10 13 11 9 + 0.50727492866144326E-003 10 14 11 9 + -0.29028684977475756E-002 11 1 11 9 + -0.12012707465767816E-001 11 2 11 9 + 0.99104118388842356E-002 11 9 11 9 + -0.14483155761286932E-008 1 1 11 10 + 0.14148691584689755E-009 1 2 11 10 + 0.17177880516586267E-004 1 10 11 10 + 0.38111986218067079E-003 1 11 11 10 + -0.12124629493884258E-003 1 12 11 10 + -0.18666741609714848E-004 1 13 11 10 + 0.29202774299873096E-004 1 14 11 10 + 0.29795549589321776E-009 2 1 11 10 + 0.45471915053765854E-008 2 2 11 10 + 0.44177914856879539E-008 2 9 11 10 + -0.11271435552260649E-002 2 10 11 10 + -0.25007078778672108E-001 2 11 11 10 + 0.79556045509760337E-002 2 12 11 10 + 0.12248912898332586E-002 2 13 11 10 + -0.19161384905456691E-002 2 14 11 10 + -0.23230379843411423E-001 3 3 11 10 + 0.17498477206230095E-002 3 4 11 10 + 0.63664010259564139E-002 3 5 11 10 + -0.34960236752013658E-002 3 6 11 10 + -0.34466975169754645E-002 3 7 11 10 + 0.22521810845584633E-002 3 8 11 10 + 0.17498422458924589E-002 4 3 11 10 + 0.20734035499901191E-001 4 4 11 10 + -0.11258497125653072E-001 4 5 11 10 + -0.34990162723472894E-002 4 6 11 10 + 0.36785154320795126E-002 4 7 11 10 + -0.14908526376278327E-002 4 8 11 10 + 0.63664374204910118E-002 5 3 11 10 + -0.11258492339190572E-001 5 4 11 10 + 0.24963575766867824E-002 5 5 11 10 + 0.28809822793595184E-002 5 6 11 10 + -0.57291326125758879E-003 5 7 11 10 + 0.22606459547827218E-003 5 8 11 10 + -0.21695922478308094E-002 6 3 11 10 + -0.21714075752851960E-002 6 4 11 10 + 0.17878898450388399E-002 6 5 11 10 + 0.16920799765408952E-002 6 6 11 10 + -0.12598740155571745E-001 6 7 11 10 + 0.64555633780807604E-002 6 8 11 10 + -0.21389549399652577E-002 7 3 11 10 + 0.22828423343346955E-002 7 4 11 10 + -0.35553893733385612E-003 7 5 11 10 + -0.12598746490035537E-001 7 6 11 10 + 0.24729480117130379E-004 7 7 11 10 + 0.97499874059300102E-003 7 8 11 10 + 0.13976307182011836E-002 8 3 11 10 + -0.92522287757497771E-003 8 4 11 10 + 0.14029368307779259E-003 8 5 11 10 + 0.64555620958023033E-002 8 6 11 10 + 0.97498924253395472E-003 8 7 11 10 + -0.17168000253580901E-002 8 8 11 10 + -0.32386002461524062E-009 9 1 11 10 + -0.31681663527351818E-008 9 2 11 10 + 0.35398269663212781E-008 9 9 11 10 + -0.88147862099193541E-004 9 10 11 10 + -0.19557122792614070E-002 9 11 11 10 + 0.62218742151732372E-003 9 12 11 10 + 0.95828462604875960E-004 9 13 11 10 + -0.14989698460150797E-003 9 14 11 10 + -0.19655165846490887E-003 10 1 11 10 + -0.20351295821327874E-002 10 2 11 10 + 0.29836847870668722E-003 10 9 11 10 + 0.33131680936489525E-007 10 10 11 10 + 0.33973539830054154E-001 10 11 11 10 + -0.22581742190868896E-003 10 12 11 10 + -0.50884399140175120E-003 10 13 11 10 + -0.13537827987561004E-003 10 14 11 10 + -0.43607667882782268E-002 11 1 11 10 + -0.45152092723042422E-001 11 2 11 10 + 0.66197321400088714E-002 11 9 11 10 + 0.33973596659395158E-001 11 10 11 10 + 0.78448063934265178 1 1 11 11 + -0.38091636364926490E-001 1 2 11 11 + 0.33655785303074212E-001 1 9 11 11 + 0.38111993177460828E-003 1 10 11 11 + -0.37700601573662454E-004 1 11 11 11 + 0.49010092593062244E-005 1 12 11 11 + -0.13143340838560417E-003 1 13 11 11 + 0.20416235107730585E-003 1 14 11 11 + 0.31044633042988268E-001 2 1 11 11 + 0.63498201768593865 2 2 11 11 + -0.15248669587749974 2 9 11 11 + -0.25007077634483371E-001 2 10 11 11 + 0.24738241188352766E-002 2 11 11 11 + -0.32121498617951073E-003 2 12 11 11 + 0.86241047798379326E-002 2 13 11 11 + -0.13396345479796205E-001 2 14 11 11 + 0.62210257627607235 3 3 11 11 + -0.13891728245462981E-001 3 4 11 11 + -0.17604231890190475E-001 3 5 11 11 + 0.11096261726509635 3 6 11 11 + 0.80723100685534052E-001 3 7 11 11 + -0.10330387907036766 3 8 11 11 + -0.13891745693692035E-001 4 3 11 11 + 0.61772955973664967 4 4 11 11 + -0.17399831882088108E-001 4 5 11 11 + -0.13371949058640495 4 6 11 11 + 0.53030285712598060E-001 4 7 11 11 + -0.92044979380079120E-001 4 8 11 11 + -0.17604248669055616E-001 5 3 11 11 + -0.17399814863765677E-001 5 4 11 11 + 0.61074415005767790 5 5 11 11 + 0.12291050484400287E-001 5 6 11 11 + -0.14465985913414414 5 7 11 11 + -0.86964017045662784E-001 5 8 11 11 + 0.82618618245394404E-001 6 3 11 11 + -0.99697201517379430E-001 6 4 11 11 + 0.91401378071574810E-002 6 5 11 11 + 0.49498204434824211 6 6 11 11 + 0.62096281280660866E-003 6 7 11 11 + -0.16456727500004480E-002 6 8 11 11 + 0.59999239037674200E-001 7 3 11 11 + 0.39416693099328007E-001 7 4 11 11 + -0.10795194500355486 7 5 11 11 + 0.62096609998284116E-003 7 6 11 11 + 0.49431743061858924 7 7 11 11 + -0.47241127968970717E-002 7 8 11 11 + -0.77656299472343579E-001 8 3 11 11 + -0.69336752863598528E-001 8 4 11 11 + -0.65721593112115229E-001 8 5 11 11 + -0.16456642637753636E-002 8 6 11 11 + -0.47241117598976201E-002 8 7 11 11 + 0.46811684894032934 8 8 11 11 + -0.27382217419705274E-001 9 1 11 11 + -0.99580650068929202E-001 9 2 11 11 + 0.50334491361949663 9 9 11 11 + -0.19557123989088019E-002 9 10 11 11 + 0.19344190535462550E-003 9 11 11 11 + -0.25169383903873801E-004 9 12 11 11 + 0.67457850074410688E-003 9 13 11 11 + -0.10478903774710337E-002 9 14 11 11 + -0.43607661326286341E-002 10 1 11 11 + -0.45152072962041254E-001 10 2 11 11 + 0.66197306865843986E-002 10 9 11 11 + 0.59976448989071118 10 10 11 11 + -0.39309985616645959E-008 10 11 11 11 + -0.83848238198228650E-003 10 12 11 11 + 0.82522481328593268E-003 10 13 11 11 + -0.13638724656456857E-001 10 14 11 11 + 0.43138264710723261E-003 11 1 11 11 + 0.44666096441318128E-002 11 2 11 11 + -0.65482859484912947E-003 11 9 11 11 + 0.31013431597238838E-009 11 10 11 11 + 0.66771148620561438 11 11 11 11 + -0.16213531509223347E-008 1 1 11 12 + 0.15839104168027921E-009 1 2 11 12 + -0.12124652400085730E-003 1 10 11 12 + 0.49017725938700987E-005 1 11 11 12 + 0.12253173612956439E-004 1 12 11 12 + -0.37149764541432115E-003 1 13 11 12 + -0.12214867851291323E-004 1 14 11 12 + 0.33355359973246964E-009 2 1 11 12 + 0.50904651489524235E-008 2 2 11 12 + 0.49456056697708137E-008 2 9 11 12 + 0.79556007849851708E-002 2 10 11 12 + -0.32120243625529174E-003 2 11 11 12 + -0.80405463187668814E-003 2 12 11 12 + 0.24376142621371590E-001 2 13 11 12 + 0.80151530143193056E-003 2 14 11 12 + -0.13410761418023703E-001 3 3 11 12 + -0.12394674701832137E-001 3 4 11 12 + 0.52910601214318381E-003 3 5 11 12 + 0.24179495783479958E-003 3 6 11 12 + -0.22993270061463997E-002 3 7 11 12 + 0.33690267772632401E-002 3 8 11 12 + -0.12394646238704080E-001 4 3 11 12 + -0.11401939537003695E-001 4 4 11 12 + 0.26946250460515033E-002 4 5 11 12 + 0.24863037490614390E-003 4 6 11 12 + -0.25347532202976302E-002 4 7 11 12 + 0.28398055444107716E-002 4 8 11 12 + 0.52909646528815886E-003 5 3 11 12 + 0.26946310704654818E-002 5 4 11 12 + 0.24812715769232038E-001 5 5 11 12 + -0.23333902003048200E-005 5 6 11 12 + -0.44143145785195386E-002 5 7 11 12 + -0.34188892593298163E-002 5 8 11 12 + 0.15006497012986177E-003 6 3 11 12 + 0.15430200737202396E-003 6 4 11 12 + -0.14517812305093956E-005 6 5 11 12 + -0.95547855753413280E-004 6 6 11 12 + 0.46542163491218954E-003 6 7 11 12 + -0.72144672049550271E-003 6 8 11 12 + -0.14268471825635328E-002 7 3 11 12 + -0.15729627375235470E-002 7 4 11 12 + -0.27392010387039798E-002 7 5 11 12 + 0.46542923468139108E-003 7 6 11 12 + 0.47035313195151968E-002 7 7 11 12 + 0.13084129479574101E-001 7 8 11 12 + 0.20905493646324181E-002 8 3 11 12 + 0.17621875160175129E-002 8 4 11 12 + -0.21216146843298284E-002 8 5 11 12 + -0.72145236408834620E-003 8 6 11 12 + 0.13084129959272611E-001 8 7 11 12 + -0.46079729056622250E-002 8 8 11 12 + -0.36255306548351577E-009 9 1 11 12 + -0.35466818610632514E-008 9 2 11 12 + 0.39627464997301182E-008 9 9 11 12 + 0.62218781532554673E-003 9 10 11 12 + -0.25170696244720777E-004 9 11 11 12 + -0.62848134569487774E-004 9 12 11 12 + 0.19067560663817739E-002 9 13 11 12 + 0.62695010750196491E-004 9 14 11 12 + 0.13873048788722328E-002 10 1 11 12 + 0.14364367818913917E-001 10 2 11 12 + -0.21059653242728889E-002 10 9 11 12 + 0.45180836054568331E-003 10 10 11 12 + 0.41917246937833117E-003 10 11 11 12 + 0.34933041939695799E-003 10 12 11 12 + 0.42543002847775046E-003 10 13 11 12 + 0.47493771907487240E-002 10 14 11 12 + -0.56029473673865439E-004 11 1 11 12 + -0.58003646985220632E-003 11 2 11 12 + 0.85079848210924990E-004 11 9 11 12 + 0.41907577142173409E-003 11 10 11 12 + -0.13762641595425824E-007 11 11 11 12 + 0.33250269712382548E-001 11 12 11 12 + -0.50937731796400262E-007 1 1 11 13 + 0.49761402047763752E-008 1 2 11 13 + -0.95074561900800218E-009 1 9 11 13 + -0.18665640560568016E-004 1 10 11 13 + -0.13143044772606001E-003 1 11 11 13 + -0.37148827283899592E-003 1 12 11 13 + 0.86547018159585641E-005 1 13 11 13 + 0.25068089760936468E-004 1 14 11 13 + 0.10479188082946176E-007 2 1 11 13 + 0.15992614611806009E-006 2 2 11 13 + 0.15537512283785751E-006 2 9 11 13 + 0.12249093920969306E-002 2 10 11 13 + 0.86241534558088289E-002 2 11 11 13 + 0.24376296715155846E-001 2 12 11 13 + -0.56801828022745820E-003 2 13 11 13 + -0.16439711440422136E-002 2 14 11 13 + -0.98463135611942688E-002 3 3 11 13 + -0.53291897120546919E-003 3 4 11 13 + -0.15390196025177870E-001 3 5 11 13 + -0.15443268248350845E-002 3 6 11 13 + 0.18426271846549195E-002 3 7 11 13 + 0.33064648805841970E-002 3 8 11 13 + -0.53276110912837515E-003 4 3 11 13 + 0.14084068042297931E-001 4 4 11 13 + 0.15609860164265479E-001 4 5 11 13 + -0.22582898581464525E-002 4 6 11 13 + -0.20346085697358924E-002 4 7 11 13 + -0.35896209895776156E-002 4 8 11 13 + -0.15390037759751261E-001 5 3 11 13 + 0.15609698310625291E-001 5 4 11 13 + -0.42372890661392815E-002 5 5 11 13 + -0.49372451841212268E-002 5 6 11 13 + 0.27001443461553145E-003 5 7 11 13 + 0.69712089186350088E-003 5 8 11 13 + -0.95834923689883415E-003 6 3 11 13 + -0.14013782898836973E-002 6 4 11 13 + -0.30638279569032835E-002 6 5 11 13 + 0.10366816120489031E-002 6 6 11 13 + 0.68593719469336751E-002 6 7 11 13 + 0.12227865699122537E-001 6 8 11 13 + 0.11435425226547359E-002 7 3 11 13 + -0.12624822890101976E-002 7 4 11 13 + 0.16736545975435738E-003 7 5 11 13 + 0.68593395577803808E-002 7 6 11 13 + 0.12211673343469212E-004 7 7 11 13 + -0.37691697568818035E-003 7 8 11 13 + 0.20516367954563084E-002 8 3 11 13 + -0.22276288980957672E-002 8 4 11 13 + 0.43248782125499522E-003 8 5 11 13 + 0.12227787207407770E-001 8 6 11 13 + -0.37692635126226133E-003 8 7 11 13 + -0.10485615836279567E-002 8 8 11 13 + -0.11390258627169801E-007 9 1 11 13 + -0.11142540774493959E-006 9 2 11 13 + 0.12449681960893258E-006 9 9 11 13 + 0.95826569657963406E-004 9 10 11 13 + 0.67457341071646738E-003 9 11 11 13 + 0.19067399528525590E-002 9 12 11 13 + -0.44399162380795618E-004 9 13 11 13 + -0.12884656604365786E-003 9 14 11 13 + 0.21359982475460895E-003 10 1 11 13 + 0.22117778848573088E-002 10 2 11 13 + -0.32428402921836930E-003 10 9 11 13 + 0.10181824617321331E-002 10 10 11 13 + -0.41263121178989367E-003 10 11 11 13 + 0.12911549188586464E-001 10 12 11 13 + 0.32004407004917573E-003 10 13 11 13 + -0.12718196015917265E-002 10 14 11 13 + 0.15038914271066953E-002 11 1 11 13 + 0.15571883953377214E-001 11 2 11 13 + -0.22830521451405825E-002 11 9 11 13 + -0.41261145904442987E-003 11 10 11 13 + -0.66810974895231571E-008 11 11 11 13 + -0.55493250547252501E-003 11 12 11 13 + 0.33536458124925318E-001 11 13 11 13 + 0.59164774720323858E-009 1 1 11 14 + 0.29201937671317602E-004 1 10 11 14 + 0.20415683525005799E-003 1 11 11 14 + -0.12214424491833855E-004 1 12 11 14 + 0.25067563600795549E-004 1 13 11 14 + -0.38515437183751320E-006 1 14 11 14 + -0.12171698804977910E-009 2 1 11 14 + -0.18575607734017239E-008 2 2 11 14 + -0.18047001705303968E-008 2 9 11 14 + -0.19161522454908776E-002 2 10 11 14 + -0.13396436165084260E-001 2 11 11 14 + 0.80152259067040694E-003 2 12 11 14 + -0.16439797946002676E-002 2 13 11 14 + 0.25392348494917206E-004 2 14 11 14 + -0.88903410421234796E-002 3 3 11 14 + 0.28138659792176445E-002 3 4 11 14 + 0.47179643271639086E-002 3 5 11 14 + -0.16717627042709287E-002 3 6 11 14 + -0.16027476530518178E-002 3 7 11 14 + 0.31553537595033551E-003 3 8 11 14 + 0.28135426260305707E-002 4 3 11 14 + 0.90912641367720034E-002 4 4 11 14 + -0.80966972031456062E-002 4 5 11 14 + -0.12933702070316412E-002 4 6 11 14 + 0.24139794751168757E-002 4 7 11 14 + -0.55667880861206187E-003 4 8 11 14 + 0.47182103067843007E-002 5 3 11 14 + -0.80969691068271295E-002 5 4 11 14 + -0.20092850049757165E-003 5 5 11 14 + 0.20606801043651728E-002 5 6 11 14 + -0.23684143533828410E-004 5 7 11 14 + 0.38496058737577042E-003 5 8 11 14 + -0.10373701334020708E-002 6 3 11 14 + -0.80255066360456254E-003 6 4 11 14 + 0.12786887411471899E-002 6 5 11 14 + 0.19905900154555174E-003 6 6 11 14 + -0.71656058332315500E-002 6 7 11 14 + 0.16329316095480397E-002 6 8 11 14 + -0.99465529065135964E-003 7 3 11 14 + 0.14980037130892761E-002 7 4 11 14 + -0.14833516400678070E-004 7 5 11 14 + -0.71657554526880583E-002 7 6 11 14 + 0.30517915925646992E-004 7 7 11 14 + -0.86013146026517600E-003 7 8 11 14 + 0.19590613214981508E-003 8 3 11 14 + -0.34537448450056295E-003 8 4 11 14 + 0.23883146524988479E-003 8 5 11 14 + 0.16329542138002607E-002 8 6 11 14 + -0.86012976846435330E-003 8 7 11 14 + -0.22958077022573205E-003 8 8 11 14 + 0.13229917757454283E-009 9 1 11 14 + 0.12942190902031874E-008 9 2 11 14 + -0.14460450008002710E-008 9 9 11 14 + -0.14989554625202529E-003 9 10 11 14 + -0.10478808945443593E-002 9 11 11 14 + 0.62694248517207010E-004 9 12 11 14 + -0.12884566145800042E-003 9 13 11 14 + 0.19532536948964107E-005 9 14 11 14 + -0.33414308857010857E-003 10 1 11 14 + -0.34598679052878787E-002 10 2 11 14 + 0.50727497262937455E-003 10 9 11 14 + 0.27079162248376223E-003 10 10 11 14 + 0.68185704606739126E-002 10 11 11 14 + -0.19302077948491877E-002 10 12 11 14 + -0.31830366178925662E-003 10 13 11 14 + -0.66935133786247562E-003 10 14 11 14 + -0.23360867283523262E-002 11 1 11 14 + -0.24188871658168021E-001 11 2 11 14 + 0.35464329408004059E-002 11 9 11 14 + 0.68200985863134346E-002 11 10 11 14 + 0.13047068124466177E-007 11 11 11 14 + -0.10314333795593163E-002 11 12 11 14 + -0.19460680679088277E-002 11 13 11 14 + 0.23818643362577288E-001 11 14 11 14 + 0.85555631103548799E-003 1 12 12 1 + -0.96377116308915487E-009 1 13 12 1 + 0.92631922116525192E-009 1 14 12 1 + 0.27154476973678392E-009 2 11 12 1 + 0.75946420191434060E-002 2 12 12 1 + -0.50040978916548174E-008 2 13 12 1 + 0.48096397154754200E-008 2 14 12 1 + -0.49759828161187198E-002 3 3 12 1 + 0.52891432241405619E-003 3 4 12 1 + -0.38521372353610582E-002 3 5 12 1 + -0.20129621110674821E-002 3 6 12 1 + 0.58572463650856941E-003 3 7 12 1 + 0.25724876224950521E-002 3 8 12 1 + 0.52891432241405629E-003 4 3 12 1 + 0.55516557236951602E-002 4 4 12 1 + 0.30957826237116332E-002 4 5 12 1 + -0.19573963467521276E-002 4 6 12 1 + -0.36117308900286178E-003 4 7 12 1 + -0.26969128932601036E-002 4 8 12 1 + -0.38521372353610582E-002 5 3 12 1 + 0.30957826237116327E-002 5 4 12 1 + -0.57567290757666080E-003 5 5 12 1 + -0.25574571078048869E-002 5 6 12 1 + -0.18263879950796319E-003 5 7 12 1 + 0.51189391170112597E-003 5 8 12 1 + -0.20659802024759269E-002 6 3 12 1 + -0.20089458595187147E-002 6 4 12 1 + -0.26248135743560837E-002 6 5 12 1 + 0.71509427181007753E-004 6 6 12 1 + 0.85668030387176463E-003 6 7 12 1 + 0.50365673689364314E-002 6 8 12 1 + 0.60115251702082934E-003 7 3 12 1 + -0.37068395637388521E-003 7 4 12 1 + -0.18744769474155623E-003 7 5 12 1 + 0.85668030387176495E-003 7 6 12 1 + 0.41977267942128551E-003 7 7 12 1 + -0.85359099163060068E-004 7 8 12 1 + 0.26402363381987921E-002 8 3 12 1 + -0.27679447704886729E-002 8 4 12 1 + 0.52537586448995642E-003 8 5 12 1 + 0.50365673689364305E-002 8 6 12 1 + -0.85359099163060027E-004 8 7 12 1 + -0.49128210660245647E-003 8 8 12 1 + -0.29374799907027368E-009 9 11 12 1 + -0.24770214217250631E-002 9 12 12 1 + 0.54132647656846003E-008 9 13 12 1 + -0.52029064489320456E-008 9 14 12 1 + 0.73701220092315604E-003 10 10 12 1 + 0.13873040001189233E-002 10 11 12 1 + 0.40558567536033195E-002 10 12 12 1 + 0.57484587680414831E-004 10 13 12 1 + -0.63335446752636705E-003 10 14 12 1 + 0.20644567998363993E-009 11 9 12 1 + 0.13873070368818289E-002 11 10 12 1 + -0.56036665102959995E-004 11 11 12 1 + -0.14020797353665995E-003 11 12 12 1 + 0.42507722649101527E-002 11 13 12 1 + 0.13976945747000823E-003 11 14 12 1 + 0.16106992571738494E-002 12 1 12 1 + 0.12028682872229407E-009 1 11 12 2 + 0.44602893700571342E-003 1 12 12 2 + -0.22166770532032318E-008 1 13 12 2 + 0.21305374539090761E-008 1 14 12 2 + 0.72568044041866446E-009 2 10 12 2 + 0.47217826565858874E-008 2 11 12 2 + 0.60778222190830095E-001 2 12 12 2 + -0.87014243168156695E-007 2 13 12 2 + 0.83632888197021209E-007 2 14 12 2 + -0.37601536330728304E-001 3 3 12 2 + 0.39968402374024742E-002 3 4 12 2 + -0.29109085938303119E-001 3 5 12 2 + -0.60103641441293819E-002 3 6 12 2 + 0.17488656439894189E-002 3 7 12 2 + 0.76810787260928838E-002 3 8 12 2 + 0.39968402374024724E-002 4 3 12 2 + 0.41951682427802894E-001 4 4 12 2 + 0.23393619894133036E-001 4 5 12 2 + -0.58445069293448807E-002 4 6 12 2 + -0.10784208013386927E-002 4 7 12 2 + -0.80525290149930547E-002 4 8 12 2 + -0.29109085938303119E-001 5 3 12 2 + 0.23393619894133043E-001 5 4 12 2 + -0.43501460970765127E-002 5 5 12 2 + -0.76361623744150807E-002 5 6 12 2 + -0.54534424269656739E-003 5 7 12 2 + 0.15284336328721222E-002 5 8 12 2 + -0.43907352222281515E-002 6 3 12 2 + -0.42694634789255115E-002 6 4 12 2 + -0.55783669662991999E-002 6 5 12 2 + 0.45199833004346300E-003 6 6 12 2 + 0.54150738993171202E-002 6 7 12 2 + 0.31836129305447255E-001 6 8 12 2 + 0.12776126065571849E-002 7 3 12 2 + -0.78777658851549449E-003 7 4 12 2 + -0.39835657008024499E-003 7 5 12 2 + 0.54150738993171098E-002 7 6 12 2 + 0.26533821603277070E-002 7 7 12 2 + -0.53956311900523520E-003 7 8 12 2 + 0.56111018735950161E-002 8 3 12 2 + -0.58825850453905482E-002 8 4 12 2 + 0.11165521256704491E-002 8 5 12 2 + 0.31836129305447269E-001 8 6 12 2 + -0.53956311900523683E-003 8 7 12 2 + -0.31053804903722355E-002 8 8 12 2 + -0.80738325186786188E-009 9 10 12 2 + -0.52533984649576874E-008 9 11 12 2 + 0.20270959302839666E-002 9 12 12 2 + 0.96810997719422902E-007 9 13 12 2 + -0.93048942905072230E-007 9 14 12 2 + 0.31556181732227370E-009 10 2 12 2 + 0.85192911859254783E-009 10 9 12 2 + 0.76311651939478913E-002 10 10 12 2 + 0.14364343479591243E-001 10 11 12 2 + 0.41995022044637259E-001 10 12 12 2 + 0.59523587070019982E-003 10 13 12 2 + -0.65580476908461399E-002 10 14 12 2 + 0.20532647654023829E-008 11 2 12 2 + 0.55432449594750428E-008 11 9 12 2 + 0.14364432860410984E-001 11 10 12 2 + -0.58025321648429704E-003 11 11 12 2 + -0.14517321351636098E-002 11 12 12 2 + 0.44014288049992641E-001 11 13 12 2 + 0.14472490332828542E-002 11 14 12 2 + 0.89610274348348382E-002 12 1 12 2 + 0.94273482550990259E-001 12 2 12 2 + -0.10199106245192568E-002 1 3 12 3 + 0.10841079316804162E-003 1 4 12 3 + -0.78955988976260540E-003 1 5 12 3 + -0.34844858052875680E-003 1 6 12 3 + 0.10139023673558590E-003 1 7 12 3 + 0.44530457141935865E-003 1 8 12 3 + -0.77480656529625450E-001 2 3 12 3 + 0.82357545842354843E-002 2 4 12 3 + -0.59981351567878559E-001 2 5 12 3 + -0.14024055264023071E-001 2 6 12 3 + 0.40806645389294795E-002 2 7 12 3 + 0.17922241829788021E-001 2 8 12 3 + -0.29075189412597856E-001 3 1 12 3 + -0.86106771522748010E-001 3 2 12 3 + 0.12834549650447990E-001 3 9 12 3 + -0.16235845826692522E-001 3 10 12 3 + -0.21006892524295013E-001 3 11 12 3 + 0.72848512430673265E-001 3 12 12 3 + 0.32938257084395871E-001 3 13 12 3 + 0.17660677962030004E-001 3 14 12 3 + 0.30904976934933047E-002 4 1 12 3 + 0.91526209717138641E-002 4 2 12 3 + -0.13641610258611505E-002 4 9 12 3 + -0.18389645451738316E-001 4 10 12 3 + -0.19403090567192093E-001 4 11 12 3 + -0.17337043501329603E-001 4 12 12 3 + 0.17659763875663717E-001 4 13 12 3 + -0.33448990166287010E-001 4 14 12 3 + -0.22508441193739421E-001 5 1 12 3 + -0.66659219007389053E-001 5 2 12 3 + 0.99358050789609860E-002 5 9 12 3 + -0.34427566134049854E-001 5 10 12 3 + 0.22663811847394182E-001 5 11 12 3 + 0.34347985520441625E-001 5 12 12 3 + -0.22670258828007384E-001 5 13 12 3 + -0.97483885751442172E-002 5 14 12 3 + -0.23594194050985062E-001 6 1 12 3 + -0.12019800333708554E-001 6 2 12 3 + 0.41856505640222044E-001 6 9 12 3 + -0.13113430235819234E-003 6 10 12 3 + 0.14999471353679717E-003 6 11 12 3 + 0.39049877898951922E-002 6 12 12 3 + 0.74404801055786445E-003 6 13 12 3 + 0.15682196379706557E-002 6 14 12 3 + 0.68653626945128230E-002 7 1 12 3 + 0.34974927259002878E-002 7 2 12 3 + -0.12179271421095959E-001 7 9 12 3 + 0.72966147662487503E-003 7 10 12 3 + -0.15633749489808240E-002 7 11 12 3 + 0.21964674447432885E-003 7 12 12 3 + 0.18922354875003055E-002 7 13 12 3 + 0.23266882130202579E-003 7 14 12 3 + 0.30152414154814258E-001 8 1 12 3 + 0.15360739998546345E-001 8 2 12 3 + -0.53490900486496656E-001 8 9 12 3 + 0.18877377880706730E-002 8 10 12 3 + 0.93383622367207257E-003 8 11 12 3 + -0.34644594128358185E-002 8 12 12 3 + -0.87857021973207581E-003 8 13 12 3 + 0.14446275660151027E-003 8 14 12 3 + 0.77457917230332029E-002 9 3 12 3 + -0.82338620689664387E-003 9 4 12 3 + 0.59963828232259776E-002 9 5 12 3 + 0.41812137832705779E-001 9 6 12 3 + -0.12166368506799764E-001 9 7 12 3 + -0.53434148060575434E-001 9 8 12 3 + -0.24982153557760380E-001 10 3 12 3 + -0.29761631340718801E-001 10 4 12 3 + -0.54521332203587368E-001 10 5 12 3 + 0.73373320922938000E-003 10 6 12 3 + 0.52595115513870425E-002 10 7 12 3 + 0.12815148675278333E-001 10 8 12 3 + -0.32323981003919762E-001 11 3 12 3 + -0.29854915382657474E-001 11 4 12 3 + 0.37158374503776626E-001 11 5 12 3 + 0.10557006884503127E-002 11 6 12 3 + -0.11381193933446741E-001 11 7 12 3 + 0.33946004002536165E-002 11 8 12 3 + 0.10937992310859014 12 3 12 3 + 0.10841079316804038E-003 1 3 12 4 + 0.11379046847976547E-002 1 4 12 4 + 0.63453256118254232E-003 1 5 12 4 + -0.33883063535367102E-003 1 6 12 4 + -0.62520155128948456E-004 1 7 12 4 + -0.46684214761696859E-003 1 8 12 4 + 0.82357545842354947E-002 2 3 12 4 + 0.86444437525333040E-001 2 4 12 4 + 0.48204221457068284E-001 2 5 12 4 + -0.13636969292573804E-001 2 6 12 4 + -0.25162599558271612E-002 2 7 12 4 + -0.18789057126455191E-001 2 8 12 4 + 0.30904976934932969E-002 3 1 12 4 + 0.91526209717138537E-002 3 2 12 4 + -0.13641610258610867E-002 3 9 12 4 + 0.96043904276199143E-002 3 10 12 4 + -0.19427151260868372E-001 3 11 12 4 + -0.17337010277819052E-001 3 12 12 4 + -0.29551475855636646E-001 3 13 12 4 + 0.29406274896242552E-001 3 14 12 4 + 0.32438905308332287E-001 4 1 12 4 + 0.96068500176023822E-001 4 2 12 4 + -0.14319361832260246E-001 4 9 12 4 + 0.22017736193232600E-001 4 10 12 4 + -0.17860046979863275E-001 4 11 12 4 + 0.74050034561404049E-001 4 12 12 4 + -0.32831196166822646E-001 4 13 12 4 + -0.20169864812809388E-001 4 14 12 4 + 0.18088981218924129E-001 5 1 12 4 + 0.53570905102601721E-001 5 2 12 4 + -0.79849293298845259E-002 5 9 12 4 + 0.44649925835020962E-001 5 10 12 4 + 0.18753295309017287E-001 5 11 12 4 + 0.19942263215675025E-001 5 12 12 4 + 0.21710844427603296E-001 5 13 12 4 + 0.10314830117832104E-001 5 14 12 4 + -0.22942858823392597E-001 6 1 12 4 + -0.11687926748624913E-001 6 2 12 4 + 0.40701025515267081E-001 6 9 12 4 + -0.66812654685102172E-003 6 10 12 4 + 0.13490930110023749E-003 6 11 12 4 + -0.42519213762559358E-002 6 12 12 4 + 0.78308008350243350E-003 6 13 12 4 + 0.15191263267433275E-002 6 14 12 4 + -0.42333423005401815E-002 7 1 12 4 + -0.21566082381942533E-002 7 2 12 4 + 0.75100218912882650E-002 7 9 12 4 + -0.13087399091949200E-002 7 10 12 4 + -0.14431349850593661E-002 7 11 12 4 + 0.33493329692956888E-004 7 12 12 4 + -0.20340117286018742E-002 7 13 12 4 + 0.54172697222588016E-004 7 14 12 4 + -0.31610868419013401E-001 8 1 12 4 + -0.16103802162625743E-001 8 2 12 4 + 0.56078223694645685E-001 8 9 12 4 + -0.20202374877718995E-002 8 10 12 4 + 0.86130598390762511E-003 8 11 12 4 + -0.27049791559099080E-002 8 12 12 4 + 0.11810228017674436E-002 8 13 12 4 + -0.49102657938706695E-006 8 14 12 4 + -0.82338620689662500E-003 9 3 12 4 + -0.86419228026991934E-002 9 4 12 4 + -0.48190238032380581E-002 9 5 12 4 + 0.40657840874886629E-001 9 6 12 4 + 0.75020462149170452E-002 9 7 12 4 + 0.56018778052354293E-001 9 8 12 4 + 0.16243404226269534E-001 10 3 12 4 + 0.33878855503007045E-001 10 4 12 4 + 0.70646635316617773E-001 10 5 12 4 + -0.21734642492310507E-002 10 6 12 4 + -0.86081516652364558E-002 10 7 12 4 + -0.13982834645949497E-001 10 8 12 4 + -0.29894413822593186E-001 11 3 12 4 + -0.27481805418970183E-001 11 4 12 4 + 0.30377032875078612E-001 11 5 12 4 + 0.89639969555950082E-003 11 6 12 4 + -0.98025302631117670E-002 11 7 12 4 + 0.35870457019220202E-002 11 8 12 4 + -0.26676934973249977E-001 12 3 12 4 + 0.11122886605724902 12 4 12 4 + -0.78955988976255043E-003 1 3 12 5 + 0.63453256118257582E-003 1 4 12 5 + -0.11799406027821266E-003 1 5 12 5 + -0.44270230759571453E-003 1 6 12 5 + -0.31615400448319905E-004 1 7 12 5 + 0.88610126341681753E-004 1 8 12 5 + -0.59981351567878434E-001 2 3 12 5 + 0.48204221457068222E-001 2 4 12 5 + -0.89637809957089226E-002 2 5 12 5 + -0.17817501937170112E-001 2 6 12 5 + -0.12724317213712482E-002 2 7 12 5 + 0.35663040958869041E-002 2 8 12 5 + -0.22508441193739327E-001 3 1 12 5 + -0.66659219007388942E-001 3 2 12 5 + 0.99358050789610519E-002 3 9 12 5 + -0.48619977407004574E-002 3 10 12 5 + -0.21006127277575379E-001 3 11 12 5 + 0.34347988751583132E-001 3 12 12 5 + -0.99948733363263982E-003 3 13 12 5 + 0.25921161240207755E-001 3 14 12 5 + 0.18088981218924226E-001 4 1 12 5 + 0.53570905102601693E-001 4 2 12 5 + -0.79849293298846248E-002 4 9 12 5 + 0.75150101491758495E-002 4 10 12 5 + -0.10311802598507636E-001 4 11 12 5 + 0.19942251869514267E-001 4 12 12 5 + 0.10576010144523073E-001 4 13 12 5 + -0.37630180181908154E-001 4 14 12 5 + -0.33637158957351243E-002 5 1 12 5 + -0.99617286532772843E-002 5 2 12 5 + 0.14848121818125666E-002 5 9 12 5 + -0.57818883850333652E-002 5 10 12 5 + 0.38866952397224173E-001 5 11 12 5 + 0.50284043064074808E-001 5 12 12 5 + -0.10729851434882976E-003 5 13 12 5 + 0.25094152145954981E-002 5 14 12 5 + -0.29976269293678148E-001 6 1 12 5 + -0.15271046549069061E-001 6 2 12 5 + 0.53178416648218041E-001 6 9 12 5 + -0.10530219756873854E-002 6 10 12 5 + -0.93990483322683226E-004 6 11 12 5 + 0.60736146388443938E-003 6 12 12 5 + -0.74886463810194077E-003 6 13 12 5 + 0.19504470742250698E-002 6 14 12 5 + -0.21407210487510314E-002 7 1 12 5 + -0.10905492951744122E-002 7 2 12 5 + 0.37976758507647125E-002 7 9 12 5 + 0.25298129981231809E-003 7 10 12 5 + -0.22712250105377707E-002 7 11 12 5 + -0.16500928792941272E-002 7 12 12 5 + 0.88155983983540019E-004 7 13 12 5 + -0.10995509506799423E-003 7 14 12 5 + 0.59999719791118851E-002 8 1 12 5 + 0.30566135748911587E-002 8 2 12 5 + -0.10644053359030309E-001 8 9 12 5 + 0.83768525817521551E-004 8 10 12 5 + -0.60342216190947145E-003 8 11 12 5 + -0.37363643538805033E-002 8 12 12 5 + -0.22130545700800344E-003 8 13 12 5 + 0.15611416062348251E-003 8 14 12 5 + 0.59963828232260019E-002 9 3 12 5 + -0.48190238032381223E-002 9 4 12 5 + 0.89613107966621827E-003 9 5 12 5 + 0.53122025274842610E-001 9 6 12 5 + 0.37936379287459221E-002 9 7 12 5 + -0.10632766693198186E-001 9 8 12 5 + -0.59336745690118436E-002 10 3 12 5 + 0.96195695151245555E-002 10 4 12 5 + -0.88966997593292116E-002 10 5 12 5 + -0.22812240404601948E-002 10 6 12 5 + 0.15753389841694954E-002 10 7 12 5 + 0.64626978566107536E-003 10 8 12 5 + -0.34608243693657281E-001 11 3 12 5 + -0.17388158893799431E-001 11 4 12 5 + 0.59805800645994792E-001 11 5 12 5 + -0.91621617822032833E-003 11 6 12 5 + -0.14703142975872885E-001 11 7 12 5 + -0.73945954184585820E-004 11 8 12 5 + 0.52851419033677335E-001 12 3 12 5 + 0.30685187026177500E-001 12 4 12 5 + 0.74658894218777264E-001 12 5 12 5 + -0.20105546212965662E-002 1 3 12 6 + -0.19550524694842944E-002 1 4 12 6 + -0.25543968781347980E-002 1 5 12 6 + 0.46303492049473466E-004 1 6 12 6 + 0.55470966547646865E-003 1 7 12 6 + 0.32612312610905913E-002 1 8 12 6 + -0.16479235636797936E-001 2 3 12 6 + -0.16024366503830288E-001 2 4 12 6 + -0.20936789281077672E-001 2 5 12 6 + 0.19188511130641318E-003 2 6 12 6 + 0.22986844185278921E-002 2 7 12 6 + 0.13514351410780957E-001 2 8 12 6 + -0.86158492698993616E-002 3 1 12 6 + -0.16599714302421090E-001 3 2 12 6 + 0.71465082873889106E-002 3 9 12 6 + -0.54122008108127588E-002 3 10 12 6 + 0.18106181266029146E-004 3 11 12 6 + 0.17470890281194740E-001 3 12 12 6 + 0.12976433400451671E-001 3 13 12 6 + -0.32938328901097090E-002 3 14 12 6 + -0.83780061985427260E-002 4 1 12 6 + -0.16141527674123739E-001 4 2 12 6 + 0.69492475406110104E-002 4 9 12 6 + -0.83204509509617764E-002 4 10 12 6 + 0.18942837062957087E-003 4 11 12 6 + -0.18746458582522801E-001 4 12 12 6 + 0.11048491786079667E-001 4 13 12 6 + -0.28736460323175689E-002 4 14 12 6 + -0.10946382232520055E-001 5 1 12 6 + -0.21089861153762265E-001 5 2 12 6 + 0.90796049032349745E-002 5 9 12 6 + -0.16840461536124066E-001 5 10 12 6 + 0.81810147896223370E-003 5 11 12 6 + 0.28172912945613887E-002 5 12 12 6 + -0.92094050926318210E-002 5 13 12 6 + -0.46864247231158587E-002 5 14 12 6 + 0.25343881886630661E-003 6 1 12 6 + 0.27384137365039831E-003 6 2 12 6 + -0.24644655961035111E-003 6 9 12 6 + 0.95005915512236651E-003 6 10 12 6 + -0.40772523306980901E-004 6 11 12 6 + 0.14717777501944380E-001 6 12 12 6 + -0.48717908921041880E-003 6 13 12 6 + -0.10611109692413183E-003 6 14 12 6 + 0.30362113464315727E-002 7 1 12 6 + 0.32807086418250287E-002 7 2 12 6 + -0.29524933228663795E-002 7 9 12 6 + 0.42588317500902896E-002 7 10 12 6 + -0.18152760094013453E-003 7 11 12 6 + -0.41047771739461072E-005 7 12 12 6 + 0.79186629493205388E-002 7 13 12 6 + 0.46124912442837895E-003 7 14 12 6 + 0.17850396455194175E-001 8 1 12 6 + 0.19287837362352355E-001 8 2 12 6 + -0.17358204297594545E-001 8 9 12 6 + 0.79389146073021843E-002 8 10 12 6 + -0.29897741711932640E-003 8 11 12 6 + -0.99080427118075913E-003 8 12 12 6 + -0.42842308929634636E-002 8 13 12 6 + 0.13453143333485781E-002 8 14 12 6 + 0.99566869090054935E-002 9 3 12 6 + 0.96817893578395459E-002 9 4 12 6 + 0.12649886384997281E-001 9 5 12 6 + -0.26634420354310426E-003 9 6 12 6 + -0.31908433689311153E-002 9 7 12 6 + -0.18759504168655405E-001 9 8 12 6 + -0.59708007561756231E-002 10 3 12 6 + -0.91653457903923610E-002 10 4 12 6 + -0.18559384995599577E-001 10 5 12 6 + 0.79354163478222964E-003 10 6 12 6 + 0.34827931791637638E-002 10 7 12 6 + 0.64824231124063197E-002 10 8 12 6 + 0.15503567568226183E-004 11 3 12 6 + 0.20508595162165106E-003 11 4 12 6 + 0.90593774209818401E-003 11 5 12 6 + -0.34055264385112292E-004 11 6 12 6 + -0.13230553817501962E-003 11 7 12 6 + -0.25014648823378123E-003 11 8 12 6 + 0.19135888114828508E-001 12 3 12 6 + -0.20526311895115865E-001 12 4 12 6 + 0.30881969134810613E-002 12 5 12 6 + 0.12448548277625137E-001 12 6 12 6 + 0.58502459765931935E-003 1 3 12 7 + -0.36074009915286698E-003 1 4 12 7 + -0.18241951824119479E-003 1 5 12 7 + 0.55470966547647082E-003 1 6 12 7 + 0.27180729721169443E-003 1 7 12 7 + -0.55270678768168704E-004 1 8 12 7 + 0.47950660627105075E-002 2 3 12 7 + -0.29567737083754614E-002 2 4 12 7 + -0.14951904877796571E-002 2 5 12 7 + 0.22986844185279563E-002 2 6 12 7 + 0.11263534576713505E-002 2 7 12 7 + -0.22903431141233556E-003 2 8 12 7 + 0.25070114544098587E-002 3 1 12 7 + 0.48301211262104307E-002 3 2 12 7 + -0.20794639240368507E-002 3 9 12 7 + -0.31537199635198995E-003 3 10 12 7 + 0.10395931092042697E-002 3 11 12 7 + -0.47425443413239547E-003 3 12 12 7 + 0.16564719223798002E-002 3 13 12 7 + -0.15170508395638967E-002 3 14 12 7 + -0.15458833586674779E-002 4 1 12 7 + -0.29783934008948396E-002 4 2 12 7 + 0.12822569812102978E-002 4 9 12 7 + -0.21235513737430092E-002 4 10 12 7 + -0.13319264177708632E-002 4 11 12 7 + -0.86975315063923732E-003 4 12 12 7 + -0.27198013027576570E-002 4 13 12 7 + 0.30696599793619160E-002 4 14 12 7 + -0.78172438530135975E-003 5 1 12 7 + -0.15061241207901179E-002 5 2 12 7 + 0.64841581923583938E-003 5 9 12 7 + 0.69936135764205379E-003 5 10 12 7 + -0.44582817479126681E-002 5 11 12 7 + -0.54084900735741912E-002 5 12 12 7 + -0.11527549703572229E-002 5 13 12 7 + -0.10175614041960388E-002 5 14 12 7 + 0.30362113464314690E-002 6 1 12 7 + 0.32807086418251037E-002 6 2 12 7 + -0.29524933228661293E-002 6 9 12 7 + 0.13397684802928388E-002 6 10 12 7 + 0.57869089766545269E-003 6 11 12 7 + -0.41021886543319429E-005 6 12 12 7 + 0.26258940466391666E-002 6 13 12 7 + -0.14285266043522781E-002 6 14 12 7 + 0.14877412154979377E-002 7 1 12 7 + 0.16075447900782782E-002 7 2 12 7 + -0.14467195084018171E-002 7 9 12 7 + -0.71995577910432304E-003 7 10 12 7 + 0.20070992190615159E-002 7 11 12 7 + 0.33080491162255088E-002 7 12 12 7 + 0.47733426843941029E-003 7 13 12 7 + 0.56925742958918203E-003 7 14 12 7 + -0.30252756463091323E-003 8 1 12 7 + -0.32689337543316825E-003 8 2 12 7 + 0.29418871211671794E-003 8 9 12 7 + 0.50724845637959435E-003 8 10 12 7 + 0.25024478452997795E-002 8 11 12 7 + 0.19572383219206252E-002 8 12 12 7 + 0.44731626120509977E-003 8 13 12 7 + -0.15400839731069177E-003 8 14 12 7 + -0.28971708289802110E-002 9 3 12 7 + 0.17864461862688117E-002 9 4 12 7 + 0.90336790562768620E-003 9 5 12 7 + -0.31908433689310112E-002 9 6 12 7 + -0.15635108169988498E-002 9 7 12 7 + 0.31793646865660186E-003 9 8 12 7 + -0.36996895807959649E-003 10 3 12 7 + -0.23051537358765384E-002 10 4 12 7 + 0.76450260176108911E-003 10 5 12 7 + 0.11930437452639055E-002 10 6 12 7 + -0.60131518401347172E-003 10 7 12 7 + 0.42009632225579167E-003 10 8 12 7 + 0.11943323285533388E-002 11 3 12 7 + -0.14273018379204444E-002 11 4 12 7 + -0.48540028113891907E-002 11 5 12 7 + 0.46402391057468563E-003 11 6 12 7 + 0.16765092875754908E-002 11 7 12 7 + 0.22467055277738926E-002 11 8 12 7 + -0.55482565395241110E-003 12 3 12 7 + -0.97739284884399368E-003 12 4 12 7 + -0.58758593596518593E-002 12 5 12 7 + -0.34144546757207112E-005 12 6 12 7 + 0.29189259817938174E-002 12 7 12 7 + 0.25694073798208372E-002 1 3 12 8 + -0.26936872085290401E-002 1 4 12 8 + 0.51128141724561418E-003 1 5 12 8 + 0.32612312610905457E-002 1 6 12 8 + -0.55270678768167240E-004 1 7 12 8 + -0.31811078926117175E-003 1 8 12 8 + 0.21059854214386366E-001 2 3 12 8 + -0.22078441528996219E-001 2 4 12 8 + 0.41906525962972915E-002 2 5 12 8 + 0.13514351410780907E-001 2 6 12 8 + -0.22903431141232906E-003 2 7 12 8 + -0.13182385689777794E-002 2 8 12 8 + 0.11010707482594174E-001 3 1 12 8 + 0.21213831553997486E-001 3 2 12 8 + -0.91329750166153686E-002 3 9 12 8 + 0.17645057201057762E-002 3 10 12 8 + 0.10470880052474384E-001 3 11 12 8 + -0.15285368566090161E-001 3 12 12 8 + -0.80945622241329466E-003 3 13 12 8 + -0.12602178886866279E-001 3 14 12 8 + -0.11543284046293801E-001 4 1 12 8 + -0.22239856188275835E-001 4 2 12 8 + 0.95747017751648886E-002 4 9 12 8 + -0.10136504349604648E-002 4 10 12 8 + 0.81707411150430953E-002 4 11 12 8 + -0.11673178079155343E-001 4 12 12 8 + 0.23448858165334851E-003 4 13 12 8 + 0.15888671809344813E-001 4 14 12 8 + 0.21909993096631076E-002 5 1 12 8 + 0.42212909657664381E-002 5 2 12 8 + -0.18173497884036622E-002 5 9 12 8 + -0.17393725181979430E-003 5 10 12 8 + -0.13670052597682770E-001 5 11 12 8 + -0.16940677195255167E-001 5 12 12 8 + 0.65474718370648374E-003 5 13 12 8 + -0.36388709671201000E-003 5 14 12 8 + 0.17850396455194321E-001 6 1 12 8 + 0.19287837362352355E-001 6 2 12 8 + -0.17358204297594961E-001 6 9 12 8 + 0.21083283971007317E-002 6 10 12 8 + -0.31674709374558240E-003 6 11 12 8 + -0.99081394494485511E-003 6 12 12 8 + -0.97398920454006357E-003 6 13 12 8 + -0.87420810202447005E-002 6 14 12 8 + -0.30252756463092494E-003 7 1 12 8 + -0.32689337543315871E-003 7 2 12 8 + 0.29418871211676510E-003 7 9 12 8 + 0.36758553909728902E-003 7 10 12 8 + 0.86641607683027259E-002 7 11 12 8 + 0.19572390019970201E-002 7 12 12 8 + -0.30312613545439816E-003 7 13 12 8 + -0.32655578249651568E-003 7 14 12 8 + -0.17411800343642666E-002 8 1 12 8 + -0.18813861637287119E-002 8 2 12 8 + 0.16931660680122055E-002 8 9 12 8 + -0.23010283621415997E-003 8 10 12 8 + -0.19663231834139571E-002 8 11 12 8 + 0.14495697754450868E-001 8 12 12 8 + 0.97800944436743890E-005 8 13 12 8 + -0.46308412158903365E-003 8 14 12 8 + -0.12724193390763812E-001 9 3 12 8 + 0.13339699646698592E-001 9 4 12 8 + -0.25319687250731798E-002 9 5 12 8 + -0.18759504168655568E-001 9 6 12 8 + 0.31793646865662127E-003 9 7 12 8 + 0.18298550205419757E-002 9 8 12 8 + 0.18915021237059203E-002 10 3 12 8 + -0.10586023378796870E-002 10 4 12 8 + -0.19450423381877602E-003 10 5 12 8 + 0.19088389355656071E-002 10 6 12 8 + 0.31055048203717779E-003 10 7 12 8 + -0.19222668599860857E-003 10 8 12 8 + 0.11531486233349698E-001 11 3 12 8 + 0.89943991384268500E-002 11 4 12 8 + -0.15072968779747502E-001 11 5 12 8 + -0.26408945613174214E-003 11 6 12 8 + 0.70800300526243243E-002 11 7 12 8 + -0.16424555537595861E-002 11 8 12 8 + -0.16736786990085958E-001 12 3 12 8 + -0.12775172623788919E-001 12 4 12 8 + -0.18560426979283201E-001 12 5 12 8 + -0.82749856288632780E-003 12 6 12 8 + 0.16345538827146609E-002 12 7 12 8 + 0.12262756441428827E-001 12 8 12 8 + -0.13865889849778309E-002 1 12 12 9 + 0.17512624765458788E-009 1 13 12 9 + -0.16832088042063254E-009 1 14 12 9 + 0.49650772433651416E-009 2 10 12 9 + 0.32306255834961552E-008 2 11 12 9 + -0.15541834213967830E-001 2 12 12 9 + -0.59534811040311475E-007 2 13 12 9 + 0.57221300917332245E-007 2 14 12 9 + 0.78741967467770378E-002 3 3 12 9 + -0.83691339929923680E-003 3 4 12 9 + 0.60957684942506288E-002 3 5 12 9 + 0.53079767388429979E-002 3 6 12 9 + -0.15444937526983074E-002 3 7 12 9 + -0.67834082471154239E-002 3 8 12 9 + -0.83691339929923691E-003 4 3 12 9 + -0.87851458839367669E-002 4 4 12 9 + -0.48988724437444928E-002 4 5 12 9 + 0.51614710470373202E-002 4 6 12 9 + 0.95238241198151280E-003 4 7 12 9 + 0.71114865840255972E-002 4 8 12 9 + 0.60957684942506271E-002 5 3 12 9 + -0.48988724437444920E-002 5 4 12 9 + 0.91094913716007386E-003 5 5 12 9 + 0.67437631423426280E-002 5 6 12 9 + 0.48160461314043074E-003 5 7 12 9 + -0.13498137740232540E-002 5 8 12 9 + 0.66588702042562039E-002 6 3 12 9 + 0.64750525805835086E-002 6 4 12 9 + 0.84600539768973724E-002 6 5 12 9 + -0.70407356231180695E-004 6 6 12 9 + -0.84353135267342867E-003 6 7 12 9 + -0.49592626544159397E-002 6 8 12 9 + -0.19375757100157335E-002 7 3 12 9 + 0.11947567775222481E-002 7 4 12 9 + 0.60416650348731245E-003 7 5 12 9 + -0.84353135267343669E-003 7 6 12 9 + -0.41332976846110230E-003 7 7 12 9 + 0.84051977989686711E-004 7 8 12 9 + -0.85097703382172162E-002 8 3 12 9 + 0.89213760867030596E-002 8 4 12 9 + -0.16933423039570364E-002 8 5 12 9 + -0.49592626544159310E-002 8 6 12 9 + 0.84051977989685599E-004 8 7 12 9 + 0.48373712469250917E-003 8 8 12 9 + 0.27100673582214971E-009 9 10 12 9 + 0.17633587178283087E-008 9 11 12 9 + 0.13412125908506677E-001 9 12 12 9 + -0.32495633742634860E-007 9 13 12 9 + 0.31232860301075301E-007 9 14 12 9 + 0.85192911578610185E-009 10 2 12 9 + -0.19314575439773676E-009 10 9 12 9 + -0.11187823275561088E-002 10 10 12 9 + -0.21059650449151580E-002 10 11 12 9 + -0.61568569673373583E-002 10 12 12 9 + -0.87275911853971583E-004 10 13 12 9 + 0.96149998426395158E-003 10 14 12 9 + 0.20644568222079839E-009 11 1 12 9 + 0.55432449443892413E-008 11 2 12 9 + -0.12567407126927736E-008 11 9 12 9 + -0.21059701080844520E-002 11 10 12 9 + 0.85095789957315772E-004 11 11 12 9 + 0.21281206785818602E-003 11 12 12 9 + -0.64531297781020014E-002 11 13 12 9 + -0.21218536186937384E-003 11 14 12 9 + -0.29028683797240147E-002 12 1 12 9 + -0.12012704296733543E-001 12 2 12 9 + 0.99104111204140876E-002 12 9 12 9 + -0.24918160761095913E-009 1 1 12 10 + -0.64409970055175834E-004 1 10 12 10 + -0.12124697299566610E-003 1 11 12 10 + -0.35447203016777614E-003 1 12 12 10 + -0.50238223275753644E-005 1 13 12 10 + 0.55351531392519911E-004 1 14 12 10 + 0.78234287209932502E-009 2 2 12 10 + 0.76007914674504797E-009 2 9 12 10 + 0.42265245143605686E-002 2 10 12 10 + 0.79555836113780216E-002 2 11 12 10 + 0.23258533934109454E-001 2 12 12 10 + 0.32964175892665620E-003 2 13 12 10 + -0.36319960484119946E-002 2 14 12 10 + -0.10365023433433465E-001 3 3 12 10 + -0.28042623920928973E-002 3 4 12 10 + -0.12541297714340391E-001 3 5 12 10 + -0.11820970502087549E-002 3 6 12 10 + 0.11036548408330609E-002 3 7 12 10 + 0.33195291162365975E-002 3 8 12 10 + -0.28042581215976009E-002 4 3 12 10 + 0.14056197171838520E-001 4 4 12 10 + 0.16651177377053711E-001 4 5 12 10 + -0.25593444065474241E-002 4 6 12 10 + -0.24633217742665650E-002 4 7 12 10 + -0.33951081529511483E-002 4 8 12 10 + -0.12541299581486798E-001 5 3 12 10 + 0.16651155257597236E-001 5 4 12 10 + -0.36911714616412925E-002 5 5 12 10 + -0.47040753159714142E-002 5 6 12 10 + 0.52813829849225331E-003 5 7 12 10 + 0.10196615488840326E-003 5 8 12 10 + -0.73362914326577800E-003 6 3 12 10 + -0.15882604086636404E-002 6 4 12 10 + -0.29192810309959499E-002 6 5 12 10 + 0.22264066137346180E-002 6 6 12 10 + 0.65599605988847240E-002 6 7 12 10 + 0.11772512003065987E-001 6 8 12 10 + 0.68491075662695906E-003 7 3 12 10 + -0.15286901305887402E-002 7 4 12 10 + 0.32774588727986053E-003 7 5 12 10 + 0.65599573655481178E-002 7 6 12 10 + -0.16871609612617406E-002 7 7 12 10 + 0.10250485358955519E-002 7 8 12 10 + 0.20600295571345569E-002 8 3 12 10 + -0.21069768223641095E-002 8 4 12 10 + 0.63254079697341108E-004 8 5 12 10 + 0.11772507944051828E-001 8 6 12 10 + 0.10250532297081439E-002 8 7 12 10 + -0.53924402982058754E-003 8 8 12 10 + -0.54508180483002991E-009 9 2 12 10 + 0.60902608392459546E-009 9 9 12 10 + 0.33050785933716486E-003 9 10 12 10 + 0.62218854810903827E-003 9 11 12 10 + 0.18189495871470292E-002 9 12 12 10 + 0.25794351911680478E-004 9 13 12 10 + -0.28409914850020351E-003 9 14 12 10 + 0.73701236174791699E-003 10 1 12 10 + 0.76311679667464627E-002 10 2 12 10 + -0.11187810710593718E-002 10 9 12 10 + 0.10272957020732507E-008 10 10 12 10 + -0.22593913408144539E-003 10 11 12 10 + 0.32781900722145187E-001 10 12 12 10 + 0.23818342642010172E-003 10 13 12 10 + 0.72530712291858006E-003 10 14 12 10 + 0.13873069955913603E-002 11 1 12 10 + 0.14364432148517039E-001 11 2 12 10 + -0.21059704306800528E-002 11 9 12 10 + -0.22588728772421604E-003 11 10 12 10 + -0.83842556712673756E-003 11 11 12 10 + 0.34932432978018599E-003 11 12 12 10 + 0.12910712337140480E-001 11 13 12 10 + -0.19306552956314339E-002 11 14 12 10 + 0.40558532593807381E-002 12 1 12 10 + 0.41994919199440470E-001 12 2 12 10 + -0.61568511414493900E-002 12 9 12 10 + 0.32781825853737415E-001 12 10 12 10 + -0.16213531510097559E-008 1 1 12 11 + 0.15839104169110540E-009 1 2 12 11 + -0.12124727767351793E-003 1 10 12 11 + 0.48941643415595650E-005 1 11 12 11 + 0.12251704793469841E-004 1 12 12 11 + -0.37149798577066582E-003 1 13 12 11 + -0.12214878324879438E-004 1 14 12 11 + 0.33355359974329578E-009 2 1 12 11 + 0.50904651489518106E-008 2 2 12 11 + 0.49456056698502478E-008 2 9 12 11 + 0.79555786021930572E-002 2 10 12 11 + -0.32142636938719513E-003 2 11 12 11 + -0.80409786353283696E-003 2 12 12 11 + 0.24376132603688268E-001 2 13 12 11 + 0.80151499316358005E-003 2 14 12 11 + -0.13410837972129162E-001 3 3 12 11 + -0.12394654011115324E-001 3 4 12 11 + 0.52917599175998653E-003 3 5 12 11 + 0.24178456886246407E-003 3 6 12 11 + -0.22993422358256214E-002 3 7 12 11 + 0.33690264711673094E-002 3 8 12 11 + -0.12394625547987264E-001 4 3 12 11 + -0.11401874925359009E-001 4 4 12 11 + 0.26945280293010441E-002 4 5 12 11 + 0.24862280717572464E-003 4 6 12 11 + -0.25347340275176083E-002 4 7 12 11 + 0.28398061124936275E-002 4 8 12 11 + 0.52916644490496158E-003 5 3 12 11 + 0.26945340537150226E-002 5 4 12 11 + 0.24812727711692805E-001 5 5 12 11 + -0.23124837965434199E-005 5 6 12 11 + -0.44143158263271077E-002 5 7 12 11 + -0.34188884828303132E-002 5 8 12 11 + 0.15005458115752631E-003 6 3 12 11 + 0.15429443964160472E-003 6 4 12 11 + -0.14308748267479954E-005 6 5 12 11 + -0.95546579954135588E-004 6 6 12 11 + 0.46537690872783282E-003 6 7 12 11 + -0.72144777364835551E-003 6 8 12 11 + -0.14268624122427546E-002 7 3 12 11 + -0.15729435447435251E-002 7 4 12 11 + -0.27392022865115493E-002 7 5 12 11 + 0.46538450849703436E-003 7 6 12 11 + 0.47035310454014182E-002 7 7 12 11 + 0.13084128349139976E-001 7 8 12 11 + 0.20905490585364879E-002 8 3 12 11 + 0.17621880841003688E-002 8 4 12 11 + -0.21216139078303253E-002 8 5 12 11 + -0.72145341724119899E-003 8 6 12 11 + 0.13084128828838486E-001 8 7 12 11 + -0.46079739073477261E-002 8 8 12 11 + -0.36255306549571203E-009 9 1 12 11 + -0.35466818609838172E-008 9 2 12 11 + 0.39627464995265854E-008 9 9 12 11 + 0.62218907191764598E-003 9 10 12 11 + -0.25158011069523857E-004 9 11 12 11 + -0.62845685619104769E-004 9 12 12 11 + 0.19067566338550506E-002 9 13 12 11 + 0.62695028212721840E-004 9 14 12 11 + 0.13873041251995721E-002 10 1 12 11 + 0.14364345636121803E-001 10 2 12 11 + -0.21059640676807895E-002 10 9 12 11 + 0.45170684597245329E-003 10 10 12 11 + 0.41935737488828543E-003 10 11 12 11 + 0.34923902761649242E-003 10 12 12 11 + 0.42375022569668419E-003 10 13 12 11 + 0.47493218426127954E-002 10 14 12 11 + -0.56037081926175973E-004 11 1 12 11 + -0.58026040298410971E-003 11 2 12 11 + 0.85092533386121896E-004 11 9 12 11 + 0.41926067693168840E-003 11 10 12 11 + -0.22448999640412446E-007 11 11 12 11 + 0.33250252040767585E-001 11 12 12 11 + -0.55491034867410157E-003 11 13 12 11 + -0.10311839952758036E-002 11 14 12 11 + -0.14020944235614639E-003 12 1 12 11 + -0.14517753668197601E-002 12 2 12 11 + 0.21281451680858255E-003 12 9 12 11 + 0.34923293799971809E-003 12 10 12 11 + 0.33250234369152622E-001 12 11 12 11 + 0.78448063841573412 1 1 12 12 + -0.38091636274375555E-001 1 2 12 12 + 0.33655785285773371E-001 1 9 12 12 + -0.35447167959307379E-003 1 10 12 12 + 0.12251852159854930E-004 1 11 12 12 + 0.96329576353697724E-004 1 12 12 12 + 0.11109220272351944E-003 1 13 12 12 + 0.24131660260868812E-003 1 14 12 12 + 0.31044633233678325E-001 2 1 12 12 + 0.63498202059612074 2 2 12 12 + -0.15248669305013129 2 9 12 12 + 0.23258539697880942E-001 2 10 12 12 + -0.80409544069354731E-003 2 11 12 12 + -0.63207046312621995E-002 2 12 12 12 + -0.72893800087890492E-002 2 13 12 12 + -0.15834180727840194E-001 2 14 12 12 + 0.62140480196557357 3 3 12 12 + -0.11067975438125665E-001 3 4 12 12 + 0.21927893010333068E-001 3 5 12 12 + 0.11099354266122891 3 6 12 12 + 0.73434576868314214E-001 3 7 12 12 + -0.10835076699778552 3 8 12 12 + -0.11068012187540175E-001 4 3 12 12 + 0.62217184769462974 4 4 12 12 + 0.12731211934500256E-001 4 5 12 12 + -0.13361461199300637 4 6 12 12 + 0.47971119493947091E-001 4 7 12 12 + -0.96648547181033634E-001 4 8 12 12 + 0.21927889436280979E-001 5 3 12 12 + 0.12731224484792454E-001 5 4 12 12 + 0.60699964487937030 5 5 12 12 + 0.12647630871579288E-001 5 6 12 12 + -0.13790222987514683 5 7 12 12 + -0.95823653215983615E-001 5 8 12 12 + 0.82637814775216034E-001 6 3 12 12 + -0.99632105328208057E-001 6 4 12 12 + 0.93614675344988307E-002 6 5 12 12 + 0.49489159024568485 6 6 12 12 + -0.96099669274704992E-005 6 7 12 12 + -0.23218958073646765E-002 6 8 12 12 + 0.55476032561115024E-001 7 3 12 12 + 0.36277034570473439E-001 7 4 12 12 + -0.10375842452545277 7 5 12 12 + -0.96130800662581729E-005 7 6 12 12 + 0.46815362623443169 7 7 12 12 + 0.45866359950004019E-002 7 8 12 12 + -0.80788220652065465E-001 8 3 12 12 + -0.72193543587509970E-001 8 4 12 12 + -0.71219810935962011E-001 8 5 12 12 + -0.23218841730041446E-002 8 6 12 12 + 0.45866351770920974E-002 8 7 12 12 + 0.49437111346303381 8 8 12 12 + -0.27382217626974244E-001 9 1 12 12 + -0.99580652096542446E-001 9 2 12 12 + 0.50334491588496955 9 9 12 12 + 0.18189489844315783E-002 9 10 12 12 + -0.62845938974479427E-004 9 11 12 12 + -0.49430238258096665E-003 9 12 12 12 + -0.57018799033068377E-003 9 13 12 12 + -0.12385622318816787E-002 9 14 12 12 + 0.40558565621699530E-002 10 1 12 12 + 0.41995018744111642E-001 10 2 12 12 + -0.61568584629745071E-002 10 9 12 12 + 0.60214777552000487 10 10 12 12 + -0.69859806200686832E-003 10 11 12 12 + -0.70650574387083368E-007 10 12 12 12 + -0.87934420756800781E-003 10 13 12 12 + 0.15106985622975423E-001 10 14 12 12 + -0.14020805400693226E-003 11 1 12 12 + -0.14517335225612870E-002 11 2 12 12 + 0.21281143915729590E-003 11 9 12 12 + -0.69853321751358634E-003 11 10 12 12 + 0.60121083130606490 11 11 12 12 + 0.27609432158083858E-007 11 12 12 12 + -0.20437311672237470E-002 11 13 12 12 + -0.54475482297267357E-003 11 14 12 12 + -0.11022089897497413E-002 12 1 12 12 + -0.11412452521136754E-001 12 2 12 12 + 0.16731634609297753E-002 12 9 12 12 + 0.59976592160205162E-007 12 10 12 12 + 0.35905688860915874E-007 12 11 12 12 + 0.66771148915833067 12 12 12 12 + 0.29878717652599451E-007 1 1 12 13 + -0.29188713991903195E-008 1 2 12 13 + 0.55768206930633688E-009 1 9 12 13 + -0.50235603055787090E-005 1 10 12 13 + -0.37148857904744791E-003 1 11 12 13 + 0.11108962683081408E-003 1 12 12 13 + -0.30968923520841112E-004 1 13 12 13 + -0.18606179927793433E-004 1 14 12 13 + -0.61468128330968970E-008 2 1 12 13 + -0.93808421016395071E-007 2 2 12 13 + -0.91138911761814287E-007 2 9 12 13 + 0.32964606680999385E-003 2 10 12 13 + 0.24376287258895270E-001 2 11 12 13 + -0.72894223588444718E-002 2 12 12 13 + 0.20326547735604636E-002 2 13 12 13 + 0.12203992976362299E-002 2 14 12 13 + 0.21028111111991040E-001 3 3 12 13 + -0.37958202045190034E-002 3 4 12 13 + -0.75555856858634876E-002 3 5 12 13 + 0.35177828225674192E-002 3 6 12 13 + 0.33076301021367316E-002 3 7 12 13 + -0.15431773741234236E-002 3 8 12 13 + -0.37960699111919656E-002 4 3 12 13 + -0.20959833256174371E-001 4 4 12 13 + 0.10306178825958192E-001 4 5 12 13 + 0.32329601443118498E-002 4 6 12 13 + -0.37241466473585082E-002 4 7 12 13 + 0.19203073678249721E-002 4 8 12 13 + -0.75554508299246533E-002 5 3 12 13 + 0.10306121507142852E-001 5 4 12 13 + -0.68550855848023323E-004 5 5 12 13 + -0.28477435730470016E-002 5 6 12 13 + -0.67259966372568299E-004 5 7 12 13 + -0.23429261652335793E-003 5 8 12 13 + 0.21829838498886355E-002 6 3 12 13 + 0.20062284568677052E-002 6 4 12 13 + -0.17671751525602706E-002 6 5 12 13 + -0.11417066467223074E-002 6 6 12 13 + 0.12355071241253422E-001 6 7 12 13 + -0.61610719331738764E-002 6 8 12 13 + 0.20524330758965284E-002 7 3 12 13 + -0.23110413858478049E-002 7 4 12 13 + -0.41710481556379976E-004 7 5 12 13 + 0.12354994801155213E-001 7 6 12 13 + 0.11185814322916393E-002 7 7 12 13 + 0.16894033487693748E-003 7 8 12 13 + -0.95746338478271695E-003 8 3 12 13 + 0.11917465571644320E-002 8 4 12 13 + -0.14533531644965507E-003 8 5 12 13 + -0.61610277962940753E-002 8 6 12 13 + 0.16892481987438863E-003 8 7 12 13 + 0.22930647003573024E-004 8 8 12 13 + 0.66812225647342434E-008 9 1 12 13 + 0.65359178635695812E-007 9 2 12 13 + -0.73026520975897326E-007 9 9 12 13 + 0.25793901437952188E-004 9 10 12 13 + 0.19067404616180464E-002 9 11 12 13 + -0.57018356180096939E-003 9 12 12 13 + 0.15883704925747605E-003 9 13 12 13 + 0.95592190851494929E-004 9 14 12 13 + 0.57484595775082169E-004 10 1 12 13 + 0.59523601026132962E-003 10 2 12 13 + -0.87275848611674929E-004 10 9 12 13 + -0.47664179796128752E-003 10 10 12 13 + -0.13336180125418774E-001 10 11 12 13 + 0.43960658463992712E-003 10 12 12 13 + 0.59780382122185717E-003 10 13 12 13 + -0.28949160268816674E-003 10 14 12 13 + 0.42507722462635225E-002 11 1 12 13 + 0.44014287728503486E-001 11 2 12 13 + -0.64531299237852143E-002 11 9 12 13 + -0.13335335428493080E-001 11 10 12 13 + 0.11098462907034833E-002 11 11 12 13 + 0.10218528188120129E-002 11 12 12 13 + 0.59468736133273109E-003 11 13 12 13 + -0.67166445126753370E-002 11 14 12 13 + -0.12711407159645221E-002 12 1 12 13 + -0.13161898468152838E-001 12 2 12 13 + 0.19297235693625336E-002 12 9 12 13 + 0.43976261028096011E-003 12 10 12 13 + 0.10219339178620544E-002 12 11 12 13 + -0.87400849339519821E-008 12 12 12 13 + 0.33136337325354523E-001 12 13 12 13 + -0.28717636520612925E-007 1 1 12 14 + 0.28054446511017322E-008 1 2 12 14 + -0.53601064000942123E-009 1 9 12 14 + 0.55349919392752883E-004 1 10 12 14 + -0.12214433914607855E-004 1 11 12 14 + 0.24131095937377571E-003 1 12 12 14 + -0.18605837045167187E-004 1 13 12 14 + -0.58448471192669381E-005 1 14 12 14 + 0.59079490111364328E-008 2 1 12 14 + 0.90163046095096144E-007 2 2 12 14 + 0.87597272904514622E-007 2 9 12 14 + -0.36320225511751788E-002 2 10 12 14 + 0.80152229967840323E-003 2 11 12 14 + -0.15834273507827904E-001 2 12 12 14 + 0.12204049349429191E-002 2 13 12 14 + 0.38295171272772143E-003 2 14 12 14 + 0.11274833757974204E-001 3 3 12 14 + -0.12906436967889472E-002 3 4 12 14 + 0.51623362742013222E-002 3 5 12 14 + 0.19014072826982909E-002 3 6 12 14 + 0.97069938945241221E-004 3 7 12 14 + -0.20371369169651862E-002 3 8 12 14 + -0.12902973732869972E-002 4 3 12 14 + -0.12876598772585828E-001 4 4 12 14 + -0.87190792163775368E-002 4 5 12 14 + 0.18993829310360378E-002 4 6 12 14 + 0.63831025554732690E-003 4 7 12 14 + 0.28576169088344277E-002 4 8 12 14 + 0.51625362461699591E-002 5 3 12 14 + -0.87193465604004251E-002 5 4 12 14 + 0.16020274059213055E-002 5 5 12 14 + 0.22589870121977169E-002 5 6 12 14 + -0.35795038609105442E-003 5 7 12 14 + 0.18285426455856753E-003 5 8 12 14 + 0.11799918993488524E-002 6 3 12 14 + 0.11784822870890808E-002 6 4 12 14 + 0.14017725379784928E-002 6 5 12 14 + -0.24867940827692325E-003 6 6 12 14 + -0.11333473192854228E-002 6 7 12 14 + -0.86667109494894222E-002 6 8 12 14 + 0.60256194608529887E-004 7 3 12 14 + 0.39614118464710926E-003 7 4 12 14 + -0.22208510973326434E-003 7 5 12 14 + -0.11333757651526514E-002 7 6 12 14 + 0.13340358650381016E-002 7 7 12 14 + -0.56305104063376996E-003 7 8 12 14 + -0.12642687926843971E-002 8 3 12 14 + 0.17732822113266334E-002 8 4 12 14 + 0.11346825536270368E-003 8 5 12 14 + -0.86668570859385601E-002 8 6 12 14 + -0.56305372397661151E-003 8 7 12 14 + -0.10851694501820980E-002 8 8 12 14 + -0.64215916905507603E-008 9 1 12 14 + -0.62819334899879845E-007 9 2 12 14 + 0.70188726213360617E-007 9 9 12 14 + -0.28409637711613396E-003 9 10 12 14 + 0.62694264173156921E-004 9 11 12 14 + -0.12385525299133734E-002 9 12 12 14 + 0.95591601360413316E-004 9 13 12 14 + 0.30115485055827730E-004 9 14 12 14 + -0.63335447961037760E-003 10 1 12 14 + -0.65580478991879940E-002 10 2 12 14 + 0.96149988985358848E-003 10 9 12 14 + -0.14507246246764399E-002 10 10 12 14 + -0.28187534920354864E-002 10 11 12 14 + -0.75528550224484839E-002 10 12 12 14 + 0.36089818475604457E-004 10 13 12 14 + -0.10170825656443396E-002 10 14 12 14 + 0.13976945689620442E-003 11 1 12 14 + 0.14472490233898661E-002 11 2 12 14 + -0.21218536635239361E-003 11 9 12 14 + -0.28191470637371624E-002 11 10 12 14 + 0.20627621122273052E-002 11 11 12 14 + 0.27231132791141332E-003 11 12 12 14 + -0.76851588336152099E-002 11 13 12 14 + -0.36874662700754900E-003 11 14 12 14 + -0.27612021572980287E-002 12 1 12 14 + -0.28590598240249211E-001 12 2 12 14 + 0.41917809109114738E-002 12 9 12 14 + -0.75541567139435755E-002 12 10 12 14 + 0.27235959069173930E-003 12 11 12 14 + 0.44244748481596738E-007 12 12 12 14 + 0.27301277497429480E-002 12 13 12 14 + 0.25410600863546528E-001 12 14 12 14 + -0.88400010694027889E-009 1 10 13 1 + 0.16430530044934673E-008 1 11 13 1 + -0.96377116319749568E-009 1 12 13 1 + 0.85552575744259540E-003 1 13 13 1 + -0.45899101778906422E-008 2 10 13 1 + 0.85310687727463634E-008 2 11 13 1 + -0.50040978909052603E-008 2 12 13 1 + 0.75944833786117105E-002 2 13 13 1 + -0.36309706560766256E-002 3 3 13 1 + -0.38171556763454658E-002 3 4 13 1 + -0.15651545722713653E-002 3 5 13 1 + 0.27795843540197828E-003 3 6 13 1 + -0.78334714745674386E-003 3 7 13 1 + 0.27659550553600356E-002 3 8 13 1 + -0.38171556763454658E-002 4 3 13 1 + -0.32106826729968170E-002 4 4 13 1 + -0.69852919423774398E-003 4 5 13 1 + 0.22017762229375327E-005 4 6 13 1 + -0.11139481179709464E-002 4 7 13 1 + 0.24009601605653207E-002 4 8 13 1 + -0.15651545722713653E-002 5 3 13 1 + -0.69852919423774398E-003 5 4 13 1 + 0.68416533290726628E-002 5 5 13 1 + 0.11889294658155095E-004 5 6 13 1 + -0.34974125748695657E-002 5 7 13 1 + -0.12272110550528199E-002 5 8 13 1 + 0.28527643391068331E-003 6 3 13 1 + 0.22635042879656641E-005 6 4 13 1 + 0.12200577741458076E-004 6 5 13 1 + 0.23590300524490185E-003 6 6 13 1 + 0.15815776356337615E-003 6 7 13 1 + -0.24379033856778627E-003 6 8 13 1 + -0.80395253502086781E-003 7 3 13 1 + -0.11432587709349969E-002 7 4 13 1 + -0.35894329737641570E-002 7 5 13 1 + 0.15815776356337602E-003 7 6 13 1 + 0.30112304529273017E-002 7 7 13 1 + 0.40499139474660332E-002 7 8 13 1 + 0.28387274695276903E-002 8 3 13 1 + 0.24641353561410751E-002 8 4 13 1 + -0.12594974894174656E-002 8 5 13 1 + -0.24379033856778632E-003 8 6 13 1 + 0.40499139474660332E-002 8 7 13 1 + -0.32471334581729247E-002 8 8 13 1 + 0.49652104297392790E-008 9 10 13 1 + -0.92286232231740423E-008 9 11 13 1 + 0.54132647661198942E-008 9 12 13 1 + -0.24768498097343687E-002 9 13 13 1 + 0.15096576397013946E-008 10 1 13 1 + 0.20861277100213681E-009 10 2 13 1 + -0.34895429148304327E-008 10 9 13 1 + -0.21083392333005570E-003 10 10 13 1 + 0.21358957659465850E-003 10 11 13 1 + 0.57481979495654623E-004 10 12 13 1 + 0.22437809969235700E-003 10 13 13 1 + 0.38137521647744590E-004 10 14 13 1 + -0.28059357700325102E-008 11 1 13 1 + -0.38773959241179255E-009 11 2 13 1 + 0.64858634341792589E-008 11 9 13 1 + 0.21358945169209272E-003 11 10 13 1 + 0.15038635345239442E-002 11 11 13 1 + 0.42506839652098477E-002 11 12 13 1 + -0.99044079373240777E-004 11 13 13 1 + -0.28673066727529097E-003 11 14 13 1 + 0.16458872431160538E-008 12 1 13 1 + 0.22743772373214552E-009 12 2 13 1 + -0.38044348696214919E-008 12 9 13 1 + 0.57482127247170154E-004 12 10 13 1 + 0.42506836248535030E-002 12 11 13 1 + -0.12711164482936889E-002 12 12 13 1 + 0.35442184200223275E-003 12 13 13 1 + 0.21284225269791219E-003 12 14 13 1 + 0.16107514352952934E-002 13 1 13 1 + -0.20332033429105408E-008 1 10 13 2 + 0.37790276676270774E-008 1 11 13 2 + -0.22166770530059232E-008 1 12 13 2 + 0.44595866363497221E-003 1 13 13 2 + -0.79812099805534277E-007 2 10 13 2 + 0.14834331960461938E-006 2 11 13 2 + -0.87014243167542676E-007 2 12 13 2 + 0.60775463654505840E-001 2 13 13 2 + 0.37305767585304214E-009 2 14 13 2 + -0.27437242172962735E-001 3 3 13 2 + -0.28844219399919910E-001 3 4 13 2 + -0.11827067234320759E-001 3 5 13 2 + 0.82996771882889921E-003 3 6 13 2 + -0.23392196829209247E-002 3 7 13 2 + 0.82594882232314600E-002 3 8 13 2 + -0.28844219399919907E-001 4 3 13 2 + -0.24261475112144326E-001 4 4 13 2 + -0.52784168469807496E-002 4 5 13 2 + 0.65352365825254057E-005 4 6 13 2 + -0.33263612990255000E-002 4 7 13 2 + 0.71695072279861286E-002 4 8 13 2 + -0.11827067234320759E-001 5 3 13 2 + -0.52784168469807513E-002 5 4 13 2 + 0.51698717285105132E-001 5 5 13 2 + 0.35518793818998098E-004 5 6 13 2 + -0.10443677629468335E-001 5 7 13 2 + -0.36646220386447196E-002 5 8 13 2 + 0.60625057448487039E-003 6 3 13 2 + 0.48541786252511435E-005 6 4 13 2 + 0.25907598501799147E-004 6 5 13 2 + 0.14911261531398619E-002 6 6 13 2 + 0.99971984611055558E-003 6 7 13 2 + -0.15409962150673821E-002 6 8 13 2 + -0.17082926515195221E-002 7 3 13 2 + -0.24293791020210832E-002 7 4 13 2 + -0.76273436779987101E-002 7 5 13 2 + 0.99971984611055905E-003 7 6 13 2 + 0.19033784673027448E-001 7 7 13 2 + 0.25599215844912107E-001 7 8 13 2 + 0.60321061010185266E-002 8 3 13 2 + 0.52361908354234344E-002 8 4 13 2 + -0.26763298691233482E-002 8 5 13 2 + -0.15409962150673810E-002 8 6 13 2 + 0.25599215844912090E-001 8 7 13 2 + -0.20524910826169990E-001 8 8 13 2 + 0.88797979870717115E-007 9 10 13 2 + -0.16504498866242115E-006 9 11 13 2 + 0.96810997721681701E-007 9 12 13 2 + 0.20301650445359327E-002 9 13 13 2 + -0.41505984852743158E-009 9 14 13 2 + 0.20861277040264981E-009 10 1 13 2 + -0.34706250762903789E-007 10 2 13 2 + -0.93697243313417162E-007 10 9 13 2 + -0.21829856325511158E-002 10 10 13 2 + 0.22114689213854795E-002 10 11 13 2 + 0.59515726111393605E-003 10 12 13 2 + 0.23232182809434657E-002 10 13 13 2 + 0.39481283163769775E-003 10 14 13 2 + -0.38773959155560396E-009 11 1 13 2 + 0.64507016628023448E-007 11 2 13 2 + 0.17415103904990326E-006 11 9 13 2 + 0.22114652451374265E-002 11 10 13 2 + 0.15571043282728932E-001 11 11 13 2 + 0.44011626734346304E-001 11 12 13 2 + -0.10255331658606437E-002 11 13 13 2 + -0.29688573395753983E-002 11 14 13 2 + 0.22743772299950434E-009 12 1 13 2 + -0.37838099130787161E-007 12 2 13 2 + -0.10215236450662687E-006 12 9 13 2 + 0.59516160987344914E-003 12 10 13 2 + 0.44011616716662982E-001 12 11 13 2 + -0.13161167050804438E-001 12 12 13 2 + 0.36698001668362921E-002 12 13 13 2 + 0.22038136717920679E-002 12 14 13 2 + 0.89610346450937923E-002 13 1 13 2 + 0.94272283002881305E-001 13 2 13 2 + -0.74421511722597372E-003 1 3 13 3 + -0.78237798332806286E-003 1 4 13 3 + -0.32080028338187541E-003 1 5 13 3 + 0.48115637583012973E-004 1 6 13 3 + -0.13560254971338399E-003 1 7 13 3 + 0.47880307747993038E-003 1 8 13 3 + -0.56536671359939186E-001 2 3 13 3 + -0.59435824576489493E-001 2 4 13 3 + -0.24370607591222920E-001 2 5 13 3 + 0.19365214156978911E-002 2 6 13 3 + -0.54576593114340332E-002 2 7 13 3 + 0.19270584233902051E-001 2 8 13 3 + -0.21216196475103307E-001 3 1 13 3 + -0.62831570805873579E-001 3 2 13 3 + 0.93662382595329514E-002 3 9 13 3 + 0.40345315244498276E-003 3 10 13 3 + -0.15422476191490011E-001 3 11 13 3 + 0.32936873025294758E-001 3 12 13 3 + 0.58412778821467601E-001 3 13 13 3 + -0.26488146197040326E-001 3 14 13 3 + -0.22304090255232646E-001 4 1 13 3 + -0.66053446787504452E-001 4 2 13 3 + 0.98463870983525464E-002 4 9 13 3 + -0.57801290889733497E-002 4 10 13 3 + 0.13222852092262764E-001 4 11 13 3 + -0.29551392543486332E-001 4 12 13 3 + 0.40591034253597273E-001 4 13 13 3 + -0.16382538622999938E-001 4 14 13 3 + -0.91453801624118512E-002 5 1 13 3 + -0.27084023204896841E-001 5 2 13 3 + 0.40372917773093646E-002 5 9 13 3 + -0.40176385831734836E-001 5 10 13 3 + -0.98522884565856641E-002 5 11 13 3 + -0.99888232307809486E-003 5 12 13 3 + -0.35189945930411315E-002 5 13 13 3 + -0.87115389020298913E-002 5 14 13 3 + 0.32579630921023158E-002 6 1 13 3 + 0.16596991454480199E-002 6 2 13 3 + -0.57796823629901045E-002 6 9 13 3 + 0.82532970403525495E-004 6 10 13 3 + -0.96389214868128988E-003 6 11 13 3 + 0.20740574981468994E-002 6 12 13 3 + 0.67870830860034881E-003 6 13 13 3 + -0.23917223763555395E-003 6 14 13 3 + -0.91814961912666075E-002 7 1 13 3 + -0.46771056027144261E-002 7 2 13 3 + 0.16288130735690697E-001 7 9 13 3 + 0.11783636046941110E-002 7 10 13 3 + 0.46680489531714608E-003 7 11 13 3 + 0.75723967674512635E-003 7 12 13 3 + 0.26492867601459803E-002 7 13 13 3 + -0.54716688164746887E-003 7 14 13 3 + 0.32419481379898231E-001 8 1 13 3 + 0.16514848136849534E-001 8 2 13 3 + -0.57512713290931737E-001 8 9 13 3 + 0.90832689171076793E-003 8 10 13 3 + 0.77503756365890570E-003 8 11 13 3 + -0.35734268234332027E-003 8 12 13 3 + -0.36388211100386765E-002 8 13 13 3 + 0.17820899833877039E-002 8 14 13 3 + 0.56513246489674814E-002 9 3 13 3 + 0.59412156630480363E-002 9 4 13 3 + 0.24361201854194580E-002 9 5 13 3 + -0.57735315381446531E-002 9 6 13 3 + 0.16270646158589440E-001 9 7 13 3 + -0.57451106940761339E-001 9 8 13 3 + 0.62085689033367965E-003 10 3 13 3 + -0.94112417124835607E-002 10 4 13 3 + -0.65729894356788304E-001 10 5 13 3 + 0.63635436230731490E-003 10 6 13 3 + 0.10976028459405854E-001 10 7 13 3 + 0.84656127186966239E-002 10 8 13 3 + -0.23731309472105160E-001 11 3 13 3 + 0.21817431466942681E-001 11 4 13 3 + -0.13668578687565606E-001 11 5 13 3 + -0.68017187600576696E-002 11 6 13 3 + 0.14256009748676560E-002 11 7 13 3 + 0.19489585318250527E-002 11 8 13 3 + 0.50681338040358376E-001 12 3 13 3 + -0.47941918585354272E-001 12 4 13 3 + -0.40323349362945488E-003 12 5 13 3 + 0.14302902908977540E-001 12 6 13 3 + 0.17720365514960271E-002 12 7 13 3 + -0.86733131489942971E-003 12 8 13 3 + 0.87168191095227152E-001 13 3 13 3 + -0.78237798332796550E-003 1 3 13 4 + -0.65807422720261461E-003 1 4 13 4 + -0.14317311712578403E-003 1 5 13 4 + 0.38067400082243345E-006 1 6 13 4 + -0.19283064465006589E-003 1 7 13 4 + 0.41561960198498003E-003 1 8 13 4 + -0.59435824576489743E-001 2 3 13 4 + -0.49992688966990599E-001 2 4 13 4 + -0.10876599546740306E-001 2 5 13 4 + 0.15314608965499835E-004 2 6 13 4 + -0.77609296921954118E-002 2 7 13 4 + 0.16727602928048865E-001 2 8 13 4 + -0.22304090255232615E-001 3 1 13 4 + -0.66053446787504688E-001 3 2 13 4 + 0.98463870983525117E-002 3 9 13 4 + 0.41040063362715300E-002 3 10 13 4 + -0.14892478786150808E-001 3 11 13 4 + 0.17660298685200106E-001 3 12 13 4 + 0.40591002148184542E-001 3 13 13 4 + -0.20620214344892376E-001 3 14 13 4 + -0.18760392266799868E-001 4 1 13 4 + -0.55558859562709416E-001 4 2 13 4 + 0.82819069401889114E-002 4 9 13 4 + -0.17079809283131880E-002 4 10 13 4 + 0.22060150413325801E-001 4 11 13 4 + -0.32829902136278191E-001 4 12 13 4 + 0.51196815280258587E-001 4 13 13 4 + -0.19394938822093328E-001 4 14 13 4 + -0.40815881276377013E-002 5 1 13 4 + -0.12087604682206651E-001 5 2 13 4 + 0.18018584451233934E-002 5 9 13 4 + -0.35630113498677604E-001 5 10 13 4 + 0.88291993900333401E-002 5 11 13 4 + 0.10575248052293457E-001 5 12 13 4 + 0.51291092540788289E-002 5 13 13 4 + -0.27609632155780862E-002 5 14 13 4 + 0.25837969942571844E-004 6 1 13 4 + 0.13205690727094778E-004 6 2 13 4 + -0.45837179585371688E-004 6 9 13 4 + 0.67335139826474080E-004 6 10 13 4 + -0.12558100892130686E-002 6 11 13 4 + 0.18069288526753699E-002 6 12 13 4 + -0.12037390895703779E-002 6 13 13 4 + 0.12268999646139597E-003 6 14 13 4 + -0.13056495521972335E-001 7 1 13 4 + -0.66511556029684379E-002 7 2 13 4 + 0.23162446023334234E-001 7 9 13 4 + 0.10803511776906419E-002 7 10 13 4 + -0.58054539433597893E-003 7 11 13 4 + -0.94941980104770360E-003 7 12 13 4 + 0.18624531156856482E-002 7 13 13 4 + -0.68662097047049301E-003 7 14 13 4 + 0.28141460591717751E-001 8 1 13 4 + 0.14335642912395538E-001 8 2 13 4 + -0.49923431672497937E-001 8 9 13 4 + 0.65691276806442006E-003 8 10 13 4 + -0.83241194613205955E-003 8 11 13 4 + 0.35752907437592310E-003 8 12 13 4 + -0.35769065620863479E-002 8 13 13 4 + 0.14355839251370590E-002 8 14 13 4 + 0.59412156630480077E-002 9 3 13 4 + 0.49973385741684702E-002 9 4 13 4 + 0.10872298259198951E-002 9 5 13 4 + -0.45819293211846929E-004 9 6 13 4 + 0.23137656471333614E-001 9 7 13 4 + -0.49870002568929962E-001 9 8 13 4 + 0.68321351272300108E-002 10 3 13 4 + -0.26281846109053359E-002 10 4 13 4 + -0.58531523706477150E-001 10 5 13 4 + 0.47180472011654597E-003 10 6 13 4 + 0.10749949718481033E-001 10 7 13 4 + 0.60406328788118902E-002 10 8 13 4 + -0.24386655546604224E-001 11 3 13 4 + 0.33944850959088065E-001 11 4 13 4 + 0.11951376064537434E-001 11 5 13 4 + -0.84410304001002624E-002 11 6 13 4 + -0.22135445228596072E-002 11 7 13 4 + -0.20250465002657854E-002 11 8 13 4 + 0.29644714310798705E-001 12 3 13 4 + -0.50516632662341479E-001 12 4 13 4 + 0.15690039651348353E-001 12 5 13 4 + 0.12173438896229939E-001 12 6 13 4 + -0.29416093583269892E-002 12 7 13 4 + 0.22349396139304548E-003 12 8 13 4 + 0.62460080389594309E-001 13 3 13 4 + 0.76064016257663472E-001 13 4 13 4 + -0.32080028338185622E-003 1 3 13 5 + -0.14317311712575218E-003 1 4 13 5 + 0.14022893444285743E-002 1 5 13 5 + 0.20582939817648520E-005 1 6 13 5 + -0.60542226810824295E-003 1 7 13 5 + -0.21243763695863709E-003 1 8 13 5 + -0.24370607591222976E-001 2 3 13 5 + -0.10876599546740320E-001 2 4 13 5 + 0.10652936032693013 2 5 13 5 + 0.82843626250903301E-004 2 6 13 5 + -0.24366673158472782E-001 2 7 13 5 + -0.85500675447824168E-002 2 8 13 5 + -0.91453801624118980E-002 3 1 13 5 + -0.27084023204896886E-001 3 2 13 5 + 0.40372917773093603E-002 3 9 13 5 + 0.34535643542235810E-001 3 10 13 5 + -0.38359658576548612E-001 3 11 13 5 + -0.22669897651961451E-001 3 12 13 5 + -0.35190239999480944E-002 3 13 13 5 + -0.11033027791720943E-001 3 14 13 5 + -0.40815881276376979E-002 4 1 13 5 + -0.12087604682206668E-001 4 2 13 5 + 0.18018584451233947E-002 4 9 13 5 + 0.35207053163242560E-001 4 10 13 5 + 0.40070552238074965E-001 4 11 13 5 + 0.21710185974155055E-001 4 12 13 5 + 0.51291022117923588E-002 4 13 13 5 + -0.60260696541364267E-002 4 14 13 5 + 0.39976588741903241E-001 5 1 13 5 + 0.11839043036858336 5 2 13 5 + -0.17648145199721969E-001 5 9 13 5 + 0.13043098449075888E-002 5 10 13 5 + -0.66372691629262206E-002 5 11 13 5 + -0.10720848579221968E-003 5 12 13 5 + 0.87565463631976440E-001 5 13 13 5 + 0.45883086037786472E-001 5 14 13 5 + 0.13934071736962166E-003 6 1 13 5 + 0.70964252813710091E-004 6 2 13 5 + -0.24719273861617671E-003 6 9 13 5 + -0.21405542310146421E-003 6 10 13 5 + -0.27174549674869259E-002 6 11 13 5 + -0.15324787565709403E-002 6 12 13 5 + 0.35385535547079964E-004 6 13 13 5 + 0.36785812221134480E-004 6 14 13 5 + -0.40992848581637001E-001 7 1 13 5 + -0.20882255566511351E-001 7 2 13 5 + 0.72722013190017587E-001 7 9 13 5 + 0.83227183638058533E-003 7 10 13 5 + 0.43975171950049819E-004 7 11 13 5 + -0.14196369525787964E-003 7 12 13 5 + -0.46763568959602700E-002 7 13 13 5 + -0.25655362286446633E-002 7 14 13 5 + -0.14384004799780865E-001 8 1 13 5 + -0.73273559360618919E-002 8 2 13 5 + 0.25517469942003115E-001 8 9 13 5 + -0.14522570269435947E-002 8 10 13 5 + 0.28282628965072394E-003 8 11 13 5 + 0.33744740923914020E-004 8 12 13 5 + -0.30603921411038550E-002 8 13 13 5 + -0.86898323145447932E-003 8 14 13 5 + 0.24361201854194306E-002 9 3 13 5 + 0.10872298259198894E-002 9 4 13 5 + -0.10648663223135950E-001 9 5 13 5 + -0.24691542347583041E-003 9 6 13 5 + 0.72644142095372233E-001 9 7 13 5 + 0.25490123463707503E-001 9 8 13 5 + 0.57050145399977839E-001 10 3 13 5 + 0.57880689817763759E-001 10 4 13 5 + 0.20070873080162612E-002 10 5 13 5 + -0.17218752160111314E-002 10 6 13 5 + 0.87403845358354371E-002 10 7 13 5 + -0.14502295693921164E-001 10 8 13 5 + -0.60516937194893337E-001 11 3 13 5 + 0.63292720207537803E-001 11 4 13 5 + -0.10213094642499504E-001 11 5 13 5 + -0.18179907775692204E-001 11 6 13 5 + -0.28250510984943617E-004 11 7 13 5 + 0.15804753042492731E-002 11 8 13 5 + -0.36016858146229111E-001 12 3 13 5 + 0.33988949340384468E-001 12 4 13 5 + -0.16496748509790739E-003 12 5 13 5 + -0.10144205537558331E-001 12 6 13 5 + -0.12752310487017290E-002 12 7 13 5 + 0.72940846499047870E-003 12 8 13 5 + -0.54148409513735812E-002 13 3 13 5 + 0.78924038467479349E-002 13 4 13 5 + 0.13202716668052980 13 5 13 5 + 0.27762433427040370E-003 1 3 13 6 + 0.22012396590811104E-005 1 4 13 6 + 0.11874030801779542E-004 1 5 13 6 + 0.15275019831310357E-003 1 6 13 6 + 0.10240869495071304E-003 1 7 13 6 + -0.15785690856798346E-003 1 8 13 6 + 0.22755371483492255E-002 2 3 13 6 + 0.18007761068739337E-004 2 4 13 6 + 0.97341000443731181E-004 2 5 13 6 + 0.63299577069403183E-003 2 6 13 6 + 0.42437317457959261E-003 2 7 13 6 + -0.65415070877367695E-003 2 8 13 6 + 0.11897067507732504E-002 3 1 13 6 + 0.22921781559667332E-002 3 2 13 6 + -0.98682711862694270E-003 3 9 13 6 + -0.17039573076129406E-003 3 10 13 6 + -0.62006551240292862E-004 3 11 13 6 + 0.12168375612726129E-002 3 12 13 6 + 0.12223570516085849E-002 3 13 13 6 + -0.44928793093326703E-003 3 14 13 6 + 0.94323747299843427E-005 4 1 13 6 + 0.18133498120299647E-004 4 2 13 6 + -0.78084986064072544E-005 4 9 13 6 + 0.15364263578936438E-004 4 10 13 6 + -0.14506111331480263E-002 4 11 13 6 + 0.19958602658698959E-002 4 12 13 6 + -0.33948008166879082E-002 4 13 13 6 + 0.12179177680447630E-002 4 14 13 6 + 0.50884207963185419E-004 5 1 13 6 + 0.98055601329500919E-004 5 2 13 6 + -0.42214063585527136E-004 5 9 13 6 + 0.67476911737492237E-003 5 10 13 6 + -0.34187562927119166E-002 5 11 13 6 + -0.22805251986873945E-002 5 12 13 6 + -0.62919562811733455E-004 5 13 13 6 + -0.68781047553506506E-004 5 14 13 6 + 0.83607526847464587E-003 6 1 13 6 + 0.90339411683900133E-003 6 2 13 6 + -0.81301669753238012E-003 6 9 13 6 + -0.38365668108134635E-004 6 10 13 6 + 0.44235841716470432E-003 6 11 13 6 + -0.48717094678278031E-003 6 12 13 6 + 0.29559355004652559E-002 6 13 13 6 + -0.64665952161107449E-003 6 14 13 6 + 0.56053707876688836E-003 7 1 13 6 + 0.60567796974748413E-003 7 2 13 6 + -0.54508294914558560E-003 7 9 13 6 + -0.16627571379202171E-003 7 10 13 6 + 0.17242136743245312E-002 7 11 13 6 + 0.26254168899590442E-002 7 12 13 6 + -0.21458857653441638E-003 7 13 13 6 + 0.46291823172638900E-004 7 14 13 6 + -0.86403146967369590E-003 8 1 13 6 + -0.93360850987110416E-003 8 2 13 6 + 0.84020675503285755E-003 8 9 13 6 + -0.10382202549567146E-003 8 10 13 6 + 0.24742027097512326E-002 8 11 13 6 + -0.97375865181115087E-003 8 12 13 6 + 0.62266845713143475E-003 8 13 13 6 + -0.13144463739286441E-003 8 14 13 6 + -0.13748307587465251E-002 9 3 13 6 + -0.10929967403342848E-004 9 4 13 6 + -0.58788255110390698E-004 9 5 13 6 + -0.87865331809570187E-003 9 6 13 6 + -0.58908565306896267E-003 9 7 13 6 + 0.90803565404576759E-003 9 8 13 6 + -0.19056650760435273E-003 10 3 13 6 + 0.14960666135149954E-004 10 4 13 6 + 0.75127904723635544E-003 10 5 13 6 + -0.32052293266470486E-004 10 6 13 6 + -0.11623697754312222E-003 10 7 13 6 + -0.81760983722077622E-004 10 8 13 6 + -0.39715895313617388E-004 11 3 13 6 + -0.15639636219306073E-002 11 4 13 6 + -0.36930969649974282E-002 11 5 13 6 + 0.36948872099795341E-003 11 6 13 6 + 0.15012406299183621E-002 11 7 13 6 + 0.22059884882937018E-002 11 8 13 6 + 0.12814810965499142E-002 12 3 13 6 + 0.21494470607197418E-002 12 4 13 6 + -0.24718899743389855E-002 12 5 13 6 + -0.40690770465630458E-003 12 6 13 6 + 0.23273556531483745E-002 12 7 13 6 + -0.89744234818080128E-003 12 8 13 6 + 0.12945427170049796E-002 13 3 13 6 + -0.36696823186521633E-002 13 4 13 6 + -0.74300137313779884E-004 13 5 13 6 + 0.26243814853546266E-002 13 6 13 6 + -0.78239529932776859E-003 1 3 13 7 + -0.11125996291782513E-002 1 4 13 7 + -0.34931760171872696E-002 1 5 13 7 + 0.10240869495071329E-003 1 6 13 7 + 0.19498097259725122E-002 1 7 13 7 + 0.26223709079644351E-002 1 8 13 7 + -0.64130415242798743E-002 2 3 13 7 + -0.91195365060960654E-002 2 4 13 7 + -0.28632219449407421E-001 2 5 13 7 + 0.42437317457958671E-003 2 6 13 7 + 0.80799928531097246E-002 2 7 13 7 + 0.10867088356262745E-001 2 8 13 7 + -0.33528106037913645E-002 3 1 13 7 + -0.64599691135715682E-002 3 2 13 7 + 0.27811337318783226E-002 3 9 13 7 + -0.85951866797694051E-002 3 10 13 7 + 0.61159767218968361E-002 3 11 13 7 + 0.11688726970717047E-001 3 12 13 7 + 0.11770643897138304E-001 3 13 13 7 + -0.25939097812760444E-002 3 14 13 7 + -0.47678387967609558E-002 4 1 13 7 + -0.91862546220421726E-002 4 2 13 7 + 0.39548530633812208E-002 4 9 13 7 + -0.10119664166257404E-001 4 10 13 7 + -0.61753679841289660E-002 4 11 13 7 + -0.12306164848029096E-001 4 12 13 7 + 0.83475012227456034E-002 4 13 13 7 + -0.23229598987227216E-002 4 14 13 7 + -0.14969357000638540E-001 5 1 13 7 + -0.28841699281375754E-001 5 2 13 7 + 0.12416884491653606E-001 5 9 13 7 + -0.92952802221609038E-002 5 10 13 7 + 0.11100315585063115E-002 5 11 13 7 + 0.88148336027991307E-003 5 12 13 7 + -0.20665262413904210E-001 5 13 13 7 + -0.12434736364377738E-001 5 14 13 7 + 0.56053707876691178E-003 6 1 13 7 + 0.60567796974747708E-003 6 2 13 7 + -0.54508294914566626E-003 6 9 13 7 + 0.72397344788492082E-003 6 10 13 7 + 0.41295554867646928E-002 6 11 13 7 + 0.79183129098075872E-002 6 12 13 7 + -0.21459006612795648E-003 6 13 13 7 + -0.31194113539224547E-003 6 14 13 7 + 0.10672249397296336E-001 7 1 13 7 + 0.11531559480359617E-001 7 2 13 7 + -0.10377917200439743E-001 7 9 13 7 + 0.43693170554380393E-003 7 10 13 7 + 0.52059199637221575E-005 7 11 13 7 + 0.47732392456309919E-003 7 12 13 7 + 0.14439626696269586E-001 7 13 13 7 + 0.44964618152174597E-002 7 14 13 7 + 0.14353495770656255E-001 8 1 13 7 + 0.15509204720904095E-001 8 2 13 7 + -0.13957632050377316E-001 8 9 13 7 + 0.61481261508715308E-002 8 10 13 7 + -0.40405568568975840E-003 8 11 13 7 + -0.30314095327850326E-003 8 12 13 7 + -0.45019194097267739E-003 8 13 13 7 + 0.51831351657753892E-002 8 14 13 7 + 0.38743783052331304E-002 9 3 13 7 + 0.55096020079957227E-002 9 4 13 7 + 0.17298196529606132E-001 9 5 13 7 + -0.58908565306901926E-003 9 6 13 7 + -0.11215747159145107E-001 9 7 13 7 + -0.15084462820923092E-001 9 8 13 7 + -0.95237295041789224E-002 10 3 13 7 + -0.11203773500745433E-001 10 4 13 7 + -0.10286331409690052E-001 10 5 13 7 + 0.58207496620603534E-003 10 6 13 7 + 0.36499967896369578E-003 10 7 13 7 + 0.48248431894916659E-002 10 8 13 7 + 0.67377484114816612E-002 11 3 13 7 + -0.67999775213212679E-002 11 4 13 7 + 0.12241439456293635E-002 11 5 13 7 + 0.33879750001307983E-002 11 6 13 7 + 0.42564226624418537E-005 11 7 13 7 + -0.32510063785089275E-003 11 8 13 7 + 0.12881148219322057E-001 12 3 13 7 + -0.13557013993434884E-001 12 4 13 7 + 0.97733584854130706E-003 12 5 13 7 + 0.64790607472603040E-002 12 6 13 7 + 0.39870048955590199E-003 12 7 13 7 + -0.23413163207488492E-003 12 8 13 7 + 0.12890664415624052E-001 13 3 13 7 + 0.91435811924391319E-002 13 4 13 7 + -0.22628890386434664E-001 13 5 13 7 + -0.17925240910383054E-003 13 6 13 7 + 0.12217557993218258E-001 13 7 13 7 + 0.27626030769325894E-002 1 3 13 8 + 0.23980537713663712E-002 1 4 13 8 + -0.12257229653821018E-002 1 5 13 8 + -0.15785690856798823E-003 1 6 13 8 + 0.26223709079644924E-002 1 7 13 8 + -0.21025599242856475E-002 1 8 13 8 + 0.22644018255148696E-001 2 3 13 8 + 0.19655891195336915E-001 2 4 13 8 + -0.10046804345585070E-001 2 5 13 8 + -0.65415070877367521E-003 2 6 13 8 + 0.10867088356262825E-001 2 7 13 8 + -0.87129886238037565E-002 2 8 13 8 + 0.11838622793946455E-001 3 1 13 8 + 0.22809691178301804E-001 3 2 13 8 + -0.98199923771078602E-002 3 9 13 8 + -0.66426315187133695E-002 3 10 13 8 + 0.11524137861304379E-001 3 11 13 8 + -0.54166036301308285E-002 3 12 13 8 + -0.16176495918676266E-001 3 13 13 8 + 0.98706160366798593E-002 3 14 13 8 + 0.10276413435870255E-001 4 1 13 8 + 0.19799692548801363E-001 4 2 13 8 + -0.85241350925576529E-002 4 9 13 8 + -0.45377368064524878E-002 4 10 13 8 + -0.12593519289628935E-001 4 11 13 8 + 0.75136117782115186E-002 4 12 13 8 + -0.16075942175434888E-001 4 13 13 8 + 0.70224068977162496E-002 4 14 13 8 + -0.52526085513667480E-002 5 1 13 8 + -0.10120313338709159E-001 5 2 13 8 + 0.43569806935352586E-002 5 9 13 8 + 0.13769749446894779E-001 5 10 13 8 + 0.13734137322004140E-002 5 11 13 8 + -0.15999179655164888E-002 5 12 13 8 + -0.13547194145969964E-001 5 13 13 8 + -0.51818123184608584E-002 5 14 13 8 + -0.86403146967368582E-003 6 1 13 8 + -0.93360850987110535E-003 6 2 13 8 + 0.84020675503282860E-003 6 9 13 8 + 0.91046598143697531E-004 6 10 13 8 + 0.79609623992120005E-002 6 11 13 8 + -0.42840737382975145E-002 6 12 13 8 + 0.62267770954500909E-003 6 13 13 8 + 0.19472028863307686E-003 6 14 13 8 + 0.14353495770656087E-001 7 1 13 8 + 0.15509204720904158E-001 7 2 13 8 + -0.13957632050376961E-001 7 9 13 8 + -0.60588811453282706E-002 7 10 13 8 + 0.82356473232597026E-004 7 11 13 8 + 0.44732724427895939E-003 7 12 13 8 + -0.45018358466834195E-003 7 13 13 8 + 0.56746986347596855E-002 7 14 13 8 + -0.11508324665771067E-001 8 1 13 8 + -0.12434953597198687E-001 8 2 13 8 + 0.11190933897972016E-001 8 9 13 8 + -0.39862540638396446E-003 8 10 13 8 + -0.44745399061603647E-003 8 11 13 8 + 0.97822958923708220E-005 8 12 13 8 + 0.15123910213832992E-001 8 13 13 8 + -0.38498020161039652E-002 8 14 13 8 + -0.13680381413369675E-001 9 3 13 8 + -0.11875182161197774E-001 9 4 13 8 + 0.60697552383582425E-002 9 5 13 8 + 0.90803565404572423E-003 9 6 13 8 + -0.15084462820922937E-001 9 7 13 8 + 0.12094400477240870E-001 9 8 13 8 + -0.73601812473777844E-002 10 3 13 8 + -0.50290012772407685E-002 10 4 13 8 + 0.15244321103481034E-001 10 5 13 8 + 0.71093146783376501E-004 10 6 13 8 + -0.47502410136568861E-002 10 7 13 8 + -0.33292151454787460E-003 10 8 13 8 + 0.12698937234637263E-001 11 3 13 8 + -0.13877714392724824E-001 11 4 13 8 + 0.15077538471559503E-002 11 5 13 8 + 0.65097596597184547E-002 11 6 13 8 + 0.56433423135450940E-004 11 7 13 8 + -0.37379322925374178E-003 11 8 13 8 + -0.59690075352448737E-002 12 3 13 8 + 0.82839248533134700E-002 12 4 13 8 + -0.17672375690809875E-002 12 5 13 8 + -0.34940317840895037E-002 12 6 13 8 + 0.35452322914585993E-003 12 7 13 8 + 0.82354208296741832E-005 12 8 13 8 + -0.17716021132820003E-001 13 3 13 8 + -0.17610104981033679E-001 13 4 13 8 + -0.14835028350099875E-001 13 5 13 8 + 0.52003508474009132E-003 13 6 13 8 + -0.37607492962792163E-003 13 7 13 8 + 0.12789185403801364E-001 13 8 13 8 + 0.16063109878350937E-009 1 10 13 9 + -0.29855812144352256E-009 1 11 13 9 + 0.17512624872765789E-009 1 12 13 9 + -0.13865834331037981E-002 1 13 13 9 + -0.54607132225268203E-007 2 10 13 9 + 0.10149592965679138E-006 2 11 13 9 + -0.59534811040715212E-007 2 12 13 9 + -0.15543721593928516E-001 2 13 13 9 + 0.25524484127452427E-009 2 14 13 9 + 0.57466032000770863E-002 3 3 13 9 + 0.60411580247559209E-002 3 4 13 9 + 0.24770305313930700E-002 3 5 13 9 + -0.73295730132414707E-003 3 6 13 9 + 0.20656889613431808E-002 3 7 13 9 + -0.72937834002739033E-002 3 8 13 9 + 0.60411580247559209E-002 4 3 13 9 + 0.50812621120381570E-002 4 4 13 9 + 0.11055120911772816E-002 4 5 13 9 + -0.57943673524665645E-005 4 6 13 9 + 0.29374569782200034E-002 4 7 13 9 + -0.63312792671322091E-002 4 8 13 9 + 0.24770305313930700E-002 5 3 13 9 + 0.11055120911772818E-002 5 4 13 9 + -0.10827865312115575E-001 5 5 13 9 + -0.31356587446403218E-004 5 6 13 9 + 0.92226161267653754E-002 5 7 13 9 + 0.32361425333857527E-002 5 8 13 9 + -0.91948164333940723E-003 6 3 13 9 + -0.72881180252835369E-005 6 4 13 9 + -0.39327419955764545E-004 6 5 13 9 + -0.23227643608754312E-003 6 6 13 9 + -0.15573204773237741E-003 6 7 13 9 + 0.24004780255166246E-003 6 8 13 9 + 0.25912758617325743E-002 7 3 13 9 + 0.36848997230870505E-002 7 4 13 9 + 0.11569307025606327E-001 7 5 13 9 + -0.15573204773237467E-003 7 6 13 9 + -0.29649422201830896E-002 7 7 13 9 + -0.39876530735462150E-002 7 8 13 9 + -0.91496702786741813E-002 8 3 13 9 + -0.79422887945523272E-002 8 4 13 9 + 0.40595638605160217E-002 8 5 13 9 + 0.24004780255166338E-003 8 6 13 9 + -0.39876530735462332E-002 8 7 13 9 + 0.31972186562684956E-002 8 8 13 9 + -0.29805979682157930E-007 9 10 13 9 + 0.55399093367426652E-007 9 11 13 9 + -0.32495633740725568E-007 9 12 13 9 + 0.13411095727897230E-001 9 13 13 9 + 0.13931904613472151E-009 9 14 13 9 + -0.34895429141566945E-008 10 1 13 9 + -0.93697243310939737E-007 10 2 13 9 + 0.21242640199983491E-007 10 9 13 9 + 0.32005419896793567E-003 10 10 13 9 + -0.32426124277043684E-003 10 11 13 9 + -0.87270130107473294E-004 10 12 13 9 + -0.34074722058072423E-003 10 13 13 9 + -0.58008181217985236E-004 10 14 13 9 + 0.64858634353241438E-008 11 1 13 9 + 0.17415103903793373E-006 11 2 13 9 + -0.39482782305718940E-007 11 9 13 9 + -0.32426103452143763E-003 11 10 13 9 + -0.22829903136922631E-002 11 11 13 9 + -0.64529340379485102E-002 11 12 13 9 + 0.15033611055264928E-003 11 13 13 9 + 0.43546796905699175E-003 11 14 13 9 + -0.38044348701064398E-008 12 1 13 9 + -0.10215236451136880E-006 12 2 13 9 + 0.23159549298308873E-007 12 9 13 9 + -0.87270376452334511E-004 12 10 13 9 + -0.64529334704752335E-002 12 11 13 9 + 0.19296697735097098E-002 12 12 13 9 + -0.53793279055353428E-003 12 13 13 9 + -0.32321010684152341E-003 12 14 13 9 + -0.29029889883899515E-002 13 1 13 9 + -0.12015942743657859E-001 13 2 13 9 + 0.99111453273172806E-002 13 9 13 9 + 0.27405665111733261E-007 1 1 13 10 + -0.26772772775089960E-008 1 2 13 10 + 0.51152289720069322E-009 1 9 13 10 + 0.18429232134757406E-004 1 10 13 10 + -0.18676502486274563E-004 1 11 13 10 + -0.50263048397624422E-005 1 12 13 10 + -0.19616171958705420E-004 1 13 13 10 + -0.33389816787135943E-005 1 14 13 10 + -0.56380429353210896E-008 2 1 13 10 + -0.86043925446152283E-007 2 2 13 10 + -0.83595370831801476E-007 2 9 13 10 + -0.12089633515877777E-002 2 10 13 10 + 0.12245898566434204E-002 2 11 13 10 + 0.32956509454485131E-003 2 12 13 10 + 0.12865066662678735E-002 2 13 13 10 + 0.21852351777398881E-003 2 14 13 10 + 0.25751939146365825E-003 3 3 13 10 + -0.53499802465375166E-003 3 4 13 10 + -0.18002819652081299E-002 3 5 13 10 + 0.10063667109596450E-003 3 6 13 10 + 0.32777408937252552E-003 3 7 13 10 + 0.24945460115903192E-003 3 8 13 10 + -0.53504452252487692E-003 4 3 13 10 + -0.10903751966017353E-002 4 4 13 10 + -0.13487531687706234E-003 4 5 13 10 + 0.10984019054000212E-003 4 6 13 10 + -0.10245779358348923E-003 4 7 13 10 + 0.22829467311519320E-003 4 8 13 10 + -0.18006952540566066E-002 5 3 13 10 + -0.13524785632483912E-003 5 4 13 10 + 0.83260540123925736E-003 5 5 13 10 + -0.21906209006121484E-003 5 6 13 10 + -0.34903618311262727E-003 5 7 13 10 + 0.16751138234707193E-003 5 8 13 10 + 0.62449820971283059E-004 6 3 13 10 + 0.68145147006100644E-004 6 4 13 10 + -0.13592161123891181E-003 6 5 13 10 + -0.89945993837019876E-004 6 6 13 10 + 0.65350102956319110E-003 6 7 13 10 + -0.14966850619272770E-004 6 8 13 10 + 0.20339774358606242E-003 7 3 13 10 + -0.63524671551467074E-004 7 4 13 10 + -0.21635098480941639E-003 7 5 13 10 + 0.65349325320623343E-003 7 6 13 10 + 0.10239462635318354E-002 7 7 13 10 + 0.10449694521241726E-003 7 8 13 10 + 0.15484467691329442E-003 8 3 13 10 + 0.14171119176040615E-003 8 4 13 10 + 0.10397477378069383E-003 8 5 13 10 + -0.14969062168911985E-004 8 6 13 10 + 0.10466958974144383E-003 8 7 13 10 + -0.93417873283283459E-003 8 8 13 10 + 0.61282197329007111E-008 9 1 13 10 + 0.59949418602464291E-007 9 2 13 10 + -0.66982137248527915E-007 9 9 13 10 + -0.94566053912475899E-004 9 10 13 10 + 0.95844680306246530E-004 9 11 13 10 + 0.25798476606953386E-004 9 12 13 10 + 0.10080068227516006E-003 9 13 13 10 + 0.17251016262569079E-004 9 14 13 10 + -0.21083372621339601E-003 10 1 13 10 + -0.21829822340424625E-002 10 2 13 10 + 0.32005573900587757E-003 10 9 13 10 + -0.22018079344168450E-006 10 10 13 10 + -0.50897070784269437E-003 10 11 13 10 + 0.23825676539204974E-003 10 12 13 10 + 0.20187155103029243E-001 10 13 13 10 + -0.78405082065381975E-003 10 14 13 10 + 0.21358885730066049E-003 11 1 13 10 + 0.22114549971631392E-002 11 2 13 10 + -0.32426567840320418E-003 11 9 13 10 + -0.50856906138902586E-003 11 10 13 10 + 0.82515992617402290E-003 11 11 13 10 + 0.42543290017481322E-003 11 12 13 10 + 0.32004745969260956E-003 11 13 13 10 + -0.31820950146383136E-003 11 14 13 10 + 0.57481976073864848E-004 12 1 13 10 + 0.59515900347627661E-003 12 2 13 10 + -0.87271557544299667E-004 12 9 13 10 + 0.23803731241722794E-003 12 10 13 10 + 0.42375309739374700E-003 12 11 13 10 + -0.87928071312725080E-003 12 12 13 10 + 0.59783243141556589E-003 12 13 13 10 + 0.36118233174782782E-004 12 14 13 10 + 0.22437748895502853E-003 13 1 13 10 + 0.23232003051564983E-002 13 2 13 10 + -0.34074620230350479E-003 13 9 13 10 + 0.20184295681149628E-001 13 10 13 10 + -0.50937731796120410E-007 1 1 13 11 + 0.49761402047630865E-008 1 2 13 11 + -0.95074561899544434E-009 1 9 13 11 + -0.18676489954823192E-004 1 10 13 11 + -0.13145995699384780E-003 1 11 13 11 + -0.37158203084505147E-003 1 12 13 11 + 0.86563827623523409E-005 1 13 13 11 + 0.25065697823469634E-004 1 14 13 11 + 0.10479188082932886E-007 2 1 13 11 + 0.15992614611815090E-006 2 2 13 11 + 0.15537512283772360E-006 2 9 13 11 + 0.12245900626720403E-002 2 10 13 11 + 0.86232849116956584E-002 2 11 13 11 + 0.24373537142644376E-001 2 12 13 11 + -0.56796880505560580E-003 2 13 13 11 + -0.16440415457621351E-002 2 14 13 11 + -0.98455079556468358E-002 3 3 13 11 + -0.53300841301260346E-003 3 4 13 11 + -0.15389182694927925E-001 3 5 13 11 + -0.15442134619971378E-002 3 6 13 11 + 0.18425386162489793E-002 3 7 13 11 + 0.33062902921848982E-002 3 8 13 11 + -0.53285055093550942E-003 4 3 13 11 + 0.14083098949635881E-001 4 4 13 11 + 0.15608696877773613E-001 4 5 13 11 + -0.22581837560167965E-002 4 6 13 11 + -0.20344964548701877E-002 4 7 13 11 + -0.35894063095409860E-002 4 8 13 11 + -0.15389024429501318E-001 5 3 13 11 + 0.15608535024133421E-001 5 4 13 11 + -0.42371255790246655E-002 5 5 13 11 + -0.49369750005486936E-002 5 6 13 11 + 0.27001037263431755E-003 5 7 13 11 + 0.69710932287000288E-003 5 8 13 11 + -0.95823587406088746E-003 6 3 13 11 + -0.14012721877540413E-002 6 4 13 11 + -0.30635577733307499E-002 6 5 13 11 + 0.10366979928564310E-002 6 6 13 11 + 0.68591115464008258E-002 6 7 13 11 + 0.12227360820497480E-001 6 8 13 11 + 0.11434539542487957E-002 7 3 13 11 + -0.12623701741444927E-002 7 4 13 11 + 0.16736139777314346E-003 7 5 13 11 + 0.68590791572475315E-002 7 6 13 11 + 0.12205471370552877E-004 7 7 13 11 + -0.37692721762344616E-003 7 8 13 11 + 0.20514622070570095E-002 8 3 13 11 + -0.22274142180591376E-002 8 4 13 11 + 0.43247625226149717E-003 8 5 13 11 + 0.12227282328782714E-001 8 6 13 11 + -0.37693659319752715E-003 8 7 13 11 + -0.10485717624625689E-002 8 8 13 11 + -0.11390258627157241E-007 9 1 13 11 + -0.11142540774507350E-006 9 2 13 11 + 0.12449681960892324E-006 9 9 13 11 + 0.95844658761906067E-004 9 10 13 11 + 0.67462261127087424E-003 9 11 13 11 + 0.19068962747888151E-002 9 12 13 11 + -0.44401965008602965E-004 9 13 13 11 + -0.12884257798640385E-003 9 14 13 11 + 0.21358897536035378E-003 10 1 13 11 + 0.22114585554324187E-002 10 2 13 11 + -0.32426594011442664E-003 10 9 13 11 + 0.10179582469703138E-002 10 10 13 11 + -0.41268939915031289E-003 10 11 13 11 + 0.12910370666684550E-001 10 12 13 11 + 0.32013690678232869E-003 10 13 13 11 + -0.12718352854593812E-002 10 14 13 11 + 0.15038619178389077E-002 11 1 13 11 + 0.15571015409264042E-001 11 2 13 11 + -0.22830029445861759E-002 11 9 13 11 + -0.41266964640484897E-003 11 10 13 11 + 0.31993886045681952E-006 11 11 13 11 + -0.55497259150230345E-003 11 12 13 11 + 0.33533425218874140E-001 11 13 13 11 + -0.19460122285893395E-002 11 14 13 11 + 0.42506785069040976E-002 12 1 13 11 + 0.44011528477481167E-001 12 2 13 11 + -0.64529734561657587E-002 12 9 13 11 + 0.12909533815238568E-001 12 10 13 11 + -0.55495043470388207E-003 12 11 13 11 + -0.20435068810726290E-002 12 12 13 11 + 0.59472350688095205E-003 12 13 13 11 + -0.76850404645075190E-002 12 14 13 11 + -0.99042398426846899E-004 13 1 13 11 + -0.10254836906887948E-002 13 2 13 11 + 0.15033330792484125E-003 13 9 13 11 + 0.32014029642576301E-003 13 10 13 11 + 0.33530392312822954E-001 13 11 13 11 + 0.29878717652651047E-007 1 1 13 12 + -0.29188713991986100E-008 1 2 13 12 + 0.55768206931290077E-009 1 9 13 12 + -0.50263196636442223E-005 1 10 13 12 + -0.37158199669715879E-003 1 11 13 12 + 0.11111530108324896E-003 1 12 13 12 + -0.30974666095845688E-004 1 13 13 12 + -0.18605240611187992E-004 1 14 13 12 + -0.61468128331051878E-008 2 1 13 12 + -0.93808421016605201E-007 2 2 13 12 + -0.91138911762042258E-007 2 9 13 12 + 0.32956485082655734E-003 2 10 13 12 + 0.24373537704067125E-001 2 11 13 12 + -0.72886666904567717E-002 2 12 13 12 + 0.20324857527717760E-002 2 13 13 12 + 0.12204269444729427E-002 2 14 13 12 + 0.21026614532745968E-001 3 3 13 12 + -0.37954860178913176E-002 3 4 13 12 + -0.75550633184254933E-002 3 5 13 12 + 0.35175788886235072E-002 3 6 13 12 + 0.33074522055357449E-002 3 7 13 12 + -0.15430966054806030E-002 3 8 13 12 + -0.37957357245642798E-002 4 3 13 12 + -0.20958434024556459E-001 4 4 13 12 + 0.10305410809918749E-001 4 5 13 12 + 0.32327998674903601E-002 4 6 13 12 + -0.37239347453392512E-002 4 7 13 12 + 0.19202062001400441E-002 4 8 13 12 + -0.75549284624866590E-002 5 3 13 12 + 0.10305353491103409E-001 5 4 13 12 + -0.68453508220862831E-004 5 5 13 12 + -0.28475815311857270E-002 5 6 13 12 + -0.67272769810564187E-004 5 7 13 12 + -0.23428329370074643E-003 5 8 13 12 + 0.21827799159447230E-002 6 3 13 12 + 0.20060681800462155E-002 6 4 13 12 + -0.17670131106989955E-002 6 5 13 12 + -0.11416967057019329E-002 6 6 13 12 + 0.12354566282868944E-001 6 7 13 12 + -0.61608352588498503E-002 6 8 13 12 + 0.20522551792955417E-002 7 3 13 12 + -0.23108294838285479E-002 7 4 13 12 + -0.41723284994375864E-004 7 5 13 12 + 0.12354489842770738E-001 7 6 13 12 + 0.11185688035413551E-002 7 7 13 12 + 0.16893799397001057E-003 7 8 13 12 + -0.95738261613989627E-003 8 3 13 12 + 0.11916453894795043E-002 8 4 13 12 + -0.14532599362704357E-003 8 5 13 12 + -0.61607911219700492E-002 8 6 13 12 + 0.16892247896746173E-003 8 7 13 12 + 0.22933334733482349E-004 8 8 13 12 + 0.66812225647408062E-008 9 1 13 12 + 0.65359178635467854E-007 9 2 13 12 + -0.73026520976348344E-007 9 9 13 12 + 0.25798502092485443E-004 9 10 13 12 + 0.19068962160810124E-002 9 11 13 12 + -0.57022636826647077E-003 9 12 13 12 + 0.15884662380455137E-003 9 13 13 12 + 0.95590624736805824E-004 9 14 13 12 + 0.57481836417016655E-004 10 1 13 12 + 0.59515479427789311E-003 10 2 13 12 + -0.87271247957141675E-004 10 9 13 12 + -0.47651915747034049E-003 10 10 13 12 + -0.13335011307224458E-001 10 11 13 12 + 0.43948753824723190E-003 10 12 13 12 + 0.59793685710643257E-003 10 13 13 12 + -0.28949893671831594E-003 10 14 13 12 + 0.42506788286138112E-002 11 1 13 12 + 0.44011538173675334E-001 11 2 13 12 + -0.64529741693222483E-002 11 9 13 12 + -0.13334166610298763E-001 11 10 13 12 + 0.11097341314611300E-002 11 11 13 12 + 0.10218998279288816E-002 11 12 13 12 + 0.59460948595582361E-003 11 13 13 12 + -0.67166363852056319E-002 11 14 13 12 + -0.12711150417120873E-002 12 1 13 12 + -0.13161142799765137E-001 12 2 13 12 + 0.19296807628970320E-002 12 9 13 12 + 0.43964356388826489E-003 12 10 13 12 + 0.10219809269789229E-002 12 11 13 12 + -0.19499021259971254E-006 12 12 13 12 + 0.33133298102401280E-001 12 13 13 12 + 0.27300590267837692E-002 12 14 13 12 + 0.35441609942722744E-003 13 1 13 12 + 0.36696311460476072E-002 13 2 13 12 + -0.53792321600644986E-003 13 9 13 12 + 0.59796546730014053E-003 13 10 13 12 + 0.59464563150406127E-003 13 11 13 12 + 0.33130258879448031E-001 13 12 13 12 + 0.78448158563454884 1 1 13 13 + -0.38091728808798485E-001 1 2 13 13 + 0.33655802965479521E-001 1 9 13 13 + -0.19616110683543633E-004 1 10 13 13 + 0.86562141133167150E-005 1 11 13 13 + -0.30974089944404144E-004 1 12 13 13 + 0.57485551369770847E-004 1 13 13 13 + -0.44841216369568491E-003 1 14 13 13 + 0.31044438366656494E-001 2 1 13 13 + 0.63497904666993066 2 2 13 13 + -0.15248958234721172 2 9 13 13 + 0.12865076736880529E-002 2 10 13 13 + -0.56797157780135831E-003 2 11 13 13 + 0.20324952252331460E-002 2 12 13 13 + -0.37699704124684219E-002 2 13 13 13 + 0.29406636363364966E-001 2 14 13 13 + 0.61218778468813961 3 3 13 13 + 0.25912725105865706E-001 3 4 13 13 + -0.22465280997197223E-002 3 5 13 13 + 0.10294021190977568 3 6 13 13 + 0.79505120102033575E-001 3 7 13 13 + -0.10879392715373622 3 8 13 13 + 0.25912760618522046E-001 4 3 13 13 + 0.60758135090046850 4 4 13 13 + 0.32743710028286508E-002 4 5 13 13 + -0.12600599109673016 4 6 13 13 + 0.52540607637676824E-001 4 7 13 13 + -0.98832201402731010E-001 4 8 13 13 + -0.22464955719526812E-002 5 3 13 13 + 0.32743787924902415E-002 5 4 13 13 + 0.63079850427012574 5 5 13 13 + 0.11220075787743979E-001 5 6 13 13 + -0.14546652364360785 5 7 13 13 + -0.94142807314017682E-001 5 8 13 13 + 0.77640496567312117E-001 6 3 13 13 + -0.94910825409493083E-001 6 4 13 13 + 0.84755077387869172E-002 6 5 13 13 + 0.46732720936180722 6 6 13 13 + -0.50289341627347253E-003 6 7 13 13 + 0.14591921941984685E-002 6 8 13 13 + 0.59241281636908082E-001 7 3 13 13 + 0.39111321605471004E-001 7 4 13 13 + -0.10844905884192477 7 5 13 13 + -0.50289162478171995E-003 7 6 13 13 + 0.49423965626094629 7 7 13 13 + -0.10550257930423050E-002 7 8 13 13 + -0.81060315460159224E-001 8 3 13 13 + -0.73546067758003653E-001 8 4 13 13 + -0.70174306516355173E-001 8 5 13 13 + 0.14591810665841971E-002 8 6 13 13 + -0.10550358429312790E-002 8 7 13 13 + 0.49584329611970845 8 8 13 13 + -0.27382005818028406E-001 9 1 13 13 + -0.99578580071758557E-001 9 2 13 13 + 0.50334260078914916 9 9 13 13 + 0.10080057692960683E-003 9 10 13 13 + -0.44401675063634506E-004 9 11 13 13 + 0.15884563327278703E-003 9 12 13 13 + -0.29546010308857489E-003 9 13 13 13 + 0.23049145624599362E-002 9 14 13 13 + 0.22437806623269756E-003 10 1 13 13 + 0.23232177040614418E-002 10 2 13 13 + -0.34074748199547838E-003 10 9 13 13 + 0.62733245826042738 10 10 13 13 + -0.64000802845843869E-003 10 11 13 13 + -0.11955632268213594E-002 10 12 13 13 + -0.35065933813492618E-006 10 13 13 13 + -0.14685197777959404E-002 10 14 13 13 + -0.99043987281450841E-004 11 1 13 13 + -0.10255315780950008E-002 11 2 13 13 + 0.15033683005052933E-003 11 9 13 13 + -0.64008264067855116E-003 11 10 13 13 + 0.60064169402458245 11 11 13 13 + -0.11892632264668499E-002 11 12 13 13 + 0.75703480513412297E-006 11 13 13 13 + 0.27394263495785523E-003 11 14 13 13 + 0.35442152739130906E-003 12 1 13 13 + 0.36697947425919615E-002 12 2 13 13 + -0.53793524855608676E-003 12 9 13 13 + -0.11956505780835172E-002 12 10 13 13 + -0.11891681375126245E-002 12 11 13 13 + 0.60144193635412768 12 12 13 13 + -0.43889528568202663E-006 12 13 13 13 + -0.61185190907390801E-003 12 14 13 13 + -0.65752551651304398E-003 13 1 13 13 + -0.68080154277772960E-002 13 2 13 13 + 0.99859479557346713E-003 13 9 13 13 + -0.18553125684859051E-006 13 10 13 13 + 0.42467342228668241E-006 13 11 13 13 + -0.25918899060753631E-006 13 12 13 13 + 0.66769751589562332 13 13 13 13 + -0.12810340429957962E-009 1 1 13 14 + -0.33392989897161109E-005 1 10 13 14 + 0.25065411645969466E-004 1 11 13 14 + -0.18604991970020154E-004 1 12 13 14 + -0.44841219295282204E-003 1 13 13 14 + -0.55570127594133621E-004 1 14 13 14 + 0.40218363820202211E-009 2 2 13 14 + 0.39074247093179195E-009 2 9 13 14 + 0.21851830088839613E-003 2 10 13 14 + -0.16440462507842271E-002 2 11 13 14 + 0.12204310323631041E-002 2 12 13 14 + 0.29406635882350807E-001 2 13 13 14 + 0.36443155428160907E-002 2 14 13 14 + -0.16909681804041572E-001 3 3 13 14 + -0.11810990176506437E-001 3 4 13 14 + -0.63023629512912053E-002 3 5 13 14 + -0.46146261436898081E-003 3 6 13 14 + -0.13377549136341109E-002 3 7 13 14 + 0.46127787767133695E-002 3 8 13 14 + -0.11811024810387163E-001 4 3 13 14 + -0.12381425202588461E-001 4 4 13 14 + -0.28047868763004624E-002 4 5 13 14 + 0.41450665442923501E-003 4 6 13 14 + -0.15109173368531804E-002 4 7 13 14 + 0.35487146599112928E-002 4 8 13 14 + -0.63023364013902574E-002 5 3 13 14 + -0.28047786390580326E-002 5 4 13 14 + 0.29291108177059974E-001 5 5 13 14 + 0.46180886639152744E-004 5 6 13 14 + -0.63211276667900582E-002 5 7 13 14 + -0.23157908448946272E-002 5 8 13 14 + -0.28619510391275573E-003 6 3 13 14 + 0.25704012928799838E-003 6 4 13 14 + 0.28625205845678330E-004 6 5 13 14 + -0.15154686768505941E-002 6 6 13 14 + -0.31126100898049030E-003 6 7 13 14 + 0.74122007753106187E-004 6 8 13 14 + -0.82955659590334442E-003 7 3 13 14 + -0.93693741392192385E-003 7 4 13 14 + -0.39200360886309767E-002 7 5 13 14 + -0.31126984991298030E-003 7 6 13 14 + 0.10537598296345159E-001 7 7 13 14 + 0.12722881665268660E-001 7 8 13 14 + 0.28606206622109145E-002 8 3 13 14 + 0.22007008443235836E-002 8 4 13 14 + -0.14360531382591720E-002 8 5 13 14 + 0.74129688088617885E-004 8 6 13 14 + 0.12722874466231882E-001 8 7 13 14 + -0.90221287853289242E-002 8 8 13 14 + -0.28021527534837490E-009 9 2 13 14 + 0.31308537180271116E-009 9 9 13 14 + 0.17251561790331711E-004 9 10 13 14 + -0.12884208598397721E-003 9 11 13 14 + 0.95590197267638637E-004 9 12 13 14 + 0.23049146127584351E-002 9 13 13 14 + 0.28562991399592411E-003 9 14 13 14 + 0.38137510064434534E-004 10 1 13 14 + 0.39481263192846569E-003 10 2 13 14 + -0.58008271716461720E-004 10 9 13 14 + 0.15679932106425455E-002 10 10 13 14 + 0.15899777258052213E-002 10 11 13 14 + 0.25336694446591600E-003 10 12 13 14 + 0.73407982628056914E-003 10 13 13 14 + -0.27217931264445333E-004 10 14 13 14 + -0.28673079831920936E-003 11 1 13 14 + -0.29688595989193775E-002 11 2 13 14 + 0.43546694523255544E-003 11 9 13 14 + 0.15900811658336584E-002 11 10 13 14 + 0.38918126925190362E-002 11 11 13 14 + 0.14400603505119383E-001 11 12 13 14 + -0.13695274497177085E-003 11 13 13 14 + -0.51256649452832064E-003 11 14 13 14 + 0.21284230415901116E-003 12 1 13 14 + 0.22038145590390582E-002 12 2 13 14 + -0.32320970478448357E-003 12 9 13 14 + 0.25339978113743340E-003 12 10 13 14 + 0.14400685022004247E-001 12 11 13 14 + -0.54598097375669202E-002 12 12 13 14 + 0.30602029060251113E-003 12 13 13 14 + 0.31646698207480982E-003 12 14 13 14 + 0.51288955473283836E-002 13 1 13 14 + 0.53104505070079203E-001 13 2 13 14 + -0.77895275892428863E-002 13 9 13 14 + 0.73419603664881886E-003 13 10 13 14 + -0.13695283100582996E-003 13 11 13 14 + 0.30592830864917356E-003 13 12 13 14 + 0.26170131637517329E-008 13 13 13 14 + 0.37713785692123053E-001 13 14 13 14 + -0.11881205571707311E-008 1 10 14 1 + 0.92631922098381626E-009 1 12 14 1 + 0.85552568736993104E-003 1 14 14 1 + -0.61689660400151868E-008 2 10 14 1 + 0.48096397141455088E-008 2 12 14 1 + 0.75944830147800227E-002 2 14 14 1 + -0.11315376888953199E-002 3 3 14 1 + 0.60480376814414667E-002 3 4 14 1 + -0.78089297803309705E-003 3 5 14 1 + -0.28535517361357641E-002 3 6 14 1 + 0.10254428151993070E-002 3 7 14 1 + -0.11956108931835960E-002 3 8 14 1 + 0.60480376814414667E-002 4 3 14 1 + -0.32242412492277770E-002 4 4 14 1 + 0.38162954278189867E-003 4 5 14 1 + 0.33339930670069650E-002 4 6 14 1 + 0.77449586560581266E-003 4 7 14 1 + -0.11391198928323986E-002 4 8 14 1 + -0.78089297803309694E-003 5 3 14 1 + 0.38162954278189867E-003 5 4 14 1 + 0.43557789381230986E-002 5 5 14 1 + -0.25507763938412554E-003 5 6 14 1 + -0.20447258600305471E-002 5 7 14 1 + -0.10964895348904182E-002 5 8 14 1 + -0.29286325195310866E-002 6 3 14 1 + 0.34217115228107539E-002 6 4 14 1 + -0.26179053773696300E-003 6 5 14 1 + -0.59122529316740190E-002 6 6 14 1 + -0.11964508516910420E-003 6 7 14 1 + 0.57760969415375152E-004 6 8 14 1 + 0.10524261417966562E-002 7 3 14 1 + 0.79487568804113330E-003 7 4 14 1 + -0.20985256670517437E-002 7 5 14 1 + -0.11964508516910417E-003 7 6 14 1 + 0.32464589771619497E-002 7 7 14 1 + 0.42109476099396479E-004 7 8 14 1 + -0.12270656277762967E-002 8 3 14 1 + -0.11690919560952099E-002 8 4 14 1 + -0.11253350043974200E-002 8 5 14 1 + 0.57760969415375125E-004 8 6 14 1 + 0.42109476099396079E-004 8 7 14 1 + 0.26657939545121365E-002 8 8 14 1 + 0.66733799401036268E-008 9 10 14 1 + 0.10719153481567289E-009 9 11 14 1 + -0.52029064480404417E-008 9 12 14 1 + -0.24768494161535328E-002 9 14 14 1 + 0.20290215578644943E-008 10 1 14 1 + 0.28038131963611700E-009 10 2 14 1 + -0.46900420438135967E-008 10 9 14 1 + 0.50805965969670571E-002 10 10 14 1 + -0.33413530935411448E-003 10 11 14 1 + -0.63333907227690019E-003 10 12 14 1 + 0.38140710903523424E-004 10 13 14 1 + -0.61603013365609373E-003 10 14 14 1 + -0.33413520663284733E-003 11 10 14 1 + -0.23360347633505987E-002 11 11 14 1 + 0.13976528054895573E-003 11 12 14 1 + -0.28672571028311313E-003 11 13 14 1 + 0.44210642675799338E-005 11 14 14 1 + -0.15819284132555226E-008 12 1 14 1 + -0.21859953666197162E-009 12 2 14 1 + 0.36565953369225439E-008 12 9 14 1 + -0.63333929284565258E-003 12 10 14 1 + 0.13976527007536762E-003 12 11 14 1 + -0.27611489919795490E-002 12 12 14 1 + 0.21283902237623415E-003 12 13 14 1 + 0.66811867925663476E-004 12 14 14 1 + 0.38140499474017692E-004 13 10 14 1 + -0.28672810222057991E-003 13 11 14 1 + 0.21283996169283958E-003 13 12 14 1 + 0.51288958229618745E-002 13 13 14 1 + 0.63561236659925489E-003 13 14 14 1 + 0.16107515549623665E-002 14 1 14 1 + -0.27326814444675213E-008 1 10 14 2 + 0.21305374541539865E-008 1 12 14 2 + 0.44595850246761075E-003 1 14 14 2 + -0.10726966630802684E-006 2 10 14 2 + -0.17230249364409297E-008 2 11 14 2 + 0.83632888195839506E-007 2 12 14 2 + 0.37305767232481630E-009 2 13 14 2 + 0.60775457327983555E-001 2 14 14 2 + -0.85504399911302785E-002 3 3 14 2 + 0.45701801847159815E-001 3 4 14 2 + -0.59008344901165825E-002 3 5 14 2 + -0.85210244122686015E-002 3 6 14 2 + 0.30620603434451852E-002 3 7 14 2 + -0.35702630986085846E-002 3 8 14 2 + 0.45701801847159808E-001 4 3 14 2 + -0.24363847723620484E-001 4 4 14 2 + 0.28837559877726809E-002 4 5 14 2 + 0.99557111552748406E-002 4 6 14 2 + 0.23127125365841935E-002 4 7 14 2 + -0.34015363260391589E-002 4 8 14 2 + -0.59008344901165808E-002 5 3 14 2 + 0.28837559877726814E-002 5 4 14 2 + 0.32914287714750814E-001 5 5 14 2 + -0.76167511648489396E-003 5 6 14 2 + -0.61057766162040065E-002 5 7 14 2 + -0.32742886427550113E-002 5 8 14 2 + -0.62231915021522272E-002 6 3 14 2 + 0.72709191463420962E-002 6 4 14 2 + -0.55630833861241614E-003 6 5 14 2 + -0.37370935840130813E-001 6 6 14 2 + -0.75626763699260377E-003 6 7 14 2 + 0.36511240540845053E-003 6 8 14 2 + 0.22363804695793980E-002 7 3 14 2 + 0.16890903850428247E-002 7 4 14 2 + -0.44592614339889194E-002 7 5 14 2 + -0.75626763699260431E-003 7 6 14 2 + 0.20520650861654225E-001 7 7 14 2 + 0.26616274847449887E-003 7 8 14 2 + -0.26074108505012477E-002 8 3 14 2 + -0.24842628428218606E-002 8 4 14 2 + -0.23912239872711486E-002 8 5 14 2 + 0.36511240540845150E-003 8 6 14 2 + 0.26616274847451134E-003 8 7 14 2 + 0.16850284978476567E-001 8 8 14 2 + 0.11934693721891024E-006 9 10 14 2 + 0.19170167803689281E-008 9 11 14 2 + -0.93048942902453098E-007 9 12 14 2 + -0.41505981189212415E-009 9 13 14 2 + 0.20301720833475253E-002 9 14 14 2 + 0.28038131918199562E-009 10 1 14 2 + -0.46646159554841065E-007 10 2 14 2 + -0.12593168257543157E-006 10 9 14 2 + 0.52604551794316751E-001 10 10 14 2 + -0.34596333704177743E-002 10 11 14 2 + -0.65575836845343134E-002 10 12 14 2 + 0.39490895445887497E-003 10 13 14 2 + -0.63784673307849763E-002 10 14 14 2 + -0.74925650728905918E-009 11 2 14 2 + -0.20227846126844385E-008 11 9 14 2 + -0.34596303470302570E-002 11 10 14 2 + -0.24187305454979914E-001 11 11 14 2 + 0.14471231426476743E-002 11 12 14 2 + -0.29687079379262706E-002 11 13 14 2 + 0.45785239025218627E-004 11 14 14 2 + -0.21859953525775930E-009 12 1 14 2 + 0.36367718691797333E-007 12 2 14 2 + 0.98182745311161842E-007 12 9 14 2 + -0.65575901765182153E-002 12 10 14 2 + 0.14471228343793238E-002 12 11 14 2 + -0.28588995860021810E-001 12 12 14 2 + 0.22037163112620362E-002 12 13 14 2 + 0.69174479053728472E-003 12 14 14 2 + 0.16222361973649805E-009 13 2 14 2 + 0.43795998101325491E-009 13 9 14 2 + 0.39490273146974906E-003 13 10 14 2 + -0.29687783396461923E-002 13 11 14 2 + 0.22037439580987490E-002 13 12 14 2 + 0.53104513377556145E-001 13 13 14 2 + 0.65811250523190954E-002 13 14 14 2 + 0.89610346616299640E-002 14 1 14 2 + 0.94272280251795501E-001 14 2 14 2 + -0.23192427435842947E-003 1 3 14 3 + 0.12396274003939407E-002 1 4 14 3 + -0.16005555899337458E-003 1 5 14 3 + -0.49396612402675098E-003 1 6 14 3 + 0.17750970277092745E-003 1 7 14 3 + -0.20696749978096359E-003 1 8 14 3 + -0.17618861634788128E-001 2 3 14 3 + 0.94172227719040449E-001 2 4 14 3 + -0.12159122774435212E-001 2 5 14 3 + -0.19880851242999063E-001 2 6 14 3 + 0.71442992937946490E-002 2 7 14 3 + -0.83299091981442214E-002 2 8 14 3 + -0.66117070267545219E-002 3 1 14 3 + -0.19580547225517705E-001 3 2 14 3 + 0.29187957092061188E-002 3 9 14 3 + -0.75822990666766866E-002 3 10 14 3 + -0.13924989254792913E-001 3 11 14 3 + 0.17659936472255795E-001 3 12 14 3 + -0.26488057116967712E-001 3 13 14 3 + 0.70742326336680164E-001 3 14 14 3 + 0.35339397431195116E-001 4 1 14 3 + 0.10465743115936477 4 2 14 3 + -0.15600980659023170E-001 4 9 14 3 + -0.68375899263810585E-002 4 10 14 3 + -0.26254386805977910E-001 4 11 14 3 + 0.29406683746430712E-001 4 12 14 3 + -0.20620271546946015E-001 4 13 14 3 + -0.39745055137796977E-001 4 14 14 3 + -0.45628457754348095E-002 5 1 14 3 + -0.13512889164949776E-001 5 2 14 3 + 0.20142575252336545E-002 5 9 14 3 + 0.35358124717562181E-001 5 10 14 3 + 0.31140198178597946E-001 5 11 14 3 + 0.25921066003515247E-001 5 12 14 3 + -0.11032977018027301E-001 5 13 14 3 + -0.31288774019041073E-003 5 14 14 3 + -0.33446223603628519E-001 6 1 14 3 + -0.17037924522055135E-001 6 2 14 3 + 0.59334171694900448E-001 6 9 14 3 + 0.18276733354959793E-003 6 10 14 3 + 0.21805465051711822E-003 6 11 14 3 + -0.44873074213810541E-004 6 12 14 3 + -0.13020725038412979E-003 6 13 14 3 + 0.46748620722493507E-002 6 14 14 3 + 0.12019144034757751E-001 7 1 14 3 + 0.61227314515844055E-002 7 2 14 3 + -0.21322166839221581E-001 7 9 14 3 + -0.19990696723804898E-002 7 10 14 3 + -0.16637277292358707E-002 7 11 14 3 + -0.15486293494966667E-003 7 12 14 3 + -0.52349200799177594E-003 7 13 14 3 + 0.14406639582388891E-002 7 14 14 3 + -0.14013620031917371E-001 8 1 14 3 + -0.71386743585424225E-002 8 2 14 3 + 0.24860401028121846E-001 8 9 14 3 + -0.58111464105018156E-003 8 10 14 3 + 0.28086409230404144E-003 8 11 14 3 + -0.17766989737705036E-002 8 12 14 3 + 0.19100251734260009E-002 8 13 14 3 + -0.15934588202616542E-002 8 14 14 3 + 0.17611968986959541E-002 9 3 14 3 + -0.94134621990547354E-002 9 4 14 3 + 0.12154770317273228E-002 9 5 14 3 + 0.59270644605876090E-001 9 6 14 3 + -0.21299358844085358E-001 9 7 14 3 + 0.24833755939664207E-001 9 8 14 3 + -0.11667160315748213E-001 10 3 14 3 + -0.10416437618628503E-001 10 4 14 3 + 0.54501911517366469E-001 10 5 14 3 + 0.90545170734496368E-003 10 6 14 3 + -0.11124561560000952E-001 10 7 14 3 + -0.33717237170565145E-002 10 8 14 3 + -0.21426952306286062E-001 11 3 14 3 + -0.43606987283695997E-001 11 4 14 3 + 0.50401851543580886E-001 11 5 14 3 + 0.49855823103837228E-002 11 6 14 3 + -0.13552038745884766E-001 11 7 14 3 + 0.22104091820152440E-002 11 8 14 3 + 0.27173976396501345E-001 12 3 14 3 + 0.48537795327436579E-001 12 4 14 3 + 0.41751905593617730E-001 12 5 14 3 + -0.36831467533979703E-002 12 6 14 3 + -0.16817031914721041E-002 12 7 14 3 + -0.13916337512975187E-001 12 8 14 3 + -0.40759002304198676E-001 13 3 14 3 + -0.31951433652141370E-001 13 4 14 3 + -0.17098590522610424E-001 13 5 14 3 + -0.48888063064897100E-003 13 6 14 3 + -0.28473540588974402E-002 13 7 14 3 + 0.10843878380607366E-001 13 8 14 3 + 0.10614016319949901 14 3 14 3 + 0.12396274003937126E-002 1 3 14 4 + -0.66085138159089447E-003 1 4 14 4 + 0.78219807022590442E-004 1 5 14 4 + 0.57713368144398465E-003 1 6 14 4 + 0.13406944309027249E-003 1 7 14 4 + -0.19718813244847094E-003 1 8 14 4 + 0.94172227719040338E-001 2 3 14 4 + -0.50203675086827659E-001 2 4 14 4 + 0.59422177730594078E-002 2 5 14 4 + 0.23228134857320320E-001 2 6 14 4 + 0.53959431628465369E-002 2 7 14 4 + -0.79363087740563533E-002 2 8 14 4 + 0.35339397431194783E-001 3 1 14 4 + 0.10465743115936477 3 2 14 4 + -0.15600980659023293E-001 3 9 14 4 + -0.88423709084183358E-002 3 10 14 4 + 0.35068810773333299E-001 3 11 14 4 + -0.33449207507437836E-001 3 12 14 4 + -0.16382533203152375E-001 3 13 14 4 + -0.39745073354219049E-001 3 14 14 4 + -0.18839624468917283E-001 4 1 14 4 + -0.55793413860885738E-001 4 2 14 4 + 0.83170085250478323E-002 4 9 14 4 + -0.10987161436357704E-002 4 10 14 4 + 0.14239846807259860E-001 4 11 14 4 + -0.20169096589977425E-001 4 12 14 4 + -0.19395036161686412E-001 4 13 14 4 + 0.83648291221829194E-001 4 14 14 4 + 0.22299078874187931E-002 5 1 14 4 + 0.66038428945746049E-002 5 2 14 4 + -0.98444136310752231E-003 5 9 14 4 + 0.22466230823548965E-001 5 10 14 4 + -0.37549072266548793E-001 5 11 14 4 + -0.37629865739833186E-001 5 12 14 4 + -0.60259986986578376E-002 5 13 14 4 + -0.64016020068330013E-002 5 14 14 4 + 0.39077405517401465E-001 6 1 14 4 + 0.19906480210132013E-001 6 2 14 4 + -0.69323984389906418E-001 6 9 14 4 + -0.16164830586518490E-003 6 10 14 4 + 0.10388976485103165E-003 6 11 14 4 + 0.20789007013145470E-005 6 12 14 4 + 0.20906686086293882E-003 6 13 14 4 + -0.55890617573070740E-002 6 14 14 4 + 0.90778112038584994E-002 7 1 14 4 + 0.46243711053760616E-002 7 2 14 4 + -0.16104192144664495E-001 7 9 14 4 + -0.13984242551026136E-002 7 10 14 4 + 0.21900253871147165E-002 7 11 14 4 + 0.45726500066363586E-003 7 12 14 4 + -0.52263836641965847E-003 7 13 14 4 + 0.87519024037211769E-003 7 14 14 4 + -0.13351524307809712E-001 8 1 14 4 + -0.68014367225602973E-002 8 2 14 4 + 0.23685832084103568E-001 8 9 14 4 + -0.41198162758860550E-003 8 10 14 4 + -0.42218551169490248E-003 8 11 14 4 + 0.22897118013937867E-002 8 12 14 4 + 0.14047802231835012E-002 8 13 14 4 + -0.13971804857946485E-002 8 14 14 4 + -0.94134621990546643E-002 9 3 14 4 + 0.50183298326935983E-002 9 4 14 4 + -0.59396603764702983E-003 9 5 14 4 + -0.69249733735857688E-001 9 6 14 4 + -0.16086964676341291E-001 9 7 14 4 + 0.23660474824161754E-001 9 8 14 4 + -0.13711041099031448E-001 10 3 14 4 + -0.16906083005984770E-002 10 4 14 4 + 0.34102684154553226E-001 10 5 14 4 + -0.10363545893792259E-002 10 6 14 4 + -0.72432530814878675E-002 10 7 14 4 + -0.18233211646781927E-002 10 8 14 4 + 0.57170180776568991E-001 11 3 14 4 + 0.21911510894967325E-001 11 4 14 4 + -0.60380295312850434E-001 11 5 14 4 + 0.32225504889596100E-002 11 6 14 4 + 0.17320848228109822E-001 11 7 14 4 + -0.31839118618326883E-002 11 8 14 4 + -0.54758140797352202E-001 12 3 14 4 + -0.31035035684093618E-001 12 4 14 4 + -0.60411009062446584E-001 12 5 14 4 + -0.32177501500008205E-002 12 6 14 4 + 0.33870880327819901E-002 12 7 14 4 + 0.17540146121329300E-001 12 8 14 4 + -0.24987247846782364E-001 13 3 14 4 + -0.29844396193027912E-001 13 4 14 4 + -0.94434213826908482E-002 13 5 14 4 + 0.13409067269289907E-002 13 6 14 4 + -0.25441011695104439E-002 13 7 14 4 + 0.77098653284558049E-002 13 8 14 4 + -0.61158407218678094E-001 14 3 14 4 + 0.12599959282207099 14 4 14 4 + -0.16005555899337528E-003 1 3 14 5 + 0.78219807022599983E-004 1 4 14 5 + 0.89277565594926198E-003 1 5 14 5 + -0.44155218520572493E-004 1 6 14 5 + -0.35395370017749720E-003 1 7 14 5 + -0.18980917913263240E-003 1 8 14 5 + -0.12159122774435194E-001 2 3 14 5 + 0.59422177730594026E-002 2 4 14 5 + 0.67822536721615770E-001 2 5 14 5 + -0.17771301426058013E-002 2 6 14 5 + -0.14245714930543862E-001 2 7 14 5 + -0.76393335840521060E-002 2 8 14 5 + -0.45628457754348329E-002 3 1 14 5 + -0.13512889164949773E-001 3 2 14 5 + 0.20142575252336224E-002 3 9 14 5 + 0.33543834768124045E-001 3 10 14 5 + -0.16360065199731714E-001 3 11 14 5 + -0.97488453833560751E-002 3 12 14 5 + -0.87115361335046177E-002 3 13 14 5 + -0.31289731895993303E-003 3 14 14 5 + 0.22299078874187875E-002 4 1 14 5 + 0.66038428945746075E-002 4 2 14 5 + -0.98444136310750843E-003 4 9 14 5 + 0.31392182098217987E-001 4 10 14 5 + 0.12184685644352640E-001 4 11 14 5 + 0.10315627947579960E-001 4 12 14 5 + -0.27609071539482976E-002 4 13 14 5 + -0.64015915005327540E-002 4 14 14 5 + 0.25451331495671848E-001 5 1 14 5 + 0.75373961086403443E-001 5 2 14 5 + -0.11235804234253702E-001 5 9 14 5 + 0.86807223050830162E-002 5 10 14 5 + -0.31486225727358168E-003 5 11 14 5 + 0.25093884815377459E-002 5 12 14 5 + 0.45883094297307171E-001 5 13 14 5 + 0.42784422900304188E-001 5 14 14 5 + -0.29897541019028276E-002 6 1 14 5 + -0.15230348857546230E-002 6 2 14 5 + 0.53038748896375243E-002 6 9 14 5 + -0.43424462070981287E-004 6 10 14 5 + -0.37624815097499751E-003 6 11 14 5 + -0.14088277413888374E-003 6 12 14 5 + 0.14701668734772132E-006 6 13 14 5 + 0.48086519911847363E-003 6 14 14 5 + -0.23966050781692335E-001 7 1 14 5 + -0.12208609612474629E-001 7 2 14 5 + 0.42516183270457426E-001 7 9 14 5 + 0.97771789333623541E-003 7 10 14 5 + -0.12841642360287753E-003 7 11 14 5 + -0.17677084962817901E-003 7 12 14 5 + -0.24939321996317399E-002 7 13 14 5 + -0.26462685704203687E-002 7 14 14 5 + -0.12851817247405988E-001 8 1 14 5 + -0.65468231809908527E-002 8 2 14 5 + 0.22799342993983406E-001 8 9 14 5 + -0.24342293856366710E-002 8 10 14 5 + 0.18327902212300580E-003 8 11 14 5 + -0.96739477408866383E-005 8 12 14 5 + -0.98444975901823615E-003 8 13 14 5 + -0.14174286446497174E-002 8 14 14 5 + 0.12154770317272866E-002 9 3 14 5 + -0.59396603764700154E-003 9 4 14 5 + -0.67795267313894188E-002 9 5 14 5 + 0.52982082271005870E-002 9 6 14 5 + 0.42470665261895031E-001 9 7 14 5 + 0.22774894350311006E-001 9 8 14 5 + 0.51520358245798883E-001 10 3 14 5 + 0.48771379462569514E-001 10 4 14 5 + 0.13357445495233090E-001 10 5 14 5 + -0.84016469542756364E-003 10 6 14 5 + 0.55448977890832649E-002 10 7 14 5 + -0.13753950797638605E-001 10 8 14 5 + -0.27659023813790130E-001 11 3 14 5 + 0.21351030911842685E-001 11 4 14 5 + -0.48456377883231730E-003 11 5 14 5 + -0.71973148185160976E-002 11 6 14 5 + -0.12155839656069149E-002 11 7 14 5 + 0.11379972675400424E-002 11 8 14 5 + -0.16867206467648659E-001 12 3 14 5 + 0.18381514525493789E-001 12 4 14 5 + 0.38613112092488917E-002 12 5 14 5 + -0.52318909401795916E-002 12 6 14 5 + -0.11200553997918188E-002 12 7 14 5 + -0.40639156639448999E-003 12 8 14 5 + -0.13283529315584155E-001 13 3 14 5 + -0.40776053465828316E-002 13 4 14 5 + 0.70603399620962681E-001 13 5 14 5 + -0.77023805240585133E-004 13 6 14 5 + -0.13651322305753041E-001 13 7 14 5 + -0.56947561760256520E-002 13 8 14 5 + -0.48133661050165684E-003 14 3 14 5 + -0.98503963785165228E-002 14 4 14 5 + 0.63119598954896272E-001 14 5 14 5 + -0.28500956758173378E-002 1 3 14 6 + 0.33299532240245850E-002 1 4 14 6 + -0.25476952446669106E-003 1 5 14 6 + -0.38282588818451878E-002 1 6 14 6 + -0.77471728890683708E-004 1 7 14 6 + 0.37400683618787034E-004 1 8 14 6 + -0.23361128153121597E-001 2 3 14 6 + 0.27294365406512998E-001 2 4 14 6 + -0.20882334539105200E-002 2 5 14 6 + -0.15864276175563952E-001 2 6 14 6 + -0.32104253383231191E-003 2 7 14 6 + 0.15498356869484163E-003 2 8 14 6 + -0.12213555477069878E-001 3 1 14 6 + -0.23532041894306761E-001 3 2 14 6 + 0.10130979319043382E-001 3 9 14 6 + 0.12666129433299459E-002 3 10 14 6 + -0.11218965221486533E-001 3 11 14 6 + 0.10965614657708657E-001 3 12 14 6 + -0.14124521186028437E-002 3 13 14 6 + 0.21364453733136536E-001 3 14 14 6 + 0.14269896404124953E-001 4 1 14 6 + 0.27494060698449924E-001 4 2 14 6 + -0.11836700192702223E-001 4 9 14 6 + -0.35350018657383464E-003 4 10 14 6 + -0.81065424014211945E-002 4 11 14 6 + 0.10536840317503075E-001 4 12 14 6 + 0.45441621751546784E-003 4 13 14 6 + -0.25500264183654253E-001 4 14 14 6 + -0.10917672191936769E-002 5 1 14 6 + -0.21035089873233789E-002 5 2 14 6 + 0.90560018064562737E-003 5 9 14 6 + 0.17370933233909671E-002 5 10 14 6 + 0.14778864893611184E-001 5 11 14 6 + 0.13800759533029474E-001 5 12 14 6 + 0.25506840246790357E-003 5 13 14 6 + 0.21818614407914474E-002 5 14 14 6 + -0.20953902749765409E-001 6 1 14 6 + -0.22641064856669193E-001 6 2 14 6 + 0.20376005301621303E-001 6 9 14 6 + 0.63015875495590857E-003 6 10 14 6 + 0.84937029885013060E-004 6 11 14 6 + -0.10611674452617384E-003 6 12 14 6 + -0.64665982215288034E-003 6 13 14 6 + 0.18732524221992484E-001 6 14 14 6 + -0.42403987081840179E-003 7 1 14 6 + -0.45818235914177796E-003 7 2 14 6 + 0.41234489652894948E-003 7 9 14 6 + -0.39338234702742959E-003 7 10 14 6 + -0.84427165260289108E-002 7 11 14 6 + -0.14285214220489000E-002 7 12 14 6 + -0.31192570862288884E-003 7 13 14 6 + 0.14556189502340635E-003 7 14 14 6 + 0.20471492789040350E-003 8 1 14 6 + 0.22120270064907724E-003 8 2 14 6 + -0.19907208926317325E-003 8 9 14 6 + -0.66502311695050326E-003 8 10 14 6 + 0.15506755496393317E-002 8 11 14 6 + -0.87419332190688433E-002 8 12 14 6 + 0.19470771307345577E-003 8 13 14 6 + -0.87233893087790458E-004 8 14 14 6 + 0.14113672497173263E-001 9 3 14 6 + -0.16489900617657486E-001 9 4 14 6 + 0.12616299084349731E-002 9 5 14 6 + 0.22021003988513536E-001 9 6 14 6 + 0.44563449125589527E-003 9 7 14 6 + -0.21514181041096161E-003 9 8 14 6 + 0.13928515790180228E-002 10 3 14 6 + -0.38546022211784160E-003 10 4 14 6 + 0.19189570482251643E-002 10 5 14 6 + 0.52640816497808059E-003 10 6 14 6 + -0.31199713609974421E-003 10 7 14 6 + -0.53650446711351338E-003 10 8 14 6 + -0.12391626601906637E-001 11 3 14 6 + -0.89522826651740831E-002 11 4 14 6 + 0.16326276384220840E-001 11 5 14 6 + 0.70947649992724395E-004 11 6 14 6 + -0.67778458490635818E-002 11 7 14 6 + 0.12517651115909508E-002 11 8 14 6 + 0.12106745067257636E-001 12 3 14 6 + 0.11632055194239599E-001 12 4 14 6 + 0.15239468375104795E-001 12 5 14 6 + -0.88694810148840254E-004 12 6 14 6 + -0.11451005387269283E-002 12 7 14 6 + -0.70450873146608211E-002 12 8 14 6 + -0.15554279232659095E-002 13 3 14 6 + 0.49545306620664474E-003 13 4 14 6 + 0.28158773377429959E-003 13 5 14 6 + -0.54020077268462506E-003 13 6 14 6 + -0.25144879324628364E-003 13 7 14 6 + 0.15433151322171703E-003 13 8 14 6 + 0.23411984524050716E-001 14 3 14 6 + -0.27943178038339133E-001 14 4 14 6 + 0.23905802903033133E-002 14 5 14 6 + 0.15803732877798703E-001 14 6 14 6 + 0.10242022861196428E-002 1 3 14 7 + 0.77355884706459428E-003 1 4 14 7 + -0.20422495834106834E-002 1 5 14 7 + -0.77471728890682502E-004 1 6 14 7 + 0.21021230889684424E-002 1 7 14 7 + 0.27266666661447386E-004 1 8 14 7 + 0.83949652064822036E-002 2 3 14 7 + 0.63405451360092476E-002 2 4 14 7 + -0.16739524306633630E-001 2 5 14 7 + -0.32104253383231061E-003 2 6 14 7 + 0.87111767267658551E-002 2 7 14 7 + 0.11299692036473515E-003 2 8 14 7 + 0.43890281806578538E-002 3 1 14 7 + 0.84563800786235169E-002 3 2 14 7 + -0.36406291810139896E-002 3 9 14 7 + -0.98449125896020260E-002 3 10 14 7 + 0.57990187412941393E-002 3 11 14 7 + 0.19087538838149141E-002 3 12 14 7 + -0.28031878797222715E-002 3 13 14 7 + 0.56777880151281501E-002 3 14 14 7 + 0.33149424162402085E-002 4 1 14 7 + 0.63869307344422317E-002 4 2 14 7 + -0.27496926233266054E-002 4 9 14 7 + -0.86428258091151757E-002 4 10 14 7 + -0.59432535317589970E-002 4 11 14 7 + -0.49415287698418458E-003 4 12 14 7 + -0.37727864236762757E-002 4 13 14 7 + 0.33706501712532371E-002 4 14 14 7 + -0.87516810911103075E-002 5 1 14 7 + -0.16861992830755491E-001 5 2 14 7 + 0.72593999607363530E-002 5 9 14 7 + 0.44735021968119407E-002 5 10 14 7 + 0.10025438466561205E-002 5 11 14 7 + -0.42677937806093262E-003 5 12 14 7 + -0.13067704109586747E-001 5 13 14 7 + -0.10432123477199212E-001 5 14 14 7 + -0.42403987081840802E-003 6 1 14 7 + -0.45818235914177633E-003 6 2 14 7 + 0.41234489652896032E-003 6 9 14 7 + 0.25850861922364855E-003 6 10 14 7 + 0.23275793865019283E-002 6 11 14 7 + 0.46130161119817460E-003 6 12 14 7 + 0.46321952098588899E-004 6 13 14 7 + 0.14556248854873907E-003 6 14 14 7 + 0.11505934735800111E-001 7 1 14 7 + 0.12432372887574251E-001 7 2 14 7 + -0.11188610996224976E-001 7 9 14 7 + -0.57066628779964806E-002 7 10 14 7 + 0.13021108735121423E-004 7 11 14 7 + 0.56921624317749799E-003 7 12 14 7 + 0.44964494632212379E-002 7 13 14 7 + 0.76734588306340400E-002 7 14 14 7 + 0.14924093741717218E-003 8 1 14 7 + 0.16125343755762437E-003 8 2 14 7 + -0.14512221738276974E-003 8 9 14 7 + 0.44312890174496517E-002 8 10 14 7 + -0.41318710858441086E-003 8 11 14 7 + -0.32652344864212335E-003 8 12 14 7 + 0.56747020291791975E-002 8 13 14 7 + 0.10960422306078075E-003 8 14 14 7 + -0.50718690034645417E-002 9 3 14 7 + -0.38306769735221386E-002 9 4 14 7 + 0.10113221494245615E-001 9 5 14 7 + 0.44563449125590681E-003 9 6 14 7 + -0.12091889394268421E-001 9 7 14 7 + -0.15683983568880099E-003 9 8 14 7 + -0.10808644385668227E-001 10 3 14 7 + -0.94995112443130823E-002 10 4 14 7 + 0.49093263028268785E-002 10 5 14 7 + 0.19933935121409506E-003 10 6 14 7 + -0.47663336090015612E-002 10 7 14 7 + 0.36887613973358938E-002 10 8 14 7 + 0.64514050801762930E-002 11 3 14 7 + -0.66263039621363646E-002 11 4 14 7 + 0.11106103558813534E-002 11 5 14 7 + 0.16702966941445662E-002 11 6 14 7 + 0.10845565335281813E-004 11 7 14 7 + -0.34280267568203334E-003 11 8 14 7 + 0.21117761769054791E-002 12 3 14 7 + -0.55915566259187848E-003 12 4 14 7 + -0.46588318697060929E-003 12 5 14 7 + 0.33726002758730254E-003 12 6 14 7 + 0.47543966184047384E-003 12 7 14 7 + -0.26831714306734596E-003 12 8 14 7 + -0.30790940467028964E-002 13 3 14 7 + -0.41495046666968315E-002 13 4 14 7 + -0.14352225354637066E-001 13 5 14 7 + 0.29555685692435619E-004 13 6 14 7 + 0.37561929486894536E-002 13 7 14 7 + 0.47279866378201457E-002 13 8 14 7 + 0.62002065536717974E-002 14 3 14 7 + 0.36785978752406786E-002 14 4 14 7 + -0.11392122442019951E-001 14 5 14 7 + 0.12160115882199142E-003 14 6 14 7 + 0.65651961997801401E-002 14 7 14 7 + -0.11941609316288256E-002 1 3 14 8 + -0.11377404163883582E-002 1 4 14 8 + -0.10951589227922737E-002 1 5 14 8 + 0.37400683618785543E-004 1 6 14 8 + 0.27266666661434986E-004 1 7 14 8 + 0.17261357928766755E-002 1 8 14 8 + -0.97881049698111296E-002 2 3 14 8 + -0.93256140015979590E-002 2 4 14 8 + -0.89766354212627887E-002 2 5 14 8 + 0.15498356869483968E-003 2 6 14 8 + 0.11299692036468793E-003 2 7 14 8 + 0.71530994487984719E-002 2 8 14 8 + -0.51173553624487330E-002 3 1 14 8 + -0.98597216839492012E-002 3 2 14 8 + 0.42447910513042017E-002 3 9 14 8 + -0.24124216981830761E-002 3 10 14 8 + -0.72838134579730166E-003 3 11 14 8 + 0.43825735084718053E-002 3 12 14 8 + 0.87395266104427129E-002 3 13 14 8 + -0.58660263793592722E-002 3 14 14 8 + -0.48755751171561485E-002 4 1 14 8 + -0.93938412271408478E-002 4 2 14 8 + 0.40442225386729778E-002 4 9 14 8 + -0.35582467989157523E-002 4 10 14 8 + 0.63876092740251821E-003 4 11 14 8 + -0.43589380706431100E-002 4 12 14 8 + 0.72947842000246040E-002 4 13 14 8 + -0.50901772014726177E-002 4 14 14 8 + -0.46931008548049919E-002 5 1 14 8 + -0.90423172719561896E-002 5 2 14 8 + 0.38928827753352707E-002 5 9 14 8 + -0.11312502614736486E-001 5 10 14 8 + 0.51893693756529841E-003 5 11 14 8 + 0.11015369824102987E-002 5 12 14 8 + -0.41611365899109649E-002 5 13 14 8 + -0.52663935398779473E-002 5 14 14 8 + 0.20471492789041255E-003 6 1 14 8 + 0.22120270064907520E-003 6 2 14 8 + -0.19907208926318474E-003 6 9 14 8 + 0.80273997563196214E-004 6 10 14 8 + -0.15714243430692393E-003 6 11 14 8 + 0.13457051542469405E-002 6 12 14 8 + -0.13146998507755674E-003 6 13 14 8 + -0.87227365686856322E-004 6 14 14 8 + 0.14924093741728673E-003 7 1 14 8 + 0.16125343755759260E-003 7 2 14 8 + -0.14512221738306378E-003 7 9 14 8 + 0.39434726842328518E-002 7 10 14 8 + -0.32083722216688735E-003 7 11 14 8 + -0.15397160115250154E-003 7 12 14 8 + 0.51831505319373883E-002 7 13 14 8 + 0.10960478862982452E-003 7 14 14 8 + 0.94479680139657757E-002 8 1 14 8 + 0.10208691969095310E-001 8 2 14 8 + -0.91873943053969922E-002 8 9 14 8 + 0.50764243295344817E-002 8 10 14 8 + -0.97959420307717980E-004 8 11 14 8 + -0.46303728757529362E-003 8 12 14 8 + -0.38497893635658742E-002 8 13 14 8 + 0.61134846519005272E-002 8 14 14 8 + 0.59134580690645439E-002 9 3 14 8 + 0.56340922527313205E-002 9 4 14 8 + 0.54231904848994509E-002 9 5 14 8 + -0.21514181041096882E-003 9 6 14 8 + -0.15683983568893299E-003 9 7 14 8 + -0.99291145942458029E-002 9 8 14 8 + -0.26458504462328228E-002 10 3 14 8 + -0.39158169270337830E-002 10 4 14 8 + -0.12415817816335051E-001 10 5 14 8 + 0.48097418675300569E-004 10 6 14 8 + 0.33061218830415444E-002 10 7 14 8 + 0.42399602155624196E-002 10 8 14 8 + -0.81248452703133148E-003 11 3 14 8 + 0.71772541907029214E-003 11 4 14 8 + 0.56742642615696518E-003 11 5 14 8 + -0.87836509029949814E-004 11 6 14 8 + -0.27036044743094400E-003 11 7 14 8 + -0.81792656808228213E-004 11 8 14 8 + 0.48911125695750108E-002 12 3 14 8 + -0.48802850364386809E-002 12 4 14 8 + 0.12163280012192814E-002 12 5 14 8 + 0.86757493535207474E-003 12 6 14 8 + -0.13296879031326385E-003 12 7 14 8 + -0.38677196135220379E-003 12 8 14 8 + 0.95914112070526331E-002 13 3 14 8 + 0.80114668674076128E-002 13 4 14 8 + -0.45645295406092582E-002 13 5 14 8 + -0.10151773004556947E-003 13 6 14 8 + 0.43424082360638055E-002 13 7 14 8 + -0.32159922969318706E-002 13 8 14 8 + -0.63943105180933359E-002 14 3 14 8 + -0.55470277917101301E-002 14 4 14 8 + -0.57421562209531221E-002 14 5 14 8 + -0.72836011406614984E-004 14 6 14 8 + 0.91620682933791719E-004 14 7 14 8 + 0.52621978555410379E-002 14 8 14 8 + 0.21589263406809247E-009 1 10 14 9 + -0.16832088059801253E-009 1 12 14 9 + -0.13865834203709412E-002 1 14 14 9 + -0.73393493737755098E-007 2 10 14 9 + -0.11788870547247611E-008 2 11 14 9 + 0.57221300915044667E-007 2 12 14 9 + 0.25524492945611373E-009 2 13 14 9 + -0.15543725922509985E-001 2 14 14 9 + 0.17907947356587046E-002 3 3 14 9 + -0.95718388399311932E-002 3 4 14 9 + 0.12358094080746535E-002 3 5 14 9 + 0.75247632102638119E-002 3 6 14 9 + -0.27040659251436143E-002 3 7 14 9 + 0.31528142808067475E-002 3 8 14 9 + -0.95718388399311932E-002 4 3 14 9 + 0.51028374130676945E-002 4 4 14 9 + -0.60400226639758538E-003 4 5 14 9 + -0.87916885347396594E-002 4 6 14 9 + -0.20423257694176284E-002 4 7 14 9 + 0.30038372297818282E-002 4 8 14 9 + 0.12358094080746544E-002 5 3 14 9 + -0.60400226639758582E-003 5 4 14 9 + -0.68936321487262564E-002 5 5 14 9 + 0.67263052418476180E-003 5 6 14 9 + 0.53919033332452109E-002 5 7 14 9 + 0.28914369311126061E-002 5 8 14 9 + 0.94394412461657525E-002 6 3 14 9 + -0.11028718788939752E-001 6 4 14 9 + 0.84378900686101572E-003 6 5 14 9 + 0.58213647304502687E-002 6 6 14 9 + 0.11780560238864034E-003 6 7 14 9 + -0.56876368527965173E-004 6 8 14 9 + -0.33921292298104196E-002 7 3 14 9 + -0.25620052725954150E-002 7 4 14 9 + 0.67638762293050934E-002 7 5 14 9 + 0.11780560238863991E-003 7 6 14 9 + -0.31965557531423096E-002 7 7 14 9 + -0.41459168208129904E-004 7 8 14 9 + 0.39550313999752321E-002 8 3 14 9 + 0.37681658910519366E-002 8 4 14 9 + 0.36271401401485291E-002 8 5 14 9 + -0.56876368527964481E-004 8 6 14 9 + -0.41459168208119617E-004 8 7 14 9 + -0.26248089773087077E-002 8 8 14 9 + -0.40060059845733061E-007 9 10 14 9 + -0.64346688879805637E-009 9 11 14 9 + 0.31232860296324207E-007 9 12 14 9 + 0.13931853554643991E-009 9 13 14 9 + 0.13411093365245735E-001 9 14 14 9 + -0.46900420429789583E-008 10 1 14 9 + -0.12593168257593979E-006 10 2 14 9 + 0.28550695070712836E-007 10 9 14 9 + -0.77128075163940234E-002 10 10 14 9 + 0.50725767145122025E-003 10 11 14 9 + 0.96146585653211303E-003 10 12 14 9 + -0.58015251065487003E-004 10 13 14 9 + 0.93531335010357190E-003 10 14 14 9 + -0.20227846110810216E-008 11 2 14 9 + 0.45859711870533298E-009 11 9 14 9 + 0.50725750018491399E-003 11 10 14 9 + 0.35463177463275373E-002 11 11 14 9 + -0.21217610259482831E-003 11 12 14 9 + 0.43545698054392083E-003 11 13 14 9 + -0.66880622683505542E-005 11 14 14 9 + 0.36565953361178047E-008 12 1 14 9 + 0.98182745309545055E-007 12 2 14 9 + -0.22259574147658842E-007 12 9 14 9 + 0.96146622428454180E-003 12 10 14 9 + -0.21217608513230296E-003 12 11 14 9 + 0.41916630556121668E-002 12 12 14 9 + -0.32320294596034079E-003 12 13 14 9 + -0.10154213270287634E-003 12 14 14 9 + 0.43795994293883421E-009 13 2 14 9 + -0.58014898550847379E-004 13 10 14 9 + 0.43546096860117483E-003 13 11 14 9 + -0.32320451207502990E-003 13 12 14 9 + -0.77895282002590025E-002 13 13 14 9 + -0.96532835289059597E-003 13 14 14 9 + -0.29029892649979714E-002 14 1 14 9 + -0.12015950170822843E-001 14 2 14 9 + 0.99111470111725650E-002 14 9 14 9 + 0.36833970161834540E-007 1 1 14 10 + -0.35983345686207092E-008 1 2 14 10 + 0.68750087276101381E-009 1 9 14 10 + -0.44412976542986801E-003 1 10 14 10 + 0.29210184039217283E-004 1 11 14 10 + 0.55366184838473328E-004 1 12 14 10 + -0.33359460937893012E-005 1 13 14 10 + 0.53848885314242519E-004 1 14 14 10 + -0.75776854298090274E-008 2 1 14 10 + -0.11564541249345953E-006 2 2 14 10 + -0.11235448687914459E-006 2 9 14 10 + 0.29132302741992792E-001 2 10 14 10 + -0.19159096646453662E-002 2 11 14 10 + -0.36315435239968187E-002 2 12 14 10 + 0.21861726202344111E-003 2 13 14 10 + -0.35323497982506042E-002 2 14 14 10 + -0.48405309468362882E-002 3 3 14 10 + -0.50049945685458532E-002 3 4 14 10 + 0.21993247324617115E-001 3 5 14 10 + 0.51880763206120398E-003 3 6 14 10 + -0.49505623228762730E-002 3 7 14 10 + -0.13582576160211617E-002 3 8 14 10 + -0.50049790283843796E-002 4 3 14 10 + -0.70145320815973348E-003 4 4 14 10 + 0.17191447774808053E-001 4 5 14 10 + -0.32098261142196003E-003 4 6 14 10 + -0.37790356977784297E-002 4 7 14 10 + -0.12954203614203186E-002 4 8 14 10 + 0.21993262897422258E-001 5 3 14 10 + 0.17191393428020636E-001 5 4 14 10 + 0.55416476052395384E-002 5 5 14 10 + 0.24350575383544896E-003 5 6 14 10 + 0.23595858951250904E-002 5 7 14 10 + -0.59068582567076821E-002 5 8 14 10 + 0.32179763835506246E-003 6 3 14 10 + -0.19902023295613380E-003 6 4 14 10 + 0.15107308487291671E-003 6 5 14 10 + 0.14767497302074243E-002 6 6 14 10 + -0.15803684595936320E-003 6 7 14 10 + -0.68517345530602636E-003 6 8 14 10 + -0.30719588173061998E-002 7 3 14 10 + -0.23449819338898976E-002 7 4 14 10 + 0.14643073194324984E-002 7 5 14 10 + -0.15804745673071371E-003 7 6 14 10 + -0.13373478982726533E-001 7 7 14 10 + 0.98130618790029465E-002 7 8 14 10 + -0.84285584300875112E-003 8 3 14 10 + -0.80385250472662950E-003 8 4 14 10 + -0.36653024192801090E-002 8 5 14 10 + -0.68518660838757270E-003 8 6 14 10 + 0.98130684961885654E-002 8 7 14 10 + 0.11896489393132032E-001 8 8 14 10 + 0.82364965788701721E-008 9 1 14 10 + 0.80573674258226067E-007 9 2 14 10 + -0.90025842630454958E-007 9 9 14 10 + 0.22791882708400484E-002 9 10 14 10 + -0.14990929588716854E-003 9 11 14 10 + -0.28412349520802742E-003 9 12 14 10 + 0.17245972636689324E-004 9 13 14 10 + -0.27648984500088696E-003 9 14 14 10 + 0.50805904875201070E-002 10 1 14 10 + 0.52604446460605754E-001 10 2 14 10 + -0.77128552484907404E-002 10 9 14 10 + -0.20968584288941310E-006 10 10 14 10 + -0.13540313093935927E-003 10 11 14 10 + 0.72539515229410711E-003 10 12 14 10 + -0.78405659492057709E-003 10 13 14 10 + 0.37630504974209694E-001 10 14 14 10 + -0.33413475541460341E-003 11 1 14 10 + -0.34596225675221528E-002 11 2 14 10 + 0.50726102547829770E-003 11 9 14 10 + -0.13536220286116557E-003 11 10 14 10 + -0.13637403489650595E-001 11 11 14 10 + 0.47489871712041477E-002 11 12 14 10 + -0.12717540874704202E-002 11 13 14 10 + -0.66937565153008514E-003 11 14 14 10 + -0.63333840051977642E-003 12 1 14 10 + -0.65575747918202969E-002 12 2 14 10 + 0.96147319587877264E-003 12 9 14 10 + 0.72532219930867431E-003 12 10 14 10 + 0.47489318230682183E-002 12 11 14 10 + 0.15105665865939892E-001 12 12 14 10 + -0.28946639873679022E-003 12 13 14 10 + -0.10171490230488128E-002 12 14 14 10 + 0.38140684326849606E-004 13 1 14 10 + 0.39490591853969090E-003 13 2 14 10 + -0.58013454326300927E-004 13 9 14 10 + -0.78404261975833719E-003 13 10 14 10 + -0.12717697713380749E-002 13 11 14 10 + -0.28947373276693941E-003 13 12 14 10 + -0.14685183997580069E-002 13 13 14 10 + -0.27127926444159848E-004 13 14 14 10 + -0.61602533504442143E-003 14 1 14 10 + -0.63783260935997869E-002 14 2 14 10 + 0.93530534941862304E-003 14 9 14 10 + 0.37627420438820731E-001 14 10 14 10 + 0.59164774742965146E-009 1 1 14 11 + 0.29210173733211069E-004 1 10 14 11 + 0.20421181220140006E-003 1 11 14 11 + -0.12218853985494661E-004 1 12 14 11 + 0.25070415968319284E-004 1 13 14 11 + -0.38564084545660719E-006 1 14 14 11 + -0.12171698806278460E-009 2 1 14 11 + -0.18575607734879134E-008 2 2 14 11 + -0.18047001707031295E-008 2 9 14 11 + -0.19159098340855996E-002 2 10 14 11 + -0.13394818032510084E-001 2 11 14 11 + 0.80139221770858982E-003 2 12 14 11 + -0.16438958410762861E-002 2 13 14 11 + 0.25378030152598056E-004 2 14 14 11 + -0.88896146950324800E-002 3 3 14 11 + 0.28136808604715168E-002 3 4 14 11 + 0.47176361691755250E-002 3 5 14 11 + -0.16716615560073218E-002 3 6 14 11 + -0.16026516116866511E-002 3 7 14 11 + 0.31550547281544846E-003 3 8 14 11 + 0.28133575072844435E-002 4 3 14 11 + 0.90905897164616223E-002 4 4 14 11 + -0.80960778823027657E-002 4 5 14 11 + -0.12932925845062177E-002 4 6 14 11 + 0.24138390407425288E-002 4 7 14 11 + -0.55665095475191306E-003 4 8 14 11 + 0.47178821487959171E-002 5 3 14 11 + -0.80963497859842890E-002 5 4 14 11 + -0.20098042727819033E-003 5 5 14 11 + 0.20605600452649011E-002 5 6 14 11 + -0.23670294297877018E-004 5 7 14 11 + 0.38494043011448972E-003 5 8 14 11 + -0.10372689851384639E-002 6 3 14 11 + -0.80247304107913906E-003 6 4 14 11 + 0.12785686820469184E-002 6 5 14 11 + 0.19905165582927752E-003 6 6 14 11 + -0.71652957695504099E-002 6 7 14 11 + 0.16328553483945505E-002 6 8 14 11 + -0.99455924928619293E-003 7 3 14 11 + 0.14978632787149297E-002 7 4 14 11 + -0.14819667164726676E-004 7 5 14 11 + -0.71654453890069181E-002 7 6 14 11 + 0.30499898218587203E-004 7 7 14 11 + -0.86011032181959233E-003 7 8 14 11 + 0.19587622901492803E-003 8 3 14 11 + -0.34534663064041414E-003 8 4 14 11 + 0.23881130798860404E-003 8 5 14 11 + 0.16328779526467716E-002 8 6 14 11 + -0.86010863001876952E-003 8 7 14 11 + -0.22955540680239897E-003 8 8 14 11 + 0.13229917758499757E-009 9 1 14 11 + 0.12942190900304551E-008 9 2 14 11 + -0.14460450009948146E-008 9 9 14 11 + -0.14990927816886491E-003 9 10 14 11 + -0.10479725571537089E-002 9 11 14 11 + 0.62701633774775846E-004 9 12 14 11 + -0.12885041718644163E-003 9 13 14 11 + 0.19540647882710906E-005 9 14 14 11 + -0.33413485250821510E-003 10 1 14 11 + -0.34596254938826006E-002 10 2 14 11 + 0.50726124071253493E-003 10 9 14 11 + 0.27075025375102648E-003 10 10 14 11 + 0.68178042986569284E-002 10 11 14 11 + -0.19300505552064310E-002 10 12 14 11 + -0.31837596306587149E-003 10 13 14 11 + -0.66934122276704954E-003 10 14 14 11 + -0.23360317514009841E-002 11 1 14 11 + -0.24187253525593845E-001 11 2 14 11 + 0.35463412781910559E-002 11 9 14 11 + 0.68193324242964513E-002 11 10 14 11 + 0.72814041902527293E-008 11 11 14 11 + -0.10312764938295344E-002 11 12 14 11 + -0.19460308532800008E-002 11 13 14 11 + 0.23815796891694496E-001 11 14 14 11 + 0.13976502797634813E-003 12 1 14 11 + 0.14471186603210312E-002 12 2 14 11 + -0.21217797661178731E-003 12 9 14 11 + -0.19304980559886737E-002 12 10 14 11 + -0.10310271095460234E-002 12 11 14 11 + -0.54470844851174421E-003 12 12 14 11 + -0.67165279372999693E-002 12 13 14 11 + -0.36876471570070898E-003 12 14 14 11 + -0.28672781490776786E-003 13 1 14 11 + -0.29687733860514227E-002 13 2 14 11 + 0.43546321332857082E-003 13 9 14 11 + -0.31828180274044509E-003 13 10 14 11 + -0.19459750139605022E-002 13 11 14 11 + -0.67165198098302651E-002 13 12 14 11 + 0.27394134082562357E-003 13 13 14 11 + -0.51271450203245819E-003 13 14 14 11 + 0.44205777939611748E-005 14 1 14 11 + 0.45770920682899376E-004 14 2 14 11 + -0.66872511749710221E-005 14 9 14 11 + -0.66936553643465885E-003 14 10 14 11 + 0.23812950420811704E-001 14 11 14 11 + -0.28717636520332239E-007 1 1 14 12 + 0.28054446510940949E-008 1 2 14 12 + -0.53601064000080635E-009 1 9 14 12 + 0.55366206968095905E-004 1 10 14 12 + -0.12218852934679854E-004 1 11 14 12 + 0.24136720621356240E-003 1 12 14 12 + -0.18608315283297034E-004 1 13 14 12 + -0.58437772719805881E-005 1 14 14 12 + 0.59079490111287963E-008 2 1 14 12 + 0.90163046095263274E-007 2 2 14 12 + 0.87597272904386098E-007 2 9 14 12 + -0.36315431601654314E-002 2 10 14 12 + 0.80139223498493033E-003 2 11 14 12 + -0.15832617998720332E-001 2 12 14 12 + 0.12203319931419056E-002 2 13 14 12 + 0.38298320146439664E-003 2 14 14 12 + 0.11274031987149796E-001 3 3 14 12 + -0.12905401576950345E-002 3 4 14 12 + 0.51620378118937618E-002 3 5 14 12 + 0.19013011377013904E-002 3 6 14 12 + 0.97055146483226236E-004 3 7 14 12 + -0.20370316304713192E-002 3 8 14 12 + -0.12901938341930844E-002 4 3 14 12 + -0.12875768095380649E-001 4 4 14 12 + -0.87184778681678714E-002 4 5 14 12 + 0.18992901440215222E-002 4 6 14 12 + 0.63827409478734874E-003 4 7 14 12 + 0.28574673386757015E-002 4 8 14 12 + 0.51622377838623987E-002 5 3 14 12 + -0.87187452121907615E-002 5 4 14 12 + 0.16019984995405390E-002 5 5 14 12 + 0.22588729281974615E-002 5 6 14 12 + -0.35793847563776770E-003 5 7 14 12 + 0.18283046526419616E-003 5 8 14 12 + 0.11798857543519521E-002 6 3 14 12 + 0.11783895000745650E-002 6 4 14 12 + 0.14016584539782375E-002 6 5 14 12 + -0.24868630338604098E-003 6 6 14 12 + -0.11333121154459703E-002 6 7 14 12 + -0.86663821499437278E-002 6 8 14 12 + 0.60241402146514902E-004 7 3 14 12 + 0.39610502388713115E-003 7 4 14 12 + -0.22207319927997762E-003 7 5 14 12 + -0.11333405613131989E-002 7 6 14 12 + 0.13339855808997389E-002 7 7 14 12 + -0.56300884051272814E-003 7 8 14 12 + -0.12641635061905300E-002 8 3 14 12 + 0.17731326411679076E-002 8 4 14 12 + 0.11344445606833233E-003 8 5 14 12 + -0.86665282863928658E-002 8 6 14 12 + -0.56301152385556980E-003 8 7 14 12 + -0.10851122709346190E-002 8 8 14 12 + -0.64215916905421460E-008 9 1 14 12 + -0.62819334900008369E-007 9 2 14 12 + 0.70188726213106508E-007 9 9 14 12 + -0.28412353325374157E-003 9 10 14 12 + 0.62701631968217877E-004 9 11 14 12 + -0.12386463097970645E-002 9 12 14 12 + 0.95595733306045181E-004 9 13 14 12 + 0.30113701308426982E-004 9 14 14 12 + -0.63333819203503447E-003 10 1 14 12 + -0.65575685081782466E-002 10 2 14 12 + 0.96147273371598098E-003 10 9 14 12 + -0.14505716502308120E-002 10 10 14 12 + -0.28185193666995286E-002 10 11 14 12 + -0.75523118474134293E-002 10 12 14 12 + 0.36072123517996168E-004 10 13 14 12 + -0.10170620680724648E-002 10 14 14 12 + 0.13976503787613243E-003 11 1 14 12 + 0.14471189586963929E-002 11 2 14 12 + -0.21217799855733266E-003 11 9 14 12 + -0.28189129384012046E-002 11 10 14 12 + 0.20626039209298520E-002 11 11 14 12 + 0.27229380637172168E-003 11 12 14 12 + -0.76851274310319106E-002 11 13 14 12 + -0.36877279704969048E-003 11 14 14 12 + -0.27611459104582418E-002 12 1 14 12 + -0.28588942731141643E-001 12 2 14 12 + 0.41916871310277827E-002 12 9 14 12 + -0.75536135389085201E-002 12 10 14 12 + 0.27234206915204766E-003 12 11 14 12 + 0.22561906340771573E-006 12 12 14 12 + 0.27300840895560859E-002 12 13 14 12 + 0.25407579094277658E-001 12 14 14 12 + 0.21283977445978196E-003 13 1 14 12 + 0.22037407299910555E-002 13 2 14 12 + -0.32320597489589781E-003 13 9 14 12 + 0.36100538217174913E-004 13 10 14 12 + -0.76850090619242058E-002 13 11 14 12 + 0.27300153665969057E-002 13 12 14 12 + -0.61184493978833185E-003 13 13 14 12 + 0.31655977578321637E-003 13 14 14 12 + 0.66812937772950002E-004 14 1 14 12 + 0.69177627927396058E-003 14 2 14 12 + -0.10154391645027750E-003 14 9 14 12 + -0.10171285254769384E-002 14 10 14 12 + -0.36879088574285560E-003 14 11 14 12 + 0.25404557325008785E-001 14 12 14 12 + -0.12810340399712907E-009 1 1 14 13 + -0.33359248811053591E-005 1 10 14 13 + 0.25070655950959357E-004 1 11 14 13 + -0.18608409524755807E-004 1 12 14 13 + -0.44841190134330209E-003 1 13 14 13 + -0.55570364654331265E-004 1 14 14 13 + 0.40218363801355604E-009 2 2 14 13 + 0.39074247074206872E-009 2 9 14 13 + 0.21861761077951531E-003 2 10 14 13 + -0.16438918955403320E-002 2 11 14 13 + 0.12203304437253784E-002 2 12 14 13 + 0.29406644465272413E-001 2 13 14 13 + 0.36443085654406949E-002 2 14 14 13 + -0.16909585482007560E-001 3 3 14 13 + -0.11811018172483843E-001 3 4 14 13 + -0.63023340037651988E-002 3 5 14 13 + -0.46144785750665079E-003 3 6 14 13 + -0.13377529408061493E-002 3 7 14 13 + 0.46127683070104021E-002 3 8 14 13 + -0.11811052806364568E-001 4 3 14 13 + -0.12381530455618983E-001 4 4 14 13 + -0.28047182046779845E-002 4 5 14 13 + 0.41451852737267911E-003 4 6 14 13 + -0.15109350958123855E-002 4 7 14 13 + 0.35487215517732260E-002 4 8 14 13 + -0.63023074538642509E-002 5 3 14 13 + -0.28047099674355543E-002 5 4 14 13 + 0.29291117108056472E-001 5 5 14 13 + 0.46174973794503918E-004 5 6 14 13 + -0.63211230779496377E-002 5 7 14 13 + -0.23158015779841654E-002 5 8 14 13 + -0.28618034705042570E-003 6 3 14 13 + 0.25705200223144248E-003 6 4 14 13 + 0.28619293001029507E-004 6 5 14 13 + -0.15154690437795052E-002 6 6 14 13 + -0.31123319970077372E-003 6 7 14 13 + 0.74098857670525198E-004 6 8 14 13 + -0.82955462307538288E-003 7 3 14 13 + -0.93695517288112896E-003 7 4 14 13 + -0.39200314997905553E-002 7 5 14 13 + -0.31124204063326367E-003 7 6 14 13 + 0.10537583215898347E-001 7 7 14 13 + 0.12722893117585538E-001 7 8 14 13 + 0.28606101925079466E-002 8 3 14 13 + 0.22007077361855167E-002 8 4 14 13 + -0.14360638713487100E-002 8 5 14 13 + 0.74106538006036895E-004 8 6 14 13 + 0.12722885918548758E-001 8 7 14 13 + -0.90221133379532019E-002 8 8 14 13 + -0.28021527553809803E-009 9 2 14 13 + 0.31308537157992464E-009 9 9 14 13 + 0.17245936167376250E-004 9 10 14 13 + -0.12885082976965225E-003 9 11 14 13 + 0.95595895327953183E-004 9 12 14 13 + 0.23049141265603316E-002 9 13 14 13 + 0.28563030924450125E-003 9 14 14 13 + 0.38140884173045289E-004 10 1 14 13 + 0.39491194181958490E-003 10 2 14 13 + -0.58013897339417183E-004 10 9 14 13 + 0.15679829248498238E-002 10 10 14 13 + 0.15899035361847556E-002 10 11 14 13 + 0.25335494128397005E-003 10 12 14 13 + 0.73396295655847870E-003 10 13 14 13 + -0.27128340060393332E-004 10 14 14 13 + -0.28672555401421947E-003 11 1 14 13 + -0.29687052436754824E-002 11 2 14 13 + 0.43545820144688034E-003 11 9 14 13 + 0.15900069762131927E-002 11 10 14 13 + 0.38917804011247416E-002 11 11 14 13 + 0.14400622627995423E-001 11 12 14 13 + -0.13695483751864442E-003 11 13 14 13 + -0.51271885173139625E-003 11 14 14 13 + 0.21283888660427554E-003 12 1 14 13 + 0.22037139704013326E-002 12 2 14 13 + -0.32320400672416897E-003 12 9 14 13 + 0.25338777795548751E-003 12 10 14 13 + 0.14400704144880285E-001 12 11 14 13 + -0.54597664965650066E-002 12 12 14 13 + 0.30611849416781151E-003 12 13 14 13 + 0.31656432809436794E-003 12 14 14 13 + 0.51288958389379040E-002 13 1 14 13 + 0.53104513653000805E-001 13 2 14 13 + -0.77895280754409907E-002 13 9 14 13 + 0.73407916692672852E-003 13 10 14 13 + -0.13695492355270350E-003 13 11 14 13 + 0.30602651221447395E-003 13 12 14 13 + 0.28758425284974853E-008 13 13 14 13 + 0.37713779225777816E-001 13 14 14 13 + 0.63561212953905692E-003 14 1 14 13 + 0.65811180749437044E-002 14 2 14 13 + -0.96532795764212357E-003 14 9 14 13 + -0.27038335240103507E-004 14 10 14 13 + -0.51286685923553261E-003 14 11 14 13 + 0.31665712180277465E-003 14 12 14 13 + 0.37713772759432586E-001 14 13 14 13 + 0.78448158780692412 1 1 14 14 + -0.38091729021019635E-001 1 2 14 14 + 0.33655803006026427E-001 1 9 14 14 + 0.53848403870432753E-004 1 10 14 14 + -0.38559203765036230E-006 1 11 14 14 + -0.58438846095920020E-005 1 12 14 14 + -0.55570340870344400E-004 1 13 14 14 + 0.44696264835818324E-003 1 14 14 14 + 0.31044437919740975E-001 2 1 14 14 + 0.63497903984941917 2 2 14 14 + -0.15248958897362277 2 9 14 14 + -0.35323577136310014E-002 2 10 14 14 + 0.25378832597960845E-004 2 11 14 14 + 0.38298143673521750E-003 2 12 14 14 + 0.36443089564743552E-002 2 13 14 14 + -0.29311511176034644E-001 2 14 14 14 + 0.62005888187018676 3 3 14 14 + -0.25372692801204629E-001 3 4 14 14 + -0.19978806408410120E-003 3 5 14 14 + 0.11292515959203092 3 6 14 14 + 0.76484683879066442E-001 3 7 14 14 + -0.10368270752764189 3 8 14 14 + -0.25372672651532542E-001 4 3 14 14 + 0.62829782372564580 4 4 14 14 + -0.40867299802124606E-002 4 5 14 14 + -0.13696433375992800 4 6 14 14 + 0.50073417683044102E-001 4 7 14 14 + -0.93386330704123957E-001 4 8 14 14 + -0.19977746875068374E-003 5 3 14 14 + -0.40867416015123968E-002 5 4 14 14 + 0.60221091441393937 5 5 14 14 + 0.12332836408435075E-001 5 6 14 14 + -0.14039365860798605 5 7 14 14 + -0.90037824983418807E-001 5 8 14 14 + 0.83832806075053404E-001 6 3 14 14 + -0.10170636009120400 6 4 14 14 + 0.91657487315860032E-002 6 5 14 14 + 0.50430021495437849 6 6 14 14 + 0.34113188493485965E-003 6 7 14 14 + -0.20440568190039157E-003 6 8 14 14 + 0.57368345307978859E-001 7 3 14 14 + 0.37581422982071941E-001 7 4 14 14 + -0.10530323007575569 7 5 14 14 + 0.34113117111887509E-003 7 6 14 14 + 0.47838285009677073 7 7 14 14 + 0.25689496466388309E-003 7 8 14 14 + -0.77890784285852499E-001 8 3 14 14 + -0.70168523199780633E-001 8 4 14 14 + -0.67628458174071177E-001 8 5 14 14 + -0.20441353221957510E-003 8 6 14 14 + 0.25689428447035989E-003 8 7 14 14 + 0.47472708254493334 8 8 14 14 + -0.27382005332258107E-001 9 1 14 14 + -0.99578575319704710E-001 9 2 14 14 + 0.50334259547962379 9 9 14 14 + -0.27648901729252927E-003 9 10 14 14 + 0.19539808768438129E-005 9 11 14 14 + 0.30113885845491302E-004 9 12 14 14 + 0.28563026835406509E-003 9 13 14 14 + -0.22974835304496732E-002 9 14 14 14 + -0.61602987076089615E-003 10 1 14 14 + -0.63784627981771907E-002 10 2 14 14 + 0.93531540406020092E-003 10 9 14 14 + 0.59244811883936488 10 10 14 14 + 0.13386429283641188E-002 10 11 14 14 + 0.20340932330404054E-002 10 12 14 14 + 0.53926192941571308E-004 10 13 14 14 + -0.57715912773449014E-006 10 14 14 14 + 0.44210376157907674E-005 11 1 14 14 + 0.45784779518536635E-004 11 2 14 14 + -0.66882704943675664E-005 11 9 14 14 + 0.13386141224018908E-002 11 10 14 14 + 0.62007573988310194 11 11 14 14 + 0.73747651321929707E-003 11 12 14 14 + 0.10259134626190312E-002 11 13 14 14 + -0.54336791155621462E-008 11 14 14 14 + 0.66811926537920207E-004 12 1 14 14 + 0.69174580107878839E-003 12 2 14 14 + -0.10154167477452992E-003 12 9 14 14 + 0.20340205963331522E-002 12 10 14 14 + 0.73748332893964596E-003 12 11 14 14 + 0.61689222926326215 12 12 14 14 + -0.63341095170951908E-003 12 13 14 14 + 0.39885314747140240E-006 12 14 14 14 + 0.63561235361152485E-003 13 1 14 14 + 0.65811248283993299E-002 13 2 14 14 + -0.96532845435977268E-003 13 9 14 14 + 0.53926543862327161E-004 13 10 14 14 + 0.10259191326546378E-002 13 11 14 14 + -0.63341488912552256E-003 13 12 14 14 + 0.59226992088724817 13 13 14 14 + 0.40216889475146925E-008 13 14 14 14 + -0.51123086645987956E-002 14 1 14 14 + -0.52932763856870874E-001 14 2 14 14 + 0.77643549147127164E-002 14 9 14 14 + -0.34064696907252390E-006 14 10 14 14 + -0.33796111321610064E-008 14 11 14 14 + 0.21572639878652440E-006 14 12 14 14 + 0.30990446834171450E-008 14 13 14 14 + 0.66769746899193250 14 14 14 14 + 0.0000000000000000 0 0 0 0 + 4.0917349755104757 1 1 1 1 + -0.31096011982259913 1 1 1 2 + -0.31129032677083346 1 2 1 1 + 0.34048673413052774E-001 1 2 1 2 + 0.59520673883479138E-002 1 3 1 3 + 0.59520673883475201E-002 1 4 1 4 + 0.59520673883478306E-002 1 5 1 5 + 0.42950513842694429E-002 1 3 1 6 + 0.42372675079689771E-002 1 6 1 3 + -0.52179445649663571E-002 1 4 1 6 + -0.51477444587722902E-002 1 6 1 4 + 0.47222363584885433E-003 1 5 1 6 + 0.46587053091046344E-003 1 6 1 5 + 0.76329147878257605E-002 1 6 1 6 + 0.30919941059383595E-002 1 3 1 7 + 0.30503956734740491E-002 1 7 1 3 + 0.20314937729745981E-002 1 4 1 7 + 0.20041628811224895E-002 1 7 1 4 + -0.56753865540630421E-002 1 5 1 7 + -0.55990322092003978E-002 1 7 1 5 + 0.76329147878257449E-002 1 7 1 7 + -0.42295996375731944E-002 1 3 1 8 + -0.41726963224805900E-002 1 8 1 3 + -0.38135933981134299E-002 1 4 1 8 + -0.37622868619485942E-002 1 8 1 4 + -0.36693867796319156E-002 1 5 1 8 + -0.36200203407228604E-002 1 8 1 5 + 0.76329147878255168E-002 1 8 1 8 + 0.27832221582820960 1 1 1 9 + 0.27819979483846186 1 9 1 1 + -0.30960827979018501E-001 1 2 1 9 + -0.30843830611413544E-001 1 9 1 2 + 0.28101275444846946E-001 1 9 1 9 + 0.10845850431705964E-003 1 10 1 10 + 0.17024479013007716E-009 1 10 1 11 + 0.17024479012848088E-009 1 11 1 10 + 0.10845844362444403E-003 1 11 1 11 + 0.19058472638450765E-009 1 11 1 12 + 0.19058472638491410E-009 1 12 1 11 + 0.10845855258039512E-003 1 12 1 12 + -0.32214458532193599E-008 1 10 1 13 + -0.32214458532193061E-008 1 13 1 10 + 0.59875629499616222E-008 1 11 1 13 + 0.59875629499609017E-008 1 13 1 11 + -0.35121450689028134E-008 1 12 1 13 + -0.35121450689047449E-008 1 13 1 12 + 0.10834721012199849E-003 1 13 1 13 + -0.43297121912958123E-008 1 10 1 14 + -0.43297121912952837E-008 1 14 1 10 + 0.33756638576111431E-008 1 12 1 14 + 0.33756638576116600E-008 1 14 1 12 + 0.10834695476539261E-003 1 14 1 14 + -0.48821199055287084 1 1 2 1 + -0.48854219750110517 2 1 1 1 + 0.63195397323701885E-001 1 2 2 1 + 0.63195397323701885E-001 2 1 1 2 + -0.57150661507468996E-001 1 9 2 1 + -0.57267658875073950E-001 2 1 1 9 + 0.92342121234351010E-001 2 1 2 1 + 0.97904165855874770 1 1 2 2 + 0.97746975637672628 2 2 1 1 + -0.45266181851133090E-001 1 2 2 2 + -0.45392797878486921E-001 2 2 1 2 + 0.39982510187799414E-001 1 9 2 2 + 0.39719742409578068E-001 2 2 1 9 + 0.94178044846127962E-002 2 1 2 2 + 0.92911884572589622E-002 2 2 2 1 + 0.67535402936765343 2 2 2 2 + -0.13902242785882892E-003 1 3 2 3 + -0.13902242785881721E-003 2 3 1 3 + -0.10252649811724633E-002 1 6 2 3 + -0.86965149787381719E-003 2 3 1 6 + -0.73808506469114283E-003 1 7 2 3 + -0.62605940303638811E-003 2 3 1 7 + 0.10096410973488494E-002 1 8 2 3 + 0.85639898830865233E-003 2 3 1 8 + 0.11583493156558239 2 3 2 3 + -0.13902242785890882E-003 1 4 2 4 + -0.13902242785891132E-003 2 4 1 4 + 0.12455673652128618E-002 1 6 2 4 + 0.10565166515502727E-002 2 4 1 6 + -0.48493469310486383E-003 1 7 2 4 + -0.41133188977871742E-003 2 4 1 7 + 0.91033690023718794E-003 1 8 2 4 + 0.77216706256338886E-003 2 4 1 8 + 0.11583493156558090 2 4 2 4 + -0.13902242785893571E-003 1 5 2 5 + -0.13902242785894189E-003 2 5 1 5 + -0.11272376365293509E-003 1 6 2 5 + -0.95614686648751201E-004 2 5 1 6 + 0.13547626251476830E-002 1 7 2 5 + 0.11491383865230508E-002 2 5 1 7 + 0.87591356445983421E-003 1 8 2 5 + 0.74296845920688952E-003 2 5 1 8 + 0.11583493156558240 2 5 2 5 + 0.24670921323735112E-002 1 3 2 6 + 0.24089685118176595E-002 2 6 1 3 + -0.29972051162267654E-002 1 4 2 6 + -0.29265922637038925E-002 2 6 1 4 + 0.27124686353935872E-003 1 5 2 6 + 0.26485640508568158E-003 2 6 1 5 + 0.28064095504962529E-002 1 6 2 6 + 0.27988772206899537E-002 2 6 1 6 + 0.23581097769117470E-001 2 3 2 6 + 0.23145428214642900E-001 2 6 2 3 + -0.28648053290108270E-001 2 4 2 6 + -0.28118769847256399E-001 2 6 2 4 + 0.25926469160820319E-002 2 5 2 6 + 0.25447467997304287E-002 2 6 2 5 + 0.23223638720752775E-001 2 6 2 6 + 0.17760519373630098E-002 1 3 2 7 + 0.17342089240680596E-002 2 7 1 3 + 0.11668969369324341E-002 1 4 2 7 + 0.11394053512311748E-002 2 7 1 4 + -0.32599613515656577E-002 1 5 2 7 + -0.31831580761067630E-002 2 7 1 5 + 0.28064095504962902E-002 1 7 2 7 + 0.27988772206899871E-002 2 7 1 7 + 0.16975958793114511E-001 2 3 2 7 + 0.16662321638619512E-001 2 7 2 3 + 0.11153499455983273E-001 2 4 2 7 + 0.10947434403948922E-001 2 7 2 4 + -0.31159544609653270E-001 2 5 2 7 + -0.30583860430289218E-001 2 7 2 5 + 0.23223638720753441E-001 2 7 2 7 + -0.24294964263207202E-002 1 3 2 8 + -0.23722585442926113E-002 2 8 1 3 + -0.21905410265906254E-002 1 4 2 8 + -0.21389328301350307E-002 2 8 1 4 + -0.21077082541597495E-002 1 5 2 8 + -0.20580515618945248E-002 2 8 1 5 + 0.28064095504963301E-002 1 8 2 8 + 0.27988772206900300E-002 2 8 1 8 + -0.23221748392377197E-001 2 3 2 8 + -0.22792717951331448E-001 2 8 2 3 + -0.20937751548662911E-001 2 4 2 8 + -0.20550918799050577E-001 2 8 2 4 + -0.20146014718267460E-001 2 5 2 8 + -0.19773809601157089E-001 2 8 2 5 + 0.23223638720753049E-001 2 8 2 8 + -0.33864780648654935 1 1 2 9 + -0.33909923764786221 2 9 1 1 + -0.42876031214834952E-003 1 2 2 9 + -0.41055828336044280E-003 2 9 1 2 + 0.31157292765189343E-003 1 9 2 9 + 0.27369855027565258E-003 2 9 1 9 + 0.28295209345068954E-001 2 1 2 9 + 0.28313411373856862E-001 2 9 2 1 + -0.17235280559476535 2 2 2 9 + -0.17339830250485255 2 9 2 2 + 0.33611600234357856E-002 2 9 2 9 + -0.87077200814955635E-003 1 10 2 10 + -0.85206181267466908E-003 2 10 1 10 + 0.36633477771653283E-009 1 11 2 10 + 0.34382135846860705E-009 2 10 1 11 + -0.69319457802187860E-008 1 13 2 10 + -0.65059370833448940E-008 2 10 1 13 + -0.93167265627680172E-008 1 14 2 10 + -0.87441591094069641E-008 2 10 1 14 + 0.28347584655989393E-001 2 10 2 10 + 0.36633477837758176E-009 1 10 2 11 + 0.34382135914307916E-009 2 11 1 10 + -0.87077213874860247E-003 1 11 2 11 + -0.85206193524763377E-003 2 11 1 11 + 0.41010249741667677E-009 1 12 2 11 + 0.38489929530023802E-009 2 11 1 12 + 0.12884109687822500E-007 1 13 2 11 + 0.12092305632750582E-007 2 11 1 13 + -0.14965043542698546E-009 1 14 2 11 + -0.14045353906674903E-009 2 11 1 14 + 0.62638365830312880E-008 2 10 2 11 + 0.62638365830202757E-008 2 11 2 10 + 0.28347582422919248E-001 2 11 2 11 + 0.41010249800004569E-009 1 11 2 12 + 0.38489929588612441E-009 2 12 1 11 + -0.87077190429591647E-003 1 12 2 12 + -0.85206171520344203E-003 2 12 1 12 + -0.75574758355964014E-008 1 13 2 12 + -0.70930246505667352E-008 2 12 1 13 + 0.72637939292286356E-008 1 14 2 12 + 0.68173912186269474E-008 2 12 1 14 + 0.10776905728258525E-008 2 10 2 12 + 0.10776905727222715E-008 2 12 2 10 + 0.70122062373506149E-008 2 11 2 12 + 0.70122062372911290E-008 2 12 2 11 + 0.28347586431748169E-001 2 12 2 12 + -0.69319457803080256E-008 1 10 2 13 + -0.65059370834426974E-008 2 13 1 10 + 0.12884109687712773E-007 1 11 2 13 + 0.12092305632640757E-007 2 13 1 11 + -0.75574758358971113E-008 1 12 2 13 + -0.70930246508701756E-008 2 13 1 12 + -0.87101149233182026E-003 1 13 2 13 + -0.85228657915029581E-003 2 13 1 13 + -0.11852703595126424E-006 2 10 2 13 + -0.11852703595134543E-006 2 13 2 10 + 0.22030110745939745E-006 2 11 2 13 + 0.22030110745937596E-006 2 13 2 11 + -0.12922276637433932E-006 2 12 2 13 + -0.12922276637429429E-006 2 13 2 12 + 0.28343489795587928E-001 2 13 2 13 + -0.93167265643702577E-008 1 10 2 14 + -0.87441591110004366E-008 2 14 1 10 + -0.14965043607902875E-009 1 11 2 14 + -0.14045353971302514E-009 2 14 1 11 + 0.72637939302782103E-008 1 12 2 14 + 0.68173912197069996E-008 2 14 1 12 + -0.87101204181121378E-003 1 14 2 14 + -0.85228709486096161E-003 2 14 1 14 + -0.15930360962540251E-006 2 10 2 14 + -0.15930360962548001E-006 2 14 2 10 + -0.25588230326789982E-008 2 11 2 14 + -0.25588230326878991E-008 2 14 2 11 + 0.12420119714090866E-006 2 12 2 14 + 0.12420119714089685E-006 2 14 2 12 + 0.55401930020764270E-009 2 13 2 14 + 0.55401930033853142E-009 2 14 2 13 + 0.28343480400222099E-001 2 14 2 14 + 0.27851912370975365E-001 1 3 3 1 + 0.27851912370975365E-001 3 1 1 3 + 0.19489377116413124E-001 1 6 3 1 + 0.19547160992713593E-001 3 1 1 6 + 0.14030341847145820E-001 1 7 3 1 + 0.14071940279610130E-001 3 1 1 7 + -0.19192380954978692E-001 1 8 3 1 + -0.19249284270071294E-001 3 1 1 8 + 0.57780932421524468E-001 2 3 3 1 + 0.57780932421524454E-001 3 1 2 3 + 0.17617073736437013E-001 2 6 3 1 + 0.17675197356992862E-001 3 1 2 6 + 0.12682476478964975E-001 2 7 3 1 + 0.12724319492259925E-001 3 1 2 7 + -0.17348609370224630E-001 2 8 3 1 + -0.17405847252252738E-001 3 1 2 8 + 0.49751757353602807E-001 3 1 3 1 + 0.19158920111595808E-002 1 3 3 2 + 0.19158920111595925E-002 3 2 1 3 + 0.28190095113240788E-003 1 6 3 2 + 0.43751443443105402E-003 3 2 1 6 + 0.20293961617128995E-003 1 7 3 2 + 0.31496527782604467E-003 3 2 1 7 + -0.27760509806890786E-003 1 8 3 2 + -0.43084720710910487E-003 3 2 1 8 + 0.13184008592421625 2 3 3 2 + 0.13184008592421625 3 2 2 3 + 0.23657413879500076E-001 2 6 3 2 + 0.24093083433974646E-001 3 2 2 6 + 0.17030898523138681E-001 2 7 3 2 + 0.17344535677633680E-001 3 2 2 7 + -0.23296901531172604E-001 2 8 3 2 + -0.23725931972218353E-001 3 2 2 8 + 0.59835846860542864E-001 3 1 3 2 + 0.59835846860542878E-001 3 2 3 1 + 0.14784524028285012 3 2 3 2 + 0.95827892474502585 1 1 3 3 + 0.95425313532273759 3 3 1 1 + -0.40659490582347815E-001 1 2 3 3 + -0.40868016571671141E-001 3 3 1 2 + 0.35520427116810915E-001 1 9 3 3 + 0.35354739570755904E-001 3 3 1 9 + -0.17872862714143886E-003 1 10 3 3 + -0.18204576149517463E-003 3 3 1 10 + 0.58800453651808532E-003 1 11 3 3 + 0.59891705469041065E-003 3 3 1 11 + -0.54936563181229477E-003 1 12 3 3 + -0.55956084787700576E-003 3 3 1 12 + -0.40074326313209907E-003 1 13 3 3 + -0.40818857079215142E-003 3 3 1 13 + -0.12489329888254724E-003 1 14 3 3 + -0.12721316783468429E-003 3 3 1 14 + 0.15611490799887200E-001 2 1 3 3 + 0.15402964810563873E-001 3 3 2 1 + 0.65903090987226509 2 2 3 3 + 0.65896454838421381 3 3 2 2 + -0.17548118907700344 2 9 3 3 + -0.17248689653288324 3 3 2 9 + -0.73148069803413230E-002 2 10 3 3 + -0.73702467768777735E-002 3 3 2 10 + 0.24064894728646813E-001 2 11 3 3 + 0.24247278621241562E-001 3 3 2 11 + -0.22483437028540724E-001 2 12 3 3 + -0.22653832892624043E-001 3 3 2 12 + -0.16404923647047445E-001 2 13 3 3 + -0.16529342999896085E-001 3 3 2 13 + -0.51124219293004749E-002 2 14 3 3 + -0.51511904923069668E-002 3 3 2 14 + 0.69194203817576705 3 3 3 3 + -0.57152341239086275E-004 1 10 3 4 + -0.58212708778298014E-004 3 4 1 10 + -0.10826664568666657E-003 1 11 3 4 + -0.11027541694657131E-003 3 4 1 11 + 0.58403819405581503E-004 1 12 3 4 + 0.59487053563786383E-004 3 4 1 12 + -0.42131015199240699E-003 1 13 3 4 + -0.42913640944656226E-003 3 4 1 13 + 0.66753686003529584E-003 1 14 3 4 + 0.67993715215081726E-003 3 4 1 14 + -0.23388926916233861E-002 2 10 3 4 + -0.23566154961706600E-002 3 4 2 10 + -0.44307161028635817E-002 2 11 3 4 + -0.44642902440603172E-002 3 4 2 11 + 0.23899356642408803E-002 2 12 3 4 + 0.24080413595830735E-002 3 4 2 12 + -0.17246289134523762E-001 2 13 3 4 + -0.17377076882557449E-001 3 4 2 13 + 0.27325617141241106E-001 2 14 3 4 + 0.27532843176005375E-001 3 4 2 14 + -0.19321709646416178E-006 3 3 3 4 + -0.19321709647024832E-006 3 4 3 3 + 0.34408580504239554E-001 3 4 3 4 + 0.53493834310925942E-003 1 10 3 5 + 0.54486550204576949E-003 3 5 1 10 + -0.37086629941848330E-003 1 11 3 5 + -0.37774861212987491E-003 3 5 1 11 + -0.42529071832684597E-003 1 12 3 5 + -0.43318323527879326E-003 3 5 1 12 + -0.17275610602199724E-003 1 13 3 5 + -0.17596486249856275E-003 3 5 1 13 + -0.86198540333577988E-004 1 14 3 5 + -0.87799173327274900E-004 3 5 1 14 + 0.21892830120195869E-001 2 10 3 5 + 0.22058746484394480E-001 3 5 2 10 + -0.15178002333751960E-001 2 11 3 5 + -0.15293029163700674E-001 3 5 2 11 + -0.17405477380812846E-001 2 12 3 5 + -0.17537387700610980E-001 3 5 2 12 + -0.70715775510680305E-002 2 13 3 5 + -0.71252010940161276E-002 3 5 2 13 + -0.35282397246344833E-002 2 14 3 5 + -0.35549897245346169E-002 3 5 2 14 + -0.12820424072678002E-006 3 3 3 5 + -0.12820424072331725E-006 3 5 3 3 + -0.47181853536288112E-007 3 4 3 5 + -0.47181853536280449E-007 3 5 3 4 + 0.34409590721008347E-001 3 5 3 5 + 0.24341966643124235 1 1 3 6 + 0.24427969691600346 3 6 1 1 + 0.35044824471326154E-002 1 2 3 6 + 0.33420359553142515E-002 3 6 1 2 + -0.32420466614034370E-002 1 9 3 6 + -0.30952866593409248E-002 3 6 1 9 + -0.68413156218187932E-004 1 10 3 6 + -0.67578382851875388E-004 3 6 1 10 + 0.91974500970400488E-003 1 11 3 6 + 0.90852550175055536E-003 3 6 1 11 + -0.90390913429072258E-003 1 12 3 6 + -0.89288297947809434E-003 3 6 1 12 + 0.12480951365979306E-003 1 13 3 6 + 0.12328679965004850E-003 3 6 1 13 + -0.12812118125124347E-002 1 14 3 6 + -0.12655767108439952E-002 3 6 1 14 + -0.16848157811136865E-001 2 1 3 6 + -0.17010604302955229E-001 3 6 2 1 + 0.12276996581098164 2 2 3 6 + 0.12181024125813775 3 6 2 2 + -0.76303728588123145E-002 2 9 3 6 + -0.85374596009480403E-002 3 6 2 9 + -0.48864102966803609E-003 2 10 3 6 + -0.47843763661449383E-003 3 6 2 10 + 0.65686513026712414E-002 2 11 3 6 + 0.64315557088885436E-002 3 6 2 11 + -0.64555188121808178E-002 2 12 3 6 + -0.63207881347412363E-002 3 6 2 12 + 0.89141151162929833E-003 2 13 3 6 + 0.87280202930992503E-003 3 6 2 13 + -0.91514193898779329E-002 2 14 3 6 + -0.89602892852710756E-002 3 6 2 14 + 0.13335679090685471 3 3 3 6 + 0.13360478527981429 3 6 3 3 + -0.86889575363682092E-002 3 4 3 6 + -0.85382972835032940E-002 3 6 3 4 + 0.78634548740714333E-003 3 5 3 6 + 0.77271227363432434E-003 3 6 3 5 + 0.24857471577388102E-001 3 6 3 6 + 0.17523705924251573 1 1 3 7 + 0.17585619250819626 3 7 1 1 + 0.25228659919140405E-002 1 2 3 7 + 0.24059212687211297E-002 3 7 1 2 + -0.23339392876529962E-002 1 9 3 7 + -0.22282872195481247E-002 3 7 1 9 + -0.11687938185088046E-002 1 10 3 7 + -0.11545362844591048E-002 3 7 1 10 + 0.11682495198824859E-002 1 11 3 7 + 0.11539984921025434E-002 3 7 1 11 + 0.26301808488752275E-003 1 12 3 7 + 0.25980978410851976E-003 3 7 1 12 + -0.35170240166357183E-003 1 13 3 7 + -0.34740998095414991E-003 3 7 1 13 + 0.46041726119330951E-003 1 14 3 7 + 0.45479883381704445E-003 3 7 1 14 + -0.12128936300679927E-001 2 1 3 7 + -0.12245881023872836E-001 3 7 2 1 + 0.88381715772738664E-001 2 2 3 7 + 0.87690813058143510E-001 3 7 2 2 + -0.54930816408792528E-002 2 9 3 7 + -0.61460905595921694E-002 3 7 2 9 + -0.83473134407288790E-002 2 10 3 7 + -0.81730949493588455E-002 3 7 2 10 + 0.83434526108253082E-002 2 11 3 7 + 0.81693119421441633E-002 3 7 2 11 + 0.18784024745109895E-002 2 12 3 7 + 0.18392005549125374E-002 3 7 2 12 + -0.25122268039547801E-002 2 13 3 7 + -0.24597485644473503E-002 3 7 2 13 + 0.32886185016330880E-002 2 14 3 7 + 0.32199391704031727E-002 3 7 2 14 + 0.96003154858013431E-001 3 3 3 7 + 0.96181679674926482E-001 3 7 3 3 + 0.33828893494832805E-002 3 4 3 7 + 0.33242224482641037E-002 3 7 3 4 + -0.94504383036680233E-002 3 5 3 7 + -0.92866549668730782E-002 3 7 3 5 + 0.91321696643924463E-002 3 6 3 7 + 0.91321696643924411E-002 3 7 3 6 + 0.18746318388322986E-001 3 7 3 7 + -0.23971022481512871 1 1 3 8 + -0.24055714940373085 3 8 1 1 + -0.34510780808259525E-002 1 2 3 8 + -0.32911070906216458E-002 3 8 1 2 + 0.31926415209579230E-002 1 9 3 8 + 0.30481179760692024E-002 3 8 1 9 + -0.31201199425000872E-003 1 10 3 8 + -0.30820598194063951E-003 3 8 1 10 + -0.22504663830039416E-003 1 11 3 8 + -0.22230106182831991E-003 3 8 1 11 + 0.11551477361702259E-002 1 12 3 8 + 0.11410563620127706E-002 3 8 1 12 + 0.12418745062556162E-002 1 13 3 8 + 0.12267191502009194E-002 3 8 1 13 + -0.53680847867499835E-003 1 14 3 8 + -0.53025731992593851E-003 3 8 1 14 + 0.16591410857795870E-001 2 1 3 8 + 0.16751381848000176E-001 3 8 2 1 + -0.12089908977592367 2 2 3 8 + -0.11995399034457681 3 8 2 2 + 0.75140945685494521E-002 2 9 3 8 + 0.84073583301510577E-002 3 8 2 9 + -0.22283198337040332E-002 2 10 3 8 + -0.21818134926929749E-002 3 8 2 10 + -0.16073106104731844E-002 2 11 3 8 + -0.15737569767440679E-002 3 8 2 11 + 0.82499154739329172E-002 2 12 3 8 + 0.80777235535787386E-002 3 8 2 12 + 0.88705014232486126E-002 2 13 3 8 + 0.86852321281279381E-002 3 8 2 13 + -0.38343638698184000E-002 2 14 3 8 + -0.37542761251806696E-002 3 8 2 14 + -0.13132468651218962 3 3 3 8 + -0.13156886744948210 3 8 3 3 + -0.63504997930721018E-002 3 4 3 8 + -0.62403622195431937E-002 3 8 3 4 + -0.61101736427289994E-002 3 5 3 8 + -0.60042638558495901E-002 3 8 3 5 + -0.12492075235342029E-001 3 6 3 8 + -0.12492075235342027E-001 3 8 3 6 + -0.89929955325972599E-002 3 7 3 8 + -0.89929955325972668E-002 3 8 3 7 + 0.24473792540504399E-001 3 8 3 8 + -0.51349502709680537E-002 1 3 3 9 + -0.51349502709680528E-002 3 9 1 3 + -0.26048131807314724E-002 1 6 3 9 + -0.26483696387109576E-002 3 9 1 6 + -0.18751968908660428E-002 1 7 3 9 + -0.19065530492210665E-002 3 9 1 7 + 0.25651187609811226E-002 1 8 3 9 + 0.26080114675873164E-002 3 9 1 8 + -0.31135873760659766E-001 2 3 3 9 + -0.31135873760659759E-001 3 9 2 3 + -0.15641768134733339E-001 2 6 3 9 + -0.15666802942327949E-001 3 9 2 6 + -0.11260460132370372E-001 2 7 3 9 + -0.11278482612336351E-001 3 9 2 7 + 0.15403405201617600E-001 2 8 3 9 + 0.15428058506934662E-001 3 9 2 8 + -0.26511608713514864E-001 3 1 3 9 + -0.26511608713514864E-001 3 9 3 1 + -0.30203048764055405E-001 3 2 3 9 + -0.30203048764055399E-001 3 9 3 2 + 0.27259146395141751E-001 3 9 3 9 + 0.83996183668850284E-003 1 3 3 10 + 0.85226919281206461E-003 3 10 1 3 + 0.26856435260159018E-003 1 4 3 10 + 0.27249961669163119E-003 3 10 1 4 + -0.25139262478525663E-002 1 5 3 10 + -0.25507615599295770E-002 3 10 1 5 + 0.18375534911210800E-003 1 6 3 10 + 0.17861450776358092E-003 3 10 1 6 + 0.31390332308032062E-002 1 7 3 10 + 0.30512155693150017E-002 3 10 1 7 + 0.83796651312179147E-003 1 8 3 10 + 0.81452357155068953E-003 3 10 1 8 + -0.14561248335548860E-001 2 3 3 10 + -0.14438718062102788E-001 3 10 2 3 + -0.46558686113608574E-002 2 4 3 10 + -0.46166901999865123E-002 3 10 2 4 + 0.43580871818093794E-001 2 5 3 10 + 0.43214146296468033E-001 3 10 2 5 + -0.84626936754579184E-003 2 6 3 10 + -0.86512134636901631E-003 3 10 2 6 + -0.14456776834923949E-001 2 7 3 10 + -0.14778752389243506E-001 3 10 2 7 + -0.38592477385530123E-002 2 8 3 10 + -0.39451981691074152E-002 3 10 2 8 + -0.82876495482471224E-002 3 1 3 10 + -0.82753421921235599E-002 3 10 3 1 + -0.17367714375716607E-001 3 2 3 10 + -0.17245184102270533E-001 3 10 3 2 + 0.41599959344026998E-002 3 9 3 10 + 0.41548991651840540E-002 3 10 3 9 + 0.27864653570499186E-001 3 10 3 10 + -0.27633603397293439E-002 1 3 3 11 + -0.28038501877830409E-002 3 11 1 3 + 0.50876086418426693E-003 1 4 3 11 + 0.51621568749987082E-003 3 11 1 4 + 0.17428688386806096E-002 1 5 3 11 + 0.17684062640455794E-002 3 11 1 5 + -0.24701617855475188E-002 1 6 3 11 + -0.24010564875739139E-002 3 11 1 6 + -0.31375815617960376E-002 1 7 3 11 + -0.30498044568470460E-002 3 11 1 7 + 0.60443470134638922E-003 1 8 3 11 + 0.58752487999130202E-003 3 11 1 8 + 0.47904775565734990E-001 2 3 3 11 + 0.47501665331247743E-001 3 11 2 3 + -0.88199237242387110E-002 2 4 3 11 + -0.87457054562167114E-002 3 11 2 4 + -0.30214016984719039E-001 2 5 3 11 + -0.29959771219550447E-001 3 11 2 5 + 0.11376298277029361E-001 2 6 3 11 + 0.11629666579391870E-001 3 11 2 6 + 0.14450083536207432E-001 2 7 3 11 + 0.14771912403464088E-001 3 11 2 7 + -0.27836963984325075E-002 2 8 3 11 + -0.28456999295520609E-002 3 11 2 8 + 0.27265338112375130E-001 3 1 3 11 + 0.27224848264321432E-001 3 11 3 1 + 0.57137666652606563E-001 3 2 3 11 + 0.56734556418119315E-001 3 11 3 2 + -0.13685838139072346E-001 3 9 3 11 + -0.13669069537783567E-001 3 11 3 9 + -0.17344714528733790E-001 3 10 3 11 + -0.17344714452616771E-001 3 11 3 10 + 0.37995463926555041E-001 3 11 3 11 + 0.25817552445259002E-002 1 3 3 12 + 0.26195842558432770E-002 3 12 1 3 + -0.27441404453606473E-003 1 4 3 12 + -0.27843520518650901E-003 3 12 1 4 + 0.19986540499558484E-002 1 5 3 12 + 0.20279392563547936E-002 3 12 1 5 + 0.24276176803487990E-002 1 6 3 12 + 0.23597026715951692E-002 3 12 1 6 + -0.70637890739728851E-003 1 7 3 12 + -0.68661728811963692E-003 3 12 1 7 + -0.31024068929659267E-002 1 8 3 12 + -0.30156137653266947E-002 3 12 1 8 + -0.44756612267534440E-001 2 3 3 12 + -0.44379993199130607E-001 3 12 2 3 + 0.47574200843981665E-002 2 4 3 12 + 0.47173870165607866E-002 3 12 2 4 + -0.34648165871472923E-001 2 5 3 12 + -0.34356607580423540E-001 3 12 2 5 + -0.11180372238702592E-001 2 6 3 12 + -0.11429373752341846E-001 3 12 2 6 + 0.32532261264246556E-002 2 7 3 12 + 0.33256784275839681E-002 3 12 2 7 + 0.14288077380799324E-001 2 8 3 12 + 0.14606301123482983E-001 3 12 2 8 + -0.25473523543552701E-001 3 1 3 12 + -0.25435694532235324E-001 3 12 3 1 + -0.53382727260656994E-001 3 2 3 12 + -0.53006108192253161E-001 3 12 3 2 + 0.12786425344933303E-001 3 9 3 12 + 0.12770758430840284E-001 3 12 3 9 + -0.77390035941041109E-002 3 10 3 12 + -0.77390036976032603E-002 3 12 3 10 + -0.10012464886495482E-001 3 11 3 12 + -0.10012464756655771E-001 3 12 3 11 + 0.37474124763328433E-001 3 12 3 12 + 0.18840297300496721E-002 1 3 3 13 + 0.19116311198853946E-002 3 13 1 3 + 0.19806194564855376E-002 1 4 3 13 + 0.20096364986574864E-002 3 13 1 4 + 0.81211116004037453E-003 1 5 3 13 + 0.82400917059803624E-003 3 13 1 5 + -0.33521842763496431E-003 1 6 3 13 + -0.32584025626941946E-003 3 13 1 6 + 0.94473411716443161E-003 1 7 3 13 + 0.91830331048882538E-003 3 13 1 7 + -0.33357896067234853E-002 1 8 3 13 + -0.32424648486441658E-002 3 13 1 8 + -0.32657745343494339E-001 2 3 3 13 + -0.32382938853582295E-001 3 13 2 3 + -0.34332491060732814E-001 2 4 3 13 + -0.34043591635668204E-001 3 13 2 4 + -0.14077456280447881E-001 2 5 3 13 + -0.13958997846530687E-001 3 13 2 5 + 0.15438312113597535E-002 2 6 3 13 + 0.15782188219247942E-002 3 13 2 6 + -0.43508356788678195E-002 2 7 3 13 + -0.44477746804426916E-002 3 13 2 7 + 0.15362571395248459E-001 2 8 3 13 + 0.15704833880226077E-001 3 13 2 8 + -0.18587951627827663E-001 3 1 3 13 + -0.18560350237991938E-001 3 13 3 1 + -0.38952644789428718E-001 3 2 3 13 + -0.38677838299516674E-001 3 13 3 2 + 0.93306419144406922E-002 3 9 3 13 + 0.93192213188581785E-002 3 13 3 9 + 0.19236485463058867E-003 3 10 3 13 + 0.19236506081091975E-003 3 13 3 10 + -0.73513428161345769E-002 3 11 3 13 + -0.73513441824830869E-002 3 13 3 11 + 0.15699815680870061E-001 3 12 3 13 + 0.15699818219145543E-001 3 13 3 12 + 0.30592924673324001E-001 3 13 3 13 + 0.58712222842871565E-003 1 3 3 14 + 0.59572393233319496E-003 3 14 1 3 + -0.31381660801508430E-002 1 4 3 14 + -0.31841416801720278E-002 3 14 1 4 + 0.40517541740977772E-003 1 5 3 14 + 0.41111173889665293E-003 3 14 1 5 + 0.34414295108514343E-002 1 6 3 14 + 0.33451494144669000E-002 3 14 1 6 + -0.12366983975449770E-002 1 7 3 14 + -0.12020996548939141E-002 3 14 1 7 + 0.14419290061055713E-002 1 8 3 14 + 0.14015883649820919E-002 3 14 1 8 + -0.10177364503106237E-001 2 3 3 14 + -0.10091724447460230E-001 3 14 2 3 + 0.54397606849726707E-001 2 4 3 14 + 0.53939864477610566E-001 3 14 2 4 + -0.70236346979581539E-002 2 5 3 14 + -0.69645323528177688E-002 3 14 2 5 + -0.15849100953435336E-001 2 6 3 14 + -0.16202197253458245E-001 3 14 2 6 + 0.56954821000350410E-002 2 7 3 14 + 0.58223658162574639E-002 3 14 2 7 + -0.66406188921863188E-002 2 8 3 14 + -0.67885679184694668E-002 3 14 2 8 + -0.57926605239673771E-002 3 1 3 14 + -0.57840588200628977E-002 3 14 3 1 + -0.12139050093835814E-001 3 2 3 14 + -0.12053410038189808E-001 3 14 3 2 + 0.29077312656334594E-002 3 9 3 14 + 0.29041715198423542E-002 3 14 3 9 + -0.36142101162553340E-002 3 10 3 14 + -0.36142106571648356E-002 3 14 3 10 + -0.66376215650144309E-002 3 11 3 14 + -0.66376227969365178E-002 3 14 3 11 + 0.84179320675586387E-002 3 12 3 14 + 0.84179334274032697E-002 3 14 3 12 + -0.12624285400971876E-001 3 13 3 14 + -0.12624285564339002E-001 3 14 3 13 + 0.36469503646876129E-001 3 14 3 14 + 0.27851912370974743E-001 1 4 4 1 + 0.27851912370974743E-001 4 1 1 4 + -0.23677129864294461E-001 1 6 4 1 + -0.23747329970488527E-001 4 1 1 6 + 0.92181780167180632E-002 1 7 4 1 + 0.92455089085701717E-002 4 1 1 7 + -0.17304696324870226E-001 1 8 4 1 + -0.17356002861035065E-001 4 1 1 8 + 0.57780932421523608E-001 2 4 4 1 + 0.57780932421523615E-001 4 1 2 4 + -0.21402517904750694E-001 2 6 4 1 + -0.21473130757273567E-001 4 1 2 6 + 0.83326070846749707E-002 2 7 4 1 + 0.83600986703762301E-002 4 1 2 7 + -0.15642270623679906E-001 2 8 4 1 + -0.15693878820135503E-001 4 1 2 8 + -0.26459640434809682E-002 3 10 4 1 + -0.26498993075710093E-002 4 1 3 10 + -0.50124312543759356E-002 3 11 4 1 + -0.50198860776915401E-002 4 1 3 11 + 0.27036516951387543E-002 3 12 4 1 + 0.27076728557891986E-002 4 1 3 12 + -0.19512075773247099E-001 3 13 4 1 + -0.19541092815419048E-001 4 1 3 13 + 0.30915628350629158E-001 3 14 4 1 + 0.30961603950650344E-001 4 1 3 14 + 0.49751757353601961E-001 4 1 4 1 + 0.19158920111594594E-002 1 4 4 2 + 0.19158920111594568E-002 4 2 1 4 + -0.34247402515558936E-003 1 6 4 2 + -0.53152473881817853E-003 4 2 1 6 + 0.13333484877945252E-003 1 7 4 2 + 0.20693765210559893E-003 4 2 1 7 + -0.25030098827193853E-003 1 8 4 2 + -0.38847082594573761E-003 4 2 1 8 + 0.13184008592421459 2 4 4 2 + 0.13184008592421459 4 2 2 4 + -0.28740767718356739E-001 2 6 4 2 + -0.29270051161208611E-001 4 2 2 6 + 0.11189595811800603E-001 2 7 4 2 + 0.11395660863834953E-001 4 2 2 7 + -0.21005512930003047E-001 2 8 4 2 + -0.21392345679615381E-001 4 2 2 8 + -0.55140122481867320E-002 3 10 4 2 + -0.55531906595610771E-002 4 2 3 10 + -0.10445567562745480E-001 3 11 4 2 + -0.10519785830767479E-001 4 2 3 11 + 0.56342534040391421E-002 3 12 4 2 + 0.56742864718765220E-002 4 2 3 12 + -0.40661213846683197E-001 3 13 4 2 + -0.40950113271747808E-001 4 2 3 13 + 0.64425067917934939E-001 3 14 4 2 + 0.64882810290051079E-001 4 2 3 14 + 0.59835846860541969E-001 4 1 4 2 + 0.59835846860541962E-001 4 2 4 1 + 0.14784524028284823 4 2 4 2 + -0.57152341239086275E-004 1 10 4 3 + -0.58212708778298014E-004 4 3 1 10 + -0.10826664568666657E-003 1 11 4 3 + -0.11027541694657131E-003 4 3 1 11 + 0.58403819405581503E-004 1 12 4 3 + 0.59487053563786383E-004 4 3 1 12 + -0.42131015199240699E-003 1 13 4 3 + -0.42913640944656226E-003 4 3 1 13 + 0.66753686003529541E-003 1 14 4 3 + 0.67993715215081683E-003 4 3 1 14 + -0.23388926916233866E-002 2 10 4 3 + -0.23566154961706604E-002 4 3 2 10 + -0.44307161028635791E-002 2 11 4 3 + -0.44642902440603146E-002 4 3 2 11 + 0.23899356642408790E-002 2 12 4 3 + 0.24080413595830722E-002 4 3 2 12 + -0.17246289134523758E-001 2 13 4 3 + -0.17377076882557446E-001 4 3 2 13 + 0.27325617141241106E-001 2 14 4 3 + 0.27532843176005371E-001 4 3 2 14 + -0.19321709647003937E-006 3 3 4 3 + -0.19321709647615214E-006 4 3 3 3 + 0.34408580504239547E-001 3 4 4 3 + 0.34408580504239547E-001 4 3 3 4 + -0.47181853536719212E-007 3 5 4 3 + -0.47181853536724281E-007 4 3 3 5 + -0.85382972835032853E-002 3 6 4 3 + -0.86889575363682005E-002 4 3 3 6 + 0.33242224482641085E-002 3 7 4 3 + 0.33828893494832852E-002 4 3 3 7 + -0.62403622195432006E-002 3 8 4 3 + -0.63504997930721088E-002 4 3 3 8 + 0.34408580504239540E-001 4 3 4 3 + 0.95827892474501464 1 1 4 4 + 0.95425313532272649 4 4 1 1 + -0.40659490582347316E-001 1 2 4 4 + -0.40868016571670648E-001 4 4 1 2 + 0.35520427116810624E-001 1 9 4 4 + 0.35354739570755640E-001 4 4 1 9 + -0.15278567427143427E-004 1 10 4 4 + -0.15562538102298574E-004 4 4 1 10 + -0.47701591200011943E-003 1 11 4 4 + -0.48586797369542633E-003 4 4 1 11 + 0.61292491910475947E-003 1 12 4 4 + 0.62429948486117100E-003 4 4 1 12 + -0.35438338725284378E-003 1 13 4 4 + -0.36096568318910477E-003 4 4 1 13 + -0.35586128991670893E-003 1 14 4 4 + -0.36247223446089229E-003 4 4 1 14 + 0.15611490799886647E-001 2 1 4 4 + 0.15402964810563314E-001 4 4 2 1 + 0.65903090987225732 2 2 4 4 + 0.65896454838420604 4 4 2 2 + -0.17548118907700019 2 9 4 4 + -0.17248689653288010 4 4 2 9 + -0.62550289450971055E-003 2 10 4 4 + -0.63024813281725516E-003 4 4 2 10 + -0.19522206366757215E-001 2 11 4 4 + -0.19670154616770130E-001 4 4 2 11 + 0.25084581151966576E-001 2 12 4 4 + 0.25274688245575473E-001 4 4 2 12 + -0.14506291880848850E-001 2 13 4 4 + -0.14616292737554926E-001 4 4 2 13 + -0.14567373860611209E-001 2 14 4 4 + -0.14677851098732006E-001 4 4 2 14 + 0.62312283067590524 3 3 4 4 + 0.62312283067590524 4 4 3 3 + 0.20748977595391621E-006 3 4 4 4 + 0.20748977596048008E-006 4 4 3 4 + -0.11438821079535552E-006 3 5 4 4 + -0.11438821079875530E-006 4 4 3 5 + 0.11954881647104090 3 6 4 4 + 0.11905294756515514 4 4 3 6 + 0.86062759814741360E-001 3 7 4 4 + 0.85705755081745480E-001 4 4 3 7 + -0.11772697930615741 3 8 4 4 + -0.11723864300663273 4 4 3 8 + 0.20748977594593912E-006 4 3 4 4 + 0.20748977595255853E-006 4 4 4 3 + 0.69194200874159262 4 4 4 4 + 0.56349653308005853E-003 1 10 4 5 + 0.57395378652608058E-003 4 5 1 10 + 0.44698116511691498E-003 1 11 4 5 + 0.45527622487441809E-003 4 5 1 11 + 0.34178813508375667E-003 1 12 4 5 + 0.34813089677764974E-003 4 5 1 12 + -0.77099183173668685E-004 1 13 4 5 + -0.78531341520533734E-004 4 5 1 13 + 0.42117928330607824E-004 1 14 4 5 + 0.42900541829782626E-004 4 5 1 14 + 0.23061660067567116E-001 2 10 4 5 + 0.23236435855571402E-001 4 5 2 10 + 0.18293188429261791E-001 2 11 4 5 + 0.18431826558113210E-001 4 5 2 11 + 0.13987986290890500E-001 2 12 4 5 + 0.14093995262665285E-001 4 5 2 12 + -0.31560297459522031E-002 2 13 4 5 + -0.31799631940847345E-002 4 5 2 13 + 0.17242060502518548E-002 2 14 4 5 + 0.17372841612301505E-002 4 5 2 14 + -0.47181852891521418E-007 3 3 4 5 + -0.47181852888218585E-007 4 5 3 3 + -0.11438821208953430E-006 3 4 4 5 + -0.11438821208955820E-006 4 5 3 4 + -0.14272683959743279E-007 3 5 4 5 + -0.14272683959779635E-007 4 5 3 5 + -0.12427895835708779E-007 3 6 4 5 + -0.18633549228097292E-007 4 5 3 6 + 0.95342016108121052E-008 3 7 4 5 + 0.14294939052091097E-007 4 5 3 7 + -0.22071710226973180E-007 3 8 4 5 + -0.33092834239672390E-007 4 5 3 8 + -0.11438821208856671E-006 4 3 4 5 + -0.11438821208859224E-006 4 5 4 3 + -0.46003924276218048E-008 4 4 4 5 + -0.46003924244709258E-008 4 5 4 4 + 0.34409620155166035E-001 4 5 4 5 + -0.29572412803085518 1 1 4 6 + -0.29676895636750800 4 6 1 1 + -0.42575032291831891E-002 1 2 4 6 + -0.40601512738175569E-002 4 6 1 2 + 0.39386769197206541E-002 1 9 4 6 + 0.37603820667367858E-002 4 6 1 9 + 0.31668964965873079E-004 1 10 4 6 + 0.31282367238408109E-004 4 6 1 10 + 0.70515109431674734E-003 1 11 4 6 + 0.69654927619801073E-003 4 6 1 11 + -0.87894716694454124E-003 1 12 4 6 + -0.86822507840755663E-003 4 6 1 12 + 0.99642079791243962E-006 1 13 4 6 + 0.98458120236371813E-006 4 6 1 13 + 0.14969174296363150E-002 1 14 4 6 + 0.14786497071165138E-002 4 6 1 14 + 0.20468382241547584E-001 2 1 4 6 + 0.20665734196913216E-001 4 6 2 1 + -0.14914999112483587 2 2 4 6 + -0.14798404709615282 4 6 2 2 + 0.92699385933140577E-002 2 9 4 6 + 0.10371934335068184E-001 4 6 2 9 + 0.22623029343903580E-003 2 10 4 6 + 0.22150272664469504E-003 4 6 2 10 + 0.50360673338908160E-002 2 11 4 6 + 0.49309579005716959E-002 4 6 2 11 + -0.62773307256575707E-002 2 12 4 6 + -0.61463101087267788E-002 4 6 2 12 + 0.70537263093763532E-005 2 13 4 6 + 0.69130249612386845E-005 4 6 2 13 + 0.10692214660086465E-001 2 14 4 6 + 0.10468898689052309E-001 4 6 2 14 + -0.14463417637708276 3 3 4 6 + -0.14523663018665919 4 6 3 3 + 0.71522377939321124E-002 3 4 4 6 + 0.70281952469214513E-002 4 6 3 4 + -0.18633549631574134E-007 3 5 4 6 + -0.12427896246416096E-007 4 6 3 5 + -0.15411118751330857E-001 3 6 4 6 + -0.15411118751330832E-001 4 6 3 6 + -0.45017054660704790E-002 3 7 4 6 + -0.45017054660704643E-002 4 6 3 7 + 0.49794195484184570E-002 3 8 4 6 + 0.49794195484184466E-002 4 6 3 8 + 0.71522377939321003E-002 4 3 4 6 + 0.70281952469214391E-002 4 6 4 3 + -0.16201175101011409 4 4 4 6 + -0.16231299769283206 4 6 4 4 + 0.78635265010379689E-003 4 5 4 6 + 0.77271705089088322E-003 4 6 4 5 + 0.30894665018376653E-001 4 6 4 6 + 0.11513378824424705 1 1 4 7 + 0.11554056954161623 4 7 1 1 + 0.16575667278212742E-002 1 2 4 7 + 0.15807320157199913E-002 4 7 1 2 + -0.15334386052876610E-002 1 9 4 7 + -0.14640233635041383E-002 4 7 1 9 + -0.10744949901918348E-002 1 10 4 7 + -0.10613877386607209E-002 4 7 1 10 + -0.12116617503897871E-002 1 11 4 7 + -0.11968814016658454E-002 4 7 1 11 + -0.16217891988044413E-003 1 12 4 7 + -0.16020045812433482E-003 4 7 1 12 + -0.50015229469554934E-003 1 13 4 7 + -0.49404885073327720E-003 4 7 1 13 + 0.34774341995437582E-003 1 14 4 7 + 0.34349992969568327E-003 4 7 1 14 + -0.79689215837493079E-002 2 1 4 7 + -0.80457562958505917E-002 4 7 2 1 + 0.58068320664747326E-001 2 2 4 7 + 0.57614385594258140E-001 4 7 2 2 + -0.36090499417369272E-002 2 9 4 7 + -0.40380881308830375E-002 4 7 2 9 + -0.76738526684695853E-002 2 10 4 7 + -0.75136896611215772E-002 4 7 2 10 + -0.86534466371175744E-002 2 11 4 7 + -0.84728410492269698E-002 4 7 2 11 + -0.11582765938471739E-002 2 12 4 7 + -0.11340994462376163E-002 4 7 2 12 + -0.35724601330770342E-002 2 13 4 7 + -0.34978503020679902E-002 4 7 2 13 + 0.24838261621931432E-002 2 14 4 7 + 0.24319538456575021E-002 4 7 2 14 + 0.56310217745196733E-001 3 3 4 7 + 0.56544759502893067E-001 4 7 3 3 + 0.51487828578160276E-002 3 4 4 7 + 0.50595152678358755E-002 4 7 3 4 + 0.14294939061178335E-007 3 5 4 7 + 0.95342016194418704E-008 4 7 3 5 + -0.59273207594835123E-003 3 6 4 7 + -0.59273207594836555E-003 4 7 3 6 + 0.43193724338870618E-002 3 7 4 7 + 0.43193724338870584E-002 4 7 3 7 + -0.67569885028480638E-002 3 8 4 7 + -0.67569885028480586E-002 4 7 3 8 + 0.51487828578160319E-002 4 3 4 7 + 0.50595152678358799E-002 4 7 4 3 + 0.63075719729420637E-001 4 4 4 7 + 0.63193019840807801E-001 4 7 4 4 + -0.94504364846088543E-002 4 5 4 7 + -0.92866537536271405E-002 4 7 4 5 + -0.72892348413889033E-002 4 6 4 7 + -0.72892348413888912E-002 4 7 4 6 + 0.15010005469298785E-001 4 7 4 7 + -0.21613330081988347 1 1 4 8 + -0.21689692534621011 4 8 1 1 + -0.31116440592857883E-002 1 2 4 8 + -0.29674071658660466E-002 4 8 1 2 + 0.28786262696613046E-002 1 9 4 8 + 0.27483174735843784E-002 4 8 1 9 + -0.55768349742548308E-003 1 10 4 8 + -0.55088063598084807E-003 4 8 1 10 + 0.20093146905601777E-003 1 11 4 8 + 0.19848067356373892E-003 4 8 1 11 + -0.12110326094650200E-002 1 12 4 8 + -0.11962600411772604E-002 4 8 1 12 + 0.10780090085765694E-002 1 13 4 8 + 0.10648538939767678E-002 4 8 1 13 + -0.51145228514992225E-003 1 14 4 8 + -0.50521086793430296E-003 4 8 1 14 + 0.14959547081147124E-001 2 1 4 8 + 0.15103783974566864E-001 4 8 2 1 + -0.10900794640504864 2 2 4 8 + -0.10815580311471745 4 8 2 2 + 0.67750387494976963E-002 2 9 4 8 + 0.75804447160000756E-002 4 8 2 9 + -0.39828660547124965E-002 2 10 4 8 + -0.38997397078817759E-002 4 8 2 10 + 0.14349630468288781E-002 2 11 4 8 + 0.14050191696272380E-002 4 8 2 11 + -0.86489324291568921E-002 2 12 4 8 + -0.84684232471049815E-002 4 8 2 12 + 0.76999403865345394E-002 2 13 4 8 + 0.75391295664277158E-002 4 8 2 13 + -0.36531884595299696E-002 2 14 4 8 + -0.35768910369312341E-002 4 8 2 14 + -0.10570759004598415 3 3 4 8 + -0.10614787434466830 4 8 3 3 + -0.70431740476389190E-002 3 4 4 8 + -0.69210456467642010E-002 4 8 3 4 + -0.33092834316707085E-007 3 5 4 8 + -0.22071710304260913E-007 4 8 3 5 + -0.10665320916828629E-002 3 6 4 8 + -0.10665320916828595E-002 4 8 3 6 + -0.72600452089347234E-002 3 7 4 8 + -0.72600452089346982E-002 4 8 3 7 + 0.11091746317444830E-001 3 8 4 8 + 0.11091746317444810E-001 4 8 3 8 + -0.70431740476389259E-002 4 3 4 8 + -0.69210456467642080E-002 4 8 4 3 + -0.11840803545647227 4 4 4 8 + -0.11862822916885910 4 8 4 4 + -0.61101578297257063E-002 4 5 4 8 + -0.60042533091546283E-002 4 8 4 5 + 0.13683613664760799E-001 4 6 4 8 + 0.13683613664760799E-001 4 8 4 6 + -0.53274115159266406E-002 4 7 4 8 + -0.53274115159266441E-002 4 8 4 7 + 0.22172912018538413E-001 4 8 4 8 + -0.51349502709679314E-002 1 4 4 9 + -0.51349502709679288E-002 4 9 1 4 + 0.31645187829252488E-002 1 6 4 9 + 0.32174343741136640E-002 4 9 1 6 + -0.12320368915256141E-002 1 7 4 9 + -0.12526384315868634E-002 4 9 1 7 + 0.23128240993201244E-002 1 8 4 9 + 0.23514980535373287E-002 4 9 1 8 + -0.31135873760659283E-001 2 4 4 9 + -0.31135873760659287E-001 4 9 2 4 + 0.19002771264627495E-001 2 6 4 9 + 0.19033185391615977E-001 4 9 2 6 + -0.73983176733119511E-002 2 7 4 9 + -0.74101587553354002E-002 4 9 2 7 + 0.13888388835559040E-001 2 8 4 9 + 0.13910617341908358E-001 4 9 2 8 + 0.13284715773038275E-002 3 10 4 9 + 0.13301017211325141E-002 4 9 3 10 + 0.25166181545370207E-002 3 11 4 9 + 0.25197061613709015E-002 4 9 3 11 + -0.13574164095098928E-002 3 12 4 9 + -0.13590825855754999E-002 4 9 3 12 + 0.97970249783666599E-002 3 13 4 9 + 0.98090328051642015E-002 4 9 3 13 + -0.15522762326824435E-001 3 14 4 9 + -0.15541787778141580E-001 4 9 3 14 + -0.26511608713514441E-001 4 1 4 9 + -0.26511608713514441E-001 4 9 4 1 + -0.30203048764054937E-001 4 2 4 9 + -0.30203048764054941E-001 4 9 4 2 + 0.27259146395141563E-001 4 9 4 9 + 0.26856435260158519E-003 1 3 4 10 + 0.27249961669162631E-003 4 10 1 3 + 0.71839786419678592E-004 1 4 4 10 + 0.72892194198027484E-004 4 10 1 4 + -0.26481455059699423E-002 1 5 4 10 + -0.26869474025312829E-002 4 10 1 5 + -0.85075049669541559E-004 1 6 4 10 + -0.82694870384022225E-004 4 10 1 6 + 0.28857762430533197E-002 1 7 4 10 + 0.28050436954092832E-002 4 10 1 7 + 0.14977691255642928E-002 1 8 4 10 + 0.14558675215744891E-002 4 10 1 8 + -0.46558686113608531E-002 2 3 4 10 + -0.46166901999865088E-002 4 10 2 3 + -0.12452244641685216E-002 2 4 4 10 + -0.12347462597114996E-002 4 10 2 4 + 0.45907618038530017E-001 2 5 4 10 + 0.45521313389584844E-001 4 10 2 5 + 0.39179574611017344E-003 2 6 4 10 + 0.40052673623759379E-003 4 10 2 6 + -0.13290403802001619E-001 2 7 4 10 + -0.13586402754755677E-001 4 10 2 7 + -0.68979586926740371E-002 2 8 4 10 + -0.70515865210838196E-002 4 10 2 8 + -0.26498993075709915E-002 3 1 4 10 + -0.26459640434809504E-002 4 10 3 1 + -0.55531906595610754E-002 3 2 4 10 + -0.55140122481867311E-002 4 10 3 2 + 0.13301017211325048E-002 3 9 4 10 + 0.13284715773038188E-002 4 10 3 9 + 0.18231716083294842E-001 3 10 4 10 + 0.18231716151403874E-001 4 10 3 10 + -0.65753413816980709E-002 3 11 4 10 + -0.65753411122261660E-002 4 10 3 11 + -0.72797086812884503E-002 3 12 4 10 + -0.72797089115620387E-002 4 10 3 12 + -0.22305686991622910E-002 3 13 4 10 + -0.22305665007814335E-002 4 10 3 13 + -0.33654522634744312E-002 3 14 4 10 + -0.33654526693924643E-002 4 10 3 14 + -0.70875784667258476E-003 4 1 4 10 + -0.70770543889423594E-003 4 10 4 1 + -0.14852549439482862E-002 4 2 4 10 + -0.14747767394912641E-002 4 10 4 2 + 0.35578289754428240E-003 4 9 4 10 + 0.35534758966216740E-003 4 10 4 9 + 0.27845250018635970E-001 4 10 4 10 + 0.50876086418426508E-003 1 3 4 11 + 0.51621568749986746E-003 4 11 1 3 + 0.22417041456606109E-002 1 4 4 11 + 0.22745508239910444E-002 4 11 1 4 + -0.21005894628003665E-002 1 5 4 11 + -0.21313682675121572E-002 4 11 1 5 + -0.18938288622220246E-002 1 6 4 11 + -0.18408470522235888E-002 4 11 1 6 + 0.32541554017733059E-002 1 7 4 11 + 0.31631171255805559E-002 4 11 1 7 + -0.53962190788513242E-003 1 8 4 11 + -0.52452554482040816E-003 4 11 1 8 + -0.88199237242387318E-002 2 3 4 11 + -0.87457054562167444E-002 4 11 2 3 + -0.38861767996468954E-001 2 4 4 11 + -0.38534752854518108E-001 4 11 2 4 + 0.36415287499098552E-001 2 5 4 11 + 0.36108859191103758E-001 4 11 2 5 + 0.87220024907114970E-002 2 6 4 11 + 0.89162559955419680E-002 4 11 2 6 + -0.14986976808985473E-001 2 7 4 11 + -0.15320758801187695E-001 4 11 2 7 + 0.24852370547364050E-002 2 8 4 11 + 0.25405824802699961E-002 4 11 2 8 + -0.50198860776915427E-002 3 1 4 11 + -0.50124312543759399E-002 4 11 3 1 + -0.10519785830767492E-001 3 2 4 11 + -0.10445567562745504E-001 4 11 3 2 + 0.25197061613708820E-002 3 9 4 11 + 0.25166181545370021E-002 4 11 3 9 + 0.91886301384063989E-002 3 10 4 11 + 0.91886303780932873E-002 4 11 3 10 + -0.10371484440146865E-001 3 11 4 11 + -0.10371483628790102E-001 4 11 3 11 + -0.92494159657002008E-002 3 12 4 11 + -0.92494172541661389E-002 4 11 3 12 + 0.48107957633560430E-002 3 13 4 11 + 0.48107882709439373E-002 4 11 3 13 + -0.92598453580545401E-002 3 14 4 11 + -0.92598306358408818E-002 4 11 3 14 + -0.22118400290107646E-001 4 1 4 11 + -0.22085553611777213E-001 4 11 4 1 + -0.46351709539600758E-001 4 2 4 11 + -0.46024694397649911E-001 4 11 4 2 + 0.11102297864388055E-001 4 9 4 11 + 0.11088693778339350E-001 4 11 4 9 + 0.15480888526726600E-001 4 10 4 11 + 0.15480888442416621E-001 4 11 4 10 + 0.34730141412895564E-001 4 11 4 11 + -0.27441404453606489E-003 1 3 4 12 + -0.27843520518650890E-003 4 12 1 3 + -0.28804363269887548E-002 1 4 4 12 + -0.29226418442967464E-002 4 12 1 4 + -0.16062230145046299E-002 1 5 4 12 + -0.16297582009224812E-002 4 12 1 5 + 0.23606101698295653E-002 1 6 4 12 + 0.22945695850853328E-002 4 12 1 6 + 0.43557371259547078E-003 1 7 4 12 + 0.42338804240265850E-003 4 12 1 7 + 0.32524576546068746E-002 1 8 4 12 + 0.31614669185893464E-002 4 12 1 8 + 0.47574200843981430E-002 2 3 4 12 + 0.47173870165607640E-002 4 12 2 3 + 0.49934544114476211E-001 2 4 4 12 + 0.49514353590624761E-001 4 12 2 4 + 0.27845127496671642E-001 2 5 4 12 + 0.27610815550968205E-001 4 12 2 5 + -0.10871745197934764E-001 2 6 4 12 + -0.11113880820378161E-001 4 12 2 6 + -0.20060220901699012E-002 2 7 4 12 + -0.20507015896586715E-002 4 12 2 7 + -0.14979163933670476E-001 2 8 4 12 + -0.15312770028696857E-001 4 12 2 8 + 0.27076728557891916E-002 3 1 4 12 + 0.27036516951387478E-002 4 12 3 1 + 0.56742864718765020E-002 3 2 4 12 + 0.56342534040391230E-002 4 12 3 2 + -0.13590825855754932E-002 3 9 4 12 + -0.13574164095098862E-002 4 12 3 9 + 0.30924896774441918E-002 3 10 4 12 + 0.30924895105548180E-002 4 12 3 10 + -0.92583214921221658E-002 3 11 4 12 + -0.92583228507731527E-002 4 12 3 11 + -0.82634633767978902E-002 3 12 4 12 + -0.82634616679204062E-002 4 12 3 12 + -0.11580434306005357E-001 3 13 4 12 + -0.11580422127645477E-001 4 12 3 13 + 0.10681004300718215E-001 3 14 4 12 + 0.10680988372003056E-001 4 12 3 14 + 0.28420564296545874E-001 4 1 4 12 + 0.28378358779237882E-001 4 12 4 1 + 0.59558606765166992E-001 4 2 4 12 + 0.59138416241315543E-001 4 12 4 2 + -0.14265681291112647E-001 4 9 4 12 + -0.14248201596038044E-001 4 12 4 9 + 0.10494917014805615E-001 4 10 4 12 + 0.10494917139103605E-001 4 12 4 10 + -0.85127280311831539E-002 4 11 4 12 + -0.85127281407678321E-002 4 12 4 11 + 0.38046688483598601E-001 4 12 4 12 + 0.19806194564856482E-002 1 3 4 13 + 0.20096364986575974E-002 4 13 1 3 + 0.16659258624360958E-002 1 4 4 13 + 0.16903328649060855E-002 4 13 1 4 + 0.36244747221336136E-003 1 5 4 13 + 0.36775752321240843E-003 4 13 1 5 + -0.26520838097605564E-005 1 6 4 13 + -0.25780199788337544E-005 4 13 1 6 + 0.13434384092584056E-002 1 7 4 13 + 0.13058533775331723E-002 4 13 1 7 + -0.28955944091518179E-002 1 8 4 13 + -0.28145851128761131E-002 4 13 1 8 + -0.34332491060732918E-001 2 3 4 13 + -0.34043591635668294E-001 4 13 2 3 + -0.28877814062618752E-001 2 4 4 13 + -0.28634814154718378E-001 4 13 2 4 + -0.62827581651024277E-002 2 5 4 13 + -0.62298902963473330E-002 4 13 2 5 + 0.12232235457374359E-004 2 6 4 13 + 0.12499032768151892E-004 4 13 2 6 + -0.61870541182092106E-002 2 7 4 13 + -0.63248914468786764E-002 4 13 2 7 + 0.13335334349502417E-001 2 8 4 13 + 0.13632423290501100E-001 4 13 2 8 + -0.19541092815419003E-001 3 1 4 13 + -0.19512075773247053E-001 4 13 3 1 + -0.40950113271747871E-001 3 2 4 13 + -0.40661213846683246E-001 4 13 3 2 + 0.98090328051642205E-002 3 9 4 13 + 0.97970249783666773E-002 4 13 3 9 + 0.14316417895898878E-002 3 10 4 13 + 0.14316439155862169E-002 4 13 3 10 + -0.56063267204746262E-002 3 11 4 13 + -0.56063339094909025E-002 4 13 3 11 + 0.59121578518824131E-002 3 12 4 13 + 0.59121688966468130E-002 4 13 3 12 + 0.19345781455924516E-001 3 13 4 13 + 0.19345779804557296E-001 4 13 3 13 + -0.96028500158945249E-002 3 14 4 13 + -0.96028484528736923E-002 4 13 3 14 + -0.16436392177161155E-001 4 1 4 13 + -0.16411985174691165E-001 4 13 4 1 + -0.34443984658337562E-001 4 2 4 13 + -0.34200984750437188E-001 4 13 4 2 + 0.82505299955288949E-002 4 9 4 13 + 0.82404289619619955E-002 4 13 4 9 + -0.81409659883295853E-003 4 10 4 13 + -0.81409674690096604E-003 4 13 4 10 + 0.10515245735267855E-001 4 11 4 13 + 0.10515247378898937E-001 4 13 4 11 + -0.15648820979217437E-001 4 12 4 13 + -0.15648823352386345E-001 4 13 4 12 + 0.27154224008161625E-001 4 13 4 13 + -0.31381660801510429E-002 1 3 4 14 + -0.31841416801722190E-002 4 14 1 3 + 0.16729791474495120E-002 1 4 4 14 + 0.16974888698219177E-002 4 14 1 4 + -0.19802080688336598E-003 1 5 4 14 + -0.20092178975872812E-003 4 14 1 5 + -0.40208524574627414E-002 1 6 4 14 + -0.39083618576105459E-002 4 14 1 6 + -0.93405297358152572E-003 1 7 4 14 + -0.90792124727694101E-003 4 14 1 7 + 0.13737967513093863E-002 1 8 4 14 + 0.13353623598392503E-002 4 14 1 8 + 0.54397606849726582E-001 2 3 4 14 + 0.53939864477610490E-001 4 14 2 3 + -0.28999601418899085E-001 2 4 4 14 + -0.28755577095648476E-001 4 14 2 4 + 0.34324440815907131E-002 2 5 4 14 + 0.34035609894967791E-002 4 14 2 5 + 0.18517549156509765E-001 2 6 4 14 + 0.18930099934573820E-001 4 14 2 6 + 0.43016803686983431E-002 2 7 4 14 + 0.43975132217566031E-002 4 14 2 7 + -0.63268615887913339E-002 2 8 4 14 + -0.64678149822023313E-002 4 14 2 8 + 0.30961603950650035E-001 3 1 4 14 + 0.30915628350628860E-001 4 14 3 1 + 0.64882810290051010E-001 3 2 4 14 + 0.64425067917934925E-001 4 14 3 2 + -0.15541787778141596E-001 3 9 4 14 + -0.15522762326824445E-001 4 14 3 9 + -0.41082507311595946E-002 3 10 4 14 + -0.41082517705016992E-002 4 14 3 10 + 0.13461255644411654E-001 3 11 4 14 + 0.13461270994567164E-001 4 14 3 11 + -0.12607979947650434E-001 3 12 4 14 + -0.12607996227580857E-001 4 14 3 12 + -0.80327128201106036E-002 3 13 4 14 + -0.80327111621245305E-002 4 14 3 13 + -0.18942549722274989E-001 3 14 4 14 + -0.18942550659251014E-001 4 14 3 14 + -0.16505793939876875E-001 4 1 4 14 + -0.16481284217504468E-001 4 14 4 1 + -0.34589340192957167E-001 4 2 4 14 + -0.34345315869706558E-001 4 14 4 2 + 0.82854293689634748E-002 4 9 4 14 + 0.82752873546418949E-002 4 14 4 9 + -0.52378915676622607E-003 4 10 4 14 + -0.52378933828877761E-003 4 14 4 10 + 0.67875816073165295E-002 4 11 4 14 + 0.67875827511681176E-002 4 14 4 11 + -0.96137997058012535E-002 4 12 4 14 + -0.96138011146725891E-002 4 14 4 12 + -0.92436561949326059E-002 4 13 4 14 + -0.92436560164180451E-002 4 14 4 13 + 0.42620366657288071E-001 4 14 4 14 + 0.27851912370975316E-001 1 5 5 1 + 0.27851912370975316E-001 5 1 1 5 + 0.21427786768859376E-002 1 6 5 1 + 0.21491317818243287E-002 5 1 1 6 + -0.25752834817916417E-001 1 7 5 1 + -0.25829189162779063E-001 5 1 1 7 + -0.16650339270944524E-001 1 8 5 1 + -0.16699705709853577E-001 5 1 1 8 + 0.57780932421524121E-001 2 5 5 1 + 0.57780932421524128E-001 5 1 2 5 + 0.19369264459341555E-002 2 6 5 1 + 0.19433169043878327E-002 5 1 2 6 + -0.23278814258637173E-001 2 7 5 1 + -0.23355617534096068E-001 5 1 2 7 + -0.15050776272674832E-001 2 8 5 1 + -0.15100432964940057E-001 5 1 2 8 + 0.24767485767190726E-001 3 10 5 1 + 0.24804321079267739E-001 5 1 3 10 + -0.17170951375241557E-001 3 11 5 1 + -0.17196488800606528E-001 5 1 3 11 + -0.19690942047622020E-001 3 12 5 1 + -0.19720227254020964E-001 5 1 3 12 + -0.80005707084319401E-002 3 13 5 1 + -0.80124687189896005E-002 5 1 3 13 + -0.39916784775447835E-002 3 14 5 1 + -0.39976147990316586E-002 5 1 3 14 + 0.26089809775285661E-001 4 10 5 1 + 0.26128611671847001E-001 5 1 4 10 + 0.20695218037288778E-001 4 11 5 1 + 0.20725996842000570E-001 5 1 4 11 + 0.15824690456819109E-001 4 12 5 1 + 0.15848225643236961E-001 5 1 4 12 + -0.35706574872995099E-002 4 13 5 1 + -0.35759675382985570E-002 5 1 4 13 + 0.19507662906374744E-002 4 14 5 1 + 0.19536672735128366E-002 5 1 4 14 + 0.49751757353602793E-001 5 1 5 1 + 0.19158920111594707E-002 1 5 5 2 + 0.19158920111594644E-002 5 2 1 5 + 0.30993876483224073E-004 1 6 5 2 + 0.48102953487407954E-004 5 2 1 6 + -0.37249772458947767E-003 1 7 5 2 + -0.57812196321410983E-003 5 2 1 7 + -0.24083614623086669E-003 1 8 5 2 + -0.37378125148381143E-003 5 2 1 8 + 0.13184008592421628 2 5 5 2 + 0.13184008592421628 5 2 2 5 + 0.26010375656679192E-002 2 6 5 2 + 0.26489376820195225E-002 5 2 2 6 + -0.31260387041553032E-001 2 7 5 2 + -0.31836071220917084E-001 5 2 2 7 + -0.20211213781435072E-001 2 8 5 2 + -0.20583418898545442E-001 5 2 2 8 + 0.51613631765993255E-001 3 10 5 2 + 0.51980357287619017E-001 5 2 3 10 + -0.35783013345904092E-001 3 11 5 2 + -0.36037259111072681E-001 5 2 3 11 + -0.41034475019934021E-001 3 12 5 2 + -0.41326033310983404E-001 5 2 3 12 + -0.16672413460204604E-001 3 13 5 2 + -0.16790871894121796E-001 5 2 3 13 + -0.83182987433323367E-002 3 14 5 2 + -0.83774010884727218E-002 5 2 3 14 + 0.54369250035720407E-001 4 10 5 2 + 0.54755554684665579E-001 5 2 4 10 + 0.43127311442624119E-001 4 11 5 2 + 0.43433739750618913E-001 5 2 4 11 + 0.32977499196501649E-001 4 12 5 2 + 0.33211811142205082E-001 5 2 4 12 + -0.74408954318136780E-002 4 13 5 2 + -0.74937633005687726E-002 5 2 4 13 + 0.40651861110119793E-002 4 14 5 2 + 0.40940692031059128E-002 5 2 4 14 + 0.59835846860542524E-001 5 1 5 2 + 0.59835846860542517E-001 5 2 5 1 + 0.14784524028285018 5 2 5 2 + 0.53493834310925942E-003 1 10 5 3 + 0.54486550204576949E-003 5 3 1 10 + -0.37086629941848309E-003 1 11 5 3 + -0.37774861212987469E-003 5 3 1 11 + -0.42529071832684597E-003 1 12 5 3 + -0.43318323527879326E-003 5 3 1 12 + -0.17275610602199724E-003 1 13 5 3 + -0.17596486249856275E-003 5 3 1 13 + -0.86198540333577933E-004 1 14 5 3 + -0.87799173327274846E-004 5 3 1 14 + 0.21892830120195873E-001 2 10 5 3 + 0.22058746484394483E-001 5 3 2 10 + -0.15178002333751961E-001 2 11 5 3 + -0.15293029163700676E-001 5 3 2 11 + -0.17405477380812846E-001 2 12 5 3 + -0.17537387700610980E-001 5 3 2 12 + -0.70715775510680314E-002 2 13 5 3 + -0.71252010940161285E-002 5 3 2 13 + -0.35282397246344812E-002 2 14 5 3 + -0.35549897245346147E-002 5 3 2 14 + -0.12820424072002988E-006 3 3 5 3 + -0.12820424071650805E-006 5 3 3 3 + -0.47181853523828787E-007 3 4 5 3 + -0.47181853523821031E-007 5 3 3 4 + 0.34409590721008347E-001 3 5 5 3 + 0.34409590721008347E-001 5 3 3 5 + 0.77271227363431610E-003 3 6 5 3 + 0.78634548740713509E-003 5 3 3 6 + -0.92866549668730817E-002 3 7 5 3 + -0.94504383036680267E-002 5 3 3 7 + -0.60042638558495806E-002 3 8 5 3 + -0.61101736427289898E-002 5 3 3 8 + -0.47181853536084361E-007 4 3 5 3 + -0.47181853536079199E-007 5 3 4 3 + -0.11438821082811964E-006 4 4 5 3 + -0.11438821082470974E-006 5 3 4 4 + -0.14272683960664478E-007 4 5 5 3 + -0.14272683960623468E-007 5 3 4 5 + -0.12427896235472873E-007 4 6 5 3 + -0.18633549620623997E-007 5 3 4 6 + 0.95342016140488298E-008 4 7 5 3 + 0.14294939055800991E-007 5 3 4 7 + -0.22071710296170904E-007 4 8 5 3 + -0.33092834308620991E-007 5 3 4 8 + 0.34409590721008347E-001 5 3 5 3 + 0.56349653308005853E-003 1 10 5 4 + 0.57395378652608058E-003 5 4 1 10 + 0.44698116511691520E-003 1 11 5 4 + 0.45527622487441830E-003 5 4 1 11 + 0.34178813508375640E-003 1 12 5 4 + 0.34813089677764952E-003 5 4 1 12 + -0.77099183173668685E-004 1 13 5 4 + -0.78531341520533734E-004 5 4 1 13 + 0.42117928330607851E-004 1 14 5 4 + 0.42900541829782653E-004 5 4 1 14 + 0.23061660067567109E-001 2 10 5 4 + 0.23236435855571395E-001 5 4 2 10 + 0.18293188429261788E-001 2 11 5 4 + 0.18431826558113207E-001 5 4 2 11 + 0.13987986290890507E-001 2 12 5 4 + 0.14093995262665292E-001 5 4 2 12 + -0.31560297459522048E-002 2 13 5 4 + -0.31799631940847362E-002 5 4 2 13 + 0.17242060502518552E-002 2 14 5 4 + 0.17372841612301509E-002 5 4 2 14 + -0.47181852872818203E-007 3 3 5 4 + -0.47181852869525342E-007 5 4 3 3 + -0.11438821208977769E-006 3 4 5 4 + -0.11438821208979767E-006 5 4 3 4 + -0.14272683970019492E-007 3 5 5 4 + -0.14272683970061559E-007 5 4 3 5 + -0.12427895860267338E-007 3 6 5 4 + -0.18633549252641740E-007 5 4 3 6 + 0.95342015932185675E-008 3 7 5 4 + 0.14294939034502195E-007 5 4 3 7 + -0.22071710203639936E-007 3 8 5 4 + -0.33092834216345784E-007 5 4 3 8 + -0.11438821208881013E-006 4 3 5 4 + -0.11438821208883175E-006 5 4 4 3 + -0.46003924072354448E-008 4 4 5 4 + -0.46003924040552389E-008 5 4 4 4 + 0.34409620155166035E-001 4 5 5 4 + 0.34409620155166035E-001 5 4 4 5 + 0.77271705089091390E-003 4 6 5 4 + 0.78635265010382758E-003 5 4 4 6 + -0.92866537536271509E-002 4 7 5 4 + -0.94504364846088647E-002 5 4 4 7 + -0.60042533091546049E-002 4 8 5 4 + -0.61101578297256829E-002 5 4 4 8 + -0.14272683960720733E-007 5 3 5 4 + -0.14272683960767454E-007 5 4 5 3 + 0.34409620155166035E-001 5 4 5 4 + 0.95827892474502496 1 1 5 5 + 0.95425313532273670 5 5 1 1 + -0.40659490582347697E-001 1 2 5 5 + -0.40868016571671016E-001 5 5 1 2 + 0.35520427116810978E-001 1 9 5 5 + 0.35354739570755973E-001 5 5 1 9 + 0.19400719456857881E-003 1 10 5 5 + 0.19760829959746798E-003 5 5 1 10 + -0.11098862451799113E-003 1 11 5 5 + -0.11304908099501189E-003 5 5 1 11 + -0.63559287292579286E-004 1 12 5 5 + -0.64738636984272623E-004 5 5 1 12 + 0.75512665038413506E-003 1 13 5 5 + 0.76915425398045177E-003 5 5 1 13 + 0.48075458879927627E-003 1 14 5 5 + 0.48968540229559778E-003 5 5 1 14 + 0.15611490799887032E-001 2 1 5 5 + 0.15402964810563710E-001 5 5 2 1 + 0.65903090987226420 2 2 5 5 + 0.65896454838421292 5 5 2 2 + -0.17548118907700269 2 9 5 5 + -0.17248689653288252 5 5 2 9 + 0.79403098748512136E-002 2 10 5 5 + 0.80004949096952067E-002 5 5 2 10 + -0.45426883618893766E-002 2 11 5 5 + -0.45771240044712135E-002 5 5 2 11 + -0.26011441234276276E-002 2 12 5 5 + -0.26208553529532036E-002 5 5 2 12 + 0.30911215527894428E-001 2 13 5 5 + 0.31145635737449166E-001 5 5 2 13 + 0.19679795789911685E-001 2 14 5 5 + 0.19829041591038977E-001 5 5 2 14 + 0.62312384089268091 3 3 5 5 + 0.62312384089268102 5 5 3 3 + -0.14272685903284454E-007 3 4 5 5 + -0.14272685896710657E-007 5 5 3 4 + 0.24259245581036194E-006 3 5 5 5 + 0.24259245580677338E-006 5 5 3 5 + 0.11954863478639972 3 6 5 5 + 0.11905267515945213 5 5 3 6 + 0.86062739060944818E-001 3 7 5 5 + 0.85705723964901642E-001 5 5 3 7 + -0.11772682737444108 3 8 5 5 + -0.11723841521045940 5 5 3 8 + -0.14272685909549481E-007 4 3 5 5 + -0.14272685903034827E-007 5 5 4 3 + 0.62312387032683103 4 4 5 5 + 0.62312387032683114 5 5 4 4 + 0.51782247534864893E-007 4 5 5 5 + 0.51782247531676873E-007 5 5 4 5 + -0.14523648234328909 4 6 5 5 + -0.14463395471070079 5 5 4 6 + 0.56544692030726491E-001 4 7 5 5 + 0.56310116581978979E-001 5 5 4 7 + -0.10614771125763216 4 8 5 5 + -0.10570734552427700 5 5 4 8 + 0.24259245581968089E-006 5 3 5 5 + 0.24259245581609741E-006 5 5 5 3 + 0.51782247554411733E-007 5 4 5 5 + 0.51782247551200982E-007 5 5 5 4 + 0.69194099852483981 5 5 5 5 + 0.26763013904856747E-001 1 1 5 6 + 0.26857570799785218E-001 5 6 1 1 + 0.38530375888266654E-003 1 2 5 6 + 0.36744342005684734E-003 5 6 1 2 + -0.35644999909580750E-003 1 9 5 6 + -0.34031432676719130E-003 5 6 1 9 + -0.17386334846372300E-003 1 10 5 6 + -0.17174246145588683E-003 5 6 1 10 + -0.12548946157712488E-002 1 11 5 6 + -0.12395867557216426E-002 5 6 1 11 + -0.11484058735956224E-002 1 12 5 6 + -0.11343970447083597E-002 5 6 1 12 + 0.53349718251486521E-005 1 13 5 6 + 0.52697373226428753E-005 5 6 1 13 + -0.11452994155777023E-003 1 14 5 6 + -0.11313241364184307E-003 5 6 1 14 + -0.18523872305856728E-002 2 1 5 6 + -0.18702475694114921E-002 5 6 2 1 + 0.13498064270111939E-001 2 2 5 6 + 0.13392546413115590E-001 5 6 2 2 + -0.83892882573375900E-003 2 9 5 6 + -0.93865936701911540E-003 5 6 2 9 + -0.12417033845103368E-002 2 10 5 6 + -0.12157872374292833E-002 5 6 2 10 + -0.89622347209549515E-002 2 11 5 6 + -0.87751815597215520E-002 5 6 2 11 + -0.82017058869278733E-002 2 12 5 6 + -0.80305264579645531E-002 5 6 2 12 + 0.38132311865534604E-004 2 13 5 6 + 0.37333222287279861E-004 5 6 2 13 + -0.81803818580247312E-003 2 14 5 6 + -0.80095576567910552E-003 5 6 2 14 + 0.13089378744650253E-001 3 3 5 6 + 0.13143902303404816E-001 5 6 3 3 + -0.18633549407181829E-007 3 4 5 6 + -0.12427896018519046E-007 5 6 3 4 + 0.71519653882275045E-002 3 5 5 6 + 0.70280135622786347E-002 5 6 3 5 + 0.13947056998516146E-002 3 6 5 6 + 0.13947056998516150E-002 5 6 3 6 + -0.58477748203749139E-002 3 7 5 6 + -0.58477748203749121E-002 5 6 3 7 + -0.50234047109266444E-002 3 8 5 6 + -0.50234047109266435E-002 5 6 3 8 + -0.18633549405403142E-007 4 3 5 6 + -0.12427896016738308E-007 5 6 4 3 + 0.13089385907347194E-001 4 4 5 6 + 0.13143907080661668E-001 5 6 4 4 + -0.86887358699857357E-002 4 5 5 6 + -0.85381494401327081E-002 5 6 4 5 + -0.16943911418473899E-002 4 6 5 6 + -0.16943911418473871E-002 5 6 4 6 + 0.82589268603238137E-002 4 7 5 6 + 0.82589268603238120E-002 5 6 4 7 + 0.43169684690682678E-002 4 8 5 6 + 0.43169684690682660E-002 5 6 4 8 + 0.71519653882275011E-002 5 3 5 6 + 0.70280135622786313E-002 5 6 5 3 + -0.86887358699857375E-002 5 4 5 6 + -0.85381494401327099E-002 5 6 5 4 + 0.14662034642905421E-001 5 5 5 6 + 0.14689303455891147E-001 5 6 5 5 + 0.12325445910448872E-001 5 6 5 6 + -0.32164940026517763 1 1 5 7 + -0.32278582565630892 5 7 1 1 + -0.46307461261696579E-002 1 2 5 7 + -0.44160929001809688E-002 5 7 1 2 + 0.42839692435721237E-002 1 9 5 7 + 0.40900438005773386E-002 5 7 1 9 + 0.53558978035268411E-003 1 10 5 7 + 0.52905677482663392E-003 5 7 1 10 + 0.12344293720865135E-003 1 11 5 7 + 0.12193670464176520E-003 5 7 1 11 + -0.82009790546104308E-004 1 12 5 7 + -0.81009283336255970E-004 5 7 1 12 + -0.15702953610709728E-002 1 13 5 7 + -0.15511323623045698E-002 5 7 1 13 + -0.91805898602638155E-003 1 14 5 7 + -0.90685559961672273E-003 5 7 1 14 + 0.22262785644954763E-001 2 1 5 7 + 0.22477438870943452E-001 5 7 2 1 + -0.16222553605722301 2 2 5 7 + -0.16095737711440733 5 7 2 2 + 0.10082607086844383E-001 2 9 5 7 + 0.11281211582832662E-001 5 7 2 9 + 0.38250081718264415E-002 2 10 5 7 + 0.37451836565730247E-002 5 7 2 10 + 0.88168910845821480E-003 2 11 5 7 + 0.86327864171955834E-003 5 7 2 11 + -0.58572098476543713E-003 2 12 5 7 + -0.57349399515175246E-003 5 7 2 12 + -0.11216301324143155E-001 2 13 5 7 + -0.10982043406373538E-001 5 7 2 13 + -0.65574917944430889E-002 2 14 5 7 + -0.64205371939279809E-002 5 7 2 14 + -0.15731357818406497 3 3 5 7 + -0.15796893222415068 5 7 3 3 + 0.14294939443294905E-007 3 4 5 7 + 0.95342020083895332E-008 5 7 3 4 + 0.51487517409713060E-002 3 5 5 7 + 0.50594945140384163E-002 5 7 3 5 + -0.99103705643601644E-002 3 6 5 7 + -0.99103705643601575E-002 5 7 3 6 + -0.12067045472272568E-001 3 7 5 7 + -0.12067045472272591E-001 5 7 3 7 + 0.71317625387707778E-002 3 8 5 7 + 0.71317625387707579E-002 5 7 3 8 + 0.14294939432722763E-007 4 3 5 7 + 0.95342019977568345E-008 5 7 4 3 + -0.15731357636500393 4 4 5 7 + -0.15796893101090284 5 7 4 4 + 0.33827881862657561E-002 4 5 5 7 + 0.33241549760977675E-002 5 7 4 5 + 0.12764691291021927E-001 4 6 5 7 + 0.12764691291021922E-001 5 7 4 6 + -0.79282601246882280E-002 4 7 5 7 + -0.79282601246882262E-002 5 7 4 7 + 0.71663703583007901E-002 4 8 5 7 + 0.71663703583008161E-002 5 7 4 8 + 0.51487517409713199E-002 5 3 5 7 + 0.50594945140384302E-002 5 7 5 3 + 0.33827881862657887E-002 5 4 5 7 + 0.33241549760978000E-002 5 7 5 4 + -0.17621511927914243 5 5 5 7 + -0.17654268534691911 5 7 5 5 + -0.18429348230036317E-002 5 6 5 7 + -0.18429348230036293E-002 5 7 5 6 + 0.34321258648595754E-001 5 7 5 7 + -0.20796047031626641 1 1 5 8 + -0.20869521926535251 5 8 1 1 + -0.29939808422447508E-002 1 2 5 8 + -0.28551980999336826E-002 5 8 1 2 + 0.27697743505170030E-002 1 9 5 8 + 0.26443930306754718E-002 5 8 1 9 + -0.16163834066383381E-002 1 10 5 8 + -0.15966657359788863E-002 5 8 1 10 + 0.85588976197107112E-004 1 11 5 8 + 0.84544761685633385E-004 5 8 1 11 + 0.22986203167269011E-003 1 12 5 8 + 0.22705806468432062E-003 5 8 1 12 + -0.55099711819863470E-003 1 13 5 8 + -0.54427283190405643E-003 5 8 1 13 + -0.49230155030279281E-003 1 14 5 8 + -0.48629342076461450E-003 5 8 1 14 + 0.14393869130357782E-001 2 1 5 8 + 0.14532651872668849E-001 5 8 2 1 + -0.10488593713513895 2 2 5 8 + -0.10406601665661074 5 8 2 2 + 0.65188485041958299E-002 2 9 5 8 + 0.72937989766773716E-002 5 8 2 9 + -0.11543959537751442E-001 2 10 5 8 + -0.11303018764877926E-001 5 8 2 10 + 0.61129212221516262E-003 2 11 5 8 + 0.59853046864022830E-003 5 8 2 11 + 0.16416318385186913E-002 2 12 5 8 + 0.16073691179016266E-002 5 8 2 12 + -0.39357059603804751E-002 2 13 5 8 + -0.38535021041995977E-002 5 8 2 13 + -0.35164813750881516E-002 2 14 5 8 + -0.34430305235054397E-002 5 8 2 14 + -0.10171019057612345 3 3 5 8 + -0.10213388909570846 5 8 3 3 + -0.33092833778453746E-007 3 4 5 8 + -0.22071709757853974E-007 5 8 3 4 + -0.70429462514651547E-002 3 5 5 8 + -0.69208937150474189E-002 5 8 3 5 + -0.71875415484041732E-002 3 6 5 8 + -0.71875415484041654E-002 5 8 3 6 + 0.15731208145450194E-002 3 7 5 8 + 0.15731208145450095E-002 5 8 3 7 + 0.10672339772420060E-001 3 8 5 8 + 0.10672339772420061E-001 5 8 3 8 + -0.33092833784874149E-007 4 3 5 8 + -0.22071709764215575E-007 5 8 4 3 + -0.10171017476311914 4 4 5 8 + -0.10213387854901246 5 8 4 4 + -0.63502552713656114E-002 4 5 5 8 + -0.62401991325077141E-002 5 8 4 5 + 0.76108492748787008E-002 4 6 5 8 + 0.76108492748786973E-002 5 8 4 6 + 0.25908806161156002E-002 4 7 5 8 + 0.25908806161155924E-002 5 8 4 7 + 0.96226512665345595E-002 4 8 5 8 + 0.96226512665345820E-002 5 8 4 8 + -0.70429462514651443E-002 5 3 5 8 + -0.69208937150474084E-002 5 8 5 3 + -0.63502552713655906E-002 5 4 5 8 + -0.62401991325076933E-002 5 8 5 4 + -0.11393073194950153 5 5 5 8 + -0.11414254625695204 5 8 5 5 + -0.11915384294191715E-002 5 6 5 8 + -0.11915384294191736E-002 5 8 5 6 + 0.14320407048523325E-001 5 7 5 8 + 0.14320407048523340E-001 5 8 5 7 + 0.21430877947171807E-001 5 8 5 8 + -0.51349502709680424E-002 1 5 5 9 + -0.51349502709680424E-002 5 9 1 5 + -0.28638873924002493E-003 1 6 5 9 + -0.29117759672077641E-003 5 9 1 6 + 0.34419429196850650E-002 1 7 5 9 + 0.34994974664978836E-002 5 9 1 7 + 0.22253673340889785E-002 1 8 5 9 + 0.22625788775091308E-002 5 9 1 8 + -0.31135873760659481E-001 2 5 5 9 + -0.31135873760659474E-001 5 9 2 5 + -0.17197495347182684E-002 2 6 5 9 + -0.17225020111865130E-002 5 9 2 6 + 0.20668688826114320E-001 2 7 5 9 + 0.20701769270955156E-001 5 9 2 7 + 0.13363215493502188E-001 2 8 5 9 + 0.13384603454622919E-001 5 9 2 8 + -0.12435247451919391E-001 3 10 5 9 + -0.12450503224885046E-001 5 9 3 10 + 0.86211795443918889E-002 3 11 5 9 + 0.86317562515306478E-002 5 9 3 11 + 0.98864268611785749E-002 3 12 5 9 + 0.98985554756472437E-002 5 9 3 12 + 0.40170722431107538E-002 3 13 5 9 + 0.40219963367106142E-002 5 9 3 13 + 0.20041928539689556E-002 3 14 5 9 + 0.20066501765453244E-002 5 9 3 14 + -0.13099165815401333E-001 4 10 5 9 + -0.13115235914103409E-001 5 9 4 10 + -0.10390654367827348E-001 4 11 5 9 + -0.10403401546970888E-001 5 9 4 11 + -0.79452531717965503E-002 4 12 5 9 + -0.79550005399277451E-002 5 9 4 12 + 0.17928273596458091E-002 4 13 5 9 + 0.17950248100365169E-002 5 9 4 13 + -0.97949315551566492E-003 4 14 5 9 + -0.98069334476223410E-003 5 9 4 14 + -0.26511608713514625E-001 5 1 5 9 + -0.26511608713514628E-001 5 9 5 1 + -0.30203048764055117E-001 5 2 5 9 + -0.30203048764055111E-001 5 9 5 2 + 0.27259146395141778E-001 5 9 5 9 + -0.25139262478525706E-002 1 3 5 10 + -0.25507615599295839E-002 5 10 1 3 + -0.26481455059700113E-002 1 4 5 10 + -0.26869474025313488E-002 5 10 1 4 + -0.91180162310820279E-003 1 5 5 10 + -0.92516138701011425E-003 5 10 1 5 + 0.46694644978577241E-003 1 6 5 10 + 0.45388313977205637E-003 5 10 1 6 + -0.14384056373849194E-002 1 7 5 10 + -0.13981649311775287E-002 5 10 1 7 + 0.43411422907492546E-002 1 8 5 10 + 0.42196943113505707E-002 5 10 1 8 + 0.43580871818093822E-001 2 3 5 10 + 0.43214146296468081E-001 5 10 2 3 + 0.45907618038529795E-001 2 4 5 10 + 0.45521313389584664E-001 5 10 2 4 + 0.15806472799717669E-001 2 5 5 10 + 0.15673464321814577E-001 5 10 2 5 + -0.21505149830637164E-002 2 6 5 10 + -0.21984106532217853E-002 5 10 2 6 + 0.66245807616837149E-002 2 7 5 10 + 0.67721138483729801E-002 5 10 2 7 + -0.19993062234968429E-001 2 8 5 10 + -0.20438343549192019E-001 5 10 2 8 + 0.24804321079267656E-001 3 1 5 10 + 0.24767485767190643E-001 5 10 3 1 + 0.51980357287619086E-001 3 2 5 10 + 0.51613631765993345E-001 5 10 3 2 + -0.12450503224885079E-001 3 9 5 10 + -0.12435247451919420E-001 5 10 3 9 + -0.14016486296553944E-002 3 10 5 10 + -0.14016475708234694E-002 5 10 3 10 + 0.77501295205293788E-002 3 11 5 10 + 0.77501277834651407E-002 5 10 3 11 + -0.14841123860985364E-001 3 12 5 10 + -0.14841123689887506E-001 5 10 3 12 + -0.15185286164257556E-001 3 13 5 10 + -0.15185266669467241E-001 5 10 3 13 + 0.16757679428794938E-001 3 14 5 10 + 0.16757676006395723E-001 5 10 3 14 + 0.26128611671847032E-001 4 1 5 10 + 0.26089809775285695E-001 5 10 4 1 + 0.54755554684665385E-001 4 2 5 10 + 0.54369250035720254E-001 5 10 4 2 + -0.13115235914103362E-001 4 9 5 10 + -0.13099165815401288E-001 5 10 4 9 + 0.40922264527628654E-002 4 10 5 10 + 0.40922276495530601E-002 5 10 4 10 + -0.11276555880922154E-001 4 11 5 10 + -0.11276556081033551E-001 5 10 4 11 + 0.19311988419604492E-001 4 12 5 10 + 0.19311989504012608E-001 5 10 4 12 + -0.13223901434418048E-001 4 13 5 10 + -0.13223884253799075E-001 5 10 4 13 + 0.11182618598241810E-001 4 14 5 10 + 0.11182619072774579E-001 5 10 4 14 + 0.89964073949198985E-002 5 1 5 10 + 0.89830476310179871E-002 5 10 5 1 + 0.18852969319665246E-001 5 2 5 10 + 0.18719960841762154E-001 5 10 5 2 + -0.45157788319470623E-002 5 9 5 10 + -0.45102467548463017E-002 5 10 5 9 + 0.46530449390585565E-001 5 10 5 10 + 0.17428688386804177E-002 1 3 5 11 + 0.17684062640453857E-002 5 11 1 3 + -0.21005894628003496E-002 1 4 5 11 + -0.21313682675121377E-002 5 11 1 4 + 0.52165619406863584E-003 1 5 5 11 + 0.52929936379189700E-003 5 11 1 5 + 0.33702763337849183E-002 1 6 5 11 + 0.32759893997736738E-002 5 11 1 6 + -0.33156258216445595E-003 1 7 5 11 + -0.32228660842491150E-003 5 11 1 7 + -0.22987855273279875E-003 1 8 5 11 + -0.22344740009257465E-003 5 11 1 8 + -0.30214016984719160E-001 2 3 5 11 + -0.29959771219550561E-001 5 11 2 3 + 0.36415287499098586E-001 2 4 5 11 + 0.36108859191103800E-001 5 11 2 4 + -0.90430075692655622E-002 2 5 5 11 + -0.89669124767291324E-002 5 11 2 5 + -0.15521762498395297E-001 2 6 5 11 + -0.15867457438562764E-001 5 11 2 6 + 0.15269834269542432E-002 2 7 5 11 + 0.15609991836609694E-002 5 11 2 7 + 0.10586936692244594E-002 2 8 5 11 + 0.10822752807476232E-002 5 11 2 8 + -0.17196488800606560E-001 3 1 5 11 + -0.17170951375241592E-001 5 11 3 1 + -0.36037259111072778E-001 3 2 5 11 + -0.35783013345904183E-001 5 11 3 2 + 0.86317562515306843E-002 3 9 5 11 + 0.86211795443919270E-002 5 11 3 9 + 0.17568024218680481E-002 3 10 5 11 + 0.17568007741817274E-002 5 11 3 10 + -0.13144061020303632E-001 3 11 5 11 + -0.13144060240072839E-001 5 11 3 11 + 0.84854507693098834E-002 3 12 5 11 + 0.84854513319353939E-002 5 11 3 12 + -0.62092725554986688E-002 3 13 5 11 + -0.62092781963086355E-002 5 11 3 13 + 0.12322321490132395E-001 3 14 5 11 + 0.12322309495308355E-001 5 11 3 14 + 0.20725996842000619E-001 4 1 5 11 + 0.20695218037288830E-001 5 11 4 1 + 0.43433739750618976E-001 4 2 5 11 + 0.43127311442624189E-001 5 11 4 2 + -0.10403401546970881E-001 4 9 5 11 + -0.10390654367827334E-001 5 11 4 9 + -0.55355610090100180E-002 4 10 5 11 + -0.55355612540473730E-002 5 11 4 10 + -0.12991365131973348E-001 4 11 5 11 + -0.12991365923339101E-001 5 11 4 11 + 0.73964988515097278E-002 4 12 5 11 + 0.73964984068242085E-002 5 11 4 12 + 0.58667229775995070E-002 4 13 5 11 + 0.58667285309307905E-002 5 11 4 13 + -0.15258696824153272E-001 4 14 5 11 + -0.15258683130012243E-001 5 11 4 14 + -0.51469378222671483E-002 5 1 5 11 + -0.51392946525438870E-002 5 11 5 1 + -0.10785957113005241E-001 5 2 5 11 + -0.10709862020468811E-001 5 11 5 2 + 0.25835402746841279E-002 5 9 5 11 + 0.25803757594440595E-002 5 11 5 9 + 0.18638349805049292E-002 5 10 5 11 + 0.18638349886978757E-002 5 11 5 10 + 0.29514744439418154E-001 5 11 5 11 + 0.19986540499559047E-002 1 3 5 12 + 0.20279392563548517E-002 5 12 1 3 + -0.16062230145046110E-002 1 4 5 12 + -0.16297582009224632E-002 5 12 1 4 + 0.29868108246307594E-003 1 5 5 12 + 0.30305758845368858E-003 5 12 1 5 + 0.30842770521396857E-002 1 6 5 12 + 0.29979912518392987E-002 5 12 1 6 + 0.22026237409523237E-003 1 7 5 12 + 0.21410026322843102E-003 5 12 1 7 + -0.61734075980832972E-003 1 8 5 12 + -0.60007002366882674E-003 5 12 1 8 + -0.34648165871472805E-001 2 3 5 12 + -0.34356607580423436E-001 5 12 2 3 + 0.27845127496671743E-001 2 4 5 12 + 0.27610815550968306E-001 5 12 2 4 + -0.51779318469428407E-002 2 5 5 12 + -0.51343603914951819E-002 5 12 2 5 + -0.14204598123240063E-001 2 6 5 12 + -0.14520957204597812E-001 5 12 2 6 + -0.10144091583137985E-002 2 7 5 12 + -0.10370036501149912E-002 5 12 2 7 + 0.28431551804211537E-002 2 8 5 12 + 0.29064766972178063E-002 5 12 2 8 + -0.19720227254020874E-001 3 1 5 12 + -0.19690942047621927E-001 5 12 3 1 + -0.41326033310983314E-001 3 2 5 12 + -0.41034475019933944E-001 5 12 3 2 + 0.98985554756472575E-002 3 9 5 12 + 0.98864268611785853E-002 5 12 3 9 + -0.38866478122806204E-002 3 10 5 12 + -0.38866478097308466E-002 5 12 3 10 + -0.76948972186773549E-002 3 11 5 12 + -0.76948968934299122E-002 5 12 3 11 + 0.16372203145807125E-001 3 12 5 12 + 0.16372203312003435E-001 5 12 3 12 + -0.16263200068076928E-002 3 13 5 12 + -0.16263253917557720E-002 5 12 3 13 + 0.10462474819910436E-001 3 14 5 12 + 0.10462465014844798E-001 5 12 3 14 + 0.15848225643237041E-001 4 1 5 12 + 0.15824690456819189E-001 5 12 4 1 + 0.33211811142205207E-001 4 2 5 12 + 0.32977499196501774E-001 5 12 4 2 + -0.79550005399277521E-002 4 9 5 12 + -0.79452531717965520E-002 5 12 4 9 + 0.55529574698321305E-002 4 10 5 12 + 0.55529584425692393E-002 5 12 4 10 + -0.33725383069221990E-002 4 11 5 12 + -0.33725384225169173E-002 5 12 4 11 + 0.95056772663825399E-002 4 12 5 12 + 0.95056766827838063E-002 5 12 4 12 + 0.56318281962205643E-002 4 13 5 12 + 0.56318295589970410E-002 5 12 4 13 + -0.15392105056543469E-001 4 14 5 12 + -0.15392091604912762E-001 5 12 4 14 + -0.29470407529938358E-002 5 1 5 12 + -0.29426642470032232E-002 5 12 5 1 + -0.61758795045112032E-002 5 2 5 12 + -0.61323080490635444E-002 5 12 5 2 + 0.14792559461796534E-002 5 9 5 12 + 0.14774431651980609E-002 5 12 5 9 + -0.27559118759545968E-002 5 10 5 12 + -0.27559118967534326E-002 5 12 5 10 + 0.18525202968879714E-001 5 11 5 12 + 0.18525202948624694E-001 5 12 5 11 + 0.26719542278142754E-001 5 12 5 12 + 0.81211116004038450E-003 1 3 5 13 + 0.82400917059804514E-003 5 13 1 3 + 0.36244747221339177E-003 1 4 5 13 + 0.36775752321243813E-003 5 13 1 4 + -0.35499555924858226E-002 1 5 5 13 + -0.36019639847915319E-002 5 13 1 5 + -0.14340017889744385E-004 1 6 5 13 + -0.13938776519776348E-004 5 13 1 6 + 0.42179371543001019E-002 1 7 5 13 + 0.40999328358733936E-002 5 13 1 7 + 0.14800390890175048E-002 1 8 5 13 + 0.14386322597080888E-002 5 13 1 8 + -0.14077456280447910E-001 2 3 5 13 + -0.13958997846530726E-001 5 13 2 3 + -0.62827581651024094E-002 2 4 5 13 + -0.62298902963473235E-002 5 13 2 4 + 0.61535559406113188E-001 2 5 5 13 + 0.61017753008300778E-001 5 13 2 5 + 0.66033820036178606E-004 2 6 5 13 + 0.67507284025810333E-004 5 13 2 6 + -0.19425210103302858E-001 2 7 5 13 + -0.19857979077612810E-001 5 13 2 7 + -0.68161316639611834E-002 2 8 5 13 + -0.69679904875708286E-002 5 13 2 8 + -0.80124687189896578E-002 3 1 5 13 + -0.80005707084319956E-002 5 13 3 1 + -0.16790871894121821E-001 3 2 5 13 + -0.16672413460204635E-001 5 13 3 2 + 0.40219963367106029E-002 3 9 5 13 + 0.40170722431107442E-002 5 13 3 9 + 0.12496562994891039E-001 3 10 5 13 + 0.12496581936631787E-001 5 13 3 10 + -0.16771649288903647E-001 3 11 5 13 + -0.16771658367034221E-001 5 13 3 11 + -0.96557308957427052E-002 3 12 5 13 + -0.96557380526149546E-002 5 13 3 12 + -0.16772497849087695E-002 3 13 5 13 + -0.16772512974762301E-002 5 13 3 13 + -0.51352660973302293E-002 3 14 5 13 + -0.51352672828255891E-002 5 13 3 14 + -0.35759675382985535E-002 4 1 5 13 + -0.35706574872995073E-002 5 13 4 1 + -0.74937633005687570E-002 4 2 5 13 + -0.74408954318136711E-002 5 13 4 2 + 0.17950248100365234E-002 4 9 5 13 + 0.17928273596458158E-002 5 13 4 9 + 0.13022258063335049E-001 4 10 5 13 + 0.13022275529487003E-001 5 13 4 10 + 0.17442078725904055E-001 4 11 5 13 + 0.17442088225222977E-001 5 13 4 11 + 0.97574771629434145E-002 4 12 5 13 + 0.97574811309094310E-002 5 13 4 12 + 0.24446256185860649E-002 4 13 5 13 + 0.24446252563605072E-002 5 13 4 13 + -0.26988594310852422E-002 4 14 5 13 + -0.26988596976530643E-002 5 13 4 14 + 0.35024343804988839E-001 5 1 5 13 + 0.34972335412683131E-001 5 13 5 1 + 0.73396629447766426E-001 5 2 5 13 + 0.72878823049954022E-001 5 13 5 2 + -0.17581171909969578E-001 5 9 5 13 + -0.17559650280820158E-001 5 13 5 9 + 0.62156184916464840E-003 5 10 5 13 + 0.62156179105232420E-003 5 13 5 10 + -0.31635871425289251E-002 5 11 5 13 + -0.31635874198114940E-002 5 13 5 11 + -0.51179927804358514E-004 5 12 5 13 + -0.51180092910947004E-004 5 13 5 12 + 0.44487334781152618E-001 5 13 5 13 + 0.40517541740977886E-003 1 3 5 14 + 0.41111173889665396E-003 5 14 1 3 + -0.19802080688335785E-003 1 4 5 14 + -0.20092178975872002E-003 5 14 1 4 + -0.22601013758782886E-002 1 5 5 14 + -0.22932128021551706E-002 5 14 1 5 + 0.30762648641813231E-003 1 6 5 14 + 0.29902014087720768E-003 5 14 1 6 + 0.24659721548959714E-002 1 7 5 14 + 0.23969822199166766E-002 5 14 1 7 + 0.13223881296398417E-002 1 8 5 14 + 0.12853918129009112E-002 5 14 1 8 + -0.70236346979581617E-002 2 3 5 14 + -0.69645323528177731E-002 5 14 2 3 + 0.34324440815907153E-002 2 4 5 14 + 0.34035609894967817E-002 5 14 2 4 + 0.39176965922005411E-001 2 5 5 14 + 0.38847301543108823E-001 5 14 2 5 + -0.14167448688553062E-002 2 6 5 14 + -0.14483058036818509E-002 5 14 2 6 + -0.11356747781434189E-001 2 7 5 14 + -0.11609760112562593E-001 5 14 2 7 + -0.60900813280488500E-002 2 8 5 14 + -0.62257670118235232E-002 5 14 2 8 + -0.39976147990316794E-002 3 1 5 14 + -0.39916784775448043E-002 5 14 3 1 + -0.83774010884727426E-002 3 2 5 14 + -0.83182987433323540E-002 5 14 3 2 + 0.20066501765453096E-002 3 9 5 14 + 0.20041928539689417E-002 5 14 3 9 + 0.16085457903076795E-001 3 10 5 14 + 0.16085459877179964E-001 5 14 3 10 + -0.52771909854070183E-002 3 11 5 14 + -0.52772018670853467E-002 5 14 3 11 + -0.27537246976724779E-002 3 12 5 14 + -0.27537334903232160E-002 5 14 3 12 + -0.42751264938673868E-002 3 13 5 14 + -0.42751277775557386E-002 5 14 3 13 + -0.14924371093893998E-003 3 14 5 14 + -0.14924420363050838E-003 5 14 3 14 + 0.19536672735128301E-002 4 1 5 14 + 0.19507662906374679E-002 5 14 4 1 + 0.40940692031059198E-002 4 2 5 14 + 0.40651861110119862E-002 5 14 4 2 + -0.98069334476222542E-003 4 9 5 14 + -0.97949315551565646E-003 5 14 4 9 + 0.14489805547385817E-001 4 10 5 14 + 0.14489810127192146E-001 5 14 4 10 + 0.31683548950338048E-002 4 11 5 14 + 0.31683664883747336E-002 5 14 4 11 + 0.23723699220590672E-002 4 12 5 14 + 0.23723813338546967E-002 5 14 4 12 + -0.14890887411899562E-002 4 13 5 14 + -0.14890892406989997E-002 5 14 4 13 + -0.30511642057579761E-002 4 14 5 14 + -0.30511636653581340E-002 5 14 4 14 + 0.22298454463844295E-001 5 1 5 14 + 0.22265343037567411E-001 5 14 5 1 + 0.46728390286793070E-001 5 2 5 14 + 0.46398725907896482E-001 5 14 5 2 + -0.11193160634596850E-001 5 9 5 14 + -0.11179458874484162E-001 5 14 5 9 + 0.41377709293989829E-002 5 10 5 14 + 0.41377716518310338E-002 5 14 5 10 + -0.14996371008423344E-003 5 11 5 14 + -0.14996362201373894E-003 5 14 5 11 + 0.11960456665458048E-002 5 12 5 14 + 0.11960457155725172E-002 5 14 5 12 + 0.21867942390028119E-001 5 13 5 14 + 0.21867942374880683E-001 5 14 5 13 + 0.23144599691282897E-001 5 14 5 14 + 0.21345604996280351E-001 1 3 6 1 + 0.21287821119979882E-001 6 1 1 3 + -0.25932212123045986E-001 1 4 6 1 + -0.25862012016851919E-001 6 1 1 4 + 0.23468634712158045E-002 1 5 6 1 + 0.23405103662774134E-002 6 1 1 5 + 0.37402971647752109E-001 1 6 6 1 + 0.37402971647752109E-001 6 1 1 6 + 0.39248418747204264E-001 2 3 6 1 + 0.39092805263905621E-001 6 1 2 3 + -0.47681868029694853E-001 2 4 6 1 + -0.47492817316032269E-001 6 1 2 4 + 0.43152058832179136E-002 2 5 6 1 + 0.42980968062137298E-002 6 1 2 5 + 0.31155490870055251E-001 2 6 6 1 + 0.31163023199861549E-001 6 1 2 6 + 0.36597714604724496E-001 3 1 6 1 + 0.36539930728424028E-001 6 1 3 1 + 0.40555584679509135E-001 3 2 6 1 + 0.40399971196210492E-001 6 1 3 2 + -0.19039927496083402E-001 3 9 6 1 + -0.18996371038103914E-001 6 1 3 9 + -0.15808926635903636E-002 3 10 6 1 + -0.15757518222418365E-002 6 1 3 10 + 0.21252035692399911E-001 3 11 6 1 + 0.21182930394426307E-001 6 1 3 11 + -0.20886042798861137E-001 3 12 6 1 + -0.20818127790107506E-001 6 1 3 12 + 0.28840071982498871E-002 3 13 6 1 + 0.28746290268843420E-002 6 1 3 13 + -0.29607108065134866E-001 3 14 6 1 + -0.29510827968750333E-001 6 1 3 14 + -0.44461597528568153E-001 4 1 6 1 + -0.44391397422374086E-001 6 1 4 1 + -0.49269909420063304E-001 4 2 6 1 + -0.49080858706400721E-001 6 1 4 2 + 0.23131105383140515E-001 4 9 6 1 + 0.23078189791952100E-001 6 1 4 9 + 0.73188724249652587E-003 4 10 6 1 + 0.72950706321100653E-003 6 1 4 10 + 0.16293549041307913E-001 4 11 6 1 + 0.16240567231309476E-001 6 1 4 11 + -0.20309458602953592E-001 4 12 6 1 + -0.20243418018209360E-001 6 1 4 12 + 0.22879275962911145E-004 4 13 6 1 + 0.22805212131984341E-004 6 1 4 13 + 0.34591909978346928E-001 4 14 6 1 + 0.34479419378494733E-001 6 1 4 14 + 0.40237716171912788E-002 5 1 6 1 + 0.40174185122528886E-002 6 1 5 1 + 0.44589235233540728E-002 5 2 6 1 + 0.44418144463498890E-002 6 1 5 2 + -0.20933634976821910E-002 5 9 6 1 + -0.20885746402014398E-002 6 1 5 9 + -0.40173705465859294E-002 5 10 6 1 + -0.40043072365722136E-002 6 1 5 10 + -0.28996164815325548E-001 5 11 6 1 + -0.28901877881314302E-001 6 1 5 11 + -0.26535575734243130E-001 5 12 6 1 + -0.26449289933942743E-001 6 1 5 12 + 0.12334364686808060E-003 5 13 6 1 + 0.12294240549811256E-003 6 1 5 13 + -0.26465787425050472E-002 5 14 6 1 + -0.26379723969641223E-002 6 1 5 14 + 0.67173028507678464E-001 6 1 6 1 + 0.39779554557336106E-002 1 3 6 2 + 0.39198318351777589E-002 6 2 1 3 + -0.48327130906848023E-002 1 4 6 2 + -0.47621002381619294E-002 6 2 1 4 + 0.43736021306547528E-003 1 5 6 2 + 0.43096975461179814E-003 6 2 1 5 + 0.54436361134998093E-002 1 6 6 2 + 0.54361037836935097E-002 6 2 1 6 + 0.21324374384694804E-001 2 3 6 2 + 0.20888704830220234E-001 6 2 2 3 + -0.25906419613382539E-001 2 4 6 2 + -0.25377136170530668E-001 6 2 2 4 + 0.23445292508079553E-002 2 5 6 2 + 0.22966291344563520E-002 6 2 2 5 + 0.33745456045324765E-001 2 6 6 2 + 0.33745456045324765E-001 6 2 2 6 + 0.19186060680352956E-001 3 1 6 2 + 0.19127937059797106E-001 6 2 3 1 + 0.21836360049551959E-001 3 2 6 2 + 0.21400690495077389E-001 6 2 3 2 + -0.23807328153997134E-001 3 9 6 2 + -0.23782293346402524E-001 6 2 3 9 + -0.71334809764671367E-003 3 10 6 2 + -0.69449611882348909E-003 6 2 3 10 + 0.95902403014075845E-002 3 11 6 2 + 0.93368719990450759E-002 6 2 3 11 + -0.94251188220273330E-002 3 12 6 2 + -0.91761173083880782E-002 6 2 3 12 + 0.13013965516749193E-002 3 13 6 2 + 0.12670089411098784E-002 6 2 3 13 + -0.13359270532514338E-001 3 14 6 2 + -0.13006174232491429E-001 6 2 3 14 + -0.23308638731731602E-001 4 1 6 2 + -0.23238025879208729E-001 6 2 4 1 + -0.26528417484482873E-001 4 2 6 2 + -0.25999134041631001E-001 6 2 4 2 + 0.28922894613668707E-001 4 9 6 2 + 0.28892480486680226E-001 6 2 4 9 + 0.33021399813914609E-003 4 10 6 2 + 0.32148300801172573E-003 6 2 4 10 + 0.73526557203404388E-002 4 11 6 2 + 0.71584022155099679E-002 6 2 4 11 + -0.91648382764292977E-002 4 12 6 2 + -0.89227026539859013E-002 6 2 4 12 + 0.10390114529752331E-004 4 13 6 2 + 0.10123317218974798E-004 6 2 4 13 + 0.15608445287385579E-001 4 14 6 2 + 0.15195894509321522E-001 6 2 4 14 + 0.21094302539139474E-002 5 1 6 2 + 0.21030397954602703E-002 6 2 5 1 + 0.24008200167454463E-002 5 2 6 2 + 0.23529199003938430E-002 6 2 5 2 + -0.26175200375721012E-002 5 9 6 2 + -0.26147675611038570E-002 6 2 5 9 + -0.18128842856311878E-002 5 10 6 2 + -0.17649886154731188E-002 6 2 5 10 + -0.13084866738657708E-001 5 11 6 2 + -0.12739171798490241E-001 6 2 5 11 + -0.11974501816496737E-001 5 12 6 2 + -0.11658142735138988E-001 6 2 5 12 + 0.55627910588616406E-004 5 13 6 2 + 0.54154446598984692E-004 6 2 5 13 + -0.11942105468306749E-002 5 14 6 2 + -0.11626496120041303E-002 6 2 5 14 + 0.33800249762865095E-001 6 1 6 2 + 0.33792717433058797E-001 6 2 6 1 + 0.44267273369896755E-001 6 2 6 2 + 0.28635809305515897 1 1 6 3 + 0.28721812353992010 6 3 1 1 + 0.16187212719057742E-002 1 2 6 3 + 0.14562747800874101E-002 6 3 1 2 + -0.17917092093392528E-002 1 9 6 3 + -0.16449492072767408E-002 6 3 1 9 + -0.72423279940790391E-004 1 10 6 3 + -0.71588506574477847E-004 6 3 1 10 + 0.97369004114095494E-003 1 11 6 3 + 0.96247053318750542E-003 6 3 1 11 + -0.95692722569916714E-003 1 12 6 3 + -0.94590107088653890E-003 6 3 1 12 + 0.13212751216849810E-003 1 13 6 3 + 0.13060479815875354E-003 6 3 1 13 + -0.13562925959077570E-002 1 14 6 3 + -0.13406574942393175E-002 6 3 1 14 + -0.18733918986363708E-001 2 1 6 3 + -0.18896365478182072E-001 6 3 2 1 + 0.10362320881303524 2 2 6 3 + 0.10266348426019135 6 3 2 2 + -0.47589109535299906E-001 2 9 6 3 + -0.48496196277435628E-001 6 3 2 9 + -0.36597547787927835E-003 2 10 6 3 + -0.35577208482573619E-003 6 3 2 10 + 0.49205871801451181E-002 2 11 6 3 + 0.47834915863624204E-002 6 3 2 11 + -0.48358898902795882E-002 2 12 6 3 + -0.47011592128400068E-002 6 3 2 12 + 0.66769436728526951E-003 2 13 6 3 + 0.64908488496589621E-003 6 3 2 13 + -0.68535864797615578E-002 2 14 6 3 + -0.66624563751546996E-002 6 3 2 14 + 0.10902668631205067 3 3 6 3 + 0.10927468068501026 6 3 3 3 + -0.72234359672684245E-002 3 4 6 3 + -0.70727757144035093E-002 6 3 3 4 + 0.65373417677138171E-003 3 5 6 3 + 0.64010096299856273E-003 6 3 3 5 + 0.56018867819896838E-001 3 6 6 3 + 0.56018867819896838E-001 6 3 3 6 + 0.30083947897702613E-001 3 7 6 3 + 0.30083947897702617E-001 6 3 3 7 + -0.41152438839114944E-001 3 8 6 3 + -0.41152438839114944E-001 6 3 3 8 + -0.72234359672685823E-002 4 3 6 3 + -0.70727757144036672E-002 6 3 4 3 + 0.97133660389711496E-001 4 4 6 3 + 0.97629529295597262E-001 6 3 4 4 + 0.55610343665544902E-007 4 5 6 3 + 0.61815997057934332E-007 6 3 4 5 + -0.50768028545427633E-001 4 6 6 3 + -0.50768028545427654E-001 6 3 4 6 + 0.12058279677662138E-001 4 7 6 3 + 0.12058279677662154E-001 6 3 4 7 + -0.25183905271020095E-001 4 8 6 3 + -0.25183905271020098E-001 6 3 4 8 + 0.65373417677136577E-003 5 3 6 3 + 0.64010096299854679E-003 6 3 5 3 + 0.55610343641000454E-007 5 4 6 3 + 0.61815997033375776E-007 6 3 5 4 + 0.97134473362835733E-001 5 5 6 3 + 0.97630432989783328E-001 6 3 5 5 + 0.45945170282273339E-002 5 6 6 3 + 0.45945170282273339E-002 6 3 5 6 + -0.47209098323803093E-001 5 7 6 3 + -0.47209098323803100E-001 6 3 5 7 + -0.31434696781410205E-001 5 8 6 3 + -0.31434696781410212E-001 6 3 5 8 + 0.87180264062405574E-001 6 3 6 3 + -0.34788888923744865 1 1 6 4 + -0.34893371757410147 6 4 1 1 + -0.19665417493887256E-002 1 2 6 4 + -0.17691897940230934E-002 6 4 1 2 + 0.21767002288056087E-002 1 9 6 4 + 0.19984053758217400E-002 6 4 1 9 + 0.33523458894033427E-004 1 10 6 4 + 0.33136861166568458E-004 6 4 1 10 + 0.74650937803550353E-003 1 11 6 4 + 0.73790755991676692E-003 6 4 1 11 + -0.93049667971112848E-003 1 12 6 4 + -0.91977459117414386E-003 6 4 1 12 + 0.10581488629405713E-005 1 13 6 4 + 0.10463092673918498E-005 6 4 1 13 + 0.15846358854401039E-002 1 14 6 4 + 0.15663681629203027E-002 6 4 1 14 + 0.22759343721342050E-001 2 1 6 4 + 0.22956695676707682E-001 6 4 2 1 + -0.12588910139949519 2 2 6 4 + -0.12472315737081212 6 4 2 2 + 0.57814753127461427E-001 2 9 6 4 + 0.58916748869215552E-001 6 4 2 9 + 0.16938957986734133E-003 2 10 6 4 + 0.16466201307300057E-003 6 4 2 10 + 0.37725166037508836E-002 2 11 6 4 + 0.36674071704317639E-002 6 4 2 11 + -0.47022872752382015E-002 2 12 6 4 + -0.45712666583074095E-002 6 4 2 12 + 0.53726683521020910E-005 2 13 6 4 + 0.52319670039644274E-005 6 4 2 13 + 0.80074226511537214E-002 2 14 6 4 + 0.77841066801195664E-002 6 4 2 14 + -0.11800544078833022 3 3 6 4 + -0.11860789459790666 6 4 3 3 + 0.59455695170141064E-002 3 4 6 4 + 0.58215269700034452E-002 6 4 3 4 + 0.55610343287409753E-007 3 5 6 4 + 0.61815996672567031E-007 6 4 3 5 + -0.50768028545427515E-001 3 6 6 4 + -0.50768028545427495E-001 6 4 3 6 + -0.28840785466553494E-001 3 7 6 4 + -0.28840785466553481E-001 6 4 3 7 + 0.38074077147642278E-001 3 8 6 4 + 0.38074077147642271E-001 6 4 3 8 + 0.59455695170140942E-002 4 3 6 4 + 0.58215269700034331E-002 6 4 4 3 + -0.13245332873803670 4 4 6 4 + -0.13275457542075467 6 4 4 4 + 0.65371280027205487E-003 4 5 6 4 + 0.64007720105914120E-003 6 4 4 5 + 0.75906873177025852E-001 4 6 6 4 + 0.75906873177025852E-001 6 4 4 6 + -0.24012815099380400E-001 4 7 6 4 + -0.24012815099380413E-001 6 4 4 7 + 0.45077695528535584E-001 4 8 6 4 + 0.45077695528535584E-001 6 4 4 8 + 0.55610343309598926E-007 5 3 6 4 + 0.61815996694749289E-007 6 4 5 3 + 0.65371280027209748E-003 5 4 6 4 + 0.64007720105918381E-003 6 4 5 4 + -0.11800610233398837 5 5 6 4 + -0.11860862996657665 6 4 5 5 + -0.55817574248794950E-002 5 6 6 4 + -0.55817574248794976E-002 6 4 5 6 + 0.58200483007422310E-001 5 7 6 4 + 0.58200483007422310E-001 6 4 5 7 + 0.36878523062332455E-001 5 8 6 4 + 0.36878523062332462E-001 6 4 5 8 + -0.86124938339524296E-001 6 3 6 4 + -0.86124938339524268E-001 6 4 6 3 + 0.12091908133567505 6 4 6 4 + 0.31483921322224738E-001 1 1 6 5 + 0.31578478217153212E-001 6 5 1 1 + 0.17797189743634249E-003 1 2 6 5 + 0.16011155861052326E-003 6 5 1 2 + -0.19699122583645640E-003 1 9 6 5 + -0.18085555350784018E-003 6 5 1 9 + -0.18406065049733820E-003 1 10 6 5 + -0.18193976348950203E-003 6 5 1 10 + -0.13284965808346158E-002 1 11 6 5 + -0.13131887207850097E-002 6 5 1 11 + -0.12157623401468189E-002 1 12 6 5 + -0.12017535112595562E-002 6 5 1 12 + 0.56462549084516328E-005 1 13 6 5 + 0.55810204059458561E-005 6 5 1 13 + -0.12124283991060771E-003 1 14 6 5 + -0.11984531199468055E-003 6 5 1 14 + -0.20597190920319968E-002 2 1 6 5 + -0.20775794308578160E-002 6 5 2 1 + 0.11392955298098455E-001 2 2 6 5 + 0.11287437441102107E-001 6 5 2 2 + -0.52322313101712051E-002 2 9 6 5 + -0.53319618514565612E-002 6 5 2 9 + -0.93015769840722965E-003 2 10 6 5 + -0.90424155132617608E-003 6 5 2 10 + -0.67136158452934932E-002 2 11 6 5 + -0.65265626840600947E-002 6 5 2 11 + -0.61439104788119925E-002 2 12 6 5 + -0.59727310498486740E-002 6 5 2 12 + 0.28521116548335656E-004 2 13 6 5 + 0.27722026970080906E-004 6 5 2 13 + -0.61267140792999530E-003 2 14 6 5 + -0.59558898780662770E-003 6 5 2 14 + 0.10679498239975060E-001 3 3 6 5 + 0.10734021798729622E-001 6 5 3 3 + 0.55610343511350323E-007 3 4 6 5 + 0.61815996900016514E-007 6 5 3 4 + 0.59463824901366856E-002 3 5 6 5 + 0.58224306641878158E-002 6 5 3 5 + 0.45945170282273755E-002 3 6 6 5 + 0.45945170282273755E-002 6 5 3 6 + -0.47027030621289347E-002 3 7 6 5 + -0.47027030621289321E-002 6 5 3 7 + -0.87916228426927947E-002 3 8 6 5 + -0.87916228426927930E-002 6 5 3 8 + 0.55610343513129006E-007 4 3 6 5 + 0.61815996901797242E-007 6 5 4 3 + 0.10679476863476008E-001 4 4 6 5 + 0.10733998036790482E-001 6 5 4 4 + -0.72240975129261968E-002 4 5 6 5 + -0.70735110830731701E-002 6 5 4 5 + -0.55817574248795089E-002 4 6 6 5 + -0.55817574248795063E-002 6 5 4 6 + 0.11057273119799791E-001 4 7 6 5 + 0.11057273119799789E-001 6 5 4 7 + 0.24150892629158246E-002 4 8 6 5 + 0.24150892629158233E-002 6 5 4 8 + 0.59463824901366822E-002 5 3 6 5 + 0.58224306641878124E-002 6 5 5 3 + -0.72240975129261968E-002 5 4 6 5 + -0.70735110830731701E-002 6 5 5 4 + 0.11987071276711980E-001 5 5 6 5 + 0.12014340089697706E-001 6 5 5 5 + 0.14735284584184263E-001 5 6 6 5 + 0.14735284584184263E-001 6 5 5 6 + -0.60711327983219744E-002 5 7 6 5 + -0.60711327983219762E-002 6 5 5 7 + -0.39252566894212755E-002 5 8 6 5 + -0.39252566894212738E-002 6 5 5 8 + 0.77943283566030922E-002 6 3 6 5 + 0.77943283566030922E-002 6 5 6 3 + -0.94691237079116159E-002 6 4 6 5 + -0.94691237079116142E-002 6 5 6 4 + 0.17145123257919656E-001 6 5 6 5 + 0.84113809495549297 1 1 6 6 + 0.84262046548997915 6 6 1 1 + -0.49062106009096634E-001 1 2 6 6 + -0.49496351852313228E-001 6 6 1 2 + 0.42265479737550467E-001 1 9 6 6 + 0.42347463393151513E-001 6 6 1 9 + -0.48295284660959962E-004 1 10 6 6 + -0.47254902311006211E-004 6 6 1 10 + -0.28709126157976344E-004 1 11 6 6 + -0.28091126567612056E-004 6 6 1 11 + 0.14423364905752268E-004 1 12 6 6 + 0.14112183473210957E-004 6 6 1 12 + 0.47598391939941494E-004 1 13 6 6 + 0.46572944106500993E-004 6 6 1 13 + -0.11929244970940542E-002 1 14 6 6 + -0.11672247032140034E-002 6 6 1 14 + 0.15825892716179041E-001 2 1 6 6 + 0.15391646872962447E-001 6 6 2 1 + 0.53028889276412150 2 2 6 6 + 0.52875443026099511 6 6 2 2 + -0.17090484480875306 2 9 6 6 + -0.17133763699023180 6 6 2 9 + -0.86277761579949550E-003 2 10 6 6 + -0.83742354917793003E-003 6 6 2 10 + -0.51280992518975752E-003 2 11 6 6 + -0.49774403172938415E-003 6 6 2 11 + 0.25773868306547704E-003 2 12 6 6 + 0.25016066763494335E-003 6 6 2 12 + 0.85033954929843798E-003 2 13 6 6 + 0.82535033933752214E-003 6 6 2 13 + -0.21311411940742032E-001 2 14 6 6 + -0.20685128710129105E-001 6 6 2 14 + 0.52757119591807733 3 3 6 6 + 0.52427613518960026 6 6 3 3 + -0.22539916757285311E-001 3 4 6 6 + -0.22140492173284378E-001 6 6 3 4 + 0.20398741068401211E-002 3 5 6 6 + 0.20037288966431592E-002 6 6 3 5 + 0.11926852334950493 3 6 6 6 + 0.12212907387820475 6 6 3 6 + 0.81483071133217386E-001 3 7 6 6 + 0.83408081560614092E-001 6 6 3 7 + -0.11146230290576434 3 8 6 6 + -0.11409556472733974 6 6 3 8 + -0.22539916757285325E-001 4 3 6 6 + -0.22140492173284392E-001 6 6 4 3 + 0.53640104423702561 4 4 6 6 + 0.53294951188690443 6 6 4 4 + -0.24781891681781437E-002 4 5 6 6 + -0.24342772971797139E-002 6 6 4 5 + -0.14489618113372901 4 6 6 6 + -0.14837138848787970 6 6 4 6 + 0.53535796107823476E-001 4 7 6 6 + 0.54800563351411438E-001 6 6 4 7 + -0.10049932019154452 4 8 6 6 + -0.10287358363617247 6 6 4 8 + 0.20398741068401384E-002 5 3 6 6 + 0.20037288966431761E-002 6 6 5 3 + -0.24781891681780947E-002 5 4 6 6 + -0.24342772971796649E-002 6 6 5 4 + 0.50924217086130485 5 5 6 6 + 0.50627191500327218 6 6 5 5 + 0.13113099409568464E-001 5 6 6 6 + 0.13427607437891041E-001 6 6 5 6 + -0.14956300854749793 5 7 6 6 + -0.15309638673950232 6 6 5 7 + -0.96699056725319907E-001 5 8 6 6 + -0.98983540983828333E-001 6 6 5 8 + 0.62288685445274147E-001 6 3 6 6 + 0.65149235973973971E-001 6 6 6 3 + -0.75672879957027858E-001 6 4 6 6 + -0.79148087311178533E-001 6 6 6 4 + 0.68483942320874619E-002 6 5 6 6 + 0.71629022604100378E-002 6 6 6 5 + 0.46912636589753270 6 6 6 6 + 0.74928787059060840E-004 1 10 6 7 + 0.73316049036955161E-004 6 7 1 10 + 0.10172950787385949E-002 1 11 6 7 + 0.99539882056210718E-003 6 7 1 11 + 0.17289259504184407E-003 1 12 6 7 + 0.16917125165908089E-003 6 7 1 12 + 0.31922308804681022E-004 1 13 6 7 + 0.31235506716334597E-004 6 7 1 13 + -0.24140606204214389E-004 1 14 6 7 + -0.23620500518478501E-004 6 7 1 14 + 0.13383681217610619E-002 2 10 6 7 + 0.12990497287031289E-002 6 7 2 10 + 0.18170849756038113E-001 2 11 6 7 + 0.17637025732070301E-001 6 7 2 11 + 0.30881952977819837E-002 2 12 6 7 + 0.29974701322162101E-002 6 7 2 12 + 0.57015001656386948E-003 2 13 6 7 + 0.55340259109393783E-003 6 7 2 13 + -0.43127299201626917E-003 2 14 6 7 + -0.41859880708557898E-003 6 7 2 14 + 0.13356815316681588E-001 3 3 6 7 + 0.13120200370675118E-001 6 7 3 3 + -0.37255854269594379E-002 3 4 6 7 + -0.36595856212828033E-002 6 7 3 4 + -0.11524029935399659E-001 3 5 6 7 + -0.11319884639499430E-001 6 7 3 5 + 0.21890435883760322E-002 3 6 6 7 + 0.22562147630144041E-002 6 7 3 6 + 0.30407775851032941E-002 3 7 6 7 + 0.31340858620573014E-002 6 7 3 7 + 0.32866067940645692E-009 3 8 6 7 + 0.46928188378545978E-009 6 7 3 8 + -0.37255854269594361E-002 4 3 6 7 + -0.36595856212828016E-002 6 7 4 3 + -0.10661333483160387E-001 4 4 6 7 + -0.10472472455741524E-001 6 7 4 4 + 0.15374699770647975E-001 4 5 6 7 + 0.15102340070456063E-001 6 7 4 5 + 0.14382442780657531E-002 4 6 6 7 + 0.14823788995158211E-002 6 7 4 6 + -0.36941599835023640E-002 4 7 6 7 + -0.38075175549095105E-002 6 7 4 7 + 0.18931428038794673E-009 4 8 6 7 + 0.27031454339644219E-009 6 7 4 8 + -0.11524029935399659E-001 5 3 6 7 + -0.11319884639499430E-001 6 7 5 3 + 0.15374699770647978E-001 5 4 6 7 + 0.15102340070456067E-001 6 7 5 4 + -0.26954818335212013E-002 5 5 6 7 + -0.26477279149335836E-002 6 7 5 5 + -0.40180164399115058E-002 5 6 6 7 + -0.41413118330949940E-002 6 7 5 6 + 0.33431757480301892E-003 5 7 6 7 + 0.34457486242298860E-003 6 7 5 7 + -0.18435357339214755E-008 5 8 6 7 + -0.26323133999250721E-008 6 7 5 8 + 0.13124483075410221E-002 6 3 6 7 + 0.13796194821793940E-002 6 7 6 3 + 0.86230494155832235E-003 6 4 6 7 + 0.90643956300839044E-003 6 7 6 4 + -0.24090158658247166E-002 6 5 6 7 + -0.25323112590082053E-002 6 7 6 5 + -0.24924293441019287E-007 6 6 6 7 + -0.24924293435005790E-007 6 7 6 6 + 0.22206387107421365E-001 6 7 6 7 + 0.71984884733779654E-004 1 10 6 8 + 0.70435498766571066E-004 6 8 1 10 + -0.17623318771527822E-003 1 11 6 8 + -0.17243995316135503E-003 6 8 1 11 + 0.10164649342940134E-002 1 12 6 8 + 0.99458655340648426E-003 6 8 1 12 + -0.49199768928228348E-004 1 13 6 8 + -0.48140683757451466E-004 6 8 1 13 + 0.11660821296467394E-004 1 14 6 8 + 0.11410152636912820E-004 6 8 1 14 + 0.12857862238389794E-002 2 10 6 8 + 0.12480124791240609E-002 6 8 2 10 + -0.31478629621764643E-002 2 11 6 8 + -0.30553849759774451E-002 6 8 2 11 + 0.18156020392289692E-001 2 12 6 8 + 0.17622632103818123E-001 6 8 2 12 + -0.87881900715706138E-003 2 13 6 8 + -0.85300010469141843E-003 6 8 2 13 + 0.20823705192530724E-003 2 14 6 8 + 0.20212213309853111E-003 6 8 2 14 + -0.18271064032391170E-001 3 3 6 8 + -0.17947396504856470E-001 6 8 3 3 + 0.28615243340489719E-002 3 4 6 8 + 0.28108344050795302E-002 6 8 3 4 + -0.89299403322730224E-002 3 5 6 8 + -0.87717485003957069E-002 6 8 3 5 + -0.29944408483119191E-002 3 6 6 8 + -0.30863277639504904E-002 6 8 3 6 + 0.32866065445865548E-009 3 7 6 8 + 0.46928186055739190E-009 6 8 3 7 + 0.30407770956216466E-002 3 8 6 8 + 0.31340851631454524E-002 6 8 3 8 + 0.28615243340489706E-002 4 3 6 8 + 0.28108344050795288E-002 6 8 4 3 + 0.20013813922144914E-001 4 4 6 8 + 0.19659271888506507E-001 6 8 4 4 + 0.87228858476414480E-002 4 5 6 8 + 0.85683617375147680E-002 6 8 4 5 + -0.26999164429836581E-002 4 6 6 8 + -0.27827642942027035E-002 6 8 4 6 + 0.18931434431165797E-009 4 7 6 8 + 0.27031460514577302E-009 6 8 4 7 + -0.36941602443708150E-002 4 8 6 8 + -0.38075179273935633E-002 6 8 4 8 + -0.89299403322730207E-002 5 3 6 8 + -0.87717485003957051E-002 6 8 5 3 + 0.87228858476414480E-002 5 4 6 8 + 0.85683617375147680E-002 6 8 5 4 + -0.17427498897540079E-002 5 5 6 8 + -0.17118753836503230E-002 6 8 5 5 + -0.25978241848040062E-002 5 6 6 8 + -0.26775400772730755E-002 6 8 5 6 + -0.18435357340748814E-008 5 7 6 8 + -0.26323133971765694E-008 6 8 5 7 + 0.33432025355019076E-003 5 8 6 8 + 0.34457868730251504E-003 6 8 5 8 + -0.17953277933342360E-002 6 3 6 8 + -0.18872147089728072E-002 6 8 6 3 + -0.16187440200287164E-002 6 4 6 8 + -0.17015918712477616E-002 6 8 6 4 + -0.15575346136381242E-002 6 5 6 8 + -0.16372505061071933E-002 6 8 6 5 + -0.15923393892528171E-007 6 6 6 8 + -0.15923393896408747E-007 6 8 6 6 + -0.41939722105426490E-009 6 7 6 8 + -0.41939722211242660E-009 6 8 6 7 + 0.22206387599136918E-001 6 8 6 8 + -0.16132621079632716E-002 1 3 6 9 + -0.15467261475293256E-002 6 9 1 3 + 0.19599095552021882E-002 1 4 6 9 + 0.18790767729931911E-002 6 9 1 4 + -0.17737168430390288E-003 1 5 6 9 + -0.17005632289381900E-003 6 9 1 5 + -0.17714150320411789E-002 1 6 6 9 + -0.18326615128207570E-002 6 9 1 6 + -0.54127792968945959E-001 2 3 6 9 + -0.53289473468187458E-001 6 9 2 3 + 0.65758427051733750E-001 2 4 6 9 + 0.64739974816515139E-001 6 9 2 4 + -0.59511332716259734E-002 2 5 6 9 + -0.58589634121218349E-002 6 9 2 5 + -0.17625283780736373E-001 2 6 6 9 + -0.18035256946299771E-001 6 9 2 6 + -0.25879662991908539E-001 3 1 6 9 + -0.25813127031474592E-001 6 9 3 1 + -0.61569389909491970E-001 3 2 6 9 + -0.60731070408733469E-001 6 9 3 2 + 0.66499457903657763E-002 3 9 6 9 + 0.67423932074658138E-002 6 9 3 9 + 0.19434276864707999E-002 3 10 6 9 + 0.19155894184901790E-002 6 9 3 10 + -0.26125764670450791E-001 3 11 6 9 + -0.25751599445954218E-001 6 9 3 11 + 0.25675847050727053E-001 3 12 6 9 + 0.25308129281523220E-001 6 9 3 12 + -0.35453859351807691E-002 3 13 6 9 + -0.34946051312714907E-002 6 9 3 13 + 0.36396612523042909E-001 3 14 6 9 + 0.35875216503004313E-001 6 9 3 14 + 0.31440519511911826E-001 4 1 6 9 + 0.31359686729702824E-001 6 9 4 1 + 0.74799026764418255E-001 4 2 6 9 + 0.73780574529199644E-001 6 9 4 2 + -0.80788436248384887E-002 4 9 6 9 + -0.81911555518550169E-002 6 9 4 9 + -0.89971759773496392E-003 4 10 6 9 + -0.88682598308650700E-003 6 9 4 10 + -0.20030146779582245E-001 4 11 6 9 + -0.19743280405630153E-001 6 9 4 11 + 0.24967014511659055E-001 4 12 6 9 + 0.24609439087052265E-001 6 9 4 12 + -0.28140984732133318E-004 4 13 6 9 + -0.27744768962786801E-004 6 9 4 13 + -0.42524516218405126E-001 4 14 6 9 + -0.41915329363070526E-001 6 9 4 14 + -0.28453649233024462E-002 5 1 6 9 + -0.28380495618923625E-002 6 9 5 1 + -0.67693069439262706E-002 5 2 6 9 + -0.66771370844221321E-002 6 9 5 2 + 0.73113481036002576E-003 5 9 6 9 + 0.74129903228009446E-003 6 9 5 9 + 0.49386733486899738E-002 5 10 6 9 + 0.48679428475903045E-002 6 9 5 10 + 0.35645853373456951E-001 5 11 6 9 + 0.35135343693107425E-001 6 9 5 11 + 0.32620978775636307E-001 5 12 6 9 + 0.32153791039693909E-001 6 9 5 12 + -0.15162272367742475E-003 5 13 6 9 + -0.14944786200935971E-003 6 9 5 13 + 0.32534981887453406E-002 5 14 6 9 + 0.32068931911746795E-002 6 9 5 14 + -0.43936255440031061E-001 6 1 6 9 + -0.43997501920810637E-001 6 9 6 1 + -0.79417159913812915E-002 6 2 6 9 + -0.83516891569446888E-002 6 9 6 2 + 0.82153011357313302E-001 6 9 6 9 + -0.82810895418329803E-004 1 3 6 10 + -0.81609806003119564E-004 6 10 1 3 + 0.38332613440380522E-004 1 4 6 10 + 0.37776452048632853E-004 6 10 1 4 + -0.21045728981529437E-003 1 5 6 10 + -0.20740543442378446E-003 6 10 1 5 + -0.78822659654247809E-004 1 6 6 10 + -0.79369596921468098E-004 6 10 1 6 + 0.12228140921218829E-003 1 7 6 10 + 0.12312939267991130E-003 6 10 1 7 + 0.11747713361806813E-003 1 8 6 10 + 0.11829180508236318E-003 6 10 1 8 + -0.29397910583656085E-003 2 3 6 10 + -0.27846335826887508E-003 6 10 2 3 + 0.13605790818710061E-003 2 4 6 10 + 0.12887038080303237E-003 6 10 2 4 + -0.74720144064182800E-003 2 5 6 10 + -0.70778739461498032E-003 6 10 2 5 + -0.77931453578108034E-003 2 6 6 10 + -0.78111818160686434E-003 6 10 2 6 + 0.12089066066452256E-002 2 7 6 10 + 0.12117047558796441E-002 6 10 2 7 + 0.11614109272299884E-002 2 8 6 10 + 0.11640991403230353E-002 6 10 2 8 + -0.58277810982618119E-003 3 1 6 10 + -0.58157702041097099E-003 6 10 3 1 + -0.30310323259166841E-003 3 2 6 10 + -0.28758748502398263E-003 6 10 3 2 + 0.79189448668555049E-003 3 9 6 10 + 0.79341083128342006E-003 6 10 3 9 + 0.55814826723395042E-003 3 10 6 10 + 0.53431884368955549E-003 6 10 3 10 + -0.68598716174660330E-003 3 11 6 10 + -0.64660873578810038E-003 6 10 3 11 + -0.22061341665071248E-003 3 12 6 10 + -0.22130511413796921E-003 6 10 3 12 + 0.24528612296290635E-004 3 13 6 10 + 0.17505633848114691E-004 6 10 3 13 + 0.10671314485483889E-003 3 14 6 10 + 0.94562582517226113E-004 6 10 3 14 + 0.26979905423841821E-003 4 1 6 10 + 0.26924289284667051E-003 6 10 4 1 + 0.14028546025385719E-003 4 2 6 10 + 0.13309793286978895E-003 6 10 4 2 + -0.36660200005276248E-003 4 9 6 10 + -0.36730339672016153E-003 6 10 4 9 + -0.10126253193083333E-002 4 10 6 10 + -0.93881313556311915E-003 6 10 4 10 + -0.69788941034510798E-003 4 11 6 10 + -0.64448046683403780E-003 6 10 4 11 + -0.50846886646917656E-003 4 12 6 10 + -0.47183435635910539E-003 6 10 4 12 + 0.24935998620270377E-004 4 13 6 10 + 0.19527550393578273E-004 6 10 4 13 + -0.69847812442557671E-004 4 14 6 10 + -0.57498462510787770E-004 6 10 4 14 + -0.14809675225230172E-002 5 1 6 10 + -0.14779156671315072E-002 6 10 5 1 + -0.77037615180387234E-003 5 2 6 10 + -0.73096210577702466E-003 6 10 5 2 + 0.20124055628179863E-002 5 9 6 10 + 0.20162609308844730E-002 6 10 5 9 + -0.13158265544221216E-004 5 10 6 10 + -0.57873121020621109E-005 6 10 5 10 + 0.57342525497095594E-003 5 11 6 10 + 0.53096679869762758E-003 6 10 5 11 + -0.92054250679263401E-003 5 12 6 10 + -0.87057776274300025E-003 6 10 5 12 + -0.56168018199983961E-004 5 13 6 10 + -0.37468982257855105E-004 6 10 5 13 + 0.39711324208323734E-004 5 14 6 10 + 0.46831642814691307E-004 6 10 5 14 + -0.77213950986311129E-003 6 1 6 10 + -0.77268644713033164E-003 6 10 6 1 + -0.10536683500698835E-002 6 2 6 10 + -0.10554719958956675E-002 6 10 6 2 + -0.15427048490772609E-003 6 9 6 10 + -0.16813124571012734E-003 6 10 6 9 + 0.34024219312283120E-002 6 10 6 10 + 0.11133291625965846E-002 1 3 6 11 + 0.10971847864793311E-002 6 11 1 3 + 0.85356817506406803E-003 1 4 6 11 + 0.84119055502728912E-003 6 11 1 4 + -0.15190194789266598E-002 1 5 6 11 + -0.14969921592460408E-002 6 11 1 5 + -0.46852916612758823E-004 1 6 6 11 + -0.47177854611010356E-004 6 11 1 6 + 0.16601961536770152E-002 1 7 6 11 + 0.16717092411623591E-002 6 11 1 7 + -0.28760740762195599E-003 1 8 6 11 + -0.28960189733699297E-003 6 11 1 8 + 0.39527421162775331E-002 2 3 6 11 + 0.37442424076183588E-002 6 11 2 3 + 0.30304873358572813E-002 2 4 6 11 + 0.28706335586585309E-002 6 11 2 4 + -0.53930931097474644E-002 2 5 6 11 + -0.51086164556602412E-002 6 11 2 5 + -0.46320487953948664E-003 2 6 6 11 + -0.46427700499957289E-003 6 11 2 6 + 0.16413165031695452E-001 2 7 6 11 + 0.16451155060769017E-001 6 11 2 7 + -0.28433670404452685E-002 2 8 6 11 + -0.28499483196618327E-002 6 11 2 8 + 0.78343731499955355E-002 3 1 6 11 + 0.78182287738782809E-002 6 11 3 1 + 0.40753355805859840E-002 3 2 6 11 + 0.38668358719268097E-002 6 11 3 2 + -0.10645703873306666E-001 3 9 6 11 + -0.10666099190217769E-001 6 11 3 9 + -0.78208005910108459E-003 3 10 6 11 + -0.62459794846812518E-003 6 11 3 10 + 0.22956256503923935E-002 3 11 6 11 + 0.20386875301969080E-002 6 11 3 11 + 0.55068115507657227E-004 3 12 6 11 + 0.42990471426153147E-004 6 11 3 12 + -0.35201853177169163E-003 3 13 6 11 + -0.27428005378400103E-003 6 11 3 13 + -0.27923714047523376E-003 3 14 6 11 + -0.32020622129359696E-003 6 11 3 14 + 0.60064707811583835E-002 4 1 6 11 + 0.59940931611216046E-002 6 11 4 1 + 0.31244781811447840E-002 4 2 6 11 + 0.29646244039460336E-002 6 11 4 2 + -0.81618651168820482E-002 4 9 6 11 + -0.81775017181920737E-002 6 11 4 9 + -0.77129371171007200E-003 4 10 6 11 + -0.62766681984536166E-003 6 11 4 10 + -0.25608935569973340E-002 4 11 6 11 + -0.22793255502215810E-002 6 11 4 11 + 0.55056625142454427E-004 4 12 6 11 + 0.44553883025545186E-004 6 11 4 12 + -0.50235879221506552E-003 4 13 6 11 + -0.40393160546137272E-003 6 11 4 13 + -0.22124386673643196E-003 4 14 6 11 + -0.24650827800795432E-003 6 11 4 14 + -0.10689176692617250E-001 5 1 6 11 + -0.10667149372936630E-001 6 11 5 1 + -0.55603595803384760E-002 5 2 6 11 + -0.52758829262512527E-002 6 11 5 2 + 0.14524939836844410E-001 5 9 6 11 + 0.14552766994194694E-001 6 11 5 9 + 0.63632833502711415E-003 5 10 6 11 + 0.51655659704805698E-003 6 11 5 10 + 0.27151214993627630E-003 5 11 6 11 + 0.24069559251887549E-003 6 11 5 11 + -0.80032935872381211E-005 5 12 6 11 + 0.12943242601078950E-005 6 11 5 12 + -0.10960365399408868E-002 5 13 6 11 + -0.88362926918049965E-003 6 11 5 13 + 0.33551500508734308E-003 5 14 6 11 + 0.39667235509906109E-003 6 11 5 14 + -0.45892109154796202E-003 6 1 6 11 + -0.45924602954621353E-003 6 11 6 1 + -0.62627455718397085E-003 6 2 6 11 + -0.62734668264405704E-003 6 11 6 2 + -0.91681747043465261E-004 6 9 6 11 + -0.99921191765544952E-004 6 11 6 9 + 0.84592349452410791E-003 6 10 6 11 + 0.84592349099624643E-003 6 11 6 10 + 0.17130445303210444E-001 6 11 6 11 + -0.10941614199769202E-002 1 3 6 12 + -0.10782951848428857E-002 6 12 1 3 + -0.10639426596303055E-002 1 4 6 12 + -0.10485141689540577E-002 6 12 1 4 + -0.13901176142896430E-002 1 5 6 12 + -0.13699595294639677E-002 6 12 1 5 + 0.23543669093495810E-004 1 6 6 12 + 0.23707207144774893E-004 6 12 1 6 + 0.28215573954966085E-003 1 7 6 12 + 0.28411242746426168E-003 6 12 1 7 + 0.16588413168175554E-002 1 8 6 12 + 0.16703450054274056E-002 6 12 1 8 + -0.38847129829332984E-002 2 3 6 12 + -0.36798084564023687E-002 6 12 2 3 + -0.37773678645960395E-002 2 4 6 12 + -0.35781092570842908E-002 6 12 2 4 + -0.49354461961217773E-002 2 5 6 12 + -0.46751106295303008E-002 6 12 2 5 + 0.23280256059515138E-003 2 6 6 12 + 0.23334127201658195E-003 6 12 2 6 + 0.27894710128681002E-002 2 7 6 12 + 0.27959275417905626E-002 6 12 2 7 + 0.16399770187968066E-001 2 8 6 12 + 0.16437729214946972E-001 6 12 2 8 + -0.76994560685797134E-002 3 1 6 12 + -0.76835898334456790E-002 6 12 3 1 + -0.40051916485564542E-002 3 2 6 12 + -0.38002871220255245E-002 6 12 3 2 + 0.10462380762562647E-001 3 9 6 12 + 0.10482425463409408E-001 6 12 3 9 + -0.27589375580911433E-003 3 10 6 12 + -0.20864261383724437E-003 6 12 3 10 + 0.46491077905736691E-004 3 11 6 12 + 0.44954527128638499E-004 6 12 3 11 + 0.23021235173816827E-002 3 12 6 12 + 0.20443146677934093E-002 6 12 3 12 + 0.79205379836020295E-003 3 13 6 12 + 0.62703766059276462E-003 6 12 3 13 + 0.33412474911060985E-003 3 14 6 12 + 0.36059434322774825E-003 6 12 3 14 + -0.74868963886887364E-002 4 1 6 12 + -0.74714678980124889E-002 6 12 4 1 + -0.38945290348894900E-002 4 2 6 12 + -0.36952704273777413E-002 6 12 4 2 + 0.10173524761651525E-001 4 9 6 12 + 0.10193014619842606E-001 6 12 4 9 + -0.56611851155299571E-003 4 10 6 12 + -0.45862930893759773E-003 6 12 4 10 + 0.49356313032739527E-004 4 11 6 12 + 0.45859184060885290E-004 6 12 4 11 + -0.25388649836583684E-002 4 12 6 12 + -0.22602494527761844E-002 6 12 4 12 + 0.71992523537895814E-003 4 13 6 12 + 0.57811302406625073E-003 6 12 4 13 + 0.33727007345821431E-003 4 14 6 12 + 0.35901319148946267E-003 6 12 4 14 + -0.97821029686748998E-002 5 1 6 12 + -0.97619448838492245E-002 6 12 5 1 + -0.50885180688063714E-002 5 2 6 12 + -0.48281825022148950E-002 6 12 5 2 + 0.13292367981534296E-001 5 9 6 12 + 0.13317833840599397E-001 6 12 5 9 + -0.10547601564044429E-002 5 10 6 12 + -0.83983569962239033E-003 6 12 5 10 + 0.70214987837121997E-005 5 11 6 12 + -0.21457710808483695E-005 6 12 5 11 + 0.34642978246793256E-003 5 12 6 12 + 0.30557538623846476E-003 6 12 5 12 + -0.62935752775579619E-003 5 13 6 12 + -0.51030682385681315E-003 6 12 5 13 + 0.38975321789498489E-003 5 14 6 12 + 0.42986372821262654E-003 6 12 5 14 + 0.23067899591032895E-003 6 1 6 12 + 0.23084253396160801E-003 6 12 6 1 + 0.31475882293913648E-003 6 2 6 12 + 0.31529753436056705E-003 6 12 6 2 + 0.46097996521437535E-004 6 9 6 12 + 0.50237592267860366E-004 6 12 6 9 + 0.11130335207210911E-002 6 10 6 12 + 0.11130335215728381E-002 6 12 6 10 + -0.47767929620484126E-004 6 11 6 12 + -0.47767913875574931E-004 6 12 6 11 + 0.17085222888868559E-001 6 12 6 12 + 0.15107739522991759E-003 1 3 6 13 + 0.14888638474430779E-003 6 13 1 3 + 0.12082588311651041E-005 1 4 6 13 + 0.11910715537721306E-005 6 13 1 4 + 0.64568088828543636E-005 1 5 6 13 + 0.63630137855061973E-005 6 13 1 5 + 0.77685810839458211E-004 1 6 6 13 + 0.78224888228971441E-004 6 13 1 6 + 0.52094219756262510E-004 1 7 6 13 + 0.52455374100035927E-004 6 13 1 7 + -0.80293369660107807E-004 1 8 6 13 + -0.80850226146911243E-004 6 13 1 8 + 0.53635250284836432E-003 2 3 6 13 + 0.50805240117247257E-003 6 13 2 3 + 0.43313656442299178E-005 2 4 6 13 + 0.41148069488208336E-005 6 13 2 4 + 0.22903567229255015E-004 2 5 6 13 + 0.21689557442342759E-004 6 13 2 5 + 0.76807918790833545E-003 2 6 6 13 + 0.76985681626699331E-003 6 13 2 6 + 0.51500074968292126E-003 2 7 6 13 + 0.51619282820555379E-003 6 13 2 7 + -0.79380923718403319E-003 2 8 6 13 + -0.79564657355996537E-003 6 13 2 8 + 0.10631598117327645E-002 3 1 6 13 + 0.10609688012471548E-002 6 13 3 1 + 0.55299351046587226E-003 3 2 6 13 + 0.52469340878998050E-003 6 13 3 2 + -0.14446595506281761E-002 3 9 6 13 + -0.14474265137345492E-002 6 13 3 9 + 0.17710014194625488E-004 3 10 6 13 + 0.19066199997118777E-004 6 13 3 10 + -0.29626116999966552E-003 3 11 6 13 + -0.28703671588744552E-003 6 13 3 11 + 0.68468360090667062E-003 3 12 6 13 + 0.65160445964848493E-003 6 13 3 12 + 0.61168736223418728E-003 3 13 6 13 + 0.58065767553133220E-003 6 13 3 13 + -0.92275158442569699E-004 3 14 6 13 + -0.84672286547750715E-004 6 13 3 14 + 0.84393939020683337E-005 4 1 6 13 + 0.84222066246753604E-005 6 13 4 1 + 0.44571026957902260E-005 4 2 6 13 + 0.42405440003811426E-005 6 13 4 2 + -0.11482569288337196E-004 4 9 6 13 + -0.11505621615902817E-004 6 13 4 9 + 0.21168886032277378E-004 4 10 6 13 + 0.20389623589456450E-004 6 13 4 10 + -0.44565293229630569E-003 4 11 6 13 + -0.41690589791108383E-003 6 13 4 11 + 0.63727071172562397E-003 4 12 6 13 + 0.59702463680783296E-003 6 13 4 12 + -0.94182564524861070E-003 4 13 6 13 + -0.87747364090814939E-003 6 13 4 13 + 0.90283994207841382E-004 4 14 6 13 + 0.74314181976751451E-004 6 13 4 14 + 0.45466986044260242E-004 5 1 6 13 + 0.45373190946912078E-004 6 13 5 1 + 0.23618168115024760E-004 5 2 6 13 + 0.22404158328112503E-004 6 13 5 2 + -0.61775330815653229E-004 5 9 6 13 + -0.61893160637136214E-004 6 13 5 9 + -0.35775416912561537E-004 5 10 6 13 + -0.42136525570271736E-004 6 13 5 10 + -0.97658186424735035E-003 5 11 6 13 + -0.91095863295783189E-003 6 13 5 11 + -0.56609296982381471E-003 5 12 6 13 + -0.52477892373117743E-003 6 13 5 12 + 0.46643552874816079E-004 5 13 6 13 + 0.45979498212656428E-004 6 13 5 13 + 0.81770724489395527E-005 5 14 6 13 + 0.86911649828199390E-005 6 13 5 14 + 0.76101088100100057E-003 6 1 6 13 + 0.76154995839051380E-003 6 13 6 1 + 0.10384775340533049E-002 6 2 6 13 + 0.10402551624119629E-002 6 13 6 2 + 0.15204855398424105E-003 6 9 6 13 + 0.16570932056489271E-003 6 13 6 9 + -0.44941233018825429E-004 6 10 6 13 + -0.44941210642313056E-004 6 13 6 10 + 0.51822106966481680E-003 6 11 6 13 + 0.51822127182383311E-003 6 13 6 11 + -0.57075331272315847E-003 6 12 6 13 + -0.57075319003891973E-003 6 13 6 12 + 0.33057694269698671E-002 6 13 6 13 + -0.15508341291007826E-002 1 3 6 14 + -0.15283388909713717E-002 6 14 1 3 + 0.18119316117108627E-002 1 4 6 14 + 0.17856487869782453E-002 6 14 1 4 + -0.13863281680648296E-003 1 5 6 14 + -0.13662204355677779E-003 6 14 1 5 + -0.19469820674683906E-002 1 6 6 14 + -0.19604924660106800E-002 6 14 1 6 + -0.39400310928530538E-004 1 7 6 14 + -0.39673727264880240E-004 6 14 1 7 + 0.19027880818046426E-004 1 8 6 14 + 0.19159718315407061E-004 6 14 1 8 + -0.55052278151573077E-002 2 3 6 14 + -0.52146015457625169E-002 6 14 2 3 + 0.64320469394655647E-002 2 4 6 14 + 0.60924822098954775E-002 6 14 2 4 + -0.49214191024606361E-003 2 5 6 14 + -0.46616592680964123E-003 6 14 2 5 + -0.19249784992158792E-001 2 6 6 14 + -0.19294336391055253E-001 6 14 2 6 + -0.38955222320499858E-003 2 7 6 14 + -0.39045379082785776E-003 6 14 2 7 + 0.18809615806949514E-003 2 8 6 14 + 0.18853158553032697E-003 6 14 2 8 + -0.10914293930353322E-001 3 1 6 14 + -0.10891798692223911E-001 6 14 3 1 + -0.56761415563424712E-002 3 2 6 14 + -0.53855152869476805E-002 6 14 3 2 + 0.14830549074552465E-001 3 9 6 14 + 0.14858940964130662E-001 6 14 3 9 + 0.11073152438391033E-003 3 10 6 14 + 0.93642414872893793E-004 6 14 3 10 + -0.42251186238678642E-003 3 11 6 14 + -0.28740237479103130E-003 6 14 3 11 + 0.46431154715690319E-003 3 12 6 14 + 0.33078708575961667E-003 6 14 3 12 + -0.10106854534827639E-003 3 13 6 14 + -0.82658500054932284E-004 6 14 3 13 + 0.27031595731756113E-002 3 14 6 14 + 0.23906712729931871E-002 6 14 3 14 + 0.12751874791811231E-001 4 1 6 14 + 0.12725591967078613E-001 6 14 4 1 + 0.66317422314024904E-002 4 2 6 14 + 0.62921775018324032E-002 6 14 4 2 + -0.17327475373098238E-001 4 9 6 14 + -0.17360646472644386E-001 6 14 4 9 + -0.64481372731053075E-004 4 10 6 14 + -0.58727166381678992E-004 6 14 4 10 + -0.32162489835243878E-003 4 11 6 14 + -0.22352485121985048E-003 6 14 4 11 + 0.45970613045315722E-003 4 12 6 14 + 0.33098095926423004E-003 6 14 4 12 + 0.83313469068628320E-004 4 13 6 14 + 0.75910517136483345E-004 6 14 4 13 + -0.32366742571379517E-002 4 14 6 14 + -0.28633888019889506E-002 6 14 4 14 + -0.97563051153346870E-003 5 1 6 14 + -0.97361973828376345E-003 6 14 5 1 + -0.50741744365892256E-003 5 2 6 14 + -0.48144146022250018E-003 6 14 5 2 + 0.13257109607294154E-002 5 9 6 14 + 0.13282493395947190E-002 6 14 5 9 + 0.62460088678461623E-004 5 10 6 14 + 0.41623636757181628E-004 6 14 5 10 + 0.52946702450114747E-003 5 11 6 14 + 0.35226685592210723E-003 6 14 5 11 + 0.55853917862774328E-003 5 12 6 14 + 0.39122056650082678E-003 6 14 5 12 + 0.11133700299709068E-004 5 13 6 14 + 0.80139511710652553E-005 6 14 5 13 + 0.27989707584770944E-003 5 14 6 14 + 0.24787839916640402E-003 6 14 5 14 + -0.19072625935388610E-001 6 1 6 14 + -0.19086136333930900E-001 6 14 6 1 + -0.26026573673264029E-001 6 2 6 14 + -0.26071125072160490E-001 6 14 6 2 + -0.38106697393475511E-002 6 9 6 14 + -0.41530397245078919E-002 6 14 6 9 + 0.73819141400597633E-003 6 10 6 14 + 0.73819140059607771E-003 6 14 6 10 + 0.99509573024085131E-004 6 11 6 14 + 0.99509482369044040E-004 6 14 6 11 + -0.12425296463456706E-003 6 12 6 14 + -0.12425304972857020E-003 6 14 6 12 + -0.75751181469279976E-003 6 13 6 14 + -0.75751181922114707E-003 6 14 6 13 + 0.21786776854992251E-001 6 14 6 14 + 0.15366634512897992E-001 1 3 7 1 + 0.15325036080433681E-001 7 1 1 3 + 0.10096145482481701E-001 1 4 7 1 + 0.10068814590629593E-001 7 1 1 4 + -0.28205613564466183E-001 1 5 7 1 + -0.28129259219603537E-001 7 1 1 5 + 0.37402971647752831E-001 1 7 7 1 + 0.37402971647752831E-001 7 1 1 7 + 0.28254814337778475E-001 2 3 7 1 + 0.28142788676123721E-001 7 1 2 3 + 0.18563903234328192E-001 2 4 7 1 + 0.18490300431002044E-001 7 1 2 4 + -0.51861998401680369E-001 2 5 7 1 + -0.51656374163055734E-001 7 1 2 5 + 0.31155490870056101E-001 2 7 7 1 + 0.31163023199862402E-001 7 1 2 7 + 0.26346580686569768E-001 3 1 7 1 + 0.26304982254105456E-001 7 1 3 1 + 0.29195839018640909E-001 3 2 7 1 + 0.29083813356986156E-001 7 1 3 2 + -0.13706784466187467E-001 3 9 7 1 + -0.13675428307832442E-001 7 1 3 9 + -0.27006669928784904E-001 3 10 7 1 + -0.26918852267296699E-001 7 1 3 10 + 0.26994154236073313E-001 3 11 7 1 + 0.26906377131124322E-001 7 1 3 11 + 0.60773551696575992E-002 3 12 7 1 + 0.60575935503799474E-002 7 1 3 12 + -0.81275903310643986E-002 3 13 7 1 + -0.81011595243887929E-002 7 1 3 13 + 0.10639534677092909E-001 3 14 7 1 + 0.10604935934441844E-001 7 1 3 14 + 0.17310160618077282E-001 4 1 7 1 + 0.17282829726225173E-001 7 1 4 1 + 0.19182172776212508E-001 4 2 7 1 + 0.19108569972886361E-001 7 1 4 2 + -0.90055952037836999E-002 4 9 7 1 + -0.89849936637224504E-002 7 1 4 9 + -0.24827769311430395E-001 4 10 7 1 + -0.24747036763786357E-001 7 1 4 10 + -0.27997145074504789E-001 4 11 7 1 + -0.27906106798312038E-001 7 1 4 11 + -0.37474341030085743E-002 4 12 7 1 + -0.37352484328157620E-002 7 1 4 12 + -0.11557811499789097E-001 4 13 7 1 + -0.11520226468063863E-001 7 1 4 13 + 0.80358205134912850E-002 4 14 7 1 + 0.80096887871867004E-002 7 1 4 14 + -0.48359416173182193E-001 5 1 7 1 + -0.48283061828319554E-001 7 1 5 1 + -0.53589258751417526E-001 5 2 7 1 + -0.53383634512792891E-001 7 1 5 2 + 0.25158941962224231E-001 5 9 7 1 + 0.25101387415411413E-001 7 1 5 9 + 0.12375398095664599E-001 5 10 7 1 + 0.12335157389457209E-001 7 1 5 10 + 0.28525169692585495E-002 5 11 7 1 + 0.28432409955190048E-002 7 1 5 11 + -0.18950053850742812E-002 5 12 7 1 + -0.18888432742074799E-002 7 1 5 12 + -0.36287493477655371E-001 5 13 7 1 + -0.36169489159228664E-001 7 1 5 13 + -0.21215114861598165E-001 5 14 7 1 + -0.21146124926618871E-001 7 1 5 14 + 0.11985661592673837E-002 6 10 7 1 + 0.11977181757996608E-002 7 1 6 10 + 0.16272790875407100E-001 6 11 7 1 + 0.16261277787921757E-001 7 1 6 11 + 0.27656141084193685E-002 6 12 7 1 + 0.27636574205047678E-002 7 1 6 12 + 0.51058375791621135E-003 6 13 7 1 + 0.51022260357243786E-003 7 1 6 13 + -0.38624186919259860E-003 6 14 7 1 + -0.38596845285624891E-003 7 1 6 14 + 0.67173028507679908E-001 7 1 7 1 + 0.28637177352198798E-002 1 3 7 2 + 0.28218747219249294E-002 7 2 1 3 + 0.18815122368711109E-002 1 4 7 2 + 0.18540206511698516E-002 7 2 1 4 + -0.52563829594257294E-002 1 5 7 2 + -0.51795796839668338E-002 7 2 1 5 + 0.54436361134998779E-002 1 7 7 2 + 0.54361037836935747E-002 7 2 1 7 + 0.15351350661783808E-001 2 3 7 2 + 0.15037713507288811E-001 7 2 2 3 + 0.10086103727128645E-001 2 4 7 2 + 0.98800386750942937E-002 7 2 2 4 + -0.28177559900669329E-001 2 5 7 2 + -0.27601875721305277E-001 7 2 2 5 + 0.33745456045325327E-001 2 7 7 2 + 0.33745456045325327E-001 7 2 2 7 + 0.13811985290116792E-001 3 1 7 2 + 0.13770142276821842E-001 7 2 3 1 + 0.15719927546302984E-001 3 2 7 2 + 0.15406290391807985E-001 7 2 3 2 + -0.17138821342137966E-001 3 9 7 2 + -0.17120798862171986E-001 7 2 3 9 + -0.12187088224492602E-001 3 10 7 2 + -0.11865112670173044E-001 7 2 3 10 + 0.12181412630865777E-001 3 11 7 2 + 0.11859583763609120E-001 7 2 3 11 + 0.27425066145547769E-002 3 12 7 2 + 0.26700543133954644E-002 7 2 3 12 + -0.36672209717230828E-002 3 13 7 2 + -0.35702819701482107E-002 7 2 3 13 + 0.48007979740472247E-002 3 14 7 2 + 0.46739142578248018E-002 7 2 3 14 + 0.90747139703149064E-002 4 1 7 2 + 0.90472223846136471E-002 7 2 4 1 + 0.10328265134980310E-001 4 2 7 2 + 0.10122200082945960E-001 7 2 4 2 + -0.11260502976318738E-001 4 9 7 2 + -0.11248661894295289E-001 7 2 4 9 + -0.11203828258404928E-001 4 10 7 2 + -0.10907829305650870E-001 7 2 4 10 + -0.12634075033167800E-001 4 11 7 2 + -0.12300293040965578E-001 7 2 4 11 + -0.16910498720257860E-002 4 12 7 2 + -0.16463703725370159E-002 7 2 4 12 + -0.52151173576516999E-002 4 13 7 2 + -0.50772800289822341E-002 7 2 4 13 + 0.36259411642861309E-002 4 14 7 2 + 0.35301083112278708E-002 7 2 4 14 + -0.25352039141956127E-001 5 1 7 2 + -0.25275235866497232E-001 7 2 5 1 + -0.28854086511933181E-001 5 2 7 2 + -0.28278402332569130E-001 7 2 5 2 + 0.31458480470855275E-001 5 9 7 2 + 0.31425400026014440E-001 7 2 5 9 + 0.55846295000176304E-002 5 10 7 2 + 0.54370964133283652E-002 7 2 5 10 + 0.12871469491914096E-002 5 11 7 2 + 0.12531311924846834E-002 7 2 5 11 + -0.85512122391815184E-003 5 12 7 2 + -0.83252673211695917E-003 7 2 5 12 + -0.16373561485651392E-001 5 13 7 2 + -0.15940792511341440E-001 7 2 5 13 + -0.95726547944933529E-002 5 14 7 2 + -0.93196424633649484E-002 7 2 5 14 + 0.16372964529275038E-002 6 10 7 2 + 0.16344983036930853E-002 7 2 6 10 + 0.22229356609448924E-001 6 11 7 2 + 0.22191366580375359E-001 7 2 6 11 + 0.37779517650876988E-002 6 12 7 2 + 0.37714952361652364E-002 7 2 6 12 + 0.69749762337344742E-003 6 13 7 2 + 0.69630554485081489E-003 7 2 6 13 + -0.52759361613732457E-003 6 14 7 2 + -0.52669204851446528E-003 7 2 6 14 + 0.33800249762865997E-001 7 1 7 2 + 0.33792717433059692E-001 7 2 7 1 + 0.44267273369897206E-001 7 2 7 2 + 0.20614829875076929 1 1 7 3 + 0.20676743201644981 7 3 1 1 + 0.11653123988735737E-002 1 2 7 3 + 0.10483676756806632E-002 7 3 1 2 + -0.12898458759122088E-002 1 9 7 3 + -0.11841938078073371E-002 7 3 1 9 + -0.12373460523528068E-002 1 10 7 3 + -0.12230885183031070E-002 7 3 1 10 + 0.12367684394372501E-002 1 11 7 3 + 0.12225174116573076E-002 7 3 1 11 + 0.27844596539978273E-003 1 12 7 3 + 0.27523766462077975E-003 7 3 1 12 + -0.37230778922769573E-003 1 13 7 3 + -0.36801536851827380E-003 7 3 1 13 + 0.48740058779065879E-003 1 14 7 3 + 0.48178216041439373E-003 7 3 1 14 + -0.13486489893720394E-001 2 1 7 3 + -0.13603434616913303E-001 7 3 2 1 + 0.74598025081096211E-001 2 2 7 3 + 0.73907122366501057E-001 7 3 2 2 + -0.34259251642231051E-001 2 9 7 3 + -0.34912260560943965E-001 7 3 2 9 + -0.62529845276750916E-002 2 10 7 3 + -0.60787660363050564E-002 7 3 2 10 + 0.62500548467208381E-002 2 11 7 3 + 0.60759141780396932E-002 7 3 2 11 + 0.14071494370787553E-002 2 12 7 3 + 0.13679475174803032E-002 7 3 2 12 + -0.18812997725533775E-002 2 13 7 3 + -0.18288215330459477E-002 7 3 2 13 + 0.24629386277673008E-002 2 14 7 3 + 0.23942592965373855E-002 7 3 2 14 + 0.78487921874377808E-001 3 3 7 3 + 0.78666446691290859E-001 7 3 3 3 + 0.28121935162865037E-002 3 4 7 3 + 0.27535266150673270E-002 7 3 3 4 + -0.78574540032820637E-002 3 5 7 3 + -0.76936706664871195E-002 7 3 3 5 + 0.30083947897702776E-001 3 6 7 3 + 0.30083947897702773E-001 7 3 3 6 + 0.35887311084168851E-001 3 7 7 3 + 0.35887311084168851E-001 7 3 3 7 + -0.29625209223881913E-001 3 8 7 3 + -0.29625209223881906E-001 7 3 3 8 + 0.28121935162865423E-002 4 3 7 3 + 0.27535266150673656E-002 7 3 4 3 + 0.69926490500582389E-001 4 4 7 3 + 0.70283495233578269E-001 7 3 4 4 + -0.42662106232021445E-007 4 5 7 3 + -0.47422843673304955E-007 7 3 4 5 + -0.28840785466553821E-001 4 6 7 3 + -0.28840785466553834E-001 7 3 4 6 + 0.14229118842652251E-001 4 7 7 3 + 0.14229118842652254E-001 7 3 4 7 + -0.25719522449754090E-001 4 8 7 3 + -0.25719522449754114E-001 7 3 4 8 + -0.78574540032820776E-002 5 3 7 3 + -0.76936706664871334E-002 7 3 5 3 + -0.42662106249610348E-007 5 4 7 3 + -0.47422843690898491E-007 7 3 5 4 + 0.69926583366327122E-001 5 5 7 3 + 0.70283598462370298E-001 7 3 5 5 + -0.47027030621289547E-002 5 6 7 3 + -0.47027030621289573E-002 7 3 5 6 + -0.39752183433470013E-001 5 7 7 3 + -0.39752183433469993E-001 7 3 5 7 + -0.14741397071179718E-001 5 8 7 3 + -0.14741397071179708E-001 7 3 5 8 + 0.51035726131012878E-001 6 3 7 3 + 0.51035726131012878E-001 7 3 6 3 + -0.53179865467036833E-001 6 4 7 3 + -0.53179865467036853E-001 7 3 6 4 + -0.35576313038829747E-002 6 5 7 3 + -0.35576313038829764E-002 7 3 6 5 + 0.44141637909026497E-001 6 6 7 3 + 0.42216627481629791E-001 7 3 6 6 + 0.19164171921830131E-002 6 7 7 3 + 0.18231089152290060E-002 7 3 6 7 + 0.39677680307962936E-009 6 8 7 3 + 0.25615559697908027E-009 7 3 6 8 + 0.53028303780014725E-001 7 3 7 3 + 0.13544300890393141 1 1 7 4 + 0.13584979020130056 7 4 1 1 + 0.76563046395696768E-003 1 2 7 4 + 0.68879575185568488E-003 7 4 1 2 + -0.84745111899793741E-003 1 9 7 4 + -0.77803587721441466E-003 7 4 1 9 + -0.11375161691400358E-002 1 10 7 4 + -0.11244089176089219E-002 7 4 1 10 + -0.12827294246738662E-002 1 11 7 4 + -0.12679490759499243E-002 7 4 1 11 + -0.17168978725146759E-003 1 12 7 4 + -0.16971132549535828E-003 7 4 1 12 + -0.52946294765959985E-003 1 13 7 4 + -0.52335950369732770E-003 7 4 1 13 + 0.36812324238969646E-003 1 14 7 4 + 0.36387975213100391E-003 7 4 1 14 + -0.88608578476136145E-002 2 1 7 4 + -0.89376925597148982E-002 7 4 2 1 + 0.49012196736534584E-001 2 2 7 4 + 0.48558261666045398E-001 7 4 2 2 + -0.22508922718933538E-001 2 9 7 4 + -0.22937960908079646E-001 7 4 2 9 + -0.57484879150226783E-002 2 10 7 4 + -0.55883249076746702E-002 7 4 2 10 + -0.64823402699199003E-002 2 11 7 4 + -0.63017346820292957E-002 7 4 2 11 + -0.86763238102397552E-003 2 12 7 4 + -0.84345523341441801E-003 7 4 2 12 + -0.26754779360726173E-002 2 13 7 4 + -0.26008681050635734E-002 7 4 2 13 + 0.18602040106517747E-002 2 14 7 4 + 0.18083316941161335E-002 7 4 2 14 + 0.45942769195965238E-001 3 3 7 4 + 0.46177310953661573E-001 7 4 3 3 + 0.42804680704883573E-002 3 4 7 4 + 0.41912004805082052E-002 7 4 3 4 + -0.42662106199699766E-007 3 5 7 4 + -0.47422843641442295E-007 7 4 3 5 + 0.12058279677662351E-001 3 6 7 4 + 0.12058279677662338E-001 7 4 3 6 + 0.14229118842652275E-001 3 7 7 4 + 0.14229118842652272E-001 7 4 3 7 + -0.20456107496491072E-001 3 8 7 4 + -0.20456107496491065E-001 7 4 3 8 + 0.42804680704883616E-002 4 3 7 4 + 0.41912004805082096E-002 7 4 4 3 + 0.51567982061643258E-001 4 4 7 4 + 0.51685282173030422E-001 7 4 4 4 + -0.78574594321192542E-002 4 5 7 4 + -0.76936767011375404E-002 7 4 4 5 + -0.24012815099380594E-001 4 6 7 4 + -0.24012815099380583E-001 7 4 4 6 + 0.23578891191190804E-001 4 7 7 4 + 0.23578891191190804E-001 7 4 4 7 + -0.17549814739498994E-001 4 8 7 4 + -0.17549814739498994E-001 7 4 4 8 + -0.42662106201852249E-007 5 3 7 4 + -0.47422843643610474E-007 7 4 5 3 + -0.78574594321192664E-002 5 4 7 4 + -0.76936767011375517E-002 7 4 5 4 + 0.45943071109529207E-001 5 5 7 4 + 0.46177646558276719E-001 7 4 5 5 + 0.11057273119799815E-001 5 6 7 4 + 0.11057273119799817E-001 7 4 5 6 + -0.26117928774366368E-001 5 7 7 4 + -0.26117928774366368E-001 7 4 5 7 + -0.78647516991390970E-002 5 8 7 4 + -0.78647516991390901E-002 7 4 5 8 + 0.24709291431272842E-001 6 3 7 4 + 0.24709291431272828E-001 7 4 6 3 + -0.40736395357372078E-001 6 4 7 4 + -0.40736395357372071E-001 7 4 6 4 + 0.13855619379275793E-001 6 5 7 4 + 0.13855619379275794E-001 7 4 6 5 + 0.29001827580446116E-001 6 6 7 4 + 0.27737060336858153E-001 7 4 6 6 + -0.23282041252660523E-002 6 7 7 4 + -0.22148465538589057E-002 7 4 6 7 + 0.22855041919521917E-009 6 8 7 4 + 0.14755015835899253E-009 7 4 6 8 + 0.24138865251417480E-001 7 3 7 4 + 0.24138865251417473E-001 7 4 7 3 + 0.32147776913082821E-001 7 4 7 4 + -0.37838729402042159 1 1 7 5 + -0.37952371941155288 7 5 1 1 + -0.21389427318601276E-002 1 2 7 5 + -0.19242895058714383E-002 7 5 1 2 + 0.23675251925310112E-002 1 9 7 5 + 0.21735997495362265E-002 7 5 1 9 + 0.56700729606269033E-003 1 10 7 5 + 0.56047429053664014E-003 7 5 1 10 + 0.13067881580381853E-003 1 11 7 5 + 0.12917258323693240E-003 7 5 1 11 + -0.86818685779697347E-004 1 12 7 5 + -0.85818178569849009E-004 7 5 1 12 + -0.16623157599655639E-002 1 13 7 5 + -0.16431527611991609E-002 7 5 1 13 + -0.97185879304757838E-003 1 14 7 5 + -0.96065540663791955E-003 7 5 1 14 + 0.24754589039264294E-001 2 1 7 5 + 0.24969242265252982E-001 7 5 2 1 + -0.13692543193785442 2 2 7 5 + -0.13565727299503874 7 5 2 2 + 0.62883203997432982E-001 2 9 7 5 + 0.64081808493421252E-001 7 5 2 9 + 0.28654282136729462E-002 2 10 7 5 + 0.27856036984195295E-002 7 5 2 10 + 0.66035818777504789E-003 2 11 7 5 + 0.64194772103639143E-003 7 5 2 11 + -0.43873331214911468E-003 2 12 7 5 + -0.42650632253543000E-003 7 5 2 12 + -0.83999673726735304E-002 2 13 7 5 + -0.81657094549039133E-002 7 5 2 13 + -0.49109766122280010E-002 2 14 7 5 + -0.47740220117128930E-002 7 5 2 14 + -0.12835139424461148 3 3 7 5 + -0.12900674828469716 7 5 3 3 + -0.42662105857579512E-007 3 4 7 5 + -0.47422843292483580E-007 7 5 3 4 + 0.42805609362322836E-002 3 5 7 5 + 0.41913037092993939E-002 7 5 3 5 + -0.47209098323803302E-001 3 6 7 5 + -0.47209098323803295E-001 7 5 3 6 + -0.39752183433469861E-001 3 7 7 5 + -0.39752183433469881E-001 7 5 3 7 + 0.43417926951586520E-001 3 8 7 5 + 0.43417926951586500E-001 7 5 3 8 + -0.42662105868151655E-007 4 3 7 5 + -0.47422843303116279E-007 7 5 4 3 + -0.12835139967344714 4 4 7 5 + -0.12900675431934605 7 5 4 4 + 0.28124954298507213E-002 4 5 7 5 + 0.27538622196827327E-002 7 5 4 5 + 0.58200483007422754E-001 4 6 7 5 + 0.58200483007422754E-001 7 5 4 6 + -0.26117928774366358E-001 4 7 7 5 + -0.26117928774366354E-001 7 5 4 7 + 0.40007984785896837E-001 4 8 7 5 + 0.40007984785896865E-001 7 5 4 8 + 0.42805609362322966E-002 5 3 7 5 + 0.41913037092994069E-002 7 5 5 3 + 0.28124954298507539E-002 5 4 7 5 + 0.27538622196827652E-002 7 5 5 4 + -0.14406431914044845 5 5 7 5 + -0.14439188520822513 7 5 5 5 + -0.60711327983219536E-002 5 6 7 5 + -0.60711327983219519E-002 7 5 5 6 + 0.87194823305750568E-001 5 7 7 5 + 0.87194823305750568E-001 7 5 5 7 + 0.47175023963380462E-001 5 8 7 5 + 0.47175023963380448E-001 7 5 5 8 + -0.84507826083246113E-001 6 3 7 5 + -0.84507826083246099E-001 7 5 6 3 + 0.10363627472382290 6 4 7 5 + 0.10363627472382290 7 5 6 4 + -0.10299330773640284E-001 6 5 7 5 + -0.10299330773640283E-001 7 5 6 5 + -0.81022429962087139E-001 6 6 7 5 + -0.77489051770082765E-001 7 5 6 6 + 0.21069790244314162E-003 6 7 7 5 + 0.20044061482317195E-003 7 5 6 7 + -0.22256153672024982E-008 6 8 7 5 + -0.14368377041009794E-008 7 5 6 8 + -0.67437321394667266E-001 7 3 7 5 + -0.67437321394667279E-001 7 5 7 3 + -0.44307597424044484E-001 7 4 7 5 + -0.44307597424044477E-001 7 5 7 4 + 0.14006838796290536 7 5 7 5 + 0.74928787059060813E-004 1 10 7 6 + 0.73316049036955134E-004 7 6 1 10 + 0.10172950787385936E-002 1 11 7 6 + 0.99539882056210588E-003 7 6 1 11 + 0.17289259504184445E-003 1 12 7 6 + 0.16917125165908127E-003 7 6 1 12 + 0.31922308804680900E-004 1 13 7 6 + 0.31235506716334475E-004 7 6 1 13 + -0.24140606204214355E-004 1 14 7 6 + -0.23620500518478468E-004 7 6 1 14 + 0.13383681217610623E-002 2 10 7 6 + 0.12990497287031293E-002 7 6 2 10 + 0.18170849756038148E-001 2 11 7 6 + 0.17637025732070336E-001 7 6 2 11 + 0.30881952977819733E-002 2 12 7 6 + 0.29974701322161997E-002 7 6 2 12 + 0.57015001656387284E-003 2 13 7 6 + 0.55340259109394119E-003 7 6 2 13 + -0.43127299201626971E-003 2 14 7 6 + -0.41859880708557953E-003 7 6 2 14 + 0.13356815316681644E-001 3 3 7 6 + 0.13120200370675173E-001 7 6 3 3 + -0.37255854269594418E-002 3 4 7 6 + -0.36595856212828072E-002 7 6 3 4 + -0.11524029935399669E-001 3 5 7 6 + -0.11319884639499440E-001 7 6 3 5 + 0.21890435883759715E-002 3 6 7 6 + 0.22562147630143434E-002 7 6 3 6 + 0.30407775851032334E-002 3 7 7 6 + 0.31340858620572407E-002 7 6 3 7 + 0.32866072935763085E-009 3 8 7 6 + 0.46928193373222773E-009 7 6 3 8 + -0.37255854269594400E-002 4 3 7 6 + -0.36595856212828055E-002 7 6 4 3 + -0.10661333483160368E-001 4 4 7 6 + -0.10472472455741505E-001 7 6 4 4 + 0.15374699770647985E-001 4 5 7 6 + 0.15102340070456074E-001 7 6 4 5 + 0.14382442780657954E-002 4 6 7 6 + 0.14823788995158634E-002 7 6 4 6 + -0.36941599835023614E-002 4 7 7 6 + -0.38075175549095079E-002 7 6 4 7 + 0.18931431161298261E-009 4 8 7 6 + 0.27031457461818675E-009 7 6 4 8 + -0.11524029935399671E-001 5 3 7 6 + -0.11319884639499442E-001 7 6 5 3 + 0.15374699770647988E-001 5 4 7 6 + 0.15102340070456077E-001 7 6 5 4 + -0.26954818335211653E-002 5 5 7 6 + -0.26477279149335477E-002 7 6 5 5 + -0.40180164399114980E-002 5 6 7 6 + -0.41413118330949862E-002 7 6 5 6 + 0.33431757480308034E-003 5 7 7 6 + 0.34457486242305002E-003 7 6 5 7 + -0.18435356952143059E-008 5 8 7 6 + -0.26323133612254785E-008 7 6 5 8 + 0.13124483075409609E-002 6 3 7 6 + 0.13796194821793328E-002 7 6 6 3 + 0.86230494155836452E-003 6 4 7 6 + 0.90643956300843261E-003 7 6 6 4 + -0.24090158658247088E-002 6 5 7 6 + -0.25323112590081970E-002 7 6 6 5 + -0.24924293354563203E-007 6 6 7 6 + -0.24924293348546897E-007 7 6 6 6 + 0.22206387107421385E-001 6 7 7 6 + 0.22206387107421385E-001 7 6 6 7 + -0.41939723170148021E-009 6 8 7 6 + -0.41939723064176858E-009 7 6 6 8 + 0.18231089152289596E-002 7 3 7 6 + 0.19164171921829667E-002 7 6 7 3 + -0.22148465538589109E-002 7 4 7 6 + -0.23282041252660575E-002 7 6 7 4 + 0.20044061482323141E-003 7 5 7 6 + 0.21069790244320109E-003 7 6 7 5 + 0.22206387107421406E-001 7 6 7 6 + 0.84113809495549741 1 1 7 7 + 0.84262046548998393 7 7 1 1 + -0.49062106009096211E-001 1 2 7 7 + -0.49496351852312825E-001 7 7 1 2 + 0.42265479737550148E-001 1 9 7 7 + 0.42347463393151208E-001 7 7 1 9 + -0.78864747468606667E-003 1 10 7 7 + -0.77167343772433666E-003 7 7 1 10 + 0.40179225912921795E-004 1 11 7 7 + 0.39315012551428279E-004 7 7 1 11 + 0.84717358423538769E-004 1 12 7 7 + 0.82893911025644945E-004 7 7 1 12 + 0.60758625802271931E-003 1 13 7 7 + 0.59449719579824810E-003 7 7 1 13 + 0.65505083296529029E-003 1 14 7 7 + 0.64093940304827616E-003 7 7 1 14 + 0.15825892716178812E-001 2 1 7 7 + 0.15391646872962194E-001 7 7 2 1 + 0.53028889276412261 2 2 7 7 + 0.52875443026099622 7 7 2 2 + -0.17090484480875284 2 9 7 7 + -0.17133763699023158 7 7 2 9 + -0.14086641906839783E-001 2 10 7 7 + -0.13672810728849709E-001 7 7 2 10 + 0.71758801536162518E-003 2 11 7 7 + 0.69651175907328028E-003 7 7 2 11 + 0.15132138794818847E-002 2 12 7 7 + 0.14687586905669430E-002 7 7 2 12 + 0.10854362149776708E-001 2 13 7 7 + 0.10535386654833973E-001 7 7 2 13 + 0.11702281582739511E-001 2 14 7 7 + 0.11358389655070992E-001 7 7 2 14 + 0.51863326763080797 3 3 7 7 + 0.51549661531624347 7 7 3 3 + 0.63174467475155391E-002 3 4 7 7 + 0.62055063051686850E-002 7 7 3 4 + -0.17649322045572305E-001 3 5 7 7 + -0.17336647823172062E-001 7 7 3 5 + 0.11318714627212118 3 6 7 7 + 0.11586115644594661 7 7 3 6 + 0.85861123563995501E-001 3 7 7 7 + 0.87920461474209635E-001 7 7 3 7 + -0.11146227345750892 3 8 7 7 + -0.11409552267931393 7 7 3 8 + 0.63174467475155234E-002 4 3 7 7 + 0.62055063051686694E-002 7 7 4 3 + 0.51316854547731283 4 4 7 7 + 0.51012871241985114 7 7 4 4 + -0.11595962665868846E-001 4 5 7 7 + -0.11390540887761594E-001 7 7 4 5 + -0.13750807614435645 4 6 7 7 + -0.14075666033631046 7 7 4 6 + 0.56412254149288861E-001 4 7 7 7 + 0.57765277579730878E-001 7 7 4 7 + -0.10049929194861854 4 8 7 7 + -0.10287354330919021 7 7 4 8 + -0.17649322045572288E-001 5 3 7 7 + -0.17336647823172045E-001 7 7 5 3 + -0.11595962665868797E-001 5 4 7 7 + -0.11390540887761546E-001 7 7 5 4 + 0.54141259790829033 5 5 7 7 + 0.53787223434368570 7 7 5 5 + 0.12444468081367904E-001 5 6 7 7 + 0.12738463169482175E-001 7 7 5 6 + -0.15759884752482570 5 7 7 7 + -0.16137873353981494 7 7 5 7 + -0.96698951447225207E-001 5 8 7 7 + -0.98983390661306819E-001 7 7 5 8 + 0.58642606419010368E-001 6 3 7 7 + 0.61316616592835792E-001 7 7 6 3 + -0.71243354401244699E-001 6 4 7 7 + -0.74491938593198692E-001 7 7 6 4 + 0.64475159808157038E-002 6 5 7 7 + 0.67415110689299758E-002 7 7 6 5 + 0.42471536441195074 6 6 7 7 + 0.42471536441195068 7 7 6 6 + 0.20556851561142359E-007 6 7 7 7 + 0.20556851554394210E-007 7 7 6 7 + 0.11136525838941619E-007 6 8 7 7 + 0.11136525843176079E-007 7 7 6 8 + 0.44841497015964606E-001 7 3 7 7 + 0.46900834926178747E-001 7 7 7 3 + 0.29461646437076570E-001 7 4 7 7 + 0.30814669867518588E-001 7 7 7 4 + -0.82306932375601813E-001 7 5 7 7 + -0.86086818390591069E-001 7 7 7 5 + 0.20556851649296142E-007 7 6 7 7 + 0.20556851642579991E-007 7 7 7 6 + 0.46912694655605791 7 7 7 7 + 0.63151814689112293E-003 1 10 7 8 + 0.61792486421351493E-003 7 8 1 10 + -0.69020293481593885E-004 1 11 7 8 + -0.67533826593090842E-004 7 8 1 11 + -0.17232614629211110E-004 1 12 7 8 + -0.16862194048398375E-004 7 8 1 12 + 0.81715343407178767E-003 1 13 7 8 + 0.79954872318393057E-003 7 8 1 13 + 0.84909183542316514E-005 1 14 7 8 + 0.83075103929488506E-005 7 8 1 14 + 0.11280203407436445E-001 2 10 7 8 + 0.10948809006147135E-001 7 8 2 10 + -0.12329661175237336E-002 2 11 7 8 + -0.11967366412470189E-002 7 8 2 11 + -0.30773379237701516E-003 2 12 7 8 + -0.29869732697195630E-003 7 8 2 12 + 0.14598372076916000E-001 2 13 7 8 + 0.14169363521293842E-001 7 8 2 13 + 0.15176127376359725E-003 2 14 7 8 + 0.14729736875137466E-003 7 8 2 14 + -0.13152993799562704E-001 3 3 7 8 + -0.12919927588368251E-001 7 8 3 3 + -0.10250512699165848E-001 3 4 7 8 + -0.10068873107727409E-001 7 8 3 4 + 0.63660241249670728E-002 3 5 7 8 + 0.62532724258178556E-002 7 8 3 5 + 0.32866065156249106E-009 3 6 7 8 + 0.46928185343657720E-009 7 8 3 6 + -0.29944114000559929E-002 3 7 7 8 + -0.30862857159241939E-002 7 8 3 7 + 0.21889633660418894E-002 3 8 7 8 + 0.22561002166448752E-002 7 8 3 8 + -0.10250512699165847E-001 4 3 7 8 + -0.10068873107727408E-001 7 8 4 3 + -0.77917453432527154E-002 4 4 7 8 + -0.76536711831828187E-002 7 8 4 4 + 0.71355792375898822E-002 4 5 7 8 + 0.70091838195669338E-002 7 8 4 5 + 0.18931439192359805E-009 4 6 7 8 + 0.27031465867273809E-009 7 8 4 6 + -0.26998882000576758E-002 4 7 7 8 + -0.27827239672204517E-002 7 8 4 7 + 0.14381759510115723E-002 4 8 7 8 + 0.14822813379566674E-002 7 8 4 8 + 0.63660241249670728E-002 5 3 7 8 + 0.62532724258178556E-002 7 8 5 3 + 0.71355792375898831E-002 5 4 7 8 + 0.70091838195669347E-002 7 8 5 4 + 0.20944739142811850E-001 5 5 7 8 + 0.20573598771547522E-001 7 8 5 5 + -0.18435357213833702E-008 5 6 7 8 + -0.26323133872528703E-008 7 8 5 6 + -0.25977189067089277E-002 5 7 7 8 + -0.26773897547511965E-002 7 8 5 7 + -0.40179757042485527E-002 5 8 7 8 + -0.41412536682167095E-002 7 8 5 8 + 0.25615556072171978E-009 6 3 7 8 + 0.39677676259419276E-009 7 8 6 3 + 0.14755028354271807E-009 6 4 7 8 + 0.22855055029242434E-009 7 8 6 4 + -0.14368377348274331E-008 6 5 7 8 + -0.22256154006978619E-008 7 8 6 5 + -0.41939819202292418E-009 6 6 7 8 + -0.41939817219001287E-009 7 8 6 6 + 0.11136525837902081E-007 6 7 7 8 + 0.11136525838049795E-007 7 8 6 7 + 0.43674417366725211E-008 6 8 7 8 + 0.43674417364220012E-008 7 8 6 8 + -0.17953048415874715E-002 7 3 7 8 + -0.18871791574556721E-002 7 8 7 3 + -0.16187220077069514E-002 7 4 7 8 + -0.17015577748697272E-002 7 8 7 4 + -0.15574525606908824E-002 7 5 7 8 + -0.16371234087331509E-002 7 8 7 5 + 0.11136525838091346E-007 7 6 7 8 + 0.11136525838239107E-007 7 8 7 6 + -0.42196319170659079E-006 7 7 7 8 + -0.42196319168947644E-006 7 8 7 7 + 0.22205806940615948E-001 7 8 7 8 + -0.11613823637653317E-002 1 3 7 9 + -0.11134833332093370E-002 7 9 1 3 + -0.76304836270568092E-003 1 4 7 9 + -0.73157786859343618E-003 7 9 1 4 + 0.21317291125428606E-002 1 5 7 9 + 0.20438099559545410E-002 7 9 1 5 + -0.17714150320411650E-002 1 7 7 9 + -0.18326615128207446E-002 7 9 1 7 + -0.38966429468198782E-001 2 3 7 9 + -0.38362925872239065E-001 7 9 2 3 + -0.25601620219026615E-001 2 4 7 9 + -0.25205107885835111E-001 7 9 2 4 + 0.71523276657914220E-001 2 5 7 9 + 0.70415539684140410E-001 7 9 2 5 + -0.17625283780737366E-001 2 7 7 9 + -0.18035256946300746E-001 7 9 2 7 + -0.18630688733485182E-001 3 1 7 9 + -0.18582789702929186E-001 7 9 3 1 + -0.44323611913840162E-001 3 2 7 9 + -0.43720108317880445E-001 7 9 3 2 + 0.47872752498204340E-002 3 9 7 9 + 0.48538278572768752E-002 7 9 3 9 + 0.33200108859791425E-001 3 10 7 9 + 0.32724626938022611E-001 7 9 3 10 + -0.33184716680638902E-001 3 11 7 9 + -0.32709452319792359E-001 7 9 3 11 + -0.74710807907921624E-002 3 12 7 9 + -0.73640849510813273E-002 7 9 3 12 + 0.99913881220889643E-002 3 13 7 9 + 0.98482474227083554E-002 7 9 3 13 + -0.13079403730147651E-001 3 14 7 9 + -0.12892040684342094E-001 7 9 3 14 + -0.12240685735983522E-001 4 1 7 9 + -0.12209215241871277E-001 7 9 4 1 + -0.29121382031673061E-001 4 2 7 9 + -0.28724869698481554E-001 7 9 4 2 + 0.31453228972358059E-002 4 9 7 9 + 0.31890491150068294E-002 7 9 4 9 + 0.30521519988047772E-001 4 10 7 9 + 0.30084399531995806E-001 7 9 4 10 + 0.34417734806409889E-001 4 11 7 9 + 0.33924816788140230E-001 7 9 4 11 + 0.46068273492621365E-002 4 12 7 9 + 0.45408471285159459E-002 7 9 4 12 + 0.14208254456254069E-001 4 13 7 9 + 0.14004717682374029E-001 7 9 4 13 + -0.98786026409788813E-002 4 14 7 9 + -0.97370909793381387E-002 7 9 4 14 + 0.34196818204758700E-001 5 1 7 9 + 0.34108899048170375E-001 7 9 5 1 + 0.81356439393012611E-001 5 2 7 9 + 0.80248702419238802E-001 7 9 5 2 + -0.87870922946616213E-002 5 9 7 9 + -0.89092502809173905E-002 7 9 5 9 + -0.15213466031827652E-001 5 10 7 9 + -0.14995591745461487E-001 7 9 5 10 + -0.35066651887690490E-002 5 11 7 9 + -0.34564348538769761E-002 7 9 5 11 + 0.23295817282115113E-002 5 12 7 9 + 0.22962157736157434E-002 7 9 5 12 + 0.44608939602095860E-001 5 13 7 9 + 0.43969896476071198E-001 7 9 5 13 + 0.26080168014754806E-001 5 14 7 9 + 0.25706559768193117E-001 7 9 5 14 + 0.26077667457254539E-003 6 10 7 9 + 0.23927234295227171E-003 7 9 6 10 + 0.35405406201021979E-002 6 11 7 9 + 0.32485799868902021E-002 7 9 6 11 + 0.60172653071489761E-003 6 12 7 9 + 0.55210687443062623E-003 7 9 6 12 + 0.11108500282216652E-003 6 13 7 9 + 0.10192344945665808E-003 7 9 6 13 + -0.84044668260619323E-004 6 14 7 9 + -0.77116295208905699E-004 7 9 6 14 + -0.43936255440031498E-001 7 1 7 9 + -0.43997501920811075E-001 7 9 7 1 + -0.79417159913825908E-002 7 2 7 9 + -0.83516891569459725E-002 7 9 7 2 + 0.82153011357313094E-001 7 9 7 9 + -0.14147967109989668E-002 1 3 7 10 + -0.13942807517977314E-002 7 10 1 3 + -0.13006501077016562E-002 1 4 7 10 + -0.12817893645207376E-002 7 10 1 4 + 0.64832110503782066E-003 1 5 7 10 + 0.63892021460527665E-003 7 10 1 5 + 0.12228140921219063E-003 1 6 7 10 + 0.12312939267991401E-003 7 10 1 6 + -0.12870441755640128E-002 1 7 7 10 + -0.12959692415551660E-002 7 10 1 7 + 0.10306227788559161E-002 1 8 7 10 + 0.10377700943554305E-002 7 10 1 8 + -0.50230660030420298E-002 2 3 7 10 + -0.47581085487860683E-002 7 10 2 3 + -0.46177992850478418E-002 2 4 7 10 + -0.43742180720782939E-002 7 10 2 4 + 0.23018374467719959E-002 2 5 7 10 + 0.21804344208805251E-002 7 10 2 5 + 0.12089066066452306E-002 2 6 7 10 + 0.12117047558796500E-002 7 10 2 6 + -0.12724032055207692E-001 2 7 7 10 + -0.12753483340057702E-001 7 10 2 7 + 0.10189054705681681E-001 2 8 7 10 + 0.10212638274826597E-001 7 10 2 8 + -0.99557675894162197E-002 3 1 7 10 + -0.99352516302149835E-002 7 10 3 1 + -0.51788554633494348E-002 3 2 7 10 + -0.49138980090934732E-002 7 10 3 2 + 0.13528351262688811E-001 3 9 7 10 + 0.13554269215144988E-001 7 10 3 9 + 0.14593444619886223E-002 3 10 7 10 + 0.13002995532091189E-002 7 10 3 10 + -0.76091823762235232E-003 3 11 7 10 + -0.61804161498918669E-003 7 10 3 11 + 0.25493401622391686E-003 3 12 7 10 + 0.19533722540353792E-003 7 10 3 12 + 0.15328438471287465E-003 3 13 7 10 + 0.40194738763874905E-004 7 10 3 13 + -0.10404604012525596E-002 3 14 7 10 + -0.89946477894763143E-003 7 10 3 14 + -0.91525349844516976E-002 4 1 7 10 + -0.91336742412707790E-002 7 10 4 1 + -0.47610200721145222E-002 4 2 7 10 + -0.45174388591449743E-002 7 10 4 2 + 0.12436881122973828E-001 4 9 7 10 + 0.12460707936359375E-001 7 10 4 9 + 0.99173527592696280E-003 4 10 7 10 + 0.88282343329812354E-003 7 10 4 10 + 0.81826817208091173E-003 4 11 7 10 + 0.65825679684443426E-003 7 10 4 11 + -0.54315434353858854E-003 4 12 7 10 + -0.44186099058994669E-003 7 10 4 12 + 0.69018250610258168E-004 4 13 7 10 + -0.39321818390779988E-004 7 10 4 13 + -0.78393189795262727E-003 4 14 7 10 + -0.68895389066887542E-003 7 10 4 14 + 0.45620862815335811E-002 5 1 7 10 + 0.45526853911010377E-002 7 10 5 1 + 0.23732179343153269E-002 5 2 7 10 + 0.22518149084238561E-002 7 10 5 2 + -0.61991891175223789E-002 5 9 7 10 + -0.62110669741807034E-002 7 10 5 9 + -0.28584234502700432E-002 5 10 7 10 + -0.25423751172656810E-002 7 10 5 10 + -0.12415159943444270E-003 5 11 7 10 + -0.10325430162079152E-003 7 10 5 11 + 0.11420689301361813E-003 5 12 7 10 + 0.95228010547474180E-004 7 10 5 12 + 0.54275353688144261E-005 5 13 7 10 + -0.81123855871753192E-004 7 10 5 13 + 0.49805897560564511E-003 5 14 7 10 + 0.42840847342652750E-003 7 10 5 14 + 0.11977181757996552E-002 6 1 7 10 + 0.11985661592673787E-002 7 10 6 1 + 0.16344983036930903E-002 6 2 7 10 + 0.16372964529275096E-002 7 10 6 2 + 0.23927234295225479E-003 6 9 7 10 + 0.26077667457252945E-003 7 10 6 9 + -0.22476583502453027E-003 6 10 7 10 + -0.22476588641394022E-003 7 10 6 10 + -0.93255806595182681E-002 6 11 7 10 + -0.93255809053631507E-002 7 10 6 11 + 0.50646655218260870E-002 6 12 7 10 + 0.50646652556588772E-002 7 10 6 12 + -0.21764843610181289E-003 6 13 7 10 + -0.21764797744669318E-003 7 10 6 13 + -0.47763644801121545E-003 6 14 7 10 + -0.47763708155339196E-003 7 10 6 14 + -0.12606249963729981E-001 7 1 7 10 + -0.12615175029721135E-001 7 10 7 1 + -0.17203487540676965E-001 7 2 7 10 + -0.17232938825526976E-001 7 10 7 2 + -0.25183847215510570E-002 7 9 7 10 + -0.27447240314851786E-002 7 10 7 9 + 0.16604236933783639E-001 7 10 7 10 + 0.14141369557275907E-002 1 3 7 11 + 0.13936304224785835E-002 7 11 1 3 + -0.14666880454498083E-002 1 4 7 11 + -0.14454197266127111E-002 7 11 1 4 + 0.14942192082779385E-003 1 5 7 11 + 0.14725471658898751E-003 7 11 1 5 + 0.16601961536769690E-002 1 6 7 11 + 0.16717092411623179E-002 7 11 1 6 + 0.65567085337951919E-004 1 7 7 11 + 0.66021557410166347E-004 7 11 1 7 + -0.11264527107138089E-003 1 8 7 11 + -0.11342676035962928E-003 7 11 1 8 + 0.50207060283121354E-002 2 3 7 11 + 0.47558680188809297E-002 7 11 2 3 + -0.52073144579566476E-002 2 4 7 11 + -0.49326423906496690E-002 7 11 2 4 + 0.53045004035979181E-003 2 5 7 11 + 0.50245415025511645E-003 7 11 2 5 + 0.16413165031695671E-001 2 6 7 11 + 0.16451155060769235E-001 7 11 2 6 + 0.64817895472351857E-003 2 7 7 11 + 0.64967934570150584E-003 7 11 2 7 + -0.11136943317802894E-002 2 8 7 11 + -0.11162719355688852E-002 7 11 2 8 + 0.99511516111488209E-002 3 1 7 11 + 0.99306450778998134E-002 7 11 3 1 + 0.51764259322620645E-002 3 2 7 11 + 0.49115879228308588E-002 7 11 3 2 + -0.13522072627131235E-001 3 9 7 11 + -0.13547978105059907E-001 7 11 3 9 + -0.68633643656093796E-003 3 10 7 11 + -0.63512467255683188E-003 7 11 3 10 + 0.18295454130541182E-002 3 11 7 11 + 0.16208967261000505E-002 7 11 3 11 + -0.53447762523458134E-003 3 12 7 11 + -0.40601383588625495E-003 7 11 3 12 + 0.36500237158475977E-003 3 13 7 11 + 0.34004315348890404E-003 7 11 3 13 + -0.41892357503515353E-003 3 14 7 11 + -0.27245555051301192E-003 7 11 3 14 + -0.10320899199238611E-001 4 1 7 11 + -0.10299630880401514E-001 7 11 4 1 + -0.53688153522700819E-002 4 2 7 11 + -0.50941432849631032E-002 7 11 4 2 + 0.14024513891038242E-001 4 9 7 11 + 0.14051382771538461E-001 7 11 4 9 + 0.72642311940464732E-003 4 10 7 11 + 0.67929703124825879E-003 7 11 4 10 + 0.12007451557590101E-002 4 11 7 11 + 0.10638340682961127E-002 7 11 4 11 + -0.56658882045624551E-003 4 12 7 11 + -0.45277977223898315E-003 7 11 4 12 + -0.40804293917143854E-003 4 13 7 11 + -0.37398716535979389E-003 7 11 4 13 + 0.60537863963444280E-003 4 14 7 11 + 0.41608442677821986E-003 7 11 4 14 + 0.10515481348278713E-002 5 1 7 11 + 0.10493809305890649E-002 7 11 5 1 + 0.54691313283683181E-003 5 2 7 11 + 0.51891724273215646E-003 7 11 5 2 + -0.14288722516663185E-002 5 9 7 11 + -0.14316083381825800E-002 7 11 5 9 + -0.11639467628260523E-003 5 10 7 11 + -0.10503005017596510E-003 7 11 5 10 + -0.26213797834208196E-002 5 11 7 11 + -0.23371688182492511E-002 7 11 5 11 + -0.96697974164084832E-003 5 12 7 11 + -0.79276813325126745E-003 7 11 5 12 + 0.51274391006987873E-004 5 13 7 11 + 0.50001431814973269E-004 7 11 5 13 + -0.14709688985694742E-004 5 14 7 11 + -0.22683629318983806E-005 7 11 5 14 + 0.16261277787921979E-001 6 1 7 11 + 0.16272790875407329E-001 7 11 6 1 + 0.22191366580375512E-001 6 2 7 11 + 0.22229356609449077E-001 7 11 6 2 + 0.32485799868897064E-002 6 9 7 11 + 0.35405406201016948E-002 7 11 6 9 + -0.32720996747823768E-002 6 10 7 11 + -0.32720999490636689E-002 7 11 6 10 + 0.31045832327612256E-003 6 11 7 11 + 0.31045845823201061E-003 7 11 6 11 + -0.23217714451508482E-003 6 12 7 11 + -0.23217628052923172E-003 7 11 6 12 + 0.19584360074181078E-002 6 13 7 11 + 0.19584378913310020E-002 7 11 6 13 + -0.10168252059193243E-001 6 14 7 11 + -0.10168262028421190E-001 7 11 6 14 + 0.64215533202924356E-003 7 1 7 11 + 0.64260980410145798E-003 7 11 7 1 + 0.87636918184194547E-003 7 2 7 11 + 0.87786957281993263E-003 7 11 7 2 + 0.12827409796082746E-003 7 9 7 11 + 0.13980530524608929E-003 7 11 7 9 + 0.12362922867327372E-004 7 10 7 11 + 0.12362952802085166E-004 7 11 7 10 + 0.16798507885278022E-001 7 11 7 11 + 0.31837788943507133E-003 1 3 7 12 + 0.31376122672865470E-003 7 12 1 3 + -0.19631285109682629E-003 1 4 7 12 + -0.19346599058314451E-003 7 12 1 4 + -0.99270130173383130E-004 1 5 7 12 + -0.97830497510756351E-004 7 12 1 5 + 0.28215573954967809E-003 1 6 7 12 + 0.28411242746427919E-003 7 12 1 6 + 0.13825621654047011E-003 1 7 7 12 + 0.13921498908673637E-003 7 12 1 7 + -0.28119653216056437E-004 1 8 7 12 + -0.28314475997201907E-004 7 12 1 8 + 0.11303791161744981E-002 2 3 7 12 + 0.10707584642199294E-002 7 12 2 3 + -0.69696915564643181E-003 2 4 7 12 + -0.66020071598362005E-003 7 12 2 4 + -0.35243209906989922E-003 2 5 7 12 + -0.33383777754388591E-003 7 12 2 5 + 0.27894710128681028E-002 2 6 7 12 + 0.27959275417905618E-002 7 12 2 6 + 0.13668392248209699E-002 2 7 7 12 + 0.13700029223044248E-002 7 12 2 7 + -0.27796962587824141E-003 2 8 7 12 + -0.27861310741965654E-003 7 12 2 8 + 0.22403647461856110E-002 3 1 7 12 + 0.22357480834791941E-002 7 12 3 1 + 0.11654341796744213E-002 3 2 7 12 + 0.11058135277198526E-002 7 12 3 2 + -0.30443157268740190E-002 3 9 7 12 + -0.30501485237245428E-002 7 12 3 9 + 0.20851745784816676E-003 3 10 7 12 + 0.20596761428817470E-003 7 12 3 10 + -0.43078954269527164E-003 3 11 7 12 + -0.42976477247097576E-003 7 12 3 11 + 0.29918900642572480E-003 3 12 7 12 + 0.29574723366134679E-003 7 12 3 12 + 0.64834751785236718E-003 3 13 7 12 + 0.61149335199481682E-003 7 12 3 13 + 0.47671776330993277E-005 3 14 7 12 + 0.21255586040547957E-004 7 12 3 14 + -0.13814561106114376E-002 4 1 7 12 + -0.13786092500977557E-002 7 12 4 1 + -0.71858884816581009E-003 4 2 7 12 + -0.68182040850299833E-003 7 12 4 2 + 0.18771799012745475E-002 4 9 7 12 + 0.18807758420671676E-002 7 12 4 9 + -0.49118474075541619E-003 4 10 7 12 + -0.45376564964306305E-003 7 12 4 10 + -0.49753220901270663E-003 4 11 7 12 + -0.46859641278351939E-003 7 12 4 11 + 0.13850008553099128E-003 4 12 7 12 + 0.14402896662511050E-003 7 12 4 12 + -0.73796947536419960E-003 4 13 7 12 + -0.68689856917470218E-003 7 12 4 13 + 0.15028768022379630E-003 4 14 7 12 + 0.11232515163742845E-003 7 12 4 14 + -0.69857499723354800E-003 5 1 7 12 + -0.69713536457092118E-003 7 12 5 1 + -0.36336573208036019E-003 5 2 7 12 + -0.34477141055434688E-003 7 12 5 2 + 0.94925041128752965E-003 5 9 7 12 + 0.95106863921116166E-003 7 12 5 9 + 0.10752152673989351E-003 5 10 7 12 + 0.96758746214245124E-004 7 12 5 10 + -0.88577099125233241E-003 5 11 7 12 + -0.81136935286770721E-003 7 12 5 11 + -0.12028456423678695E-002 5 12 7 12 + -0.11089105370667577E-002 7 12 5 12 + -0.23353352594056469E-004 5 13 7 12 + -0.10044314308807856E-004 7 12 5 13 + -0.77793031981204501E-004 5 14 7 12 + -0.64396777426811334E-004 7 12 5 14 + 0.27636574205046767E-002 6 1 7 12 + 0.27656141084192775E-002 7 12 6 1 + 0.37714952361652503E-002 6 2 7 12 + 0.37779517650877092E-002 7 12 6 2 + 0.55210687443061875E-003 6 9 7 12 + 0.60172653071489262E-003 7 12 6 9 + 0.14947268107577455E-002 6 10 7 12 + 0.14947268114339769E-002 7 12 6 10 + 0.69755755927376198E-003 6 11 7 12 + 0.69755731930897891E-003 7 12 6 11 + -0.48203933483410498E-005 6 12 7 12 + -0.48205211590787885E-005 7 12 6 12 + 0.29402392988370943E-002 6 13 7 12 + 0.29402423923670599E-002 7 12 6 13 + -0.17222099501354052E-002 6 14 7 12 + -0.17222115524460500E-002 7 12 6 14 + 0.13541901348267133E-002 7 1 7 12 + 0.13551489073729797E-002 7 12 7 1 + 0.18480305572278976E-002 7 2 7 12 + 0.18511942547113525E-002 7 12 7 2 + 0.27053176177243855E-003 7 9 7 12 + 0.29484538765467205E-003 7 12 7 9 + -0.84347746590091868E-003 7 10 7 12 + -0.84347764216436468E-003 7 12 7 10 + 0.23513306584906084E-002 7 11 7 12 + 0.23513306551077107E-002 7 12 7 11 + 0.37178479745368508E-002 7 12 7 12 + -0.42571265275981519E-003 1 3 7 13 + -0.41953709044698735E-003 7 13 1 3 + -0.60540661288881279E-003 1 4 7 13 + -0.59662514339548585E-003 7 13 1 4 + -0.19007526499605063E-002 1 5 7 13 + -0.18731816462111009E-002 7 13 1 5 + 0.52094219756258973E-004 1 6 7 13 + 0.52455374100032858E-004 7 13 1 6 + 0.99164321158664963E-003 1 7 7 13 + 0.99852419418551422E-003 7 13 1 7 + 0.13336854196791749E-002 1 8 7 13 + 0.13429401889548354E-002 7 13 1 8 + -0.15111543590252104E-002 2 3 7 13 + -0.14313614468659391E-002 7 13 2 3 + -0.21491155104843350E-002 2 4 7 13 + -0.20356653969402262E-002 7 13 2 4 + -0.67473722439972761E-002 2 5 7 13 + -0.63911680594354765E-002 7 13 2 5 + 0.51500074968293568E-003 2 6 7 13 + 0.51619282820556929E-003 7 13 2 6 + 0.98043342155170032E-002 2 7 7 13 + 0.98270253014105195E-002 7 13 2 7 + 0.13186150023555086E-001 2 8 7 13 + 0.13216667777025327E-001 7 13 2 8 + -0.29961279572234111E-002 3 1 7 13 + -0.29899523949105831E-002 7 13 3 1 + -0.15580819483169040E-002 3 2 7 13 + -0.14782890361576327E-002 7 13 3 2 + 0.40711735601136629E-002 3 9 7 13 + 0.40789659351749986E-002 7 13 3 9 + -0.15740371260482055E-004 3 10 7 13 + 0.78884082979430495E-004 7 13 3 10 + 0.40879905533022700E-003 3 11 7 13 + 0.33001257907692321E-003 7 13 3 11 + 0.73993819706055005E-003 3 12 7 13 + 0.59051773888657078E-003 7 13 3 12 + 0.15711917245764789E-002 3 13 7 13 + 0.13966708642574152E-002 7 13 3 13 + -0.27916626767936301E-003 3 14 7 13 + -0.24262492856889494E-003 7 13 3 14 + -0.42606457804715168E-002 4 1 7 13 + -0.42518643109781895E-002 7 13 4 1 + -0.22158336264304418E-002 4 2 7 13 + -0.21023835128863330E-002 7 13 4 2 + 0.57894507419262138E-002 4 9 7 13 + 0.58005345107931851E-002 7 13 4 9 + -0.11199323170096376E-003 4 10 7 13 + 0.21161785859399591E-005 7 13 4 10 + -0.44585532805166433E-003 4 11 7 13 + -0.36532419592635011E-003 7 13 4 11 + -0.82548849556069630E-003 4 12 7 13 + -0.66685181038086548E-003 7 13 4 12 + 0.10960729998823948E-002 4 13 7 13 + 0.97283177813288339E-003 7 13 4 13 + -0.30977530373855154E-003 4 14 7 13 + -0.27531189554359781E-003 7 13 4 14 + -0.13376933633411777E-001 5 1 7 13 + -0.13349362629662371E-001 7 13 5 1 + -0.69568520759656109E-002 5 2 7 13 + -0.66006478914038113E-002 7 13 5 2 + 0.18176825649196170E-001 5 9 7 13 + 0.18211623368932565E-001 7 13 5 9 + -0.15145067804173183E-003 5 10 7 13 + -0.45212223338807504E-004 7 13 5 10 + 0.61600422596715020E-004 5 11 7 13 + 0.47637794667615489E-004 7 13 5 11 + -0.47810398100905544E-005 5 12 7 13 + -0.14295876091938383E-004 7 13 5 12 + -0.27863843574198769E-002 5 13 7 13 + -0.24791861201174650E-002 7 13 5 13 + -0.13210269629700634E-002 5 14 7 13 + -0.11463874484559963E-002 7 13 5 14 + 0.51022260357245748E-003 6 1 7 13 + 0.51058375791623129E-003 7 13 6 1 + 0.69630554485082606E-003 6 2 7 13 + 0.69749762337345967E-003 7 13 6 2 + 0.10192344945661753E-003 6 9 7 13 + 0.11108500282212559E-003 7 13 6 9 + 0.87109944436826968E-003 6 10 7 13 + 0.87109834719236649E-003 7 13 6 10 + 0.49000948948014315E-002 6 11 7 13 + 0.49000903513980220E-002 7 13 6 11 + 0.94132859998780731E-002 6 12 7 13 + 0.94132766298112083E-002 7 13 6 12 + -0.25138421706057948E-003 6 13 7 13 + -0.25138414351041325E-003 7 13 6 13 + -0.37464259111645918E-003 6 14 7 13 + -0.37464329728349445E-003 7 13 6 14 + 0.97140828829104745E-002 7 1 7 13 + 0.97209638655093404E-002 7 13 7 1 + 0.13255900842766895E-001 7 2 7 13 + 0.13278591928660412E-001 7 13 7 2 + 0.19408434305319816E-002 7 9 7 13 + 0.21152209317036649E-002 7 13 7 9 + 0.51185016489409729E-003 7 10 7 13 + 0.51184989035516219E-003 7 13 7 10 + 0.61973069449438909E-005 7 11 7 13 + 0.61972304050819308E-005 7 13 7 11 + 0.55920106872172791E-003 7 12 7 13 + 0.55920091286764469E-003 7 13 7 12 + 0.16757992049863505E-001 7 13 7 13 + 0.55731038525864952E-003 1 3 7 14 + 0.54922668563107014E-003 7 14 1 3 + 0.42092467430177228E-003 1 4 7 14 + 0.41481921647289774E-003 7 14 1 4 + -0.11112584400016032E-002 1 5 7 14 + -0.10951393860926797E-002 7 14 1 5 + -0.39400310928529298E-004 1 6 7 14 + -0.39673727264879359E-004 7 14 1 6 + 0.10691092313566024E-002 1 7 7 14 + 0.10765276940648456E-002 7 14 1 7 + 0.13861500633296405E-004 1 8 7 14 + 0.13957864490378677E-004 7 14 1 8 + 0.19783963466194774E-002 2 3 7 14 + 0.18739630187462480E-002 7 14 2 3 + 0.14942392237418647E-002 2 4 7 14 + 0.14153626179263074E-002 7 14 2 4 + -0.39448038189728793E-002 2 5 7 14 + -0.37365548526051267E-002 7 14 2 5 + -0.38955222320499988E-003 2 6 7 14 + -0.39045379082785966E-003 7 14 2 6 + 0.10570228695826349E-001 2 7 7 14 + 0.10594692390164849E-001 7 14 2 7 + 0.13707700019731579E-003 2 8 7 14 + 0.13739415993760477E-003 7 14 2 8 + 0.39221362797968607E-002 3 1 7 14 + 0.39140525801692810E-002 7 14 3 1 + 0.20398112187607902E-002 3 2 7 14 + 0.19353778908875608E-002 7 14 3 2 + -0.53294830162016480E-002 3 9 7 14 + -0.53396865992583822E-002 7 14 3 9 + -0.10378471417859065E-002 3 10 7 14 + -0.90004739085879928E-003 7 14 3 10 + -0.25398884525129834E-003 3 11 7 14 + -0.31020652332489426E-003 7 14 3 11 + 0.36044536844723856E-004 3 12 7 14 + 0.14095138113532587E-004 7 14 3 12 + -0.28107693335076137E-003 3 13 7 14 + -0.24218749483371842E-003 7 14 3 13 + 0.93879186700787231E-003 3 14 7 14 + 0.84943110057069423E-003 7 14 3 14 + 0.29623082434773866E-002 4 1 7 14 + 0.29562027856485117E-002 7 14 4 1 + 0.15406248221748488E-002 4 2 7 14 + 0.14617482163592915E-002 7 14 4 2 + -0.40252475565446099E-002 4 9 7 14 + -0.40329540739917581E-002 7 14 4 9 + -0.80252882991031337E-003 4 10 7 14 + -0.68468567507391103E-003 7 14 4 10 + 0.40792604144010674E-003 4 11 7 14 + 0.46127606510162997E-003 7 14 4 11 + 0.11774914759286634E-003 4 12 7 14 + 0.11977125348903735E-003 7 14 4 12 + -0.32301267976984460E-003 4 13 7 14 + -0.27228268216280296E-003 7 14 4 13 + 0.57947932765129806E-003 4 14 7 14 + 0.52579741512036717E-003 7 14 4 14 + -0.78206899477012270E-002 5 1 7 14 + -0.78045708937923034E-002 7 14 5 1 + -0.40672723430947421E-002 5 2 7 14 + -0.38590233767269895E-002 7 14 5 2 + 0.10626902717960983E-001 5 9 7 14 + 0.10647247155966868E-001 7 14 5 9 + 0.49281453638626500E-003 5 10 7 14 + 0.42960163296915153E-003 7 14 5 10 + 0.44706278462462787E-005 5 11 7 14 + -0.66585310281338898E-005 7 14 5 11 + -0.72398899046620496E-004 5 12 7 14 + -0.65630877814473135E-004 7 14 5 12 + -0.13268058738101474E-002 5 13 7 14 + -0.11450643356361273E-002 7 14 5 13 + -0.17240223091977596E-002 5 14 7 14 + -0.15598348120507933E-002 7 14 5 14 + -0.38596845285625487E-003 6 1 7 14 + -0.38624186919260494E-003 7 14 6 1 + -0.52669204851446571E-003 6 2 7 14 + -0.52759361613732554E-003 7 14 6 2 + -0.77116295208902948E-004 6 9 7 14 + -0.84044668260617236E-004 7 14 6 9 + 0.31960438378228446E-003 6 10 7 14 + 0.31960414606841195E-003 7 14 6 10 + 0.30034686519529036E-002 6 11 7 14 + 0.30034663358481303E-002 7 14 6 11 + 0.58898144731202317E-003 6 12 7 14 + 0.58898071391746162E-003 7 14 6 12 + 0.63478366665550072E-004 6 13 7 14 + 0.63478346898941787E-004 7 14 6 13 + 0.17051212215731586E-003 6 14 7 14 + 0.17051209285141050E-003 7 14 6 14 + 0.10472920878188271E-001 7 1 7 14 + 0.10480339340896514E-001 7 14 7 1 + 0.14291424856634746E-001 7 2 7 14 + 0.14315888550973247E-001 7 14 7 2 + 0.20924539886684667E-002 7 9 7 14 + 0.22804538149884309E-002 7 14 7 9 + -0.66862072831197182E-002 7 10 7 14 + -0.66862007979399327E-002 7 14 7 10 + 0.15300507871338998E-004 7 11 7 14 + 0.15300285510998272E-004 7 14 7 11 + 0.66690261950965693E-003 7 12 7 14 + 0.66690199894245124E-003 7 14 7 12 + 0.52672662936123892E-002 7 13 7 14 + 0.52672661075014041E-002 7 14 7 13 + 0.88320515618075593E-002 7 14 7 14 + -0.21020322012143419E-001 1 3 8 1 + -0.20963418697050817E-001 8 1 1 3 + -0.18952848524860726E-001 1 4 8 1 + -0.18901541988695886E-001 8 1 1 4 + -0.18236168503934544E-001 1 5 8 1 + -0.18186802065025490E-001 8 1 1 5 + 0.37402971647752511E-001 1 8 8 1 + 0.37402971647752511E-001 8 1 1 8 + -0.38650317040789084E-001 2 3 8 1 + -0.38497074931748886E-001 8 1 2 3 + -0.34848828856604841E-001 2 4 8 1 + -0.34710659018931042E-001 8 1 2 4 + -0.33531060745840918E-001 2 5 8 1 + -0.33398115640587978E-001 8 1 2 5 + 0.31155490870055577E-001 2 8 8 1 + 0.31163023199861879E-001 8 1 2 8 + -0.36040006644641527E-001 3 1 8 1 + -0.35983103329548925E-001 8 1 3 1 + -0.39937563236206841E-001 3 2 8 1 + -0.39784321127166643E-001 8 1 3 2 + 0.18749780440764384E-001 3 9 8 1 + 0.18706887734158191E-001 8 1 3 9 + -0.72094573717060044E-002 3 10 8 1 + -0.71860144301349018E-002 8 1 3 10 + -0.52001856329347059E-002 3 11 8 1 + -0.51832758115796188E-002 8 1 3 11 + 0.26691495818068199E-001 3 12 8 1 + 0.26604702690428965E-001 8 1 3 12 + 0.28698213453774137E-001 3 13 8 1 + 0.28604888695694816E-001 8 1 3 13 + -0.12405064167154317E-001 3 14 8 1 + -0.12364723526030836E-001 8 1 3 14 + -0.32495257987782362E-001 4 1 8 1 + -0.32443951451617527E-001 8 1 4 1 + -0.36009466745113974E-001 4 2 8 1 + -0.35871296907440176E-001 8 1 4 2 + 0.16905628199363983E-001 4 9 8 1 + 0.16866954245146778E-001 8 1 4 9 + -0.12886063755477246E-001 4 10 8 1 + -0.12844162151487443E-001 8 1 4 10 + 0.46426893307422055E-002 4 11 8 1 + 0.46275929676774814E-002 8 1 4 11 + -0.27982559352807086E-001 4 12 8 1 + -0.27891568616789559E-001 8 1 4 12 + 0.24911255876856660E-001 4 13 8 1 + 0.24830246580580955E-001 8 1 4 13 + -0.11818973815521987E-001 4 14 8 1 + -0.11780539424051852E-001 8 1 4 14 + -0.31266487434156207E-001 5 1 8 1 + -0.31217120995247150E-001 8 1 5 1 + -0.34647810456531619E-001 5 2 8 1 + -0.34514865351278678E-001 8 1 5 2 + 0.16266361444511719E-001 5 9 8 1 + 0.16229149901091568E-001 8 1 5 9 + -0.37348972140033999E-001 5 10 8 1 + -0.37227524160635315E-001 8 1 5 10 + 0.19777289949366732E-002 5 11 8 1 + 0.19712978422964491E-002 8 1 5 11 + 0.53112918291013762E-002 5 12 8 1 + 0.52940210929618738E-002 8 1 5 12 + -0.12732934903114140E-001 5 13 8 1 + -0.12691528073804725E-001 8 1 5 13 + -0.11376616255372446E-001 5 14 8 1 + -0.11339619938633515E-001 8 1 5 14 + 0.11514772172120822E-002 6 10 8 1 + 0.11506625457477872E-002 8 1 6 10 + -0.28190486913409231E-002 6 11 8 1 + -0.28170542016258860E-002 8 1 6 11 + 0.16259510199530990E-001 6 12 8 1 + 0.16248006510921141E-001 8 1 6 12 + -0.78702478725262376E-003 6 13 8 1 + -0.78646793076582043E-003 8 1 6 13 + 0.18647396258702364E-003 6 14 8 1 + 0.18634212508966301E-003 8 1 6 14 + 0.10101933070877806E-001 7 10 8 1 + 0.10094785755378291E-001 8 1 7 10 + -0.11042064260780604E-002 7 11 8 1 + -0.11034249367898119E-002 8 1 7 11 + -0.27557136185994783E-003 7 12 8 1 + -0.27537653907880235E-003 8 1 7 12 + 0.13074065051646653E-001 7 13 8 1 + 0.13064810282370993E-001 8 1 7 13 + 0.13593213524611144E-003 7 14 8 1 + 0.13583577138902915E-003 8 1 7 14 + 0.67173028507679505E-001 8 1 8 1 + -0.39173358939254537E-002 1 3 8 2 + -0.38600980118973444E-002 8 2 1 3 + -0.35320426478565150E-002 1 4 8 2 + -0.34804344514009202E-002 8 2 1 4 + -0.33984825449803000E-002 1 5 8 2 + -0.33488258527150754E-002 8 2 1 5 + 0.54436361134999126E-002 1 8 8 2 + 0.54361037836936129E-002 8 2 1 8 + -0.20999414931172199E-001 2 3 8 2 + -0.20570384490126450E-001 8 2 2 3 + -0.18933997779447827E-001 2 4 8 2 + -0.18547165029835493E-001 8 2 2 4 + -0.18218030577631904E-001 2 5 8 2 + -0.17845825460521533E-001 8 2 2 5 + 0.33745456045325015E-001 2 8 8 2 + 0.33745456045325015E-001 8 2 2 8 + -0.18893686719857465E-001 3 1 8 2 + -0.18836448837829357E-001 8 2 3 1 + -0.21503598511013345E-001 3 2 8 2 + -0.21074568069967596E-001 8 2 3 2 + 0.23444531280935536E-001 3 9 8 2 + 0.23419877975618474E-001 8 2 3 9 + -0.32533691849981278E-002 3 10 8 2 + -0.31674187544437253E-002 8 2 3 10 + -0.23465753483729174E-002 3 11 8 2 + -0.22845718172533639E-002 8 2 3 11 + 0.12044799292241320E-001 3 12 8 2 + 0.11726575549557661E-001 8 2 3 12 + 0.12949097783173581E-001 3 13 8 2 + 0.12606835298195963E-001 8 2 3 13 + -0.55973330788676888E-002 3 14 8 2 + -0.54493840525845407E-002 8 2 3 14 + -0.17035380441401394E-001 4 1 8 2 + -0.16983772244945797E-001 8 2 4 1 + -0.19388591910400255E-001 4 2 8 2 + -0.19001759160787921E-001 8 2 4 2 + 0.21138622417260430E-001 4 9 8 2 + 0.21116393910911115E-001 8 2 4 9 + -0.58150017005067344E-002 4 10 8 2 + -0.56613738720969519E-002 8 2 4 10 + 0.20951256496081804E-002 4 11 8 2 + 0.20397802240745893E-002 8 2 4 11 + -0.12627515064867402E-001 4 12 8 2 + -0.12293908969841019E-001 8 2 4 12 + 0.11240463274847786E-001 4 13 8 2 + 0.10943374333849103E-001 8 2 4 13 + -0.53329429307062875E-002 4 14 8 2 + -0.51919895372952900E-002 8 2 4 14 + -0.16391207255760602E-001 5 1 8 2 + -0.16341550563495375E-001 8 2 5 1 + -0.18655434757909872E-001 5 2 8 2 + -0.18283229640799502E-001 8 2 5 2 + 0.20339289887562798E-001 5 9 8 2 + 0.20317901926442065E-001 8 2 5 9 + -0.16854133359624983E-001 5 10 8 2 + -0.16408852045401393E-001 8 2 5 10 + 0.89244156779577589E-003 5 11 8 2 + 0.86885995627261191E-003 8 2 5 11 + 0.23967861762220614E-002 5 12 8 2 + 0.23334646594254087E-002 8 2 5 12 + -0.57452788788502985E-002 5 13 8 2 + -0.55934200552406532E-002 8 2 5 13 + -0.51332566087622794E-002 5 14 8 2 + -0.49975709249876054E-002 8 2 5 14 + 0.15729701182112443E-002 6 10 8 2 + 0.15702819051181974E-002 8 2 6 10 + -0.38509464827870279E-002 6 11 8 2 + -0.38443652035704636E-002 8 2 6 11 + 0.22211215166518396E-001 6 12 8 2 + 0.22173256139539490E-001 8 2 6 12 + -0.10751043746573944E-002 6 13 8 2 + -0.10732670382814621E-002 8 2 6 13 + 0.25475071748456350E-003 6 14 8 2 + 0.25431529002373167E-003 8 2 6 14 + 0.13799661210898441E-001 7 10 8 2 + 0.13776077641753525E-001 8 2 7 10 + -0.15083430740104771E-002 7 11 8 2 + -0.15057654702218812E-002 8 2 7 11 + -0.37647217144048755E-003 7 12 8 2 + -0.37582868989907242E-003 8 2 7 12 + 0.17858784141666674E-001 7 13 8 2 + 0.17828266388196432E-001 8 2 7 13 + 0.18565067713052574E-003 7 14 8 2 + 0.18533351739023676E-003 8 2 7 14 + 0.33800249762865456E-001 8 1 8 2 + 0.33792717433059158E-001 8 2 8 1 + 0.44267273369896970E-001 8 2 8 2 + -0.28199431816768522 1 1 8 3 + -0.28284124275628736 8 3 1 1 + -0.15940537824669463E-002 1 2 8 3 + -0.14340827922626393E-002 8 3 1 2 + 0.17644055785251403E-002 1 9 8 3 + 0.16198820336364198E-002 8 3 1 9 + -0.33031285413436944E-003 1 10 8 3 + -0.32650684182500023E-003 8 3 1 10 + -0.23824250920415860E-003 1 11 8 3 + -0.23549693273208435E-003 8 3 1 11 + 0.12228964518739660E-002 1 12 8 3 + 0.12088050777165106E-002 8 3 1 12 + 0.13146469204232704E-002 1 13 8 3 + 0.12994915643685736E-002 8 3 1 13 + -0.56826321326769913E-003 1 14 8 3 + -0.56171205451863930E-003 8 3 1 14 + 0.18448435156154880E-001 2 1 8 3 + 0.18608406146359186E-001 8 3 2 1 + -0.10204410779461014 2 2 8 3 + -0.10109900836326327 8 3 2 2 + 0.46863905093225695E-001 2 9 8 3 + 0.47757168854827302E-001 8 3 2 9 + -0.16692563714985494E-002 2 10 8 3 + -0.16227500304874911E-002 8 3 2 10 + -0.12039417382181980E-002 2 11 8 3 + -0.11703881044890817E-002 8 3 2 11 + 0.61799386214350478E-002 2 12 8 3 + 0.60077467010808709E-002 8 3 2 12 + 0.66431193010356793E-002 2 13 8 3 + 0.64578500059150048E-002 8 3 2 13 + -0.28715116217110630E-002 2 14 8 3 + -0.27914238770733327E-002 8 3 2 14 + -0.10736493518375122 3 3 8 3 + -0.10760911612104369 8 3 3 3 + -0.52790978001355368E-002 3 4 8 3 + -0.51689602266066286E-002 8 3 3 4 + -0.50800399418468719E-002 3 5 8 3 + -0.49741301549674627E-002 8 3 3 5 + -0.41152438839115041E-001 3 6 8 3 + -0.41152438839115041E-001 8 3 3 6 + -0.29625209223881600E-001 3 7 8 3 + -0.29625209223881607E-001 8 3 3 7 + 0.54754846677043389E-001 3 8 8 3 + 0.54754846677043389E-001 8 3 3 8 + -0.52790978001355723E-002 4 3 8 3 + -0.51689602266066642E-002 8 3 4 3 + -0.95653666752823718E-001 4 4 8 3 + -0.96142003052348407E-001 8 3 4 4 + 0.98762926977059498E-007 4 5 8 3 + 0.10978405098976072E-006 8 3 4 5 + 0.38074077147642091E-001 4 6 8 3 + 0.38074077147642098E-001 8 3 4 6 + -0.20456107496490912E-001 4 7 8 3 + -0.20456107496490919E-001 8 3 4 7 + 0.36538909702776214E-001 4 8 8 3 + 0.36538909702776241E-001 8 3 4 8 + -0.50800399418468849E-002 5 3 8 3 + -0.49741301549674757E-002 8 3 5 3 + 0.98762927000386097E-007 5 4 8 3 + 0.10978405101309396E-006 8 3 5 4 + -0.95654346592360370E-001 5 5 8 3 + -0.96142758756342053E-001 8 3 5 5 + -0.87916228426927531E-002 5 6 8 3 + -0.87916228426927548E-002 8 3 5 6 + 0.43417926951586493E-001 5 7 8 3 + 0.43417926951586513E-001 8 3 5 7 + 0.35157666405241886E-001 5 8 8 3 + 0.35157666405241886E-001 8 3 5 8 + -0.69812802442887942E-001 6 3 8 3 + -0.69812802442887942E-001 8 3 6 3 + 0.71168734746865900E-001 6 4 8 3 + 0.71168734746865914E-001 8 3 6 4 + -0.12559840974458903E-001 6 5 8 3 + -0.12559840974458905E-001 8 3 6 5 + -0.60382221957763667E-001 6 6 8 3 + -0.57748960136188271E-001 8 3 6 6 + 0.39677684237809125E-009 6 7 8 3 + 0.25615563800304811E-009 8 3 6 7 + 0.19164166012545223E-002 6 8 8 3 + 0.18231085337307162E-002 8 3 6 8 + -0.50257422915166279E-001 7 3 8 3 + -0.50257422915166286E-001 8 3 7 3 + -0.34155226490133923E-001 7 4 8 3 + -0.34155226490133930E-001 8 3 7 4 + 0.79704091364402221E-001 7 5 8 3 + 0.79704091364402249E-001 8 3 7 5 + 0.39677689232485915E-009 7 6 8 3 + 0.25615568795422203E-009 8 3 7 6 + -0.60382186406247554E-001 7 7 8 3 + -0.57748937184442545E-001 8 3 7 7 + 0.13795226334665680E-002 7 8 8 3 + 0.13123857828635818E-002 8 3 7 8 + 0.85035900813582393E-001 8 3 8 3 + -0.25425850251085175 1 1 8 4 + -0.25502212703717841 8 4 1 1 + -0.14372691275672635E-002 1 2 8 4 + -0.12930322341475221E-002 8 4 1 2 + 0.15908658129445857E-002 1 9 8 4 + 0.14605570168676595E-002 8 4 1 9 + -0.59039325355824952E-003 1 10 8 4 + -0.58359039211361451E-003 8 4 1 10 + 0.21271931353926326E-003 1 11 8 4 + 0.21026851804698441E-003 8 4 1 11 + -0.12820644866935892E-002 1 12 8 4 + -0.12672919184058295E-002 8 4 1 12 + 0.11411842041523237E-002 1 13 8 4 + 0.11280290895525221E-002 8 4 1 13 + -0.54142434841273354E-003 1 14 8 4 + -0.53518293119711425E-003 8 4 1 14 + 0.16633922012865648E-001 2 1 8 4 + 0.16778158906285388E-001 8 4 2 1 + -0.92007463861329256E-001 2 2 8 4 + -0.91155320570998066E-001 8 4 2 2 + 0.42254561752300267E-001 2 9 8 4 + 0.43059967718802647E-001 8 4 2 9 + -0.29835825105178075E-002 2 10 8 4 + -0.29004561636870869E-002 8 4 2 10 + 0.10750081591853209E-002 2 11 8 4 + 0.10450642819836808E-002 8 4 2 11 + -0.64789884595543865E-002 2 12 8 4 + -0.62984792775024742E-002 8 4 2 12 + 0.57666239939718452E-002 2 13 8 4 + 0.56058131738650216E-002 8 4 2 13 + -0.27359149763126712E-002 2 14 8 4 + -0.26596175537139358E-002 8 4 2 14 + -0.86245370430153678E-001 3 3 8 4 + -0.86685654728837838E-001 8 4 3 3 + -0.58551797035807486E-002 3 4 8 4 + -0.57330513027060307E-002 8 4 3 4 + 0.98762926871940896E-007 3 5 8 4 + 0.10978405088438545E-006 8 4 3 5 + -0.25183905271020247E-001 3 6 8 4 + -0.25183905271020240E-001 8 4 3 6 + -0.25719522449753958E-001 3 7 8 4 + -0.25719522449753934E-001 8 4 3 7 + 0.36538909702776047E-001 3 8 8 4 + 0.36538909702776019E-001 8 4 3 8 + -0.58551797035807556E-002 4 3 8 4 + -0.57330513027060376E-002 8 4 4 3 + -0.96805219923521271E-001 4 4 8 4 + -0.97025413635908095E-001 8 4 4 4 + -0.50800871344945800E-002 4 5 8 4 + -0.49741826139235020E-002 8 4 4 5 + 0.45077695528535570E-001 4 6 8 4 + 0.45077695528535570E-001 8 4 4 6 + -0.17549814739498862E-001 4 7 8 4 + -0.17549814739498862E-001 8 4 4 7 + 0.47175261212889882E-001 4 8 8 4 + 0.47175261212889882E-001 8 4 4 8 + 0.98762926868973184E-007 5 3 8 4 + 0.10978405088142167E-006 8 4 5 3 + -0.50800871344945731E-002 5 4 8 4 + -0.49741826139234951E-002 8 4 5 4 + -0.86246100185708566E-001 5 5 8 4 + -0.86686465919063718E-001 8 4 5 5 + 0.24150892629158662E-002 5 6 8 4 + 0.24150892629158675E-002 8 4 5 6 + 0.40007984785896684E-001 5 7 8 4 + 0.40007984785896657E-001 8 4 5 7 + 0.31699686199245125E-001 5 8 8 4 + 0.31699686199245104E-001 8 4 5 8 + -0.49301278450357464E-001 6 3 8 4 + -0.49301278450357457E-001 8 4 6 3 + 0.76471777392310314E-001 6 4 8 4 + 0.76471777392310314E-001 8 4 6 4 + 0.51321005676342290E-003 6 5 8 4 + 0.51321005676342442E-003 8 4 6 5 + -0.54443267817338950E-001 6 6 8 4 + -0.52069004372710989E-001 8 4 6 6 + 0.22855040391152482E-009 6 7 8 4 + 0.14755014090412746E-009 8 4 6 7 + -0.23282044402004442E-002 6 8 8 4 + -0.22148467571776959E-002 8 4 6 8 + -0.44178999690573401E-001 7 3 8 4 + -0.44178999690573373E-001 8 4 7 3 + -0.29772217963071237E-001 7 4 8 4 + -0.29772217963071237E-001 8 4 7 4 + 0.72849599213492724E-001 7 5 8 4 + 0.72849599213492711E-001 8 4 7 5 + 0.22855043513326937E-009 7 6 8 4 + 0.14755017212916334E-009 8 4 7 6 + -0.54443233720961659E-001 7 7 8 4 + -0.52068982360389968E-001 8 4 7 7 + 0.90635707491670619E-003 7 8 8 4 + 0.86225168797161107E-003 8 4 7 8 + 0.61986073088107461E-001 8 3 8 4 + 0.61986073088107434E-001 8 4 8 3 + 0.72177610407241355E-001 8 4 8 4 + -0.24464401165154445 1 1 8 5 + -0.24537876060063055 8 5 1 1 + -0.13829204597629100E-002 1 2 8 5 + -0.12441377174518423E-002 8 5 1 2 + 0.15307090643366240E-002 1 9 8 5 + 0.14053277444950928E-002 8 5 1 9 + -0.17111854875669992E-002 1 10 8 5 + -0.16914678169075474E-002 8 5 1 10 + 0.90607312558666972E-004 1 11 8 5 + 0.89563098047193245E-004 8 5 1 11 + 0.24334398446152061E-003 1 12 8 5 + 0.24054001747315112E-003 8 5 1 12 + -0.58328355256328048E-003 1 13 8 5 + -0.57655926626870222E-003 8 5 1 13 + -0.52114701980979466E-003 1 14 8 5 + -0.51513889027161636E-003 8 5 1 14 + 0.16004929512839619E-001 2 1 8 5 + 0.16143712255150686E-001 8 5 2 1 + -0.88528308153469015E-001 2 2 8 5 + -0.87708387674940796E-001 8 5 2 2 + 0.40656754427394505E-001 2 9 8 5 + 0.41431704899876048E-001 8 5 2 9 + -0.86475365042308679E-002 2 10 8 5 + -0.84065957313573525E-002 8 5 2 10 + 0.45787557533184592E-003 2 11 8 5 + 0.44511392175691165E-003 8 5 2 11 + 0.12297503313170182E-002 2 12 8 5 + 0.11954876106999536E-002 8 5 2 12 + -0.29474137908591029E-002 2 13 8 5 + -0.28652099346782259E-002 8 5 2 13 + -0.26334167196042893E-002 2 14 8 5 + -0.25599658680215773E-002 8 5 2 14 + -0.82984666725507403E-001 3 3 8 5 + -0.83408365245092417E-001 8 5 3 3 + 0.98762927363967035E-007 3 4 8 5 + 0.10978405138457027E-006 8 5 3 4 + -0.58558595431168836E-002 3 5 8 5 + -0.57338070066991478E-002 8 5 3 5 + -0.31434696781410289E-001 3 6 8 5 + -0.31434696781410282E-001 8 5 3 6 + -0.14741397071179732E-001 3 7 8 5 + -0.14741397071179742E-001 8 5 3 7 + 0.35157666405242122E-001 3 8 8 5 + 0.35157666405242122E-001 8 5 3 8 + 0.98762927357546632E-007 4 3 8 5 + 0.10978405137820867E-006 8 5 4 3 + -0.82984713918154207E-001 4 4 8 5 + -0.83408417704047527E-001 8 5 4 4 + -0.52798275556910834E-002 4 5 8 5 + -0.51697714168331861E-002 8 5 4 5 + 0.36878523062332455E-001 4 6 8 5 + 0.36878523062332448E-001 8 5 4 6 + -0.78647516991390849E-002 4 7 8 5 + -0.78647516991390918E-002 8 5 4 7 + 0.31699686199245160E-001 4 8 8 5 + 0.31699686199245181E-001 8 5 4 8 + -0.58558595431168732E-002 5 3 8 5 + -0.57338070066991374E-002 8 5 5 3 + -0.52798275556910626E-002 5 4 8 5 + -0.51697714168331653E-002 8 5 5 4 + -0.93144167369263231E-001 5 5 8 5 + -0.93355981676713745E-001 8 5 5 5 + -0.39252566894212564E-002 5 6 8 5 + -0.39252566894212582E-002 8 5 5 6 + 0.47175023963380414E-001 5 7 8 5 + 0.47175023963380427E-001 8 5 5 7 + 0.44730917691174786E-001 5 8 8 5 + 0.44730917691174786E-001 8 5 5 8 + -0.55681852014416243E-001 6 3 8 5 + -0.55681852014416236E-001 8 5 6 3 + 0.66146196849786107E-001 6 4 8 5 + 0.66146196849786107E-001 8 5 6 4 + -0.66589749494233505E-002 6 5 8 5 + -0.66589749494233531E-002 8 5 6 5 + -0.52384561047382067E-001 6 6 8 5 + -0.50100076788873640E-001 8 5 6 6 + -0.22256153923175942E-008 6 7 8 5 + -0.14368377263143890E-008 8 5 6 7 + 0.21070113637066524E-003 6 8 8 5 + 0.20044270261834093E-003 8 5 6 8 + -0.31055914956904455E-001 7 3 8 5 + -0.31055914956904466E-001 8 5 7 3 + -0.18320384014393756E-001 7 4 8 5 + -0.18320384014393763E-001 8 5 7 4 + 0.80029640878237565E-001 7 5 8 5 + 0.80029640878237579E-001 8 5 7 5 + -0.22256153536180013E-008 7 6 8 5 + -0.14368376876072194E-008 8 5 7 6 + -0.52384433950008989E-001 7 7 8 5 + -0.50099994735927370E-001 8 5 7 7 + -0.25322620807267169E-002 7 8 8 5 + -0.24089841167585597E-002 8 5 7 8 + 0.59642993038063870E-001 8 3 8 5 + 0.59642993038063870E-001 8 5 8 3 + 0.53776721131955620E-001 8 4 8 5 + 0.53776721131955640E-001 8 5 8 4 + 0.68030957435177758E-001 8 5 8 5 + 0.71984884733779599E-004 1 10 8 6 + 0.70435498766571012E-004 8 6 1 10 + -0.17623318771527838E-003 1 11 8 6 + -0.17243995316135519E-003 8 6 1 11 + 0.10164649342940129E-002 1 12 8 6 + 0.99458655340648383E-003 8 6 1 12 + -0.49199768928228403E-004 1 13 8 6 + -0.48140683757451520E-004 8 6 1 13 + 0.11660821296467364E-004 1 14 8 6 + 0.11410152636912789E-004 8 6 1 14 + 0.12857862238389826E-002 2 10 8 6 + 0.12480124791240642E-002 8 6 2 10 + -0.31478629621764596E-002 2 11 8 6 + -0.30553849759774399E-002 8 6 2 11 + 0.18156020392289706E-001 2 12 8 6 + 0.17622632103818137E-001 8 6 2 12 + -0.87881900715706019E-003 2 13 8 6 + -0.85300010469141724E-003 8 6 2 13 + 0.20823705192530822E-003 2 14 8 6 + 0.20212213309853209E-003 8 6 2 14 + -0.18271064032391177E-001 3 3 8 6 + -0.17947396504856477E-001 8 6 3 3 + 0.28615243340489715E-002 3 4 8 6 + 0.28108344050795297E-002 8 6 3 4 + -0.89299403322730276E-002 3 5 8 6 + -0.87717485003957121E-002 8 6 3 5 + -0.29944408483119130E-002 3 6 8 6 + -0.30863277639504843E-002 8 6 3 6 + 0.32866064109167568E-009 3 7 8 6 + 0.46928184718952393E-009 8 6 3 7 + 0.30407770956216349E-002 3 8 8 6 + 0.31340851631454407E-002 8 6 3 8 + 0.28615243340489697E-002 4 3 8 6 + 0.28108344050795280E-002 8 6 4 3 + 0.20013813922144911E-001 4 4 8 6 + 0.19659271888506503E-001 8 6 4 4 + 0.87228858476414532E-002 4 5 8 6 + 0.85683617375147715E-002 8 6 4 5 + -0.26999164429836612E-002 4 6 8 6 + -0.27827642942027065E-002 8 6 4 6 + 0.18931436135976424E-009 4 7 8 6 + 0.27031462219111865E-009 8 6 4 7 + -0.36941602443708063E-002 4 8 8 6 + -0.38075179273935542E-002 8 6 4 8 + -0.89299403322730259E-002 5 3 8 6 + -0.87717485003957103E-002 8 6 5 3 + 0.87228858476414532E-002 5 4 8 6 + 0.85683617375147715E-002 8 6 5 4 + -0.17427498897540101E-002 5 5 8 6 + -0.17118753836503251E-002 8 6 5 5 + -0.25978241848039975E-002 5 6 8 6 + -0.26775400772730664E-002 8 6 5 6 + -0.18435357370401588E-008 5 7 8 6 + -0.26323134001341627E-008 8 6 5 7 + 0.33432025355018951E-003 5 8 8 6 + 0.34457868730251379E-003 8 6 5 8 + -0.17953277933342297E-002 6 3 8 6 + -0.18872147089728009E-002 8 6 6 3 + -0.16187440200287194E-002 6 4 8 6 + -0.17015918712477646E-002 8 6 6 4 + -0.15575346136381153E-002 6 5 8 6 + -0.16372505061071844E-002 8 6 6 5 + -0.15923393900388227E-007 6 6 8 6 + -0.15923393904244493E-007 8 6 6 6 + -0.41939723715990714E-009 6 7 8 6 + -0.41939723821619166E-009 8 6 6 7 + 0.22206387599136925E-001 6 8 8 6 + 0.22206387599136925E-001 8 6 6 8 + 0.25615559744673500E-009 7 3 8 6 + 0.39677680354639591E-009 8 6 7 3 + 0.14755016463934639E-009 7 4 8 6 + 0.22855042547281244E-009 8 6 7 4 + -0.14368377084788228E-008 7 5 8 6 + -0.22256153715726580E-008 8 6 7 5 + -0.41939722604860473E-009 7 6 8 6 + -0.41939722710643917E-009 8 6 7 6 + 0.11136525826228273E-007 7 7 8 6 + 0.11136525821998716E-007 8 6 7 7 + 0.43674417379100222E-008 7 8 8 6 + 0.43674417381600681E-008 8 6 7 8 + 0.18231085337307076E-002 8 3 8 6 + 0.19164166012545136E-002 8 6 8 3 + -0.22148467571776937E-002 8 4 8 6 + -0.23282044402004420E-002 8 6 8 4 + 0.20044270261833870E-003 8 5 8 6 + 0.21070113637066301E-003 8 6 8 5 + 0.22206387599136929E-001 8 6 8 6 + 0.63151814689112315E-003 1 10 8 7 + 0.61792486421351515E-003 8 7 1 10 + -0.69020293481593912E-004 1 11 8 7 + -0.67533826593090869E-004 8 7 1 11 + -0.17232614629211069E-004 1 12 8 7 + -0.16862194048398334E-004 8 7 1 12 + 0.81715343407178810E-003 1 13 8 7 + 0.79954872318393100E-003 8 7 1 13 + 0.84909183542312516E-005 1 14 8 7 + 0.83075103929484508E-005 8 7 1 14 + 0.11280203407436438E-001 2 10 8 7 + 0.10948809006147128E-001 8 7 2 10 + -0.12329661175237326E-002 2 11 8 7 + -0.11967366412470178E-002 8 7 2 11 + -0.30773379237701668E-003 2 12 8 7 + -0.29869732697195781E-003 8 7 2 12 + 0.14598372076915984E-001 2 13 8 7 + 0.14169363521293827E-001 8 7 2 13 + 0.15176127376360967E-003 2 14 8 7 + 0.14729736875138707E-003 8 7 2 14 + -0.13152993799562434E-001 3 3 8 7 + -0.12919927588367981E-001 8 7 3 3 + -0.10250512699165834E-001 3 4 8 7 + -0.10068873107727395E-001 8 7 3 4 + 0.63660241249670728E-002 3 5 8 7 + 0.62532724258178556E-002 8 7 3 5 + 0.32866032314323800E-009 3 6 8 7 + 0.46928152502973500E-009 8 7 3 6 + -0.29944114000562431E-002 3 7 8 7 + -0.30862857159244441E-002 8 7 3 7 + 0.21889633660419484E-002 3 8 8 7 + 0.22561002166449342E-002 8 7 3 8 + -0.10250512699165833E-001 4 3 8 7 + -0.10068873107727394E-001 8 7 4 3 + -0.77917453432524500E-002 4 4 8 7 + -0.76536711831825532E-002 8 7 4 4 + 0.71355792375898805E-002 4 5 8 7 + 0.70091838195669321E-002 8 7 4 5 + 0.18931479059593333E-009 4 6 8 7 + 0.27031505736263798E-009 8 7 4 6 + -0.26998882000578428E-002 4 7 8 7 + -0.27827239672206187E-002 8 7 4 7 + 0.14381759510116267E-002 4 8 8 7 + 0.14822813379567219E-002 8 7 4 8 + 0.63660241249670737E-002 5 3 8 7 + 0.62532724258178565E-002 8 7 5 3 + 0.71355792375898813E-002 5 4 8 7 + 0.70091838195669330E-002 8 7 5 4 + 0.20944739142812103E-001 5 5 8 7 + 0.20573598771547776E-001 8 7 5 5 + -0.18435357581247066E-008 5 6 8 7 + -0.26323134239962430E-008 8 7 5 6 + -0.25977189067084936E-002 5 7 8 7 + -0.26773897547507624E-002 8 7 5 7 + -0.40179757042483333E-002 5 8 8 7 + -0.41412536682164901E-002 8 7 5 8 + 0.25615523230246672E-009 6 3 8 7 + 0.39677643418735056E-009 8 7 6 3 + 0.14755068221505335E-009 6 4 8 7 + 0.22855094898232421E-009 8 7 6 4 + -0.14368377715687695E-008 6 5 8 7 + -0.22256154374412346E-008 8 7 6 5 + -0.41939755875662988E-009 6 6 8 7 + -0.41939753891444867E-009 8 7 6 6 + 0.11136525837517882E-007 6 7 8 7 + 0.11136525837666970E-007 8 7 6 7 + 0.43674417353440723E-008 6 8 8 7 + 0.43674417350918873E-008 8 7 6 8 + -0.17953048415877218E-002 7 3 8 7 + -0.18871791574559223E-002 8 7 7 3 + -0.16187220077071179E-002 7 4 8 7 + -0.17015577748698938E-002 8 7 7 4 + -0.15574525606904482E-002 7 5 8 7 + -0.16371234087327168E-002 8 7 7 5 + 0.11136525837707147E-007 7 6 8 7 + 0.11136525837856281E-007 8 7 7 6 + -0.42196319106431927E-006 7 7 8 7 + -0.42196319104714928E-006 8 7 7 7 + 0.22205806940615937E-001 7 8 8 7 + 0.22205806940615937E-001 8 7 7 8 + 0.13123857828639242E-002 8 3 8 7 + 0.13795226334669104E-002 8 7 8 3 + 0.86225168797191790E-003 8 4 8 7 + 0.90635707491701302E-003 8 7 8 4 + -0.24089841167582787E-002 8 5 8 7 + -0.25322620807264359E-002 8 7 8 5 + 0.43674417375907222E-008 8 6 8 7 + 0.43674417373390111E-008 8 7 8 6 + 0.22205806940615927E-001 8 7 8 7 + 0.84113809495549652 1 1 8 8 + 0.84262046548998271 8 8 1 1 + -0.49062106009096530E-001 1 2 8 8 + -0.49496351852313124E-001 8 8 1 2 + 0.42265479737550883E-001 1 9 8 8 + 0.42347463393151943E-001 8 8 1 9 + 0.83694275934699470E-003 1 10 8 8 + 0.81892834003530950E-003 8 8 1 10 + -0.11470099754943418E-004 1 11 8 8 + -0.11223885983816776E-004 8 8 1 11 + -0.99140723329388278E-004 1 12 8 8 + -0.97006094498948542E-004 8 8 1 12 + -0.65518464996335761E-003 1 13 8 8 + -0.64107013990544746E-003 8 8 1 13 + 0.53787366412880427E-003 1 14 8 8 + 0.52628530016576717E-003 8 8 1 14 + 0.15825892716178874E-001 2 1 8 8 + 0.15391646872962277E-001 8 8 2 1 + 0.53028889276412272 2 2 8 8 + 0.52875443026099644 8 8 2 2 + -0.17090484480875462 2 9 8 8 + -0.17133763699023341 8 8 2 9 + 0.14949419522639208E-001 2 10 8 8 + 0.14510234278027561E-001 8 8 2 10 + -0.20477809017187246E-003 2 11 8 8 + -0.19876772734392299E-003 8 8 2 11 + -0.17709525625484049E-002 2 12 8 8 + -0.17189193582028953E-002 8 8 2 12 + -0.11704701699076715E-001 2 13 8 8 + -0.11360736994173072E-001 8 8 2 13 + 0.96091303580025343E-002 2 14 8 8 + 0.93267390550581218E-002 8 8 2 14 + 0.52700994746753194 3 3 8 8 + 0.52372481157394257 8 8 3 3 + 0.16222470009765056E-001 3 4 8 8 + 0.15934985868111023E-001 8 8 3 4 + 0.15609447938735359E-001 3 5 8 8 + 0.15332918926532057E-001 8 8 3 5 + 0.11318714578263973 3 6 8 8 + 0.11586115574703496 8 8 3 6 + 0.81482990910883873E-001 3 7 8 8 + 0.83407967014245216E-001 8 8 3 7 + -0.11745103174189198 3 8 8 8 + -0.12026800199164764 8 8 3 8 + 0.16222470009765039E-001 4 3 8 8 + 0.15934985868111005E-001 8 8 4 3 + 0.52364482130206036 4 4 8 8 + 0.52041933777301264 8 8 4 4 + 0.14074151834048629E-001 4 5 8 8 + 0.13824818184942930E-001 8 8 4 5 + -0.13750807640522561 4 6 8 8 + -0.14075666070879522 8 8 4 6 + 0.53535727780769510E-001 4 7 8 8 + 0.54800465789852489E-001 8 8 4 7 + -0.10589903377828298 4 8 8 8 + -0.10843894188182110 8 8 4 8 + 0.15609447938735374E-001 5 3 8 8 + 0.15332918926532074E-001 8 8 5 3 + 0.14074151834048676E-001 5 4 8 8 + 0.13824818184942977E-001 8 8 5 4 + 0.52255964224682039 5 5 8 8 + 0.51935341273282665 8 8 5 5 + 0.12444470760115062E-001 5 6 8 8 + 0.12738466994361687E-001 8 8 5 6 + -0.14956296781183637 5 7 8 8 + -0.15309632857462538 8 8 5 7 + -0.10189465863099514 5 8 8 8 + -0.10433855479432083 8 8 5 8 + 0.58642606037511570E-001 6 3 8 8 + 0.61316616001906799E-001 8 8 6 3 + -0.71243354604562728E-001 6 4 8 8 + -0.74491938908132341E-001 8 8 6 4 + 0.64475180686108195E-002 6 5 8 8 + 0.67415143028574445E-002 8 8 6 5 + 0.42471536490366646 6 6 8 8 + 0.42471536490366646 8 8 6 6 + 0.43674416627496422E-008 6 7 8 8 + 0.43674416562671989E-008 8 8 6 7 + 0.47868680603658265E-008 6 8 8 8 + 0.47868680644476626E-008 8 8 6 8 + 0.42216564956952661E-001 7 3 8 8 + 0.44141541060314010E-001 8 8 7 3 + 0.27737007083271842E-001 7 4 8 8 + 0.29001745092354828E-001 8 8 7 4 + -0.77489020021016888E-001 7 5 8 8 + -0.81022380783805914E-001 8 8 7 5 + 0.43674417481222228E-008 7 6 8 8 + 0.43674417416554356E-008 8 8 7 6 + 0.42471478424514880 7 7 8 8 + 0.42471478424514886 8 8 7 7 + 0.42238258712981787E-006 7 8 8 8 + 0.42238258710795590E-006 8 8 7 8 + -0.61339496584547855E-001 8 3 8 8 + -0.64156466834303524E-001 8 8 8 3 + -0.55306399431856432E-001 8 4 8 8 + -0.57846307535394541E-001 8 8 8 4 + -0.53215109802513712E-001 8 5 8 8 + -0.55659005965839392E-001 8 8 8 5 + 0.47868680540332676E-008 8 6 8 8 + 0.47868680581157323E-008 8 8 8 6 + 0.42238258778206024E-006 8 7 8 8 + 0.42238258776022262E-006 8 8 8 7 + 0.46912694606434080 8 8 8 8 + 0.15886778100358510E-002 1 3 8 9 + 0.15231557827167627E-002 8 9 1 3 + 0.14324219139470067E-002 1 4 8 9 + 0.13733443670805490E-002 8 9 1 4 + 0.13782565379131210E-002 1 5 8 9 + 0.13214129400738511E-002 8 9 1 5 + -0.17714150320410614E-002 1 8 8 9 + -0.18326615128206407E-002 8 9 1 8 + 0.53302946354163022E-001 2 3 8 9 + 0.52477401898614696E-001 8 9 2 3 + 0.48060285070590271E-001 2 4 8 9 + 0.47315937814277717E-001 8 9 2 4 + 0.46242941041014583E-001 2 5 8 9 + 0.45526740414298654E-001 8 9 2 5 + -0.17625283780736696E-001 2 8 8 9 + -0.18035256946300086E-001 8 9 2 8 + 0.25485286069449446E-001 3 1 8 9 + 0.25419764042130356E-001 8 9 3 1 + 0.60631141736871376E-001 3 2 8 9 + 0.59805597281323050E-001 8 9 3 2 + -0.65486081046259928E-002 3 9 8 9 + -0.66396467271889192E-002 8 9 3 9 + 0.88628051812056283E-002 3 10 8 9 + 0.87358762061728046E-002 8 9 3 10 + 0.63927278915613369E-002 3 11 8 9 + 0.63011657315114270E-002 8 9 3 11 + -0.32812641701229363E-001 3 12 8 9 + -0.32342702444952721E-001 8 9 3 12 + -0.35279275939046041E-001 3 13 8 9 + -0.34773879686112098E-001 8 9 3 13 + 0.15249781057635510E-001 3 14 8 9 + 0.15031315664141117E-001 8 9 3 14 + 0.22978656854446548E-001 4 1 8 9 + 0.22919579307580092E-001 8 9 4 1 + 0.54667708923032590E-001 4 2 8 9 + 0.53923361666720036E-001 8 9 4 2 + -0.59045136123009982E-002 4 9 8 9 + -0.59865980457530768E-002 8 9 4 9 + 0.15841226401100389E-001 4 10 8 9 + 0.15614354052493496E-001 8 9 4 10 + -0.57074097196068048E-002 4 11 8 9 + -0.56256757022371167E-002 8 9 4 11 + 0.34399809113024031E-001 4 12 8 9 + 0.33907150108210042E-001 8 9 4 12 + -0.30623917835232675E-001 4 13 8 9 + -0.30185222901021685E-001 8 9 4 13 + 0.14529303000196604E-001 4 14 8 9 + 0.14321165451119227E-001 8 9 4 14 + 0.22109745553134760E-001 5 1 8 9 + 0.22052901955295488E-001 8 9 5 1 + 0.52600512811400442E-001 5 2 8 9 + 0.51884312184684513E-001 8 9 5 2 + -0.56812412670557743E-002 5 9 8 9 + -0.57602217727047607E-002 8 9 5 9 + 0.45914200925034745E-001 5 10 8 9 + 0.45256626996998069E-001 8 9 5 10 + -0.24312741530635685E-002 5 11 8 9 + -0.23964507835651616E-002 8 9 5 11 + -0.65293305093658575E-002 5 12 8 9 + -0.64358195312224434E-002 8 9 5 12 + 0.15652840155388974E-001 5 13 8 9 + 0.15428601247400824E-001 8 9 5 13 + 0.13985484441369857E-001 5 14 8 9 + 0.13785128327376724E-001 8 9 5 14 + 0.25053154023447902E-003 6 10 8 9 + 0.22987209746963823E-003 8 9 6 10 + -0.61335232578220889E-003 6 11 8 9 + -0.56277393156654149E-003 8 9 6 11 + 0.35376509326239423E-002 6 12 8 9 + 0.32459285500596362E-002 8 9 6 12 + -0.17123816511185866E-003 6 13 8 9 + -0.15711795925002627E-003 8 9 6 13 + 0.40566630996154759E-004 6 14 8 9 + 0.37220068294003488E-004 8 9 6 14 + 0.21979288284603516E-002 7 10 8 9 + 0.20166849278655218E-002 8 9 7 10 + -0.24026145481826353E-003 7 11 8 9 + -0.22045267880652815E-003 8 9 7 11 + -0.59949014882550573E-004 7 12 8 9 + -0.55003396120034467E-004 8 9 7 12 + 0.28448514311392148E-002 7 13 8 9 + 0.26103278837894431E-002 8 9 7 13 + 0.29586142005972557E-004 7 14 8 9 + 0.27149155796435019E-004 8 9 7 14 + -0.43936255440031317E-001 8 1 8 9 + -0.43997501920810901E-001 8 9 8 1 + -0.79417159913816870E-002 8 2 8 9 + -0.83516891569450757E-002 8 9 8 2 + 0.82153011357313413E-001 8 9 8 9 + -0.37768343698092326E-003 1 3 8 10 + -0.37220672218303162E-003 8 10 1 3 + -0.67506269676529957E-003 1 4 8 10 + -0.66527366079023522E-003 8 10 1 4 + -0.19565916697317121E-002 1 5 8 10 + -0.19282189183467339E-002 8 10 1 5 + 0.11747713361806289E-003 1 6 8 10 + 0.11829180508235828E-003 8 10 1 6 + 0.10306227788558523E-002 1 7 8 10 + 0.10377700943553674E-002 8 10 1 7 + 0.13658668352183416E-002 1 8 8 10 + 0.13753388384767165E-002 8 10 1 8 + -0.13409285366179037E-002 2 3 8 10 + -0.12701995539047281E-002 8 10 2 3 + -0.23967346602979905E-002 2 4 8 10 + -0.22703129194724734E-002 8 10 2 4 + -0.69466157787168711E-002 2 5 8 10 + -0.65801865395666371E-002 8 10 2 5 + 0.11614109272300042E-002 2 6 8 10 + 0.11640991403230523E-002 8 10 2 6 + 0.10189054705681591E-001 2 7 8 10 + 0.10212638274826514E-001 8 10 2 7 + 0.13503346590988594E-001 2 8 8 10 + 0.13534601521664399E-001 8 10 2 8 + -0.26577031406949752E-002 3 1 8 10 + -0.26522264258970834E-002 8 10 3 1 + -0.13825153666556637E-002 3 2 8 10 + -0.13117863839424882E-002 8 10 3 2 + 0.36114114117002487E-002 3 9 8 10 + 0.36183304666614988E-002 8 10 3 9 + -0.20225803226346897E-002 3 10 8 10 + -0.18014825997682395E-002 8 10 3 10 + 0.49432408008463161E-003 3 11 8 10 + 0.40444999834749298E-003 8 10 3 11 + 0.74195646458616641E-003 3 12 8 10 + 0.59314372043850808E-003 8 10 3 12 + 0.11763734562863519E-003 3 13 8 10 + 0.30435870383156949E-004 8 10 3 13 + -0.28812436458219441E-003 3 14 8 10 + -0.24620446218418305E-003 8 10 3 14 + -0.47503329642879710E-002 4 1 8 10 + -0.47405439283129073E-002 8 10 4 1 + -0.24710677964396555E-002 4 2 8 10 + -0.23446460556141384E-002 8 10 4 2 + 0.64549711418894970E-002 4 9 8 10 + 0.64673378767243980E-002 8 10 4 9 + -0.21393042717612193E-002 4 10 8 10 + -0.18976248394710930E-002 8 10 4 10 + -0.33880476793391866E-003 4 11 8 10 + -0.26517774853611527E-003 8 10 4 11 + -0.76614643641370324E-003 4 12 8 10 + -0.60507172095083104E-003 8 10 4 12 + 0.93592885950740377E-004 4 13 8 10 + 0.31083854151813325E-004 8 10 4 13 + -0.26330563230931859E-003 4 14 8 10 + -0.23743262924662189E-003 8 10 4 14 + -0.13768361402377758E-001 5 1 8 10 + -0.13739988650992780E-001 8 10 5 1 + -0.71620696161743590E-002 5 2 8 10 + -0.67956403770241250E-002 8 10 5 2 + 0.18709067693655382E-001 5 9 8 10 + 0.18744910276425438E-001 8 10 5 9 + -0.19617969274217453E-002 5 10 8 10 + -0.17422059533302274E-002 8 10 5 10 + 0.49414221027173409E-004 5 11 8 10 + 0.40651904926860484E-004 8 10 5 11 + 0.24843934004036001E-004 5 12 8 10 + 0.17710996192014637E-004 8 10 5 12 + -0.87378972277195538E-004 5 13 8 10 + 0.58617691776195475E-004 8 10 5 13 + -0.12453272238510697E-002 5 14 8 10 + -0.10722212464304628E-002 8 10 5 14 + 0.11506625457478185E-002 6 1 8 10 + 0.11514772172121139E-002 8 10 6 1 + 0.15702819051182089E-002 6 2 8 10 + 0.15729701182112569E-002 8 10 6 2 + 0.22987209746959815E-003 6 9 8 10 + 0.25053154023443874E-003 8 10 6 9 + 0.13562847661258656E-002 6 10 8 10 + 0.13562847192139782E-002 8 10 6 10 + 0.49441006310087018E-002 6 11 8 10 + 0.49441003594742411E-002 8 10 6 11 + 0.94510940464114027E-002 6 12 8 10 + 0.94510941367328457E-002 8 10 6 12 + -0.12664206832396495E-003 6 13 8 10 + -0.12664212940185739E-003 8 10 6 13 + -0.79829922675011481E-003 6 14 8 10 + -0.79830022793225223E-003 8 10 6 14 + 0.10094785755378238E-001 7 1 8 10 + 0.10101933070877752E-001 8 10 7 1 + 0.13776077641753467E-001 7 2 8 10 + 0.13799661210898390E-001 8 10 7 2 + 0.20166849278657629E-002 7 9 8 10 + 0.21979288284605905E-002 8 10 7 9 + 0.46775490830607995E-003 7 10 8 10 + 0.46775533983766423E-003 8 10 7 10 + 0.51132547049686410E-003 7 11 8 10 + 0.51132509964964528E-003 8 10 7 11 + 0.59787623333094062E-003 7 12 8 10 + 0.59787629762140778E-003 8 10 7 12 + 0.75166192696149176E-002 7 13 8 10 + 0.75166261813407300E-002 8 10 7 13 + 0.52043773109531387E-002 7 14 8 10 + 0.52043822835819631E-002 8 10 7 14 + 0.13378389473592782E-001 8 1 8 10 + 0.13387861476851158E-001 8 10 8 1 + 0.18257155890746727E-001 8 2 8 10 + 0.18288410821422532E-001 8 10 8 2 + 0.26726552064591188E-002 8 9 8 10 + 0.29128552771956495E-002 8 10 8 9 + 0.17621753579408587E-001 8 10 8 10 + -0.27241121254073069E-003 1 3 8 11 + -0.26846061438180979E-003 8 11 1 3 + 0.24322448927214762E-003 1 4 8 11 + 0.23969777544075149E-003 8 11 1 4 + 0.10360233532999989E-003 1 5 8 11 + 0.10209983206288296E-003 8 11 1 5 + -0.28760740762197052E-003 1 6 8 11 + -0.28960189733700679E-003 8 11 1 6 + -0.11264527107139046E-003 1 7 8 11 + -0.11342676035963907E-003 8 11 1 7 + -0.18714168725196711E-004 1 8 8 11 + -0.18843702799159624E-004 8 11 1 8 + -0.96711787899986463E-003 2 3 8 11 + -0.91609117713188886E-003 8 11 2 3 + 0.86357465941017087E-003 2 4 8 11 + 0.81803279928575369E-003 8 11 2 4 + 0.36780692660986694E-003 2 5 8 11 + 0.34839985045851800E-003 8 11 2 5 + -0.28433670404452100E-002 2 6 8 11 + -0.28499483196617720E-002 8 11 2 6 + -0.11136943317802859E-002 2 7 8 11 + -0.11162719355688822E-002 8 11 2 7 + -0.18497407518402371E-003 2 8 8 11 + -0.18540234070192442E-003 8 11 2 8 + -0.19169963425455484E-002 3 1 8 11 + -0.19130457443866274E-002 8 11 3 1 + -0.99712225926946248E-003 3 2 8 11 + -0.94609555740148672E-003 8 11 3 2 + 0.26048859937703979E-002 3 9 8 11 + 0.26098753476017297E-002 8 11 3 9 + 0.45126665215200777E-003 3 10 8 11 + 0.41431367525483190E-003 8 11 3 10 + -0.10080563046216222E-002 3 11 8 11 + -0.92307658621296619E-003 8 11 3 11 + 0.67344014426818526E-003 3 12 8 11 + 0.61979638963799736E-003 8 11 3 12 + 0.64949020154645874E-003 3 13 8 11 + 0.61084350380490146E-003 8 11 3 13 + 0.78798399268027955E-004 3 14 8 11 + 0.54607305454965562E-004 8 11 3 14 + 0.17114903161703887E-002 4 1 8 11 + 0.17079636023389925E-002 8 11 4 1 + 0.89035097055550265E-003 4 2 8 11 + 0.84480911043108547E-003 8 11 4 2 + -0.23256636370300281E-002 4 9 8 11 + -0.23301200954833666E-002 8 11 4 9 + -0.28729561323766444E-003 4 10 8 11 + -0.27697568000525897E-003 8 11 4 10 + -0.67832987904158245E-003 4 11 8 11 + -0.63263338637067163E-003 8 11 4 11 + 0.57367597118141345E-003 4 12 8 11 + 0.52110647445413648E-003 8 11 4 12 + -0.70471878639974026E-003 4 13 8 11 + -0.66370969356486446E-003 8 11 4 13 + -0.13284180619972316E-003 4 14 8 11 + -0.97394575735742416E-004 8 11 4 14 + 0.72906955523784880E-003 5 1 8 11 + 0.72756705197073190E-003 8 11 5 1 + 0.37921867815235210E-003 5 2 8 11 + 0.35981160200100317E-003 8 11 5 2 + -0.99068562997532911E-003 5 9 8 11 + -0.99258308476799515E-003 8 11 5 9 + 0.45511926854715358E-004 5 10 8 11 + 0.41544017868835962E-004 8 11 5 10 + -0.31652244684627164E-003 5 11 8 11 + -0.31760693106534777E-003 8 11 5 11 + -0.65581405483519206E-003 5 12 8 11 + -0.63554561853234118E-003 8 11 5 12 + 0.14649017044948335E-003 5 13 8 11 + 0.12648418439010505E-003 8 11 5 13 + 0.83090940823087289E-004 5 14 8 11 + 0.69356734357491190E-004 8 11 5 14 + -0.28170542016258452E-002 6 1 8 11 + -0.28190486913408815E-002 8 11 6 1 + -0.38443652035704116E-002 6 2 8 11 + -0.38509464827869737E-002 8 11 6 2 + -0.56277393156667962E-003 6 9 8 11 + -0.61335232578234712E-003 8 11 6 9 + 0.15109021704851117E-002 6 10 8 11 + 0.15109023367310139E-002 8 11 6 10 + -0.82275639987008920E-003 6 11 8 11 + -0.82275605146587389E-003 8 11 6 11 + -0.34982927255131888E-003 6 12 8 11 + -0.34982949125333327E-003 8 11 6 12 + 0.27580951752416536E-002 6 13 8 11 + 0.27580981835576288E-002 8 11 6 13 + 0.18606687079360412E-002 6 14 8 11 + 0.18606705771146486E-002 8 11 6 14 + -0.11034249367897991E-002 7 1 8 11 + -0.11042064260780478E-002 8 11 7 1 + -0.15057654702218795E-002 7 2 8 11 + -0.15083430740104758E-002 8 11 7 2 + -0.22045267880655239E-003 7 9 8 11 + -0.24026145481828836E-003 8 11 7 9 + 0.46351992900821521E-003 7 10 8 11 + 0.46351951996478121E-003 8 11 7 10 + -0.23619521243387876E-002 7 11 8 11 + -0.23619520817645128E-002 8 11 7 11 + 0.27733843022579763E-002 7 12 8 11 + 0.27733843359030535E-002 8 11 7 12 + -0.48588324288975925E-003 7 13 8 11 + -0.48588350140853963E-003 8 11 7 13 + -0.48642463807820356E-003 7 14 8 11 + -0.48642482949490940E-003 8 11 7 14 + -0.18323424048127397E-003 8 1 8 11 + -0.18336377455523690E-003 8 11 8 1 + -0.25009462465796562E-003 8 2 8 11 + -0.25052289017586633E-003 8 11 8 2 + -0.36592350917384836E-004 8 9 8 11 + -0.39884113480564362E-004 8 11 8 9 + -0.85827866128407283E-003 8 10 8 11 + -0.85827868769096946E-003 8 11 8 10 + 0.36994564908643499E-002 8 11 8 11 + 0.13982764318773075E-002 1 3 8 12 + 0.13779997136275988E-002 8 12 1 3 + -0.14659271959265134E-002 1 4 8 12 + -0.14446700222125138E-002 8 12 1 4 + 0.27824247920790426E-003 1 5 8 12 + 0.27420769242175985E-003 8 12 1 5 + 0.16588413168175079E-002 1 6 8 12 + 0.16703450054273623E-002 8 12 1 6 + -0.28119653216054350E-004 1 7 8 12 + -0.28314475997200155E-004 8 12 1 7 + -0.16179988563398641E-003 1 8 8 12 + -0.16292219623153208E-003 8 12 1 8 + 0.49643729101955057E-002 2 3 8 12 + 0.47025000006433726E-002 8 12 2 3 + -0.52046271180658538E-002 2 4 8 12 + -0.49301008032934662E-002 8 12 2 4 + 0.98786727352864019E-003 2 5 8 12 + 0.93575930826436660E-003 8 12 2 5 + 0.16399770187968125E-001 2 6 8 12 + 0.16437729214947034E-001 8 12 2 6 + -0.27796962587824141E-003 2 7 8 12 + -0.27861310741965735E-003 8 12 2 7 + -0.15996417854161837E-002 2 8 8 12 + -0.16033441943210693E-002 8 12 2 8 + 0.98395765346506441E-002 3 1 8 12 + 0.98192998164009365E-002 8 12 3 1 + 0.51183502498066327E-002 3 2 8 12 + 0.48564773402544996E-002 8 12 3 2 + -0.13370451445163849E-001 3 9 8 12 + -0.13396065880175662E-001 8 12 3 9 + 0.65188788855369034E-003 3 10 8 12 + 0.61377252376397854E-003 8 12 3 10 + 0.74053092139513422E-003 3 11 8 12 + 0.60442909429054333E-003 8 12 3 11 + -0.20674979879896842E-002 3 12 8 12 + -0.18404129006348697E-002 8 12 3 12 + -0.30270291655637232E-003 3 13 8 12 + -0.28508916534542180E-003 8 12 3 13 + -0.50524328160413373E-003 3 14 8 12 + -0.35260825609507328E-003 8 12 3 14 + -0.10315524033691273E-001 4 1 8 12 + -0.10294266859977275E-001 8 12 4 1 + -0.53660417773454695E-002 4 2 8 12 + -0.50915154625730819E-002 8 12 4 2 + 0.14017214819092759E-001 4 9 8 12 + 0.14044070069692124E-001 8 12 4 9 + -0.65958251891527764E-003 4 10 8 12 + -0.62947996294388236E-003 8 12 4 10 + 0.61826107393979401E-003 4 11 8 12 + 0.51089400197141957E-003 8 12 4 11 + -0.16446907097232781E-002 4 12 8 12 + -0.14693710966296432E-002 8 12 4 12 + 0.36997190519136151E-003 4 13 8 12 + 0.35675006119165664E-003 8 12 4 13 + 0.69217933396829943E-003 4 14 8 12 + 0.49812735825532060E-003 8 12 4 14 + 0.19579603716253975E-002 5 1 8 12 + 0.19539255848392530E-002 8 12 5 1 + 0.10185056429977870E-002 5 2 8 12 + 0.96639767773351343E-003 8 12 5 2 + -0.26605661492201805E-002 5 9 8 12 + -0.26656633466210179E-002 8 12 5 9 + 0.17911116251480032E-004 5 10 8 12 + 0.19299514128612546E-004 8 12 5 10 + -0.77948497964852375E-003 5 11 8 12 + -0.60721829380496091E-003 8 12 5 11 + -0.21767577953492353E-002 5 12 8 12 + -0.19284014313293487E-002 8 12 5 12 + -0.38817656124748450E-004 5 13 8 12 + -0.44865399804883358E-004 8 12 5 13 + 0.31680937757586734E-004 5 14 8 12 + 0.34754383543011837E-004 8 12 5 14 + 0.16248006510921280E-001 6 1 8 12 + 0.16259510199531136E-001 8 12 6 1 + 0.22173256139539570E-001 6 2 8 12 + 0.22211215166518479E-001 8 12 6 2 + 0.32459285500593452E-002 6 9 8 12 + 0.35376509326236496E-002 8 12 6 9 + 0.23204426775272733E-002 6 10 8 12 + 0.23204422539180340E-002 8 12 6 10 + -0.37156633375086211E-003 6 11 8 12 + -0.37156657844724159E-003 8 12 6 11 + -0.11608531395799681E-002 6 12 8 12 + -0.11608526619282184E-002 8 12 6 12 + -0.10559490805697397E-002 6 13 8 12 + -0.10559501893664459E-002 8 12 6 13 + -0.10501294641232086E-001 6 14 8 12 + -0.10501304698687522E-001 8 12 6 14 + -0.27537653907881205E-003 7 1 8 12 + -0.27557136185995786E-003 8 12 7 1 + -0.37582868989907107E-003 7 2 8 12 + -0.37647217144048701E-003 8 12 7 2 + -0.55003396120040749E-004 7 9 8 12 + -0.59949014882556814E-004 8 12 7 9 + 0.42707296781947963E-003 7 10 8 12 + 0.42707328894044761E-003 8 12 7 10 + 0.10308988541861830E-001 7 11 8 12 + 0.10308988547605055E-001 8 12 7 11 + 0.22932236800870137E-002 7 12 8 12 + 0.22932236465075606E-002 8 12 7 12 + -0.37441515443077498E-003 7 13 8 12 + -0.37441576251368030E-003 8 12 7 13 + -0.38703179295616658E-003 7 14 8 12 + -0.38703242392215188E-003 8 12 7 14 + -0.15848691307370811E-002 8 1 8 12 + -0.15859914413346267E-002 8 12 8 1 + -0.21627893801671166E-002 8 2 8 12 + -0.21664917890720022E-002 8 12 8 2 + -0.31662975829388072E-003 8 9 8 12 + -0.34508297992254136E-003 8 12 8 9 + -0.26955472038500894E-003 8 10 8 12 + -0.26955454497331005E-003 8 12 8 10 + -0.23035540461045522E-002 8 11 8 12 + -0.23035540584665664E-002 8 12 8 11 + 0.16825343779823476E-001 8 12 8 12 + 0.15032165269603824E-002 1 3 8 13 + 0.14814116743408245E-002 8 13 1 3 + 0.13048702070113812E-002 1 4 8 13 + 0.12859429787109426E-002 8 13 1 4 + -0.66694894023065375E-003 1 5 8 13 + -0.65727439839472661E-003 8 13 1 5 + -0.80293369660114231E-004 1 6 8 13 + -0.80850226146917883E-004 8 13 1 6 + 0.13336854196792588E-002 1 7 8 13 + 0.13429401889549200E-002 8 13 1 7 + -0.10693290224261869E-002 1 8 8 13 + -0.10767490824145666E-002 8 13 1 8 + 0.53361526397033418E-002 2 3 8 13 + 0.50544405938428832E-002 8 13 2 3 + 0.46321229905947831E-002 2 4 8 13 + 0.43875973850718052E-002 8 13 2 4 + -0.23675334731475886E-002 2 5 8 13 + -0.22425391022840896E-002 8 13 2 5 + -0.79380923718402592E-003 2 6 8 13 + -0.79564657355995713E-003 8 13 2 6 + 0.13186150023555030E-001 2 7 8 13 + 0.13216667777025255E-001 8 13 2 7 + -0.10572413403425476E-001 2 8 8 13 + -0.10596882117677653E-001 8 13 2 8 + 0.10579236243974249E-001 3 1 8 13 + 0.10557431391354691E-001 8 13 3 1 + 0.55018255628564534E-002 3 2 8 13 + 0.52201135169959948E-002 8 13 3 2 + -0.14375252232132518E-001 3 9 8 13 + -0.14402771482965043E-001 8 13 3 9 + -0.12849001981752678E-004 3 10 8 13 + 0.60305630802832684E-004 8 13 3 10 + 0.73811991692796322E-003 3 11 8 13 + 0.59054544651709374E-003 8 13 3 11 + -0.34476456976454165E-003 3 12 8 13 + -0.27545522048205576E-003 8 13 3 12 + -0.21569107338199611E-002 3 13 8 13 + -0.19171163928225895E-002 8 13 3 13 + 0.97129310800261924E-003 3 14 8 13 + 0.83491638261371513E-003 8 13 3 14 + 0.91832298715152638E-002 4 1 8 13 + 0.91643026432148261E-002 8 13 4 1 + 0.47759243440592299E-002 4 2 8 13 + 0.45313987385362520E-002 8 13 4 2 + -0.12478357143022025E-001 4 9 8 13 + -0.12502246713287184E-001 8 13 4 9 + 0.23218710199208965E-005 4 10 8 13 + 0.51976909494150854E-004 8 13 4 10 + -0.80243912588234888E-003 4 11 8 13 + -0.64132785319360910E-003 8 13 4 11 + 0.43642824947286136E-003 4 12 8 13 + 0.34153143308022094E-003 8 13 4 12 + -0.20999175198406586E-002 4 13 8 13 + -0.18629115600568603E-002 8 13 4 13 + 0.74198419593201140E-003 4 14 8 13 + 0.64347313209730302E-003 8 13 4 14 + -0.46938345262153005E-002 5 1 8 13 + -0.46841599843793734E-002 8 13 5 1 + -0.24410424662716776E-002 5 2 8 13 + -0.23160480954081786E-002 8 13 5 2 + 0.63780587849569578E-002 5 9 8 13 + 0.63902681793317397E-002 8 13 5 9 + 0.15788626711746450E-003 5 10 8 13 + 0.24724664091528353E-005 8 13 5 10 + 0.14589025703199725E-003 5 11 8 13 + 0.12662025918996791E-003 8 13 5 11 + -0.59402527352986337E-004 5 12 8 13 + -0.40153596193755016E-004 8 13 5 12 + -0.18208338611225526E-002 5 13 8 13 + -0.16196134004353615E-002 8 13 5 13 + -0.48959835990066325E-003 5 14 8 13 + -0.41858447067649458E-003 8 13 5 14 + -0.78646793076581176E-003 6 1 8 13 + -0.78702478725261541E-003 8 13 6 1 + -0.10732670382814561E-002 6 2 8 13 + -0.10751043746573875E-002 8 13 6 2 + -0.15711795925004490E-003 6 9 8 13 + -0.17123816511187867E-003 8 13 6 9 + 0.11167626750252921E-003 6 10 8 13 + 0.11167614698891073E-003 8 13 6 10 + 0.94682311845043464E-002 6 11 8 13 + 0.94682217311921439E-002 8 13 6 11 + -0.51043616309965111E-002 6 12 8 13 + -0.51043568980972545E-002 8 13 6 12 + 0.72954280722047125E-003 6 13 8 13 + 0.72954235037332455E-003 8 13 6 13 + 0.23651537537048008E-003 6 14 8 13 + 0.23651597638876023E-003 8 13 6 14 + 0.13064810282370855E-001 7 1 8 13 + 0.13074065051646516E-001 8 13 7 1 + 0.17828266388196359E-001 7 2 8 13 + 0.17858784141666587E-001 8 13 7 2 + 0.26103278837896725E-002 7 9 8 13 + 0.28448514311394525E-002 8 13 7 9 + -0.74121562045673687E-002 7 10 8 13 + -0.74121489403595692E-002 8 13 7 10 + 0.10898281810667075E-003 7 11 8 13 + 0.10898230679210369E-003 8 13 7 11 + 0.54338144992399249E-003 7 12 8 13 + 0.54338078406183086E-003 8 13 7 12 + -0.52735885218794458E-003 7 13 8 13 + -0.52735926478880485E-003 8 13 7 13 + 0.66601113116028657E-002 7 14 8 13 + 0.66601108747090373E-002 8 13 7 14 + -0.10475093763911605E-001 8 1 8 13 + -0.10482513823899984E-001 8 13 8 1 + -0.14294378376820408E-001 8 2 8 13 + -0.14318847091072584E-001 8 13 8 2 + -0.20928919845162601E-002 8 9 8 13 + -0.22809302522685971E-002 8 13 8 9 + -0.46705569630698702E-003 8 10 8 13 + -0.46705544414456224E-003 8 13 8 10 + -0.52414559186844385E-003 8 11 8 13 + -0.52414571748759836E-003 8 13 8 11 + 0.11392235732272866E-004 8 12 8 13 + 0.11392268902116937E-004 8 13 8 12 + 0.17559580564409771E-001 8 13 8 13 + -0.64977425254384845E-003 1 3 8 14 + -0.64034881092313865E-003 8 14 1 3 + -0.61908410427587222E-003 1 4 8 14 + -0.61010415964438439E-003 8 14 1 4 + -0.59590043701763303E-003 1 5 8 14 + -0.58725633714881210E-003 8 14 1 5 + 0.19027880818044047E-004 1 6 8 14 + 0.19159718315405398E-004 8 14 1 6 + 0.13861500633277538E-004 1 7 8 14 + 0.13957864490360450E-004 8 14 1 7 + 0.87787283611168111E-003 1 8 8 14 + 0.88396477194572576E-003 8 14 1 8 + -0.23065630570769753E-002 2 3 8 14 + -0.21847865540282176E-002 8 14 2 3 + -0.21976586143410189E-002 2 4 8 14 + -0.20816430180334460E-002 8 14 2 4 + -0.21153052264079085E-002 2 5 8 14 + -0.20036214282679564E-002 8 14 2 5 + 0.18809615806950007E-003 2 6 8 14 + 0.18853158553033299E-003 8 14 2 6 + 0.13707700019737371E-003 2 7 8 14 + 0.13739415993766608E-003 8 14 2 7 + 0.86795562963325884E-002 2 8 8 14 + 0.86996440008905527E-002 8 14 2 8 + -0.45729686833637564E-002 3 1 8 14 + -0.45635432417430464E-002 8 14 3 1 + -0.23781797712150469E-002 3 2 8 14 + -0.22564032681662892E-002 8 14 3 2 + 0.62138229781962704E-002 3 9 8 14 + 0.62257178839385113E-002 8 14 3 9 + -0.28213637093753806E-003 3 10 8 14 + -0.24756924085179175E-003 8 14 3 10 + 0.53873207932647843E-004 3 11 8 14 + 0.60311261463164710E-004 8 14 3 11 + -0.35016953632320319E-003 3 12 8 14 + -0.38810011002914964E-003 8 14 3 12 + 0.96096598516408262E-003 3 13 8 14 + 0.83727976483595750E-003 8 14 3 13 + -0.10866144155445212E-002 3 14 8 14 + -0.99091903003921552E-003 8 14 3 14 + -0.43569188050436632E-002 4 1 8 14 + -0.43479388604121755E-002 8 14 4 1 + -0.22658858398839072E-002 4 2 8 14 + -0.21498702435763344E-002 8 14 4 2 + 0.59202648300248463E-002 4 9 8 14 + 0.59315987802626207E-002 8 14 4 9 + -0.28055590756488244E-003 4 10 8 14 + -0.23347944681960969E-003 8 14 4 10 + -0.10067125619624823E-003 4 11 8 14 + -0.10475766179764343E-003 8 14 4 11 + 0.50731458711958822E-003 4 12 8 14 + 0.54043606390006909E-003 8 14 4 12 + 0.74447116704937425E-003 4 13 8 14 + 0.64290423728788197E-003 8 14 4 13 + -0.95896561412787062E-003 4 14 8 14 + -0.87545196413009452E-003 8 14 4 14 + -0.41938423690303511E-002 5 1 8 14 + -0.41851982691615301E-002 8 14 5 1 + -0.21809870771013107E-002 5 2 8 14 + -0.20693032789613586E-002 8 14 5 2 + 0.56986540481298456E-002 5 9 8 14 + 0.57095623525752707E-002 8 14 5 9 + -0.12342835700621584E-002 5 10 8 14 + -0.10747300541968580E-002 8 14 5 10 + 0.78385809412438511E-004 5 11 8 14 + 0.70433112218995850E-004 8 14 5 11 + 0.45059757622335863E-004 5 12 8 14 + 0.31690518065295066E-004 8 14 5 12 + -0.48027980231664217E-003 5 13 8 14 + -0.42071820633945512E-003 8 14 5 13 + -0.96089119246386382E-003 5 14 8 14 + -0.87537573311549384E-003 8 14 5 14 + 0.18634212508967103E-003 6 1 8 14 + 0.18647396258703240E-003 8 14 6 1 + 0.25431529002373563E-003 6 2 8 14 + 0.25475071748456854E-003 8 14 6 2 + 0.37220068293993595E-004 6 9 8 14 + 0.40566630996145929E-004 8 14 6 9 + 0.11317360428202667E-003 6 10 8 14 + 0.11317352545768028E-003 8 14 6 10 + -0.22793710720575770E-003 6 11 8 14 + -0.22793712033725752E-003 8 14 6 11 + 0.18355558956575002E-002 6 12 8 14 + 0.18355539537717883E-002 8 14 6 12 + -0.16238606945460408E-003 6 13 8 14 + -0.16238603983647268E-003 8 14 6 13 + -0.10221803389630979E-003 6 14 8 14 + -0.10221835619324045E-003 8 14 6 14 + 0.13583577138912928E-003 7 1 8 14 + 0.13593213524621219E-003 8 14 7 1 + 0.18533351739027836E-003 7 2 8 14 + 0.18565067713057073E-003 8 14 7 2 + 0.27149155796310383E-004 7 9 8 14 + 0.29586142005845482E-004 8 14 7 9 + 0.46077980172146288E-002 7 10 8 14 + 0.46077935879264191E-002 8 14 7 10 + -0.37348249573093651E-003 7 11 8 14 + -0.37348216539957036E-003 8 14 7 11 + -0.17600736376082831E-003 7 12 8 14 + -0.17600695312554307E-003 8 14 7 12 + 0.60589450942365244E-002 7 13 8 14 + 0.60589449400136322E-002 8 14 7 13 + 0.12833238813341280E-003 7 14 8 14 + 0.12833236020787648E-003 8 14 7 14 + 0.85997050572007815E-002 8 1 8 14 + 0.86057969930348269E-002 8 14 8 1 + 0.11735148816629426E-001 8 2 8 14 + 0.11755236521187391E-001 8 14 8 2 + 0.17182157506785885E-002 8 9 8 14 + 0.18725859095189610E-002 8 14 8 9 + 0.59478186136643829E-002 8 10 8 14 + 0.59478121418944981E-002 8 14 8 10 + -0.11481324932198463E-003 8 11 8 14 + -0.11481293630660320E-003 8 14 8 11 + -0.54249586449327356E-003 8 12 8 14 + -0.54249515883206430E-003 8 14 8 12 + -0.45097537929130113E-002 8 13 8 14 + -0.45097536022736763E-002 8 14 8 13 + 0.70045019907636489E-002 8 14 8 14 + 0.43242217969997027 1 1 9 1 + 0.43229975871022253 9 1 1 1 + -0.55224112576657478E-001 1 2 9 1 + -0.55107115209052523E-001 9 1 1 2 + 0.50204502925253677E-001 1 9 9 1 + 0.50204502925253677E-001 9 1 1 9 + -0.81530943472712822E-001 2 1 9 1 + -0.81413946105107868E-001 9 1 2 1 + -0.88507531816030896E-002 2 2 9 1 + -0.85879854033817440E-002 9 1 2 2 + -0.23546071430449546E-001 2 9 9 1 + -0.23508197053073304E-001 9 1 2 9 + -0.13631286105767214E-001 3 3 9 1 + -0.13465598559712208E-001 9 1 3 3 + 0.14341885080597866E-001 3 6 9 1 + 0.14195125078535353E-001 9 1 3 6 + 0.10324678372804647E-001 3 7 9 1 + 0.10219026304699775E-001 9 1 3 7 + -0.14123330901506857E-001 3 8 9 1 + -0.13978807356618137E-001 9 1 3 8 + -0.13631286105767068E-001 4 4 9 1 + -0.13465598559712091E-001 9 1 4 4 + -0.17423577650725934E-001 4 6 9 1 + -0.17245282797742064E-001 9 1 4 6 + 0.67834928216829668E-002 4 7 9 1 + 0.67140775798994433E-002 9 1 4 7 + -0.12734217443867216E-001 4 8 9 1 + -0.12603908647790291E-001 9 1 4 8 + -0.13631286105767262E-001 5 5 9 1 + -0.13465598559712263E-001 9 1 5 5 + 0.15768326177634572E-002 5 6 9 1 + 0.15606969454348407E-002 9 1 5 6 + -0.18951051911614412E-001 5 7 9 1 + -0.18757126468619628E-001 9 1 5 7 + -0.12252687756539175E-001 5 8 9 1 + -0.12127306436697644E-001 9 1 5 8 + 0.15792222532662048E-001 6 3 9 1 + 0.15645462530599539E-001 9 1 6 3 + -0.19185554341640980E-001 6 4 9 1 + -0.19007259488657110E-001 9 1 6 4 + 0.17362913910228086E-002 6 5 9 1 + 0.17201557186941922E-002 9 1 6 5 + -0.12593055641322903E-001 6 6 9 1 + -0.12675039296923950E-001 9 1 6 6 + 0.11368771784545434E-001 7 3 9 1 + 0.11263119716440562E-001 9 1 7 3 + 0.74694803079726904E-002 7 4 9 1 + 0.74000650661891669E-002 9 1 7 4 + -0.20867495962655525E-001 7 5 9 1 + -0.20673570519660740E-001 9 1 7 5 + -0.12593055641322237E-001 7 7 9 1 + -0.12675039296923292E-001 9 1 7 7 + -0.15551566843939638E-001 8 3 9 1 + -0.15407043299050918E-001 9 1 8 3 + -0.14021977900583935E-001 8 4 9 1 + -0.13891669104507010E-001 9 1 8 4 + -0.13491753042719554E-001 8 5 9 1 + -0.13366371722878023E-001 9 1 8 5 + -0.12593055641322699E-001 8 8 9 1 + -0.12675039296923759E-001 9 1 8 8 + 0.72307730405660395E-001 9 1 9 1 + -0.41322038962167867 1 1 9 2 + -0.41367182078299153 9 2 1 1 + 0.93014388120705787E-003 1 2 9 2 + 0.94834590999496454E-003 9 2 1 2 + -0.38554107326736818E-003 1 9 9 2 + -0.42341545064360903E-003 9 2 1 9 + 0.29654113538424363E-001 2 1 9 2 + 0.29672315567212271E-001 9 2 2 1 + -0.13636319564222088 2 2 9 2 + -0.13740869255230809 9 2 2 2 + 0.84044724640040966E-001 2 9 9 2 + 0.84044724640040966E-001 9 2 2 9 + -0.12958952705808538 3 3 9 2 + -0.13258381960220558 9 2 3 3 + -0.66367649989935634E-001 3 6 9 2 + -0.65460563247799905E-001 9 2 3 6 + -0.47777864391896831E-001 3 7 9 2 + -0.47124855473183909E-001 9 2 3 7 + 0.65356281736722158E-001 3 8 9 2 + 0.64463017975120551E-001 9 2 3 8 + -0.12958952705808374 4 4 9 2 + -0.13258381960220383 9 2 4 4 + 0.80628306292887905E-001 4 6 9 2 + 0.79526310551133780E-001 9 2 4 6 + -0.31390885840227339E-001 4 7 9 2 + -0.30961847651081231E-001 9 2 4 7 + 0.58928103346305334E-001 4 8 9 2 + 0.58122697379802954E-001 9 2 4 8 + -0.12958952705808491 5 5 9 2 + -0.13258381960220508 9 2 5 5 + -0.72968563532848025E-002 5 6 9 2 + -0.71971258119994464E-002 9 2 5 6 + 0.87696754864717189E-001 5 7 9 2 + 0.86498150368728918E-001 9 2 5 7 + 0.56699805352788846E-001 5 8 9 2 + 0.55924854880307309E-001 9 2 5 8 + -0.10632638666642322 6 3 9 2 + -0.10541929992428749 9 2 6 3 + 0.12917312082703528 6 4 9 2 + 0.12807112508528115 9 2 6 4 + -0.11690158837722250E-001 6 5 9 2 + -0.11590428296436892E-001 9 2 6 5 + -0.64294967464183214E-001 6 6 9 2 + -0.63862175282704478E-001 9 2 6 6 + -0.76544034393248625E-001 7 3 9 2 + -0.75891025474535717E-001 9 2 7 3 + -0.50290758617423950E-001 7 4 9 2 + -0.49861720428277842E-001 9 2 7 4 + 0.14049735177530578 7 5 9 2 + 0.13929874727931749 9 2 7 5 + -0.64294967464185532E-001 7 7 9 2 + -0.63862175282706796E-001 9 2 7 7 + 0.10470609226139840 8 3 9 2 + 0.10381282849979680 9 2 8 3 + 0.94407626349107904E-001 8 4 9 2 + 0.93602220382605530E-001 9 2 8 4 + 0.90837711275987526E-001 8 5 9 2 + 0.90062760803505976E-001 9 2 8 5 + -0.64294967464183853E-001 8 8 9 2 + -0.63862175282705061E-001 9 2 8 8 + -0.24205311054001470E-001 9 1 9 2 + -0.24243185431377708E-001 9 2 9 1 + 0.16472828925664618 9 2 9 2 + -0.63564372112557789E-002 1 3 9 3 + -0.63564372112557780E-002 9 3 1 3 + -0.34720655351836091E-002 1 6 9 3 + -0.35156219931630943E-002 9 3 1 6 + -0.24995291580301158E-002 1 7 9 3 + -0.25308853163851395E-002 9 3 1 7 + 0.34191551661123332E-002 1 8 9 3 + 0.34620478727185270E-002 9 3 1 8 + -0.23127249222145478E-001 2 3 9 3 + -0.23127249222145471E-001 9 3 2 3 + -0.21492821370211610E-001 2 6 9 3 + -0.21517856177806220E-001 9 3 2 6 + -0.15472615121688679E-001 2 7 9 3 + -0.15490637601654658E-001 9 3 2 7 + 0.21165294974307542E-001 2 8 9 3 + 0.21189948279624605E-001 9 3 2 8 + -0.27733095653802588E-001 3 1 9 3 + -0.27733095653802588E-001 9 3 3 1 + -0.22194424225541121E-001 3 2 9 3 + -0.22194424225541114E-001 9 3 3 2 + 0.39136414824562787E-001 3 9 9 3 + 0.39136414824562787E-001 9 3 3 9 + 0.24992516736548603E-002 3 10 9 3 + 0.25043484428735065E-002 9 3 3 10 + -0.82223196164612211E-002 3 11 9 3 + -0.82390882177500006E-002 9 3 3 11 + 0.76820005034256272E-002 3 12 9 3 + 0.76976674175186473E-002 9 3 3 12 + 0.56043077082927389E-002 3 13 9 3 + 0.56157283038752526E-002 9 3 3 13 + 0.17465727093322028E-002 3 14 9 3 + 0.17501324551233081E-002 9 3 3 14 + 0.79916572446492274E-003 4 10 9 3 + 0.80079586829360887E-003 9 3 4 10 + 0.15139052618240671E-002 4 11 9 3 + 0.15169932686579467E-002 9 3 4 11 + -0.81664159054538408E-003 4 12 9 3 + -0.81830776661099116E-003 9 3 4 12 + 0.58918535430621576E-002 4 13 9 3 + 0.59038613698597017E-002 9 3 4 13 + -0.93352438668559898E-002 4 14 9 3 + -0.93542693181731407E-002 9 3 4 14 + -0.74802369109206804E-002 5 10 9 3 + -0.74954926838863394E-002 9 3 5 10 + 0.51859535206599111E-002 5 11 9 3 + 0.51965302277986684E-002 9 3 5 11 + 0.59470046054435777E-002 5 12 9 3 + 0.59591332199122491E-002 9 3 5 12 + 0.24159006512208337E-002 5 13 9 3 + 0.24208247448206923E-002 9 3 5 13 + 0.12054123604626158E-002 5 14 9 3 + 0.12078696830389840E-002 9 3 5 14 + -0.19863623392556026E-001 6 1 9 3 + -0.19907179850535514E-001 9 3 6 1 + -0.29633346581880746E-001 6 2 9 3 + -0.29658381389475356E-001 9 3 6 2 + -0.51085776091734051E-003 6 9 9 3 + -0.60330517801737813E-003 9 3 6 9 + 0.10060829396026623E-002 6 10 9 3 + 0.10045665950047930E-002 9 3 6 10 + -0.13525496528712983E-001 6 11 9 3 + -0.13505101211801880E-001 9 3 6 11 + 0.13292604085026010E-001 6 12 9 3 + 0.13272559384179249E-001 9 3 6 12 + -0.18354301538541051E-002 6 13 9 3 + -0.18326631907477321E-002 9 3 6 13 + 0.18841634142260446E-001 6 14 9 3 + 0.18813242252682251E-001 9 3 6 14 + -0.14299760574996484E-001 7 1 9 3 + -0.14331116733351509E-001 9 3 7 1 + -0.21332953851490265E-001 7 2 9 3 + -0.21350976331456245E-001 9 3 7 2 + -0.36776490998764527E-003 7 9 9 3 + -0.43431751744408669E-003 9 3 7 9 + 0.17187934610643975E-001 7 10 9 3 + 0.17162016658187798E-001 9 3 7 10 + -0.17179941306136620E-001 7 11 9 3 + -0.17154035828207948E-001 9 3 7 11 + -0.38678554286678255E-002 7 12 9 3 + -0.38620226318173017E-002 9 3 7 12 + 0.51722105085297669E-002 7 13 9 3 + 0.51644181334684312E-002 9 3 7 13 + -0.67709264217089022E-002 7 14 9 3 + -0.67607228386521679E-002 9 3 7 14 + 0.19560924139289358E-001 8 1 9 3 + 0.19603816845895551E-001 9 3 8 1 + 0.29181767748308354E-001 8 2 9 3 + 0.29206421053625416E-001 9 3 8 2 + 0.50307286388723933E-003 8 9 9 3 + 0.59411148645016599E-003 9 3 8 9 + 0.45883501818265292E-002 8 10 9 3 + 0.45814311268652800E-002 9 3 8 10 + 0.33094973866686079E-002 8 11 9 3 + 0.33045080328372766E-002 9 3 8 11 + -0.16987284254324133E-001 8 12 9 3 + -0.16961669819312322E-001 9 3 8 12 + -0.18263160519226787E-001 8 13 9 3 + -0.18235641268394262E-001 9 3 8 13 + 0.78943849016987668E-002 8 14 9 3 + 0.78824899959565268E-002 9 3 8 14 + 0.51013683253983817E-001 9 3 9 3 + -0.63564372112556462E-002 1 4 9 4 + -0.63564372112556436E-002 9 4 1 4 + 0.42181207784546676E-002 1 6 9 4 + 0.42710363696430833E-002 9 4 1 6 + -0.16422340230709397E-002 1 7 9 4 + -0.16628355631321890E-002 9 4 1 7 + 0.30828609527906487E-002 1 8 9 4 + 0.31215349070078530E-002 9 4 1 8 + -0.23127249222145121E-001 2 4 9 4 + -0.23127249222145124E-001 9 4 2 4 + 0.26111061410167825E-001 2 6 9 4 + 0.26141475537156306E-001 9 4 2 6 + -0.10165776581196074E-001 2 7 9 4 + -0.10177617663219523E-001 9 4 2 7 + 0.19083562535355304E-001 2 8 9 4 + 0.19105791041704619E-001 9 4 2 8 + 0.79916572446492903E-003 3 10 9 4 + 0.80079586829361570E-003 9 4 3 10 + 0.15139052618240900E-002 3 11 9 4 + 0.15169932686579708E-002 9 4 3 11 + -0.81664159054538603E-003 3 12 9 4 + -0.81830776661099332E-003 9 4 3 12 + 0.58918535430621515E-002 3 13 9 4 + 0.59038613698596922E-002 9 4 3 13 + -0.93352438668560002E-002 3 14 9 4 + -0.93542693181731459E-002 9 4 3 14 + -0.27733095653802154E-001 4 1 9 4 + -0.27733095653802154E-001 9 4 4 1 + -0.22194424225540774E-001 4 2 9 4 + -0.22194424225540778E-001 9 4 4 2 + 0.39136414824562399E-001 4 9 9 4 + 0.39136414824562399E-001 9 4 4 9 + 0.21367510707335726E-003 4 10 9 4 + 0.21411041495547227E-003 9 4 4 10 + 0.66702733036949260E-002 4 11 9 4 + 0.66838773897436310E-002 9 4 4 11 + -0.85707625664770953E-002 4 12 9 4 + -0.85882422615516998E-002 9 4 4 12 + 0.49558605959415664E-002 4 13 9 4 + 0.49659616295084641E-002 9 4 4 13 + 0.49766086622878031E-002 4 14 9 4 + 0.49867506766093830E-002 9 4 4 14 + -0.78795847435677562E-002 5 10 9 4 + -0.78956548422698305E-002 9 4 5 10 + -0.62503113799428876E-002 5 11 9 4 + -0.62630585590864336E-002 9 4 5 11 + -0.47793476451500833E-002 5 12 9 4 + -0.47890950132812833E-002 9 4 5 12 + 0.10781987404423182E-002 5 13 9 4 + 0.10803961908330258E-002 9 4 5 13 + -0.58901783005516528E-003 5 14 9 4 + -0.59021801930173436E-003 9 4 5 14 + 0.24131791787481496E-001 6 1 9 4 + 0.24184707378669911E-001 9 4 6 1 + 0.36000770632220500E-001 6 2 9 4 + 0.36031184759208981E-001 9 4 6 2 + 0.62062761037327092E-003 6 9 9 4 + 0.73293953738980035E-003 9 4 6 9 + -0.46573777433681556E-003 6 10 9 4 + -0.46503637766941652E-003 9 4 6 10 + -0.10369745016835326E-001 6 11 9 4 + -0.10354108415525301E-001 9 4 6 11 + 0.12925556437071148E-001 6 12 9 4 + 0.12906066578880066E-001 9 4 6 12 + -0.14627090412872331E-004 6 13 9 4 + -0.14604038085306711E-004 9 4 6 13 + -0.22013846897599536E-001 6 14 9 4 + -0.21980675798053389E-001 9 4 6 14 + -0.93951907952677608E-002 7 1 9 4 + -0.94157923353290103E-002 9 4 7 1 + -0.14016120802179389E-001 7 2 9 4 + -0.14027961884202838E-001 9 4 7 2 + -0.24162792649685521E-003 7 9 9 4 + -0.28535414426787866E-003 9 4 7 9 + 0.15801205869494638E-001 7 10 9 4 + 0.15777379056109091E-001 9 4 7 10 + 0.17818328624034412E-001 7 11 9 4 + 0.17791459743534192E-001 9 4 7 11 + 0.23849650471256057E-002 7 12 9 4 + 0.23813691063329858E-002 9 4 7 12 + 0.73552834554076645E-002 7 13 9 4 + 0.73441996865406933E-002 9 4 7 13 + -0.51139384241872619E-002 7 14 9 4 + -0.51062319067401137E-002 9 4 7 14 + 0.17636991098617272E-001 8 1 9 4 + 0.17675665052834477E-001 9 4 8 1 + 0.26311567610707319E-001 8 2 9 4 + 0.26333796117056635E-001 9 4 8 2 + 0.45359266050800599E-003 8 9 9 4 + 0.53567709396008475E-003 9 4 8 9 + 0.82011243501899315E-002 8 10 9 4 + 0.81887576153550305E-002 9 4 8 10 + -0.29548164386490401E-002 8 11 9 4 + -0.29503599801957016E-002 9 4 8 11 + 0.17809067941225887E-001 8 12 9 4 + 0.17782212690626520E-001 9 4 8 12 + -0.15853293781927246E-001 8 13 9 4 + -0.15829404211662089E-001 9 4 8 13 + 0.75214684943208958E-002 8 14 9 4 + 0.75101345440831213E-002 9 4 8 14 + 0.51013683253983227E-001 9 4 9 4 + -0.63564372112557693E-002 1 5 9 5 + -0.63564372112557693E-002 9 5 1 5 + -0.38173964971289630E-003 1 6 9 5 + -0.38652850719364778E-003 9 5 1 6 + 0.45879111307905252E-002 1 7 9 5 + 0.46454656776033438E-002 9 5 1 7 + 0.29662861355930449E-002 1 8 9 5 + 0.30034976790131972E-002 9 5 1 8 + -0.23127249222145228E-001 2 5 9 5 + -0.23127249222145221E-001 9 5 2 5 + -0.23630493197970017E-002 2 6 9 5 + -0.23658017962652459E-002 9 5 2 6 + 0.28400142047223569E-001 2 7 9 5 + 0.28433222492064404E-001 9 5 2 7 + 0.18361939715479721E-001 2 8 9 5 + 0.18383327676600454E-001 9 5 2 8 + -0.74802369109206457E-002 3 10 9 5 + -0.74954926838863012E-002 9 5 3 10 + 0.51859535206598799E-002 3 11 9 5 + 0.51965302277986397E-002 9 5 3 11 + 0.59470046054435647E-002 3 12 9 5 + 0.59591332199122344E-002 9 5 3 12 + 0.24159006512208467E-002 3 13 9 5 + 0.24208247448207071E-002 9 5 3 13 + 0.12054123604626243E-002 3 14 9 5 + 0.12078696830389929E-002 9 5 3 14 + -0.78795847435678221E-002 4 10 9 5 + -0.78956548422698981E-002 9 5 4 10 + -0.62503113799429137E-002 4 11 9 5 + -0.62630585590864535E-002 9 5 4 11 + -0.47793476451500842E-002 4 12 9 5 + -0.47890950132812781E-002 9 5 4 12 + 0.10781987404423108E-002 4 13 9 5 + 0.10803961908330186E-002 9 5 4 13 + -0.58901783005517233E-003 4 14 9 5 + -0.59021801930174162E-003 9 5 4 14 + -0.27733095653802352E-001 5 1 9 5 + -0.27733095653802355E-001 9 5 5 1 + -0.22194424225540861E-001 5 2 9 5 + -0.22194424225540854E-001 9 5 5 2 + 0.39136414824562774E-001 5 9 9 5 + 0.39136414824562774E-001 9 5 5 9 + -0.27129267807282538E-002 5 10 9 5 + -0.27184588578290144E-002 9 5 5 10 + 0.15520463127661993E-002 5 11 9 5 + 0.15552108280062677E-002 9 5 5 11 + 0.88876206305171920E-003 5 12 9 5 + 0.89057484403331144E-003 9 5 5 12 + -0.10560168304234251E-001 5 13 9 5 + -0.10581689933383672E-001 9 5 5 13 + -0.67231813716199214E-002 5 14 9 5 + -0.67368831317326083E-002 9 5 5 14 + -0.21839255506743084E-002 6 1 9 5 + -0.21887144081550597E-002 9 5 6 1 + -0.32580673461825864E-002 6 2 9 5 + -0.32608198226508306E-002 9 5 6 2 + -0.56166757432822690E-004 6 9 9 5 + -0.66330979352891397E-004 9 5 6 9 + 0.25567839419390532E-002 6 10 9 5 + 0.25529285738725665E-002 9 5 6 10 + 0.18454109430994806E-001 6 11 9 5 + 0.18426282273644522E-001 9 5 6 11 + 0.16888115322361712E-001 6 12 9 5 + 0.16862649463296613E-001 9 5 6 12 + -0.78467352162000725E-004 6 13 9 5 + -0.78349522340517741E-004 9 5 6 13 + 0.16842790673840537E-002 6 14 9 5 + 0.16817406885187502E-002 9 5 6 14 + 0.26247355626516807E-001 7 1 9 5 + 0.26304910173329626E-001 9 5 7 1 + 0.39156853247123619E-001 7 2 9 5 + 0.39189933691964454E-001 9 5 7 2 + 0.67503622377305277E-003 7 9 9 5 + 0.79719421002882093E-003 9 5 7 9 + -0.78761922275306494E-002 7 10 9 5 + -0.78643143708723266E-002 9 5 7 10 + -0.18153492399529975E-002 7 11 9 5 + -0.18126131534367360E-002 9 5 7 11 + 0.12060207256030069E-002 7 12 9 5 + 0.12042024976793748E-002 9 5 7 12 + 0.23092935406885135E-001 7 13 9 5 + 0.23058137687148740E-001 9 5 7 13 + 0.13501068689476250E-001 7 14 9 5 + 0.13480724251470365E-001 9 5 7 14 + 0.16970068702595608E-001 8 1 9 5 + 0.17007280246015759E-001 9 5 8 1 + 0.25316626148419574E-001 8 2 9 5 + 0.25338014109540306E-001 9 5 8 2 + 0.43644057927866910E-003 8 9 9 5 + 0.51542108492765558E-003 9 5 8 9 + 0.23770071735962905E-001 8 10 9 5 + 0.23734229153192850E-001 9 5 8 10 + -0.12586590061454803E-002 8 11 9 5 + -0.12567615513528142E-002 9 5 8 11 + -0.33802822832905356E-002 8 12 9 5 + -0.33751850858896983E-002 9 5 8 12 + 0.81030427241547947E-002 8 13 9 5 + 0.80908333297800127E-002 9 5 8 13 + 0.72398700621395000E-002 8 14 9 5 + 0.72289617576940749E-002 9 5 8 14 + 0.51013683253983769E-001 9 5 9 5 + -0.15474172541987379E-002 1 3 9 6 + -0.14808812937647919E-002 9 6 1 3 + 0.18799163802450782E-002 1 4 9 6 + 0.17990835980360811E-002 9 6 1 4 + -0.17013230729423588E-003 1 5 9 6 + -0.16281694588415199E-003 9 6 1 5 + -0.15780579267838189E-002 1 6 9 6 + -0.16393044075633969E-002 9 6 1 6 + -0.54025820716786917E-001 2 3 9 6 + -0.53187501216028416E-001 9 6 2 3 + 0.65634543653998553E-001 2 4 9 6 + 0.64616091418779942E-001 9 6 2 4 + -0.59399218323760005E-002 2 5 9 6 + -0.58477519728718621E-002 9 6 2 5 + -0.20388270131466598E-001 2 6 9 6 + -0.20798243297029995E-001 9 6 2 6 + -0.25813818138144005E-001 3 1 9 6 + -0.25747282177710058E-001 9 6 3 1 + -0.61467417657332921E-001 3 2 9 6 + -0.60629098156574419E-001 9 6 3 2 + 0.87146453962826647E-002 3 9 9 6 + 0.88070928133827022E-002 9 6 3 9 + 0.19400451351808368E-002 3 10 9 6 + 0.19122068672002160E-002 9 6 3 10 + -0.26080601609976866E-001 3 11 9 6 + -0.25706436385480293E-001 9 6 3 11 + 0.25631479243210787E-001 3 12 9 6 + 0.25263761474006954E-001 9 6 3 12 + -0.35392351103353177E-002 3 13 9 6 + -0.34884543064260393E-002 9 6 3 13 + 0.36333085434018551E-001 3 14 9 6 + 0.35811689413979955E-001 9 6 3 14 + 0.31360526336954714E-001 4 1 9 6 + 0.31279693554745712E-001 9 6 4 1 + 0.74675143366683058E-001 4 2 9 6 + 0.73656691131464447E-001 9 6 4 2 + -0.10587192681252511E-001 4 9 9 6 + -0.10699504608269040E-001 9 6 4 9 + -0.89813457158491718E-003 4 10 9 6 + -0.88524295693646025E-003 9 6 4 10 + -0.19995517799184986E-001 4 11 9 6 + -0.19708651425232895E-001 9 6 4 11 + 0.24923829871278603E-001 4 12 9 6 + 0.24566254446671813E-001 9 6 4 12 + -0.28123098358608566E-004 4 13 9 6 + -0.27726882589262042E-004 9 6 4 13 + -0.42450265564356396E-001 4 14 9 6 + -0.41841078709021796E-001 9 6 4 14 + -0.28381255462927787E-002 5 1 9 6 + -0.28308101848826951E-002 9 6 5 1 + -0.67580955046762986E-002 5 2 9 6 + -0.66659256451721601E-002 9 6 5 2 + 0.95814023302218576E-003 5 9 9 6 + 0.96830445494225446E-003 9 6 5 9 + 0.49301344803601814E-002 5 10 9 6 + 0.48594039792605121E-002 9 6 5 10 + 0.35584230189772401E-001 5 11 9 6 + 0.35073720509422875E-001 9 6 5 11 + 0.32564587402260883E-001 5 12 9 6 + 0.32097399666318485E-001 9 6 5 12 + -0.15134540853707843E-003 5 13 9 6 + -0.14917054686901338E-003 9 6 5 13 + 0.32478315262084029E-002 5 14 9 6 + 0.32012265286377418E-002 9 6 5 14 + -0.43742898334773697E-001 6 1 9 6 + -0.43804144815553274E-001 9 6 6 1 + -0.10704702342111516E-001 6 2 9 6 + -0.11114675507674913E-001 9 6 6 2 + 0.79058122293323249E-001 6 9 9 6 + 0.79058122293323249E-001 9 6 6 9 + -0.10153509887847435E-003 6 10 9 6 + -0.87674338076073092E-004 9 6 6 10 + -0.60341556206520569E-004 6 11 9 6 + -0.52102111484440877E-004 9 6 6 11 + 0.30339948335121744E-004 6 12 9 6 + 0.26200352588698913E-004 9 6 6 12 + 0.10007270000165510E-003 6 13 9 6 + 0.86411933421003424E-004 9 6 6 13 + -0.25080410376159823E-002 6 14 9 6 + -0.21656710524556415E-002 9 6 6 14 + 0.15748027835904324E-003 7 10 9 6 + 0.13597594673876861E-003 9 6 7 10 + 0.21380961392130577E-002 7 11 9 6 + 0.18461355060010694E-002 9 6 7 11 + 0.36337648465014163E-003 7 12 9 6 + 0.31375682836586781E-003 9 6 7 12 + 0.67082298898754210E-004 7 13 9 6 + 0.57920745533246149E-004 9 6 7 13 + -0.50755073533672394E-004 7 14 9 6 + -0.43826700481958106E-004 9 6 7 14 + 0.15129338068219485E-003 8 10 9 6 + 0.13063393791735425E-003 9 6 8 10 + -0.37039715120795182E-003 8 11 9 6 + -0.31981875699228427E-003 9 6 8 11 + 0.21363510615628151E-002 8 12 9 6 + 0.18446286789985107E-002 9 6 8 12 + -0.10340926609896639E-003 8 13 9 6 + -0.89289060237132616E-004 9 6 8 13 + 0.24496909848359232E-004 8 14 9 6 + 0.21150347146206901E-004 9 6 8 14 + 0.14613944278994366E-002 9 3 9 6 + 0.15538418449994743E-002 9 6 9 3 + -0.17754095190241294E-002 9 4 9 6 + -0.18877214460406586E-002 9 6 9 4 + 0.16067444330925961E-003 9 5 9 6 + 0.17083866522932833E-003 9 6 9 5 + 0.75963233229333182E-001 9 6 9 6 + -0.11139808587468092E-002 1 3 9 7 + -0.10660818281908145E-002 9 7 1 3 + -0.73190475150350788E-003 1 4 9 7 + -0.70043425739126314E-003 9 7 1 4 + 0.20447231691266567E-002 1 5 9 7 + 0.19568040125383370E-002 9 7 1 5 + -0.15780579267838119E-002 1 7 9 7 + -0.16393044075633915E-002 9 7 1 7 + -0.38893019961667601E-001 2 3 9 7 + -0.38289516365707883E-001 9 7 2 3 + -0.25553388899597893E-001 2 4 9 7 + -0.25156876566406385E-001 9 7 2 4 + 0.71388532763833987E-001 2 5 9 7 + 0.70280795790060177E-001 9 7 2 5 + -0.20388270131467660E-001 2 7 9 7 + -0.20798243297031040E-001 9 7 2 7 + -0.18583287228466659E-001 3 1 9 7 + -0.18535388197910663E-001 9 7 3 1 + -0.44250202407308981E-001 3 2 9 7 + -0.43646698811349263E-001 9 7 3 2 + 0.62736460614502571E-002 3 9 9 7 + 0.63401986689066983E-002 9 7 3 9 + 0.33142716078242915E-001 3 10 9 7 + 0.32667234156474101E-001 9 7 3 10 + -0.33127337494737466E-001 3 11 9 7 + -0.32652073133890923E-001 9 7 3 11 + -0.74581778764959668E-002 3 12 9 7 + -0.73511820367851317E-002 9 7 3 12 + 0.99739035449877070E-002 3 13 9 7 + 0.98307628456070981E-002 9 7 3 13 + -0.13056595735011427E-001 3 14 9 7 + -0.12869232689205871E-001 9 7 3 14 + -0.12209542124781349E-001 4 1 9 7 + -0.12178071630669104E-001 9 7 4 1 + -0.29073150712244332E-001 4 2 9 7 + -0.28676638379052828E-001 9 7 4 2 + 0.41218943086618652E-002 4 9 9 7 + 0.41656205264328887E-002 9 7 4 9 + 0.30468755521093627E-001 4 10 9 7 + 0.30031635065041661E-001 9 7 4 10 + 0.34358247846685147E-001 4 11 9 7 + 0.33865329828415489E-001 9 7 4 11 + 0.45988516728909176E-002 4 12 9 7 + 0.45328714521447270E-002 9 7 4 12 + 0.14183464904253451E-001 4 13 9 7 + 0.13979928130373411E-001 9 7 4 13 + -0.98613751726556766E-002 4 14 9 7 + -0.97198635110149340E-002 9 7 4 14 + 0.34109812261342493E-001 5 1 9 7 + 0.34021893104754168E-001 9 7 5 1 + 0.81221695498932364E-001 5 2 9 7 + 0.80113958525158555E-001 9 7 5 2 + -0.11515341000722988E-001 5 9 9 7 + -0.11637498986978757E-001 9 7 5 9 + -0.15187204449498334E-001 5 10 9 7 + -0.14969330163132169E-001 9 7 5 10 + -0.35005628832081291E-002 5 11 9 7 + -0.34503325483160562E-002 9 7 5 11 + 0.23255438061927204E-002 5 12 9 7 + 0.22921778515969525E-002 9 7 5 12 + 0.44531068507450512E-001 5 13 9 7 + 0.43892025381425850E-001 9 7 5 13 + 0.26034650006192407E-001 5 14 9 7 + 0.25661041759630718E-001 9 7 5 14 + 0.15748027835905997E-003 6 10 9 7 + 0.13597594673878628E-003 9 7 6 10 + 0.21380961392135000E-002 6 11 9 7 + 0.18461355060015042E-002 9 7 6 11 + 0.36337648465016180E-003 6 12 9 7 + 0.31375682836589042E-003 9 7 6 12 + 0.67082298898789446E-004 6 13 9 7 + 0.57920745533281012E-004 9 7 6 13 + -0.50755073533673533E-004 6 14 9 7 + -0.43826700481959909E-004 9 7 6 14 + -0.43742898334774148E-001 7 1 9 7 + -0.43804144815553725E-001 9 7 7 1 + -0.10704702342112883E-001 7 2 9 7 + -0.11114675507676265E-001 9 7 7 2 + 0.79058122293322972E-001 7 9 9 7 + 0.79058122293322972E-001 9 7 7 9 + -0.16575084783008783E-002 7 10 9 7 + -0.14311691683667567E-002 9 7 7 10 + 0.84425354809430133E-004 7 11 9 7 + 0.72894147524168320E-004 9 7 7 11 + 0.17805407905765368E-003 7 12 9 7 + 0.15374045317542018E-003 9 7 7 12 + 0.12773909729983501E-002 7 13 9 7 + 0.11030134718266671E-002 9 7 7 13 + 0.13771754169450406E-002 7 14 9 7 + 0.11891755906250762E-002 9 7 7 14 + 0.13273079755581371E-002 8 10 9 7 + 0.11460640749633092E-002 9 7 8 10 + -0.14509379036050860E-003 8 11 9 7 + -0.12528501434877262E-003 9 7 8 11 + -0.36201258342675040E-004 8 12 9 7 + -0.31255639580158974E-004 9 7 8 12 + 0.17180206605936390E-002 8 13 9 7 + 0.14834971132438588E-002 9 7 8 13 + 0.17868523699835778E-004 8 14 9 7 + 0.15431537490300679E-004 9 7 8 14 + 0.10520532941856770E-002 9 3 9 7 + 0.11186059016421183E-002 9 7 9 3 + 0.69121726715815469E-003 9 4 9 7 + 0.73494348492917814E-003 9 7 9 4 + -0.19310544960324293E-002 9 5 9 7 + -0.20532124822881972E-002 9 7 9 5 + 0.75963233229332863E-001 9 7 9 7 + 0.15238363576987480E-002 1 3 9 8 + 0.14583143303796597E-002 9 8 1 3 + 0.13739580034718393E-002 1 4 9 8 + 0.13148804566053816E-002 9 8 1 4 + 0.13220033725155564E-002 1 5 9 8 + 0.12651597746762865E-002 9 8 1 5 + -0.15780579267837013E-002 1 8 9 8 + -0.16393044075632807E-002 9 8 1 8 + 0.53202528044302033E-001 2 3 9 8 + 0.52376983588753707E-001 9 8 2 3 + 0.47969743497781908E-001 2 4 9 8 + 0.47225396241469354E-001 9 8 2 4 + 0.46155823192941287E-001 2 5 9 8 + 0.45439622566225357E-001 9 8 2 5 + -0.20388270131466948E-001 2 8 9 8 + -0.20798243297030339E-001 9 8 2 8 + 0.25420444617112341E-001 3 1 9 8 + 0.25354922589793251E-001 9 8 3 1 + 0.60530723427010380E-001 3 2 9 8 + 0.59705178971462054E-001 9 8 3 2 + -0.85818440134831503E-002 3 9 9 8 + -0.86728826360460767E-002 9 8 3 9 + 0.88474906252018100E-002 3 10 9 8 + 0.87205616501689863E-002 9 8 3 10 + 0.63816432108153897E-002 3 11 9 8 + 0.62900810507654798E-002 9 8 3 11 + -0.32755889275308141E-001 3 12 9 8 + -0.32285950019031499E-001 9 8 3 12 + -0.35217669588875657E-001 3 13 9 8 + -0.34712273335941714E-001 9 8 3 13 + 0.15223135969177867E-001 3 14 9 8 + 0.15004670575683474E-001 9 8 3 14 + 0.22920192943971383E-001 4 1 9 8 + 0.22861115397104927E-001 9 8 4 1 + 0.54577167350224234E-001 4 2 9 8 + 0.53832820093911680E-001 9 8 4 2 + -0.77377686962913769E-002 4 9 9 8 + -0.78198531297434554E-002 9 8 4 9 + 0.15813845885554588E-001 4 10 9 8 + 0.15586973536947695E-001 9 8 4 10 + -0.56975694636308997E-002 4 11 9 8 + -0.56158354462612116E-002 9 8 4 11 + 0.34340363470732639E-001 4 12 9 8 + 0.33847704465918650E-001 9 8 4 12 + -0.30570488731664701E-001 4 13 9 8 + -0.30131793797453711E-001 9 8 4 13 + 0.14503945740254789E-001 4 14 9 8 + 0.14295808191177413E-001 9 8 4 14 + 0.22053492387737197E-001 5 1 9 8 + 0.21996648789897925E-001 9 8 5 1 + 0.52513394963327145E-001 5 2 9 8 + 0.51797194336611216E-001 9 8 5 2 + -0.74451739328232755E-002 5 9 9 8 + -0.75241544384722619E-002 9 8 5 9 + 0.45834808505276992E-001 5 10 9 8 + 0.45177234577240315E-001 9 8 5 10 + -0.24270558892779824E-002 5 11 9 8 + -0.23922325197795755E-002 9 8 5 11 + -0.65180438435337345E-002 5 12 9 8 + -0.64245328653903203E-002 9 8 5 12 + 0.15625493677093361E-001 5 13 9 8 + 0.15401254769105211E-001 9 8 5 13 + 0.13961035797697455E-001 5 14 9 8 + 0.13760679683704322E-001 9 8 5 14 + 0.15129338068222908E-003 6 10 9 8 + 0.13063393791738827E-003 9 8 6 10 + -0.37039715120782313E-003 6 11 9 8 + -0.31981875699215579E-003 9 8 6 11 + 0.21363510615630835E-002 6 12 9 8 + 0.18446286789987774E-002 9 8 6 12 + -0.10340926609894855E-003 6 13 9 8 + -0.89289060237116176E-004 9 8 6 13 + 0.24496909848366384E-004 6 14 9 8 + 0.21150347146215114E-004 9 8 6 14 + 0.13273079755579079E-002 7 10 9 8 + 0.11460640749630779E-002 9 8 7 10 + -0.14509379036048518E-003 7 11 9 8 + -0.12528501434874980E-003 9 8 7 11 + -0.36201258342666651E-004 7 12 9 8 + -0.31255639580150544E-004 9 8 7 12 + 0.17180206605934395E-002 7 13 9 8 + 0.14834971132436680E-002 9 8 7 13 + 0.17868523699941308E-004 7 14 9 8 + 0.15431537490403766E-004 9 8 7 14 + -0.43742898334773961E-001 8 1 9 8 + -0.43804144815553545E-001 9 8 8 1 + -0.10704702342111941E-001 8 2 9 8 + -0.11114675507675330E-001 9 8 8 2 + 0.79058122293323319E-001 8 9 9 8 + 0.79058122293323319E-001 9 8 8 9 + 0.17590435771797299E-002 8 10 9 8 + 0.15188435064431992E-002 9 8 8 10 + -0.24083798602928836E-004 8 11 9 8 + -0.20792036039749303E-004 9 8 8 11 + -0.20839402739278095E-003 8 12 9 8 + -0.17994080576412035E-003 9 8 8 12 + -0.13774636730000313E-002 8 13 9 8 + -0.11894254052476942E-002 9 8 8 13 + 0.11308656206704009E-002 8 14 9 8 + 0.97649546183002840E-003 9 8 8 14 + -0.14391244224069707E-002 9 3 9 8 + -0.15301630449698973E-002 9 8 9 3 + -0.12975779900302766E-002 9 4 9 8 + -0.13796624234823553E-002 9 8 9 4 + -0.12485115808397642E-002 9 5 9 8 + -0.13274920864887506E-002 9 8 9 5 + 0.75963233229333210E-001 9 8 9 8 + 0.80215337634819706 1 1 9 9 + 0.80271567998848903 9 9 1 1 + -0.50028922349642249E-001 1 2 9 9 + -0.50535737600739004E-001 9 9 1 2 + 0.43525241561849025E-001 1 9 9 9 + 0.43637652293959224E-001 9 9 1 9 + 0.18652284112304372E-001 2 1 9 9 + 0.18145468861207621E-001 9 9 2 1 + 0.54185901229475431 2 2 9 9 + 0.53789420070472826 9 9 2 2 + -0.16319155614991962 2 9 9 9 + -0.16337060830495337 9 9 2 9 + 0.53230905026044639 3 3 9 9 + 0.52695230409663973 9 9 3 3 + 0.10885260311708755 3 6 9 9 + 0.11136117509351776 9 9 3 6 + 0.78362649743089874E-001 3 7 9 9 + 0.80168562890916631E-001 9 9 3 7 + -0.10719381201797619 3 8 9 9 + -0.10966415618223818 9 9 3 8 + 0.53230905026043374 4 4 9 9 + 0.52695230409662730 9 9 4 4 + -0.13224215451705115 4 6 9 9 + -0.13528975240102081 9 9 4 6 + 0.51485620454820365E-001 4 7 9 9 + 0.52672136725112451E-001 9 9 4 7 + -0.96650664095698252E-001 4 8 9 9 + -0.98878035242652221E-001 9 9 4 8 + 0.53230905026044339 5 5 9 9 + 0.52695230409663674 9 9 5 5 + 0.11967906182409366E-001 5 6 9 9 + 0.12243713588075564E-001 9 9 5 6 + -0.14383543870234117 5 7 9 9 + -0.14715021060869701 9 9 5 7 + -0.92995931147467903E-001 5 8 9 9 + -0.95139076833636135E-001 9 9 5 8 + 0.55613088292007777E-001 6 3 9 9 + 0.58121660268437986E-001 9 9 6 3 + -0.67562873137459942E-001 6 4 9 9 + -0.70610471021429602E-001 9 9 6 4 + 0.61144355222898144E-002 6 5 9 9 + 0.63902429279560115E-002 9 9 6 5 + 0.44085205342909572 6 6 9 9 + 0.43956263450991495 9 9 6 6 + 0.40035688942327612E-001 7 3 9 9 + 0.41841602090154355E-001 9 9 7 3 + 0.26304142244930655E-001 7 4 9 9 + 0.27490658515222741E-001 9 9 7 4 + -0.73485913271811892E-001 7 5 9 9 + -0.76800685178167710E-001 9 9 7 5 + 0.44085205342909534 7 7 9 9 + 0.43956263450991462 9 9 7 7 + -0.54765607449003550E-001 8 3 9 9 + -0.57235951613265543E-001 9 9 8 3 + -0.49379084761562123E-001 8 4 9 9 + -0.51606455908516091E-001 9 9 8 4 + -0.47511871848748631E-001 8 5 9 9 + -0.49655017534916857E-001 9 9 8 5 + 0.44085205342910061 8 8 9 9 + 0.43956263450991989 9 9 8 8 + -0.15749143796465640E-001 9 1 9 9 + -0.15636733064355441E-001 9 9 9 1 + -0.59855662384349209E-001 9 2 9 9 + -0.60034714539382937E-001 9 9 9 2 + 0.44700791101198062 9 9 9 9 + -0.97890604919877904E-003 1 10 9 10 + -0.97802475198465974E-003 9 10 1 10 + -0.45080892392543488E-009 1 11 9 10 + -0.45341735499774198E-009 9 10 1 11 + 0.85304022373704519E-008 1 13 9 10 + 0.85797601033926327E-008 9 10 1 13 + 0.11465096186274210E-007 1 14 9 10 + 0.11531434521265945E-007 9 10 1 14 + -0.14637596029790380E-002 2 10 9 10 + -0.14525472016271128E-002 9 10 2 10 + -0.66884844804050052E-008 2 11 9 10 + -0.69015244530682802E-008 9 10 2 11 + -0.11507510530060135E-008 2 12 9 10 + -0.11874044941375642E-008 9 10 2 12 + 0.12656240827208992E-006 2 13 9 10 + 0.13059364316269590E-006 9 10 2 13 + 0.17010337190869998E-006 2 14 9 10 + 0.17552146292942224E-006 9 10 2 14 + 0.41513959721156766E-003 3 3 9 10 + 0.41476394626677318E-003 9 10 3 3 + 0.13279204916627303E-003 3 4 9 10 + 0.13267377998093811E-003 9 10 3 4 + -0.12426496312722120E-002 3 5 9 10 + -0.12415309470286831E-002 9 10 3 5 + 0.48910289855507816E-003 3 6 9 10 + 0.49269164799944313E-003 9 10 3 6 + 0.83561186092668271E-002 3 7 9 10 + 0.84174318162338144E-002 9 10 3 7 + 0.22306855657617240E-002 3 8 9 10 + 0.22470532862411338E-002 9 10 3 8 + 0.13279204916627363E-003 4 3 9 10 + 0.13267377998093870E-003 9 10 4 3 + 0.35440185299005496E-004 4 4 9 10 + 0.35405968390442817E-004 9 10 4 4 + -0.13089750710430690E-002 4 5 9 10 + -0.13077960239983798E-002 9 10 4 5 + -0.22640432536568625E-003 4 6 9 10 + -0.22806550704021337E-003 9 10 4 6 + 0.76819424387019886E-002 4 7 9 10 + 0.77383088579191708E-002 9 10 4 7 + 0.39870769372277529E-002 4 8 9 10 + 0.40163322129537641E-002 9 10 4 8 + -0.12426496312722098E-002 5 3 9 10 + -0.12415309470286810E-002 9 10 5 3 + -0.13089750710430681E-002 5 4 9 10 + -0.13077960239983790E-002 9 10 5 4 + -0.45057978251060058E-003 5 5 9 10 + -0.45016991465724506E-003 9 10 5 5 + 0.12430098820593420E-002 5 6 9 10 + 0.12521304914968317E-002 9 10 5 6 + -0.38291312314854007E-002 5 7 9 10 + -0.38572276563860280E-002 9 10 5 7 + 0.11556087970226513E-001 5 8 9 10 + 0.11640880974758022E-001 9 10 5 8 + 0.59134281943967846E-003 6 3 9 10 + 0.59493156888404343E-003 9 10 6 3 + -0.27372940215608183E-003 6 4 9 10 + -0.27539058383060894E-003 9 10 6 4 + 0.15028481737837916E-002 6 5 9 10 + 0.15119687832212813E-002 9 10 6 5 + -0.92290311384995085E-004 6 6 9 10 + -0.10229650081710286E-003 9 10 6 6 + 0.14313562436245268E-003 6 7 9 10 + 0.15866499250028873E-003 9 10 6 7 + 0.13751233192288960E-003 6 8 9 10 + 0.15243152018110792E-003 9 10 6 8 + 0.10102879155390486E-001 7 3 9 10 + 0.10164192362357473E-001 9 10 7 3 + 0.92877732119684576E-002 7 4 9 10 + 0.93441396311856398E-002 9 10 7 4 + -0.46295749840243993E-002 7 5 9 10 + -0.46576714089250270E-002 9 10 7 5 + 0.14313562436245241E-003 7 6 9 10 + 0.15866499250028845E-003 9 10 7 6 + -0.15065261944206983E-002 7 7 9 10 + -0.16699791860275198E-002 9 10 7 7 + 0.12064085803442336E-002 7 8 9 10 + 0.13372912297340885E-002 9 10 7 8 + 0.26969879801980847E-002 8 3 9 10 + 0.27133557006774945E-002 9 10 8 3 + 0.48205346703362314E-002 8 4 9 10 + 0.48497899460622426E-002 9 10 8 4 + 0.13971767336925726E-001 8 5 9 10 + 0.14056560341457235E-001 9 10 8 5 + 0.13751233192289193E-003 8 6 9 10 + 0.15243152018111025E-003 9 10 8 6 + 0.12064085803442284E-002 8 7 9 10 + 0.13372912297340833E-002 9 10 8 7 + 0.15988165058058083E-002 8 8 9 10 + 0.17722756868447410E-002 9 10 8 8 + 0.17032709654892592E-001 9 10 9 10 + -0.45080892435181774E-009 1 10 9 11 + -0.45341735542169200E-009 9 11 1 10 + -0.97890588848448669E-003 1 11 9 11 + -0.97802459034045607E-003 9 11 1 11 + -0.50466916173799245E-009 1 12 9 11 + -0.50758923422997871E-009 9 11 1 12 + -0.15855092003695510E-007 1 13 9 11 + -0.15946831347854011E-007 9 11 1 13 + 0.18415874168012261E-009 1 14 9 11 + 0.18522430486899212E-009 9 11 1 14 + -0.66884844843433882E-008 2 10 9 11 + -0.69015244570324614E-008 9 11 2 10 + -0.14637572185208325E-002 2 11 9 11 + -0.14525447412197185E-002 9 11 2 11 + -0.74875888266888983E-008 2 12 9 11 + -0.77260816755862345E-008 9 11 2 12 + -0.23523610863274399E-006 2 13 9 11 + -0.24272879166187108E-006 9 11 2 13 + 0.27322948170594199E-008 2 14 9 11 + 0.28193232037579075E-008 9 11 2 14 + -0.13658528938250611E-002 3 3 9 11 + -0.13646202352168675E-002 9 11 3 3 + 0.25154755892944480E-003 3 4 9 11 + 0.25132319434636243E-003 9 11 3 4 + 0.86152187407927778E-003 3 5 9 11 + 0.86074664979843480E-003 9 11 3 5 + -0.65755810762641344E-002 3 6 9 11 + -0.66238295501408482E-002 9 11 3 6 + -0.83522233462226831E-002 3 7 9 11 + -0.84135079410082789E-002 9 11 3 7 + 0.16089276437112748E-002 3 8 9 11 + 0.16207331071770486E-002 9 11 3 8 + 0.25154755892944653E-003 4 3 9 11 + 0.25132319434636416E-003 9 11 4 3 + 0.11081204025356981E-002 4 4 9 11 + 0.11071238699041192E-002 9 11 4 4 + -0.10383067263125129E-002 4 5 9 11 + -0.10373710865192434E-002 9 11 4 5 + -0.50413725993293549E-002 4 6 9 11 + -0.50783637763096032E-002 9 11 4 6 + 0.86625997481988813E-002 4 7 9 11 + 0.87261617925859670E-002 9 11 4 7 + -0.14365376154762601E-002 4 8 9 11 + -0.14470783037022603E-002 9 11 4 8 + 0.86152187407927431E-003 5 3 9 11 + 0.86074664979843133E-003 9 11 5 3 + -0.10383067263125120E-002 5 4 9 11 + -0.10373710865192425E-002 9 11 5 4 + 0.25773249128939517E-003 5 5 9 11 + 0.25749636531278075E-003 9 11 5 5 + 0.89716827959120532E-002 5 6 9 11 + 0.90375127130606463E-002 9 11 5 6 + -0.88252499408358388E-003 5 7 9 11 + -0.88900044602994923E-003 9 11 5 7 + -0.61190115775086173E-003 5 8 9 11 + -0.61639096009474218E-003 9 11 5 8 + -0.79501386175855164E-002 6 3 9 11 + -0.79983870914622293E-002 9 11 6 3 + -0.60952193634665848E-002 6 4 9 11 + -0.61322105404468330E-002 9 11 6 4 + 0.10847120481550532E-001 6 5 9 11 + 0.10912950398699125E-001 9 11 6 5 + -0.54845459637165054E-004 6 6 9 11 + -0.60795295584592816E-004 9 11 6 6 + 0.19433417358053202E-002 6 7 9 11 + 0.21541798213998266E-002 9 11 6 7 + -0.33665846510851793E-003 6 8 9 11 + -0.37318346139085225E-003 9 11 6 8 + -0.10098168492393133E-001 7 3 9 11 + -0.10159453087178728E-001 9 11 7 3 + 0.10473427955886962E-001 7 4 9 11 + 0.10536990000274048E-001 9 11 7 4 + -0.10670042348151429E-002 7 5 9 11 + -0.10734796867615081E-002 9 11 7 5 + 0.19433417358053484E-002 7 6 9 11 + 0.21541798213998548E-002 9 11 7 6 + 0.76732600236369692E-004 7 7 9 11 + 0.85062089072316695E-004 9 11 7 7 + -0.13188133660843184E-003 7 8 9 11 + -0.14618286102552593E-003 9 11 7 8 + 0.19452544660871947E-002 8 3 9 11 + 0.19570599295529686E-002 9 11 8 3 + -0.17368332881313585E-002 8 4 9 11 + -0.17473739763573587E-002 9 11 8 4 + -0.73981145535696291E-003 8 5 9 11 + -0.74430125770084336E-003 9 11 8 5 + -0.33665846510851381E-003 8 6 9 11 + -0.37318346139084813E-003 9 11 8 6 + -0.13188133660843102E-003 8 7 9 11 + -0.14618286102552515E-003 9 11 8 7 + -0.21887140599109055E-004 8 8 9 11 + -0.24266793487628299E-004 9 11 8 8 + 0.42772478020063179E-008 9 10 9 11 + 0.42772478020295939E-008 9 11 9 10 + 0.17032708130045308E-001 9 11 9 11 + -0.50466915908145497E-009 1 11 9 12 + -0.50758923158361834E-009 9 12 1 11 + -0.97890617700031272E-003 1 12 9 12 + -0.97802488052566765E-003 9 12 1 12 + 0.93001749904064222E-008 1 13 9 12 + 0.93539868480422195E-008 9 12 1 13 + -0.89387721664352690E-008 1 14 9 12 + -0.89904929067557922E-008 9 12 1 14 + -0.11507510568593875E-008 2 10 9 12 + -0.11874044980917312E-008 9 12 2 10 + -0.74875888369496222E-008 2 11 9 12 + -0.77260816858115020E-008 9 12 2 11 + -0.14637614991227293E-002 2 12 9 12 + -0.14525491581663080E-002 9 12 2 12 + 0.13798324056309003E-006 2 13 9 12 + 0.14237824901182366E-006 9 12 2 13 + -0.13262124113503442E-006 2 14 9 12 + -0.13684546048904941E-006 9 12 2 14 + 0.12761259770658687E-002 3 3 9 12 + 0.12749754562580338E-002 9 12 3 3 + -0.13574138616829920E-003 3 4 9 12 + -0.13562235275774094E-003 9 12 3 4 + 0.98792275014873178E-003 3 5 9 12 + 0.98703257743634146E-003 9 12 3 5 + 0.64623700399701958E-002 3 6 9 12 + 0.65097878664552265E-002 9 12 3 6 + -0.18804125771758290E-002 3 7 9 12 + -0.18942101753648306E-002 9 12 3 7 + -0.82585491770500973E-002 3 8 9 12 + -0.83191463968573329E-002 9 12 3 8 + -0.13574138616829931E-003 4 3 9 12 + -0.13562235275774105E-003 9 12 4 3 + -0.14237912230026747E-002 4 4 9 12 + -0.14225085955643629E-002 9 12 4 4 + -0.79396579665758158E-003 4 5 9 12 + -0.79325102327158098E-003 9 12 4 5 + 0.62838955645359382E-002 4 6 9 12 + 0.63300037313612362E-002 9 12 4 6 + 0.11594706657820687E-002 4 7 9 12 + 0.11679782797370218E-002 9 12 4 7 + 0.86581048784817663E-002 4 8 9 12 + 0.87216339659534521E-002 9 12 4 8 + 0.98792275014873004E-003 5 3 9 12 + 0.98703257743633973E-003 9 12 5 3 + -0.79396579665758028E-003 5 4 9 12 + -0.79325102327157968E-003 9 12 5 4 + 0.14766524593693014E-003 5 5 9 12 + 0.14753313930646121E-003 9 12 5 5 + 0.82103580918983683E-002 5 6 9 12 + 0.82706017784486066E-002 9 12 5 6 + 0.58631365498939387E-003 5 7 9 12 + 0.59061571915286330E-003 9 12 5 7 + -0.16433647731375143E-002 5 8 9 12 + -0.16554230001406523E-002 9 12 5 8 + 0.78132635053834009E-002 6 3 9 12 + 0.78606813318684316E-002 9 12 6 3 + 0.75974770980821267E-002 6 4 9 12 + 0.76435852649074246E-002 9 12 6 4 + 0.99266489264531119E-002 6 5 9 12 + 0.99868926130033502E-002 9 12 6 5 + 0.27579549402430703E-004 6 6 9 12 + 0.30566176762687690E-004 9 12 6 6 + 0.33027734664430703E-003 6 7 9 12 + 0.36610995027967351E-003 9 12 6 7 + 0.19417555729590425E-002 6 8 9 12 + 0.21524216418144448E-002 9 12 6 8 + -0.22734945344932548E-002 7 3 9 12 + -0.22872921326822565E-002 9 12 7 3 + 0.14018450313228040E-002 7 4 9 12 + 0.14103526452777571E-002 9 12 7 4 + 0.70887554533627557E-003 7 5 9 12 + 0.71317760949974501E-003 9 12 7 5 + 0.33027734664429901E-003 7 6 9 12 + 0.36610995027966549E-003 9 12 7 6 + 0.16183549155989501E-003 7 7 9 12 + 0.17939350310537414E-003 9 12 7 7 + -0.32901609425287194E-004 7 8 9 12 + -0.36474929556196749E-004 9 12 7 8 + -0.99849112681518887E-002 8 3 9 12 + -0.10045508487959124E-001 9 12 8 3 + 0.10467994381159229E-001 8 4 9 12 + 0.10531523468630915E-001 9 12 8 4 + -0.19868933030712964E-002 8 5 9 12 + -0.19989515300744345E-002 9 12 8 5 + 0.19417555729590512E-002 8 6 9 12 + 0.21524216418144534E-002 9 12 8 6 + -0.32901609425288312E-004 8 7 9 12 + -0.36474929556197867E-004 9 12 8 7 + -0.18941504096245672E-003 8 8 9 12 + -0.20995967986819211E-003 9 12 8 8 + 0.73589875305857324E-009 9 10 9 12 + 0.73589875307120666E-009 9 12 9 10 + 0.47882706634070880E-008 9 11 9 12 + 0.47882706634557824E-008 9 12 9 11 + 0.17032710867465706E-001 9 12 9 12 + 0.85304022401798715E-008 1 10 9 13 + 0.85797601061982159E-008 9 13 1 10 + -0.15855092008007702E-007 1 11 9 13 + -0.15946831352169760E-007 9 13 1 11 + 0.93001749931967092E-008 1 12 9 13 + 0.93539868508460739E-008 9 13 1 12 + -0.97861134169968255E-003 1 13 9 13 + -0.97772833927485363E-003 9 13 1 13 + 0.12656240826974764E-006 2 10 9 13 + 0.13059364316042069E-006 9 13 2 10 + -0.23523610862330817E-006 2 11 9 13 + -0.24272879165244710E-006 9 13 2 11 + 0.13798324056098566E-006 2 12 9 13 + 0.14237824900971251E-006 9 13 2 12 + -0.14593871373237862E-002 2 13 9 13 + -0.14480354652646309E-002 9 13 2 13 + -0.59157844162268426E-009 2 14 9 13 + -0.61042125184704564E-009 9 13 2 14 + 0.92991725003461578E-003 3 3 9 13 + 0.92903526153765594E-003 9 13 3 3 + 0.97777876550384857E-003 3 4 9 13 + 0.97685750488207151E-003 9 13 3 4 + 0.40097581689926191E-003 3 5 9 13 + 0.40059992808694065E-003 9 13 3 5 + -0.89230062246837215E-003 3 6 9 13 + -0.89884784661736241E-003 9 13 3 6 + 0.25143809438620064E-002 3 7 9 13 + 0.25328297703832705E-002 9 13 3 7 + -0.88784134936824039E-002 3 8 9 13 + -0.89435575945664859E-002 9 13 3 8 + 0.97777876550384814E-003 4 3 9 13 + 0.97685750488207108E-003 9 13 4 3 + 0.82254084233301494E-003 4 4 9 13 + 0.82176970776538338E-003 9 13 4 4 + 0.17893643569860109E-003 4 5 9 13 + 0.17876803318167067E-003 9 13 4 5 + -0.71329362662913268E-005 4 6 9 13 + -0.71853466851003864E-005 9 13 4 6 + 0.35756969416712333E-002 4 7 9 13 + 0.36019331620327946E-002 9 13 4 7 + -0.77069199809924570E-002 4 8 9 13 + -0.77634685267496300E-002 9 13 4 8 + 0.40097581689926213E-003 5 3 9 13 + 0.40059992808694087E-003 9 13 5 3 + 0.17893643569860126E-003 5 4 9 13 + 0.17876803318167084E-003 9 13 5 4 + -0.17524580923680756E-002 5 5 9 13 + -0.17508049693034690E-002 9 13 5 5 + -0.38137057770657613E-004 5 6 9 13 + -0.38416853524117316E-004 9 13 5 6 + 0.11226369098601611E-001 5 7 9 13 + 0.11308741054891632E-001 9 13 5 7 + 0.39391866927923876E-002 5 8 9 13 + 0.39680898869702708E-002 9 13 5 8 + -0.10788249644836324E-002 6 3 9 13 + -0.10853721886326226E-002 9 13 6 3 + -0.86266869391082983E-005 6 4 9 13 + -0.86790973579173580E-005 9 13 6 4 + -0.46107890280018934E-004 6 5 9 13 + -0.46387686033478643E-004 9 13 6 5 + 0.90961404627540470E-004 6 6 9 13 + 0.10082292252316801E-003 9 13 6 6 + 0.60970640311144846E-004 6 7 9 13 + 0.67587722913225486E-004 9 13 6 7 + -0.93990424450005782E-004 6 8 9 13 + -0.10418685646181684E-003 9 13 6 8 + 0.30399678442513999E-002 7 3 9 13 + 0.30584166707726640E-002 9 13 7 3 + 0.43231396865382812E-002 7 4 9 13 + 0.43493759068998416E-002 9 13 7 4 + 0.13573059997442561E-001 7 5 9 13 + 0.13655431953732582E-001 9 13 7 5 + 0.60970640311147570E-004 7 6 9 13 + 0.67587722913228210E-004 9 13 7 6 + 0.11610859376667557E-002 7 7 9 13 + 0.12869689892677548E-002 9 13 7 7 + 0.15616011479548393E-002 7 8 9 13 + 0.17308998327875877E-002 9 13 7 8 + -0.10734300372082681E-001 8 3 9 13 + -0.10799444472966763E-001 9 13 8 3 + -0.93179295084125750E-002 8 4 9 13 + -0.93744780541697471E-002 9 13 8 4 + 0.47626080199226562E-002 8 5 9 13 + 0.47915112141005394E-002 9 13 8 5 + -0.93990424450004833E-004 8 6 9 13 + -0.10418685646181589E-003 9 13 8 6 + 0.15616011479548211E-002 8 7 9 13 + 0.17308998327875695E-002 9 13 8 7 + -0.12520473422970536E-002 8 8 9 13 + -0.13877919117936766E-002 9 13 8 8 + -0.80935940412977357E-007 9 10 9 13 + -0.80935940412982069E-007 9 13 9 10 + 0.15043215386053643E-006 9 11 9 13 + 0.15043215386054578E-006 9 13 9 11 + -0.88239497719089762E-007 9 12 9 13 + -0.88239497719093071E-007 9 13 9 12 + 0.17029913487969648E-001 9 13 9 13 + 0.11465096189761413E-007 1 10 9 14 + 0.11531434524755407E-007 9 14 1 10 + 0.18415874148303251E-009 1 11 9 14 + 0.18522430466879146E-009 9 14 1 11 + -0.89387721693543976E-008 1 12 9 14 + -0.89904929096935159E-008 9 14 1 12 + -0.97861066551430185E-003 1 14 9 14 + -0.97772765917698823E-003 9 14 1 14 + 0.17010337189676193E-006 2 10 9 14 + 0.17552146291750559E-006 9 14 2 10 + 0.27322948210103158E-008 2 11 9 14 + 0.28193232076472946E-008 9 14 2 11 + -0.13262124113367893E-006 2 12 9 14 + -0.13684546048770202E-006 9 14 2 12 + -0.59157843627528472E-009 2 13 9 14 + -0.61042124661321913E-009 9 14 2 13 + -0.14593771050127493E-002 2 14 9 14 + -0.14480251134068793E-002 9 14 2 14 + 0.28987057518549343E-003 3 3 9 14 + 0.28959824802746485E-003 9 14 3 3 + -0.15492079673419803E-002 3 4 9 14 + -0.15477476342369324E-002 9 14 3 4 + 0.20011970523220370E-003 3 5 9 14 + 0.19993427990046942E-003 9 14 3 5 + 0.91596529675164861E-002 3 6 9 14 + 0.92268606947033781E-002 9 14 3 6 + -0.32916261764419749E-002 3 7 9 14 + -0.33157780920528169E-002 9 14 3 7 + 0.38377484912682459E-002 3 8 9 14 + 0.38659073912519055E-002 9 14 3 8 + -0.15492079673419794E-002 4 3 9 14 + -0.15477476342369316E-002 9 14 4 3 + 0.82582986856235836E-003 4 4 9 14 + 0.82504931309727565E-003 9 14 4 4 + -0.97720287198891330E-004 4 5 9 14 + -0.97626994177597495E-004 9 14 4 5 + -0.10701769529446263E-001 4 6 9 14 + -0.10780292264923609E-001 9 14 4 6 + -0.24860953192633113E-002 4 7 9 14 + -0.25043367455097705E-002 9 14 4 7 + 0.36564807614940511E-002 4 8 9 14 + 0.36833097050395789E-002 9 14 4 8 + 0.20011970523220468E-003 5 3 9 14 + 0.19993427990047040E-003 9 14 5 3 + -0.97720287198891709E-004 5 4 9 14 + -0.97626994177597875E-004 9 14 5 4 + -0.11157004437476667E-002 5 5 9 14 + -0.11146475611245495E-002 9 14 5 5 + 0.81880225151486968E-003 5 6 9 14 + 0.82481013169923478E-003 9 14 5 6 + 0.65633977455450167E-002 5 7 9 14 + 0.66115558038677587E-002 9 14 5 7 + 0.35195560267505732E-002 5 8 9 14 + 0.35453802079677471E-002 9 14 5 8 + 0.11074331003418427E-001 6 3 9 14 + 0.11141538730605319E-001 9 14 6 3 + -0.12938799783646357E-001 6 4 9 14 + -0.13017322519123704E-001 9 14 6 4 + 0.98996073419112349E-003 6 5 9 14 + 0.99596861437548849E-003 9 14 6 5 + -0.22796908305059860E-002 6 6 9 14 + -0.25268440016142108E-002 9 14 6 6 + -0.46134104082148691E-004 6 7 9 14 + -0.51135500518320249E-004 9 14 6 7 + 0.22264149297949799E-004 6 8 9 14 + 0.24682056988957104E-004 9 14 6 8 + -0.39796894811087802E-002 7 3 9 14 + -0.40038413967196217E-002 9 14 7 3 + -0.30057748224410975E-002 7 4 9 14 + -0.30240162486875567E-002 9 14 7 4 + 0.79353706416049000E-002 7 5 9 14 + 0.79835286999276403E-002 9 14 7 5 + -0.46134104082149125E-004 7 6 9 14 + -0.51135500518320682E-004 9 14 7 6 + 0.12517844704546741E-002 7 7 9 14 + 0.13875020332059227E-002 9 14 7 7 + 0.16243754530038290E-004 7 8 9 14 + 0.18001164731456601E-004 9 14 7 8 + 0.46399656104367300E-002 8 3 9 14 + 0.46681245104203900E-002 9 14 8 3 + 0.44208094227641600E-002 8 4 9 14 + 0.44476383663096869E-002 9 14 8 4 + 0.42552592357864970E-002 8 5 9 14 + 0.42810834170036709E-002 9 14 8 5 + 0.22264149297950490E-004 8 6 9 14 + 0.24682056988957795E-004 9 14 8 6 + 0.16243754530048583E-004 8 7 9 14 + 0.18001164731466887E-004 9 14 8 7 + 0.10279063600505981E-002 8 8 9 14 + 0.11393419684075784E-002 9 14 8 8 + -0.10878013907608332E-006 9 10 9 14 + -0.10878013907612101E-006 9 14 9 10 + -0.17472869960213938E-008 9 11 9 14 + -0.17472869960318590E-008 9 14 9 11 + 0.84810529562022722E-007 9 12 9 14 + 0.84810529562078322E-007 9 14 9 12 + 0.37831084493569255E-009 9 13 9 14 + 0.37831084491734553E-009 9 14 9 13 + 0.17029907072363668E-001 9 14 9 14 + 0.86360148631692626E-003 1 10 10 1 + 0.86360148631692626E-003 10 1 1 10 + -0.82778810659117531E-009 1 13 10 1 + -0.82778810659120084E-009 10 1 1 13 + -0.11125700762651383E-008 1 14 10 1 + -0.11125700762656532E-008 10 1 1 14 + 0.76629367187410523E-002 2 10 10 1 + 0.76442265232661653E-002 10 1 2 10 + 0.22534738234876453E-009 2 11 10 1 + 0.24786080158306033E-009 10 1 2 11 + -0.42641209691264066E-008 2 13 10 1 + -0.46901296659916562E-008 10 1 2 13 + -0.57310963461715387E-008 2 14 10 1 + -0.63036637995414343E-008 10 1 2 14 + -0.16321306977277602E-002 3 3 10 1 + -0.16288135633740243E-002 10 1 3 3 + -0.52185787494239862E-003 3 4 10 1 + -0.52079750740318688E-003 10 1 3 4 + 0.48848437476286220E-002 3 5 10 1 + 0.48749165886921124E-002 10 1 3 5 + -0.15253637766609845E-003 3 6 10 1 + -0.15337115103241102E-003 10 1 3 6 + -0.26057645662489466E-002 3 7 10 1 + -0.26200221002986466E-002 10 1 3 7 + -0.69561075235242498E-003 3 8 10 1 + -0.69941676466179418E-003 10 1 3 8 + -0.52185787494239862E-003 4 3 10 1 + -0.52079750740318688E-003 10 1 4 3 + -0.13958036970303320E-003 4 4 10 1 + -0.13929639902787806E-003 10 1 4 4 + 0.51456434551671922E-002 4 5 10 1 + 0.51351862017211701E-002 10 1 4 5 + 0.70619771278074132E-004 4 6 10 1 + 0.71006369005539101E-004 10 1 4 6 + -0.23955314673492420E-002 4 7 10 1 + -0.24086387188803557E-002 10 1 4 7 + -0.12433238432288057E-002 4 8 10 1 + -0.12501267046734408E-002 10 1 4 8 + 0.48848437476286220E-002 5 3 10 1 + 0.48749165886921124E-002 10 1 5 3 + 0.51456434551671922E-002 5 4 10 1 + 0.51351862017211701E-002 10 1 5 4 + 0.17717110674308337E-002 5 5 10 1 + 0.17681099624019445E-002 10 1 5 5 + -0.38762001758071372E-003 5 6 10 1 + -0.38974090458854986E-003 10 1 5 6 + 0.11940482116111397E-002 5 7 10 1 + 0.12005812171371900E-002 10 1 5 7 + -0.36036537650292978E-002 5 8 10 1 + -0.36233714356887496E-002 10 1 5 8 + -0.15654650138870090E-003 6 3 10 1 + -0.15738127475501348E-003 10 1 6 3 + 0.72474265206234480E-004 6 4 10 1 + 0.72860862933699463E-004 10 1 6 4 + -0.39781731961432894E-003 6 5 10 1 + -0.39993820662216509E-003 10 1 6 5 + -0.23982031279016884E-003 6 6 10 1 + -0.24086069514012260E-003 10 1 6 6 + 0.37199566770431140E-003 6 7 10 1 + 0.37360840572641708E-003 10 1 6 7 + 0.35738085055303379E-003 6 8 10 1 + 0.35893023652024239E-003 10 1 6 8 + -0.26743168000929489E-002 7 3 10 1 + -0.26885743341426489E-002 10 1 7 3 + -0.24585526462974432E-002 7 4 10 1 + -0.24716598978285569E-002 10 1 7 4 + 0.12254657273211458E-002 7 5 10 1 + 0.12319987328471961E-002 10 1 7 5 + 0.37199566770431135E-003 7 6 10 1 + 0.37360840572641703E-003 10 1 7 6 + -0.39153349051346594E-002 7 7 10 1 + -0.39323089420963894E-002 10 1 7 7 + 0.31353121364370282E-002 7 8 10 1 + 0.31489054191146358E-002 10 1 7 8 + -0.71391161223678570E-003 8 3 10 1 + -0.71771762454615490E-003 10 1 8 3 + -0.12760335993615723E-002 8 4 10 1 + -0.12828364608062073E-002 10 1 8 4 + -0.36984558459579589E-002 8 5 10 1 + -0.37181735166174107E-002 10 1 8 5 + 0.35738085055303368E-003 8 6 10 1 + 0.35893023652024228E-003 10 1 8 6 + 0.31353121364370282E-002 8 7 10 1 + 0.31489054191146358E-002 10 1 8 7 + 0.41551552179247934E-002 8 8 10 1 + 0.41731696372364789E-002 10 1 8 8 + -0.24943042014173539E-002 9 10 10 1 + -0.24951854986314734E-002 10 1 9 10 + -0.26051543016340726E-009 9 11 10 1 + -0.25790699909366494E-009 10 1 9 11 + 0.49295860906717500E-008 9 13 10 1 + 0.48802282246532699E-008 10 1 9 13 + 0.66254998444657807E-008 9 14 10 1 + 0.65591615094720315E-008 10 1 9 14 + 0.16187444683167928E-002 10 1 10 1 + 0.49561347943279262E-003 1 10 10 2 + 0.51432367490767989E-003 10 2 1 10 + 0.11274568576820664E-009 1 11 10 2 + -0.21334228313260064E-008 1 13 10 2 + -0.17074141344523220E-008 10 2 1 13 + -0.28673792031167134E-008 1 14 10 2 + -0.22948117497554867E-008 10 2 1 14 + 0.61842845691919987E-001 2 10 10 2 + 0.61842845691919987E-001 10 2 2 10 + 0.38801132208053753E-008 2 11 10 2 + 0.38801132208205955E-008 10 2 2 11 + 0.66757194970353651E-009 2 12 10 2 + 0.66757194980360086E-009 10 2 2 12 + -0.73421186908929714E-007 2 13 10 2 + -0.73421186908841185E-007 10 2 2 13 + -0.98680102872077098E-007 2 14 10 2 + -0.98680102872001077E-007 10 2 2 14 + -0.12466655417267306E-001 3 3 10 2 + -0.12411215620730855E-001 10 2 3 3 + -0.39861114465919410E-002 3 4 10 2 + -0.39683886420446672E-002 10 2 3 4 + 0.37311817633522419E-001 3 5 10 2 + 0.37145901269323808E-001 10 2 3 5 + -0.44593713991410264E-003 3 6 10 2 + -0.45614053296764485E-003 10 2 3 6 + -0.76174725859315855E-002 3 7 10 2 + -0.77916910773016207E-002 10 2 3 7 + -0.20334827368587152E-002 3 8 10 2 + -0.20799890778697735E-002 10 2 3 8 + -0.39861114465919419E-002 4 3 10 2 + -0.39683886420446681E-002 10 2 4 3 + -0.10661299429063147E-002 4 4 10 2 + -0.10613847045987702E-002 10 2 4 4 + 0.39303872639282408E-001 4 5 10 2 + 0.39129096851278126E-001 10 2 4 5 + 0.20647421292712412E-003 4 6 10 2 + 0.21120177972146494E-003 10 2 4 6 + -0.70028972034016420E-002 4 7 10 2 + -0.71630602107496501E-002 10 2 4 7 + -0.36346236836851805E-002 4 8 10 2 + -0.37177500305159011E-002 10 2 4 8 + 0.37311817633522419E-001 5 3 10 2 + 0.37145901269323808E-001 10 2 5 3 + 0.39303872639282401E-001 5 4 10 2 + 0.39129096851278120E-001 10 2 5 4 + 0.13532785360173900E-001 5 5 10 2 + 0.13472600325329907E-001 10 2 5 5 + -0.11331372561540164E-002 5 6 10 2 + -0.11590534032350699E-002 10 2 5 6 + 0.34905385188142334E-002 5 7 10 2 + 0.35703630340676502E-002 10 2 5 7 + -0.10534640660046432E-001 5 8 10 2 + -0.10775581432919948E-001 10 2 5 8 + -0.32327158812534495E-003 6 3 10 2 + -0.33347498117888716E-003 10 2 6 3 + 0.14963349935542965E-003 6 4 10 2 + 0.15436106614977047E-003 10 2 6 4 + -0.82159157005090935E-003 6 5 10 2 + -0.84750771713196292E-003 10 2 6 5 + -0.15167882945335729E-002 6 6 10 2 + -0.15421423611551384E-002 10 2 6 6 + 0.23527803632471980E-002 6 7 10 2 + 0.23920987563051314E-002 10 2 6 7 + 0.22603450687088901E-002 6 8 10 2 + 0.22981188134238084E-002 10 2 6 8 + -0.55231436728777972E-002 7 3 10 2 + -0.56973621642478324E-002 10 2 7 3 + -0.50775324499547341E-002 7 4 10 2 + -0.52376954573027422E-002 10 2 7 4 + 0.25309585606607377E-002 7 5 10 2 + 0.26107830759141545E-002 10 2 7 5 + 0.23527803632471984E-002 7 6 10 2 + 0.23920987563051319E-002 10 2 7 6 + -0.24763531350989083E-001 7 7 10 2 + -0.25177362528979157E-001 10 2 7 7 + 0.19830058991448189E-001 7 8 10 2 + 0.20161453392737498E-001 10 2 7 8 + -0.14744192746532310E-002 8 3 10 2 + -0.15209256156642893E-002 10 2 8 3 + -0.26353401394904920E-002 8 4 10 2 + -0.27184664863212126E-002 10 2 8 4 + -0.76382176265258582E-002 8 5 10 2 + -0.78791583993993719E-002 10 2 8 5 + 0.22603450687088932E-002 8 6 10 2 + 0.22981188134238114E-002 10 2 8 6 + 0.19830058991448182E-001 8 7 10 2 + 0.20161453392737491E-001 10 2 8 7 + 0.26280319645522625E-001 8 8 10 2 + 0.26719504890134273E-001 10 2 8 8 + 0.20765821299634345E-002 9 10 10 2 + 0.20653697286115097E-002 10 2 9 10 + -0.48357167254257496E-008 9 11 10 2 + -0.46226767527395111E-008 10 2 9 11 + -0.83198310929510497E-009 9 12 10 2 + -0.79532966806549479E-009 10 2 9 12 + 0.91503532075270994E-007 9 13 10 2 + 0.87472297184596441E-007 10 2 9 13 + 0.12298327409434197E-006 9 14 10 2 + 0.11756518307360046E-006 10 2 9 14 + 0.90106120108485108E-002 10 1 10 2 + 0.90293222063233987E-002 10 2 10 1 + 0.95338106727850577E-001 10 2 10 2 + -0.38020374070267939E-003 1 3 10 3 + -0.36789638457911762E-003 10 3 1 3 + -0.12156701902692530E-003 1 4 10 3 + -0.11763175493688425E-003 10 3 1 4 + 0.11379228113766028E-002 1 5 10 3 + 0.11010874992995918E-002 10 3 1 5 + -0.27584999048554380E-004 1 6 10 3 + -0.32725840397081457E-004 10 3 1 6 + -0.47122870255962888E-003 1 7 10 3 + -0.55904636404783344E-003 10 3 1 7 + -0.12579479228290967E-003 1 8 10 3 + -0.14923773385401161E-003 10 3 1 8 + -0.25629143314888317E-001 2 3 10 3 + -0.25506613041442243E-001 10 3 2 3 + -0.81947078673766816E-002 2 4 10 3 + -0.81555294560023382E-002 10 3 2 4 + 0.76706207198451198E-001 2 5 10 3 + 0.76339481676825430E-001 10 3 2 5 + -0.10491721372301037E-002 2 6 10 3 + -0.10680241160533283E-002 10 3 2 6 + -0.17922660922304785E-001 2 7 10 3 + -0.18244636476624342E-001 10 3 2 7 + -0.47844632983958194E-002 2 8 10 3 + -0.48704137289502228E-002 10 3 2 8 + -0.95078151256383046E-002 3 1 10 3 + -0.94955077695147421E-002 10 3 3 1 + -0.28435609355056062E-001 3 2 10 3 + -0.28313079081609988E-001 10 3 3 2 + 0.41885256645285175E-002 3 9 10 3 + 0.41834288953098717E-002 10 3 3 9 + 0.53534837816984843E-001 3 10 10 3 + 0.53534837816984843E-001 10 3 3 10 + -0.36947148832304225E-001 3 11 10 3 + -0.36947148908421247E-001 10 3 3 11 + -0.16485311428671118E-001 3 12 10 3 + -0.16485311325171968E-001 10 3 3 12 + 0.40976879869961537E-003 3 13 10 3 + 0.40976859251928431E-003 10 3 3 13 + -0.76990719062363603E-002 3 14 10 3 + -0.76990713653268582E-002 10 3 3 14 + -0.30400306791995247E-002 4 1 10 3 + -0.30360954151094836E-002 10 3 4 1 + -0.90920299155769005E-002 4 2 10 3 + -0.90528515042025571E-002 10 3 4 2 + 0.13392041860664187E-002 4 9 10 3 + 0.13375740422377320E-002 10 3 4 9 + 0.38838924525988326E-001 4 10 10 3 + 0.38838924457879294E-001 10 3 4 10 + 0.24351845683926090E-001 4 11 10 3 + 0.24351845444239201E-001 10 3 4 11 + 0.97315033092044388E-002 4 12 10 3 + 0.97315034760938127E-002 10 3 4 12 + 0.41597727065447012E-002 4 13 10 3 + 0.41597705805483717E-002 10 3 4 13 + -0.89769219611148133E-002 4 14 10 3 + -0.89769209217727079E-002 10 3 4 14 + 0.28456170138496904E-001 5 1 10 3 + 0.28419334826419892E-001 10 3 5 1 + 0.85105692667976449E-001 5 2 10 3 + 0.84738967146350680E-001 10 3 5 2 + -0.12535830718254594E-001 5 9 10 3 + -0.12520574945288939E-001 10 3 5 9 + -0.29858908661518253E-002 5 10 10 3 + -0.29858919249837503E-002 10 3 5 10 + 0.19253605496437121E-002 5 11 10 3 + 0.19253621973300329E-002 10 3 5 11 + -0.49583246380422302E-002 5 12 10 3 + -0.49583246405920040E-002 10 3 5 12 + 0.35011083794373808E-001 5 13 10 3 + 0.35011064852633063E-001 10 3 5 13 + 0.34061983354854802E-001 5 14 10 3 + 0.34061981380751637E-001 10 3 5 14 + -0.17870921704024989E-002 6 1 10 3 + -0.17922330117510260E-002 10 3 6 1 + -0.89739888850779901E-003 6 2 10 3 + -0.91625086733102348E-003 10 3 6 2 + 0.31746371327499943E-002 6 9 10 3 + 0.32024754007306151E-002 10 3 6 9 + 0.55610370671955621E-003 6 10 10 3 + 0.57993313026395113E-003 10 3 6 10 + -0.18805743914266663E-002 6 11 10 3 + -0.20380565020596260E-002 10 3 6 11 + -0.76724255920011949E-003 6 12 10 3 + -0.83449370117198946E-003 10 3 6 12 + -0.11045768459398849E-005 6 13 10 3 + -0.24607626484331746E-005 10 3 6 13 + 0.21988105056096625E-003 6 14 10 3 + 0.23697016007198280E-003 10 3 6 14 + -0.30529114200659537E-001 7 1 10 3 + -0.30616931862147742E-001 10 3 7 1 + -0.15330996757553854E-001 7 2 10 3 + -0.15652972311873410E-001 10 3 7 2 + 0.54232723844316322E-001 7 9 10 3 + 0.54708205766085136E-001 10 3 7 9 + 0.23124742622196281E-002 7 10 10 3 + 0.24715191709991317E-002 10 3 7 10 + -0.87827657393196943E-003 7 11 10 3 + -0.92948833793607551E-003 10 3 7 11 + 0.15137065256056831E-003 7 12 10 3 + 0.15392049612056037E-003 10 3 7 12 + -0.84965874143009038E-003 7 13 10 3 + -0.94428319567000285E-003 10 3 7 13 + -0.18637791869249944E-002 7 14 10 3 + -0.20015789378521019E-002 10 3 7 14 + -0.81497757355396029E-002 8 1 10 3 + -0.81732186771107055E-002 10 3 8 1 + -0.40926343142865329E-002 8 2 10 3 + -0.41785847448409363E-002 10 3 8 2 + 0.14477476767151531E-001 8 9 10 3 + 0.14604405742184355E-001 10 3 8 9 + -0.32108934426018183E-002 8 10 10 3 + -0.34319911654682685E-002 10 3 8 10 + 0.60657124646642136E-003 8 11 10 3 + 0.64352422336359729E-003 10 3 8 11 + 0.74076892736412076E-003 8 12 10 3 + 0.77888429215383257E-003 10 3 8 12 + -0.65724409786160432E-003 8 13 10 3 + -0.73039873064618965E-003 10 3 8 13 + -0.48099798890153606E-003 8 14 10 3 + -0.51556511898728232E-003 10 3 8 14 + 0.25328781729993138E-002 9 3 10 3 + 0.25277814037806675E-002 10 3 9 3 + 0.80989833322752010E-003 9 4 10 3 + 0.80826818939883343E-003 10 3 9 4 + -0.75808201772558492E-002 9 5 10 3 + -0.75655644042901937E-002 10 3 9 5 + 0.31712545814600308E-002 9 6 10 3 + 0.31990928494406517E-002 10 3 9 6 + 0.54175331062767812E-001 9 7 10 3 + 0.54650812984536626E-001 10 3 9 7 + 0.14462162211147711E-001 9 8 10 3 + 0.14589091186180535E-001 10 3 9 8 + 0.79205022063470507E-001 10 3 10 3 + -0.12156701902693180E-003 1 3 10 4 + -0.11763175493689068E-003 10 4 1 3 + -0.32514493447030226E-004 1 4 10 4 + -0.31462085668681348E-004 10 4 1 4 + 0.11986758203414855E-002 1 5 10 4 + 0.11598739237801449E-002 10 4 1 5 + 0.12771168602020566E-004 1 6 10 4 + 0.15151347887539903E-004 10 4 1 6 + -0.43320998603670117E-003 1 7 10 4 + -0.51394253368073728E-003 10 4 1 7 + -0.22484371805745870E-003 1 8 10 4 + -0.26674532204726237E-003 10 4 1 8 + -0.81947078673766920E-002 2 3 10 4 + -0.81555294560023469E-002 10 4 2 3 + -0.21917684826877957E-002 2 4 10 4 + -0.21812902782307733E-002 10 4 2 4 + 0.80801505063766030E-001 2 5 10 4 + 0.80415200414820850E-001 10 4 2 5 + 0.48574603416690933E-003 2 6 10 4 + 0.49447702429432968E-003 10 4 2 6 + -0.16476661898291362E-001 2 7 10 4 + -0.16772660851045420E-001 10 4 2 7 + -0.85516800734386639E-002 2 8 10 4 + -0.87053079018484473E-002 10 4 2 8 + -0.30400306791995083E-002 3 1 10 4 + -0.30360954151094671E-002 10 4 3 1 + -0.90920299155769144E-002 3 2 10 4 + -0.90528515042025692E-002 10 4 3 2 + 0.13392041860664022E-002 3 9 10 4 + 0.13375740422377162E-002 10 4 3 9 + 0.38838925782035856E-001 3 10 10 4 + 0.38838925850144888E-001 10 4 3 10 + -0.18785777017387956E-001 3 11 10 4 + -0.18785776747916053E-001 10 4 3 11 + -0.18651694570268929E-001 3 12 10 4 + -0.18651694800542518E-001 10 4 3 12 + -0.58616813226725021E-002 3 13 10 4 + -0.58616791242916445E-002 10 4 3 13 + -0.69442999557218750E-002 3 14 10 4 + -0.69443003616399086E-002 10 4 3 14 + -0.81311212653929364E-003 4 1 10 4 + -0.81205971876094482E-003 10 4 4 1 + -0.24317989624675603E-002 4 2 10 4 + -0.24213207580105378E-002 10 4 4 2 + 0.35824506920174257E-003 4 9 10 4 + 0.35780976131962757E-003 10 4 4 9 + 0.53492549320880954E-001 4 10 10 4 + 0.53492549320880954E-001 10 4 4 10 + 0.32976771312539205E-001 4 11 10 4 + 0.32976771396849180E-001 10 4 4 11 + 0.22356036448878042E-001 4 12 10 4 + 0.22356036324580050E-001 10 4 4 12 + -0.17343004294931149E-002 4 13 10 4 + -0.17343002814251074E-002 10 4 4 13 + -0.11156814952514840E-002 4 14 10 4 + -0.11156813137289325E-002 10 4 4 14 + 0.29975432998158427E-001 5 1 10 4 + 0.29936631101597087E-001 10 4 5 1 + 0.89649441709901578E-001 5 2 10 4 + 0.89263137060956399E-001 10 4 5 2 + -0.13205125795707477E-001 5 9 10 4 + -0.13189055697005401E-001 10 4 5 9 + 0.87173193191187916E-002 5 10 10 4 + 0.87173181223285968E-002 10 4 5 10 + -0.10051259008908240E-001 5 11 10 4 + -0.10051258763870885E-001 10 4 5 11 + 0.76575178085179461E-002 5 12 10 4 + 0.76575168357808374E-002 10 4 5 12 + 0.35695912184008187E-001 5 13 10 4 + 0.35695894717856232E-001 10 4 5 13 + 0.31869007491543686E-001 5 14 10 4 + 0.31869002911737360E-001 10 4 5 14 + 0.82735328148256877E-003 6 1 10 4 + 0.82973346076808811E-003 10 4 6 1 + 0.41543329606846173E-003 6 2 10 4 + 0.42416428619588208E-003 10 4 6 2 + -0.14697315400136507E-002 6 9 10 4 + -0.14826231546621075E-002 10 4 6 9 + -0.12803225379088815E-002 6 10 10 4 + -0.13541347216540957E-002 10 4 6 10 + -0.17509244983858526E-002 6 11 10 4 + -0.18945513902505629E-002 10 4 6 11 + -0.13035241483681814E-002 6 12 10 4 + -0.14110133509835795E-002 10 4 6 12 + 0.19986026145670764E-004 6 13 10 4 + 0.20765288588491695E-004 10 4 6 13 + -0.90687201925684216E-004 6 14 10 4 + -0.96441408275058300E-004 10 4 6 14 + -0.28066022992876374E-001 7 1 10 4 + -0.28146755540520412E-001 10 4 7 1 + -0.14094087401940613E-001 7 2 10 4 + -0.14390086354694671E-001 10 4 7 2 + 0.49857223594136822E-001 7 9 10 4 + 0.50294344050188788E-001 10 4 7 9 + 0.15788589491991167E-002 7 10 10 4 + 0.16877707918279560E-002 10 4 7 10 + 0.86679436840720160E-003 7 11 10 4 + 0.91392045656359013E-003 10 4 7 11 + -0.63536801177659151E-003 7 12 10 4 + -0.67278710288894465E-003 10 4 7 12 + -0.10819931559020968E-002 7 13 10 4 + -0.11961025661890007E-002 10 4 7 13 + -0.15413711102718376E-002 7 14 10 4 + -0.16592142651082400E-002 10 4 7 14 + -0.14566774995109198E-001 8 1 10 4 + -0.14608676599099001E-001 10 4 8 1 + -0.73150952528615735E-002 8 2 10 4 + -0.74687230812713560E-002 10 4 8 2 + 0.25876803479399260E-001 8 9 10 4 + 0.26103675828006153E-001 10 4 8 9 + -0.34656547148881282E-002 8 10 10 4 + -0.37073341471782545E-002 10 4 8 10 + -0.26898434847027314E-003 8 11 10 4 + -0.27930428170267862E-003 10 4 8 11 + -0.67443186586310622E-003 8 12 10 4 + -0.70453442183450151E-003 10 4 8 12 + -0.43928756129414155E-003 8 13 10 4 + -0.48894259976837149E-003 10 4 8 13 + -0.59104957493764758E-003 8 14 10 4 + -0.63812603568292030E-003 10 4 8 14 + 0.80989833322751403E-003 9 3 10 4 + 0.80826818939882790E-003 10 4 9 3 + 0.21657258661293038E-003 9 4 10 4 + 0.21613727873081535E-003 10 4 9 4 + -0.79855447238739649E-002 9 5 10 4 + -0.79694746251718889E-002 10 4 9 5 + -0.14681485138636041E-002 9 6 10 4 + -0.14810401285120609E-002 10 4 9 6 + 0.49804459127182676E-001 9 7 10 4 + 0.50241579583234643E-001 10 4 9 7 + 0.25849422963853459E-001 9 8 10 4 + 0.26076295312460352E-001 10 4 9 8 + 0.59446134156620332E-001 10 3 10 4 + 0.59446134224729365E-001 10 4 10 3 + 0.79139848623125938E-001 10 4 10 4 + 0.11379228113766173E-002 1 3 10 5 + 0.11010874992996040E-002 10 5 1 3 + 0.11986758203414356E-002 1 4 10 5 + 0.11598739237800981E-002 10 5 1 4 + 0.41271823414971434E-003 1 5 10 5 + 0.39935847024780293E-003 10 5 1 5 + -0.70097548672793454E-004 1 6 10 5 + -0.83160858686509535E-004 10 5 1 6 + 0.21593239218640348E-003 1 7 10 5 + 0.25617309839379404E-003 10 5 1 7 + -0.65168801478341764E-003 1 8 10 5 + -0.77313599418210187E-003 10 5 1 8 + 0.76706207198451143E-001 2 3 10 5 + 0.76339481676825402E-001 10 5 2 3 + 0.80801505063765933E-001 2 4 10 5 + 0.80415200414820795E-001 10 5 2 4 + 0.27820911797576776E-001 2 5 10 5 + 0.27687903319673683E-001 10 5 2 5 + -0.26660829494154041E-002 2 6 10 5 + -0.27139786195734730E-002 10 5 2 6 + 0.82127369557527044E-002 2 7 10 5 + 0.83602700424419696E-002 10 5 2 7 + -0.24786237301358299E-001 2 8 10 5 + -0.25231518615581889E-001 10 5 2 8 + 0.28456170138496845E-001 3 1 10 5 + 0.28419334826419833E-001 10 5 3 1 + 0.85105692667976421E-001 3 2 10 5 + 0.84738967146350680E-001 10 5 3 2 + -0.12535830718254584E-001 3 9 10 5 + -0.12520574945288925E-001 10 5 3 9 + -0.29858713394742219E-002 3 10 10 5 + -0.29858702806422970E-002 10 5 3 10 + 0.18325877687269541E-001 3 11 10 5 + 0.18325875950205302E-001 10 5 3 11 + -0.34934889930522871E-001 3 12 10 5 + -0.34934889759425013E-001 10 5 3 12 + -0.40738794689311027E-001 3 13 10 5 + -0.40738775194520710E-001 10 5 3 13 + 0.35901466228599223E-001 3 14 10 5 + 0.35901462806200005E-001 10 5 3 14 + 0.29975432998158476E-001 4 1 10 5 + 0.29936631101597139E-001 10 5 4 1 + 0.89649441709901523E-001 4 2 10 5 + 0.89263137060956385E-001 10 5 4 2 + -0.13205125795707462E-001 4 9 10 5 + -0.13189055697005387E-001 10 5 4 9 + 0.87173413899836703E-002 4 10 10 5 + 0.87173425867738651E-002 10 5 4 10 + -0.25761342377044760E-001 4 11 10 5 + -0.25761342577156159E-001 10 5 4 11 + 0.45308697901201303E-001 4 12 10 5 + 0.45308698985609415E-001 10 5 4 12 + -0.36125311642217599E-001 4 13 10 5 + -0.36125294461598630E-001 10 5 4 13 + 0.22819071929246076E-001 4 14 10 5 + 0.22819072403778843E-001 10 5 4 14 + 0.10320927252177816E-001 5 1 10 5 + 0.10307567488275904E-001 10 5 5 1 + 0.30867408317524353E-001 5 2 10 5 + 0.30734399839621260E-001 10 5 5 2 + -0.45467707337303338E-002 5 9 10 5 + -0.45412386566295732E-002 10 5 5 9 + 0.93298058833501368E-001 5 10 10 5 + 0.93298058833501368E-001 10 5 5 10 + 0.39703876863547965E-002 5 11 10 5 + 0.39703876781618502E-002 10 5 5 11 + -0.58707232710492755E-002 5 12 10 5 + -0.58707232502504397E-002 10 5 5 12 + 0.13243392541609951E-002 5 13 10 5 + 0.13243393122733193E-002 10 5 5 13 + 0.88144948419811089E-002 5 14 10 5 + 0.88144941195490590E-002 10 5 5 14 + -0.45413512350307786E-002 6 1 10 5 + -0.45544145450444945E-002 10 5 6 1 + -0.22805565818248075E-002 6 2 10 5 + -0.23284522519828768E-002 10 5 6 2 + 0.80673761041485294E-002 6 9 10 5 + 0.81381066052481979E-002 10 5 6 9 + -0.73550257428402948E-004 6 10 10 5 + -0.80921210870562053E-004 10 5 6 10 + 0.14558844194149470E-002 6 11 10 5 + 0.15756561573940042E-002 10 5 6 11 + -0.25587591590978762E-002 6 12 10 5 + -0.27736836158799290E-002 10 5 6 12 + 0.34373404291158837E-004 6 13 10 5 + 0.40734512948869042E-004 10 5 6 13 + 0.22348736159137416E-003 6 14 10 5 + 0.24432381351265417E-003 10 5 6 14 + 0.13989495419028528E-001 7 1 10 5 + 0.14029736125235918E-001 10 5 7 1 + 0.70252526073973816E-002 7 2 10 5 + 0.71727856940866468E-002 10 5 7 2 + -0.24851309609655869E-001 7 9 10 5 + -0.25069183896022033E-001 10 5 7 9 + -0.45696066633558342E-002 7 10 10 5 + -0.48856549963601963E-002 10 5 7 10 + -0.17272848505495576E-003 7 11 10 5 + -0.18409311116159588E-003 10 5 7 11 + 0.16189999033327623E-003 7 12 10 5 + 0.17266277085892462E-003 10 5 7 12 + -0.10362634108679505E-002 7 13 10 5 + -0.11425018655708747E-002 10 5 7 13 + 0.86542573898407756E-003 7 14 10 5 + 0.92863864240119102E-003 10 5 7 14 + -0.42220354466167981E-001 8 1 10 5 + -0.42341802445566665E-001 10 5 8 1 + -0.21202027111791307E-001 8 2 10 5 + -0.21647308426014897E-001 10 5 8 2 + 0.75001350980442374E-001 8 9 10 5 + 0.75658924908479044E-001 10 5 8 9 + -0.31600082216950136E-002 8 10 10 5 + -0.33795991957865316E-002 10 5 8 10 + 0.63305507053034818E-004 8 11 10 5 + 0.67273416038914207E-004 10 5 8 11 + -0.12674678703694646E-005 8 12 10 5 + -0.26558657475019778E-005 10 5 8 12 + 0.14770441229953767E-002 8 13 10 5 + 0.16324579237036883E-002 10 5 8 13 + -0.21780452557954222E-002 8 14 10 5 + -0.23375987716607221E-002 10 5 8 14 + -0.75808201772559047E-002 9 3 10 5 + -0.75655644042902457E-002 10 5 9 3 + -0.79855447238739823E-002 9 4 10 5 + -0.79694746251719080E-002 10 5 9 4 + -0.27494507596122920E-002 9 5 10 5 + -0.27439186825115314E-002 10 5 9 5 + 0.80588372358187371E-002 9 6 10 5 + 0.81295677369184055E-002 10 5 9 6 + -0.24825048027326550E-001 9 7 10 5 + -0.25042922313692713E-001 10 5 9 7 + 0.74921958560684621E-001 9 8 10 5 + 0.75579532488721290E-001 10 5 9 8 + -0.45701146348025752E-002 10 3 10 5 + -0.45701135759706503E-002 10 5 10 3 + 0.13342433059549399E-001 10 4 10 5 + 0.13342434256339594E-001 10 5 10 4 + 0.14006566827641717 10 5 10 5 + -0.15536921343059797E-003 1 3 10 6 + -0.15416812401538774E-003 10 6 1 3 + 0.71930209315191886E-004 1 4 10 6 + 0.71374047923444209E-004 10 6 1 4 + -0.39482232314426181E-003 1 5 10 6 + -0.39177046775275189E-003 10 6 1 5 + -0.15721707855133240E-003 1 6 10 6 + -0.15776401581855267E-003 10 6 1 6 + 0.24386551653904370E-003 1 7 10 6 + 0.24471350000676670E-003 10 6 1 7 + 0.23428463129496644E-003 1 8 10 6 + 0.23509930275926149E-003 10 6 1 8 + -0.12540050944085945E-002 2 3 10 6 + -0.12384893468409088E-002 10 6 2 3 + 0.58057789556375172E-003 2 4 10 6 + 0.57339036817968347E-003 10 6 2 4 + -0.31865960363406162E-002 2 5 10 6 + -0.31471819903137683E-002 10 6 2 5 + -0.64660538708436312E-003 2 6 10 6 + -0.64840903291014712E-003 10 6 2 6 + 0.10029631174364065E-002 2 7 10 6 + 0.10057612666708249E-002 10 6 2 7 + 0.96355922190173875E-003 2 8 10 6 + 0.96624743499478568E-003 10 6 2 8 + -0.65533642783844942E-003 3 1 10 6 + -0.65413533842323922E-003 10 6 3 1 + -0.12631292211637021E-002 3 2 10 6 + -0.12476134735960164E-002 10 6 3 2 + 0.54661737966288978E-003 3 9 10 6 + 0.54813372426075924E-003 10 6 3 9 + 0.71078696174694872E-003 3 10 10 6 + 0.68695753820255379E-003 10 6 3 10 + -0.17978371143255961E-002 3 11 10 6 + -0.17584586883670932E-002 10 6 3 11 + 0.64425409493685994E-003 3 12 10 6 + 0.64356239744960315E-003 10 6 3 12 + 0.57835000420008000E-003 3 13 10 6 + 0.57132702575190414E-003 10 6 3 13 + 0.82939751865020465E-003 3 14 10 6 + 0.81724695631259193E-003 10 6 3 14 + 0.30339665011322957E-003 4 1 10 6 + 0.30284048872148187E-003 10 6 4 1 + 0.58480544763050827E-003 4 2 10 6 + 0.57761792024644003E-003 10 6 4 2 + -0.25307245417645785E-003 4 9 10 6 + -0.25377385084385690E-003 10 6 4 9 + -0.40893768753253231E-002 4 10 10 6 + -0.40155646915801093E-002 10 6 4 10 + -0.30505373723067422E-002 4 11 10 6 + -0.29971284287956721E-002 10 6 4 11 + -0.20138065688492060E-002 4 12 10 6 + -0.19771720587391348E-002 10 6 4 12 + 0.42940557891034224E-003 4 13 10 6 + 0.42399713068365011E-003 10 6 4 13 + -0.94455409595659880E-003 4 14 10 6 + -0.93220474602482878E-003 10 6 4 14 + -0.16653325558519847E-002 5 1 10 6 + -0.16622807004604747E-002 10 6 5 1 + -0.32097707475026603E-002 5 2 10 6 + -0.31703567014758124E-002 10 6 5 2 + 0.13890279923394887E-002 5 9 10 6 + 0.13928833604059752E-002 10 6 5 9 + -0.64030853897427734E-003 5 10 10 6 + -0.63293758553211821E-003 10 6 5 10 + 0.23763266706150572E-002 5 11 10 6 + 0.23338682143417291E-002 10 6 5 11 + -0.21487445715654432E-002 5 12 10 6 + -0.20987798275158096E-002 10 6 5 12 + -0.15639878111096512E-002 5 13 10 6 + -0.15452887751675223E-002 10 6 5 13 + -0.75702890914825861E-003 5 14 10 6 + -0.74990859054189097E-003 10 6 5 14 + -0.85053392876019592E-003 6 1 10 6 + -0.85108086602741627E-003 10 6 6 1 + -0.92095920137316625E-003 6 2 10 6 + -0.92276284719895025E-003 10 6 6 2 + 0.82925474960281306E-003 6 9 10 6 + 0.81539398880041186E-003 10 6 6 9 + 0.30573975836460910E-002 6 10 10 6 + 0.30573975836460910E-002 10 6 6 10 + 0.72695660321310421E-003 6 11 10 6 + 0.72695660674096569E-003 10 6 6 11 + 0.95651600123270169E-003 6 12 10 6 + 0.95651600038095474E-003 10 6 6 12 + -0.38627835800649713E-004 6 13 10 6 + -0.38627858177162086E-004 10 6 6 13 + 0.63444081061824744E-003 6 14 10 6 + 0.63444082402814607E-003 10 6 6 14 + 0.13193022831265153E-002 7 1 10 6 + 0.13201502665942382E-002 10 6 7 1 + 0.14285548144842666E-002 7 2 10 6 + 0.14313529637186850E-002 10 6 7 2 + -0.12863069579331877E-002 7 9 10 6 + -0.12648026263129141E-002 10 6 7 9 + -0.19315590872725702E-003 7 10 10 6 + -0.19315585733784704E-003 10 6 7 10 + -0.29195518624440375E-002 7 11 10 6 + -0.29195515881627453E-002 10 6 7 11 + 0.13480020764050414E-002 7 12 10 6 + 0.13480020757288100E-002 10 6 7 12 + 0.72919986551348243E-003 7 13 10 6 + 0.72920096268938562E-003 10 6 7 13 + 0.26043487805885716E-003 7 14 10 6 + 0.26043511577272967E-003 10 6 7 14 + 0.12674700434246856E-002 8 1 10 6 + 0.12682847148889806E-002 10 6 8 1 + 0.13724301997899418E-002 8 2 10 6 + 0.13751184128829887E-002 10 6 8 2 + -0.12357709292964293E-002 8 9 10 6 + -0.12151114865315883E-002 10 6 8 9 + 0.11654786486787550E-002 8 10 10 6 + 0.11654786955906423E-002 10 6 8 10 + 0.13594645382833837E-002 8 11 10 6 + 0.13594643720374814E-002 10 6 8 11 + 0.21209527923829220E-002 8 12 10 6 + 0.21209532159921613E-002 10 6 8 12 + 0.91722695628587597E-004 8 13 10 6 + 0.91722816142206077E-004 10 6 8 13 + 0.80996946569786578E-004 8 14 10 6 + 0.80997025394132974E-004 10 6 8 14 + 0.75928948798212022E-003 9 3 10 6 + 0.76080583257998968E-003 10 6 9 3 + -0.35150683179311216E-003 9 4 10 6 + -0.35220822846051121E-003 10 6 9 4 + 0.19295510033940741E-002 9 5 10 6 + 0.19334063714605606E-002 10 6 9 5 + 0.89585089643446259E-003 9 6 10 6 + 0.88199013563206139E-003 10 6 9 6 + -0.13896033541466732E-002 9 7 10 6 + -0.13680990225263996E-002 10 6 9 7 + -0.13350090888486793E-002 9 8 10 6 + -0.13143496460838384E-002 10 6 9 8 + 0.73257182477695312E-003 10 3 10 6 + 0.70874240123255819E-003 10 6 10 3 + -0.44308862776710912E-002 10 4 10 6 + -0.43570740939258773E-002 10 6 10 4 + -0.70807148430061828E-003 10 5 10 6 + -0.70070053085845914E-003 10 6 10 5 + 0.27123732360638700E-002 10 6 10 6 + -0.26541824654635815E-002 1 3 10 7 + -0.26336665062623465E-002 10 7 1 3 + -0.24400428745924990E-002 1 4 10 7 + -0.24211821314115804E-002 10 7 1 4 + 0.12162373019589750E-002 1 5 10 7 + 0.12068364115264307E-002 10 7 1 5 + 0.24386551653904581E-003 1 6 10 7 + 0.24471350000676920E-003 10 7 1 6 + -0.25667370815734571E-002 1 7 10 7 + -0.25756621475646101E-002 10 7 1 7 + 0.20553859021002221E-002 1 8 10 7 + 0.20625332175997365E-002 10 7 1 8 + -0.21421795184332119E-001 2 3 10 7 + -0.21156837730076157E-001 10 7 2 3 + -0.19693486032504318E-001 2 4 10 7 + -0.19449904819534770E-001 10 7 2 4 + 0.98161561943813751E-002 2 5 10 7 + 0.96947531684899047E-002 10 7 2 5 + 0.10029631174364106E-002 2 6 10 7 + 0.10057612666708299E-002 10 7 2 6 + -0.10556398590722129E-001 2 7 10 7 + -0.10585849875572139E-001 10 7 2 7 + 0.84533384506213938E-002 2 8 10 7 + 0.84769220197663097E-002 10 7 2 8 + -0.11195153343880835E-001 3 1 10 7 + -0.11174637384679598E-001 10 7 3 1 + -0.21577584644639526E-001 3 2 10 7 + -0.21312627190383564E-001 10 7 3 2 + 0.93376984605251876E-002 3 9 10 7 + 0.93636164129813643E-002 10 7 3 9 + 0.10712924856218295E-001 3 10 10 7 + 0.10553879947438791E-001 10 7 3 10 + -0.11075883147271178E-001 3 11 10 7 + -0.10933006524638012E-001 10 7 3 11 + 0.47847840909860844E-002 3 12 10 7 + 0.47251873001657053E-002 10 7 3 12 + 0.99509492394246179E-002 3 13 10 7 + 0.98378595934756185E-002 10 7 3 13 + -0.10165952288873022E-001 3 14 10 7 + -0.10024956666568094E-001 10 7 3 14 + -0.10291927751342540E-001 4 1 10 7 + -0.10273067008161621E-001 10 7 4 1 + -0.19836706819570997E-001 4 2 10 7 + -0.19593125606601449E-001 10 7 4 2 + 0.85843335261727247E-002 4 9 10 7 + 0.86081603395582722E-002 10 7 4 9 + 0.73561156651803707E-002 4 10 10 7 + 0.72472038225515310E-002 10 7 4 10 + 0.12493744892166786E-001 4 11 10 7 + 0.12333733516930307E-001 10 7 4 11 + -0.78425660995801259E-002 4 12 10 7 + -0.77412727466314836E-002 10 7 4 12 + 0.97386167914006502E-002 4 13 10 7 + 0.96302767223996107E-002 10 7 4 13 + -0.66287607243378805E-002 4 14 10 7 + -0.65337827170541289E-002 10 7 4 14 + 0.51300024784547349E-002 5 1 10 7 + 0.51206015880221915E-002 10 7 5 1 + 0.98875366819247065E-002 5 2 10 7 + 0.97661336560332344E-002 10 7 5 2 + -0.42788337309224685E-002 5 9 10 7 + -0.42907115875807931E-002 10 7 5 9 + -0.21397813148485007E-001 5 10 10 7 + -0.21081764815480644E-001 10 7 5 10 + -0.15860982783400496E-002 5 11 10 7 + -0.15652009805263985E-002 10 7 5 11 + 0.14365645773707955E-002 5 12 10 7 + 0.14175856949046515E-002 10 7 5 12 + 0.79135402348236659E-002 5 13 10 7 + 0.78269888435830975E-002 10 7 5 13 + 0.50652388713526746E-002 5 14 10 7 + 0.49955883691735568E-002 10 7 5 14 + 0.13193022831265104E-002 6 1 10 7 + 0.13201502665942339E-002 10 7 6 1 + 0.14285548144842702E-002 6 2 10 7 + 0.14313529637186896E-002 10 7 6 2 + -0.12863069579331732E-002 6 9 10 7 + -0.12648026263128984E-002 10 7 6 9 + -0.19315481656069424E-003 6 10 10 7 + -0.19315486795010419E-003 10 7 6 10 + -0.79059148666636141E-002 6 11 10 7 + -0.79059151125084968E-002 10 7 6 11 + 0.42886269508995616E-002 6 12 10 7 + 0.42886266847323518E-002 10 7 6 12 + -0.16760969985291340E-003 6 13 10 7 + -0.16760924119779369E-003 10 7 6 13 + -0.39625123708353013E-003 6 14 10 7 + -0.39625187062570664E-003 10 7 6 14 + -0.13885942869739425E-001 7 1 10 7 + -0.13894867935730578E-001 10 7 7 1 + -0.15035854076191402E-001 7 2 10 7 + -0.15065305361041411E-001 10 7 7 2 + 0.13538664198089348E-001 7 9 10 7 + 0.13312324888155227E-001 10 7 7 9 + 0.14402671485697828E-001 7 10 10 7 + 0.14402671485697828E-001 10 7 7 10 + 0.10623088299318703E-004 7 11 10 7 + 0.10623058364560909E-004 10 7 7 11 + -0.72483704707351239E-003 7 12 10 7 + -0.72483687081006639E-003 10 7 7 12 + 0.43991786377504195E-003 7 13 10 7 + 0.43991813831397700E-003 10 7 7 13 + -0.57458715289449725E-002 7 14 10 7 + -0.57458780141247581E-002 10 7 7 14 + 0.11119548878622579E-001 8 1 10 7 + 0.11126696194122094E-001 10 7 8 1 + 0.12040361386693276E-001 8 2 10 7 + 0.12063944955838192E-001 10 7 8 2 + -0.10841446315302148E-001 8 9 10 7 + -0.10660202414707318E-001 10 7 8 9 + 0.40196508770800102E-003 8 10 10 7 + 0.40196465617641674E-003 10 7 8 10 + 0.39918490652912257E-003 8 11 10 7 + 0.39918531557255656E-003 10 7 8 11 + 0.37003823188033231E-003 8 12 10 7 + 0.37003791075936434E-003 10 7 8 12 + -0.61035088086881283E-002 8 13 10 7 + -0.61035160728959278E-002 10 7 8 13 + 0.39704427867350749E-002 8 14 10 7 + 0.39704472160232845E-002 10 7 8 14 + 0.12971363856024260E-001 9 3 10 7 + 0.12997281808480437E-001 10 7 9 3 + 0.11924831459308069E-001 9 4 10 7 + 0.11948658272693617E-001 10 7 9 4 + -0.59439589842724379E-002 9 5 10 7 + -0.59558368409307625E-002 10 7 9 5 + -0.13896033541466858E-002 9 6 10 7 + -0.13680990225264111E-002 10 7 9 6 + 0.14625879751273619E-001 9 7 10 7 + 0.14399540441339499E-001 10 7 9 7 + -0.11712067168204594E-001 9 8 10 7 + -0.11530823267609763E-001 10 7 9 8 + 0.11725099565228825E-001 10 3 10 7 + 0.11566054656449321E-001 10 7 10 3 + 0.80521511810813674E-002 10 4 10 7 + 0.79432393384525294E-002 10 7 10 4 + -0.23425044694575139E-001 10 5 10 7 + -0.23108996361570776E-001 10 7 10 5 + -0.16154483887401079E-003 10 6 10 7 + -0.16154489026342077E-003 10 7 10 6 + 0.12201106037612017E-001 10 7 10 7 + -0.70853635796988329E-003 1 3 10 8 + -0.70305964317199160E-003 10 8 1 3 + -0.12664263924027040E-002 1 4 10 8 + -0.12566373564276395E-002 10 8 1 4 + -0.36706121934201945E-002 1 5 10 8 + -0.36422394420352164E-002 10 8 1 5 + 0.23428463129496446E-003 1 6 10 8 + 0.23509930275925984E-003 10 8 1 6 + 0.20553859021001401E-002 1 7 10 8 + 0.20625332175996549E-002 10 8 1 7 + 0.27239541601248281E-002 1 8 10 8 + 0.27334261633832025E-002 10 8 1 8 + -0.57185596127452207E-002 2 3 10 8 + -0.56478306300320451E-002 10 8 2 3 + -0.10221269452929614E-001 2 4 10 8 + -0.10094847712104097E-001 10 8 2 4 + -0.29625381101657265E-001 2 5 10 8 + -0.29258951862507033E-001 10 8 2 5 + 0.96355922190172866E-003 2 6 10 8 + 0.96624743499477679E-003 10 8 2 6 + 0.84533384506213678E-002 2 7 10 8 + 0.84769220197662906E-002 10 8 2 7 + 0.11203003977806101E-001 2 8 10 8 + 0.11234258908481906E-001 10 8 2 8 + -0.29885560616839352E-002 3 1 10 8 + -0.29830793468860434E-002 10 8 3 1 + -0.57601464427829803E-002 3 2 10 8 + -0.56894174600698047E-002 10 8 3 2 + 0.24927035137455437E-002 3 9 10 8 + 0.24996225687067939E-002 10 8 3 9 + -0.14908613267752174E-001 3 10 10 8 + -0.14687515544885725E-001 10 8 3 10 + 0.69254021375568086E-002 3 11 10 8 + 0.68355280558196696E-002 10 8 3 11 + 0.11669367351793827E-001 3 12 10 8 + 0.11520554607646168E-001 10 8 3 12 + 0.76749231726144923E-002 3 13 10 8 + 0.75877216973690136E-002 10 8 3 13 + -0.30787334405885272E-002 3 14 10 8 + -0.30368135381905158E-002 10 8 3 14 + -0.53416966599253756E-002 4 1 10 8 + -0.53319076239503119E-002 10 8 4 1 + -0.10295602589071279E-001 4 2 10 8 + -0.10169180848245762E-001 10 8 4 2 + 0.44554217086245403E-002 4 9 10 8 + 0.44677884434594405E-002 10 8 4 9 + -0.16485910040103510E-001 4 10 10 8 + -0.16244230607813381E-001 10 8 4 10 + -0.58485025059908007E-002 4 11 10 8 + -0.57748754865929973E-002 10 8 4 11 + -0.12728743594591301E-001 4 12 10 8 + -0.12567668879128429E-001 10 8 4 12 + 0.54773129966982099E-002 4 13 10 8 + 0.54148039648992830E-002 10 8 4 13 + -0.16746451693989059E-002 4 14 10 8 + -0.16487721663362091E-002 10 8 4 14 + -0.15482381926066239E-001 5 1 10 8 + -0.15454009174681262E-001 10 8 5 1 + -0.29840834939114751E-001 5 2 10 8 + -0.29474405699964519E-001 10 8 5 2 + 0.12913617970120951E-001 5 9 10 8 + 0.12949460552891008E-001 10 8 5 9 + -0.14931244994086809E-001 5 10 10 8 + -0.14711654019995291E-001 10 8 5 10 + 0.67209809095343542E-003 5 11 10 8 + 0.66333577485312245E-003 10 8 5 11 + 0.58734519384758986E-003 5 12 10 8 + 0.58021225603556849E-003 10 8 5 12 + -0.13137417639254764E-001 5 13 10 8 + -0.12991420975201373E-001 10 8 5 13 + -0.12565048635853003E-001 5 14 10 8 + -0.12391942658432395E-001 10 8 5 14 + 0.12674700434247201E-002 6 1 10 8 + 0.12682847148890156E-002 10 8 6 1 + 0.13724301997899335E-002 6 2 10 8 + 0.13751184128829815E-002 10 8 6 2 + -0.12357709292964798E-002 6 9 10 8 + -0.12151114865316393E-002 10 8 6 9 + 0.11654796456856225E-002 6 10 10 8 + 0.11654795987737351E-002 10 8 6 10 + 0.41874533908594688E-002 6 11 10 8 + 0.41874531193250080E-002 10 8 6 11 + 0.79946025515155381E-002 6 12 10 8 + 0.79946026418369811E-002 10 8 6 12 + -0.10458102655037109E-003 6 13 10 8 + -0.10458108762826354E-003 10 8 6 13 + -0.66978057691312483E-003 6 14 10 8 + -0.66978157809526224E-003 10 8 6 14 + 0.11119548878622525E-001 7 1 10 8 + 0.11126696194122040E-001 10 8 7 1 + 0.12040361386693245E-001 7 2 10 8 + 0.12063944955838167E-001 10 8 7 2 + -0.10841446315302006E-001 7 9 10 8 + -0.10660202414707179E-001 10 8 7 9 + 0.40195591647266085E-003 7 10 10 8 + 0.40195634800424513E-003 10 8 7 10 + 0.43857736110145229E-003 7 11 10 8 + 0.43857699025423341E-003 10 8 7 11 + 0.51072409920713800E-003 7 12 10 8 + 0.51072416349760516E-003 10 8 7 12 + 0.61933363082350519E-002 7 13 10 8 + 0.61933432199608642E-002 10 8 7 13 + 0.44618496908393809E-002 7 14 10 8 + 0.44618546634682052E-002 10 8 7 14 + 0.14736476798499269E-001 8 1 10 8 + 0.14745948801757645E-001 10 8 8 1 + 0.15956813277564232E-001 8 2 10 8 + 0.15988068208240037E-001 10 8 8 2 + -0.14367918947691533E-001 8 9 10 8 + -0.14127718876955003E-001 10 8 8 9 + 0.15277050980361369E-001 8 10 10 8 + 0.15277050980361369E-001 10 8 8 10 + -0.73757644011605437E-003 8 11 10 8 + -0.73757641370915774E-003 10 8 8 11 + -0.23167839475775643E-003 8 12 10 8 + -0.23167857016945532E-003 10 8 8 12 + -0.40135155230843676E-003 8 13 10 8 + -0.40135180447086155E-003 10 8 8 13 + 0.51113480279224117E-002 8 14 10 8 + 0.51113544996922965E-002 10 8 8 14 + 0.34627232289105828E-002 9 3 10 8 + 0.34696422838718329E-002 10 8 9 3 + 0.61892081820900946E-002 9 4 10 8 + 0.62015749169249948E-002 10 8 9 4 + 0.17938779429658481E-001 9 5 10 8 + 0.17974622012428536E-001 10 8 9 5 + -0.13350090888487292E-002 9 6 10 8 + -0.13143496460838887E-002 10 8 9 6 + -0.11712067168204327E-001 9 7 10 8 + -0.11530823267609500E-001 10 8 9 7 + -0.15521730647707394E-001 9 8 10 8 + -0.15281530576970863E-001 10 8 9 8 + -0.16318024110585794E-001 10 3 10 8 + -0.16096926387719344E-001 10 8 10 3 + -0.18053939915520557E-001 10 4 10 8 + -0.17812260483230428E-001 10 8 10 4 + -0.16349047262451618E-001 10 5 10 8 + -0.16129456288360100E-001 10 8 10 5 + 0.97467357515039824E-003 10 6 10 8 + 0.97467352823851089E-003 10 8 10 6 + 0.33616566434298333E-003 10 7 10 8 + 0.33616609587456761E-003 10 8 10 7 + 0.12932348381314150E-001 10 8 10 8 + -0.14047531338658862E-002 1 10 10 9 + -0.14038718366517669E-002 10 9 1 10 + 0.12500675882258422E-009 10 9 1 13 + 0.10167420235698402E-009 1 14 10 9 + 0.16801253734864741E-009 10 9 1 14 + -0.15503562564119229E-001 2 10 10 9 + -0.15492350162767303E-001 10 9 2 10 + 0.29558995389992323E-008 2 11 10 9 + 0.27428595663416197E-008 10 9 2 11 + 0.50856131745439616E-009 2 12 10 9 + 0.47190787632475738E-009 10 9 2 12 + -0.55932814912044402E-007 2 13 10 9 + -0.51901580021443621E-007 10 9 2 13 + -0.75175247885641853E-007 2 14 10 9 + -0.69757156864920739E-007 10 9 2 14 + 0.25590270215159832E-002 3 3 10 9 + 0.25586513705711886E-002 10 9 3 3 + 0.81818852109673322E-003 3 4 10 9 + 0.81807025191139838E-003 10 9 3 4 + -0.76588664494786343E-002 3 5 10 9 + -0.76577477652351057E-002 10 9 3 5 + 0.40365659501263754E-003 3 6 10 9 + 0.40724534445700251E-003 10 9 3 6 + 0.68954762061479687E-002 3 7 10 9 + 0.69567894131149560E-002 10 9 3 7 + 0.18407498928309169E-002 3 8 10 9 + 0.18571176133103269E-002 10 9 3 8 + 0.81818852109673387E-003 4 3 10 9 + 0.81807025191139903E-003 10 9 4 3 + 0.21888907135274616E-003 4 4 10 9 + 0.21885485444418350E-003 10 9 4 4 + -0.80677822814283970E-002 4 5 10 9 + -0.80666032343837072E-002 10 9 4 5 + -0.18688748907377833E-003 4 6 10 9 + -0.18854867074830545E-003 10 9 4 6 + 0.63391499762068433E-002 4 7 10 9 + 0.63955163954240255E-002 10 9 4 7 + 0.32901306476559797E-002 4 8 10 9 + 0.33193859233819909E-002 10 9 4 8 + -0.76588664494786326E-002 5 3 10 9 + -0.76577477652351039E-002 10 9 5 3 + -0.80677822814283952E-002 5 4 10 9 + -0.80666032343837055E-002 10 9 5 4 + -0.27779160928687930E-002 5 5 10 9 + -0.27775062250154372E-002 10 9 5 5 + 0.10257358132582509E-002 5 6 10 9 + 0.10348564226957406E-002 10 9 5 6 + -0.31597225267235669E-002 5 7 10 9 + -0.31878189516241942E-002 10 9 5 7 + 0.95361377275433677E-002 5 8 10 9 + 0.96209307320748762E-002 10 9 5 8 + 0.50589651589723783E-003 6 3 10 9 + 0.50948526534160292E-003 10 9 6 3 + -0.23421256586417390E-003 6 4 10 9 + -0.23587374753870102E-003 10 9 6 4 + 0.12855741049827007E-002 6 5 10 9 + 0.12946947144201904E-002 10 9 6 5 + 0.24265791110839369E-003 6 6 10 9 + 0.23265172167628588E-003 10 9 6 6 + -0.37641204416660078E-003 6 7 10 9 + -0.36088267602876474E-003 10 9 6 7 + -0.36162359650384105E-003 6 8 10 9 + -0.34670440824562272E-003 10 9 6 8 + 0.86422367522716263E-002 7 3 10 9 + 0.87035499592386135E-002 10 9 7 3 + 0.79449807494733123E-002 7 4 10 9 + 0.80013471686904945E-002 10 9 7 4 + -0.39601662792625655E-002 7 5 10 9 + -0.39882627041631933E-002 10 9 7 5 + -0.37641204416660105E-003 7 6 10 9 + -0.36088267602876506E-003 10 9 7 6 + 0.39618236258519013E-002 7 7 10 9 + 0.37983706342450798E-002 10 9 7 7 + -0.31725270848047748E-002 7 8 10 9 + -0.30416444354149199E-002 10 9 7 8 + 0.23070523072672771E-002 8 3 10 9 + 0.23234200277466870E-002 10 9 8 3 + 0.41235883807644582E-002 8 4 10 9 + 0.41528436564904694E-002 10 9 8 4 + 0.11951817094242581E-001 8 5 10 9 + 0.12036610098774089E-001 10 9 8 5 + -0.36162359650383872E-003 8 6 10 9 + -0.34670440824562039E-003 10 9 8 6 + -0.31725270848047800E-002 8 7 10 9 + -0.30416444354149251E-002 10 9 8 7 + -0.42044815369602397E-002 8 8 10 9 + -0.40310223559213067E-002 10 9 8 8 + 0.13530995631604658E-001 9 10 10 9 + 0.13530995631604658E-001 10 9 9 10 + 0.15794648901436783E-008 9 11 10 9 + 0.15794648901209197E-008 10 9 9 11 + 0.27174628905021166E-009 9 12 10 9 + 0.27174628903381849E-009 10 9 9 12 + -0.29887320527234061E-007 9 13 10 9 + -0.29887320527231037E-007 10 9 9 13 + -0.40169384169916686E-007 9 14 10 9 + -0.40169384169883109E-007 10 9 9 14 + -0.29210325832985753E-002 10 1 10 9 + -0.29201512860844558E-002 10 9 10 1 + -0.11974433232528576E-001 10 2 10 9 + -0.11963220831176650E-001 10 9 10 2 + 0.10029281608316724E-001 10 9 10 9 + 0.78465737151980974 1 1 10 10 + 0.78348174400881165 10 10 1 1 + -0.37490018336301750E-001 1 2 10 10 + -0.37882716006753261E-001 10 10 1 2 + 0.33554516042645623E-001 1 9 10 10 + 0.33475992144735608E-001 10 10 1 9 + -0.56744796538072565E-004 1 10 10 10 + -0.56591127225832856E-004 10 10 1 10 + 0.16011127620489639E-004 1 11 10 10 + 0.15967837284866695E-004 10 10 1 11 + -0.60036710777298298E-004 1 12 10 10 + -0.59874435358570723E-004 10 10 1 12 + 0.17174139783505495E-004 1 13 10 10 + 0.17127731496406491E-004 10 10 1 13 + -0.41386294189220255E-003 1 14 10 10 + -0.41274353176717394E-003 10 10 1 14 + 0.31646251127393644E-001 2 1 10 10 + 0.31253553456942133E-001 10 10 2 1 + 0.63941806945217494 2 2 10 10 + 0.63694284120557210 10 10 2 2 + -0.15253654782191511 2 9 10 10 + -0.15182800559125695 10 10 2 9 + 0.40928096819599349E-002 2 10 10 10 + 0.40736562160672025E-002 10 10 2 10 + -0.11549062025296203E-002 2 11 10 10 + -0.11495012985147147E-002 10 10 2 11 + 0.43305715060515601E-002 2 12 10 10 + 0.43103047707670657E-002 10 10 2 12 + -0.12388531331416249E-002 2 13 10 10 + -0.12330548090395185E-002 10 10 2 13 + 0.29853290338421115E-001 2 14 10 10 + 0.29713562859266386E-001 10 10 2 14 + 0.61305214353166504 3 3 10 10 + 0.61032645763855076 10 10 3 3 + 0.25037276770071740E-001 3 4 10 10 + 0.24781545127065447E-001 10 10 3 4 + -0.19248227264827445E-002 3 5 10 10 + -0.19051624102609610E-002 10 10 3 5 + 0.10091097055065647 3 6 10 10 + 0.10222025338242259 10 10 3 6 + 0.77546323451202367E-001 3 7 10 10 + 0.78621277312568072E-001 10 10 3 7 + -0.10619926931081901 3 8 10 10 + -0.10767302114849085 10 10 3 8 + 0.25037275305386845E-001 4 3 10 10 + 0.24781543662380553E-001 10 10 4 3 + 0.61302491184300212 4 4 10 10 + 0.61029951766689006 10 10 4 4 + 0.56195938275882679E-002 4 5 10 10 + 0.55622002554771557E-002 10 10 4 5 + -0.12414381947193234 4 6 10 10 + -0.12577629869371304 10 10 4 6 + 0.51101829001113430E-001 4 7 10 10 + 0.51812213582783553E-001 10 10 4 7 + -0.97216147654952428E-001 4 8 10 10 + -0.98584448397050176E-001 10 10 4 8 + -0.19248454966659325E-002 5 3 10 10 + -0.19051851804441490E-002 10 10 5 3 + 0.56195680906121091E-002 5 4 10 10 + 0.55621745185009969E-002 10 10 5 4 + 0.63868527055814983 5 5 10 10 + 0.63569777288960527 10 10 5 5 + 0.10749601197789498E-001 5 6 10 10 + 0.10884227637756871E-001 10 10 5 6 + -0.14317017342854252 5 7 10 10 + -0.14516577106832912 10 10 5 7 + -0.93092638933322369E-001 5 8 10 10 + -0.94397114604220192E-001 10 10 5 8 + 0.75708274405763526E-001 6 3 10 10 + 0.77017557237529649E-001 10 10 6 3 + -0.92921173639787427E-001 6 4 10 10 + -0.94553652861568124E-001 10 10 6 4 + 0.81133013847094395E-002 6 5 10 10 + 0.82479278246768133E-002 10 10 6 5 + 0.46975269879413128 6 6 10 10 + 0.46912676367120992 10 10 6 6 + -0.45118972888541931E-003 6 7 10 10 + -0.45869082156632158E-003 10 10 6 7 + 0.27224262085592810E-002 6 8 10 10 + 0.27676864321659377E-002 10 10 6 8 + 0.57490926480427612E-001 7 3 10 10 + 0.58565880341793317E-001 10 10 7 3 + 0.37865572112010429E-001 7 4 10 10 + 0.38575956693680552E-001 10 10 7 4 + -0.10603323847799012 7 5 10 10 + -0.10802883611777669 10 10 7 5 + -0.45119098059841813E-003 7 6 10 10 + -0.45869207327932046E-003 10 10 7 6 + 0.49625408025931617 7 7 10 10 + 0.49606874085686864 10 10 7 7 + 0.93893361906936573E-003 7 8 10 10 + 0.95454543152198319E-003 10 10 7 8 + -0.78717412863531136E-001 8 3 10 10 + -0.80191164701202980E-001 10 10 8 3 + -0.71866891392102450E-001 8 4 10 10 + -0.73235192134200211E-001 10 10 8 4 + -0.68876441310361580E-001 8 5 10 10 + -0.70180916981259403E-001 10 10 8 5 + 0.27224250659071015E-002 8 6 10 10 + 0.27676852895137582E-002 10 10 8 6 + 0.93894413006229908E-003 8 7 10 10 + 0.95455594251491653E-003 10 10 8 7 + 0.49829653755646908 8 8 10 10 + 0.49814515779665763 10 10 8 8 + -0.27483486785952773E-001 9 1 10 10 + -0.27562010683862780E-001 10 10 9 1 + -0.99630504717754850E-001 9 2 10 10 + -0.98921962487096685E-001 10 10 9 2 + 0.50320371322811541 9 9 10 10 + 0.50547235215693420 10 10 9 9 + 0.31940133016541511E-003 9 10 10 10 + 0.31866534431901540E-003 10 10 9 10 + -0.90108848909667427E-004 9 11 10 10 + -0.89901545006772872E-004 10 10 9 11 + 0.33786356456800838E-003 9 12 10 10 + 0.33708660743835234E-003 10 10 9 12 + -0.96663430118991076E-004 9 13 10 10 + -0.96441168717100302E-004 10 10 9 13 + 0.23297010729823190E-002 9 14 10 10 + 0.23243351215740215E-002 10 10 9 14 + 0.70069712381723253E-003 10 1 10 10 + 0.70085079312947219E-003 10 10 10 1 + 0.73107210174598843E-002 10 2 10 10 + 0.72915675515671519E-002 10 10 10 2 + -0.10504906703492718E-002 10 9 10 10 + -0.10512266561956717E-002 10 10 10 9 + 0.67063143993994179 10 10 10 10 + -0.14487215886659055E-008 1 1 10 11 + -0.38138755024331731E-009 10 11 1 1 + 0.15145677170463700E-009 1 2 10 11 + 0.16011151918022358E-004 1 10 10 11 + 0.15967868246012502E-004 10 11 1 10 + 0.35522899846970039E-003 1 11 10 11 + 0.35426853011183093E-003 10 11 1 11 + -0.11301236979928426E-003 1 12 10 11 + -0.11270675015853344E-003 10 11 1 12 + -0.17398336898752251E-004 1 13 10 11 + -0.17351293430203133E-004 10 11 1 13 + 0.27218720679243658E-004 1 14 10 11 + 0.27145059905329834E-004 10 11 1 14 + 0.30792535175146867E-009 2 1 10 11 + 0.24276913479398643E-009 10 11 2 1 + 0.42689045819124843E-008 2 2 10 11 + 0.39157078368855928E-008 10 11 2 2 + 0.42611777556581690E-008 2 9 10 11 + 0.33989736094680501E-008 10 11 2 9 + -0.11549057692532463E-002 2 10 10 11 + -0.11495007681429253E-002 10 11 2 10 + -0.25623183215181585E-001 2 11 10 11 + -0.25503267263768892E-001 10 11 2 11 + 0.81515262133490009E-002 2 12 10 11 + 0.81133773430837417E-002 10 11 2 12 + 0.12550780605984095E-002 2 13 10 11 + 0.12492028367944192E-002 10 11 2 13 + -0.19633559064929423E-002 2 14 10 11 + -0.19541664037797373E-002 10 11 2 14 + -0.23817809318386285E-001 3 3 10 11 + -0.23574564722835135E-001 10 11 3 3 + 0.17940824904888290E-002 3 4 10 11 + 0.17757648669856571E-002 10 11 3 4 + 0.65274263462067536E-002 3 5 10 11 + 0.64607644495451883E-002 10 11 3 5 + -0.34002442898845198E-002 3 6 10 11 + -0.34921005473401538E-002 10 11 3 6 + -0.33522757097368132E-002 3 7 10 11 + -0.34428376401151365E-002 10 11 3 7 + 0.21904753432855618E-002 3 8 10 11 + 0.22496519427867546E-002 10 11 3 8 + 0.17940770157582786E-002 4 3 10 11 + 0.17757593922551067E-002 10 11 4 3 + 0.21258326817094834E-001 4 4 10 11 + 0.21041222544746295E-001 10 11 4 4 + -0.11543226011969287E-001 4 5 10 11 + -0.11425338617177610E-001 10 11 4 5 + -0.34031547601542176E-002 4 6 10 11 + -0.34950931530322287E-002 10 11 4 6 + 0.35777418879990989E-002 4 7 10 11 + 0.36743942388055254E-002 10 11 4 7 + -0.14500042018752326E-002 4 8 10 11 + -0.14891759958954600E-002 10 11 4 8 + 0.65274627407413514E-002 5 3 10 11 + 0.64608008440797862E-002 10 11 5 3 + -0.11543221225506786E-001 5 4 10 11 + -0.11425333830715109E-001 10 11 5 4 + 0.25594940102856814E-002 5 5 10 11 + 0.25333532501484696E-002 10 11 5 5 + 0.28020629741827389E-002 5 6 10 11 + 0.28777604380335288E-002 10 11 5 6 + -0.55721797994929439E-003 5 7 10 11 + -0.57227214949720571E-003 10 11 5 7 + 0.21986918870791364E-003 5 8 10 11 + 0.22580869416243460E-003 10 11 5 8 + -0.20738128625139634E-002 6 3 10 11 + -0.21656691199695975E-002 10 11 6 3 + -0.20755460630921241E-002 6 4 10 11 + -0.21674844559701353E-002 10 11 6 4 + 0.17089705398620602E-002 6 5 10 11 + 0.17846680037128498E-002 10 11 6 5 + 0.16980959988815885E-002 6 6 10 11 + 0.17263260771651140E-002 10 11 6 6 + -0.12643528676584867E-001 6 7 10 11 + -0.12853728466657072E-001 10 11 6 7 + 0.64784956598622758E-002 6 8 10 11 + 0.65862020611739880E-002 10 11 6 8 + -0.20445331327266060E-002 7 3 10 11 + -0.21350950631049293E-002 10 11 7 3 + 0.21820687902542823E-002 7 4 10 11 + 0.22787211410607083E-002 10 11 7 4 + -0.33984365602556167E-003 7 5 10 11 + -0.35489782557347304E-003 10 11 7 5 + -0.12643535011048659E-001 7 6 10 11 + -0.12853734801120864E-001 10 11 7 6 + 0.24815189925306370E-004 7 7 10 11 + 0.25225628324489473E-004 10 11 7 7 + 0.97846675398002261E-003 7 8 10 11 + 0.99473394398661742E-003 10 11 7 8 + 0.13359249769282816E-002 8 3 10 11 + 0.13951015764294744E-002 10 11 8 3 + -0.88437444182237767E-003 8 4 10 11 + -0.92354623584260513E-003 10 11 8 4 + 0.13409827630743402E-003 8 5 10 11 + 0.14003778176195498E-003 10 11 8 5 + 0.64784943775838188E-002 8 6 10 11 + 0.65862007788955309E-002 10 11 8 6 + 0.97845725592097632E-003 8 7 10 11 + 0.99472444592757113E-003 10 11 8 7 + -0.17229014419667874E-002 8 8 10 11 + -0.17515471278875664E-002 10 11 8 8 + -0.32850758462383851E-009 9 1 10 11 + -0.28111423809853593E-009 10 11 9 1 + -0.33247800827623863E-008 9 2 10 11 + -0.41869842289550847E-008 10 11 9 2 + 0.35623289565389063E-008 9 9 10 11 + 0.20005636199139517E-008 10 11 9 9 + -0.90108855246164441E-004 9 10 10 11 + -0.89901566474517351E-004 10 11 9 10 + -0.19992114136241110E-002 9 11 10 11 + -0.19946119278984051E-002 10 11 9 11 + 0.63603099619696226E-003 9 12 10 11 + 0.63456745314015306E-003 10 11 9 12 + 0.97958613976523485E-004 9 13 10 11 + 0.97732934494118581E-004 10 11 9 13 + -0.15323014302619069E-003 9 14 10 11 + -0.15287687870542576E-003 10 11 9 14 + -0.19771838706347279E-003 10 1 10 11 + -0.19776167073548264E-003 10 11 10 1 + -0.20628917961599690E-002 10 2 10 11 + -0.20574867950496479E-002 10 11 10 2 + 0.29640748555971629E-003 10 9 10 11 + 0.29661477433136341E-003 10 11 10 9 + -0.48491542178031242E-008 10 10 10 11 + -0.50502660770112902E-008 10 11 10 10 + 0.34387446483154047E-001 10 11 10 11 + -0.24925146178471872E-009 1 1 10 12 + -0.60036970762174875E-004 1 10 10 12 + -0.59874766644457318E-004 10 12 1 10 + -0.11301230305021954E-003 1 11 10 12 + -0.11270666510350056E-003 10 12 1 11 + -0.33038733430543551E-003 1 12 10 12 + -0.32949413862346877E-003 10 12 1 12 + -0.46826533257860712E-005 1 13 10 12 + -0.46699684659151950E-005 10 12 1 13 + 0.51591205340465593E-004 1 14 10 12 + 0.51451695440012603E-004 10 12 1 14 + 0.73446372091742580E-009 2 2 10 12 + 0.67369636094532266E-009 10 12 2 2 + 0.73313381767478950E-009 2 9 10 12 + 0.58479194201407784E-009 10 12 2 9 + 0.43305668699713850E-002 2 10 10 12 + 0.43102990957607622E-002 10 12 2 10 + 0.81515274036259074E-002 2 11 10 12 + 0.81133788000966895E-002 10 12 2 11 + 0.23831679525993243E-001 2 12 10 12 + 0.23720147392468204E-001 10 12 2 12 + 0.33776073213033280E-003 2 13 10 12 + 0.33617969763384271E-003 10 12 2 13 + -0.37214811851083341E-002 2 14 10 12 + -0.37040625273279653E-002 10 12 2 14 + -0.10627202584581592E-001 3 3 10 12 + -0.10518671128593289E-001 10 12 3 3 + -0.28751691006483867E-002 3 4 10 12 + -0.28458007159528459E-002 10 12 3 4 + -0.12858504518651276E-001 3 5 10 12 + -0.12727185601622119E-001 10 12 3 5 + -0.11497245275383294E-002 3 6 10 12 + -0.11807822309139084E-002 10 12 3 6 + 0.10734230919267958E-002 3 7 10 12 + 0.11024219515421035E-002 10 12 3 7 + 0.32286001914745149E-002 3 8 10 12 + 0.33158210015532398E-002 10 12 3 8 + -0.28751648301530903E-002 4 3 10 12 + -0.28457964454575496E-002 10 12 4 3 + 0.14411738525702687E-001 4 4 10 12 + 0.14264554564368767E-001 10 12 4 4 + 0.17072231570522092E-001 4 5 10 12 + 0.16897879255444472E-001 10 12 4 5 + -0.24892394095575908E-002 4 6 10 12 + -0.25564870137436547E-002 10 12 4 6 + -0.23958293026962278E-002 4 7 10 12 + -0.24605528590535999E-002 10 12 4 7 + -0.33021067804250201E-002 4 8 10 12 + -0.33913115435208340E-002 10 12 4 8 + -0.12858506385797686E-001 5 3 10 12 + -0.12727187468768528E-001 10 12 5 3 + 0.17072209451065617E-001 5 4 10 12 + 0.16897857135987997E-001 10 12 5 4 + -0.37845339610021972E-002 5 5 10 12 + -0.37458815308310132E-002 10 12 5 5 + -0.45752089383938824E-002 5 6 10 12 + -0.46988078933509472E-002 10 12 5 6 + 0.51366616842138954E-003 5 7 10 12 + 0.52754302677467709E-003 10 12 5 7 + 0.99181647875613399E-004 5 8 10 12 + 0.10186183180552534E-003 10 12 5 8 + -0.70125662059535238E-003 6 3 10 12 + -0.73231432397093132E-003 10 12 6 3 + -0.15181554116738074E-002 6 4 10 12 + -0.15854030158598711E-002 10 12 6 4 + -0.27904146534184185E-002 6 5 10 12 + -0.29140136083754837E-002 10 12 6 5 + 0.22343221946855619E-002 6 6 10 12 + 0.22714682216874197E-002 10 12 6 6 + 0.65832709750432514E-002 6 7 10 12 + 0.66927191124464521E-002 10 12 6 7 + 0.11814385323452367E-001 6 8 10 12 + 0.12010798913211260E-001 10 12 6 8 + 0.65467900772069401E-003 7 3 10 12 + 0.68367786733600190E-003 10 12 7 3 + -0.14611976590184028E-002 7 4 10 12 + -0.15259212153757749E-002 10 12 7 4 + 0.31327375720899660E-003 7 5 10 12 + 0.32715061556228421E-003 10 12 7 5 + 0.65832677417066443E-002 7 6 10 12 + 0.66927158791098449E-002 10 12 7 6 + -0.16931449865715601E-002 7 7 10 12 + -0.17212932387767543E-002 10 12 7 7 + 0.10286823597476366E-002 7 8 10 12 + 0.10457837876333401E-002 10 12 7 8 + 0.19691006323724744E-002 8 3 10 12 + 0.20563214424511992E-002 10 12 8 3 + -0.20139754498379814E-002 8 4 10 12 + -0.21031802129337952E-002 10 12 8 4 + 0.60469572684551243E-004 8 5 10 12 + 0.63149756614463195E-004 10 12 8 5 + 0.11814381264438208E-001 8 6 10 12 + 0.12010794854197100E-001 10 12 8 6 + 0.10286870535602287E-002 8 7 10 12 + 0.10457884814459321E-002 10 12 8 7 + -0.54117553117314667E-003 8 8 10 12 + -0.55017419533514211E-003 10 12 8 8 + -0.57202713389798563E-009 9 2 10 12 + -0.72036900956100005E-009 10 12 9 2 + 0.61289754207688428E-009 9 9 10 12 + 0.34419644566540124E-009 10 12 9 9 + 0.33786363236862371E-003 9 10 10 12 + 0.33708683714413147E-003 10 12 9 10 + 0.63603097878965295E-003 9 11 10 12 + 0.63456739416497762E-003 10 12 9 11 + 0.18593996438346998E-002 9 12 10 12 + 0.18551222558834827E-002 10 12 9 12 + 0.26368090500318870E-004 9 13 10 12 + 0.26307205937260782E-004 10 12 9 13 + -0.29041684997143258E-003 9 14 10 12 + -0.28974813021712017E-003 10 12 9 14 + 0.74138536104091798E-003 10 1 10 12 + 0.74154756515863555E-003 10 12 10 1 + 0.77352103223572782E-002 10 2 10 12 + 0.77149425481466555E-002 10 12 10 2 + -0.11114252980279130E-002 10 9 10 12 + -0.11122020932524052E-002 10 12 10 9 + 0.23262493909225701E-007 10 10 10 12 + 0.22786504133202831E-007 10 12 10 10 + -0.22994667635766470E-003 10 11 10 12 + -0.22994877827663257E-003 10 12 10 11 + 0.33174420788109012E-001 10 12 10 12 + 0.27413347850355543E-007 1 1 10 13 + 0.72167896470439478E-008 10 13 1 1 + -0.28659312182362689E-008 1 2 10 13 + -0.16330169916401367E-008 10 13 1 2 + 0.59946604918169812E-009 1 9 10 13 + -0.29733143425514601E-009 10 13 1 9 + 0.17173821130620557E-004 1 10 10 13 + 0.17127325452726238E-004 10 13 1 10 + -0.17397376021495001E-004 1 11 10 13 + -0.17350069031820019E-004 10 13 1 11 + -0.46824089430723919E-005 1 12 10 13 + -0.46696570611054153E-005 10 13 1 12 + -0.18283642391696231E-004 1 13 10 13 + -0.18233482043814394E-004 10 13 1 13 + -0.31126320169772153E-005 1 14 10 13 + -0.31035488537884493E-005 10 13 1 14 + -0.58266968760484179E-008 2 1 10 13 + -0.45937826494522301E-008 10 13 2 1 + -0.80778059424354440E-007 2 2 10 13 + -0.74094717272571373E-007 10 13 2 2 + -0.80631857808821717E-007 2 9 10 13 + -0.64316856509263630E-007 10 13 2 9 + -0.12388588153994721E-002 2 10 10 13 + -0.12330617646675731E-002 10 13 2 10 + 0.12550951950710577E-002 2 11 10 13 + 0.12492238110301777E-002 10 13 2 11 + 0.33776508999071216E-003 2 12 10 13 + 0.33618503207236681E-003 10 13 2 12 + 0.13182368845418349E-002 2 13 10 13 + 0.13120685738859880E-002 10 13 2 13 + 0.22392619640919443E-003 2 14 10 13 + 0.22287960056470771E-003 10 13 2 14 + 0.26416037849249531E-003 3 3 10 13 + 0.26146955638508233E-003 10 13 3 3 + -0.54854808036927996E-003 3 4 10 13 + -0.54294638853707522E-003 10 13 3 4 + -0.18459873369367076E-002 3 5 10 13 + -0.18271323385298909E-002 10 13 3 5 + 0.97893625564888918E-004 3 6 10 13 + 0.10052384259920630E-003 10 13 3 6 + 0.31882146613146096E-003 3 7 10 13 + 0.32742893349800356E-003 10 13 3 7 + 0.24262475072598725E-003 3 8 10 13 + 0.24919370882758374E-003 10 13 3 8 + -0.54859457824040522E-003 4 3 10 13 + -0.54299288640820048E-003 10 13 4 3 + -0.11180384470961336E-002 4 4 10 13 + -0.11066142678991752E-002 10 13 4 4 + -0.13820411567188771E-003 4 5 10 13 + -0.13678999643752907E-003 10 13 4 5 + 0.10684020814451160E-003 4 6 10 13 + 0.10974502877445569E-003 10 13 4 6 + -0.99670182611484297E-004 4 7 10 13 + -0.10236840378173235E-003 10 13 4 7 + 0.22204399997362132E-003 4 8 10 13 + 0.22805474023168207E-003 10 13 4 8 + -0.18464006257851845E-002 5 3 10 13 + -0.18275456273783679E-002 10 13 5 3 + -0.13857665511966450E-003 5 4 10 13 + -0.13716253588530586E-003 10 13 5 4 + 0.85366029043116339E-003 5 5 10 13 + 0.84493520120796045E-003 10 13 5 5 + -0.21308861992872208E-003 5 6 10 13 + -0.21884797427243943E-003 10 13 5 6 + -0.33946455906230718E-003 5 7 10 13 + -0.34863061722681079E-003 10 13 5 7 + 0.16294285128410537E-003 5 8 10 13 + 0.16734841610585525E-003 10 13 5 8 + 0.59706775440207475E-004 6 3 10 13 + 0.62336992474524853E-004 10 13 6 3 + 0.65145164610610123E-004 6 4 10 13 + 0.68049985240554219E-004 10 13 6 4 + -0.12994814110641904E-003 6 5 10 13 + -0.13570749545013640E-003 10 13 6 5 + -0.90267535237785579E-004 6 6 10 13 + -0.91741174645905486E-004 10 13 6 6 + 0.65588720444421532E-003 6 7 10 13 + 0.66679384367542027E-003 10 13 6 7 + -0.15017641417430988E-004 6 8 10 13 + -0.15267176192432014E-004 10 13 6 8 + 0.19444512034499792E-003 7 3 10 13 + 0.20305258771154049E-003 10 13 7 3 + -0.60737060579462140E-004 7 4 10 13 + -0.63435281749710197E-004 10 13 7 4 + -0.20677936075909638E-003 7 5 10 13 + -0.21594541892360001E-003 10 13 7 5 + 0.65587942808725765E-003 7 6 10 13 + 0.66678606731846259E-003 10 13 7 6 + 0.10276049877522885E-002 7 7 10 13 + 0.10447308037737563E-002 10 13 7 7 + 0.10485314121226887E-003 7 8 10 13 + 0.10660243461041422E-003 10 13 7 8 + 0.14801482648024979E-003 8 3 10 13 + 0.15458378458184629E-003 10 13 8 3 + 0.13546051861883427E-003 8 4 10 13 + 0.14147125887689502E-003 10 13 8 4 + 0.99406242717727308E-004 8 5 10 13 + 0.10381180753947718E-003 10 13 8 5 + -0.15019852967070201E-004 8 6 10 13 + -0.15269387742071228E-004 10 13 8 6 + 0.10502578574129544E-003 8 7 10 13 + 0.10677507913944079E-003 10 13 8 7 + -0.93752188644063170E-003 8 8 10 13 + -0.95307624848641284E-003 10 13 8 8 + 0.62161628848822567E-008 9 1 10 13 + 0.53193654014448721E-008 10 13 9 1 + 0.62912931625443375E-007 9 2 10 13 + 0.79227932925002149E-007 10 13 9 2 + -0.67407929698758372E-007 9 9 10 13 + -0.37855527757629503E-007 10 13 9 9 + -0.96663347018201900E-004 9 10 10 13 + -0.96440887175622020E-004 10 13 9 10 + 0.97958363392515582E-004 9 11 10 13 + 0.97732085525433434E-004 10 13 9 11 + 0.26368026768567634E-004 9 12 10 13 + 0.26306990016590340E-004 10 13 9 12 + 0.10304336784710622E-003 9 13 10 13 + 0.10280080569458919E-003 10 13 9 13 + 0.17636316944522272E-004 9 14 10 13 + 0.17590750999181421E-004 10 13 9 14 + -0.21208913721753285E-003 10 1 10 13 + -0.21213563289542719E-003 10 13 10 1 + -0.22128776978541562E-002 10 2 10 13 + -0.22070806471222570E-002 10 13 10 2 + 0.31795844590015157E-003 10 9 10 13 + 0.31818090574273141E-003 10 13 10 9 + -0.48634557916550483E-007 10 10 10 13 + -0.36244726155418995E-007 10 13 10 10 + -0.51844242669805919E-003 10 11 10 13 + -0.51844561904441282E-003 10 13 10 11 + 0.24270867887268919E-003 10 12 10 13 + 0.24271020385420406E-003 10 13 10 12 + 0.20355193539391619E-001 10 13 10 13 + 0.36844295974412343E-007 1 1 10 14 + 0.96995639943176389E-008 10 14 1 1 + -0.38518906751327673E-008 1 2 10 14 + -0.21948199056241892E-008 10 14 1 2 + 0.80569889759716179E-009 1 9 10 14 + -0.39962168643934614E-009 10 14 1 9 + -0.41385306552400988E-003 1 10 10 14 + -0.41273094679947664E-003 10 14 1 10 + 0.27217991251923870E-004 1 11 10 14 + 0.27144130432159796E-004 10 14 1 11 + 0.51589762830368361E-004 1 12 10 14 + 0.51449857320714835E-004 10 14 1 12 + -0.31129308451099922E-005 1 13 10 14 + -0.31039296357039111E-005 10 14 1 13 + 0.50186774765508466E-004 1 14 10 14 + 0.50050217781289140E-004 10 14 1 14 + -0.78312415363203129E-008 2 1 10 14 + -0.61741707668125074E-008 10 14 2 1 + -0.10856794313751963E-006 2 2 10 14 + -0.99585346713593216E-007 10 14 2 2 + -0.10837144353474254E-006 2 9 10 14 + -0.86443631227528165E-007 10 14 2 9 + 0.29853466454943255E-001 2 10 10 14 + 0.29713778442758885E-001 10 14 2 10 + -0.19633689137239481E-002 2 11 10 14 + -0.19541823258763880E-002 10 14 2 11 + -0.37215069081125637E-002 2 12 10 14 + -0.37040940147490308E-002 10 14 2 12 + 0.22392086767191835E-003 2 13 10 14 + 0.22287307767986363E-003 10 14 2 13 + -0.36195428773135381E-002 2 14 10 14 + -0.36026049186526025E-002 10 14 2 14 + -0.49632615495547507E-002 3 3 10 14 + -0.49125705709169897E-002 10 14 3 3 + -0.51317811188373603E-002 3 4 10 14 + -0.50793637735490190E-002 10 14 3 4 + 0.22551082040998885E-001 3 5 10 14 + 0.22320786060301002E-001 10 14 3 5 + 0.50459332197649301E-003 3 6 10 14 + 0.51821709920100772E-003 10 14 3 6 + -0.48151907294094005E-002 3 7 10 14 + -0.49452985744001090E-002 10 14 3 7 + -0.13211405321370876E-002 3 8 10 14 + -0.13568139227700818E-002 10 14 3 8 + -0.51317655786758875E-002 4 3 10 14 + -0.50793482333875463E-002 10 14 4 3 + -0.71928305156831042E-003 4 4 10 14 + -0.71193663375029577E-003 10 14 4 4 + 0.17627453299894097E-001 4 5 10 14 + 0.17447439107020606E-001 10 14 4 5 + -0.31216915963281906E-003 4 6 10 14 + -0.32059209296981660E-003 10 14 4 6 + -0.36756918974474484E-002 4 7 10 14 + -0.37750092004459838E-002 10 14 4 7 + -0.12600113234054794E-002 4 8 10 14 + -0.12940353078901891E-002 10 14 4 8 + 0.22551097613804031E-001 5 3 10 14 + 0.22320801633106149E-001 10 14 5 3 + 0.17627398953106676E-001 5 4 10 14 + 0.17447384760233185E-001 10 14 5 4 + 0.56822519012437872E-002 5 5 10 14 + 0.56242256170287155E-002 10 14 5 5 + 0.23685124359825374E-003 5 6 10 14 + 0.24324943574662502E-003 10 14 5 6 + 0.22950723211596731E-002 5 7 10 14 + 0.23570957309264149E-002 10 14 5 7 + -0.57453445519206631E-002 5 8 10 14 + -0.59005575025641438E-002 10 14 5 8 + 0.30758332827035149E-003 6 3 10 14 + 0.32120710549486621E-003 10 14 6 3 + -0.19020678116699280E-003 6 4 10 14 + -0.19862971450399034E-003 10 14 6 4 + 0.14441857463572149E-003 6 5 10 14 + 0.15081676678409278E-003 10 14 6 5 + 0.14819965649790143E-002 6 6 10 14 + 0.15066880220129752E-002 10 14 6 6 + -0.15861471214747601E-003 6 7 10 14 + -0.16125238994424968E-003 10 14 6 7 + -0.68764661134046467E-003 6 8 10 14 + -0.69908056346325428E-003 10 14 6 8 + -0.29365872238393265E-002 7 3 10 14 + -0.30666950688300353E-002 10 14 7 3 + -0.22416381335589163E-002 7 4 10 14 + -0.23409554365574512E-002 10 14 7 4 + 0.13997937454670812E-002 7 5 10 14 + 0.14618171552338230E-002 10 14 7 5 + -0.15862532291882652E-003 7 6 10 14 + -0.16126300071560019E-003 10 14 7 6 + -0.13421549352768661E-001 7 7 10 14 + -0.13644662416661232E-001 10 14 7 7 + 0.98483269049780570E-002 7 8 10 14 + 0.10012077813200281E-001 10 14 7 8 + -0.80573875912467714E-003 8 3 10 14 + -0.84141214975767126E-003 10 14 8 3 + -0.76844346671179015E-003 8 4 10 14 + -0.80246745119650004E-003 10 14 8 4 + -0.35037887144930900E-002 8 5 10 14 + -0.36590016651365715E-002 10 14 8 5 + -0.68765976442201090E-003 8 6 10 14 + -0.69909371654480051E-003 10 14 8 6 + 0.98483335221636777E-002 8 7 10 14 + 0.10012084430385901E-001 10 14 8 7 + 0.11939304903498460E-001 8 8 10 14 + 0.12137857975837165E-001 10 14 8 8 + 0.83546946037064636E-008 9 1 10 14 + 0.71493740196698133E-008 10 14 9 1 + 0.84556717602630590E-007 9 2 10 14 + 0.10648452990984251E-006 10 14 9 2 + -0.90598119441374876E-007 9 9 10 14 + -0.50878875103499953E-007 10 14 9 9 + 0.23296984973562021E-002 9 10 10 14 + 0.23243263954564131E-002 10 14 9 10 + -0.15322995280121873E-003 9 11 10 14 + -0.15287623423083135E-003 10 14 9 11 + -0.29041647378390907E-003 9 12 10 14 + -0.28974685570888929E-003 10 14 9 12 + 0.17636394874923045E-004 9 13 10 14 + 0.17591015024293582E-004 10 14 9 13 + -0.28263292822316988E-003 9 14 10 14 + -0.28197647799873827E-003 10 14 9 14 + 0.51108671874259652E-002 10 1 10 14 + 0.51119893061504981E-002 10 14 10 1 + 0.53325610173556220E-001 10 2 10 14 + 0.53185922161371843E-001 10 14 10 2 + -0.76623450219745863E-002 10 9 10 14 + -0.76677171238743761E-002 10 14 10 9 + 0.32425599912874330E-007 10 10 10 14 + 0.42648924962729908E-007 10 14 10 10 + -0.13786343957220118E-003 10 11 10 14 + -0.13786361311803448E-003 10 14 10 11 + 0.73847583867458978E-003 10 12 10 14 + 0.73847854025556694E-003 10 14 10 12 + -0.79821815706788393E-003 10 13 10 14 + -0.79821811208304809E-003 10 14 10 13 + 0.38113654956932870E-001 10 14 10 14 + 0.86360147072125633E-003 1 11 11 1 + 0.86360147072125633E-003 11 1 1 11 + 0.15385741754721837E-008 1 13 11 1 + 0.15385741754728901E-008 11 1 1 13 + 0.22534738185164152E-009 2 10 11 1 + 0.24786080110025134E-009 11 1 2 10 + 0.76629366384043081E-002 2 11 11 1 + 0.76442264349033395E-002 11 1 2 11 + 0.25227067733579676E-009 2 12 11 1 + 0.27747387945024903E-009 11 1 2 12 + 0.79255383723602059E-008 2 13 11 1 + 0.87173424274330508E-008 11 1 2 13 + -0.10125294698435392E-009 11 1 2 14 + 0.53695059439320030E-002 3 3 11 1 + 0.53585934257596776E-002 11 1 3 3 + -0.98859132178586015E-003 3 4 11 1 + -0.98658255052595529E-003 11 1 3 4 + -0.33865936792650277E-002 3 5 11 1 + -0.33797113665536361E-002 11 1 3 5 + 0.20505231004605351E-002 3 6 11 1 + 0.20617426084139846E-002 11 1 3 6 + 0.26045583523860573E-002 3 7 11 1 + 0.26188093801659995E-002 11 1 3 7 + -0.50174847258232049E-003 3 8 11 1 + -0.50449404905439474E-003 11 1 3 8 + -0.98859132178586015E-003 4 3 11 1 + -0.98658255052595529E-003 11 1 4 3 + -0.43558909658072140E-002 4 4 11 1 + -0.43470389041119070E-002 11 1 4 4 + 0.40816785764069786E-002 4 5 11 1 + 0.40733835166494757E-002 11 1 4 5 + 0.15720990949031207E-002 4 6 11 1 + 0.15807009130218573E-002 11 1 4 6 + -0.27013303820348209E-002 4 7 11 1 + -0.27161107307587628E-002 11 1 4 7 + 0.44795159525488036E-003 4 8 11 1 + 0.45040239074715916E-003 11 1 4 8 + -0.33865936792650273E-002 5 3 11 1 + -0.33797113665536356E-002 11 1 5 3 + 0.40816785764069786E-002 5 4 11 1 + 0.40733835166494757E-002 11 1 5 4 + -0.10136149781247328E-002 5 5 11 1 + -0.10115545216477120E-002 11 1 5 5 + -0.27977231571401657E-002 5 6 11 1 + -0.28130310171897719E-002 11 1 5 6 + 0.27523211191357886E-003 5 7 11 1 + 0.27673834448046499E-003 11 1 5 7 + 0.19082470791624640E-003 5 8 11 1 + 0.19186892242772013E-003 11 1 5 8 + 0.21044681318974851E-002 6 3 11 1 + 0.21156876398509346E-002 11 1 6 3 + 0.16134573786218767E-002 6 4 11 1 + 0.16220591967406133E-002 11 1 6 4 + -0.28713251222035325E-002 6 5 11 1 + -0.28866329822531387E-002 11 1 6 5 + -0.14253523895715157E-003 6 6 11 1 + -0.14315323854751586E-003 11 1 6 6 + 0.50505428098651011E-002 6 7 11 1 + 0.50724390680415886E-002 11 1 6 7 + -0.87494060693573360E-003 6 8 11 1 + -0.87873384148965674E-003 11 1 6 8 + 0.26730772719408217E-002 7 3 11 1 + 0.26873282997207639E-002 11 1 7 3 + -0.27723980563189002E-002 7 4 11 1 + -0.27871784050428421E-002 11 1 7 4 + 0.28246799050874605E-003 7 5 11 1 + 0.28397422307563217E-003 11 1 7 5 + 0.50505428098650993E-002 7 6 11 1 + 0.50724390680415869E-002 11 1 7 6 + 0.19944255581811509E-003 7 7 11 1 + 0.20030676917960860E-003 11 1 7 7 + -0.34271328441677358E-003 7 8 11 1 + -0.34419975130527662E-003 11 1 7 8 + -0.51494434348608488E-003 8 3 11 1 + -0.51768991995815913E-003 11 1 8 3 + 0.45973943973812582E-003 8 4 11 1 + 0.46219023523040462E-003 11 1 8 4 + 0.19584304427780626E-003 8 5 11 1 + 0.19688725878927999E-003 11 1 8 5 + -0.87494060693573382E-003 8 6 11 1 + -0.87873384148965696E-003 11 1 8 6 + -0.34271328441677358E-003 8 7 11 1 + -0.34419975130527662E-003 11 1 8 7 + -0.56907316860964234E-004 8 8 11 1 + -0.57153530632090872E-004 11 1 8 8 + -0.26051542980709254E-009 9 10 11 1 + -0.25790699873474616E-009 11 1 9 10 + -0.24943041085430926E-002 9 11 11 1 + -0.24951854066871228E-002 11 1 9 11 + -0.29164041681964807E-009 9 12 11 1 + -0.28872034431712063E-009 11 1 9 12 + -0.91624097928256387E-008 9 13 11 1 + -0.90706704486631659E-008 11 1 9 13 + 0.10642245733514864E-009 9 14 11 1 + 0.10535689414965069E-009 11 1 9 14 + 0.18629565181238827E-009 10 9 11 1 + 0.18890408288466003E-009 11 1 10 9 + -0.19776193348791473E-003 10 10 11 1 + -0.19771864315229178E-003 11 1 10 10 + -0.43876181203470676E-002 10 11 11 1 + -0.43866576519891983E-002 11 1 10 11 + 0.13958473034835260E-002 10 12 11 1 + 0.13955416655368070E-002 11 1 10 12 + 0.21491529075511517E-003 10 13 11 1 + 0.21486798376544019E-003 11 1 10 13 + -0.33620080902166096E-003 10 14 11 1 + -0.33612694820189684E-003 11 1 10 14 + 0.16187444978180688E-002 11 1 11 1 + 0.11274568641890178E-009 1 10 11 2 + 0.49561343923878586E-003 1 11 11 2 + 0.51432364273975456E-003 11 2 1 11 + 0.12621593648356163E-009 1 12 11 2 + 0.10101273436765183E-009 11 2 1 12 + 0.39653013226643455E-008 1 13 11 2 + 0.31734972675925499E-008 11 2 1 13 + 0.38801132248253151E-008 2 10 11 2 + 0.38801132248209608E-008 11 2 2 10 + 0.61842844308652500E-001 2 11 11 2 + 0.61842844308652500E-001 11 2 2 11 + 0.43436883390744577E-008 2 12 11 2 + 0.43436883391257693E-008 11 2 2 12 + 0.13646480448060440E-006 2 13 11 2 + 0.13646480448062571E-006 11 2 2 13 + -0.15850546037558384E-008 2 14 11 2 + -0.15850546037469365E-008 11 2 2 14 + 0.41013772228286484E-001 3 3 11 2 + 0.40831388335691735E-001 11 2 3 3 + -0.75511620487475981E-002 3 4 11 2 + -0.75175879075508626E-002 11 2 3 4 + -0.25867763735737556E-001 3 5 11 2 + -0.25752736905788838E-001 11 2 3 5 + 0.59943260778012450E-002 3 6 11 2 + 0.61314216715839427E-002 11 2 3 6 + 0.76139606917642886E-002 3 7 11 2 + 0.77881013604454334E-002 11 2 3 7 + -0.14668060259729323E-002 3 8 11 2 + -0.15003596597020488E-002 11 2 3 8 + -0.75511620487475964E-002 4 3 11 2 + -0.75175879075508609E-002 11 2 4 3 + -0.33271537733563200E-001 4 4 11 2 + -0.33123589483550285E-001 11 2 4 4 + 0.31177005344323504E-001 4 5 11 2 + 0.31038367215472085E-001 11 2 4 5 + 0.45957453388707735E-002 4 6 11 2 + 0.47008547721898927E-002 11 2 4 6 + -0.78968298978030465E-002 4 7 11 2 + -0.80774354856936511E-002 11 2 4 7 + 0.13094753694904422E-002 4 8 11 2 + 0.13394192466920822E-002 11 2 4 8 + -0.25867763735737560E-001 5 3 11 2 + -0.25752736905788842E-001 11 2 5 3 + 0.31177005344323504E-001 5 4 11 2 + 0.31038367215472085E-001 11 2 5 4 + -0.77422344947229568E-002 5 5 11 2 + -0.77077988521411190E-002 11 2 5 5 + -0.81786308529966482E-002 5 6 11 2 + -0.83656840142300477E-002 11 2 5 6 + 0.80463456292164304E-003 5 7 11 2 + 0.82304502966029950E-003 11 2 5 7 + 0.55785766972444835E-003 5 8 11 2 + 0.57061932329938267E-003 11 2 5 8 + 0.43462619552751217E-002 6 3 11 2 + 0.44833575490578195E-002 11 2 6 3 + 0.33321946087308406E-002 6 4 11 2 + 0.34373040420499603E-002 11 2 6 4 + -0.59300119773351917E-002 6 5 11 2 + -0.61170651385685903E-002 11 2 6 5 + -0.90149871604485365E-003 6 6 11 2 + -0.91656460950522703E-003 11 2 6 6 + 0.31943424054308334E-001 6 7 11 2 + 0.32477248078276150E-001 11 2 6 7 + -0.55337813433719504E-002 6 8 11 2 + -0.56262593295709701E-002 11 2 6 8 + 0.55205629276598210E-002 7 3 11 2 + 0.56947035963409659E-002 11 2 7 3 + -0.57257235306053724E-002 7 4 11 2 + -0.59063291184959770E-002 11 2 7 4 + 0.58330364223847613E-003 7 5 11 2 + 0.60171410897713259E-003 11 2 7 5 + 0.31943424054308368E-001 7 6 11 2 + 0.32477248078276184E-001 11 2 7 6 + 0.12614350722721362E-002 7 7 11 2 + 0.12825113285604812E-002 11 2 7 7 + -0.21675606957618364E-002 7 8 11 2 + -0.22037901720385511E-002 11 2 7 8 + -0.10634371537179461E-002 8 3 11 2 + -0.10969907874470626E-002 11 2 8 3 + 0.94952048184688469E-003 8 4 11 2 + 0.97946435904852484E-003 11 2 8 4 + 0.40444112284113176E-003 8 5 11 2 + 0.41720277641606602E-003 11 2 8 5 + -0.55337813433719452E-002 8 6 11 2 + -0.56262593295709649E-002 11 2 8 6 + -0.21675606957618355E-002 8 7 11 2 + -0.22037901720385502E-002 11 2 8 7 + -0.35993635622727624E-003 8 8 11 2 + -0.36594671905522576E-003 11 2 8 8 + -0.48357167296011232E-008 9 10 11 2 + -0.46226767569388664E-008 11 2 9 10 + 0.20765838539062208E-002 9 11 11 2 + 0.20653713766051068E-002 11 2 9 11 + -0.54134622993775767E-008 9 12 11 2 + -0.51749694505187004E-008 11 2 9 12 + -0.17007368226708275E-006 9 13 11 2 + -0.16258099923794203E-006 11 2 9 13 + 0.19754256449378543E-008 9 14 11 2 + 0.18883972583002348E-008 11 2 9 14 + 0.14963898609198886E-008 10 2 11 2 + 0.14963898609113264E-008 11 2 10 2 + 0.48086672898087759E-008 10 9 11 2 + 0.50217072624653707E-008 11 2 10 9 + -0.20574946885704238E-002 10 10 11 2 + -0.20628995925853289E-002 11 2 10 10 + -0.45648281208139192E-001 10 11 11 2 + -0.45768197159551882E-001 11 2 10 11 + 0.14522227337235712E-001 10 12 11 2 + 0.14560375940764930E-001 11 2 10 12 + 0.22360889515498994E-002 10 13 11 2 + 0.22419603355907794E-002 11 2 10 13 + -0.34978952287531757E-002 10 14 11 2 + -0.35070818166007358E-002 11 2 10 14 + 0.90106120128907261E-002 11 1 11 2 + 0.90293222163916956E-002 11 2 11 1 + 0.95338106194385749E-001 11 2 11 2 + 0.12508237775128480E-002 1 3 11 3 + 0.12103339294591512E-002 11 3 1 3 + -0.23029267795338418E-003 1 4 11 3 + -0.22283785463778026E-003 11 3 1 4 + -0.78890603855515746E-003 1 5 11 3 + -0.76336861319018781E-003 11 3 1 5 + 0.37081835599597838E-003 1 6 11 3 + 0.43992365396958340E-003 11 3 1 6 + 0.47101067718655543E-003 1 7 11 3 + 0.55878778213554713E-003 11 3 1 7 + -0.90736902214044217E-004 1 8 11 3 + -0.10764672356913147E-003 11 3 1 8 + 0.84316745153272671E-001 2 3 11 3 + 0.83913634918785424E-001 11 3 2 3 + -0.15523792827602422E-001 2 4 11 3 + -0.15449574559580423E-001 11 3 2 4 + -0.53179345265320491E-001 2 5 11 3 + -0.52925099500151902E-001 11 3 2 5 + 0.14103664672837172E-001 2 6 11 3 + 0.14357032975199680E-001 11 3 2 6 + 0.17914372706653494E-001 2 7 11 3 + 0.18236201573910153E-001 11 3 2 7 + -0.34510881022134189E-002 2 8 11 3 + -0.35130916333329723E-002 11 3 2 8 + 0.31279522229617322E-001 3 1 11 3 + 0.31239032381563624E-001 11 3 3 1 + 0.93549636240144243E-001 3 2 11 3 + 0.93146526005656996E-001 11 3 3 2 + -0.13779663408689165E-001 3 9 11 3 + -0.13762894807400386E-001 11 3 3 9 + -0.36947190413163550E-001 3 10 11 3 + -0.36947190337046534E-001 11 3 3 10 + 0.75115256434098790E-001 3 11 11 3 + 0.75115256434098790E-001 11 3 3 11 + -0.21329553236280514E-001 3 12 11 3 + -0.21329553366120226E-001 11 3 3 12 + -0.15660177463098241E-001 3 13 11 3 + -0.15660176096749731E-001 11 3 3 13 + -0.14139585848429658E-001 3 14 11 3 + -0.14139584616507571E-001 11 3 3 14 + -0.57589396198291908E-002 4 1 11 3 + -0.57514847965135863E-002 11 3 4 1 + -0.17223654934131180E-001 4 2 11 3 + -0.17149436666109179E-001 11 3 4 2 + 0.25369529907909301E-002 4 9 11 3 + 0.25338649839570493E-002 11 3 4 9 + -0.18785773576860010E-001 4 10 11 3 + -0.18785773846331913E-001 11 3 4 10 + -0.22094511684894569E-001 4 11 11 3 + -0.22094512496251332E-001 11 3 4 11 + -0.19725585412497970E-001 4 12 11 3 + -0.19725584053846983E-001 11 3 4 12 + -0.15100510669944315E-001 4 13 11 3 + -0.15100503480928038E-001 11 3 4 13 + 0.35562640997802868E-001 4 14 11 3 + 0.35562625647647360E-001 11 3 4 14 + -0.19728263677842292E-001 5 1 11 3 + -0.19702726252477321E-001 11 3 5 1 + -0.59002587391674133E-001 5 2 11 3 + -0.58748341626505544E-001 11 3 5 2 + 0.86909089398243301E-002 5 9 11 3 + 0.86803322326855711E-002 11 3 5 9 + 0.18325884485097275E-001 5 10 11 3 + 0.18325886222161514E-001 11 3 5 10 + -0.27998990983871014E-001 5 11 11 3 + -0.27998991764101807E-001 11 3 5 11 + -0.21297013309511822E-001 5 12 11 3 + -0.21297013634759266E-001 11 3 5 12 + -0.38928936985378942E-001 5 13 11 3 + -0.38928927907248376E-001 11 3 5 13 + -0.16576160481143767E-001 5 14 11 3 + -0.16576149599465437E-001 11 3 5 14 + 0.24023910535969806E-001 6 1 11 3 + 0.24093015833943410E-001 11 3 6 1 + 0.12064238394852878E-001 6 2 11 3 + 0.12317606697215386E-001 11 3 6 2 + -0.42676708451175417E-001 6 9 11 3 + -0.43050873675671994E-001 11 3 6 9 + -0.77305770852110274E-003 6 10 11 3 + -0.81243613447960566E-003 11 3 6 10 + 0.36975704234626493E-002 6 11 11 3 + 0.39545085436581348E-002 11 3 6 11 + 0.42351913430829572E-004 6 12 11 3 + 0.43888464207927771E-004 11 3 6 12 + -0.26474605996078439E-003 6 13 11 3 + -0.27397051407300439E-003 11 3 6 13 + -0.14600637552111054E-002 6 14 11 3 + -0.15951732428068604E-002 11 3 6 14 + 0.30514969370106913E-001 7 1 11 3 + 0.30602746475055904E-001 11 3 7 1 + 0.15323872934055181E-001 7 2 11 3 + 0.15645701801311838E-001 11 3 7 2 + -0.54207596286211981E-001 7 9 11 3 + -0.54682860647058525E-001 11 3 7 9 + -0.17378739250148961E-002 7 10 11 3 + -0.18807505476480617E-002 11 3 7 10 + 0.29813656820177939E-002 7 11 11 3 + 0.31900143689718614E-002 11 3 7 11 + -0.27502555312190996E-003 7 12 11 3 + -0.27605032334620584E-003 11 3 7 12 + 0.95178426866174271E-003 7 13 11 3 + 0.10305707449150465E-002 11 3 7 13 + 0.34217981555728280E-003 7 14 11 3 + 0.39839749363087873E-003 11 3 7 14 + -0.58784474151400501E-002 8 1 11 3 + -0.58953572364951372E-002 11 3 8 1 + -0.29519635210342788E-002 8 2 11 3 + -0.30139670521538322E-002 11 3 8 2 + 0.10442628269948734E-001 8 9 11 3 + 0.10534190429998643E-001 11 3 8 9 + 0.11028402074763602E-002 8 10 11 3 + 0.11927142892134987E-002 11 3 8 10 + -0.13765337446005493E-002 8 11 11 3 + -0.14615134630092052E-002 11 3 8 11 + 0.16650352751658532E-002 8 12 11 3 + 0.18011371022704442E-002 11 3 8 12 + 0.17653448198499842E-002 8 13 11 3 + 0.19129192902608537E-002 11 3 8 13 + -0.23791919770862781E-004 8 14 11 3 + -0.30229973301379642E-004 11 3 8 14 + -0.83329134873667606E-002 9 3 11 3 + -0.83161448860779811E-002 11 3 9 3 + 0.15342400980779991E-002 9 4 11 3 + 0.15311520912441184E-002 11 3 9 4 + 0.52556829160923194E-002 9 5 11 3 + 0.52451062089535596E-002 11 3 9 5 + -0.42631545390701492E-001 9 6 11 3 + -0.43005710615198069E-001 11 3 9 6 + -0.54150217100310538E-001 9 7 11 3 + -0.54625481461157081E-001 11 3 9 7 + 0.10431543589202787E-001 9 8 11 3 + 0.10523105749252696E-001 11 3 9 8 + -0.56549624792851021E-001 10 3 11 3 + -0.56549624716734005E-001 11 3 10 3 + -0.30996209212549898E-001 10 4 11 3 + -0.30996209482021801E-001 11 3 10 4 + 0.28901632651837438E-001 10 5 11 3 + 0.28901634388901677E-001 11 3 10 5 + -0.18849076611000956E-002 10 6 11 3 + -0.19242860870585985E-002 11 3 10 6 + -0.12052838834663722E-001 10 7 11 3 + -0.12195715457296887E-001 11 3 10 7 + 0.75339182649485368E-002 10 8 11 3 + 0.76237923466856757E-002 11 3 10 8 + 0.11223504894164255 11 3 11 3 + -0.23029267795338250E-003 1 3 11 4 + -0.22283785463778015E-003 11 4 1 3 + -0.10147037476585085E-002 1 4 11 4 + -0.98185706932807501E-003 11 4 1 4 + 0.95082545752925220E-003 1 5 11 4 + 0.92004665281746154E-003 11 4 1 5 + 0.28429977565868513E-003 1 6 11 4 + 0.33728158565712104E-003 11 4 1 6 + -0.48851081829730714E-003 1 7 11 4 + -0.57954909449005722E-003 11 4 1 7 + 0.81007735906157944E-004 1 8 11 4 + 0.96104098970882176E-004 11 4 1 8 + -0.15523792827602453E-001 2 3 11 4 + -0.15449574559580466E-001 11 4 2 3 + -0.68400136799974781E-001 2 4 11 4 + -0.68073121658023927E-001 11 4 2 4 + 0.64094166826759127E-001 2 5 11 4 + 0.63787738518764334E-001 11 4 2 5 + 0.10813027524437403E-001 2 6 11 4 + 0.11007281029267874E-001 11 4 2 6 + -0.18579963612240815E-001 2 7 11 4 + -0.18913745604443036E-001 11 4 2 7 + 0.30810310664251212E-002 2 8 11 4 + 0.31363764919587122E-002 11 4 2 8 + -0.57589396198291900E-002 3 1 11 4 + -0.57514847965135871E-002 11 4 3 1 + -0.17223654934131211E-001 3 2 11 4 + -0.17149436666109224E-001 11 4 3 2 + 0.25369529907908980E-002 3 9 11 4 + 0.25338649839570181E-002 11 4 3 9 + 0.24351858514215785E-001 3 10 11 4 + 0.24351858753902677E-001 11 4 3 10 + -0.22094496722083624E-001 3 11 11 4 + -0.22094495910726861E-001 11 4 3 11 + -0.19701240781165585E-001 3 12 11 4 + -0.19701242069631524E-001 11 4 3 12 + 0.13405375138035960E-001 3 13 11 4 + 0.13405367645623854E-001 11 4 3 13 + -0.26612445835772623E-001 3 14 11 4 + -0.26612431113558967E-001 11 4 3 14 + -0.25374808183426766E-001 4 1 11 4 + -0.25341961505096332E-001 11 4 4 1 + -0.75890078343106585E-001 4 2 11 4 + -0.75563063201155731E-001 11 4 4 2 + 0.11178374885351408E-001 4 9 11 4 + 0.11164770799302703E-001 11 4 4 9 + 0.32976817369003250E-001 4 10 11 4 + 0.32976817284693274E-001 11 4 4 10 + 0.68160144605681761E-001 4 11 11 4 + 0.68160144605681761E-001 11 4 4 11 + -0.18134486579874747E-001 4 12 11 4 + -0.18134486470290069E-001 11 4 4 12 + 0.22399947924661202E-001 4 13 11 4 + 0.22399946281030120E-001 11 4 4 13 + 0.14459246838875593E-001 4 14 11 4 + 0.14459245695024004E-001 11 4 4 14 + 0.23777411762330190E-001 5 1 11 4 + 0.23746632957618398E-001 11 4 5 1 + 0.71112619078279482E-001 5 2 11 4 + 0.70806190770284688E-001 11 4 5 2 + -0.10474708993240808E-001 5 9 11 4 + -0.10461961814097268E-001 11 4 5 9 + -0.25761326001418481E-001 5 10 11 4 + -0.25761325801307081E-001 11 4 5 10 + -0.27673889506539685E-001 5 11 11 4 + -0.27673888715173931E-001 11 4 5 11 + -0.10448894717808709E-001 5 12 11 4 + -0.10448894602213991E-001 11 4 5 12 + 0.40664256194685791E-001 5 13 11 4 + 0.40664246695366876E-001 11 4 5 13 + 0.12334711755864793E-001 5 14 11 4 + 0.12334700162523865E-001 11 4 5 14 + 0.18418695869190187E-001 6 1 11 4 + 0.18471677679188624E-001 11 4 6 1 + 0.92494272492358622E-002 6 2 11 4 + 0.94436807540663331E-002 11 4 6 2 + -0.32719457168092457E-001 6 9 11 4 + -0.33006323542044552E-001 11 4 6 9 + -0.90490539817016276E-003 6 10 11 4 + -0.95831434168123294E-003 11 4 6 10 + -0.40799158756117887E-002 6 11 11 4 + -0.43614838823875417E-002 11 4 6 11 + 0.61516765052969393E-004 6 12 11 4 + 0.65013894024823637E-004 11 4 6 12 + -0.53025838669367277E-003 6 13 11 4 + -0.55900542107889463E-003 11 4 6 13 + -0.10692651149727425E-002 6 14 11 4 + -0.11673651621053310E-002 11 4 6 14 + -0.31648773018382655E-001 7 1 11 4 + -0.31739811294575405E-001 11 4 7 1 + -0.15893279844220905E-001 7 2 11 4 + -0.16227061836423126E-001 11 4 7 2 + 0.56221715559227392E-001 7 9 11 4 + 0.56714633577497051E-001 11 4 7 9 + 0.19253598438456491E-002 7 10 11 4 + 0.20853712190821265E-002 11 4 7 10 + 0.19564528966759102E-002 7 11 11 4 + 0.20933639841388078E-002 11 4 7 11 + -0.56397183293309980E-003 7 12 11 4 + -0.59290762916228699E-003 11 4 7 12 + -0.98993373311864188E-003 7 13 11 4 + -0.10704648652439563E-002 11 4 7 13 + -0.22177436527576146E-003 7 14 11 4 + -0.27512438893728469E-003 11 4 7 14 + 0.52482226114687674E-002 8 1 11 4 + 0.52633189745334916E-002 11 4 8 1 + 0.26355742357633107E-002 8 2 11 4 + 0.26909196612969017E-002 11 4 8 2 + -0.93230817163094601E-002 8 9 11 4 + -0.94048157336791491E-002 11 4 8 9 + -0.86266710698751630E-003 8 10 11 4 + -0.93629412638531959E-003 11 4 8 10 + -0.82433027024672925E-003 8 11 11 4 + -0.87002676291764007E-003 11 4 8 11 + 0.13345520253551730E-002 8 12 11 4 + 0.14419190973235475E-002 11 4 8 12 + -0.19255229562894754E-002 8 13 11 4 + -0.20866342289782148E-002 11 4 8 13 + -0.25793170129884730E-004 8 14 11 4 + -0.21706764528489519E-004 11 4 8 14 + 0.15342400980779378E-002 9 3 11 4 + 0.15311520912440581E-002 11 4 9 3 + 0.67599544107068924E-002 9 4 11 4 + 0.67463503246581874E-002 11 4 9 4 + -0.63343660053563726E-002 9 5 11 4 + -0.63216188262128327E-002 11 4 9 5 + -0.32684828187695199E-001 9 6 11 4 + -0.32971694561647294E-001 11 4 9 6 + 0.56162228599502650E-001 9 7 11 4 + 0.56655146617772309E-001 11 4 9 7 + -0.93132414603335559E-002 9 8 11 4 + -0.93949754777032449E-002 11 4 9 8 + 0.39515073820048589E-001 10 3 11 4 + 0.39515074059735478E-001 11 4 10 3 + 0.50472700239125839E-001 10 4 11 4 + 0.50472700154815864E-001 11 4 10 4 + -0.40246112497541085E-001 10 5 11 4 + -0.40246112297429693E-001 11 4 10 5 + -0.32575533601317971E-002 10 6 11 4 + -0.33109623036428671E-002 11 4 10 6 + 0.13600836563931523E-001 10 7 11 4 + 0.13760847939168002E-001 11 4 10 7 + -0.63723648450443983E-002 10 8 11 4 + -0.64459918644422017E-002 11 4 10 8 + -0.33817524778188113E-001 11 3 11 4 + -0.33817523966831353E-001 11 4 11 3 + 0.10159014779846796 11 4 11 4 + -0.78890603855533733E-003 1 3 11 5 + -0.76336861319036930E-003 11 5 1 3 + 0.95082545752925675E-003 1 4 11 5 + 0.92004665281746891E-003 11 5 1 4 + -0.23612002985438005E-003 1 5 11 5 + -0.22847686013111892E-003 11 5 1 5 + -0.50594267934631781E-003 1 6 11 5 + -0.60022961335756209E-003 11 5 1 6 + 0.49773544585841279E-004 1 7 11 5 + 0.59049518325385722E-004 11 5 1 7 + 0.34509030669195757E-004 1 8 11 5 + 0.40940183309419853E-004 11 5 1 8 + -0.53179345265320421E-001 2 3 11 5 + -0.52925099500151826E-001 11 5 2 3 + 0.64094166826759197E-001 2 4 11 5 + 0.63787738518764403E-001 11 5 2 4 + -0.15916608353296943E-001 2 5 11 5 + -0.15840513260760511E-001 11 5 2 5 + -0.19242969300560804E-001 2 6 11 5 + -0.19588664240728273E-001 11 5 2 6 + 0.18930943824877352E-002 2 7 11 5 + 0.19271101391944614E-002 11 5 2 7 + 0.13125175742629727E-002 2 8 11 5 + 0.13360991857861366E-002 11 5 2 8 + -0.19728263677842316E-001 3 1 11 5 + -0.19702726252477348E-001 11 5 3 1 + -0.59002587391674043E-001 3 2 11 5 + -0.58748341626505447E-001 11 5 3 2 + 0.86909089398243961E-002 3 9 11 5 + 0.86803322326856388E-002 11 5 3 9 + 0.19253049268630337E-002 3 10 11 5 + 0.19253032791767130E-002 11 5 3 10 + -0.27998976595076327E-001 3 11 11 5 + -0.27998975814845534E-001 11 5 3 11 + 0.22980013425692329E-001 3 12 11 5 + 0.22980013988317841E-001 11 5 3 12 + -0.10025562786478611E-001 3 13 11 5 + -0.10025568427288578E-001 11 5 3 13 + 0.31583974855115340E-001 3 14 11 5 + 0.31583962860291297E-001 11 5 3 14 + 0.23777411762330225E-001 4 1 11 5 + 0.23746632957618436E-001 11 5 4 1 + 0.71112619078279579E-001 4 2 11 5 + 0.70806190770284785E-001 11 5 4 2 + -0.10474708993240826E-001 4 9 11 5 + -0.10461961814097280E-001 11 5 4 9 + -0.10051250842588691E-001 4 10 11 5 + -0.10051251087626046E-001 11 5 4 10 + -0.27673904100682076E-001 4 11 11 5 + -0.27673904892047831E-001 11 5 4 11 + 0.19020236417571057E-001 4 12 11 5 + 0.19020235972885536E-001 11 5 4 12 + 0.89888996521036001E-002 4 13 11 5 + 0.89889052054348845E-002 11 5 4 13 + -0.38089919870454909E-001 4 14 11 5 + -0.38089906176313887E-001 11 5 4 14 + -0.59047140461901638E-002 5 1 11 5 + -0.58970708764669024E-002 11 5 5 1 + -0.17659557897036621E-001 5 2 11 5 + -0.17583462804500190E-001 11 5 5 2 + 0.26012885233376525E-002 5 9 11 5 + 0.25981240080975841E-002 11 5 5 9 + 0.39703832107499714E-002 5 10 11 5 + 0.39703832189429177E-002 11 5 5 10 + 0.57050041307178521E-001 5 11 11 5 + 0.57050041307178521E-001 11 5 5 11 + 0.39464051197395315E-001 5 12 11 5 + 0.39464051217650335E-001 11 5 5 12 + -0.67394128993847752E-002 5 13 11 5 + -0.67394126221022059E-002 11 5 5 13 + -0.31966514357247689E-003 5 14 11 5 + -0.31966523164297142E-003 11 5 5 14 + -0.32778096894445531E-001 6 1 11 5 + -0.32872383828456773E-001 11 5 6 1 + -0.16460378600655766E-001 6 2 11 5 + -0.16806073540823235E-001 11 5 6 2 + 0.58227875972951385E-001 6 9 11 5 + 0.58738385653300910E-001 11 5 6 9 + 0.73088628337709971E-003 6 10 11 5 + 0.77334473965042806E-003 11 5 6 10 + 0.44111143193351798E-003 6 11 11 5 + 0.47192798935091881E-003 11 5 6 11 + 0.85690492055099765E-004 6 12 11 5 + 0.94857761919660342E-004 11 5 6 12 + -0.11852993052433268E-002 6 13 11 5 + -0.12509225365328453E-002 11 5 6 13 + 0.18996783465317446E-002 6 14 11 5 + 0.20768785151107851E-002 11 5 6 14 + 0.32245771222693016E-002 7 1 11 5 + 0.32338530960088463E-002 11 5 7 1 + 0.16192421480181731E-002 7 2 11 5 + 0.16532579047248992E-002 11 5 7 2 + -0.57282229113267743E-002 7 9 11 5 + -0.57784532462188468E-002 11 5 7 9 + -0.26213365754227714E-003 7 10 11 5 + -0.28303095535592835E-003 11 5 7 10 + -0.41407768320354038E-002 7 11 11 5 + -0.44249877972069723E-002 11 5 7 11 + -0.12070904163442215E-002 7 12 11 5 + -0.12814920547288468E-002 11 5 7 12 + 0.16175018179066361E-003 7 13 11 5 + 0.17571280971976312E-003 11 5 7 13 + 0.10140797819710229E-003 7 14 11 5 + 0.11253713707148246E-003 11 5 7 14 + 0.22356854256984429E-002 8 1 11 5 + 0.22421165783386670E-002 11 5 8 1 + 0.11226838613111248E-002 8 2 11 5 + 0.11462654728342887E-002 11 5 8 2 + -0.39715302060773072E-002 8 9 11 5 + -0.40063535755757145E-002 11 5 8 9 + 0.10828654163820354E-003 8 10 11 5 + 0.11704885773851648E-003 11 5 8 10 + -0.18569214967852768E-003 8 11 11 5 + -0.18460766545945156E-003 11 5 8 11 + -0.20101344758697206E-002 8 12 11 5 + -0.21824011617132834E-002 11 5 8 12 + 0.26096037414550480E-003 8 13 11 5 + 0.28023037198753411E-003 11 5 8 13 + 0.11892260081066151E-003 8 14 11 5 + 0.12687529800410418E-003 11 5 8 14 + 0.52556829160923975E-002 9 3 11 5 + 0.52451062089536402E-002 11 5 9 3 + -0.63343660053563943E-002 9 4 11 5 + -0.63216188262128483E-002 11 5 9 4 + 0.15729590766597893E-002 9 5 11 5 + 0.15697945614197208E-002 11 5 9 5 + 0.58166252789266841E-001 9 6 11 5 + 0.58676762469616367E-001 11 5 9 6 + -0.57221206057658540E-002 9 7 11 5 + -0.57723509406579264E-002 11 5 9 7 + -0.39673119422917215E-002 9 8 11 5 + -0.40021353117901280E-002 11 5 9 8 + 0.20938647023250189E-002 10 3 11 5 + 0.20938630546386981E-002 11 5 10 3 + -0.14566948597449562E-001 10 4 11 5 + -0.14566948842486917E-001 11 5 10 4 + 0.60769359084068917E-002 10 5 11 5 + 0.60769359165998380E-002 11 5 10 5 + 0.25337876990212016E-002 10 6 11 5 + 0.25762461552945298E-002 11 5 10 6 + -0.17240803364478841E-002 10 7 11 5 + -0.17449776342615352E-002 11 5 10 7 + 0.73097041156446551E-003 10 8 11 5 + 0.73973272766477847E-003 11 5 10 8 + -0.42853907338874508E-001 11 3 11 5 + -0.42853906558643719E-001 11 5 11 3 + -0.42356427683882675E-001 11 4 11 5 + -0.42356428475248425E-001 11 5 11 4 + 0.84585338174938879E-001 11 5 11 5 + 0.20886240404435715E-002 1 3 11 6 + 0.20724796643263178E-002 11 6 1 3 + 0.16013101906587454E-002 1 4 11 6 + 0.15889325706219665E-002 11 6 1 4 + -0.28497076969217642E-002 1 5 11 6 + -0.28276803772411454E-002 11 6 1 5 + -0.93440453388435587E-004 1 6 11 6 + -0.93765391386687106E-004 11 6 1 6 + 0.33109345409655182E-002 1 7 11 6 + 0.33224476284508622E-002 11 6 1 7 + -0.57357618071631139E-003 1 8 11 6 + -0.57557067043134832E-003 11 6 1 8 + 0.16857196480869838E-001 2 3 11 6 + 0.16648696772210664E-001 11 6 2 3 + 0.12924110787525155E-001 2 4 11 6 + 0.12764257010326406E-001 11 6 2 4 + -0.22999873976406807E-001 2 5 11 6 + -0.22715397322319586E-001 11 6 2 5 + -0.38429985552828298E-003 2 6 11 6 + -0.38537198098836923E-003 11 6 2 6 + 0.13617120138444723E-001 2 7 11 6 + 0.13655110167518289E-001 11 6 2 7 + -0.23589882047012310E-002 2 8 11 6 + -0.23655694839177953E-002 11 6 2 8 + 0.88096680278425231E-002 3 1 11 6 + 0.87935236517252685E-002 11 6 3 1 + 0.16979789945178288E-001 3 2 11 6 + 0.16771290236519115E-001 11 6 3 2 + -0.73480031066577049E-002 3 9 11 6 + -0.73683984235688067E-002 11 6 3 9 + -0.12357679670838157E-001 3 10 11 6 + -0.12200197560205198E-001 11 6 3 10 + 0.17470409805279762E-001 3 11 11 6 + 0.17213471685084275E-001 11 6 3 11 + 0.96077409042117290E-003 3 12 11 6 + 0.94869644633966885E-003 11 6 3 12 + -0.61898451431480709E-002 3 13 11 6 + -0.61121066651603807E-002 11 6 3 13 + 0.44882905193913709E-002 3 14 11 6 + 0.44473214385730075E-002 11 6 3 14 + 0.67542127967530610E-002 4 1 11 6 + 0.67418351767162821E-002 11 6 4 1 + 0.13018101632812659E-001 4 2 11 6 + 0.12858247855613909E-001 11 6 4 2 + -0.56335824754963045E-002 4 9 11 6 + -0.56492190768063309E-002 11 6 4 9 + -0.11117083897992059E-001 4 10 11 6 + -0.10973457006127349E-001 11 6 4 10 + -0.19025588748601777E-001 4 11 11 6 + -0.18744020741826024E-001 11 6 4 11 + 0.81654701960171775E-003 4 12 11 6 + 0.80604427748480858E-003 11 6 4 12 + -0.76875791031022593E-002 4 13 11 6 + -0.75891519163485662E-002 11 6 4 13 + 0.28974168573721467E-002 4 14 11 6 + 0.28721524461006241E-002 11 6 4 14 + -0.12019864910612355E-001 5 1 11 6 + -0.11997837590931735E-001 11 6 5 1 + -0.23167140446997816E-001 5 2 11 6 + -0.22882663792910596E-001 11 6 5 2 + 0.10025578454772546E-001 5 9 11 6 + 0.10053405612122829E-001 11 6 5 9 + 0.92888833422137464E-002 5 10 11 6 + 0.91691116042346889E-002 11 6 5 10 + 0.21053421781020952E-002 5 11 11 6 + 0.20745256206846944E-002 11 6 5 11 + -0.83022898848488316E-003 5 12 11 6 + -0.82093137063753716E-003 11 6 5 12 + -0.16558489348146164E-001 5 13 11 6 + -0.16346082077385776E-001 11 6 5 13 + -0.64855516624537559E-002 5 14 11 6 + -0.64243943124420375E-002 11 6 5 14 + -0.50550862832363878E-003 6 1 11 6 + -0.50583356632189034E-003 11 6 6 1 + -0.54736953317276703E-003 6 2 11 6 + -0.54844165863285322E-003 11 6 6 2 + 0.49286537778518670E-003 6 9 11 6 + 0.48462593306310695E-003 11 6 6 9 + 0.72695637260042508E-003 6 10 11 6 + 0.72695636907256359E-003 11 6 6 10 + 0.14854855849460681E-001 6 11 11 6 + 0.14854855849460681E-001 11 6 6 11 + -0.41050654953697710E-004 6 12 11 6 + -0.41050670698606897E-004 11 6 6 12 + 0.44535157565708545E-003 6 13 11 6 + 0.44535137349806909E-003 11 6 6 13 + 0.85520102476756025E-004 6 14 11 6 + 0.85520193131797116E-004 11 6 6 14 + 0.17912016175210252E-001 7 1 11 6 + 0.17923529262695595E-001 11 6 7 1 + 0.19395321687124625E-001 7 2 11 6 + 0.19433311716198189E-001 11 6 7 2 + -0.17464039057974383E-001 7 9 11 6 + -0.17172078424762389E-001 11 6 7 9 + -0.79059213231506154E-002 7 10 11 6 + -0.79059210773057328E-002 11 6 7 10 + 0.26678441926934532E-003 7 11 11 6 + 0.26678428431345727E-003 11 6 7 11 + 0.58289033221821526E-003 7 12 11 6 + 0.58289057218299833E-003 11 6 7 12 + 0.41585098647641296E-002 7 13 11 6 + 0.41585144081675383E-002 11 6 7 13 + 0.23461836434907663E-002 7 14 11 6 + 0.23461859595955395E-002 11 6 7 14 + -0.31030229747202385E-002 8 1 11 6 + -0.31050174644352757E-002 11 6 8 1 + -0.33599863678264153E-002 8 2 11 6 + -0.33665676470429795E-002 11 6 8 2 + 0.30254168585047213E-002 8 9 11 6 + 0.29748384642890543E-002 11 6 8 9 + 0.41874665806511174E-002 8 10 11 6 + 0.41874668521855790E-002 11 6 8 10 + -0.70701409246450779E-003 8 11 11 6 + -0.70701444086872310E-003 11 6 8 11 + -0.31890894083340187E-003 8 12 11 6 + -0.31890869613702239E-003 11 6 8 12 + 0.80170189916986094E-002 8 13 11 6 + 0.80170284450108119E-002 11 6 8 13 + -0.15863119506028930E-003 8 14 11 6 + -0.15863118192878948E-003 11 6 8 14 + -0.10207400445152824E-001 9 3 11 6 + -0.10227795762063927E-001 11 6 9 3 + -0.78258257741394849E-002 9 4 11 6 + -0.78414623754495105E-002 11 6 9 4 + 0.13926920891572776E-001 9 5 11 6 + 0.13954748048923060E-001 11 6 9 5 + 0.53244501334423077E-003 9 6 11 6 + 0.52420556862215113E-003 11 6 9 6 + -0.18866483538863082E-001 9 7 11 6 + -0.18574522905651088E-001 11 6 9 7 + 0.32683720330791070E-002 9 8 11 6 + 0.32177936388634401E-002 11 6 9 8 + -0.13613656113796705E-001 10 3 11 6 + -0.13456174003163745E-001 11 6 10 3 + -0.12240341576532561E-001 10 4 11 6 + -0.12096714684667852E-001 11 6 10 4 + 0.10228211164580640E-001 10 5 11 6 + 0.10108439426601582E-001 11 6 10 5 + 0.60798948481728080E-003 10 6 11 6 + 0.60798948128941931E-003 11 6 10 6 + -0.64862555302959597E-002 10 7 11 6 + -0.64862552844510762E-002 11 6 10 7 + 0.34308193405018839E-002 10 8 11 6 + 0.34308196120363455E-002 11 6 10 8 + 0.19129292698545523E-001 11 3 11 6 + 0.18872354578350035E-001 11 6 11 3 + -0.20826179073991976E-001 11 4 11 6 + -0.20544611067216223E-001 11 6 11 4 + 0.23057580175167413E-002 11 5 11 6 + 0.22749414600993405E-002 11 6 11 5 + 0.12579266395710916E-001 11 6 11 6 + 0.26529530150649692E-002 1 3 11 7 + 0.26324464818159622E-002 11 7 1 3 + -0.27515246753807309E-002 1 4 11 7 + -0.27302563565436339E-002 11 7 1 4 + 0.28034366460192369E-003 1 5 11 7 + 0.27817646036311735E-003 11 7 1 5 + 0.33109345409655035E-002 1 6 11 7 + 0.33224476284508522E-002 11 7 1 6 + 0.13074628459251297E-003 1 7 11 7 + 0.13120075666472739E-003 11 7 1 7 + -0.22466960895422983E-003 1 8 11 7 + -0.22545109824247822E-003 11 7 1 8 + 0.21411887472336522E-001 2 3 11 7 + 0.21147049462905316E-001 11 7 2 3 + -0.22207427603624780E-001 2 4 11 7 + -0.21932755536317801E-001 11 7 2 4 + 0.22626888686258016E-002 2 5 11 7 + 0.22346929785211265E-002 11 7 2 5 + 0.13617120138444756E-001 2 6 11 7 + 0.13655110167518318E-001 11 7 2 6 + 0.53772464569701176E-003 2 7 11 7 + 0.53922503667499903E-003 11 7 2 7 + -0.92402228678483301E-003 2 8 11 7 + -0.92659989057342865E-003 11 7 2 8 + 0.11189967670486198E-001 3 1 11 7 + 0.11169461137237191E-001 11 7 3 1 + 0.21567607376286449E-001 3 2 11 7 + 0.21302769366855243E-001 11 7 3 2 + -0.93333798263439700E-002 3 9 11 7 + -0.93592853042726420E-002 11 7 3 9 + -0.28799202479815895E-002 3 10 11 7 + -0.28287084839774832E-002 11 7 3 10 + 0.14280492113891909E-001 3 11 11 7 + 0.14071843426937840E-001 11 7 3 11 + -0.10352296609700495E-001 3 12 11 7 + -0.10223832820352170E-001 11 7 3 12 + 0.13237984511352695E-002 3 13 11 7 + 0.12988392330394137E-002 11 7 3 13 + -0.12307234591684049E-001 3 14 11 7 + -0.12160766567161908E-001 11 7 3 14 + -0.11605735829169536E-001 4 1 11 7 + -0.11584467510332439E-001 11 7 4 1 + -0.22368928497938215E-001 4 2 11 7 + -0.22094256430631235E-001 11 7 4 2 + 0.96801532664344148E-002 4 9 11 7 + 0.97070221469346338E-002 11 7 4 9 + 0.24007076876259030E-002 4 10 11 7 + 0.23535815994695144E-002 11 7 4 10 + 0.93699891679575962E-002 4 11 11 7 + 0.92330780804946999E-002 11 7 4 11 + -0.89259840985086471E-002 4 12 11 7 + -0.88121750502913841E-002 11 7 4 12 + -0.20410420676950673E-002 4 13 11 7 + -0.20069862938834225E-002 11 7 4 13 + 0.15736201480629548E-001 4 14 11 7 + 0.15546907267773323E-001 11 7 4 14 + 0.11824698786020013E-002 5 1 11 7 + 0.11803026743631949E-002 11 7 5 1 + 0.22791519611028415E-002 5 2 11 7 + 0.22511560709981664E-002 11 7 5 2 + -0.98629986004703527E-003 5 9 11 7 + -0.98903594656329680E-003 11 7 5 9 + -0.73365994762854150E-003 5 10 11 7 + -0.72229532152190141E-003 11 7 5 10 + -0.19109505329099552E-001 5 11 11 7 + -0.18825294363927981E-001 11 7 5 11 + -0.13398897706975964E-001 5 12 11 7 + -0.13224686098586381E-001 11 7 5 12 + -0.20951291928005559E-004 5 13 11 7 + -0.22224251120020167E-004 11 7 5 13 + -0.11018772309897321E-002 5 14 11 7 + -0.10894359049359358E-002 11 7 5 14 + 0.17912016175210512E-001 6 1 11 7 + 0.17923529262695862E-001 11 7 6 1 + 0.19395321687124597E-001 6 2 11 7 + 0.19433311716198162E-001 11 7 6 2 + -0.17464039057975056E-001 6 9 11 7 + -0.17172078424763069E-001 11 7 6 9 + -0.29195472648164953E-002 6 10 11 7 + -0.29195475390977874E-002 11 7 6 10 + 0.26678155108483841E-003 6 11 11 7 + 0.26678168604072651E-003 11 7 6 11 + -0.18295508174996991E-003 6 12 11 7 + -0.18295421776411681E-003 11 7 6 12 + 0.17354629630119383E-002 6 13 11 7 + 0.17354648469248329E-002 11 7 6 13 + -0.85033813822279133E-002 6 14 11 7 + -0.85033913514558600E-002 11 7 6 14 + 0.70733453128380460E-003 7 1 11 7 + 0.70778900335601903E-003 11 7 7 1 + 0.76591487281543855E-003 7 2 11 7 + 0.76741526379342582E-003 11 7 7 2 + -0.68964932932960414E-003 7 9 11 7 + -0.67811812204434231E-003 11 7 7 9 + 0.10625045103871993E-004 7 10 11 7 + 0.10625075038629787E-004 11 7 7 10 + 0.14569339416746081E-001 7 11 11 7 + 0.14569339416746081E-001 11 7 7 11 + 0.20207407236216774E-002 7 12 11 7 + 0.20207407270045751E-002 11 7 7 12 + 0.52477331037971555E-005 7 13 11 7 + 0.52478096436591148E-005 11 7 7 13 + 0.13124742111155624E-004 7 14 11 7 + 0.13124964471496347E-004 11 7 7 14 + -0.12154492746726600E-002 8 1 11 7 + -0.12162307639609084E-002 11 7 8 1 + -0.13160934252264272E-002 8 2 11 7 + -0.13186710290150230E-002 11 7 8 2 + 0.11850436162561685E-002 8 9 11 7 + 0.11652348402444331E-002 11 7 8 9 + 0.43856782526496417E-003 8 10 11 7 + 0.43856819611218299E-003 11 7 8 10 + -0.20296012596967713E-002 8 11 11 7 + -0.20296013022710461E-002 11 7 8 11 + 0.87248578319266534E-002 8 12 11 7 + 0.87248578261834280E-002 11 7 8 12 + 0.83059256694958752E-004 8 13 11 7 + 0.83059768009525813E-004 11 7 8 13 + -0.32300539066362798E-003 8 14 11 7 + -0.32300572099499414E-003 11 7 8 14 + -0.12965343027420756E-001 9 3 11 7 + -0.12991248505349428E-001 11 7 9 3 + 0.13447099118930439E-001 9 4 11 7 + 0.13473967999430658E-001 11 7 9 4 + -0.13700407618174575E-002 9 5 11 7 + -0.13727768483337191E-002 11 7 9 5 + -0.18866483538863742E-001 9 6 11 7 + -0.18574522905651755E-001 11 7 9 6 + -0.74502927976625619E-003 9 7 11 7 + -0.73349807248099437E-003 11 7 9 7 + 0.12802112807139469E-002 9 8 11 7 + 0.12604025047022115E-002 11 7 9 8 + -0.31230721493567285E-002 10 3 11 7 + -0.30718603853526222E-002 11 7 10 3 + 0.25882050247848418E-002 10 4 11 7 + 0.25410789366284532E-002 11 7 10 4 + -0.80135838250753157E-003 10 5 11 7 + -0.78999375640089148E-003 11 7 10 5 + -0.25669991781968496E-002 10 6 11 7 + -0.25669994524781417E-002 11 7 10 6 + 0.88851806011054483E-005 10 7 11 7 + 0.88852105358632425E-005 11 7 10 7 + 0.36581971586955225E-003 10 8 11 7 + 0.36582008671677107E-003 11 7 10 8 + 0.15640961069809667E-001 11 3 11 7 + 0.15432312382855598E-001 11 7 11 3 + 0.10262607996337408E-001 11 4 11 7 + 0.10125696908874512E-001 11 7 11 4 + -0.20913113342885696E-001 11 5 11 7 + -0.20628902377714125E-001 11 7 11 5 + 0.22310751212217475E-003 11 6 11 7 + 0.22310764707806282E-003 11 7 11 6 + 0.12340170948214138E-001 11 7 11 7 + -0.51106936877846215E-003 1 3 11 8 + -0.50711877061954136E-003 11 8 1 3 + 0.45627666848404241E-003 1 4 11 8 + 0.45274995465264628E-003 11 8 1 4 + 0.19436946455805263E-003 1 5 11 8 + 0.19286696129093572E-003 11 8 1 5 + -0.57357618071631681E-003 1 6 11 8 + -0.57557067043135309E-003 11 8 1 6 + -0.22466960895423669E-003 1 7 11 8 + -0.22545109824248529E-003 11 8 1 7 + -0.37305831204079703E-004 1 8 11 8 + -0.37435365278042612E-004 11 8 1 8 + -0.41248584980195331E-002 2 3 11 8 + -0.40738317961515570E-002 11 8 2 3 + 0.36825594757556360E-002 2 4 11 8 + 0.36370176156312189E-002 11 8 2 4 + 0.15687656180822785E-002 2 5 11 8 + 0.15493585419309294E-002 11 8 2 5 + -0.23589882047011881E-002 2 6 11 8 + -0.23655694839177501E-002 11 8 2 6 + -0.92402228678483626E-003 2 7 11 8 + -0.92659989057343255E-003 11 8 2 7 + -0.15342479016872105E-003 2 8 11 8 + -0.15385305568662176E-003 11 8 2 8 + -0.21556544987832793E-002 3 1 11 8 + -0.21517039006243585E-002 11 8 3 1 + -0.41548628782891311E-002 3 2 11 8 + -0.41038361764211551E-002 11 8 3 2 + 0.17980141503340390E-002 3 9 11 8 + 0.18030035041653705E-002 11 8 3 9 + 0.21937154450007109E-002 3 10 11 8 + 0.21567624681035351E-002 11 8 3 10 + -0.51223323905557130E-002 3 11 11 8 + -0.50373526721470569E-002 11 8 3 11 + 0.31342043208497298E-002 3 12 11 8 + 0.30805605662195417E-002 11 8 3 12 + 0.18234111697126060E-002 3 13 11 8 + 0.17847644719710487E-002 11 8 3 13 + 0.20083434889792309E-002 3 14 11 8 + 0.19841523951661683E-002 11 8 3 14 + 0.19245424953822834E-002 4 1 11 8 + 0.19210157815508873E-002 11 8 4 1 + 0.37093357869009678E-002 4 2 11 8 + 0.36637939267765507E-002 11 8 4 2 + -0.16052167886900386E-002 4 9 11 8 + -0.16096732471433772E-002 11 8 4 9 + -0.18801779287212132E-003 4 10 11 8 + -0.17769785963971579E-003 11 8 4 10 + -0.23949111959373644E-002 4 11 11 8 + -0.23492147032664538E-002 11 8 4 11 + 0.32994156891958080E-002 4 12 11 8 + 0.32468461924685314E-002 11 8 4 12 + -0.18973533405334663E-002 4 13 11 8 + -0.18563442476985904E-002 11 8 4 13 + -0.28945681563375091E-002 4 14 11 8 + -0.28591209258735282E-002 11 8 4 14 + 0.81983668446590160E-003 5 1 11 8 + 0.81833418119878470E-003 11 8 5 1 + 0.15801773696247636E-002 5 2 11 8 + 0.15607702934734146E-002 11 8 5 2 + -0.68382051632030890E-003 5 9 11 8 + -0.68571797111297505E-003 11 8 5 9 + 0.24324216895607972E-003 5 10 11 8 + 0.23927425997020030E-003 11 8 5 10 + 0.93570009699456486E-003 5 11 11 8 + 0.93461561277548874E-003 11 8 5 11 + -0.12633784711030637E-003 5 12 11 8 + -0.10606941080745545E-003 11 8 5 12 + 0.14441391850480328E-002 5 13 11 8 + 0.14241331989886545E-002 11 8 5 13 + 0.10378091862401240E-002 5 14 11 8 + 0.10240749797745278E-002 11 8 5 14 + -0.31030229747201917E-002 6 1 11 8 + -0.31050174644352280E-002 11 8 6 1 + -0.33599863678263893E-002 6 2 11 8 + -0.33665676470429513E-002 11 8 6 2 + 0.30254168585045278E-002 6 9 11 8 + 0.29748384642888604E-002 11 8 6 9 + 0.13594799657471346E-002 6 10 11 8 + 0.13594801319930369E-002 11 8 6 10 + -0.70702149701411493E-003 6 11 11 8 + -0.70702114860989962E-003 11 8 6 11 + -0.30099834366577370E-003 6 12 11 8 + -0.30099856236778810E-003 11 8 6 12 + 0.24898809537841227E-002 6 13 11 8 + 0.24898839621000980E-002 11 8 6 13 + 0.15617582698876603E-002 6 14 11 8 + 0.15617601390662678E-002 11 8 6 14 + -0.12154492746726455E-002 7 1 11 8 + -0.12162307639608941E-002 11 8 7 1 + -0.13160934252264298E-002 7 2 11 8 + -0.13186710290150261E-002 11 8 7 2 + 0.11850436162561589E-002 7 9 11 8 + 0.11652348402444229E-002 11 8 7 9 + 0.39919194551801454E-003 7 10 11 8 + 0.39919153647458055E-003 11 8 7 10 + -0.20296021645174961E-002 7 11 11 8 + -0.20296021219432213E-002 11 8 7 11 + 0.25176419847320894E-002 7 12 11 8 + 0.25176420183771666E-002 11 8 7 12 + -0.40692819505089360E-003 7 13 11 8 + -0.40692845356967398E-003 11 8 7 13 + -0.41604020517582599E-003 7 14 11 8 + -0.41604039659253183E-003 11 8 7 14 + -0.20182590296015696E-003 8 1 11 8 + -0.20195543703411989E-003 11 8 8 1 + -0.21854533964266293E-003 8 2 11 8 + -0.21897360516056363E-003 11 8 8 2 + 0.19678395154435862E-003 8 9 11 8 + 0.19349218898117909E-003 11 8 8 9 + -0.73757816630791212E-003 8 10 11 8 + -0.73757819271480876E-003 11 8 8 10 + 0.33129236243693390E-002 8 11 11 8 + 0.33129236243693390E-002 11 8 8 11 + -0.19796864288122041E-002 8 12 11 8 + -0.19796864164501899E-002 11 8 8 12 + -0.45048495612530633E-003 8 13 11 8 + -0.45048483050615193E-003 11 8 8 13 + -0.98646172807113078E-004 8 14 11 8 + -0.98646485822494515E-004 11 8 8 14 + 0.24976361894008675E-002 9 3 11 8 + 0.25026255432321989E-002 11 8 9 3 + -0.22299131318556566E-002 9 4 11 8 + -0.22343695903089952E-002 11 8 9 4 + -0.94989643769780030E-003 9 5 11 8 + -0.95179389249046655E-003 11 8 9 5 + 0.32683720330786855E-002 9 6 11 8 + 0.32177936388630181E-002 11 8 9 6 + 0.12802112807139383E-002 9 7 11 8 + 0.12604025047022022E-002 11 8 9 7 + 0.21258426642199556E-003 9 8 11 8 + 0.20929250385881603E-003 11 8 9 8 + 0.23859730162123071E-002 10 3 11 8 + 0.23490200393151313E-002 11 8 10 3 + -0.18002646133713591E-003 10 4 11 8 + -0.16970652810473037E-003 11 8 10 4 + 0.26500365814028189E-003 10 5 11 8 + 0.26103574915440248E-003 11 8 10 5 + 0.12080421672994997E-002 10 6 11 8 + 0.12080423335454019E-002 11 8 10 6 + 0.33485733208235655E-003 10 7 11 8 + 0.33485692303892255E-003 11 8 10 7 + -0.61687591873299421E-003 10 8 11 8 + -0.61687594513989085E-003 11 8 10 8 + -0.55757895489432800E-002 11 3 11 8 + -0.54908098305346239E-002 11 8 11 3 + -0.25866080798134222E-002 11 4 11 8 + -0.25409115871425116E-002 11 8 11 4 + 0.10676148783813825E-002 11 5 11 8 + 0.10665303941623063E-002 11 8 11 5 + -0.59127953801274785E-003 11 6 11 8 + -0.59127918960853254E-003 11 8 11 6 + -0.16972513424497462E-002 11 7 11 8 + -0.16972512998754711E-002 11 8 11 7 + 0.29263907578743276E-002 11 8 11 8 + -0.14047531324406586E-002 1 11 11 9 + -0.14038718342966280E-002 11 9 1 11 + -0.14060534634220931E-009 1 13 11 9 + -0.23234469050088526E-009 11 9 1 13 + 0.29558995303863027E-008 2 10 11 9 + 0.27428595576943344E-008 11 9 2 10 + -0.15503563617903558E-001 2 11 11 9 + -0.15492351140602443E-001 11 9 2 11 + 0.33090545977438310E-008 2 12 11 9 + 0.30705617488508794E-008 11 9 2 12 + 0.10395991907958041E-006 2 13 11 9 + 0.96467236050450892E-007 11 9 2 13 + -0.12075065759939465E-008 2 14 11 9 + -0.11204781892999656E-008 11 9 2 14 + -0.84188176962939308E-002 3 3 11 9 + -0.84175850376857382E-002 11 9 3 3 + 0.15499570151372281E-002 3 4 11 9 + 0.15497326505541458E-002 11 9 3 4 + 0.53097781115382390E-002 3 5 11 9 + 0.53090028872573953E-002 11 9 3 5 + -0.54261743657612891E-002 3 6 11 9 + -0.54744228396380028E-002 11 9 3 6 + -0.68922892972701636E-002 3 7 11 9 + -0.69535738920557593E-002 11 9 3 7 + 0.13277594241194444E-002 3 8 11 9 + 0.13395648875852181E-002 11 9 3 8 + 0.15499570151372298E-002 4 3 11 9 + 0.15497326505541475E-002 11 9 4 3 + 0.68295105238832523E-002 4 4 11 9 + 0.68285139912516732E-002 11 9 4 4 + -0.63996140458822534E-002 4 5 11 9 + -0.63986784060889841E-002 11 9 4 5 + -0.41601513329999947E-002 4 6 11 9 + -0.41971425099802430E-002 11 9 4 6 + 0.71483620713079770E-002 4 7 11 9 + 0.72119241156950627E-002 11 9 4 7 + -0.11853769758188087E-002 4 8 11 9 + -0.11959176640448088E-002 11 9 4 8 + 0.53097781115382355E-002 5 3 11 9 + 0.53090028872573919E-002 11 9 5 3 + -0.63996140458822534E-002 5 4 11 9 + -0.63986784060889841E-002 11 9 5 4 + 0.15893071724106557E-002 5 5 11 9 + 0.15890710464340414E-002 11 9 5 5 + 0.74034454941634843E-002 5 6 11 9 + 0.74692754113120773E-002 11 9 5 6 + -0.72834556369973699E-003 5 7 11 9 + -0.73482101564610234E-003 11 9 5 7 + -0.50497373138957177E-003 5 8 11 9 + -0.50946353373345222E-003 11 9 5 8 + -0.68007319070826694E-002 6 3 11 9 + -0.68489803809593831E-002 11 9 6 3 + -0.52139980971372237E-002 6 4 11 9 + -0.52509892741174720E-002 11 9 6 4 + 0.92788831798019632E-002 6 5 11 9 + 0.93447130969505562E-002 11 9 6 5 + 0.14422662440405682E-003 6 6 11 9 + 0.13827678845662901E-003 11 9 6 6 + -0.51104992138423927E-002 6 7 11 9 + -0.48996611282478859E-002 11 9 6 7 + 0.88532736110388962E-003 6 8 11 9 + 0.84880236482155530E-003 11 9 6 8 + -0.86382344434406122E-002 7 3 11 9 + -0.86995190382262080E-002 11 9 7 3 + 0.89591902789960595E-002 7 4 11 9 + 0.90227523233831451E-002 11 9 7 4 + -0.91282480443129589E-003 7 5 11 9 + -0.91930025637766124E-003 11 9 7 5 + -0.51104992138423641E-002 7 6 11 9 + -0.48996611282478581E-002 11 9 7 6 + -0.20181667089417090E-003 7 7 11 9 + -0.19348718205822388E-003 11 9 7 7 + 0.34677235960184376E-003 7 8 11 9 + 0.33247083518474961E-003 11 9 7 8 + 0.16640862464953640E-002 8 3 11 9 + 0.16758917099611377E-002 11 9 8 3 + -0.14856726484739071E-002 8 4 11 9 + -0.14962133366999072E-002 11 9 8 4 + -0.63288402899567295E-003 8 5 11 9 + -0.63737383133955329E-003 11 9 8 5 + 0.88532736110389374E-003 8 6 11 9 + 0.84880236482155942E-003 11 9 8 6 + 0.34677235960184458E-003 8 7 11 9 + 0.33247083518475043E-003 11 9 8 7 + 0.57590046490220970E-004 8 8 11 9 + 0.55210393601701784E-004 11 9 8 8 + 0.15794649256575815E-008 9 10 11 9 + 0.15794649256840467E-008 11 9 9 10 + 0.13530995068522437E-001 9 11 11 9 + 0.13530995068522437E-001 11 9 9 11 + 0.17681710873939851E-008 9 12 11 9 + 0.17681710873454691E-008 11 9 9 12 + 0.55550278139220261E-007 9 13 11 9 + 0.55550278139211559E-007 11 9 9 13 + -0.64522295235328405E-009 9 14 11 9 + -0.64522295234072735E-009 11 9 9 14 + 0.18890408251375007E-009 10 1 11 9 + 0.18629565144392009E-009 11 9 10 1 + 0.50217072648459990E-008 10 2 11 9 + 0.48086672921568654E-008 11 9 10 2 + -0.11183180222722862E-008 10 9 11 9 + -0.11183180222463380E-008 11 9 10 9 + 0.29661532332226812E-003 10 10 11 9 + 0.29640801941937356E-003 11 9 10 10 + 0.65808324913718581E-002 10 11 11 9 + 0.65762330056461519E-002 11 9 10 11 + -0.20935915846241153E-002 10 12 11 9 + -0.20921279999994401E-002 11 9 10 12 + -0.32237827318401134E-003 10 13 11 9 + -0.32215199531692920E-003 11 9 10 13 + 0.50429408713463216E-003 10 14 11 9 + 0.50394036856424480E-003 11 9 10 14 + -0.29210326506432897E-002 11 1 11 9 + -0.29201513524992596E-002 11 9 11 1 + -0.11974435022777617E-001 11 2 11 9 + -0.11963222545476502E-001 11 9 11 2 + 0.10029282006999563E-001 11 9 11 9 + -0.14487215883627300E-008 1 1 11 10 + -0.38138754991368444E-009 11 10 1 1 + 0.15145677170171716E-009 1 2 11 10 + 0.16010877571311048E-004 1 10 11 10 + 0.15967593899301192E-004 11 10 1 10 + 0.35522830481793589E-003 1 11 11 10 + 0.35426783646006643E-003 11 10 1 11 + -0.11300933303637867E-003 1 12 11 10 + -0.11270371339562784E-003 11 10 1 12 + -0.17398461801318040E-004 1 13 11 10 + -0.17351418332768918E-004 11 10 1 13 + 0.27218823400510805E-004 1 14 11 10 + 0.27145162626596982E-004 11 10 1 14 + 0.30792535174854882E-009 2 1 11 10 + 0.24276913479050654E-009 11 10 2 1 + 0.42689045819546325E-008 2 2 11 10 + 0.39157078369432242E-008 11 10 2 2 + 0.42611777555369233E-008 2 9 11 10 + 0.33989736093598532E-008 11 10 2 9 + -0.11549138440798664E-002 2 10 11 10 + -0.11495088429695453E-002 11 10 2 10 + -0.25623203631383012E-001 2 11 11 10 + -0.25503287679970319E-001 11 10 2 11 + 0.81516155941687429E-002 2 12 11 10 + 0.81134667239034838E-002 11 10 2 12 + 0.12550743843503566E-002 2 13 11 10 + 0.12491991605463662E-002 11 10 2 13 + -0.19633528831054245E-002 2 14 11 10 + -0.19541633803922195E-002 11 10 2 14 + -0.23817854197348273E-001 3 3 11 10 + -0.23574609601797122E-001 11 10 3 3 + 0.17940912711804720E-002 3 4 11 10 + 0.17757736476772998E-002 11 10 3 4 + 0.65273999973860632E-002 3 5 11 10 + 0.64607381007244979E-002 11 10 3 5 + -0.34002507493242585E-002 3 6 11 10 + -0.34921070067798926E-002 11 10 3 6 + -0.33522749734578908E-002 3 7 11 10 + -0.34428369038362141E-002 11 10 3 7 + 0.21904818542151502E-002 3 8 11 10 + 0.22496584537163430E-002 11 10 3 8 + 0.17940857964499212E-002 4 3 11 10 + 0.17757681729467492E-002 11 10 4 3 + 0.21258376526656835E-001 4 4 11 10 + 0.21041272254308296E-001 11 10 4 4 + -0.11543212767689612E-001 4 5 11 10 + -0.11425325372897935E-001 11 10 4 5 + -0.34031603034148459E-002 4 6 11 10 + -0.34950986962928570E-002 11 10 4 6 + 0.35777432510306381E-002 4 7 11 10 + 0.36743956018370646E-002 11 10 4 7 + -0.14500112864252496E-002 4 8 11 10 + -0.14891830804454769E-002 11 10 4 8 + 0.65274363919206610E-002 5 3 11 10 + 0.64607744952590957E-002 11 10 5 3 + -0.11543207981227111E-001 5 4 11 10 + -0.11425320586435434E-001 11 10 5 4 + 0.25594891796856668E-002 5 5 11 10 + 0.25333484195484545E-002 11 10 5 5 + 0.28020582249254017E-002 5 6 11 10 + 0.28777556887761915E-002 11 10 5 6 + -0.55721867858144500E-003 5 7 11 10 + -0.57227284812935632E-003 11 10 5 7 + 0.21987121292214542E-003 5 8 11 10 + 0.22581071837666635E-003 11 10 5 8 + -0.20738193219537022E-002 6 3 11 10 + -0.21656755794093362E-002 11 10 6 3 + -0.20755516063527524E-002 6 4 11 10 + -0.21674899992307635E-002 11 10 6 4 + 0.17089657906047232E-002 6 5 11 10 + 0.17846632544555128E-002 11 10 6 5 + 0.16980957130213858E-002 6 6 11 10 + 0.17263257913049113E-002 11 10 6 6 + -0.12643529828676470E-001 6 7 11 10 + -0.12853729618748675E-001 11 10 6 7 + 0.64785133963848242E-002 6 8 11 10 + 0.65862197976965364E-002 11 10 6 8 + -0.20445323964476841E-002 7 3 11 10 + -0.21350943268260074E-002 11 10 7 3 + 0.21820701532858215E-002 7 4 11 10 + 0.22787225040922475E-002 11 10 7 4 + -0.33984435465771228E-003 7 5 11 10 + -0.35489852420562365E-003 11 10 7 5 + -0.12643536163140262E-001 7 6 11 10 + -0.12853735953212467E-001 11 10 7 6 + 0.24817615518364288E-004 7 7 11 10 + 0.25228053917547408E-004 11 10 7 7 + 0.97846520647335423E-003 7 8 11 10 + 0.99473239647994904E-003 11 10 7 8 + 0.13359314878578700E-002 8 3 11 10 + 0.13951080873590628E-002 11 10 8 3 + -0.88438152637239451E-003 8 4 11 10 + -0.92355332039262196E-003 11 10 8 4 + 0.13410030052166583E-003 8 5 11 10 + 0.14003980597618676E-003 11 10 8 5 + 0.64785121141063672E-002 8 6 11 10 + 0.65862185154180793E-002 11 10 8 6 + 0.97845570841430794E-003 8 7 11 10 + 0.99472289842090274E-003 11 10 8 7 + -0.17229035816996427E-002 8 8 11 10 + -0.17515492676204217E-002 11 10 8 8 + -0.32850758462254640E-009 9 1 11 10 + -0.28111423809740522E-009 11 10 9 1 + -0.33247800828836316E-008 9 2 11 10 + -0.41869842290632816E-008 11 10 9 2 + 0.35623289566649103E-008 9 9 11 10 + 0.20005636200580560E-008 11 10 9 9 + -0.90108397830196464E-004 9 10 11 10 + -0.89901109058549374E-004 11 10 9 10 + -0.19992102571043686E-002 9 11 11 10 + -0.19946107713786627E-002 11 10 9 11 + 0.63602593302766828E-003 9 12 11 10 + 0.63456238997085907E-003 11 10 9 12 + 0.97958822225522720E-004 9 13 11 10 + 0.97733142743117816E-004 11 10 9 13 + -0.15323031429249694E-003 9 14 11 10 + -0.15287704997173201E-003 11 10 9 14 + -0.19771866141018410E-003 10 1 11 10 + -0.19776194508219395E-003 11 10 10 1 + -0.20628998709865888E-002 10 2 11 10 + -0.20574948698762678E-002 11 10 10 2 + 0.29640794297568430E-003 10 9 11 10 + 0.29661523174733141E-003 11 10 10 9 + 0.29483401962831336E-007 10 10 11 10 + 0.29282290103632420E-007 11 10 10 10 + 0.34387503312495050E-001 10 11 11 10 + 0.34387503312495050E-001 11 10 10 11 + -0.22989693191940555E-003 10 12 11 10 + -0.22989483000043767E-003 11 10 10 12 + -0.51804397259074377E-003 10 13 11 10 + -0.51804078024439014E-003 11 10 10 13 + -0.13782268503983926E-003 10 14 11 10 + -0.13782251149400596E-003 11 10 10 14 + -0.43866583456409619E-002 11 1 11 10 + -0.43876188139988313E-002 11 10 11 1 + -0.45768217575753320E-001 11 2 11 10 + -0.45648301624340630E-001 11 10 11 2 + 0.65762341621659103E-002 11 9 11 10 + 0.65808336478916166E-002 11 10 11 9 + 0.34387560141836054E-001 11 10 11 10 + 0.78465737203629038 1 1 11 11 + 0.78348174414478566 11 11 1 1 + -0.37490018390296649E-001 1 2 11 11 + -0.37882716037519831E-001 11 11 1 2 + 0.33554516053940171E-001 1 9 11 11 + 0.33475992139134346E-001 11 11 1 9 + 0.35522836625123330E-003 1 10 11 11 + 0.35426791474148250E-003 11 11 1 10 + -0.35139313583010053E-004 1 11 11 11 + -0.35044404833318661E-004 11 11 1 11 + 0.45683751197901100E-005 1 12 11 11 + 0.45557570811477252E-005 11 11 1 12 + -0.12250411391541319E-003 1 13 11 11 + -0.12217277949715363E-003 11 11 1 13 + 0.19029187921169375E-003 1 14 11 11 + 0.18977720611741453E-003 11 11 1 14 + 0.31646251017618109E-001 2 1 11 11 + 0.31253553370394926E-001 11 11 2 1 + 0.63941806793030853 2 2 11 11 + 0.63694283980962108 11 11 2 2 + -0.15253654934103553 2 9 11 11 + -0.15182800680299979 11 11 2 9 + -0.25623202535897255E-001 2 10 11 11 + -0.25503286338990822E-001 11 11 2 10 + 0.25347709950794195E-002 2 11 11 11 + 0.25229079863954848E-002 11 11 2 11 + -0.32913515646442387E-003 2 12 11 11 + -0.32759677952610706E-003 11 11 2 12 + 0.88365991516057753E-002 2 13 11 11 + 0.87952401731406209E-002 11 11 2 13 + -0.13726429290475560E-001 2 14 11 11 + -0.13662182614930690E-001 11 11 2 14 + 0.62696386139776739 3 3 11 11 + 0.62409609813495415 11 11 3 3 + -0.14243072950892881E-001 3 4 11 11 + -0.14097591150298386E-001 11 11 3 4 + -0.18049421791474268E-001 3 5 11 11 + -0.17865088450031284E-001 11 11 3 5 + 0.10896255531860474 3 6 11 11 + 0.11048936670235458 11 11 3 6 + 0.79260215004253134E-001 3 7 11 11 + 0.80381464054138776E-001 11 11 3 7 + -0.10149778762781470 3 8 11 11 + -0.10284452000264717 11 11 3 8 + -0.14243090399121935E-001 4 3 11 11 + -0.14097608598527440E-001 11 11 4 3 + 0.62248026592229844 4 4 11 11 + 0.61965828337386253 11 11 4 4 + -0.17839861057056802E-001 4 5 11 11 + -0.17657666688241144E-001 11 11 4 5 + -0.13131942228706669 4 6 11 11 + -0.13314576741985046 11 11 4 6 + 0.52069313310583072E-001 4 7 11 11 + 0.52805831185585766E-001 11 11 4 7 + -0.90446618903381779E-001 4 8 11 11 + -0.91632031405948278E-001 11 11 4 8 + -0.18049438570339409E-001 5 3 11 11 + -0.17865105228896425E-001 11 11 5 3 + -0.17839844038734370E-001 5 4 11 11 + -0.17657649669918712E-001 11 11 5 4 + 0.61531819450979119 5 5 11 11 + 0.61256936273903717 11 11 5 5 + 0.12068652852214453E-001 5 6 11 11 + 0.12238916278430073E-001 11 11 5 6 + -0.14207082097333484 5 7 11 11 + -0.14403671271335156 11 11 5 7 + -0.85469936066317698E-001 5 8 11 11 + -0.86568477903080060E-001 11 11 5 8 + 0.80618556298902799E-001 6 3 11 11 + 0.82145367682652640E-001 11 11 6 3 + -0.97297133218041176E-001 6 4 11 11 + -0.99123478350824940E-001 11 11 6 4 + 0.89177401749716469E-002 6 5 11 11 + 0.90880036011872674E-002 11 11 6 5 + 0.49731033276309272 6 6 11 11 + 0.49714255566928661 11 11 6 6 + 0.62317055271121917E-003 6 7 11 11 + 0.63352934244812690E-003 11 11 6 7 + -0.16515229927812794E-002 6 8 11 11 + -0.16789824387282827E-002 11 11 6 8 + 0.58536353356393289E-001 7 3 11 11 + 0.59657602406278924E-001 11 11 7 3 + 0.38455720697313012E-001 7 4 11 11 + 0.39192238572315706E-001 11 11 7 4 + -0.10536290684274559 7 5 11 11 + -0.10732879858276229 11 11 7 5 + 0.62317383988745167E-003 7 6 11 11 + 0.63353262962435940E-003 11 11 7 6 + 0.49664335416397182 7 7 11 11 + 0.49646448467557519 11 11 7 7 + -0.47409069245944041E-002 7 8 11 11 + -0.48197235944752370E-002 11 11 7 8 + -0.75850208029790617E-001 8 3 11 11 + -0.77196940404623091E-001 11 11 8 3 + -0.67738392386901186E-001 8 4 11 11 + -0.68923804889467685E-001 11 11 8 4 + -0.64227512132770156E-001 8 5 11 11 + -0.65326053969532505E-001 11 11 8 5 + -0.16515145065561950E-002 8 6 11 11 + -0.16789739525031983E-002 11 11 8 6 + -0.47409058875949525E-002 8 7 11 11 + -0.48197225574757854E-002 11 11 8 7 + 0.47034962620809967 8 8 11 11 + 0.46973362034796595 11 11 8 8 + -0.27483486668839312E-001 9 1 11 11 + -0.27562010583645144E-001 11 11 9 1 + -0.99630503532464998E-001 9 2 11 11 + -0.98921960994429251E-001 11 11 9 2 + 0.50320371195814317 9 9 11 11 + 0.50547235144373437 11 11 9 9 + -0.19992102731253634E-002 9 10 11 11 + -0.19946108256571494E-002 11 11 9 10 + 0.19774430750392217E-003 9 11 11 11 + 0.19728984228588970E-003 11 11 9 11 + -0.25729925232095326E-004 9 12 11 11 + -0.25669749900940858E-004 11 11 9 12 + 0.68957964606300708E-003 9 13 11 11 + 0.68799156156634539E-003 11 11 9 13 + -0.10711922866260468E-002 9 14 11 11 + -0.10687251697072023E-002 11 11 9 14 + -0.43866576981520088E-002 10 1 11 11 + -0.43876181496617598E-002 11 11 10 1 + -0.45768197863455137E-001 10 2 11 11 + -0.45648281666548704E-001 11 11 10 2 + 0.65762328123678375E-002 10 9 11 11 + 0.65808322598360520E-002 11 11 10 9 + 0.60185653514748183 10 10 11 11 + 0.60185653766176195 11 11 10 10 + -0.24069862585061239E-008 10 11 11 11 + -0.16922904544985600E-008 11 11 10 11 + -0.85361739996456471E-003 10 12 11 11 + -0.85362246988690777E-003 11 11 10 12 + 0.84013787077613091E-003 10 13 11 11 + 0.84012688433959132E-003 11 11 10 13 + -0.13884997987417073E-001 10 14 11 11 + -0.13884974810949037E-001 11 11 10 14 + 0.43394393509788498E-003 11 1 11 11 + 0.43403884384757638E-003 11 11 11 1 + 0.45275565203759562E-002 11 2 11 11 + 0.45156935116920207E-002 11 11 11 2 + -0.65052619269983288E-003 11 9 11 11 + -0.65098065791786527E-003 11 11 11 9 + 0.18341466191267303E-008 11 10 11 11 + 0.25488424231384251E-008 11 11 11 10 + 0.67063148962584007 11 11 11 11 + -0.16218076716596994E-008 1 1 11 12 + -0.42695427613380543E-009 11 12 1 1 + 0.16955204257284142E-009 1 2 11 12 + -0.11300953523840175E-003 1 10 11 12 + -0.11270397105166968E-003 11 12 1 10 + 0.45690489451507505E-005 1 11 11 12 + 0.45566157034789366E-005 11 12 1 11 + 0.11420703219635993E-004 1 12 11 12 + 0.11389955900181410E-004 11 12 1 12 + -0.34625884639743055E-003 1 13 11 12 + -0.34532224454861471E-003 11 12 1 13 + -0.11384974184907989E-004 1 14 11 12 + -0.11354200179625487E-004 11 12 1 14 + 0.34471460062613649E-009 2 1 11 12 + 0.27177386824016085E-009 11 12 2 1 + 0.47789299949603833E-008 2 2 11 12 + 0.43835351978265230E-008 11 12 2 2 + 0.47702805691005143E-008 2 9 11 12 + 0.38050648872642484E-008 11 12 2 9 + 0.81516119884792095E-002 2 10 11 12 + 0.81134623101941170E-002 11 12 2 10 + -0.32912314073412142E-003 2 11 11 12 + -0.32758207112138226E-003 11 12 2 11 + -0.82386105398168171E-003 2 12 11 12 + -0.82000498180395730E-003 11 12 2 12 + 0.24976765879060142E-001 2 13 11 12 + 0.24859862882329706E-001 11 12 2 13 + 0.82126460374934310E-003 2 14 11 12 + 0.81742049476862539E-003 11 12 2 14 + -0.13749943167443024E-001 3 3 11 12 + -0.13609499546774772E-001 11 12 3 3 + -0.12708150708008827E-001 3 4 11 12 + -0.12578350065706909E-001 11 12 3 4 + 0.54247532821143194E-003 3 5 11 12 + 0.53694158553512883E-003 11 12 3 5 + 0.23517196511284462E-003 3 6 11 12 + 0.24152498768542020E-003 11 12 3 6 + -0.22363349066862131E-002 3 7 11 12 + -0.22967523511010202E-002 11 12 3 7 + 0.32767267520770844E-002 3 8 11 12 + 0.33652562373825950E-002 11 12 3 8 + -0.12708122244880769E-001 4 3 11 12 + -0.12578321602578851E-001 11 12 4 3 + -0.11690304118627357E-001 4 4 11 12 + -0.11570901289270349E-001 11 12 4 4 + 0.27627628029169350E-002 4 5 11 12 + 0.27345513008841375E-002 11 12 4 5 + 0.24181984995884771E-003 4 6 11 12 + 0.24835091864848605E-003 11 12 4 6 + -0.24653123902170695E-002 4 7 11 12 + -0.25319152269053205E-002 11 12 4 7 + 0.27620056970605591E-002 4 8 11 12 + 0.28366270849208438E-002 11 12 4 8 + 0.54246578135640699E-003 5 3 11 12 + 0.53693203868010388E-003 11 12 5 3 + 0.27627688273309135E-002 5 4 11 12 + 0.27345573252981160E-002 11 12 5 4 + 0.25440260170096648E-001 5 5 11 12 + 0.25180413230934184E-001 11 12 5 5 + -0.22696908203210304E-005 5 6 11 12 + -0.23306112580479825E-005 11 12 5 6 + -0.42933787895704373E-002 5 7 11 12 + -0.44093762718070504E-002 11 12 5 7 + -0.33252269869841378E-002 5 8 11 12 + -0.34150626014765179E-002 11 12 5 8 + 0.14344197740790682E-003 6 3 11 12 + 0.14979499998048239E-003 11 12 6 3 + 0.14749148242472780E-003 6 4 11 12 + 0.15402255111436611E-003 11 12 6 4 + -0.13880818505256082E-005 6 5 11 12 + -0.14490022882525580E-005 11 12 6 5 + -0.95887531080907982E-004 6 6 11 12 + -0.97483380085537779E-004 11 12 6 6 + 0.46707619482579441E-003 6 7 11 12 + 0.47484045814372351E-003 11 12 6 7 + -0.72401167456567436E-003 6 8 11 12 + -0.73604709758669760E-003 11 12 6 8 + -0.13638550831033460E-002 7 3 11 12 + -0.14242725275181532E-002 11 12 7 3 + -0.15035219074429861E-002 7 4 11 12 + -0.15701247441312371E-002 11 12 7 4 + -0.26182652497548789E-002 7 5 11 12 + -0.27342627319914916E-002 11 12 7 5 + 0.46708379459499595E-003 7 6 11 12 + 0.47484805791292504E-003 11 12 7 6 + 0.47202542053016473E-002 7 7 11 12 + 0.47987297873073485E-002 11 12 7 7 + 0.13130646472571303E-001 7 8 11 12 + 0.13348948719700769E-001 11 12 7 8 + 0.19982493394462625E-002 8 3 11 12 + 0.20867788247517730E-002 11 12 8 3 + 0.16843876686673002E-002 8 4 11 12 + 0.17590090565275851E-002 11 12 8 4 + -0.20279524119841499E-002 8 5 11 12 + -0.21177880264765300E-002 11 12 8 5 + -0.72401731815851785E-003 8 6 11 12 + -0.73605274117954109E-003 11 12 8 6 + 0.13130646952269813E-001 8 7 11 12 + 0.13348949199399279E-001 11 12 8 7 + -0.46243557628819600E-002 8 8 11 12 + -0.47012412827139817E-002 11 12 8 8 + -0.36775589141764496E-009 9 1 11 12 + -0.31470024176852993E-009 11 12 9 1 + -0.37220069617330205E-008 9 2 11 12 + -0.46872226435698163E-008 11 12 9 2 + 0.39879369092080650E-008 9 9 11 12 + 0.22395802119036881E-008 11 12 9 9 + 0.63602598575923912E-003 9 10 11 12 + 0.63456256862339845E-003 11 12 9 10 + -0.25730100956801993E-004 9 11 11 12 + -0.25670345249221691E-004 11 12 9 11 + -0.64245957435318004E-004 9 12 11 12 + -0.64098801709241700E-004 11 12 9 12 + 0.19491574404723673E-002 9 13 11 12 + 0.19446676322056335E-002 11 12 9 13 + 0.64088998967813920E-004 9 14 11 12 + 0.63941512443521268E-004 11 12 9 14 + 0.13955418676346884E-002 10 1 11 12 + 0.13958474318214204E-002 11 12 10 1 + 0.14560379022407956E-001 10 2 11 12 + 0.14522229344122863E-001 11 12 10 2 + -0.20921271538391966E-002 10 9 11 12 + -0.20935905709750370E-002 11 12 10 9 + 0.45996690876180389E-003 10 10 11 12 + 0.45996554244453016E-003 11 12 10 10 + 0.42674475638322792E-003 10 11 11 12 + 0.42674625112370168E-003 11 12 10 11 + 0.35563749194043154E-003 10 12 11 12 + 0.35563889432197631E-003 11 12 10 12 + 0.43310002795288297E-003 10 13 11 12 + 0.43309783816839343E-003 11 12 10 13 + 0.48351437688598084E-002 10 14 11 12 + 0.48351302833185318E-002 11 12 10 14 + -0.56362197322584786E-004 11 1 11 12 + -0.56374630564256598E-004 11 12 11 1 + -0.58795717433103611E-003 11 2 11 12 + -0.58641610471829695E-003 11 12 11 2 + 0.84520443498843780E-004 11 9 11 12 + 0.84580199206424082E-004 11 12 11 9 + 0.42664805842663084E-003 11 10 11 12 + 0.42664955316710460E-003 11 12 11 10 + -0.59656165993502385E-008 11 11 11 12 + -0.67844344870830231E-008 11 12 11 11 + 0.33651200558099288E-001 11 12 11 12 + -0.50952011372994802E-007 1 1 11 13 + -0.13413536684509810E-007 11 13 1 1 + 0.53267831759026413E-008 1 2 11 13 + 0.30352184932769602E-008 11 13 1 2 + -0.11142017756624731E-008 1 9 11 13 + 0.55263716269351352E-009 11 13 1 9 + -0.17397489862057130E-004 1 10 11 13 + -0.17350179838621407E-004 11 13 1 10 + -0.12250150042510035E-003 1 11 11 13 + -0.12216944925572281E-003 11 13 1 11 + -0.34625057285763116E-003 1 12 11 13 + -0.34531170198589774E-003 11 13 1 12 + 0.80665763251806861E-005 1 13 11 13 + 0.80448549085397033E-005 11 13 1 13 + 0.23366100966868397E-004 1 14 11 13 + 0.23301905982636402E-004 11 13 1 14 + 0.10829831054072106E-007 2 1 11 13 + 0.85382663714467599E-008 11 13 2 1 + 0.15013870726766216E-006 2 2 11 13 + 0.13771666645833572E-006 11 13 2 2 + 0.14986696855393077E-006 2 9 11 13 + 0.11954297685376563E-006 11 13 2 9 + 0.12550917160819134E-002 2 10 11 13 + 0.12492203762459236E-002 11 13 2 10 + 0.88366457556590984E-002 2 11 11 13 + 0.87952972209657480E-002 11 13 2 11 + 0.24976913413763645E-001 2 12 11 13 + 0.24860043478938481E-001 11 13 2 12 + -0.58201156651222353E-003 2 13 11 13 + -0.57928773558031600E-003 11 13 2 13 + -0.16844976645927557E-002 2 14 11 13 + -0.16766147768832648E-002 11 13 2 14 + -0.10095347624463171E-001 3 3 11 13 + -0.99922572118500020E-002 11 13 3 3 + -0.54641391682515382E-003 3 4 11 13 + -0.54082505928233890E-003 11 13 3 4 + -0.15779406497663042E-001 3 5 11 13 + -0.15618264573666258E-001 11 13 3 5 + -0.15020154603779126E-002 3 6 11 13 + -0.15425699753258990E-002 11 13 3 6 + 0.17921525010907769E-002 3 7 11 13 + 0.18405821784772628E-002 11 13 3 7 + 0.32158663196895560E-002 3 8 11 13 + 0.33027356742088457E-002 11 13 3 8 + -0.54625605474805977E-003 4 3 11 13 + -0.54066719720524486E-003 11 13 4 3 + 0.14440237024750528E-001 4 4 11 13 + 0.14292761611687847E-001 11 13 4 4 + 0.16004627010595514E-001 4 5 11 13 + 0.15841186110763232E-001 11 13 4 5 + -0.21964185050018232E-002 4 6 11 13 + -0.22557932873720891E-002 11 13 4 6 + -0.19788604490211022E-002 4 7 11 13 + -0.20323173112541909E-002 11 13 4 7 + -0.34912843820233061E-002 4 8 11 13 + -0.35856236038248274E-002 11 13 4 8 + -0.15779248232236431E-001 5 3 11 13 + -0.15618106308239649E-001 11 13 5 3 + 0.16004465156955323E-001 5 4 11 13 + 0.15841024257123044E-001 11 13 5 4 + -0.43444846253582982E-002 5 5 11 13 + -0.43001149920366011E-002 11 13 5 5 + -0.48019769955398445E-002 5 6 11 13 + -0.49317121492132941E-002 11 13 5 6 + 0.26260410354993815E-003 5 7 11 13 + 0.26967749837914092E-003 11 13 5 7 + 0.67801409139152727E-003 5 8 11 13 + 0.69631777504245535E-003 11 13 5 8 + -0.91603787244166218E-003 6 3 11 13 + -0.95659238738964850E-003 11 13 6 3 + -0.13395069367390681E-002 6 4 11 13 + -0.13988817191093338E-002 11 13 6 4 + -0.29285597683219003E-002 6 5 11 13 + -0.30582949219953503E-002 11 13 6 5 + 0.10403677016024206E-002 6 6 11 13 + 0.10576120190527144E-002 11 13 6 6 + 0.68837558989073323E-002 6 7 11 13 + 0.69982104877435317E-002 11 13 6 7 + 0.12271333562002851E-001 6 8 11 13 + 0.12475367318099210E-001 11 13 6 8 + 0.10930678390905933E-002 7 3 11 13 + 0.11414975164770792E-002 11 13 7 3 + -0.12067341682954077E-002 7 4 11 13 + -0.12601910305284961E-002 11 13 7 4 + 0.15995512868876411E-003 7 5 11 13 + 0.16702852351796685E-003 11 13 7 5 + 0.68837235097540380E-002 7 6 11 13 + 0.69981780985902374E-002 11 13 7 6 + 0.12259603063590282E-004 7 7 11 13 + 0.12395976772424443E-004 11 13 7 7 + -0.37825725217535748E-003 7 8 11 13 + -0.38454477398041476E-003 11 13 7 8 + 0.19610382345616674E-002 8 3 11 13 + 0.20479075890809570E-002 11 13 8 3 + -0.21292922905414577E-002 8 4 11 13 + -0.22236315123429790E-002 11 13 8 4 + 0.41338102078302167E-003 8 5 11 13 + 0.43168470443394975E-003 11 13 8 5 + 0.12271255070288084E-001 8 6 11 13 + 0.12475288826384443E-001 11 13 8 6 + -0.37826662774943846E-003 8 7 11 13 + -0.38455414955449575E-003 11 13 8 7 + -0.10522845052543591E-002 8 8 11 13 + -0.10698470001461750E-002 11 13 8 8 + -0.11553714783823496E-007 9 1 11 13 + -0.98868758454682832E-008 11 13 9 1 + -0.11693356202886760E-006 9 2 11 13 + -0.14725755372903146E-006 11 13 9 2 + 0.12528822173543192E-006 9 9 11 13 + 0.70360442403180845E-007 11 13 9 9 + 0.97958568756692011E-004 9 10 11 13 + 0.97732284000766188E-004 11 13 9 10 + 0.68957896449984820E-003 9 11 11 13 + 0.68798925245668453E-003 11 13 9 11 + 0.19491552828431629E-002 9 12 11 13 + 0.19446603222436018E-002 11 13 9 12 + -0.45386283983790018E-004 9 13 11 13 + -0.45282676768800246E-004 11 13 9 13 + -0.13171460521718410E-003 9 14 11 13 + -0.13140347031572467E-003 11 13 9 14 + 0.21486797545311982E-003 10 1 11 13 + 0.21491528547655555E-003 11 13 10 1 + 0.22419602088422914E-002 10 2 11 13 + 0.22360888690063016E-002 11 13 10 2 + -0.32215203011964070E-003 10 9 11 13 + -0.32237831487556649E-003 11 13 10 9 + 0.10365598825154143E-002 10 10 11 13 + 0.10365442433600827E-002 11 13 10 10 + -0.42007889183640382E-003 10 11 11 13 + -0.42007950306556968E-003 11 13 10 11 + 0.13144667388051163E-001 10 12 11 13 + 0.13144702342384141E-001 11 13 10 12 + 0.32581956474373613E-003 10 13 11 13 + 0.32581826425171726E-003 11 13 10 13 + -0.12947826941320829E-002 10 14 11 13 + -0.12947793509698433E-002 11 13 10 14 + 0.15128203744076551E-002 11 1 11 13 + 0.15131524255770324E-002 11 13 11 1 + 0.15784376253227483E-001 11 2 11 13 + 0.15743027718534135E-001 11 13 11 2 + -0.22680465913572020E-002 11 9 11 13 + -0.22696363034003654E-002 11 13 11 9 + -0.42005913909094002E-003 11 10 11 13 + -0.42005975032010588E-003 11 13 11 10 + -0.14497398062714401E-007 11 11 11 13 + -0.30383092281383979E-007 11 13 11 11 + -0.56495039636661037E-003 11 12 11 13 + -0.56495172768630548E-003 11 13 11 12 + 0.33942564207703647E-001 11 13 11 13 + 0.59181360615255022E-009 1 1 11 14 + 0.15579984858746097E-009 11 14 1 1 + 0.27218084875675152E-004 1 10 11 14 + 0.27144221560912191E-004 11 14 1 10 + 0.19028701017467092E-003 1 11 11 14 + 0.18977100174426411E-003 11 14 1 11 + -0.11384582814127998E-004 1 12 11 14 + -0.11353701475189917E-004 11 14 1 12 + 0.23365636504677623E-004 1 13 11 14 + 0.23301314141430553E-004 11 14 1 13 + -0.35884353311514778E-006 1 14 11 14 + -0.35799987470169985E-006 11 14 1 14 + -0.12578974710165396E-009 2 1 11 14 + -0.17438785315114640E-008 2 2 11 14 + -0.15995950807758542E-008 11 14 2 2 + -0.17407223165422630E-008 2 9 11 14 + -0.13885056194019729E-008 11 14 2 9 + -0.19633660525643542E-002 2 10 11 14 + -0.19541795010713917E-002 11 14 2 10 + -0.13726516115697933E-001 2 11 11 14 + -0.13662288897319491E-001 11 14 2 11 + 0.82127158271765423E-003 2 12 11 14 + 0.81742903769432189E-003 11 14 2 12 + -0.16845059469353799E-002 2 13 11 14 + -0.16766249152639651E-002 11 14 2 13 + 0.26015469494347727E-004 2 14 11 14 + 0.25893573958327745E-004 11 14 2 14 + -0.91151646896203645E-002 3 3 11 14 + -0.90220839998737239E-002 11 14 3 3 + 0.28850324615634299E-002 3 4 11 14 + 0.28555679949254877E-002 11 14 3 4 + 0.48372878213040734E-002 3 5 11 14 + 0.47878854402542840E-002 11 14 3 5 + -0.16259618731098420E-002 3 6 11 14 + -0.16698905029852119E-002 11 14 3 6 + -0.15588376287973263E-002 3 7 11 14 + -0.16009525147853468E-002 11 14 3 7 + 0.30689673895544525E-003 3 8 11 14 + 0.31518184783415135E-003 11 14 3 8 + 0.28847091083763561E-002 4 3 11 14 + 0.28552446417384140E-002 11 14 4 3 + 0.93211904206835245E-002 4 4 11 14 + 0.92259968933739150E-002 11 14 4 4 + -0.83014632900561772E-002 4 5 11 14 + -0.82166864875031342E-002 11 14 4 5 + -0.12579346047785185E-002 4 6 11 14 + -0.12919212149850598E-002 11 14 4 6 + 0.23478389058250323E-002 4 7 11 14 + 0.24112755896943797E-002 11 14 4 7 + -0.54142178045105528E-003 4 8 11 14 + -0.55605531807977168E-003 11 14 4 8 + 0.48375338009244654E-002 5 3 11 14 + 0.47881314198746760E-002 11 14 5 3 + -0.83017351937377006E-002 5 4 11 14 + -0.82169583911846575E-002 11 14 5 4 + -0.20603043257111982E-003 5 5 11 14 + -0.20391741651718881E-003 11 14 5 5 + 0.20042237112520237E-002 5 6 11 14 + 0.20583719865561001E-002 11 14 5 6 + -0.23044049211854665E-004 5 7 11 14 + -0.23656658467169267E-004 11 14 5 7 + 0.37440999177771239E-003 5 8 11 14 + 0.38452987842063987E-003 11 14 5 8 + -0.99156930224098406E-003 6 3 11 14 + -0.10354979321163540E-002 11 14 6 3 + -0.76711506135143973E-003 6 4 11 14 + -0.80110167155798123E-003 11 14 6 4 + 0.12222323480340410E-002 6 5 11 14 + 0.12763806233381174E-002 11 14 6 5 + 0.19976631391869070E-003 6 6 11 14 + 0.20308950284837179E-003 11 14 6 6 + -0.71910785822011580E-002 6 7 11 14 + -0.73106458469689457E-002 11 14 6 7 + 0.16387363704295466E-002 6 8 11 14 + 0.16659842094767698E-002 11 14 6 8 + -0.95074526639686802E-003 7 3 11 14 + -0.99286015238488870E-003 11 14 7 3 + 0.14318631437974325E-002 7 4 11 14 + 0.14952998276667800E-002 11 14 7 4 + -0.14193422078704327E-004 7 5 11 14 + -0.14806031334018927E-004 11 14 7 5 + -0.71912282016576663E-002 7 6 11 14 + -0.73107954664254540E-002 11 14 7 6 + 0.30627904327499105E-004 7 7 11 14 + 0.31132505273706561E-004 11 14 7 7 + -0.86318709545480700E-003 7 8 11 14 + -0.87754632955917638E-003 11 14 7 8 + 0.18726749515492484E-003 8 3 11 14 + 0.19555260403363093E-003 11 14 8 3 + -0.33011745633955631E-003 8 4 11 14 + -0.34475099396827271E-003 11 14 8 4 + 0.22828086965182676E-003 8 5 11 14 + 0.23840075629475425E-003 11 14 8 5 + 0.16387589746817677E-002 8 6 11 14 + 0.16660068137289909E-002 11 14 8 6 + -0.86318540365398430E-003 8 7 11 14 + -0.87754463775835368E-003 11 14 8 7 + -0.23039819990118890E-003 8 8 11 14 + -0.23422387810554025E-003 11 14 8 8 + 0.13419773997173981E-009 9 1 11 14 + 0.11483721155125398E-009 11 14 9 1 + 0.13581969441906746E-008 9 2 11 14 + 0.17104136413316112E-008 11 14 9 2 + -0.14552372291203715E-008 9 9 11 14 + -0.81724467239998233E-009 11 14 9 9 + -0.15323012169501476E-003 9 10 11 14 + -0.15287639745916579E-003 11 14 9 10 + -0.10711910168458008E-002 9 11 11 14 + -0.10687208677424361E-002 11 14 9 11 + 0.64088896903459339E-004 9 12 11 14 + 0.63941166653679616E-004 11 14 9 12 + -0.13171448409157188E-003 9 13 11 14 + -0.13140305994707496E-003 11 14 9 13 + 0.19963317454280088E-005 9 14 11 14 + 0.19927452507472279E-005 11 14 9 14 + -0.33612694136575104E-003 10 1 11 14 + -0.33620080468051399E-003 11 14 10 1 + -0.35070817123613552E-002 10 2 11 14 + -0.34978951608683928E-002 11 14 10 2 + 0.50394039718638505E-003 10 9 11 14 + 0.50429412142223400E-003 11 14 10 9 + 0.27568122761019957E-003 10 10 11 14 + 0.27568215851747684E-003 11 14 10 10 + 0.69417005302650501E-002 10 11 11 14 + 0.69417195339590313E-002 11 14 10 11 + -0.19650617717249263E-002 10 12 11 14 + -0.19650663910277368E-002 11 14 10 12 + -0.32404751130586846E-003 10 13 11 14 + -0.32404656030461556E-003 11 14 10 13 + -0.68143412322594992E-003 10 14 11 14 + -0.68143473869942061E-003 11 14 10 14 + -0.23499565534277132E-002 11 1 11 14 + -0.23504725618581201E-002 11 14 11 1 + -0.24518951608781696E-001 11 2 11 14 + -0.24454724390403252E-001 11 14 11 2 + 0.35231228184989644E-002 11 9 11 14 + 0.35255929676023291E-002 11 14 11 9 + 0.69432286559045720E-002 11 10 11 14 + 0.69432476595985533E-002 11 14 11 10 + 0.12358464695650208E-007 11 11 11 14 + 0.11713066207417936E-007 11 14 11 11 + -0.10500598290023215E-002 11 12 11 14 + -0.10500656112115223E-002 11 14 11 12 + -0.19811980765108332E-002 11 13 11 14 + -0.19811984683237578E-002 11 14 11 13 + 0.24049323345444285E-001 11 14 11 14 + 0.86360149871875680E-003 1 12 12 1 + 0.86360149871875680E-003 12 1 1 12 + -0.90248666259456703E-009 1 13 12 1 + -0.90248666259266586E-009 12 1 1 13 + 0.86741622336935572E-009 1 14 12 1 + 0.86741622336889478E-009 12 1 1 14 + 0.25227067672634585E-009 2 11 12 1 + 0.27747387884080542E-009 12 1 2 11 + 0.76629367826256843E-002 2 12 12 1 + 0.76442265935332101E-002 12 1 2 12 + -0.46489098743800833E-008 2 13 12 1 + -0.51133610594072109E-008 12 1 2 13 + 0.44682542293870461E-008 2 14 12 1 + 0.49146569399589426E-008 12 1 2 14 + -0.50166340038469807E-002 3 3 12 1 + -0.50064387877822702E-002 12 1 3 3 + 0.53323469651466728E-003 3 4 12 1 + 0.53215146235646238E-003 12 1 3 4 + -0.38836071013327155E-002 3 5 12 1 + -0.38757145843807683E-002 12 1 3 5 + -0.20152080763572817E-002 3 6 12 1 + -0.20262342311699101E-002 12 1 3 6 + 0.58637817026096302E-003 3 7 12 1 + 0.58958647103996605E-003 12 1 3 7 + 0.25753578005942475E-002 3 8 12 1 + 0.25894491747517029E-002 12 1 3 8 + 0.53323469651466739E-003 4 3 12 1 + 0.53215146235646249E-003 12 1 4 3 + 0.55970096816019442E-002 4 4 12 1 + 0.55856351158455322E-002 12 1 4 4 + 0.31210733740621283E-002 4 5 12 1 + 0.31147306123682351E-002 12 1 4 5 + -0.19595802517757984E-002 4 6 12 1 + -0.19703023403127833E-002 12 1 4 6 + -0.36157604569585824E-003 4 7 12 1 + -0.36355450745196758E-003 12 1 4 7 + -0.26999219733102810E-002 4 8 12 1 + -0.27146945415980404E-002 12 1 4 8 + -0.38836071013327155E-002 5 3 12 1 + -0.38757145843807683E-002 12 1 5 3 + 0.31210733740621279E-002 5 4 12 1 + 0.31147306123682347E-002 12 1 5 4 + -0.58037567775518373E-003 5 5 12 1 + -0.57919632806349047E-003 12 1 5 5 + -0.25603105604800024E-002 5 6 12 1 + -0.25743193893672648E-002 12 1 5 6 + -0.18284256034557667E-003 5 7 12 1 + -0.18384306755542501E-003 12 1 5 7 + 0.51246505203930281E-003 5 8 12 1 + 0.51526901902767218E-003 12 1 5 8 + -0.20682261677657265E-002 6 3 12 1 + -0.20792523225783548E-002 12 1 6 3 + -0.20111297645423855E-002 6 4 12 1 + -0.20218518530793705E-002 12 1 6 4 + -0.26276670270311991E-002 6 5 12 1 + -0.26416758559184616E-002 12 1 6 5 + 0.71649063324234316E-004 6 6 12 1 + 0.71960244756775620E-004 12 1 6 6 + 0.85835630694431177E-003 6 7 12 1 + 0.86207765032707490E-003 12 1 6 7 + 0.50464208829079631E-002 6 8 12 1 + 0.50682992637954925E-002 12 1 6 8 + 0.60180605077322295E-003 7 3 12 1 + 0.60501435155222599E-003 12 1 7 3 + -0.37108691306688167E-003 7 4 12 1 + -0.37306537482299101E-003 12 1 7 4 + -0.18765145557916971E-003 7 5 12 1 + -0.18865196278901805E-003 12 1 7 5 + 0.85835630694431210E-003 7 6 12 1 + 0.86207765032707522E-003 12 1 7 6 + 0.42059392343360414E-003 7 7 12 1 + 0.42241737083149796E-003 12 1 7 7 + -0.85526273528271465E-004 7 8 12 1 + -0.85896694109084193E-004 12 1 7 8 + 0.26431065162979875E-002 8 3 12 1 + 0.26571978904554429E-002 12 1 8 3 + -0.27709538505388503E-002 8 4 12 1 + -0.27857264188266098E-002 12 1 8 4 + 0.52594700482813325E-003 8 5 12 1 + 0.52875097181650263E-003 12 1 8 5 + 0.50464208829079623E-002 8 6 12 1 + 0.50682992637954916E-002 12 1 8 6 + -0.85526273528271424E-004 8 7 12 1 + -0.85896694109084153E-004 12 1 8 7 + -0.49224298675800218E-003 8 8 12 1 + -0.49437761558844193E-003 12 1 8 8 + -0.29164041901637027E-009 9 11 12 1 + -0.28872034652394105E-009 12 1 9 11 + -0.24943042752718588E-002 9 12 12 1 + -0.24951855717465039E-002 12 1 9 12 + 0.53744257303296085E-008 9 13 12 1 + 0.53206138726803298E-008 12 1 9 13 + -0.51655766903038257E-008 9 14 12 1 + -0.51138559499648480E-008 12 1 9 14 + 0.74155037662375779E-003 10 10 12 1 + 0.74138810120503030E-003 12 1 10 10 + 0.13958465816621380E-002 10 11 12 1 + 0.13955409620213873E-002 12 1 10 11 + 0.40808311509250451E-002 10 12 12 1 + 0.40799379552430778E-002 12 1 10 12 + 0.57838623852521946E-004 10 13 12 1 + 0.57825871970554968E-004 12 1 10 13 + -0.63725472803753506E-003 10 14 12 1 + -0.63711482252788157E-003 12 1 10 14 + 0.20855326003785276E-009 11 9 12 1 + 0.21147333252997261E-009 12 1 11 9 + 0.13958496184250436E-002 11 10 12 1 + 0.13955439987842929E-002 12 1 11 10 + -0.56381917281118495E-004 11 11 12 1 + -0.56369299242476110E-004 12 1 11 11 + -0.14107119124943495E-003 11 12 12 1 + -0.14104044392998039E-003 12 1 11 12 + 0.42769488357632512E-002 11 13 12 1 + 0.42760099648915173E-002 12 1 11 13 + 0.14063018048665217E-003 11 14 12 1 + 0.14059929914771410E-003 12 1 11 14 + 0.16187444448571182E-002 12 1 12 1 + 0.12621593782335302E-009 1 11 12 2 + 0.10101273570849015E-009 12 2 1 11 + 0.49561351139551740E-003 1 12 12 2 + 0.51432370048799185E-003 12 2 1 12 + -0.23259402209589948E-008 1 13 12 2 + -0.18614890359293311E-008 12 2 1 13 + 0.22355546784211558E-008 1 14 12 2 + 0.17891519678192165E-008 12 2 1 14 + 0.66757195523938827E-009 2 10 12 2 + 0.66757195513149300E-009 12 2 2 10 + 0.43436883357579920E-008 2 11 12 2 + 0.43436883356620928E-008 12 2 2 11 + 0.61842846791908331E-001 2 12 12 2 + 0.61842846791908331E-001 12 2 2 12 + -0.80046622338135666E-007 2 13 12 2 + -0.80046622338176072E-007 12 2 2 13 + 0.76936027636856703E-007 2 14 12 2 + 0.76936027636864340E-007 12 2 2 14 + -0.38318450945650021E-001 3 3 12 2 + -0.38148055081566698E-001 12 2 3 3 + 0.40730307675789119E-002 3 4 12 2 + 0.40549250722367192E-002 12 2 3 4 + -0.29664080570332523E-001 3 5 12 2 + -0.29532170250534388E-001 12 2 3 5 + -0.58910699659028599E-002 3 6 12 2 + -0.60258006433424414E-002 12 2 3 6 + 0.17141550822806040E-002 3 7 12 2 + 0.17533570018790560E-002 12 2 3 7 + 0.75286162654577844E-002 3 8 12 2 + 0.77008081858119613E-002 12 2 3 8 + 0.40730307675789102E-002 4 3 12 2 + 0.40549250722367175E-002 12 2 4 3 + 0.42751533190421173E-001 4 4 12 2 + 0.42561426096812273E-001 12 2 4 4 + 0.23839640715831070E-001 4 5 12 2 + 0.23733631744056287E-001 12 2 4 5 + -0.57284984674615246E-002 4 6 12 2 + -0.58595190843923166E-002 12 2 4 6 + -0.10570139659847285E-002 4 7 12 2 + -0.10811911135942861E-002 12 2 4 7 + -0.78927013629680239E-002 4 8 12 2 + -0.80732105450199345E-002 12 2 4 8 + -0.29664080570332523E-001 5 3 12 2 + -0.29532170250534388E-001 12 2 5 3 + 0.23839640715831077E-001 5 4 12 2 + 0.23733631744056294E-001 12 2 5 4 + -0.44330822447731068E-002 5 5 12 2 + -0.44133710152475299E-002 12 2 5 5 + -0.74845958791688585E-002 5 6 12 2 + -0.76557753081321770E-002 12 2 5 6 + -0.53451835295467232E-003 5 7 12 2 + -0.54674534256835699E-003 12 2 5 7 + 0.14980965651272278E-002 5 8 12 2 + 0.15323592857442924E-002 12 2 5 8 + -0.42714410440016296E-002 6 3 12 2 + -0.44061717214412110E-002 12 2 6 3 + -0.41534550170421554E-002 6 4 12 2 + -0.42844756339729473E-002 12 2 6 4 + -0.54268004710529777E-002 6 5 12 2 + -0.55979799000162962E-002 12 2 6 5 + 0.45314956495343063E-003 6 6 12 2 + 0.46072758038396427E-003 12 2 6 6 + 0.54288895741686849E-002 6 7 12 2 + 0.55196147397344585E-002 12 2 6 7 + 0.31917354056949898E-001 6 8 12 2 + 0.32450742345421474E-001 12 2 6 8 + 0.12429020448483700E-002 7 3 12 2 + 0.12821039644468220E-002 12 2 7 3 + -0.76636975316153025E-003 7 4 12 2 + -0.79054690077108775E-003 12 2 7 4 + -0.38753068033834986E-003 7 5 12 2 + -0.39975766995203448E-003 12 2 7 5 + 0.54288895741686745E-002 7 6 12 2 + 0.55196147397344481E-002 12 2 7 6 + 0.26601518590358099E-002 7 7 12 2 + 0.27046070479507518E-002 12 2 7 7 + -0.54094105224046193E-003 7 8 12 2 + -0.54997751764552085E-003 12 2 7 8 + 0.54586394129599166E-002 8 3 12 2 + 0.56308313333140935E-002 12 2 8 3 + -0.57227573933655166E-002 8 4 12 2 + -0.59032665754174289E-002 12 2 8 4 + 0.10862150579255547E-002 8 5 12 2 + 0.11204777785426194E-002 12 2 8 5 + 0.31917354056949912E-001 8 6 12 2 + 0.32450742345421488E-001 12 2 8 6 + -0.54094105224046355E-003 8 7 12 2 + -0.54997751764552247E-003 12 2 8 7 + -0.31133014239903118E-002 8 8 12 2 + -0.31653346283358214E-002 12 2 8 8 + -0.83198310800298691E-009 9 10 12 2 + -0.79532966687044845E-009 12 2 9 10 + -0.54134622838272587E-008 9 11 12 2 + -0.51749694349265344E-008 12 2 9 11 + 0.20765807590679137E-002 9 12 12 2 + 0.20653684181114922E-002 12 2 9 12 + 0.99760695543190484E-007 9 13 12 2 + 0.95365687094463256E-007 12 2 9 13 + -0.95884016097805417E-007 9 14 12 2 + -0.91659796743781831E-007 12 2 9 14 + 0.25745333213948070E-009 10 2 12 2 + 0.25745333203510225E-009 12 2 10 2 + 0.82732926245933482E-009 10 9 12 2 + 0.86398270358996125E-009 12 2 10 9 + 0.77150270092438498E-002 10 10 12 2 + 0.77352937445283442E-002 12 2 10 10 + 0.14522205652518693E-001 10 11 12 2 + 0.14560354522783951E-001 12 2 10 11 + 0.42456532657799209E-001 10 12 12 2 + 0.42568064791324245E-001 12 2 10 12 + 0.60177894100379200E-003 10 13 12 2 + 0.60335899892213730E-003 12 2 10 13 + -0.66301252825725085E-002 10 14 12 2 + -0.66475381759360415E-002 12 2 10 14 + 0.16751704445663139E-008 11 2 12 2 + 0.16751704444785887E-008 12 2 11 2 + 0.53831811406098556E-008 11 9 12 2 + 0.56216739895061958E-008 12 2 11 9 + 0.14522295033338434E-001 11 10 12 2 + 0.14560443903603691E-001 12 2 11 10 + -0.58663500983089333E-003 11 11 12 2 + -0.58817338676921008E-003 12 2 11 11 + -0.14676824850908788E-002 11 12 12 2 + -0.14715385572686033E-002 12 2 11 12 + 0.44498034813775275E-001 11 13 12 2 + 0.44614904748600435E-001 12 2 11 13 + 0.14631554803067692E-002 11 14 12 2 + 0.14669980253301015E-002 12 2 11 14 + 0.90106120092246431E-002 12 1 12 2 + 0.90293221983171173E-002 12 2 12 1 + 0.95338107152068502E-001 12 2 12 2 + -0.11686227883109135E-002 1 3 12 3 + -0.11307937769935365E-002 12 3 1 3 + 0.12421782639583195E-003 1 4 12 3 + 0.12019666574538765E-003 12 3 1 4 + -0.90468480340462083E-003 1 5 12 3 + -0.87539959700567559E-003 12 3 1 5 + -0.36443181242899140E-003 1 6 12 3 + -0.43234682118262105E-003 12 3 1 6 + 0.10604103062515943E-003 1 7 12 3 + 0.12580264990281093E-003 12 3 1 7 + 0.46573016000319453E-003 1 8 12 3 + 0.55252328764242666E-003 12 3 1 8 + -0.78775661015285589E-001 2 3 12 3 + -0.78399041946881742E-001 12 3 2 3 + 0.83733961522207325E-002 2 4 12 3 + 0.83333630843833526E-002 12 3 2 4 + -0.60983872758818204E-001 2 5 12 3 + -0.60692314467768821E-001 12 3 2 5 + -0.13860754014330694E-001 2 6 12 3 + -0.14109755527969949E-001 12 3 2 6 + 0.40331490512875365E-002 2 7 12 3 + 0.41056013524468490E-002 12 3 2 7 + 0.17713539322097474E-001 2 8 12 3 + 0.18031763064781131E-001 12 3 2 8 + -0.29223901576389513E-001 3 1 12 3 + -0.29186072565072135E-001 12 3 3 1 + -0.87401776008408150E-001 3 2 12 3 + -0.87025156940004303E-001 12 3 3 2 + 0.12874072574663845E-001 3 9 12 3 + 0.12858405660570825E-001 12 3 3 9 + -0.16485254889633458E-001 3 10 12 3 + -0.16485254993132609E-001 12 3 3 10 + -0.21329624164513734E-001 3 11 12 3 + -0.21329624034674022E-001 12 3 3 11 + 0.74005535441245329E-001 3 12 12 3 + 0.74005535441245329E-001 12 3 3 12 + 0.33444283234209178E-001 3 13 12 3 + 0.33444280695933699E-001 12 3 3 13 + 0.17931973351648804E-001 3 14 12 3 + 0.17931971991804171E-001 12 3 3 14 + 0.31063047267210950E-002 4 1 12 3 + 0.31022835660706508E-002 12 3 4 1 + 0.92902625396991123E-002 4 2 12 3 + 0.92502294718617324E-002 12 3 4 2 + -0.13683641442222038E-002 4 9 12 3 + -0.13666979681565966E-002 12 3 4 9 + -0.18651708220704576E-001 4 10 12 3 + -0.18651707990430987E-001 12 3 4 10 + -0.19701197202296281E-001 4 11 12 3 + -0.19701195913830342E-001 12 3 4 11 + -0.17603386363351337E-001 4 12 12 3 + -0.17603388072228821E-001 12 3 4 12 + 0.17896584522245421E-001 4 13 12 3 + 0.17896573477481019E-001 12 3 4 13 + -0.33916929517495226E-001 4 14 12 3 + -0.33916913237564801E-001 12 3 4 14 + -0.22623566107381435E-001 5 1 12 3 + -0.22594280900982491E-001 12 3 5 1 + -0.67661740198328685E-001 5 2 12 3 + -0.67370181907279308E-001 12 3 5 2 + 0.99664019126881574E-002 5 9 12 3 + 0.99542732982194886E-002 12 3 5 9 + -0.34934845494870491E-001 5 10 12 3 + -0.34934845665968349E-001 12 3 5 10 + 0.22980070075638074E-001 5 11 12 3 + 0.22980069513012562E-001 12 3 5 11 + 0.34875633594097621E-001 5 12 12 3 + 0.34875633427901308E-001 12 3 5 12 + -0.23002698546882611E-001 5 13 12 3 + -0.23002691390010363E-001 12 3 5 13 + -0.98720945746158043E-002 5 14 12 3 + -0.98720857819650648E-002 12 3 5 14 + -0.23610177282885295E-001 6 1 12 3 + -0.23678092291638926E-001 12 3 6 1 + -0.11856499084016179E-001 6 2 12 3 + -0.12105500597655434E-001 12 3 6 2 + 0.41941742199610554E-001 6 9 12 3 + 0.42309459968814384E-001 12 3 6 9 + -0.13009190379157057E-003 6 10 12 3 + -0.12940020630431383E-003 12 3 6 10 + 0.14119377168131809E-003 6 11 12 3 + 0.15327141576282219E-003 12 3 6 11 + 0.37093125014271830E-002 6 12 12 3 + 0.39671213510154560E-002 12 3 6 12 + 0.71624799492579566E-003 6 13 12 3 + 0.74932713618398135E-003 12 3 6 13 + 0.14719174953085920E-002 6 14 12 3 + 0.16054419567058784E-002 12 3 6 14 + 0.68700134884023961E-002 7 1 12 3 + 0.68897751076800479E-002 12 3 7 1 + 0.34499772382583448E-002 7 2 12 3 + 0.35224295394176573E-002 12 3 7 2 + -0.12204073487106167E-001 7 9 12 3 + -0.12311069326817001E-001 12 3 7 9 + 0.68634541338561121E-003 7 10 12 3 + 0.74594220420599021E-003 12 3 7 10 + -0.14701100020680269E-002 7 11 12 3 + -0.15985737914163533E-002 12 3 7 11 + 0.21517601384133067E-003 7 12 12 3 + 0.21861778660570871E-003 12 3 7 12 + 0.17829389874915859E-002 7 13 12 3 + 0.19323594456655650E-002 12 3 7 13 + 0.21711743120410204E-003 7 14 12 3 + 0.23906682993529330E-003 12 3 7 14 + 0.30172839743398093E-001 8 1 12 3 + 0.30259632871037327E-001 12 3 8 1 + 0.15152037490855797E-001 8 2 12 3 + 0.15470261233539456E-001 12 3 8 2 + -0.53599827802571581E-001 8 9 12 3 + -0.54069767058848223E-001 12 3 8 9 + 0.17788502727560289E-002 8 10 12 3 + 0.19276630169036870E-002 12 3 8 10 + 0.89177496985423828E-003 8 11 12 3 + 0.94541872448442618E-003 12 3 8 11 + -0.32918313246306438E-002 8 12 12 3 + -0.35189164119854583E-002 12 3 8 12 + -0.82785912559609539E-003 8 13 12 3 + -0.89716847487858128E-003 12 3 8 13 + 0.12043895107407932E-003 8 14 12 3 + 0.15836952478002572E-003 12 3 8 14 + 0.77853146472490588E-002 9 3 12 3 + 0.77696477331560387E-002 12 3 9 3 + -0.82758932525769718E-003 9 4 12 3 + -0.82592314919208989E-003 12 3 9 4 + 0.60269796569531490E-002 9 5 12 3 + 0.60148510424844794E-002 12 3 9 5 + 0.41897374392094289E-001 9 6 12 3 + 0.42265092161298118E-001 12 3 9 6 + -0.12191170572809973E-001 9 7 12 3 + -0.12298166412520807E-001 12 3 9 7 + -0.53543075376650359E-001 9 8 12 3 + -0.54013014632927001E-001 12 3 9 8 + -0.25231562620701316E-001 10 3 12 3 + -0.25231562724200466E-001 12 3 10 3 + -0.30023694109685060E-001 10 4 12 3 + -0.30023693879411471E-001 12 3 10 4 + -0.55028611564408005E-001 10 5 12 3 + -0.55028611735505863E-001 12 3 10 5 + 0.73477560779600180E-003 10 6 12 3 + 0.73546730528325859E-003 12 3 10 6 + 0.52161954881477790E-002 10 7 12 3 + 0.52757922789681581E-002 12 3 10 7 + 0.12706261159963688E-001 10 8 12 3 + 0.12855073904111346E-001 12 3 10 8 + -0.32646712644138487E-001 11 3 12 3 + -0.32646712514298779E-001 12 3 11 3 + -0.30153022017761662E-001 11 4 12 3 + -0.30153020729295724E-001 12 3 11 4 + 0.37474632732020521E-001 11 5 12 3 + 0.37474632169395006E-001 12 3 11 5 + 0.10468997465948337E-002 11 6 12 3 + 0.10589773906763376E-002 12 3 11 6 + -0.11287928986533944E-001 11 7 12 3 + -0.11416392775882269E-001 12 3 11 7 + 0.33525391464357822E-002 11 8 12 3 + 0.34061829010659703E-002 12 3 11 8 + 0.11053694611916220 12 3 12 3 + 0.12421782639583046E-003 1 3 12 4 + 0.12019666574538651E-003 12 4 1 3 + 0.13038213735602896E-002 1 4 12 4 + 0.12616158562522980E-002 12 4 1 4 + 0.72705305485284695E-003 1 5 12 4 + 0.70351786843499576E-003 12 4 1 5 + -0.35437237695971294E-003 1 6 12 4 + -0.42041296170394554E-003 12 4 1 6 + -0.65387820802585719E-004 1 7 12 4 + -0.77573490995397969E-004 12 4 1 7 + -0.48825603521750508E-003 1 8 12 4 + -0.57924677123503293E-003 12 4 1 8 + 0.83733961522207429E-002 2 3 12 4 + 0.83333630843833630E-002 12 4 2 3 + 0.87889258731644146E-001 2 4 12 4 + 0.87469068207792697E-001 12 4 2 4 + 0.49009899187884190E-001 2 5 12 4 + 0.48775587242180757E-001 12 4 2 5 + -0.13478167959814236E-001 2 6 12 4 + -0.13720303582257632E-001 12 4 2 6 + -0.24869570031719607E-002 2 7 12 4 + -0.25316365026607311E-002 12 4 2 7 + -0.18570269936098147E-001 2 8 12 4 + -0.18903876031124530E-001 12 4 2 8 + 0.31063047267210868E-002 3 1 12 4 + 0.31022835660706430E-002 12 4 3 1 + 0.92902625396991019E-002 3 2 12 4 + 0.92502294718617220E-002 12 4 3 2 + -0.13683641442221398E-002 3 9 12 4 + -0.13666979681565326E-002 12 4 3 9 + 0.97314823344021358E-002 3 10 12 4 + 0.97314821675127620E-002 12 4 3 10 + -0.19725590651007121E-001 3 11 12 4 + -0.19725592009658108E-001 12 4 3 11 + -0.17603354848718271E-001 3 12 12 4 + -0.17603353139840787E-001 12 4 3 12 + -0.29970960347873294E-001 3 13 12 4 + -0.29970948169513414E-001 12 4 3 13 + 0.29812115881724083E-001 3 14 12 4 + 0.29812099953008923E-001 12 4 3 14 + 0.32604821997094920E-001 4 1 12 4 + 0.32562616479786928E-001 12 4 4 1 + 0.97513321382334928E-001 4 2 12 4 + 0.97093130858483478E-001 12 4 4 2 + -0.14363457814993650E-001 4 9 12 4 + -0.14345978119919047E-001 12 4 4 9 + 0.22355968547950057E-001 4 10 12 4 + 0.22355968672248049E-001 12 4 4 10 + -0.18134426716464678E-001 4 11 12 4 + -0.18134426826049356E-001 12 4 4 11 + 0.75225519979443559E-001 4 12 12 4 + 0.75225519979443559E-001 12 4 4 12 + -0.33335553878449636E-001 4 13 12 4 + -0.33335551505280725E-001 12 4 4 13 + -0.20479740208788792E-001 4 14 12 4 + -0.20479738799917456E-001 12 4 4 14 + 0.18181501712594434E-001 5 1 12 4 + 0.18157966526176583E-001 12 4 5 1 + 0.54376582833417626E-001 5 2 12 4 + 0.54142270887714193E-001 12 4 5 2 + -0.80095189705431530E-002 5 9 12 4 + -0.79997716024119581E-002 12 4 5 9 + 0.45308709434113394E-001 5 10 12 4 + 0.45308708349705282E-001 12 4 5 10 + 0.19020151696733375E-001 5 11 12 4 + 0.19020152141418896E-001 12 4 5 11 + 0.20248611839447032E-001 5 12 12 4 + 0.20248612423045764E-001 12 4 5 12 + 0.22036244497138837E-001 5 13 12 4 + 0.22036240529172819E-001 12 4 5 13 + 0.10438267911768523E-001 5 14 12 4 + 0.10438256499972893E-001 12 4 5 14 + -0.22958400564998638E-001 6 1 12 4 + -0.23024441149742871E-001 12 4 6 1 + -0.11529125415865345E-001 6 2 12 4 + -0.11771261038308741E-001 12 4 6 2 + 0.40783907845265525E-001 6 9 12 4 + 0.41141483269872318E-001 12 4 6 9 + -0.63906797824952219E-003 6 10 12 4 + -0.67570248835959335E-003 12 4 6 10 + 0.12720632923315630E-003 6 11 12 4 + 0.13770907135006555E-003 12 4 6 11 + -0.40401027653692518E-002 6 12 12 4 + -0.43187182962514357E-002 12 4 6 12 + 0.75061143165769113E-003 6 13 12 4 + 0.79085750657548214E-003 12 4 6 13 + 0.14261958360007221E-002 6 14 12 4 + 0.15549210071896494E-002 12 4 6 14 + -0.42362099662138194E-002 7 1 12 4 + -0.42483956364066308E-002 12 4 7 1 + -0.21273052855390528E-002 7 2 12 4 + -0.21719847850278232E-002 12 4 7 2 + 0.75253148566618673E-002 7 9 12 4 + 0.75912950774080579E-002 12 4 7 9 + -0.12343602865298512E-002 7 10 12 4 + -0.13356536394784930E-002 12 4 7 10 + -0.13598641920514092E-002 7 11 12 4 + -0.14736732402686715E-002 12 4 7 11 + 0.36389268420364176E-004 7 12 12 4 + 0.30860387326244963E-004 12 4 7 12 + -0.19177009557866493E-002 7 13 12 4 + -0.20763376409664801E-002 12 4 7 13 + 0.54768467881344062E-004 7 14 12 4 + 0.52746361985173051E-004 12 4 7 14 + -0.31632282306613933E-001 8 1 12 4 + -0.31723273042631464E-001 12 4 8 1 + -0.15885014972268699E-001 8 2 12 4 + -0.16218621067295082E-001 12 4 8 2 + 0.56192421268263480E-001 8 9 12 4 + 0.56685080273077469E-001 12 4 8 9 + -0.19026347262675156E-002 8 10 12 4 + -0.20637094417303875E-002 12 4 8 10 + 0.82068396697791116E-003 8 11 12 4 + 0.87325346370518812E-003 12 4 8 11 + -0.25713656412632352E-002 8 12 12 4 + -0.27466852543568702E-002 12 4 8 12 + 0.11118445081822006E-002 8 13 12 4 + 0.12067413245748411E-002 12 4 8 13 + 0.19089098104489003E-004 8 14 12 4 + -0.14032378675991880E-004 12 4 8 14 + -0.82758932525767821E-003 9 3 12 4 + -0.82592314919207102E-003 12 4 9 3 + -0.86860187854325976E-002 9 4 12 4 + -0.86685390903579948E-002 12 4 9 4 + -0.48436134438966843E-002 9 5 12 4 + -0.48338660757654903E-002 12 4 9 5 + 0.40740723204885074E-001 9 6 12 4 + 0.41098298629491867E-001 12 4 9 6 + 0.75173391802906475E-002 9 7 12 4 + 0.75833194010368381E-002 12 4 9 7 + 0.56132975625972088E-001 9 8 12 4 + 0.56625634630786077E-001 12 4 9 8 + 0.16370496133051755E-001 10 3 12 4 + 0.16370495966162382E-001 12 4 10 3 + 0.34217087857724503E-001 10 4 12 4 + 0.34217087982022491E-001 12 4 10 4 + 0.71305418915710211E-001 10 5 12 4 + 0.71305417831302093E-001 12 4 10 5 + -0.21444056806295513E-002 10 6 12 4 + -0.21810401907396224E-002 12 4 10 6 + -0.85337720425713876E-002 10 7 12 4 + -0.86350653955200290E-002 12 4 10 7 + -0.13865231884445113E-001 10 8 12 4 + -0.14026306599907985E-001 12 4 10 8 + -0.30192853212731935E-001 11 3 12 4 + -0.30192854571382922E-001 12 4 11 3 + -0.27756185155571586E-001 11 4 12 4 + -0.27756185265156264E-001 12 4 11 4 + 0.30643889262794700E-001 11 5 12 4 + 0.30643889707480221E-001 12 4 11 5 + 0.88869672369241970E-003 11 6 12 4 + 0.89919946580932887E-003 12 4 11 6 + -0.97192594701038092E-002 11 7 12 4 + -0.98330685183210722E-002 12 4 11 7 + 0.35464236849923063E-002 11 8 12 4 + 0.35989931817195829E-002 12 4 11 8 + -0.26943279544149195E-001 12 3 12 4 + -0.26943277835271711E-001 12 4 12 3 + 0.11240435147528853 12 4 12 4 + -0.90468480340456618E-003 1 3 12 5 + -0.87539959700561911E-003 12 5 1 3 + 0.72705305485288153E-003 1 4 12 5 + 0.70351786843502915E-003 12 5 1 4 + -0.13519858524919763E-003 1 5 12 5 + -0.13082207925858499E-003 12 5 1 5 + -0.46300875888012188E-003 1 6 12 5 + -0.54929455918050906E-003 12 5 1 6 + -0.33065494726247690E-004 1 7 12 5 + -0.39227605593049038E-004 12 5 1 7 + 0.92674615777295379E-004 1 8 12 5 + 0.10994535191679835E-003 12 5 1 8 + -0.60983872758818072E-001 2 3 12 5 + -0.60692314467768703E-001 12 5 2 3 + 0.49009899187884134E-001 2 4 12 5 + 0.48775587242180701E-001 12 5 2 4 + -0.91135977163599568E-002 2 5 12 5 + -0.90700262609122988E-002 12 5 2 5 + -0.17610024397687208E-001 2 6 12 5 + -0.17926383479044957E-001 12 5 2 6 + -0.12576128404108741E-002 2 7 12 5 + -0.12802073322120669E-002 12 5 2 7 + 0.35247760266981262E-002 2 8 12 5 + 0.35880975434947789E-002 12 5 2 8 + -0.22623566107381345E-001 3 1 12 5 + -0.22594280900982398E-001 12 5 3 1 + -0.67661740198328574E-001 3 2 12 5 + -0.67370181907279211E-001 12 5 3 2 + 0.99664019126882233E-002 3 9 12 5 + 0.99542732982195528E-002 12 5 3 9 + -0.49582770000294370E-002 3 10 12 5 + -0.49582769974796633E-002 12 5 3 10 + -0.21296940285665381E-001 3 11 12 5 + -0.21296939960417937E-001 12 5 3 11 + 0.34875636659042815E-001 3 12 12 5 + 0.34875636825239129E-001 12 5 3 12 + -0.10306711773590527E-002 3 13 12 5 + -0.10306765623071317E-002 12 5 3 13 + 0.26293314410012925E-001 3 14 12 5 + 0.26293304604947287E-001 12 5 3 14 + 0.18181501712594531E-001 4 1 12 5 + 0.18157966526176680E-001 12 5 4 1 + 0.54376582833417605E-001 4 2 12 5 + 0.54142270887714172E-001 12 5 4 2 + -0.80095189705432571E-002 4 9 12 5 + -0.79997716024120570E-002 12 5 4 9 + 0.76575672787177812E-002 4 10 12 5 + 0.76575682514548899E-002 12 5 4 10 + -0.10448989771175466E-001 4 11 12 5 + -0.10448989886770184E-001 12 5 4 11 + 0.20248601076885007E-001 4 12 12 5 + 0.20248600493286275E-001 12 5 4 12 + 0.10746619795275461E-001 4 13 12 5 + 0.10746621158051937E-001 12 5 4 13 + -0.38173248379156866E-001 4 14 12 5 + -0.38173234927526160E-001 12 5 4 14 + -0.33809204207061092E-002 5 1 12 5 + -0.33765439147154966E-002 12 5 5 1 + -0.10111545373928318E-001 5 2 12 5 + -0.10067973918480660E-001 12 5 5 2 + 0.14893852403301204E-002 5 9 12 5 + 0.14875724593485279E-002 12 5 5 9 + -0.58707119091590612E-002 5 10 12 5 + -0.58707119299578970E-002 12 5 5 10 + 0.39464062262218609E-001 5 11 12 5 + 0.39464062241963589E-001 12 5 5 11 + 0.51094393432845206E-001 5 12 12 5 + 0.51094393432845206E-001 12 5 5 12 + -0.10893909221663347E-003 5 13 12 5 + -0.10893892711004499E-003 12 5 5 13 + 0.25479684432836635E-002 5 14 12 5 + 0.25479683942569512E-002 12 5 5 14 + -0.29996575744962554E-001 6 1 12 5 + -0.30082861545262941E-001 12 5 6 1 + -0.15063569009586157E-001 6 2 12 5 + -0.15379928090943906E-001 12 5 6 2 + 0.53286708489296002E-001 6 9 12 5 + 0.53753896225238400E-001 12 5 6 9 + -0.10118207315145435E-002 6 10 12 5 + -0.10617854755641772E-002 12 5 6 10 + -0.87452203079116324E-004 6 11 12 5 + -0.96749820926462338E-004 12 5 6 11 + 0.57648100515814453E-003 6 12 12 5 + 0.61733540138761227E-003 12 5 6 12 + -0.71614369938274684E-003 6 13 12 5 + -0.75745774547538412E-003 12 5 6 13 + 0.18299294085761281E-002 6 14 12 5 + 0.19972480207030448E-002 12 5 6 14 + -0.21421711430289593E-002 7 1 12 5 + -0.21483332538957609E-002 12 5 7 1 + -0.10757304142140381E-002 7 2 12 5 + -0.10983249060152309E-002 12 5 7 2 + 0.38054090749803432E-002 7 9 12 5 + 0.38387750295761111E-002 12 5 7 9 + 0.23895864906570065E-003 7 10 12 5 + 0.25793753153184460E-003 12 5 7 10 + -0.21430695735314216E-002 7 11 12 5 + -0.23172811819210026E-002 12 5 7 11 + -0.15762798231444004E-002 7 12 12 5 + -0.16702149284455123E-002 12 5 7 12 + 0.81556612169455023E-004 7 13 12 5 + 0.91071448451302849E-004 12 5 7 13 + -0.10473468672414771E-003 7 14 12 5 + -0.11150270795629506E-003 12 5 7 14 + 0.60040364685474985E-002 8 1 12 5 + 0.60213072046870009E-002 12 5 8 1 + 0.30150855057023808E-002 8 2 12 5 + 0.30784070224990335E-002 12 5 8 2 + -0.10665728785952313E-001 8 9 12 5 + -0.10759239764095728E-001 12 5 8 9 + 0.78623299295296414E-004 8 10 12 5 + 0.85756237107317785E-004 12 5 8 10 + -0.58475497279101933E-003 8 11 12 5 + -0.60502340909387021E-003 12 5 8 11 + -0.35481512153573997E-002 8 12 12 5 + -0.37965075793772863E-002 12 5 8 12 + -0.20747319975825373E-003 8 13 12 5 + -0.22672213091748503E-003 12 5 8 13 + 0.14648153687427503E-003 8 14 12 5 + 0.15985077643131584E-003 12 5 8 14 + 0.60269796569531742E-002 9 3 12 5 + 0.60148510424845028E-002 12 5 9 3 + -0.48436134438967545E-002 9 4 12 5 + -0.48338660757655545E-002 12 5 9 4 + 0.90070413818377193E-003 9 5 12 5 + 0.89889135720217970E-003 12 5 9 5 + 0.53230317115920571E-001 9 6 12 5 + 0.53697504851862969E-001 12 5 9 6 + 0.38013711529615527E-002 9 7 12 5 + 0.38347371075573206E-002 12 5 9 7 + -0.10654442120120192E-001 9 8 12 5 + -0.10747953098263605E-001 12 5 9 8 + -0.60299538283408232E-002 10 3 12 5 + -0.60299538257910495E-002 12 5 10 3 + 0.97621266446664880E-002 10 4 12 5 + 0.97621276174035959E-002 12 5 10 4 + -0.89855232834549076E-002 10 5 12 5 + -0.89855233042537442E-002 12 5 10 5 + -0.22400227962873528E-002 10 6 12 5 + -0.22899875403369864E-002 12 5 10 6 + 0.15613163334228779E-002 10 7 12 5 + 0.15802952158890219E-002 12 5 10 7 + 0.64112455913885021E-003 10 8 12 5 + 0.64825749695087158E-003 12 5 10 8 + -0.34899056701747283E-001 11 3 12 5 + -0.34899056376499843E-001 12 5 11 3 + -0.17525346066467263E-001 11 4 12 5 + -0.17525346182061981E-001 12 5 11 4 + 0.60402910510989227E-001 11 5 12 5 + 0.60402910490734207E-001 12 5 11 5 + -0.90967789797676143E-003 11 6 12 5 + -0.91897551582410743E-003 12 5 11 6 + -0.14574987538866536E-001 11 7 12 5 + -0.14749199147256118E-001 12 5 11 7 + -0.55278765066133691E-004 11 8 12 5 + -0.75547201368984611E-004 12 5 11 8 + 0.53379066941137018E-001 12 3 12 5 + 0.53379067107333332E-001 12 5 12 3 + 0.30991536233548240E-001 12 4 12 5 + 0.30991535649949508E-001 12 5 12 4 + 0.75469244587547668E-001 12 5 12 5 + -0.20526539321653846E-002 1 3 12 6 + -0.20367876970313501E-002 12 6 1 3 + -0.19959898122904321E-002 1 4 12 6 + -0.19805613216141845E-002 12 6 1 4 + -0.26078838926490745E-002 1 5 12 6 + -0.25877258078233988E-002 12 6 1 5 + 0.46970639553753645E-004 1 6 12 6 + 0.47134177605032731E-004 12 6 1 6 + 0.56270418064976178E-003 1 7 12 6 + 0.56466086856436261E-003 12 6 1 7 + 0.33082323652895889E-002 1 8 12 6 + 0.33197360538994394E-002 12 6 1 8 + -0.16566862918757360E-001 2 3 12 6 + -0.16361958392226431E-001 12 6 2 3 + -0.16109578239819053E-001 2 4 12 6 + -0.15910319632307303E-001 12 6 2 4 + -0.21048121033723052E-001 2 5 12 6 + -0.20787785467131576E-001 12 6 2 5 + 0.19318568991994562E-003 2 6 12 6 + 0.19372440134137619E-003 12 6 2 6 + 0.23142742414686457E-002 2 7 12 6 + 0.23207307703911081E-002 12 6 2 7 + 0.13606006627363524E-001 2 8 12 6 + 0.13643965654342432E-001 12 6 2 8 + -0.86579485807681787E-002 3 1 12 6 + -0.86420823456341452E-002 12 6 3 1 + -0.16687341584380514E-001 3 2 12 6 + -0.16482437057849585E-001 12 6 3 2 + 0.72214474018998439E-002 3 9 12 6 + 0.72414921027466050E-002 12 6 3 9 + -0.54306556048182436E-002 3 10 12 6 + -0.53634044628463736E-002 12 6 3 10 + 0.18251239196159223E-004 3 11 12 6 + 0.16714688419061031E-004 12 6 3 11 + 0.17533023842315008E-001 3 12 12 6 + 0.17275214992726731E-001 12 6 3 12 + 0.13020899209190844E-001 3 13 12 6 + 0.12855883071423406E-001 12 6 3 13 + -0.33041489300735501E-002 3 14 12 6 + -0.32776793359564119E-002 12 6 3 14 + -0.84189435413488632E-002 4 1 12 6 + -0.84035150506726157E-002 12 6 4 1 + -0.16226739410112503E-001 4 2 12 6 + -0.16027480802600753E-001 12 6 4 2 + 0.70221186877741414E-002 4 9 12 6 + 0.70416085459652231E-002 12 6 4 9 + -0.83490808965938235E-002 4 10 12 6 + -0.82415916939784263E-002 12 6 4 10 + 0.19014687397120607E-003 4 11 12 6 + 0.18664974499935184E-003 12 6 4 11 + -0.18813255502518302E-001 4 12 12 6 + -0.18534639971636117E-001 12 6 4 12 + 0.11086435278933529E-001 4 13 12 6 + 0.10944623067620823E-001 12 6 4 13 + -0.28825589772439207E-002 4 14 12 6 + -0.28608158592126724E-002 12 6 4 14 + -0.10999869247034331E-001 5 1 12 6 + -0.10979711162208656E-001 12 6 5 1 + -0.21201192906407644E-001 5 2 12 6 + -0.20940857339816168E-001 12 6 5 2 + 0.91748149785736057E-002 5 9 12 6 + 0.92002808376387066E-002 12 6 5 9 + -0.16898240627833665E-001 5 10 12 6 + -0.16683316171051614E-001 12 6 5 10 + 0.82082760221131119E-003 5 11 12 6 + 0.81166033234675067E-003 12 6 5 11 + 0.28272652320645618E-002 5 12 12 6 + 0.27864108358350939E-002 12 6 5 12 + -0.92410843087431891E-002 5 13 12 6 + -0.91220336048442058E-002 12 6 5 13 + -0.47012549481457236E-002 5 14 12 6 + -0.46611444378280818E-002 12 6 5 14 + 0.25410596637058676E-003 6 1 12 6 + 0.25426950442186588E-003 12 6 6 1 + 0.27514195226393075E-003 6 2 12 6 + 0.27568066368536132E-003 12 6 6 2 + -0.24774457610710629E-003 6 9 12 6 + -0.24360498036068344E-003 12 6 6 9 + 0.95651605691050520E-003 6 10 12 6 + 0.95651605776225215E-003 12 6 6 10 + -0.41049625725051369E-004 6 11 12 6 + -0.41049609980142175E-004 12 6 6 11 + 0.14815993664549318E-001 6 12 12 6 + 0.14815993664549318E-001 12 6 6 12 + -0.49048994791244850E-003 6 13 12 6 + -0.49049007059668724E-003 12 6 6 13 + -0.10683111535123678E-003 6 14 12 6 + -0.10683103025723367E-003 12 6 6 14 + 0.30442058616048659E-002 7 1 12 6 + 0.30461625495194667E-002 12 6 7 1 + 0.32962984647657823E-002 7 2 12 6 + 0.33027549936882447E-002 12 6 7 2 + -0.29680706536097732E-002 7 9 12 6 + -0.29184509973255016E-002 12 6 7 9 + 0.42886328513338122E-002 7 10 12 6 + 0.42886331175010220E-002 12 6 7 10 + -0.18298453272917387E-003 7 11 12 6 + -0.18298539671502697E-003 12 6 7 11 + -0.41327871804676716E-005 7 12 12 6 + -0.41326593697299354E-005 12 6 7 12 + 0.79740244672639477E-002 7 13 12 6 + 0.79740338373308125E-002 12 6 7 13 + 0.46493913030658739E-003 7 14 12 6 + 0.46493986370114900E-003 12 6 7 14 + 0.17897397559393173E-001 8 1 12 6 + 0.17908901248003022E-001 12 6 8 1 + 0.19379492578934922E-001 8 2 12 6 + 0.19417451605913828E-001 12 6 8 2 + -0.17449786130544254E-001 8 9 12 6 + -0.17158063747979950E-001 12 6 8 9 + 0.79945822123117776E-002 8 10 12 6 + 0.79945821219903346E-002 12 6 8 10 + -0.30100411752471040E-003 8 11 12 6 + -0.30100389882269600E-003 12 6 8 11 + -0.99753727986969269E-003 8 12 12 6 + -0.99753775752144244E-003 12 6 8 12 + -0.43143149438893144E-002 8 13 12 6 + -0.43143196767885710E-002 12 6 8 13 + 0.13574237348769485E-002 8 14 12 6 + 0.13574256767626604E-002 12 6 8 14 + 0.10031626023516427E-001 9 3 12 6 + 0.10051670724363188E-001 12 6 9 3 + 0.97546605050026769E-002 9 4 12 6 + 0.97741503631937586E-002 12 6 9 4 + 0.12745096460335913E-001 9 5 12 6 + 0.12770562319401014E-001 12 6 9 5 + -0.26764222003985944E-003 9 6 12 6 + -0.26350262429343659E-003 12 6 9 6 + -0.32064206996745091E-002 9 7 12 6 + -0.31568010433902375E-002 12 6 9 7 + -0.18851086001605115E-001 9 8 12 6 + -0.18559363619040811E-001 12 6 9 8 + -0.59892555501811079E-002 10 3 12 6 + -0.59220044082092379E-002 12 6 10 3 + -0.91939757360244082E-002 10 4 12 6 + -0.90864865334090109E-002 12 6 10 4 + -0.18617164087309176E-001 10 5 12 6 + -0.18402239630527124E-001 12 6 10 5 + 0.79999853657036833E-003 10 6 12 6 + 0.79999853742211528E-003 12 6 10 6 + 0.35125942804072868E-002 10 7 12 6 + 0.35125945465744961E-002 12 6 10 7 + 0.65380907174159130E-002 10 8 12 6 + 0.65380906270944691E-002 12 6 10 8 + 0.15648625498356259E-004 11 3 12 6 + 0.14112074721258064E-004 12 6 11 3 + 0.20580445496328625E-003 11 4 12 6 + 0.20230732599143200E-003 12 6 11 4 + 0.90866386534726150E-003 11 5 12 6 + 0.89949659548270097E-003 12 6 11 5 + -0.34332366803182753E-004 11 6 12 6 + -0.34332351058273566E-004 12 6 11 6 + -0.13376246996405896E-003 11 7 12 6 + -0.13376333394991206E-003 12 6 11 7 + -0.25217318863916523E-003 11 8 12 6 + -0.25217296993715083E-003 12 6 11 8 + 0.19198021675948775E-001 12 3 12 6 + 0.18940212826360499E-001 12 6 12 3 + -0.20593108815111366E-001 12 4 12 6 + -0.20314493284229181E-001 12 6 12 4 + 0.30981708509842344E-002 12 5 12 6 + 0.30573164547547664E-002 12 6 12 5 + 0.12546764440230075E-001 12 6 12 6 + 0.59727448318879319E-003 1 3 12 7 + 0.59265782048237661E-003 12 7 1 3 + -0.36829376366332431E-003 1 4 12 7 + -0.36544690314964254E-003 12 7 1 4 + -0.18623928797198127E-003 1 5 12 7 + -0.18479965530935450E-003 12 7 1 5 + 0.56270418064976384E-003 1 6 12 7 + 0.56466086856436499E-003 12 7 1 6 + 0.27572460594483433E-003 1 7 12 7 + 0.27668337849110056E-003 12 7 1 7 + -0.56067366379887655E-004 1 8 12 7 + -0.56262189161033128E-004 12 7 1 8 + 0.48205629766900279E-002 2 3 12 7 + 0.47609423247354588E-002 12 7 2 3 + -0.29724973185474581E-002 2 4 12 7 + -0.29357288788846463E-002 12 7 2 4 + -0.15031420175539991E-002 2 5 12 7 + -0.14845476960279858E-002 12 7 2 5 + 0.23142742414687112E-002 2 6 12 7 + 0.23207307703911701E-002 12 7 2 6 + 0.11339924695008725E-002 2 7 12 7 + 0.11371561669843275E-002 12 7 2 7 + -0.23058817543991744E-003 2 8 12 7 + -0.23123165698133255E-003 12 7 2 8 + 0.25192613399393328E-002 3 1 12 7 + 0.25146446772329159E-002 12 7 3 1 + 0.48556180401899511E-002 3 2 12 7 + 0.47959973882353820E-002 12 7 3 2 + -0.21012693333437916E-002 3 9 12 7 + -0.21071021301943154E-002 12 7 3 9 + -0.31604142564691212E-003 3 10 12 7 + -0.31859126920690418E-003 12 7 3 10 + 0.10422621390580448E-002 3 11 12 7 + 0.10432869092823407E-002 12 7 3 11 + -0.47528339200101559E-003 3 12 12 7 + -0.47872516476539360E-003 12 7 3 12 + 0.16631443926032681E-002 3 13 12 7 + 0.16262902267457178E-002 12 7 3 13 + -0.15220730788893381E-002 3 14 12 7 + -0.15055846704818893E-002 12 7 3 14 + -0.15534370231779354E-002 4 1 12 7 + -0.15505901626642535E-002 12 7 4 1 + -0.29941170110668364E-002 4 2 12 7 + -0.29573485714040246E-002 12 7 4 2 + 0.12957030690122660E-002 4 9 12 7 + 0.12992990098048861E-002 12 7 4 9 + -0.21314849344537977E-002 4 10 12 7 + -0.20940658433414444E-002 12 7 4 10 + -0.13372464997760060E-002 4 11 12 7 + -0.13083107035468187E-002 12 7 4 11 + -0.87238609300594925E-003 4 12 12 7 + -0.86685721191183005E-003 12 7 4 12 + -0.27301590326434854E-002 4 13 12 7 + -0.26790881264539879E-002 12 7 4 13 + 0.30801107123421506E-002 4 14 12 7 + 0.30421481837557825E-002 12 7 4 14 + -0.78554415503214619E-003 5 1 12 7 + -0.78410452236951937E-003 12 7 5 1 + -0.15140756505644599E-002 5 2 12 7 + -0.14954813290384466E-002 12 7 5 2 + 0.65521534095845429E-003 5 9 12 7 + 0.65703356888208630E-003 12 7 5 9 + 0.70187638979174796E-003 5 10 12 7 + 0.69111360926609952E-003 12 7 5 10 + -0.44746804255946212E-002 5 11 12 7 + -0.44002787872099956E-002 12 7 5 11 + -0.54286121227255764E-002 5 12 12 7 + -0.53346770174244641E-002 12 7 5 12 + -0.11566207060379058E-002 5 13 12 7 + -0.11433116677526571E-002 12 7 5 13 + -0.10210775821448445E-002 5 14 12 7 + -0.10076813275904514E-002 12 7 5 14 + 0.30442058616047623E-002 6 1 12 7 + 0.30461625495193630E-002 12 7 6 1 + 0.32962984647658586E-002 6 2 12 7 + 0.33027549936883176E-002 12 7 6 2 + -0.29680706536095226E-002 6 9 12 7 + -0.29184509973252488E-002 12 7 6 9 + 0.13480136192541264E-002 6 10 12 7 + 0.13480136199303578E-002 12 7 6 10 + 0.58284761907177447E-003 6 11 12 7 + 0.58284737910699140E-003 12 7 6 11 + -0.41300708501157686E-005 6 12 12 7 + -0.41301986608535065E-005 12 7 6 12 + 0.26421780620264250E-002 6 13 12 7 + 0.26421811555563906E-002 12 7 6 13 + -0.14387890668134333E-002 6 14 12 7 + -0.14387906691240781E-002 12 7 6 14 + 0.14916585242310775E-002 7 1 12 7 + 0.14926172967773439E-002 12 7 7 1 + 0.16151838019078002E-002 7 2 12 7 + 0.16183474993912551E-002 12 7 7 2 + -0.14543524209978101E-002 7 9 12 7 + -0.14300387951155767E-002 12 7 7 9 + -0.72484856923495393E-003 7 10 12 7 + -0.72484874549839993E-003 12 7 7 10 + 0.20207405024852739E-002 7 11 12 7 + 0.20207404991023762E-002 12 7 7 11 + 0.33287248401051598E-002 7 12 12 7 + 0.33287248401051598E-002 12 7 7 12 + 0.48057747786044863E-003 7 13 12 7 + 0.48057763371453185E-003 12 7 7 13 + 0.57312541760542904E-003 7 14 12 7 + 0.57312603817263473E-003 12 7 7 14 + -0.30332425224263222E-003 8 1 12 7 + -0.30351907502377770E-003 12 7 8 1 + -0.32844723946075011E-003 8 2 12 7 + -0.32909072100216523E-003 12 7 8 2 + 0.29574235696623797E-003 8 9 12 7 + 0.29079673820372185E-003 12 7 8 9 + 0.51073658910842808E-003 8 10 12 7 + 0.51073652481796092E-003 12 7 8 10 + 0.25176414913291537E-002 8 11 12 7 + 0.25176414576840766E-002 12 7 8 11 + 0.19705385272251971E-002 8 12 12 7 + 0.19705385608046501E-002 12 7 8 12 + 0.45057676892873178E-003 8 13 12 7 + 0.45057743479089336E-003 12 7 8 13 + -0.15500414228630571E-003 8 14 12 7 + -0.15500455292159095E-003 12 7 8 14 + -0.29189762382871519E-002 9 3 12 7 + -0.29248090351376758E-002 12 7 9 3 + 0.17998922740707799E-002 9 4 12 7 + 0.18034882148634001E-002 12 7 9 4 + 0.91016742735030112E-003 9 5 12 7 + 0.91198565527393313E-003 12 7 9 5 + -0.32064206996744045E-002 9 6 12 7 + -0.31568010433901308E-002 12 7 9 6 + -0.15711437295948428E-002 9 7 12 7 + -0.15468301037126094E-002 12 7 9 7 + 0.31949011350612189E-003 9 8 12 7 + 0.31454449474360577E-003 12 7 9 8 + -0.37063838737451865E-003 10 3 12 7 + -0.37318823093451071E-003 12 7 10 3 + -0.23130872965873269E-002 10 4 12 7 + -0.22756682054749736E-002 12 7 10 4 + 0.76701763391078329E-003 10 5 12 7 + 0.75625485338513484E-003 12 7 10 5 + 0.12012888842251931E-002 10 6 12 7 + 0.12012888849014245E-002 12 7 10 6 + -0.60620797414410261E-003 10 7 12 7 + -0.60620815040754862E-003 12 7 10 7 + 0.42358445498462529E-003 10 8 12 7 + 0.42358439069415819E-003 12 7 10 8 + 0.11970013584071139E-002 11 3 12 7 + 0.11980261286314098E-002 12 7 11 3 + -0.14326219199255871E-002 11 4 12 7 + -0.14036861236963998E-002 12 7 11 4 + -0.48704014890711437E-002 11 5 12 7 + -0.47959998506865182E-002 12 7 11 5 + 0.46818063198100741E-003 11 6 12 7 + 0.46818039201622434E-003 12 7 11 6 + 0.16901505709992486E-002 11 7 12 7 + 0.16901505676163509E-002 12 7 11 7 + 0.22618991738032669E-002 11 8 12 7 + 0.22618991401581897E-002 12 7 11 8 + -0.55585461182103128E-003 12 3 12 7 + -0.55929638458540934E-003 12 7 12 3 + -0.98002579121070550E-003 12 4 12 7 + -0.97449691011658630E-003 12 7 12 4 + -0.58959814088032445E-002 12 5 12 7 + -0.58020463035021322E-002 12 7 12 5 + -0.34423368715045395E-005 12 6 12 7 + -0.34424646822422752E-005 12 7 12 6 + 0.29396017056734685E-002 12 7 12 7 + 0.26232088447490213E-002 1 3 12 8 + 0.26029321264993128E-002 12 8 1 3 + -0.27500907508321302E-002 1 4 12 8 + -0.27288335771181306E-002 12 8 1 4 + 0.52198723624900789E-003 1 5 12 8 + 0.51795244946286354E-003 12 8 1 5 + 0.33082323652895433E-002 1 6 12 8 + 0.33197360538993977E-002 12 8 1 6 + -0.56067366379886069E-004 1 7 12 8 + -0.56262189161031874E-004 12 8 1 7 + -0.32269524549859228E-003 1 8 12 8 + -0.32381755609613795E-003 12 8 1 8 + 0.21171842642609184E-001 2 3 12 8 + 0.20909969733057050E-001 12 8 2 3 + -0.22195842448285635E-001 2 4 12 8 + -0.21921316133513249E-001 12 8 2 4 + 0.42129364295242153E-002 2 5 12 8 + 0.41608284642599422E-002 12 8 2 5 + 0.13606006627363472E-001 2 6 12 8 + 0.13643965654342380E-001 12 8 2 6 + -0.23058817543991053E-003 2 7 12 8 + -0.23123165698132647E-003 12 8 2 7 + -0.13271781594208349E-002 2 8 12 8 + -0.13308805683257207E-002 12 8 2 8 + 0.11064508947522358E-001 3 1 12 8 + 0.11044232229272651E-001 12 8 3 1 + 0.21325819982220308E-001 3 2 12 8 + 0.21063947072668173E-001 12 8 3 2 + -0.92287451179423260E-002 3 9 12 8 + -0.92543595529541393E-002 12 8 3 9 + 0.17715394326577468E-002 3 10 12 8 + 0.17334240678680349E-002 12 8 3 10 + 0.10506964032126627E-001 3 11 12 8 + 0.10370862205022036E-001 12 8 3 11 + -0.15339825565239801E-001 3 12 12 8 + -0.15112740477884986E-001 12 8 3 12 + -0.81269154911248166E-003 3 13 12 8 + -0.79507779790153124E-003 12 8 3 13 + -0.12644881820808815E-001 3 14 12 8 + -0.12492246795299755E-001 12 8 3 14 + -0.11599687588596891E-001 4 1 12 8 + -0.11578430414882893E-001 12 8 4 1 + -0.22357257107565250E-001 4 2 12 8 + -0.22082730792792864E-001 12 8 4 2 + 0.96751032444406838E-002 4 9 12 8 + 0.97019584950400490E-002 12 8 4 9 + -0.10182058838804652E-002 4 10 12 8 + -0.98810332790906985E-003 12 8 4 10 + 0.81989711124846234E-002 4 11 12 8 + 0.80916040405162488E-002 12 8 4 11 + -0.11714884177602304E-001 4 12 12 8 + -0.11539564564508669E-001 12 8 4 12 + 0.23593679220848388E-003 4 13 12 8 + 0.22271494820877901E-003 12 8 4 13 + 0.15942613653903811E-001 4 14 12 8 + 0.15748561678190835E-001 12 8 4 14 + 0.22017051286665010E-002 5 1 12 8 + 0.21976703418803566E-002 12 8 5 1 + 0.42435747989933619E-002 5 2 12 8 + 0.41914668337290888E-002 12 8 5 2 + -0.18364067799723331E-002 5 9 12 8 + -0.18415039773731704E-002 12 8 5 9 + -0.17448149868835004E-003 5 10 12 8 + -0.17309310081121753E-003 12 8 5 10 + -0.13716818492951491E-001 5 11 12 8 + -0.13544551807107928E-001 12 8 5 11 + -0.17000820420751950E-001 5 12 12 8 + -0.16752464056732062E-001 12 8 5 12 + 0.65684606794181623E-003 5 13 12 8 + 0.65079832426168127E-003 12 8 5 13 + -0.36503668089601660E-003 5 14 12 8 + -0.36196323511059151E-003 12 8 5 14 + 0.17897397559393319E-001 6 1 12 8 + 0.17908901248003175E-001 12 8 6 1 + 0.19379492578934919E-001 6 2 12 8 + 0.19417451605913828E-001 12 8 6 2 + -0.17449786130544674E-001 6 9 12 8 + -0.17158063747980370E-001 12 8 6 9 + 0.21209395364631986E-002 6 10 12 8 + 0.21209391128539593E-002 12 8 6 10 + -0.31890486619957280E-003 6 11 12 8 + -0.31890511089595228E-003 12 8 6 11 + -0.99754743128553842E-003 6 12 12 8 + -0.99754695363378867E-003 12 8 6 12 + -0.97963277693939024E-003 6 13 12 8 + -0.97963388573609638E-003 12 8 6 13 + -0.88044487368240630E-002 6 14 12 8 + -0.88044587942794992E-002 12 8 6 14 + -0.30332425224264376E-003 7 1 12 8 + -0.30351907502378957E-003 12 8 7 1 + -0.32844723946074019E-003 7 2 12 8 + -0.32909072100215613E-003 12 8 7 2 + 0.29574235696628492E-003 7 9 12 8 + 0.29079673820376885E-003 12 8 7 9 + 0.37004253072663430E-003 7 10 12 8 + 0.37004285184760228E-003 12 8 7 10 + 0.87248565014139533E-002 7 11 12 8 + 0.87248565071571787E-002 12 8 7 11 + 0.19705392408810450E-002 7 12 12 8 + 0.19705392073015920E-002 12 8 7 12 + -0.30540583322715662E-003 7 13 12 8 + -0.30540644131006199E-003 12 8 7 13 + -0.32882548738138924E-003 7 14 12 8 + -0.32882611834737454E-003 12 8 7 14 + -0.17457644906016870E-002 8 1 12 8 + -0.17468868011992326E-002 12 8 8 1 + -0.18903257541717673E-002 8 2 12 8 + -0.18940281630766532E-002 12 8 8 2 + 0.17020969971049550E-002 8 9 12 8 + 0.16736437754762943E-002 12 8 8 9 + -0.23166692827412150E-003 8 10 12 8 + -0.23166675286242261E-003 12 8 8 10 + -0.19796872369043420E-002 8 11 12 8 + -0.19796872492663562E-002 12 8 8 11 + 0.14592402466801437E-001 8 12 12 8 + 0.14592402466801437E-001 12 8 8 12 + 0.98453938394190780E-005 8 13 12 8 + 0.98453606695750042E-005 12 8 8 13 + -0.46622983260897046E-003 8 14 12 8 + -0.46623053827017961E-003 12 8 8 14 + -0.12819963492090769E-001 9 3 12 8 + -0.12845577927102583E-001 12 8 9 3 + 0.13440101115974386E-001 9 4 12 8 + 0.13466956366573753E-001 12 8 9 4 + -0.25510257166418506E-002 9 5 12 8 + -0.25561229140426880E-002 12 8 9 5 + -0.18851086001605281E-001 9 6 12 8 + -0.18559363619040977E-001 12 8 9 6 + 0.31949011350614108E-003 9 7 12 8 + 0.31454449474362502E-003 12 8 9 7 + 0.18387859496347251E-002 9 8 12 8 + 0.18103327280060645E-002 12 8 9 8 + 0.18985358362578909E-002 10 3 12 8 + 0.18604204714681789E-002 12 8 10 3 + -0.10631577867996874E-002 10 4 12 8 + -0.10330552308282920E-002 12 8 10 4 + -0.19504848068733176E-003 10 5 12 8 + -0.19366008281019925E-003 12 8 10 5 + 0.19214500749280741E-002 10 6 12 8 + 0.19214496513188350E-002 12 8 10 6 + 0.31300747366652307E-003 10 7 12 8 + 0.31300779478749105E-003 12 8 10 7 + -0.19379077805857010E-003 10 8 12 8 + -0.19379060264687121E-003 12 8 10 8 + 0.11567570213001940E-001 11 3 12 8 + 0.11431468385897349E-001 12 8 11 3 + 0.90226291358683781E-002 11 4 12 8 + 0.89152620639000035E-002 12 8 11 4 + -0.15119734675016223E-001 11 5 12 8 + -0.14947467989172659E-001 12 8 11 5 + -0.26624722858573254E-003 11 6 12 8 + -0.26624747328211202E-003 12 8 11 6 + 0.71407257857355518E-002 11 7 12 8 + 0.71407257914787780E-002 12 8 11 7 + -0.16558196072499710E-002 11 8 12 8 + -0.16558196196119854E-002 12 8 11 8 + -0.16791243989235601E-001 12 3 12 8 + -0.16564158901880784E-001 12 8 12 3 + -0.12816878722235881E-001 12 4 12 8 + -0.12641559109142246E-001 12 8 12 4 + -0.18620570204779984E-001 12 5 12 8 + -0.18372213840760095E-001 12 8 12 5 + -0.83423204922701121E-003 12 6 12 8 + -0.83423157157526157E-003 12 8 12 6 + 0.16478541215986856E-002 12 7 12 8 + 0.16478540880192328E-002 12 8 12 7 + 0.12359461153779396E-001 12 8 12 8 + -0.14047531349992716E-002 1 12 12 9 + -0.14038718385246266E-002 12 9 1 12 + 0.13628721230068271E-009 12 9 1 13 + -0.13099112179293141E-009 12 9 1 14 + 0.50856130932468137E-009 2 10 12 9 + 0.47190786808424629E-009 12 9 2 10 + 0.33090546133250013E-008 2 11 12 9 + 0.30705617644409397E-008 12 9 2 11 + -0.15503561726140307E-001 2 12 12 9 + -0.15492349385183884E-001 12 9 2 12 + -0.60980121665218566E-007 2 13 12 9 + -0.56585113216483251E-007 12 9 2 13 + 0.58610447078580557E-007 2 14 12 9 + 0.54386227724569087E-007 12 9 2 14 + 0.78655300617036482E-002 3 3 12 9 + 0.78643795408958137E-002 12 9 3 3 + -0.83599064504381957E-003 3 4 12 9 + -0.83587161163326137E-003 12 9 3 4 + 0.60890589787383851E-002 3 5 12 9 + 0.60881688060259948E-002 12 9 3 5 + 0.53327156196752712E-002 3 6 12 9 + 0.53801334461603019E-002 12 9 3 6 + -0.15516921281369207E-002 3 7 12 9 + -0.15654897263259224E-002 12 9 3 7 + -0.68150239992608216E-002 3 8 12 9 + -0.68756212190680581E-002 12 9 3 8 + -0.83599064504381968E-003 4 3 12 9 + -0.83587161163326147E-003 12 9 4 3 + -0.87754760754884444E-002 4 4 12 9 + -0.87741934480501313E-002 12 9 4 4 + -0.48934800278673668E-002 4 5 12 9 + -0.48927652544813668E-002 12 9 4 5 + 0.51855273718430994E-002 4 6 12 9 + 0.52316355386683973E-002 12 9 4 6 + 0.95682127468214471E-003 4 7 12 9 + 0.96532888863709782E-003 12 9 4 7 + 0.71446310989869343E-002 4 8 12 9 + 0.72081601864586193E-002 12 9 4 8 + 0.60890589787383834E-002 5 3 12 9 + 0.60881688060259931E-002 12 9 5 3 + -0.48934800278673659E-002 5 4 12 9 + -0.48927652544813660E-002 12 9 5 4 + 0.90994601378513657E-003 5 5 12 9 + 0.90981390715466756E-003 12 9 5 5 + 0.67751939323351046E-002 5 6 12 9 + 0.68354376188853429E-002 12 9 5 6 + 0.48384930542739486E-003 5 7 12 9 + 0.48815136959086430E-003 12 9 5 7 + -0.13561048746645800E-002 5 8 12 9 + -0.13681631016677182E-002 12 9 5 8 + 0.66836090850884771E-002 6 3 12 9 + 0.67310269115735078E-002 12 9 6 3 + 0.64991089053892887E-002 6 4 12 9 + 0.65452170722145866E-002 12 9 6 4 + 0.84914847668898490E-002 6 5 12 9 + 0.85517284534400873E-002 12 9 6 5 + -0.72491773188574737E-004 6 6 12 9 + -0.69505145828317811E-004 12 9 6 6 + -0.86854605839827308E-003 6 7 12 9 + -0.83271345476290659E-003 12 9 6 7 + -0.51063284536031336E-002 6 8 12 9 + -0.48956623847477322E-002 12 9 6 8 + -0.19447740854543467E-002 7 3 12 9 + -0.19585716836433482E-002 12 9 7 3 + 0.11991956402228800E-002 7 4 12 9 + 0.12077032541778332E-002 12 9 7 4 + 0.60641119577427652E-003 7 5 12 9 + 0.61071325993774595E-003 12 9 7 5 + -0.86854605839828110E-003 7 6 12 9 + -0.83271345476291462E-003 12 9 7 6 + -0.42558700709640777E-003 7 7 12 9 + -0.40802899555092865E-003 12 9 7 7 + 0.86546876954363993E-004 7 8 12 9 + 0.82973556823454444E-004 12 9 7 8 + -0.85413860903626147E-002 8 3 12 9 + -0.86019833101698504E-002 12 9 8 3 + 0.89545206016643959E-002 8 4 12 9 + 0.90180496891360817E-002 12 9 8 4 + -0.16996334045983625E-002 8 5 12 9 + -0.17116916316015007E-002 12 9 8 5 + -0.51063284536031249E-002 8 6 12 9 + -0.48956623847477235E-002 12 9 8 6 + 0.86546876954362881E-004 8 7 12 9 + 0.82973556823453333E-004 12 9 8 7 + 0.49807878028521079E-003 8 8 12 9 + 0.47753414137947540E-003 12 9 8 8 + 0.27174631609297829E-009 9 10 12 9 + 0.27174631610662331E-009 12 9 9 10 + 0.17681709427232266E-008 9 11 12 9 + 0.17681709427730229E-008 12 9 9 11 + 0.13530996079373117E-001 9 12 12 9 + 0.13530996079373117E-001 12 9 9 12 + -0.32584314677125143E-007 9 13 12 9 + -0.32584314677120471E-007 12 9 9 13 + 0.31318095113556873E-007 9 14 12 9 + 0.31318095113500592E-007 12 9 9 14 + 0.86398270077153553E-009 10 2 12 9 + 0.82732925953383398E-009 12 9 10 2 + -0.19240617413066795E-009 10 9 12 9 + -0.19240617411326314E-009 12 9 10 9 + -0.11122079674843342E-002 10 10 12 9 + -0.11114310103546780E-002 12 9 10 10 + -0.20935900764616228E-002 10 11 12 9 + -0.20921265334048135E-002 12 9 10 11 + -0.61206784727129218E-002 10 12 12 9 + -0.61164010847617042E-002 12 9 10 12 + -0.86763044134660251E-004 10 13 12 9 + -0.86702007382682964E-004 12 9 10 13 + 0.95584983537791315E-003 10 14 12 9 + 0.95518021730289337E-003 12 9 10 14 + 0.21147333476636052E-009 11 1 12 9 + 0.20855326226453236E-009 12 9 11 1 + 0.56216739742150839E-008 11 2 12 9 + 0.53831811253340258E-008 12 9 11 2 + -0.12519284877976770E-008 11 9 12 9 + -0.12519284877480594E-008 12 9 11 9 + -0.20935951396309168E-002 11 10 12 9 + -0.20921315965741075E-002 12 9 11 10 + 0.84595423960248715E-004 11 11 12 9 + 0.84535248629094258E-004 12 9 11 11 + 0.21156140071843210E-003 11 12 12 9 + 0.21141424499235579E-003 12 9 11 12 + -0.64152094087109581E-002 11 13 12 9 + -0.64107144481113975E-002 12 9 11 13 + -0.21093844373290126E-003 11 14 12 9 + -0.21079071348312152E-003 12 9 11 14 + -0.29210325297454555E-002 12 1 12 9 + -0.29201512332708104E-002 12 9 12 1 + -0.11974431808906019E-001 12 2 12 9 + -0.11963219467949596E-001 12 9 12 2 + 0.10029281291280528E-001 12 9 12 9 + -0.24925146188210404E-009 1 1 12 10 + -0.60034035237579390E-004 1 10 12 10 + -0.59871831119861833E-004 12 10 1 10 + -0.11301001995997447E-003 1 11 12 10 + -0.11270438201325548E-003 12 10 1 11 + -0.33039082852801737E-003 1 12 12 10 + -0.32949763284605062E-003 12 10 1 12 + -0.46825055742705471E-005 1 13 12 10 + -0.46698207143996709E-005 12 10 1 13 + 0.51590984771713203E-004 1 14 12 10 + 0.51451474871260206E-004 12 10 1 14 + 0.73446372093812796E-009 2 2 12 10 + 0.67369636097614662E-009 12 10 2 2 + 0.73313381776748315E-009 2 9 12 10 + 0.58479194211421126E-009 12 10 2 9 + 0.43306532710513657E-002 2 10 12 10 + 0.43103854968407429E-002 12 10 2 10 + 0.81515946016535359E-002 2 11 12 10 + 0.81134459981243180E-002 12 10 2 11 + 0.23831576680796440E-001 2 12 12 10 + 0.23720044547271401E-001 12 10 2 12 + 0.33776508088984584E-003 2 13 12 10 + 0.33618404639335574E-003 12 10 2 13 + -0.37214876770922359E-002 2 14 12 10 + -0.37040690193118671E-002 12 10 2 14 + -0.10627141560991173E-001 3 3 12 10 + -0.10518610105002870E-001 12 10 3 3 + -0.28751877864663907E-002 3 4 12 10 + -0.28458194017708500E-002 12 10 3 4 + -0.12858454830277906E-001 3 5 12 10 + -0.12727135913248748E-001 12 10 3 5 + -0.11497146701018820E-002 3 6 12 10 + -0.11807723734774611E-002 12 10 3 6 + 0.10734197137864975E-002 3 7 12 10 + 0.11024185734018052E-002 12 10 3 7 + 0.32285906915716662E-002 3 8 12 10 + 0.33158115016503910E-002 12 10 3 8 + -0.28751835159710943E-002 4 3 12 10 + -0.28458151312755536E-002 12 10 4 3 + 0.14411665239021799E-001 4 4 12 10 + 0.14264481277687880E-001 12 10 4 4 + 0.17072264491394706E-001 4 5 12 10 + 0.16897912176317087E-001 12 10 4 5 + -0.24892312342846890E-002 4 6 12 10 + -0.25564788384707529E-002 12 10 4 6 + -0.23958394285673512E-002 4 7 12 10 + -0.24605629849247233E-002 12 10 4 7 + -0.33021006631688502E-002 4 8 12 10 + -0.33913054262646640E-002 12 10 4 8 + -0.12858456697424315E-001 5 3 12 10 + -0.12727137780395158E-001 12 10 5 3 + 0.17072242371938232E-001 5 4 12 10 + 0.16897890056860612E-001 12 10 5 4 + -0.37845216979117296E-002 5 5 12 10 + -0.37458692677405456E-002 12 10 5 5 + -0.45752077179841344E-002 5 6 12 10 + -0.46988066729411991E-002 12 10 5 6 + 0.51367005197599190E-003 5 7 12 10 + 0.52754691032927945E-003 12 10 5 7 + 0.99171851124748686E-004 5 8 12 10 + 0.10185203505466063E-003 12 10 5 8 + -0.70124676315890498E-003 6 3 12 10 + -0.73230446653448392E-003 12 10 6 3 + -0.15181472364009059E-002 6 4 12 10 + -0.15853948405869698E-002 12 10 6 4 + -0.27904134330086700E-002 6 5 12 10 + -0.29140123879657352E-002 12 10 6 5 + 0.22343222637020129E-002 6 6 12 10 + 0.22714682907038707E-002 12 10 6 6 + 0.65832817861145180E-002 6 7 12 10 + 0.66927299235177186E-002 12 10 6 7 + 0.11814364501725797E-001 6 8 12 10 + 0.12010778091484689E-001 12 10 6 8 + 0.65467562958039559E-003 7 3 12 10 + 0.68367448919570348E-003 12 10 7 3 + -0.14612077848895262E-002 7 4 12 10 + -0.15259313412468983E-002 12 10 7 4 + 0.31327764076359907E-003 7 5 12 10 + 0.32715449911688667E-003 12 10 7 5 + 0.65832785527779117E-002 7 6 12 10 + 0.66927266901811123E-002 12 10 7 6 + -0.16931592690786167E-002 7 7 12 10 + -0.17213075212838109E-002 12 10 7 7 + 0.10286927651480164E-002 7 8 12 10 + 0.10457941930337199E-002 12 10 7 8 + 0.19690911324696256E-002 8 3 12 10 + 0.20563119425483505E-002 12 10 8 3 + -0.20139693325818115E-002 8 4 12 10 + -0.21031740956776253E-002 12 10 8 4 + 0.60459775933686530E-004 8 5 12 10 + 0.63139959863598482E-004 12 10 8 5 + 0.11814360442711638E-001 8 6 12 10 + 0.12010774032470530E-001 12 10 8 6 + 0.10286974589606085E-002 8 7 12 10 + 0.10457988868463120E-002 12 10 8 7 + -0.54116131768254180E-003 8 8 12 10 + -0.55015998184453725E-003 12 10 8 8 + -0.57202713380529197E-009 9 2 12 10 + -0.72036900946086663E-009 12 10 9 2 + 0.61289754184961579E-009 9 9 12 10 + 0.34419644541836251E-009 12 10 9 9 + 0.33785873799311759E-003 9 10 12 10 + 0.33708194276862535E-003 12 10 9 10 + 0.63602717221245637E-003 9 11 12 10 + 0.63456358758778105E-003 12 10 9 11 + 0.18594054697226832E-002 9 12 12 10 + 0.18551280817714661E-002 12 10 9 12 + 0.26367844155457646E-004 9 13 12 10 + 0.26306959592399558E-004 12 10 9 13 + -0.29041648221900382E-003 9 14 12 10 + -0.28974776246469146E-003 12 10 9 14 + 0.74138829656551341E-003 10 1 12 10 + 0.74155050068323099E-003 12 10 10 1 + 0.77352967234372598E-002 10 2 12 10 + 0.77150289492266370E-002 12 10 10 2 + -0.11114301924034192E-002 10 9 12 10 + -0.11122069876279114E-002 12 10 10 9 + -0.41915587819486902E-008 10 10 12 10 + -0.46675485579759658E-008 12 10 10 10 + -0.23001654217319410E-003 10 11 12 10 + -0.23001864409216198E-003 12 10 10 11 + 0.33174345919701240E-001 10 12 12 10 + 0.33174345919701240E-001 12 10 10 12 + 0.24249075087938318E-003 10 13 12 10 + 0.24248922589786831E-003 12 10 10 13 + 0.73840558727013283E-003 10 14 12 10 + 0.73840288568915568E-003 12 10 10 14 + 0.13955439486270519E-002 11 1 12 10 + 0.13958495865737709E-002 12 10 11 1 + 0.14560443138792553E-001 11 2 12 10 + 0.14522294535263335E-001 12 10 11 2 + -0.20921318065766350E-002 11 9 12 10 + -0.20935953912013102E-002 12 10 11 9 + -0.22996469581596475E-003 11 10 12 10 + -0.22996679773493262E-003 12 10 11 10 + -0.85356565503135883E-003 11 11 12 10 + -0.85356058510901577E-003 12 10 11 11 + 0.35563280470520431E-003 11 12 12 10 + 0.35563140232365949E-003 12 10 11 12 + 0.13143865490938158E-001 11 13 12 10 + 0.13143830536605179E-001 12 10 11 13 + -0.19655138918099830E-002 11 14 12 10 + -0.19655092725071725E-002 12 10 11 14 + 0.40799344610204964E-002 12 1 12 10 + 0.40808276567024637E-002 12 10 12 1 + 0.42567961946127456E-001 12 2 12 10 + 0.42456429812602420E-001 12 10 12 2 + -0.61163952588737360E-002 12 9 12 10 + -0.61206726468249536E-002 12 10 12 9 + 0.33174271051293468E-001 12 10 12 10 + -0.16218076717471206E-008 1 1 12 11 + -0.42695427630242273E-009 12 11 1 1 + 0.16955204258366761E-009 1 2 12 11 + -0.11301028891106238E-003 1 10 12 11 + -0.11270472472433031E-003 12 11 1 10 + 0.45614406928402167E-005 1 11 12 11 + 0.45490074511684037E-005 12 11 1 11 + 0.11419234400149395E-004 1 12 12 11 + 0.11388487080694812E-004 12 11 1 12 + -0.34625918675377522E-003 1 13 12 11 + -0.34532258490495938E-003 12 11 1 13 + -0.11384984658496105E-004 1 14 12 11 + -0.11354210653213602E-004 12 11 1 14 + 0.34471460063696263E-009 2 1 12 11 + 0.27177386825423532E-009 12 11 2 1 + 0.47789299949597703E-008 2 2 12 11 + 0.43835351978419888E-008 12 11 2 2 + 0.47702805691799485E-008 2 9 12 11 + 0.38050648873666037E-008 12 11 2 9 + 0.81515898056870959E-002 2 10 12 11 + 0.81134401274020034E-002 12 11 2 10 + -0.32934707386602480E-003 2 11 12 11 + -0.32780600425328564E-003 12 11 2 11 + -0.82390428563783053E-003 2 12 12 11 + -0.82004821346010612E-003 12 11 2 12 + 0.24976755861376820E-001 2 13 12 11 + 0.24859852864646384E-001 12 11 2 13 + 0.82126429548099258E-003 2 14 12 11 + 0.81742018650027488E-003 12 11 2 14 + -0.13750019721548483E-001 3 3 12 11 + -0.13609576100880231E-001 12 11 3 3 + -0.12708130017292013E-001 3 4 12 11 + -0.12578329374990095E-001 12 11 3 4 + 0.54254530782823465E-003 3 5 12 11 + 0.53701156515193155E-003 12 11 3 5 + 0.23516157614050914E-003 3 6 12 11 + 0.24151459871308472E-003 12 11 3 6 + -0.22363501363654348E-002 3 7 12 11 + -0.22967675807802419E-002 12 11 3 7 + 0.32767264459811537E-002 3 8 12 11 + 0.33652559312866643E-002 12 11 3 8 + -0.12708101554163954E-001 4 3 12 11 + -0.12578300911862036E-001 12 11 4 3 + -0.11690239506982671E-001 4 4 12 11 + -0.11570836677625663E-001 12 11 4 4 + 0.27626657861664758E-002 4 5 12 11 + 0.27344542841336783E-002 12 11 4 5 + 0.24181228222842845E-003 4 6 12 11 + 0.24834335091806673E-003 12 11 4 6 + -0.24652931974370475E-002 4 7 12 11 + -0.25318960341252986E-002 12 11 4 7 + 0.27620062651434150E-002 4 8 12 11 + 0.28366276530036997E-002 12 11 4 8 + 0.54253576097320971E-003 5 3 12 11 + 0.53700201829690660E-003 12 11 5 3 + 0.27626718105804543E-002 5 4 12 11 + 0.27344603085476568E-002 12 11 5 4 + 0.25440272112557415E-001 5 5 12 11 + 0.25180425173394951E-001 12 11 5 5 + -0.22487844165596302E-005 5 6 12 11 + -0.23097048542865878E-005 12 11 5 6 + -0.42933800373780064E-002 5 7 12 11 + -0.44093775196146195E-002 12 11 5 7 + -0.33252262104846346E-002 5 8 12 11 + -0.34150618249770147E-002 12 11 5 8 + 0.14343158843557136E-003 6 3 12 11 + 0.14978461100814694E-003 12 11 6 3 + 0.14748391469430856E-003 6 4 12 11 + 0.15401498338394687E-003 12 11 6 4 + -0.13671754467642083E-005 6 5 12 11 + -0.14280958844911633E-005 12 11 6 5 + -0.95886255281630290E-004 6 6 12 11 + -0.97482104286260142E-004 12 11 6 6 + 0.46703146864143769E-003 6 7 12 11 + 0.47479573195936679E-003 12 11 6 7 + -0.72401272771852715E-003 6 8 12 11 + -0.73604815073955040E-003 12 11 6 8 + -0.13638703127825677E-002 7 3 12 11 + -0.14242877571973749E-002 12 11 7 3 + -0.15035027146629641E-002 7 4 12 11 + -0.15701055513512151E-002 12 11 7 4 + -0.26182664975624484E-002 7 5 12 11 + -0.27342639797990611E-002 12 11 7 5 + 0.46703906841063923E-003 7 6 12 11 + 0.47480333172856832E-003 12 11 7 6 + 0.47202539311878688E-002 7 7 12 11 + 0.47987295131935699E-002 12 11 7 7 + 0.13130645342137178E-001 7 8 12 11 + 0.13348947589266644E-001 12 11 7 8 + 0.19982490333503322E-002 8 3 12 11 + 0.20867785186558427E-002 12 11 8 3 + 0.16843882367501561E-002 8 4 12 11 + 0.17590096246104412E-002 12 11 8 4 + -0.20279516354846467E-002 8 5 12 11 + -0.21177872499770268E-002 12 11 8 5 + -0.72401837131137064E-003 8 6 12 11 + -0.73605379433239388E-003 12 11 8 6 + 0.13130645821835688E-001 8 7 12 11 + 0.13348948068965154E-001 12 11 8 7 + -0.46243567645674610E-002 8 8 12 11 + -0.47012422843994836E-002 12 11 8 8 + -0.36775589142984111E-009 9 1 12 11 + -0.31470024177967267E-009 12 11 9 1 + -0.37220069616535863E-008 9 2 12 11 + -0.46872226434674609E-008 12 11 9 2 + 0.39879369090045314E-008 9 9 12 11 + 0.22395802116709062E-008 12 11 9 9 + 0.63602724235133838E-003 9 10 12 11 + 0.63456382521549770E-003 12 11 9 10 + -0.25717415781605073E-004 9 11 12 11 + -0.25657660074024771E-004 12 11 9 11 + -0.64243508484935000E-004 9 12 12 11 + -0.64096352758858695E-004 12 11 9 12 + 0.19491580079456440E-002 9 13 12 11 + 0.19446681996789102E-002 12 11 9 13 + 0.64089016430339269E-004 9 14 12 11 + 0.63941529906046631E-004 12 11 9 14 + 0.13955411139620277E-002 10 1 12 11 + 0.13958466781487597E-002 12 11 10 1 + 0.14560356839615842E-001 10 2 12 11 + 0.14522207161330750E-001 12 11 10 2 + -0.20921258972470972E-002 10 9 12 11 + -0.20935893143829375E-002 12 11 10 9 + 0.45986539418857387E-003 10 10 12 11 + 0.45986402787130014E-003 12 11 10 10 + 0.42692966189318218E-003 10 11 12 11 + 0.42693115663365594E-003 12 11 10 11 + 0.35554610015996597E-003 10 12 12 11 + 0.35554750254151074E-003 12 11 10 12 + 0.43142022517181670E-003 10 13 12 11 + 0.43141803538732716E-003 12 11 10 13 + 0.48350884207238798E-002 10 14 12 11 + 0.48350749351826032E-002 12 11 10 14 + -0.56369805574895319E-004 11 1 12 11 + -0.56382238816567131E-004 12 11 11 1 + -0.58818110746293938E-003 11 2 12 11 + -0.58664003785020022E-003 12 11 11 2 + 0.84533128674040686E-004 11 9 12 11 + 0.84592884381620988E-004 12 11 11 9 + 0.42683296393658516E-003 11 10 12 11 + 0.42683445867705891E-003 12 11 11 10 + -0.14651974644336861E-007 11 11 12 11 + -0.15470792532080796E-007 12 11 11 11 + 0.33651182886484325E-001 11 12 12 11 + 0.33651182886484325E-001 12 11 11 12 + -0.56492957088788204E-003 11 13 12 11 + -0.56492823956818693E-003 12 11 11 13 + -0.10498162269280097E-002 11 14 12 11 + -0.10498104447188091E-002 12 11 11 14 + -0.14104191274946684E-003 12 1 12 11 + -0.14107266006892140E-003 12 11 12 1 + -0.14715817889247537E-002 12 2 12 11 + -0.14677257167470292E-002 12 11 12 2 + 0.21141669394275232E-003 12 9 12 11 + 0.21156384966882863E-003 12 11 12 9 + 0.35554001054319165E-003 12 10 12 11 + 0.35554141292473641E-003 12 11 12 10 + 0.33651165214869362E-001 12 11 12 11 + 0.78465737110911304 1 1 12 12 + 0.78348174390069747 12 12 1 1 + -0.37490018293365047E-001 1 2 12 12 + -0.37882715982287929E-001 12 12 1 2 + 0.33554516033664925E-001 1 9 12 12 + 0.33475992149190621E-001 12 12 1 9 + -0.33039051906197874E-003 1 10 12 12 + -0.32949723850877886E-003 12 12 1 10 + 0.11419364486237860E-004 1 11 12 12 + 0.11388652842964218E-004 12 12 1 11 + 0.89785333552018113E-004 1 12 12 12 + 0.89542636729059090E-004 12 12 1 12 + 0.10354487268461767E-003 1 13 12 12 + 0.10326477902087823E-003 12 12 1 13 + 0.22492207683940998E-003 1 14 12 12 + 0.22431371700133102E-003 12 12 1 14 + 0.31646251214688829E-001 2 1 12 12 + 0.31253553525765948E-001 12 12 2 1 + 0.63941807066238843 2 2 12 12 + 0.63694284231565634 12 12 2 2 + -0.15253654661389920 2 9 12 12 + -0.15182800462767052 12 12 2 9 + 0.23831582199230063E-001 2 10 12 12 + 0.23720051302362717E-001 12 12 2 10 + -0.82390196592792807E-003 2 11 12 12 + -0.82004537391299772E-003 12 12 2 11 + -0.64764322296917039E-002 2 12 12 12 + -0.64461224468510712E-002 12 12 2 12 + -0.74689882396181710E-002 2 13 12 12 + -0.74340301833740420E-002 12 12 2 13 + -0.16224329423865719E-001 2 14 12 12 + -0.16148392503769385E-001 12 12 2 14 + 0.62624846048075067 3 3 12 12 + 0.62338799132750644 12 12 3 3 + -0.11347893957780460E-001 3 4 12 12 + -0.11231989493008384E-001 12 12 3 4 + 0.22482428997691144E-001 3 5 12 12 + 0.22252820582724677E-001 12 12 3 5 + 0.10899263356853924 3 6 12 12 + 0.11052025794643403 12 12 3 6 + 0.72171357266376579E-001 3 7 12 12 + 0.73101104445290083E-001 12 12 3 7 + -0.10640641510485076 3 8 12 12 + -0.10788575806377783 12 12 3 8 + -0.11347930707194970E-001 4 3 12 12 + -0.11232026242422893E-001 12 12 4 3 + 0.62703491044701765 4 4 12 12 + 0.62416640444280147 12 12 4 4 + 0.13053171417994435E-001 4 5 12 12 + 0.12919864489357924E-001 12 12 4 5 + -0.13121741620009358 4 6 12 12 + -0.13304100684325401 12 12 4 6 + 0.47148742829949429E-001 4 7 12 12 + 0.47752332310750316E-001 12 12 4 7 + -0.94924068842661649E-001 4 8 12 12 + -0.96230445277902754E-001 12 12 4 8 + 0.22482425423639055E-001 5 3 12 12 + 0.22252817008672588E-001 12 12 5 3 + 0.13053183968286633E-001 5 4 12 12 + 0.12919877039650121E-001 12 12 5 4 + 0.61147895826779297 5 5 12 12 + 0.60876935556361400 12 12 5 5 + 0.12415467595345500E-001 5 6 12 12 + 0.12595097382756501E-001 12 12 5 6 + -0.13549832051910615 5 7 12 12 + -0.13728664993800205 12 12 5 7 + -0.94086865541138556E-001 5 8 12 12 + -0.95418190617076931E-001 12 12 5 8 + 0.80636905682526350E-001 6 3 12 12 + 0.82164530060421140E-001 12 12 6 3 + -0.97234909535295289E-001 6 4 12 12 + -0.99058500178455702E-001 12 12 6 4 + 0.91293042582650426E-002 6 5 12 12 + 0.93089340456760442E-002 12 12 6 5 + 0.49721955697226050 6 6 12 12 + 0.49705026998436153 12 12 6 6 + -0.96442504188155052E-005 6 7 12 12 + -0.98026867662876276E-005 12 12 6 7 + -0.23301503422701458E-002 6 8 12 12 + -0.23688887883263347E-002 12 12 6 8 + 0.54212812959177389E-001 7 3 12 12 + 0.55142560138090893E-001 12 12 7 3 + 0.35454657906475777E-001 7 4 12 12 + 0.36058247387276664E-001 12 12 7 4 + -0.10135451516941209 7 5 12 12 + -0.10314284458830798 12 12 7 5 + -0.96473635576031942E-005 7 6 12 12 + -0.98057999050753014E-005 12 12 7 6 + 0.47038653446321654 7 7 12 12 + 0.46977114048564089 12 12 7 7 + 0.46029414489206968E-002 7 8 12 12 + 0.46794641794212673E-002 12 12 7 8 + -0.78843868759130700E-001 8 3 12 12 + -0.80323211718057771E-001 12 12 8 3 + -0.70469065249137985E-001 8 4 12 12 + -0.71775441684379090E-001 12 12 8 4 + -0.69483023261116952E-001 8 5 12 12 + -0.70814348337055327E-001 12 12 8 5 + -0.23301387079096140E-002 8 6 12 12 + -0.23688771539658029E-002 12 12 8 6 + 0.46029406310123923E-002 8 7 12 12 + 0.46794633615129628E-002 12 12 8 7 + 0.49669722793762122 8 8 12 12 + 0.49651925315246870 12 12 8 8 + -0.27483486879082687E-001 9 1 12 12 + -0.27562010763556986E-001 12 12 9 1 + -0.99630505660310356E-001 9 2 12 12 + -0.98921963674081653E-001 12 12 9 2 + 0.50320371423801735 9 9 12 12 + 0.50547235272408531 12 12 9 9 + 0.18594053890180209E-002 9 10 12 12 + 0.18551278083473585E-002 12 12 9 10 + -0.64243542409635505E-004 9 11 12 12 + -0.64096467694447912E-004 12 12 9 11 + -0.50529638105149181E-003 9 12 12 12 + -0.50413417073109522E-003 12 12 9 12 + -0.58286776951846483E-003 9 13 12 12 + -0.58152510098450174E-003 12 12 9 13 + -0.12661050085074944E-002 9 14 12 12 + -0.12631889862846394E-002 12 12 9 14 + 0.40799377227010479E-002 10 1 12 12 + 0.40808310032542485E-002 12 12 10 1 + 0.42568061245460760E-001 10 2 12 12 + 0.42456530348593410E-001 12 12 10 2 + -0.61164020583880643E-002 10 9 12 12 + -0.61206796390587265E-002 12 12 10 9 + 0.60428285982393448 10 10 12 12 + 0.60428285686526018 12 12 10 10 + -0.71121147546279121E-003 10 11 12 12 + -0.71121271729765922E-003 12 12 10 11 + -0.69598084164859094E-007 10 12 12 12 + -0.66971322479628318E-007 12 12 10 12 + -0.89521496853572577E-003 10 13 12 12 + -0.89522092879320756E-003 12 12 10 13 + 0.15379805137887524E-001 10 14 12 12 + 0.15379752640568092E-001 12 12 10 14 + -0.14104054168054934E-003 11 1 12 12 + -0.14107125332382298E-003 12 12 11 1 + -0.14715400477956675E-002 11 2 12 12 + -0.14676834557807374E-002 12 12 11 2 + 0.21141383572213982E-003 11 9 12 12 + 0.21156091043732740E-003 12 12 11 9 + -0.71114663096950913E-003 11 10 12 12 + -0.71114787280437725E-003 12 12 11 10 + 0.60332902403131450 11 11 12 12 + 0.60332902300567004 12 12 11 11 + 0.18156133549036235E-007 11 12 12 12 + 0.18931124614287973E-007 12 12 11 12 + -0.20806570475362758E-002 11 13 12 12 + -0.20806342244098172E-002 12 12 11 13 + -0.55458814024141869E-003 11 14 12 12 + -0.55458841229466581E-003 12 12 11 14 + -0.11087532325514209E-002 12 1 12 12 + -0.11089959293743800E-002 12 12 12 1 + -0.11568180119566259E-001 12 2 12 12 + -0.11537870336725625E-001 12 12 12 2 + 0.16621694624592502E-002 12 9 12 12 + 0.16633316727796468E-002 12 12 12 9 + 0.61029082382421959E-007 12 10 12 12 + 0.63655844067660212E-007 12 12 12 10 + 0.26452390251960385E-007 12 11 12 12 + 0.27227381317119989E-007 12 12 12 11 + 0.67063149208859940 12 12 12 12 + 0.29887093672109329E-007 1 1 12 13 + 0.78680234968060263E-008 12 13 1 1 + -0.31245492337293335E-008 1 2 12 13 + -0.17803783801472061E-008 12 13 1 2 + 0.65356110034962578E-009 1 9 12 13 + -0.32416225848944411E-009 12 13 1 9 + -0.46822742771786289E-005 1 10 12 13 + -0.46695259839506664E-005 12 13 1 10 + -0.34625088307029141E-003 1 11 12 13 + -0.34531200393163650E-003 12 13 1 11 + 0.10354259884313723E-003 1 12 12 13 + 0.10326188157703380E-003 12 13 1 12 + -0.28864287357507889E-004 1 13 12 13 + -0.28786740869780440E-004 12 13 1 13 + -0.17342679871505137E-004 1 14 12 13 + -0.17295248307843223E-004 12 13 1 14 + -0.63524906676355383E-008 2 1 12 13 + -0.50083198140537840E-008 12 13 2 1 + -0.88067369876178959E-007 2 2 12 13 + -0.80780931345768803E-007 12 13 2 2 + -0.87907975057110148E-007 2 9 12 13 + -0.70120728591266825E-007 12 13 2 9 + 0.33776920540592417E-003 2 10 12 13 + 0.33618909519610662E-003 12 13 2 10 + 0.24976903933605816E-001 2 11 12 13 + 0.24860034119237859E-001 12 13 2 11 + -0.74690287870217888E-002 2 12 12 13 + -0.74340798172800922E-002 12 13 2 12 + 0.20827261457369364E-002 2 13 12 13 + 0.20729786759344599E-002 12 13 2 13 + 0.12504796639191001E-002 2 14 12 13 + 0.12446276556459549E-002 12 13 2 14 + 0.21559925877383132E-001 3 3 12 13 + 0.21339752068514774E-001 12 13 3 3 + -0.38918032309833966E-002 3 4 12 13 + -0.38520650081852845E-002 12 13 3 4 + -0.77466618590216830E-002 3 5 12 13 + -0.76675521478715225E-002 12 13 3 5 + 0.34214039079858410E-002 3 6 12 13 + 0.35138267550113172E-002 12 13 3 6 + 0.32170048478608756E-002 3 7 12 13 + 0.33039143264398676E-002 12 13 3 7 + -0.15008886438384059E-002 3 8 12 13 + -0.15414338991888970E-002 12 13 3 8 + -0.38920529376563588E-002 4 3 12 13 + -0.38523147148582467E-002 12 13 4 3 + -0.21489889809868851E-001 4 4 12 13 + -0.21270426301050190E-001 12 13 4 4 + 0.10566821677769390E-001 4 5 12 13 + 0.10458910748129293E-001 12 13 4 5 + 0.31443858678072852E-002 4 6 12 13 + 0.32293582827364799E-002 12 13 4 6 + -0.36221194345687660E-002 4 7 12 13 + -0.37199825631108459E-002 12 13 4 7 + 0.18677051757430261E-002 4 8 12 13 + 0.19181700690538354E-002 12 13 4 8 + -0.77465270030828487E-002 5 3 12 13 + -0.76674172919326882E-002 12 13 5 3 + 0.10566764358954050E-001 5 4 12 13 + 0.10458853429313953E-001 12 13 5 4 + -0.70273497714821474E-004 5 5 12 13 + -0.69554183716941662E-004 12 13 5 5 + -0.27697223406852457E-002 5 6 12 13 + -0.28445556089474276E-002 12 13 5 6 + -0.65415150328714967E-004 5 7 12 13 + -0.67164285423954744E-004 12 13 5 7 + -0.22787076540661385E-003 5 8 12 13 + -0.23401706240467821E-003 12 13 5 8 + 0.20866049353070572E-002 6 3 12 13 + 0.21790277823325334E-002 12 13 6 3 + 0.19176541803631406E-002 6 4 12 13 + 0.20026265952923354E-002 12 13 6 4 + -0.16891539201985149E-002 6 5 12 13 + -0.17639871884606965E-002 12 13 6 5 + -0.11457658886918558E-002 6 6 12 13 + -0.11647843182039821E-002 12 13 6 6 + 0.12398991357398855E-001 6 7 12 13 + 0.12605147492128516E-001 12 13 6 7 + -0.61829735443489570E-002 6 8 12 13 + -0.62857761523022375E-002 12 13 6 8 + 0.19618078216206724E-002 7 3 12 13 + 0.20487173001996644E-002 12 13 7 3 + -0.22090141730580627E-002 7 4 12 13 + -0.23068773016001426E-002 12 13 7 4 + -0.39865665512526644E-004 7 5 12 13 + -0.41614800607766421E-004 12 13 7 5 + 0.12398914917300646E-001 7 6 12 13 + 0.12605071052030306E-001 12 13 7 6 + 0.11225563053042812E-002 7 7 12 13 + 0.11412558628820855E-002 12 13 7 7 + 0.16954223713357705E-003 7 8 12 13 + 0.17235636774832854E-003 12 13 7 8 + -0.91517465449769914E-003 8 3 12 13 + -0.95571990984819034E-003 12 13 8 3 + 0.11391443650824861E-002 8 4 12 13 + 0.11896092583932954E-002 12 13 8 4 + -0.13891346533291099E-003 8 5 12 13 + -0.14505976233097535E-003 12 13 8 5 + -0.61829294074691558E-002 8 6 12 13 + -0.62857320154224364E-002 12 13 8 6 + 0.16952672213102821E-003 8 7 12 13 + 0.17234085274577969E-003 12 13 8 7 + 0.23008506375971137E-004 8 8 12 13 + 0.23434019541232235E-004 12 13 8 8 + 0.67771015957781233E-008 9 1 12 13 + 0.57993782369384618E-008 12 13 9 1 + 0.68590115340397079E-007 9 2 12 13 + 0.86377361806243274E-007 12 13 9 2 + -0.73490736399810776E-007 9 9 12 13 + -0.41271562931660485E-007 12 13 9 9 + 0.26367783836266476E-004 9 10 12 13 + 0.26306755233338218E-004 12 13 9 10 + 0.19491558424553485E-002 9 11 12 13 + 0.19446608630838622E-002 12 13 9 11 + -0.58286717653054662E-003 9 12 12 13 + -0.58152309196551964E-003 12 13 9 12 + 0.16236802709295782E-003 9 13 12 13 + 0.16199872380287612E-003 12 13 9 13 + 0.97719435197407290E-004 9 14 12 13 + 0.97490320780696741E-004 12 13 9 14 + 0.57825881803482246E-004 10 1 12 13 + 0.57838630096710211E-004 12 13 10 1 + 0.60335914885726000E-003 10 2 12 13 + 0.60177903864744244E-003 12 13 10 2 + -0.86701966213360631E-004 10 9 12 13 + -0.86762994816288897E-004 12 13 10 9 + -0.48524432042505966E-003 10 10 12 13 + -0.48523477189118825E-003 12 13 10 10 + -0.13576962717102604E-001 10 11 12 13 + -0.13576997424475212E-001 12 13 10 11 + 0.44754642663833246E-003 10 12 12 13 + 0.44754698283546319E-003 12 13 10 12 + 0.60859426186296399E-003 10 13 12 13 + 0.60859221090608278E-003 12 13 10 13 + -0.29471890625793850E-003 10 14 12 13 + -0.29471822948897743E-003 12 13 10 14 + 0.42760099422406786E-002 11 1 12 13 + 0.42769488213793335E-002 12 13 11 1 + 0.44614904403214029E-001 11 2 12 13 + 0.44498034588846075E-001 12 13 11 2 + -0.64107145429479128E-002 11 9 12 13 + -0.64152095223193985E-002 12 13 11 9 + -0.13576118020176910E-001 11 10 12 13 + -0.13576152727549518E-001 12 13 11 10 + 0.11298861265613819E-002 11 11 12 13 + 0.11298982035685551E-002 12 13 11 11 + 0.10402997408194084E-002 11 12 12 13 + 0.10403009215940433E-002 12 13 11 12 + 0.60542029038597749E-003 11 13 12 13 + 0.60542228065302588E-003 12 13 11 13 + -0.68378885801940450E-002 11 14 12 13 + -0.68378870159547019E-002 12 13 11 14 + -0.12786877439521988E-002 12 1 12 13 + -0.12789684612183024E-002 12 13 12 1 + -0.13341504896330155E-001 12 2 12 13 + -0.13306555926588458E-001 12 13 12 2 + 0.19170399546329564E-002 12 9 12 13 + 0.19183840391979834E-002 12 13 12 9 + 0.44770245227936540E-003 12 10 12 13 + 0.44770300847649618E-003 12 13 12 10 + 0.10403808398694498E-002 12 11 12 13 + 0.10403820206440848E-002 12 13 12 11 + -0.39985181664340466E-008 12 12 12 13 + 0.62230980751596921E-008 12 13 12 12 + 0.33535219155499299E-001 12 13 12 13 + -0.28725687049312420E-007 1 1 12 14 + -0.75622732692062624E-008 12 14 1 1 + 0.30031298894763979E-008 1 2 12 14 + 0.17111932299256740E-008 12 14 1 2 + -0.62816383268228651E-009 1 9 12 14 + 0.31156540367822359E-009 12 14 1 9 + 0.51589561796301716E-004 1 10 12 14 + 0.51449661644046336E-004 12 14 1 10 + -0.11384592360121146E-004 1 11 12 14 + -0.11353710766789932E-004 12 14 1 11 + 0.22491709533464536E-003 1 12 12 14 + 0.22430736931609697E-003 12 14 1 12 + -0.17342377195564440E-004 1 13 12 14 + -0.17294862622856129E-004 12 14 1 13 + -0.54484516498002927E-005 1 14 12 14 + -0.54330721906130730E-005 12 14 1 14 + 0.61056342495110786E-008 2 1 12 14 + 0.48136975899603746E-008 12 14 2 1 + 0.84645090990361930E-007 2 2 12 14 + 0.77641801914967750E-007 12 14 2 2 + 0.84491889713692181E-007 2 9 12 14 + 0.67395851871035352E-007 12 14 2 9 + -0.37215130517517475E-002 2 10 12 14 + -0.37041000803256343E-002 12 14 2 10 + 0.82127129099027467E-003 2 11 12 14 + 0.81742874967370141E-003 12 14 2 11 + -0.16224418254625780E-001 2 12 12 14 + -0.16148501241128401E-001 12 14 2 12 + 0.12504850612709449E-002 2 13 12 14 + 0.12446342625216033E-002 12 14 2 13 + 0.39239988676875834E-003 2 14 12 14 + 0.39056427832848963E-003 12 14 2 14 + 0.11559950126707654E-001 3 3 12 14 + 0.11441898527768550E-001 12 14 3 3 + -0.13232740782062444E-002 3 4 12 14 + -0.13097645596520293E-002 12 14 3 4 + 0.52928894127367019E-002 3 5 12 14 + 0.52388370013494358E-002 12 14 3 5 + 0.18493226410386441E-002 3 6 12 14 + 0.18992922428071823E-002 12 14 3 6 + 0.94412841057663757E-004 3 7 12 14 + 0.96971954514724710E-004 12 14 3 7 + -0.19813296638377074E-002 3 8 12 14 + -0.20348697394096719E-002 12 14 3 8 + -0.13229277547042943E-002 4 3 12 14 + -0.13094182361500792E-002 12 14 4 3 + -0.13202268469972247E-001 4 4 12 14 + -0.13067441323457945E-001 12 14 4 4 + -0.89395860333029726E-002 4 5 12 14 + -0.88482914737945603E-002 12 14 4 5 + 0.18473360287701330E-002 4 6 12 14 + 0.18972377328493821E-002 12 14 4 6 + 0.62082415084259478E-003 4 7 12 14 + 0.63760233283381696E-003 12 14 4 7 + 0.27793205028039526E-002 4 8 12 14 + 0.28544029776708278E-002 12 14 4 8 + 0.52930893847053387E-002 5 3 12 14 + 0.52390369733180727E-002 12 14 5 3 + -0.89398533773258609E-002 5 4 12 14 + -0.88485588178174486E-002 12 14 5 4 + 0.16425465469795696E-002 5 5 12 14 + 0.16257623357362994E-002 12 14 5 5 + 0.21970987970619973E-002 5 6 12 14 + 0.22564584617622780E-002 12 14 5 6 + -0.34814103528508811E-003 5 7 12 14 + -0.35756963387462262E-003 12 14 5 7 + 0.17784455610088035E-003 5 8 12 14 + 0.18263647874887707E-003 12 14 5 8 + 0.11279072576892055E-002 6 3 12 14 + 0.11778768594577437E-002 12 14 6 3 + 0.11264353848231760E-002 6 4 12 14 + 0.11763370889024251E-002 12 14 6 4 + 0.13398843228427731E-002 6 5 12 14 + 0.13992439875430537E-002 12 14 6 5 + -0.24955986892722108E-003 6 6 12 14 + -0.25375052517913387E-003 12 14 6 6 + -0.11373762478408698E-002 6 7 12 14 + -0.11562872004037084E-002 12 14 6 7 + -0.86975200710500203E-002 6 8 12 14 + -0.88421330427257121E-002 12 14 6 8 + 0.57599096720952416E-004 7 3 12 14 + 0.60158210178013363E-004 12 14 7 3 + 0.37865507994237719E-003 7 4 12 14 + 0.39543326193359942E-003 12 14 7 4 + -0.21227575892729806E-003 7 5 12 14 + -0.22170435751683258E-003 12 14 7 5 + -0.11374046937080984E-002 7 6 12 14 + -0.11563156462709369E-002 12 14 7 6 + 0.13387783286561658E-002 7 7 12 14 + 0.13610090155327331E-002 12 14 7 7 + -0.56505360143483990E-003 7 8 12 14 + -0.57444531434822283E-003 12 14 7 8 + -0.12084615395569183E-002 8 3 12 14 + -0.12620016151288825E-002 12 14 8 3 + 0.16949858052961583E-002 8 4 12 14 + 0.17700682801630333E-002 12 14 8 4 + 0.10845854690501654E-003 8 5 12 14 + 0.11325046955301323E-003 12 14 8 5 + -0.86976662074991582E-002 8 6 12 14 + -0.88422791791748501E-002 12 14 8 6 + -0.56505628477768156E-003 8 7 12 14 + -0.57444799769106449E-003 12 14 8 7 + -0.10890251965264231E-002 8 8 12 14 + -0.11071677243264075E-002 12 14 8 8 + -0.65137448832246028E-008 9 1 12 14 + -0.55740156468631161E-008 12 14 9 1 + -0.65924718090701994E-007 9 2 12 14 + -0.83020755933359115E-007 12 14 9 2 + 0.70634902325637011E-007 9 9 12 14 + 0.39667759104174962E-007 12 14 9 9 + -0.29041611112586648E-003 9 10 12 14 + -0.28974650521603845E-003 12 14 9 10 + 0.64088914124085035E-004 9 11 12 14 + 0.63941183296647910E-004 12 14 9 11 + -0.12661037093974795E-002 9 12 12 14 + -0.12631845849510048E-002 12 14 9 12 + 0.97719356263509759E-004 9 13 12 14 + 0.97490053355871523E-004 12 14 9 13 + 0.30787031746999359E-004 9 14 12 14 + 0.30711164233595552E-004 12 14 9 14 + -0.63711483720682875E-003 10 1 12 14 + -0.63725473735908413E-003 12 14 10 1 + -0.66475383997645623E-002 10 2 12 14 + -0.66301254283384495E-002 12 14 10 2 + 0.95518015584385586E-003 10 9 12 14 + 0.95584976175368394E-003 12 14 10 9 + -0.14769180235372655E-002 10 10 12 14 + -0.14769301775399712E-002 12 14 10 10 + -0.28696502210797037E-002 10 11 12 14 + -0.28696570450969408E-002 12 14 10 11 + -0.76892341490654489E-002 10 12 12 14 + -0.76892537797032109E-002 12 14 10 12 + 0.36741726580202877E-004 10 13 12 14 + 0.36742207938215639E-004 12 14 10 13 + -0.10354415299336987E-002 10 14 12 14 + -0.10354431244892009E-002 12 14 10 14 + 0.14059929845069112E-003 11 1 12 14 + 0.14063018004402232E-003 12 14 11 1 + 0.14669980147017376E-002 11 2 12 14 + 0.14631554733851642E-002 12 14 11 2 + -0.21079071640146550E-003 11 9 12 14 + -0.21093844722890263E-003 12 14 11 9 + -0.28700437927813797E-002 11 10 12 14 + -0.28700506167986168E-002 12 14 11 10 + 0.21000017365020700E-002 11 11 12 14 + 0.20999949712270870E-002 12 14 11 11 + 0.27723065202926142E-003 11 12 12 14 + 0.27723325328145955E-003 12 14 11 12 + -0.78238918385179837E-002 11 13 12 14 + -0.78238900287256937E-002 12 14 11 13 + -0.37540311394400832E-003 11 14 12 14 + -0.37540295846526716E-003 12 14 11 14 + -0.27775960213371593E-002 12 1 12 14 + -0.27782057473557074E-002 12 14 12 1 + -0.28980742987047087E-001 12 2 12 14 + -0.28904825973549708E-001 12 14 12 2 + 0.41642297314273677E-002 12 9 12 14 + 0.41671488558738421E-002 12 14 12 9 + -0.76905358405605405E-002 12 10 12 14 + -0.76905554711983026E-002 12 14 12 10 + 0.27727891480958740E-003 12 11 12 14 + 0.27728151606178553E-003 12 14 12 11 + 0.36391187598598318E-007 12 12 12 14 + 0.24365727349548948E-007 12 14 12 12 + 0.27794112736326320E-002 12 13 12 14 + 0.27794120738166262E-002 12 14 12 13 + 0.25670022374767891E-001 12 14 12 14 + -0.82778810655759425E-009 1 10 13 1 + -0.82778810655760108E-009 13 1 1 10 + 0.15385741753553662E-008 1 11 13 1 + 0.15385741753546403E-008 13 1 1 11 + -0.90248666270097638E-009 1 12 13 1 + -0.90248666270291984E-009 13 1 1 12 + 0.86357288797469654E-003 1 13 13 1 + 0.86357288797469654E-003 13 1 1 13 + -0.42641209685846348E-008 2 10 13 1 + -0.46901296654589569E-008 13 1 2 10 + 0.79255383716900093E-008 2 11 13 1 + 0.87173424267621494E-008 13 1 2 11 + -0.46489098736313567E-008 2 12 13 1 + -0.51133610586615432E-008 13 1 2 12 + 0.76627894023085447E-002 2 13 13 1 + 0.76440644891270209E-002 13 1 2 13 + -0.36606413550543037E-002 3 3 13 1 + -0.36531960473942518E-002 13 1 3 3 + -0.38483467374450845E-002 3 4 13 1 + -0.38405204799909290E-002 13 1 3 4 + -0.15779435632479570E-002 3 5 13 1 + -0.15747348067713914E-002 13 1 3 5 + 0.27826853122087851E-003 3 6 13 1 + 0.27979124523062307E-003 13 1 3 6 + -0.78422083814277347E-003 3 7 13 1 + -0.78851325885219545E-003 13 1 3 7 + 0.27690402055679307E-002 3 8 13 1 + 0.27841955616226279E-002 13 1 3 8 + -0.38483467374450845E-002 4 3 13 1 + -0.38405204799909290E-002 13 1 4 3 + -0.32369174025339252E-002 4 4 13 1 + -0.32303351065976643E-002 13 1 4 4 + -0.70423704123251016E-003 4 5 13 1 + -0.70280488288564503E-003 13 1 4 5 + 0.22042790772594170E-005 4 6 13 1 + 0.22161186728081408E-005 13 1 4 6 + -0.11151906497295311E-002 4 7 13 1 + -0.11212940936918031E-002 13 1 4 7 + 0.24036382668710219E-002 4 8 13 1 + 0.24167933814708232E-002 13 1 4 8 + -0.15779435632479570E-002 5 3 13 1 + -0.15747348067713914E-002 13 1 5 3 + -0.70423704123251016E-003 5 4 13 1 + -0.70280488288564503E-003 13 1 5 4 + 0.68975587575874527E-002 5 5 13 1 + 0.68835311539911367E-002 13 1 5 5 + 0.11902537134570131E-004 5 6 13 1 + 0.11967771637075907E-004 13 1 5 6 + -0.35013136346673038E-002 5 7 13 1 + -0.35204766334337068E-002 13 1 5 7 + -0.12285798688512620E-002 5 8 13 1 + -0.12353041551458404E-002 13 1 5 8 + 0.28558652972958355E-003 6 3 13 1 + 0.28710924373932811E-003 13 1 6 3 + 0.22660071422875485E-005 6 4 13 1 + 0.22778467378362723E-005 13 1 6 4 + 0.12213820217873113E-004 6 5 13 1 + 0.12279054720378889E-004 13 1 6 5 + 0.23636418526203147E-003 6 6 13 1 + 0.23738963309547195E-003 13 1 6 6 + 0.15846728843957688E-003 6 7 13 1 + 0.15915409052792329E-003 13 1 6 7 + -0.24426724906974735E-003 6 8 13 1 + -0.24532633424052423E-003 13 1 6 8 + -0.80482622570689742E-003 7 3 13 1 + -0.80911864641631940E-003 13 1 7 3 + -0.11445013026935816E-002 7 4 13 1 + -0.11506047466558536E-002 13 1 7 4 + -0.35933340335618951E-002 7 5 13 1 + -0.36124970323282981E-002 13 1 7 5 + 0.15846728843957675E-003 7 6 13 1 + 0.15915409052792316E-003 13 1 7 6 + 0.30171175013340924E-002 7 7 13 1 + 0.30302065635585637E-002 13 1 7 7 + 0.40578312929697435E-002 7 8 13 1 + 0.40754360038576000E-002 13 1 7 8 + 0.28418126197355853E-002 8 3 13 1 + 0.28569679757902825E-002 13 1 8 3 + 0.24668134624467762E-002 8 4 13 1 + 0.24799685770465776E-002 13 1 8 4 + -0.12608663032159077E-002 8 5 13 1 + -0.12675905895104861E-002 13 1 8 5 + -0.24426724906974741E-003 8 6 13 1 + -0.24532633424052428E-003 13 1 8 6 + 0.40578312929697435E-002 8 7 13 1 + 0.40754360038576000E-002 13 1 8 7 + -0.32534816865968466E-002 8 8 13 1 + -0.32675961966547565E-002 13 1 8 8 + 0.49295860899486841E-008 9 10 13 1 + 0.48802282239266621E-008 13 1 9 10 + -0.91624097939227896E-008 9 11 13 1 + -0.90706704497643964E-008 13 1 9 11 + 0.53744257307661399E-008 9 12 13 1 + 0.53206138731302135E-008 13 1 9 12 + -0.24941338945610775E-002 9 13 13 1 + -0.24950168969859062E-002 13 1 9 13 + 0.15658696400841075E-008 10 1 13 1 + 0.15658696400840725E-008 13 1 10 1 + 0.53440198030793739E-009 10 2 13 1 + 0.10839328343382256E-009 13 1 10 2 + -0.35251672546213643E-008 10 9 13 1 + -0.35745251206430492E-008 13 1 10 9 + -0.21213218699518143E-003 10 10 13 1 + -0.21208577870808243E-003 13 1 10 10 + 0.21490489987160442E-003 10 11 13 1 + 0.21485785640305532E-003 13 1 10 11 + 0.57835981108830318E-004 10 12 13 1 + 0.57823296248959438E-004 13 1 10 12 + 0.22576017886991894E-003 10 13 13 1 + 0.22571001852203710E-003 13 1 10 13 + 0.38372700784933946E-004 10 14 13 1 + 0.38363699575527863E-004 13 1 10 14 + -0.29104145991706252E-008 11 1 13 1 + -0.29104145991713370E-008 13 1 11 1 + -0.99326999346802273E-009 11 2 13 1 + -0.20146593839600636E-009 13 1 11 2 + 0.65520768634303363E-008 11 9 13 1 + 0.66438162075889048E-008 13 1 11 9 + 0.21490477496903865E-003 11 10 13 1 + 0.21485773150048954E-003 13 1 11 10 + 0.15131241634123947E-002 11 11 13 1 + 0.15127928289941353E-002 13 1 11 11 + 0.42768593660755545E-002 11 12 13 1 + 0.42759227642267380E-002 13 1 11 12 + -0.99653926280659640E-004 11 13 13 1 + -0.99632204864018664E-004 13 1 11 13 + -0.28849691673465597E-003 11 14 13 1 + -0.28843259437140889E-003 13 1 11 14 + 0.17071717436125429E-008 12 1 13 1 + 0.17071717436106296E-008 13 1 12 1 + 0.58262574100604635E-009 12 2 13 1 + 0.11817455597586249E-009 13 1 12 2 + -0.38432739049753968E-008 12 9 13 1 + -0.38970857626111726E-008 13 1 12 9 + 0.57836128860345849E-004 12 10 13 1 + 0.57823444000474968E-004 13 1 12 10 + 0.42768590257192098E-002 12 11 13 1 + 0.42759224238703934E-002 13 1 12 11 + -0.12789438719963302E-002 12 12 13 1 + -0.12786637783325908E-002 13 1 12 12 + 0.35660402465329341E-003 12 13 13 1 + 0.35652647816556597E-003 13 1 12 13 + 0.21415322712022326E-003 12 14 13 1 + 0.21410571254751494E-003 13 1 12 14 + 0.16187985658273946E-002 13 1 13 1 + -0.21334228304683747E-008 1 10 13 2 + -0.17074141336033160E-008 13 2 1 10 + 0.39653013216429544E-008 1 11 13 2 + 0.31734972665709710E-008 13 2 1 11 + -0.23259402207581252E-008 1 12 13 2 + -0.18614890357312416E-008 13 2 1 12 + 0.49553977415028188E-003 1 13 13 2 + 0.51426468733180633E-003 13 2 1 13 + -0.73421186906709018E-007 2 10 13 2 + -0.73421186906788123E-007 13 2 2 10 + 0.13646480447877383E-006 2 11 13 2 + 0.13646480447875181E-006 13 2 2 11 + -0.80046622337566685E-007 2 12 13 2 + -0.80046622337517993E-007 13 2 2 12 + 0.61840309143963386E-001 2 13 13 2 + 0.61840309143963386E-001 13 2 2 13 + 0.34318524776198780E-009 2 14 13 2 + 0.34318524762871293E-009 13 2 2 14 + -0.27960540772551314E-001 3 3 13 2 + -0.27836121419702674E-001 13 2 3 3 + -0.29394327783611399E-001 3 4 13 2 + -0.29263540035577712E-001 13 2 3 4 + -0.12052621785564712E-001 3 5 13 2 + -0.11998998242616615E-001 13 2 3 5 + 0.81349080741593776E-003 3 6 13 2 + 0.83210028973531116E-003 13 2 3 6 + -0.22927578688410550E-002 3 7 13 2 + -0.23452361083484848E-002 13 2 3 7 + 0.80954570404214582E-002 3 8 13 2 + 0.82807263355421327E-002 13 2 3 8 + -0.29394327783611396E-001 4 3 13 2 + -0.29263540035577709E-001 13 2 4 3 + -0.24724167063616499E-001 4 4 13 2 + -0.24614166206910423E-001 13 2 4 4 + -0.53790844689848780E-002 4 5 13 2 + -0.53551510208523466E-002 13 2 4 5 + 0.64101185859132682E-005 4 6 13 2 + 0.65508199340509564E-005 13 2 4 6 + -0.32603038952338380E-002 4 7 13 2 + -0.33349137262428819E-002 13 2 4 7 + 0.70271299183501008E-002 4 8 13 2 + 0.71879407384569244E-002 13 2 4 8 + -0.12052621785564712E-001 5 3 13 2 + -0.11998998242616615E-001 13 2 5 3 + -0.53790844689848797E-002 5 4 13 2 + -0.53551510208523483E-002 13 2 5 4 + 0.52684707836165905E-001 5 5 13 2 + 0.52450287626611164E-001 13 2 5 5 + 0.34811525917095486E-004 5 6 13 2 + 0.35610615495350230E-004 13 2 5 6 + -0.10236273098833919E-001 5 7 13 2 + -0.10470531016603536E-001 13 2 5 7 + -0.35918417405234305E-002 5 8 13 2 + -0.36740455967043074E-002 13 2 5 8 + 0.58977366307190894E-003 6 3 13 2 + 0.60838314539128234E-003 13 2 6 3 + 0.47290606286390119E-005 6 4 13 2 + 0.48697619767766941E-005 13 2 6 4 + 0.25200330599896528E-004 6 5 13 2 + 0.25999420178151278E-004 13 2 6 5 + 0.14949279988090525E-002 6 6 13 2 + 0.15199172087699683E-002 13 2 6 6 + 0.10022712568670167E-002 6 7 13 2 + 0.10190186823369482E-002 13 2 6 7 + -0.15449275238954099E-002 6 8 13 2 + -0.15707464263610528E-002 13 2 6 8 + -0.16618308374396519E-002 7 3 13 2 + -0.17143090769470818E-002 13 2 7 3 + -0.23633216982294212E-002 7 4 13 2 + -0.24379315292384651E-002 13 2 7 4 + -0.74199391473642930E-002 7 5 13 2 + -0.76541970651339102E-002 13 2 7 5 + 0.10022712568670202E-002 7 6 13 2 + 0.10190186823369517E-002 13 2 7 6 + 0.19082315782331511E-001 7 7 13 2 + 0.19401291277274246E-001 13 2 7 7 + 0.25664484380416137E-001 7 8 13 2 + 0.26093492936038295E-001 13 2 7 8 + 0.58680749182085240E-002 8 3 13 2 + 0.60533442133291985E-002 13 2 8 3 + 0.50938135257874067E-002 8 4 13 2 + 0.52546243458942302E-002 13 2 8 4 + -0.26035495710020591E-002 8 5 13 2 + -0.26857534271829361E-002 13 2 8 5 + -0.15449275238954088E-002 8 6 13 2 + -0.15707464263610518E-002 13 2 8 6 + 0.25664484380416120E-001 8 7 13 2 + 0.26093492936038278E-001 13 2 8 7 + -0.20577243781143253E-001 8 8 13 2 + -0.20921208486046894E-001 13 2 8 8 + 0.91503532072037512E-007 9 10 13 2 + 0.87472297181432415E-007 13 2 9 10 + -0.17007368225477401E-006 9 11 13 2 + -0.16258099922564843E-006 13 2 9 11 + 0.99760695545508244E-007 9 12 13 2 + 0.95365687096776781E-007 13 2 9 12 + 0.20797433850059874E-002 9 13 13 2 + 0.20683917129468319E-002 13 2 9 13 + -0.42770614888281863E-009 9 14 13 2 + -0.40886333854246435E-009 13 2 9 14 + 0.10839328284489473E-009 10 1 13 2 + 0.53440197970987453E-009 13 2 10 1 + -0.28315337864071191E-007 10 2 13 2 + -0.28315337864157628E-007 13 2 10 2 + -0.90991691112101981E-007 10 9 13 2 + -0.95022926002701876E-007 13 2 10 9 + -0.22069771265316837E-002 10 10 13 2 + -0.22127754506337900E-002 13 2 10 10 + 0.22357767920985869E-002 10 11 13 2 + 0.22416520159025772E-002 13 2 10 11 + 0.60169954858063570E-003 10 12 13 2 + 0.60328058307712574E-003 13 2 10 12 + 0.23487622127746077E-002 10 13 13 2 + 0.23549305234304547E-002 13 2 10 13 + 0.39916173419610765E-003 10 14 13 2 + 0.40020952418816233E-003 13 2 10 14 + -0.20146593753889742E-009 11 1 13 2 + -0.99326999261171006E-009 13 2 11 1 + 0.52628501502177701E-007 11 2 13 2 + 0.52628501502155877E-007 13 2 11 2 + 0.16912234545754801E-006 11 9 13 2 + 0.17661502848667595E-006 13 2 11 9 + 0.22357731158505340E-002 11 10 13 2 + 0.22416483396545247E-002 13 2 11 10 + 0.15742178676031619E-001 11 11 13 2 + 0.15783537654496776E-001 13 2 11 11 + 0.44495346995304427E-001 11 12 13 2 + 0.44612249992034857E-001 13 2 11 12 + -0.10368026212135015E-002 11 13 13 2 + -0.10395264521454090E-002 13 2 11 13 + -0.30015024602390960E-002 11 14 13 2 + -0.30093834919105106E-002 13 2 11 14 + 0.11817455524711092E-009 12 1 13 2 + 0.58262574027418590E-009 13 2 12 1 + -0.30870478300806537E-007 12 2 13 2 + -0.30870478300762478E-007 13 2 12 2 + -0.99202666682798656E-007 12 9 13 2 + -0.10359767513153179E-006 13 2 12 9 + 0.60170389734014878E-003 12 10 13 2 + 0.60328493183663882E-003 13 2 12 10 + 0.44495336977621106E-001 12 11 13 2 + 0.44612239974351535E-001 13 2 12 11 + -0.13305817225389430E-001 12 12 13 2 + -0.13340775281633561E-001 13 2 12 12 + 0.37101240692102885E-002 12 13 13 2 + 0.37198715390127650E-002 13 2 12 13 + 0.22280429993707523E-002 12 14 13 2 + 0.22338937981200937E-002 13 2 12 14 + 0.90106157556091009E-002 13 1 13 2 + 0.90293406687906256E-002 13 2 13 1 + 0.95337128492338857E-001 13 2 13 2 + -0.85273148753476518E-003 1 3 13 3 + -0.82513009769904274E-003 13 3 1 3 + -0.89645856806800880E-003 1 4 13 3 + -0.86744152589606047E-003 13 3 1 4 + -0.36757687819545922E-003 1 5 13 3 + -0.35567886763779750E-003 13 3 1 5 + 0.50322501288692831E-004 1 6 13 3 + 0.59700672654237677E-004 13 3 1 6 + -0.14182092385365866E-003 1 7 13 3 + -0.16825173052926486E-003 13 3 1 7 + 0.50076071999318329E-003 1 8 13 3 + 0.59408547807250276E-003 13 3 1 8 + -0.57481751163714560E-001 2 3 13 3 + -0.57206944673802516E-001 13 3 2 3 + -0.60429348891827973E-001 2 4 13 3 + -0.60140449466763363E-001 13 3 2 4 + -0.24777978910202402E-001 2 5 13 3 + -0.24659520476285210E-001 13 3 2 5 + 0.19139674857779484E-002 2 6 13 3 + 0.19483550963429891E-002 13 3 2 6 + -0.53940690822442275E-002 2 7 13 3 + -0.54910080838190996E-002 13 3 2 7 + 0.19046075365145756E-001 2 8 13 3 + 0.19388337850123373E-001 13 3 2 8 + -0.21324712845412101E-001 3 1 13 3 + -0.21297111455576376E-001 13 3 3 1 + -0.63776650609648960E-001 3 2 13 3 + -0.63501844119736917E-001 13 3 3 2 + 0.93950508717050851E-002 3 9 13 3 + 0.93836302761225714E-002 13 3 3 9 + 0.40965616746458549E-003 3 10 13 3 + 0.40965637364491654E-003 13 3 3 10 + -0.15659431060565696E-001 3 11 13 3 + -0.15659432426914206E-001 13 3 3 11 + 0.33442896636832586E-001 3 12 13 3 + 0.33442899175108065E-001 13 3 3 12 + 0.59348336947083552E-001 3 13 13 3 + 0.59348336947083552E-001 13 3 3 13 + -0.26895230751569958E-001 3 14 13 3 + -0.26895230588202833E-001 13 3 3 14 + -0.22418170839972593E-001 4 1 13 3 + -0.22389153797800643E-001 13 3 4 1 + -0.67046971102842939E-001 4 2 13 3 + -0.66758071677778322E-001 13 3 4 2 + 0.98766809518583965E-002 4 9 13 3 + 0.98646731250608549E-002 13 3 4 9 + -0.58617014261975360E-002 4 10 13 3 + -0.58617036245783936E-002 13 3 4 10 + 0.13405427644569354E-001 4 11 13 3 + 0.13405435136981459E-001 13 3 4 11 + -0.29970864857363100E-001 4 12 13 3 + -0.29970877035722980E-001 13 3 4 12 + 0.41214858045967036E-001 4 13 13 3 + 0.41214859697334259E-001 13 3 4 13 + -0.16637425805754526E-001 4 14 13 3 + -0.16637427463740598E-001 13 3 4 14 + -0.91921567572254351E-002 5 1 13 3 + -0.91802587466677747E-002 13 3 5 1 + -0.27491394523876320E-001 5 2 13 3 + -0.27372936089959127E-001 13 3 5 2 + 0.40497144068616965E-002 5 9 13 3 + 0.40447903132618361E-002 13 3 5 9 + -0.40738998048426421E-001 5 10 13 3 + -0.40739017543216738E-001 13 3 5 10 + -0.10024488203430104E-001 5 11 13 3 + -0.10024482562620137E-001 13 3 5 11 + -0.10300715517525868E-002 5 12 13 3 + -0.10300661668045078E-002 13 3 5 12 + -0.35730682489017187E-002 5 13 13 3 + -0.35730667363342581E-002 13 3 5 13 + -0.88471209596352792E-002 5 14 13 3 + -0.88471196759469274E-002 13 3 5 14 + 0.32601699558079955E-002 6 1 13 3 + 0.32695481271735405E-002 13 3 6 1 + 0.16371452155280772E-002 6 2 13 3 + 0.16715328260931178E-002 13 3 6 2 + -0.57914513956465385E-002 6 9 13 3 + -0.58422321995558173E-002 13 3 6 9 + 0.77465791302978035E-004 6 10 13 3 + 0.84488769751153980E-004 13 3 6 10 + -0.90724591203208255E-003 6 11 13 3 + -0.98498439001977315E-003 13 3 6 11 + 0.19535071691186338E-002 6 12 13 3 + 0.21185233068860723E-002 13 3 6 12 + 0.65284334092772817E-003 6 13 13 3 + 0.68387302763058325E-003 13 3 6 13 + -0.22563430471799682E-003 6 14 13 3 + -0.24404435001134091E-003 13 3 6 14 + -0.91877145654068824E-002 7 1 13 3 + -0.92141453720824881E-002 13 3 7 1 + -0.46135153735246204E-002 7 2 13 3 + -0.47104543750994925E-002 13 3 7 2 + 0.16321293502015805E-001 7 9 13 3 + 0.16464434201396413E-001 13 3 7 9 + 0.10984370691022071E-002 7 10 13 3 + 0.12115267150512069E-002 13 3 7 10 + 0.44688063197113697E-003 7 11 13 3 + 0.47183985006699270E-003 13 3 7 11 + 0.72705798111104389E-003 7 12 13 3 + 0.76391214696859425E-003 13 3 7 12 + 0.25166913827431524E-002 7 13 13 3 + 0.26912122430622159E-002 13 3 7 13 + -0.51809366181432726E-003 7 14 13 3 + -0.55698310033137021E-003 13 3 7 14 + 0.32441439022411485E-001 8 1 13 3 + 0.32534763780490805E-001 13 3 8 1 + 0.16290339268093239E-001 8 2 13 3 + 0.16632601753070856E-001 13 3 8 2 + -0.57629813448966526E-001 8 9 13 3 + -0.58135209701900468E-001 13 3 8 9 + 0.84670304179728967E-003 8 10 13 3 + 0.93390451704276792E-003 13 3 8 10 + 0.74359592428129061E-003 8 11 13 3 + 0.78224262202284788E-003 13 3 8 11 + -0.34296425783155685E-003 8 12 13 3 + -0.36057800904250737E-003 13 3 8 12 + -0.34566416069662627E-002 8 13 13 3 + -0.36964359479636343E-002 13 3 8 13 + 0.16891643614458498E-002 8 14 13 3 + 0.18128505817739751E-002 13 3 8 14 + 0.56801372611396143E-002 9 3 13 3 + 0.56687166655571015E-002 13 3 9 3 + 0.59715095165538854E-002 9 4 13 3 + 0.59595016897563448E-002 13 3 9 4 + 0.24485428149717899E-002 9 5 13 3 + 0.24436187213719295E-002 13 3 9 5 + -0.57853005708010871E-002 9 6 13 3 + -0.58360813747103659E-002 13 3 9 6 + 0.16303808924914547E-001 9 7 13 3 + 0.16446949624295156E-001 13 3 9 7 + -0.57568207098796127E-001 9 8 13 3 + -0.58073603351730070E-001 13 3 9 8 + 0.62705990535328238E-003 10 3 13 3 + 0.62706011153361343E-003 13 3 10 3 + -0.94928140497077471E-002 10 4 13 3 + -0.94928162480886046E-002 13 3 10 4 + -0.66292506573479903E-001 10 5 13 3 + -0.66292526068270213E-001 13 3 10 5 + 0.63128718320676748E-003 10 6 13 3 + 0.63831016165494334E-003 13 3 10 6 + 0.10896101923813951E-001 10 7 13 3 + 0.11009191569762950E-001 13 3 10 7 + 0.84039888687831455E-002 10 8 13 3 + 0.84911903440286242E-002 13 3 10 8 + -0.23968264341180844E-001 11 3 13 3 + -0.23968265707529354E-001 13 3 11 3 + 0.22000007019249271E-001 11 4 13 3 + 0.22000014511661378E-001 13 3 11 4 + -0.13840778434410046E-001 11 5 13 3 + -0.13840772793600079E-001 13 3 11 5 + -0.67450725234084628E-002 11 6 13 3 + -0.68228110013961530E-002 13 3 11 6 + 0.14056767115216467E-002 11 7 13 3 + 0.14306359296175025E-002 13 3 11 7 + 0.19175168924474378E-002 11 8 13 3 + 0.19561635901889948E-002 13 3 11 8 + 0.51187361651896204E-001 12 3 13 3 + 0.51187364190171683E-001 13 3 12 3 + -0.48361390899231034E-001 12 4 13 3 + -0.48361403077590917E-001 13 3 12 4 + -0.43442272230394686E-003 12 5 13 3 + -0.43441733735586778E-003 13 3 12 5 + 0.14182352579949275E-001 12 6 13 3 + 0.14347368717716713E-001 13 3 12 6 + 0.17418548558619446E-002 12 7 13 3 + 0.17787090217194950E-002 13 3 12 7 + -0.85295289038766629E-003 12 8 13 3 + -0.87056664159861682E-003 13 3 12 8 + 0.88103749220843103E-001 13 3 13 3 + -0.89645856806791231E-003 1 3 13 4 + -0.86744152589596311E-003 13 4 1 3 + -0.75402948145293918E-003 1 4 13 4 + -0.72962247898294952E-003 13 4 1 4 + -0.16404955111385240E-003 1 5 13 4 + -0.15873950011480536E-003 13 4 1 5 + 0.39836989077153162E-006 1 6 13 4 + 0.47243372169834383E-006 13 4 1 6 + -0.20167391521994869E-003 1 7 13 4 + -0.23925894694518208E-003 13 4 1 7 + 0.43468005038073919E-003 1 8 13 4 + 0.51568934665644427E-003 13 4 1 8 + -0.60429348891828244E-001 2 3 13 4 + -0.60140449466763619E-001 13 4 2 3 + -0.50828351010316575E-001 2 4 13 4 + -0.50585351102416201E-001 13 4 2 4 + -0.11058411309305563E-001 2 5 13 4 + -0.11005543440550467E-001 13 4 2 5 + 0.15141776113188353E-004 2 6 13 4 + 0.15408573423965882E-004 13 4 2 6 + -0.76705160759512692E-002 2 7 13 4 + -0.78083534046207350E-002 13 4 2 7 + 0.16532729209858484E-001 2 8 13 4 + 0.16829818150857170E-001 13 4 2 8 + -0.22418170839972561E-001 3 1 13 4 + -0.22389153797800612E-001 13 4 3 1 + -0.67046971102843189E-001 3 2 13 4 + -0.66758071677778558E-001 13 4 3 2 + 0.98766809518583635E-002 3 9 13 4 + 0.98646731250608202E-002 13 4 3 9 + 0.41598323519554808E-002 3 10 13 4 + 0.41598344779518103E-002 13 4 3 10 + -0.15100728914143149E-001 3 11 13 4 + -0.15100736103159425E-001 13 4 3 11 + 0.17897108287017408E-001 3 12 13 4 + 0.17897119331781806E-001 13 4 3 12 + 0.41214827591921528E-001 3 13 13 4 + 0.41214825940554305E-001 13 4 3 13 + -0.20934012121089883E-001 3 14 13 4 + -0.20934010558069049E-001 13 4 3 14 + -0.18856347521050192E-001 4 1 13 4 + -0.18831940518580201E-001 13 4 4 1 + -0.56394521606035392E-001 4 2 13 4 + -0.56151521698135018E-001 13 4 4 2 + 0.83073900889938448E-002 4 9 13 4 + 0.82972890554269454E-002 13 4 4 9 + -0.17342195435876508E-002 4 10 13 4 + -0.17342196916556583E-002 13 4 4 10 + 0.22399050049492011E-001 4 11 13 4 + 0.22399051693123093E-001 13 4 4 11 + -0.33334257474736270E-001 4 12 13 4 + -0.33334259847905182E-001 13 4 4 12 + 0.52021424985566514E-001 4 13 13 4 + 0.52021424985566514E-001 13 4 4 13 + -0.19693016047759540E-001 4 14 13 4 + -0.19693016226274101E-001 13 4 4 14 + -0.41024645616257694E-002 5 1 13 4 + -0.40971545106267227E-002 13 4 5 1 + -0.12269416444771907E-001 5 2 13 4 + -0.12216548576016811E-001 13 4 5 2 + 0.18074022577337710E-002 5 9 13 4 + 0.18052048073430632E-002 13 4 5 9 + -0.36125709104986456E-001 5 10 13 4 + -0.36125726285605425E-001 13 4 5 10 + 0.89876830558335910E-002 5 11 13 4 + 0.89876775025023066E-002 13 4 5 11 + 0.10745859065822322E-001 5 12 13 4 + 0.10745857703045845E-001 13 4 5 12 + 0.52079268913160833E-002 5 13 13 4 + 0.52079272535416410E-002 13 4 5 13 + -0.28057874333335345E-002 5 14 13 4 + -0.28057869338244910E-002 13 4 5 14 + 0.25855665832520943E-004 6 1 13 4 + 0.25929729663447754E-004 13 4 6 1 + 0.13032857874783296E-004 6 2 13 4 + 0.13299655185560825E-004 13 4 6 2 + -0.45931414862610836E-004 6 9 13 4 + -0.46327630631957332E-004 13 4 6 9 + 0.63391043900801658E-004 6 10 13 4 + 0.68799492127493762E-004 13 4 6 10 + -0.11836996221196783E-002 6 11 13 4 + -0.12821268088733710E-002 13 4 6 11 + 0.17030601342165243E-002 6 12 13 4 + 0.18448723455292320E-002 13 4 6 12 + -0.11523551428724078E-002 6 13 13 4 + -0.12167071472128691E-002 13 4 6 13 + 0.11694736582766547E-003 6 14 13 4 + 0.12435031775981045E-003 13 4 6 14 + -0.13065338792542217E-001 7 1 13 4 + -0.13102923824267450E-001 13 4 7 1 + -0.65607419867242953E-002 7 2 13 4 + -0.66985793153937611E-002 13 4 7 2 + 0.23209607111081564E-001 7 9 13 4 + 0.23413143884961601E-001 13 4 7 9 + 0.10043219465524055E-002 7 10 13 4 + 0.11126620155534437E-002 13 4 7 10 + -0.55397439324774745E-003 7 11 13 4 + -0.58803016705939216E-003 13 4 7 11 + -0.90870662474403440E-003 7 12 13 4 + -0.95977753093353182E-003 13 4 7 12 + 0.17689117478264184E-002 7 13 13 4 + 0.18921529695759298E-002 13 4 7 13 + -0.64900092518335706E-003 7 14 13 4 + -0.69973092279039864E-003 13 4 7 14 + 0.28160521040113511E-001 8 1 13 4 + 0.28241530336389216E-001 13 4 8 1 + 0.14140769194205160E-001 8 2 13 4 + 0.14437858135203843E-001 13 4 8 2 + -0.50025080878030877E-001 8 9 13 4 + -0.50463775812241866E-001 13 4 8 9 + 0.61267513323894930E-003 8 10 13 4 + 0.67518416503787638E-003 13 4 8 10 + -0.79894687001041097E-003 8 11 13 4 + -0.83995596284528677E-003 13 4 8 11 + 0.34575544093135360E-003 8 12 13 4 + 0.35897728493105847E-003 13 4 8 12 + -0.33970743656556454E-002 8 13 13 4 + -0.36340803254394437E-002 13 4 8 13 + 0.13595869046708722E-002 8 14 13 4 + 0.14611538344323645E-002 13 4 8 14 + 0.59715095165538594E-002 9 3 13 4 + 0.59595016897563153E-002 13 4 9 3 + 0.50228217229734036E-002 9 4 13 4 + 0.50127206894065059E-002 13 4 9 4 + 0.10927736385302727E-002 9 5 13 4 + 0.10905761881395649E-002 13 4 9 5 + -0.45913528489086077E-004 9 6 13 4 + -0.46309744258432580E-004 13 4 9 6 + 0.23184817559080945E-001 9 7 13 4 + 0.23388354332960982E-001 13 4 9 7 + -0.49971651774462902E-001 9 8 13 4 + -0.50410346708673892E-001 13 4 9 8 + 0.68879611429139617E-002 10 3 13 4 + 0.68879632689102912E-002 13 4 10 3 + -0.26544232261797988E-002 10 4 13 4 + -0.26544233742478063E-002 13 4 10 4 + -0.59027119312786001E-001 10 5 13 4 + -0.59027136493404971E-001 13 4 10 5 + 0.46786062419087353E-003 10 6 13 4 + 0.47326907241756566E-003 13 4 10 6 + 0.10673920487342796E-001 10 7 13 4 + 0.10782260556343836E-001 13 4 10 7 + 0.59963952439864195E-002 10 8 13 4 + 0.60589042757853463E-002 13 4 10 8 + -0.24594905674596566E-001 11 3 13 4 + -0.24594912863612844E-001 13 4 11 3 + 0.34283750595254271E-001 11 4 13 4 + 0.34283752238885357E-001 13 4 11 4 + 0.12109859730337685E-001 11 5 13 4 + 0.12109854177006401E-001 13 4 11 5 + -0.83689199330068721E-002 11 6 13 4 + -0.84673471197605644E-002 13 4 11 6 + -0.21869735217713757E-002 11 7 13 4 + -0.22210292955830205E-002 13 4 11 7 + -0.19915814241441370E-002 11 8 13 4 + -0.20325905169790125E-002 13 4 11 8 + 0.29881523912616007E-001 12 3 13 4 + 0.29881534957380405E-001 13 4 12 3 + -0.51020988000799558E-001 12 4 13 4 + -0.51020990373968469E-001 13 4 12 4 + 0.15860650664877216E-001 12 5 13 4 + 0.15860649302100741E-001 13 4 12 5 + 0.12069570177771095E-001 12 6 13 4 + 0.12211382389083801E-001 13 4 12 6 + -0.29008961820233201E-002 12 7 13 4 + -0.29519670882128175E-002 13 4 12 7 + 0.21172032794847601E-003 12 8 13 4 + 0.22494217194818085E-003 13 4 12 8 + 0.63083905833331289E-001 13 3 13 4 + 0.63083904181964079E-001 13 4 13 3 + 0.76888625962971413E-001 13 4 13 4 + -0.36757687819543970E-003 1 3 13 5 + -0.35567886763777901E-003 13 5 1 3 + -0.16404955111382001E-003 1 4 13 5 + -0.15873950011477368E-003 13 5 1 4 + 0.16067609689876931E-002 1 5 13 5 + 0.15547525766819838E-002 13 5 1 5 + 0.21525905171214943E-005 1 6 13 5 + 0.25538318870895311E-005 13 5 1 6 + -0.63318680334170294E-003 1 7 13 5 + -0.75119112176841134E-003 13 5 1 7 + -0.22217981149023322E-003 1 8 13 5 + -0.26358664079964903E-003 13 5 1 8 + -0.24777978910202447E-001 2 3 13 5 + -0.24659520476285262E-001 13 5 2 3 + -0.11058411309305573E-001 2 4 13 5 + -0.11005543440550486E-001 13 5 2 4 + 0.10831010217403146 2 5 13 5 + 0.10779229577621906 13 5 2 5 + 0.81876227185901683E-004 2 6 13 5 + 0.83349691175533410E-004 13 5 2 6 + -0.24082797973496248E-001 2 7 13 5 + -0.24515566947806201E-001 13 5 2 7 + -0.84504540679152043E-002 2 8 13 5 + -0.86023128915248478E-002 13 5 2 8 + -0.91921567572254819E-002 3 1 13 5 + -0.91802587466678198E-002 13 5 3 1 + -0.27491394523876358E-001 3 2 13 5 + -0.27372936089959173E-001 13 5 3 2 + 0.40497144068616922E-002 3 9 13 5 + 0.40447903132618335E-002 13 5 3 9 + 0.35011589270846868E-001 3 10 13 5 + 0.35011608212587614E-001 13 5 3 10 + -0.38928133844851283E-001 3 11 13 5 + -0.38928142922981850E-001 13 5 3 11 + -0.23002330213964431E-001 3 12 13 5 + -0.23002337370836679E-001 13 5 3 12 + -0.35730961432412210E-002 3 13 13 5 + -0.35730976558086816E-002 13 5 3 13 + -0.11200879601913349E-001 3 14 13 5 + -0.11200880787408709E-001 13 5 3 14 + -0.41024645616257651E-002 4 1 13 5 + -0.40971545106267193E-002 13 5 4 1 + -0.12269416444771921E-001 4 2 13 5 + -0.12216548576016834E-001 13 5 4 2 + 0.18074022577337721E-002 4 9 13 5 + 0.18052048073430643E-002 13 5 4 9 + 0.35696153667147811E-001 4 10 13 5 + 0.35696171133299766E-001 13 5 4 10 + 0.40663317195115331E-001 4 11 13 5 + 0.40663326694434246E-001 13 5 4 11 + 0.22035582075724577E-001 4 12 13 5 + 0.22035586043690596E-001 13 5 4 12 + 0.52079202112551709E-002 4 13 13 5 + 0.52079198490296132E-002 13 5 4 13 + -0.61162821151182533E-002 4 14 13 5 + -0.61162823816860758E-002 13 5 4 14 + 0.40181060366462358E-001 5 1 13 5 + 0.40129051974156650E-001 13 5 5 1 + 0.12017117221568470 5 2 13 5 + 0.11965336581787230 13 5 5 2 + -0.17702440960699041E-001 5 9 13 5 + -0.17680919331549621E-001 13 5 5 9 + 0.13243709994905819E-002 5 10 13 5 + 0.13243709413782577E-002 13 5 5 10 + -0.67392614267481324E-002 5 11 13 5 + -0.67392617040307017E-002 13 5 5 11 + -0.10884889855343490E-003 5 12 13 5 + -0.10884906366002338E-003 13 5 5 12 + 0.88949037829705965E-001 5 13 13 5 + 0.88949037829705965E-001 13 5 5 13 + 0.46588247698536187E-001 5 14 13 5 + 0.46588247713683618E-001 13 5 5 14 + 0.13943501390497831E-003 6 1 13 5 + 0.13983625527494634E-003 13 5 6 1 + 0.69996853748708474E-004 6 2 13 5 + 0.71470317738340201E-004 13 5 6 2 + -0.24769567721986903E-003 6 9 13 5 + -0.24987053888793413E-003 13 5 6 9 + -0.20062691556020981E-003 6 10 13 5 + -0.21932595150233865E-003 13 5 6 10 + -0.25617557683310153E-002 6 11 13 5 + -0.27741630390914025E-002 13 5 6 11 + -0.14451072687833241E-002 6 12 13 5 + -0.15641579726823071E-002 13 5 6 12 + 0.34598923710609632E-004 6 13 13 5 + 0.35262978372769277E-004 13 5 6 13 + 0.34533282477461631E-004 6 14 13 5 + 0.37653031606105442E-004 13 5 6 14 + -0.41020613116870462E-001 7 1 13 5 + -0.41138617435297169E-001 13 5 7 1 + -0.20598380381534817E-001 7 2 13 5 + -0.21031149355844769E-001 13 5 7 2 + 0.72870081401292627E-001 7 9 13 5 + 0.73509124527317282E-001 13 5 7 9 + 0.77187978454749896E-003 7 10 13 5 + 0.85843117578806661E-003 13 5 7 10 + 0.42729290645405858E-004 7 11 13 5 + 0.44002249837420469E-004 13 5 7 11 + -0.13252039265331393E-003 7 12 13 5 + -0.14582943093856255E-003 13 5 7 12 + -0.44428140926479716E-002 7 13 13 5 + -0.47500123299503835E-002 13 5 7 13 + -0.24295855806864704E-002 7 14 13 5 + -0.26113271188604906E-002 13 5 7 14 + -0.14393746974312461E-001 8 1 13 5 + -0.14435153803621877E-001 13 5 8 1 + -0.72277424591946794E-002 8 2 13 5 + -0.73796012828043246E-002 13 5 8 2 + 0.25569425037030073E-001 8 9 13 5 + 0.25793663945018221E-001 13 5 8 9 + -0.13498371724906233E-002 8 10 13 5 + -0.14958338365440142E-002 13 5 8 10 + 0.26786065581703487E-003 8 11 13 5 + 0.28786664187641320E-003 13 5 8 11 + 0.29795881479111598E-004 8 12 13 5 + 0.35843625159246502E-004 13 5 8 12 + -0.29074476045653046E-002 8 13 13 5 + -0.31086680652524954E-002 13 5 8 13 + -0.82411115703776494E-003 8 14 13 5 + -0.88367275301495199E-003 13 5 8 14 + 0.24485428149717621E-002 9 3 13 5 + 0.24436187213719039E-002 13 5 9 3 + 0.10927736385302669E-002 9 4 13 5 + 0.10905761881395593E-002 13 5 9 4 + -0.10702958984113026E-001 9 5 13 5 + -0.10681437354963604E-001 13 5 9 5 + -0.24741836207952273E-003 9 6 13 5 + -0.24959322374758783E-003 13 5 9 6 + 0.72792210306647273E-001 9 7 13 5 + 0.73431253432671928E-001 13 5 9 7 + 0.25542078558734457E-001 9 8 13 5 + 0.25766317466722609E-001 13 5 9 8 + 0.57526091128588898E-001 10 3 13 5 + 0.57526110070329643E-001 13 5 10 3 + 0.58369790321669009E-001 10 4 13 5 + 0.58369807787820964E-001 13 5 10 4 + 0.20271484625992539E-002 10 5 13 5 + 0.20271484044869299E-002 13 5 10 5 + -0.17084467084698769E-002 10 6 13 5 + -0.17271457444120058E-002 13 5 10 6 + 0.86799924840023496E-002 10 7 13 5 + 0.87665438752429180E-002 13 5 10 7 + -0.14399875839468192E-001 10 8 13 5 + -0.14545872503521583E-001 13 5 10 8 + -0.61085412463196008E-001 11 3 13 5 + -0.61085421541326575E-001 13 5 11 3 + 0.63885485164578176E-001 11 4 13 5 + 0.63885494663897091E-001 13 5 11 4 + -0.10315086906321415E-001 11 5 13 5 + -0.10315087183603985E-001 13 5 11 5 + -0.18024208576536291E-001 11 6 13 5 + -0.18236615847296678E-001 13 5 11 6 + -0.29496392289587577E-004 11 7 13 5 + -0.28223433097572969E-004 13 5 11 7 + 0.15655096704155842E-002 11 8 13 5 + 0.15855156564749625E-002 13 5 11 8 + -0.36349290708232083E-001 12 3 13 5 + -0.36349297865104331E-001 13 5 12 3 + 0.34314345441953990E-001 12 4 13 5 + 0.34314349409920002E-001 13 5 12 4 + -0.16660789785912259E-003 12 5 13 5 + -0.16660806296571110E-003 13 5 12 5 + -0.10056834049770716E-001 12 6 13 5 + -0.10175884753669697E-001 13 5 12 6 + -0.12657877460971632E-002 12 7 13 5 + -0.12790967843824119E-002 13 5 12 7 + 0.72545960554567623E-003 12 8 13 5 + 0.73150734922581119E-003 13 5 12 8 + -0.54689130946667074E-002 13 3 13 5 + -0.54689146072341684E-002 13 5 13 3 + 0.79712218462107479E-002 13 4 13 5 + 0.79712214839851893E-002 13 5 13 4 + 0.13341074087825933 13 5 13 5 + 0.28343766975071441E-003 1 3 13 6 + 0.28124665926510461E-003 13 6 1 3 + 0.22471843015384139E-005 1 4 13 6 + 0.22299970241454377E-005 13 6 1 4 + 0.12122736391594743E-004 1 5 13 6 + 0.12028941294246576E-004 13 6 1 5 + 0.15495141210317690E-003 1 6 13 6 + 0.15549048949269013E-003 13 6 1 6 + 0.10388468933645583E-003 1 7 13 6 + 0.10424584368022925E-003 13 6 1 7 + -0.16013192667117788E-003 1 8 13 6 + -0.16068878315798131E-003 13 6 1 8 + 0.22876390398514266E-002 2 3 13 6 + 0.22593389381755347E-002 13 6 2 3 + 0.18101163028491062E-004 2 4 13 6 + 0.17884604333081980E-004 13 6 2 4 + 0.97859777039028878E-004 2 5 13 6 + 0.96645767252116611E-004 13 6 2 5 + 0.63728776464406004E-003 2 6 13 6 + 0.63906539300271790E-003 13 6 2 6 + 0.42725162090614119E-003 2 7 13 6 + 0.42844369942877372E-003 13 6 2 7 + -0.65858708204183771E-003 2 8 13 6 + -0.66042441841776989E-003 13 6 2 8 + 0.11955200862535612E-002 3 1 13 6 + 0.11933290757679513E-002 13 6 3 1 + 0.23042800474689343E-002 3 2 13 6 + 0.22759799457930424E-002 13 6 3 2 + -0.99717541345269514E-003 3 9 13 6 + -0.99994237655906819E-003 13 6 3 9 + -0.17092877413348885E-003 3 10 13 6 + -0.16957258833099557E-003 13 6 3 10 + -0.62749982640688401E-004 3 11 13 6 + -0.53525528528468407E-004 13 6 3 11 + 0.12221166868987298E-002 3 12 13 6 + 0.11890375456405442E-002 13 6 3 12 + 0.12275217706388193E-002 3 13 13 6 + 0.11964920839359643E-002 13 6 3 13 + -0.45094853870741088E-003 3 14 13 6 + -0.44334566681259190E-003 13 6 3 14 + 0.94783193724416446E-005 4 1 13 6 + 0.94611320950486697E-005 13 6 4 1 + 0.18226900080051373E-004 4 2 13 6 + 0.18010341384642294E-004 13 6 4 2 + -0.78899873919352230E-005 4 9 13 6 + -0.79130397195008413E-005 13 6 4 9 + 0.15453733836803081E-004 4 10 13 6 + 0.14674471393982155E-004 13 6 4 10 + -0.14562321767917395E-002 4 11 13 6 + -0.14274851424065176E-002 13 6 4 11 + 0.20036376889429447E-002 4 12 13 6 + 0.19633916140251537E-002 13 6 4 12 + -0.34077688743303996E-002 4 13 13 6 + -0.33434168699899383E-002 13 6 4 13 + 0.12221238602738930E-002 4 14 13 6 + 0.12061540480428031E-002 13 6 4 14 + 0.51132913553000620E-004 5 1 13 6 + 0.51039118455652456E-004 13 6 5 1 + 0.98574377924798615E-004 5 2 13 6 + 0.97360368137886348E-004 13 6 5 2 + -0.42656920414142234E-004 5 9 13 6 + -0.42774750235625212E-004 13 6 5 9 + 0.67694264736882807E-003 5 10 13 6 + 0.67058153871111777E-003 13 6 5 10 + -0.34318702024102097E-002 5 11 13 6 + -0.33662469711206915E-002 13 6 5 11 + -0.22891183060608378E-002 5 12 13 6 + -0.22478042599682006E-002 13 6 5 12 + -0.63042119986044155E-004 5 13 13 6 + -0.63706174648203793E-004 13 6 5 13 + -0.68993749478993307E-004 5 14 13 6 + -0.68479656945112912E-004 13 6 5 14 + 0.83827648226471926E-003 6 1 13 6 + 0.83881555965423249E-003 13 6 6 1 + 0.90768611078902953E-003 6 2 13 6 + 0.90946373914768740E-003 13 6 6 2 + -0.81730330390898946E-003 6 9 13 6 + -0.80364253732833778E-003 13 6 6 9 + -0.38626373070886899E-004 6 10 13 6 + -0.38626350694374527E-004 13 6 6 10 + 0.44536479058554756E-003 6 11 13 6 + 0.44536499274456392E-003 13 6 6 11 + -0.49048192816904875E-003 6 12 13 6 + -0.49048180548481000E-003 13 6 6 12 + 0.29742154118592378E-002 6 13 13 6 + 0.29742154118592378E-002 13 6 6 13 + -0.65105276975289744E-003 6 14 13 6 + -0.65105276522455012E-003 13 6 6 14 + 0.56201307315263108E-003 7 1 13 6 + 0.56237422749640456E-003 13 6 7 1 + 0.60855641607403266E-003 7 2 13 6 + 0.60974849459666518E-003 13 6 7 2 + -0.54795969944511716E-003 7 9 13 6 + -0.53879814607960864E-003 13 6 7 9 + -0.16766733655850674E-003 7 10 13 6 + -0.16766779521362645E-003 13 6 7 10 + 0.17352246287098290E-002 7 11 13 6 + 0.17352227447969344E-002 13 6 7 11 + 0.26417039988762682E-002 7 12 13 6 + 0.26417009053463026E-002 13 6 7 12 + -0.21604648648628803E-003 7 13 13 6 + -0.21604656003645426E-003 13 6 7 13 + 0.46712080492789120E-004 7 14 13 6 + 0.46712100259397406E-004 13 6 7 14 + -0.86630648777689034E-003 8 1 13 6 + -0.86686334426369367E-003 13 6 8 1 + -0.93804488313926492E-003 8 2 13 6 + -0.93988221951519710E-003 13 6 8 2 + 0.84463934844198338E-003 8 9 13 6 + 0.83051914258015108E-003 13 6 8 9 + -0.10458489883670197E-003 8 10 13 6 + -0.10458483775880952E-003 13 6 8 10 + 0.24894051648660840E-002 8 11 13 6 + 0.24894021565501087E-002 13 6 8 11 + -0.97940333300718368E-003 8 12 13 6 + -0.97940222421047753E-003 13 6 8 12 + 0.62689972556841122E-003 8 13 13 6 + 0.62690018241555792E-003 13 6 8 13 + -0.13243378480449100E-003 8 14 13 6 + -0.13243381442262241E-003 13 6 8 14 + -0.13851790535722775E-002 9 3 13 6 + -0.13879460166786506E-002 13 6 9 3 + -0.11011456188870816E-004 9 4 13 6 + -0.11034508516436435E-004 13 6 9 4 + -0.59231111939005797E-004 9 5 13 6 + -0.59348941760488775E-004 13 6 9 5 + -0.88293992447231121E-003 9 6 13 6 + -0.86927915789165953E-003 13 6 9 6 + -0.59196240336849423E-003 9 7 13 6 + -0.58280085000298571E-003 13 6 9 7 + 0.91246824745489343E-003 9 8 13 6 + 0.89834804159306112E-003 13 6 9 8 + -0.19109955097654753E-003 10 3 13 6 + -0.18974336517405425E-003 13 6 10 3 + 0.15050136393016600E-004 10 4 13 6 + 0.14270873950195670E-004 13 6 10 4 + 0.75345257723026114E-003 10 5 13 6 + 0.74709146857255084E-003 13 6 10 5 + -0.32312998229222750E-004 10 6 13 6 + -0.32312975852710377E-004 13 6 10 6 + -0.11762860030960725E-003 10 7 13 6 + -0.11762905896472696E-003 13 6 10 7 + -0.82523857063108129E-004 10 8 13 6 + -0.82523795985215684E-004 13 6 10 8 + -0.40459326714012927E-004 11 3 13 6 + -0.31234872601792939E-004 13 6 11 3 + -0.15695846655743204E-002 11 4 13 6 + -0.15408376311890986E-002 13 6 11 4 + -0.37062108746957214E-002 11 5 13 6 + -0.36405876434062031E-002 13 6 11 5 + 0.37249509441879665E-003 11 6 13 6 + 0.37249529657781301E-003 13 6 11 6 + 0.15122515843036600E-002 11 7 13 6 + 0.15122497003907654E-002 13 6 11 7 + 0.22211909434085532E-002 11 8 13 6 + 0.22211879350925779E-002 13 6 11 8 + 0.12867602221760311E-002 12 3 13 6 + 0.12536810809178455E-002 13 6 12 3 + 0.21572244837927907E-002 12 4 13 6 + 0.21169784088749997E-002 13 6 12 4 + -0.24804830817124288E-002 12 5 13 6 + -0.24391690356197916E-002 13 6 12 5 + -0.41021868604257302E-003 12 6 13 6 + -0.41021856335833433E-003 13 6 12 6 + 0.23436427620655985E-002 12 7 13 6 + 0.23436396685356329E-002 13 6 12 7 + -0.90308702937683409E-003 12 8 13 6 + -0.90308592058012806E-003 13 6 12 8 + 0.12997074360352140E-002 13 3 13 6 + 0.12686777493323589E-002 13 6 13 3 + -0.36826503762946547E-002 13 4 13 6 + -0.36182983719541934E-002 13 6 13 4 + -0.74422694488090584E-004 13 5 13 6 + -0.75086749150250222E-004 13 6 13 5 + 0.26426613967486085E-002 13 6 13 6 + -0.79877904696979698E-003 1 3 13 7 + -0.79260348465696909E-003 13 7 1 3 + -0.11358976632953651E-002 1 4 13 7 + -0.11271161938020383E-002 13 7 1 4 + -0.35663239389524047E-002 1 5 13 7 + -0.35387529352029993E-002 13 7 1 5 + 0.10388468933645593E-003 1 6 13 7 + 0.10424584368022982E-003 13 7 1 6 + 0.19779077038267886E-002 1 7 13 7 + 0.19847886864256532E-002 13 7 1 7 + 0.26601606649237631E-002 1 8 13 7 + 0.26694154341994234E-002 13 7 1 8 + -0.64471592632407296E-002 2 3 13 7 + -0.63673663510814583E-002 13 7 2 3 + -0.91680472552491000E-002 2 4 13 7 + -0.90545971417049908E-002 13 7 2 4 + -0.28784529684414289E-001 2 5 13 7 + -0.28428325499852490E-001 13 7 2 5 + 0.42725162090613480E-003 2 6 13 7 + 0.42844369942876841E-003 13 7 2 6 + 0.81347794919589527E-002 2 7 13 7 + 0.81574705778524690E-002 13 7 2 7 + 0.10940771890875150E-001 2 8 13 7 + 0.10971289644345392E-001 13 7 2 8 + -0.33691943514333931E-002 3 1 13 7 + -0.33630187891205651E-002 13 7 3 1 + -0.64940868525324236E-002 3 2 13 7 + -0.64142939403731523E-002 13 7 3 2 + 0.28102998216406505E-002 3 9 13 7 + 0.28180921967019862E-002 13 7 3 9 + -0.86237316733396869E-002 3 10 13 7 + -0.85291072190997741E-002 13 7 3 10 + 0.61370079043001693E-002 3 11 13 7 + 0.60582214280468652E-002 13 7 3 11 + 0.11728850928882307E-001 3 12 13 7 + 0.11579430470708328E-001 13 7 3 12 + 0.11812569380054538E-001 3 13 13 7 + 0.11638048519735475E-001 13 7 3 13 + -0.26030283185850271E-002 3 14 13 7 + -0.25664869794745590E-002 13 7 3 14 + -0.47911368308780691E-002 4 1 13 7 + -0.47823553613847419E-002 13 7 4 1 + -0.92347653711952072E-002 4 2 13 7 + -0.91213152576510980E-002 13 7 4 2 + 0.39963271427414324E-002 4 9 13 7 + 0.40074109116084037E-002 13 7 4 9 + -0.10153442617901340E-001 4 10 13 7 + -0.10039333207614437E-001 13 7 4 10 + -0.61966664180921269E-002 4 11 13 7 + -0.61161352859668127E-002 13 7 4 11 + -0.12348490760393701E-001 4 12 13 7 + -0.12189854075213872E-001 13 7 4 12 + 0.83772010766358842E-002 4 13 13 7 + 0.82539598548863734E-002 13 7 4 13 + -0.23312381068293368E-002 4 14 13 7 + -0.22967746986343831E-002 13 7 4 14 + -0.15042504922403676E-001 5 1 13 7 + -0.15014933918654270E-001 13 7 5 1 + -0.28994009516382622E-001 5 2 13 7 + -0.28637805331820823E-001 13 7 5 2 + 0.12547099417869752E-001 5 9 13 7 + 0.12581897137606147E-001 13 7 5 9 + -0.93263973062002146E-002 5 10 13 7 + -0.92201588514972902E-002 13 7 5 10 + 0.11138286959030150E-002 5 11 13 7 + 0.10998660679739155E-002 13 7 5 11 + 0.88439882474767586E-003 5 12 13 7 + 0.87488398846582809E-003 13 7 5 12 + -0.20738917847894323E-001 5 13 13 7 + -0.20431719610591911E-001 13 7 5 13 + -0.12478417069091363E-001 5 14 13 7 + -0.12303777554577297E-001 13 7 5 14 + 0.56201307315265449E-003 6 1 13 7 + 0.56237422749642830E-003 13 7 6 1 + 0.60855641607402517E-003 6 2 13 7 + 0.60974849459665879E-003 13 7 6 2 + -0.54795969944519771E-003 6 9 13 7 + -0.53879814607968974E-003 13 7 6 9 + 0.72915579913398500E-003 6 10 13 7 + 0.72915470195808181E-003 13 7 6 10 + 0.41583280519636497E-002 6 11 13 7 + 0.41583235085602402E-002 13 7 6 11 + 0.79736837978178626E-002 6 12 13 7 + 0.79736744277509979E-002 13 7 6 12 + -0.21604804962999436E-003 6 13 13 7 + -0.21604797607982813E-003 13 7 6 13 + -0.31416567573985392E-003 6 14 13 7 + -0.31416638190688920E-003 13 7 6 14 + 0.10700347375150613E-001 7 1 13 7 + 0.10707228357749479E-001 13 7 7 1 + 0.11586346119208845E-001 7 2 13 7 + 0.11609037205102361E-001 13 7 7 2 + -0.10432636362125037E-001 7 9 13 7 + -0.10258258860953355E-001 13 7 7 9 + 0.43989991744500397E-003 7 10 13 7 + 0.43989964290606893E-003 13 7 7 10 + 0.52427297712007141E-005 7 11 13 7 + 0.52426532313387548E-005 13 7 7 11 + 0.48056728983822075E-003 7 12 13 7 + 0.48056713398413753E-003 13 7 7 12 + 0.14535923346812177E-001 7 13 13 7 + 0.14535923346812177E-001 13 7 7 13 + 0.45270095929696979E-002 7 14 13 7 + 0.45270097790806830E-002 13 7 7 14 + 0.14391285527615583E-001 8 1 13 7 + 0.14400540296891244E-001 13 7 8 1 + 0.15582888255516500E-001 8 2 13 7 + 0.15613406008986742E-001 13 7 8 2 + -0.14031222756859141E-001 8 9 13 7 + -0.13796699209509369E-001 13 7 8 9 + 0.61934984677542541E-002 8 10 13 7 + 0.61934915560284418E-002 13 7 8 10 + -0.40694463809204417E-003 8 11 13 7 + -0.40694437957326378E-003 13 7 8 11 + -0.30542125913416703E-003 8 12 13 7 + -0.30542065105126172E-003 13 7 8 12 + -0.45325060974831210E-003 8 13 13 7 + -0.45325019714745178E-003 13 7 8 13 + 0.52182026441400658E-002 8 14 13 7 + 0.52182027983629581E-002 13 7 8 14 + 0.39035443949954583E-002 9 3 13 7 + 0.39113367700567940E-002 13 7 9 3 + 0.55510760873559344E-002 9 4 13 7 + 0.55621598562229056E-002 13 7 9 4 + 0.17428411455822277E-001 9 5 13 7 + 0.17463209175558672E-001 13 7 9 5 + -0.59196240336855071E-003 9 6 13 7 + -0.58280085000304274E-003 13 7 9 6 + -0.11270466320830400E-001 9 7 13 7 + -0.11096088819658718E-001 13 7 9 7 + -0.15158053527404916E-001 9 8 13 7 + -0.14923529980055144E-001 13 7 9 8 + -0.95522744977492042E-002 10 3 13 7 + -0.94576500435092914E-002 13 7 10 3 + -0.11237551952389369E-001 10 4 13 7 + -0.11123442542102466E-001 13 7 10 4 + -0.10317448493729363E-001 10 5 13 7 + -0.10211210039026438E-001 13 7 10 5 + 0.58725731745509953E-003 10 6 13 7 + 0.58725622027919634E-003 13 7 10 6 + 0.36796789086489582E-003 10 7 13 7 + 0.36796761632596078E-003 13 7 10 7 + 0.48702155063743893E-002 10 8 13 7 + 0.48702085946485769E-002 13 7 10 8 + 0.67587795938849945E-002 11 3 13 7 + 0.66799931176316904E-002 13 7 11 3 + -0.68212759552844287E-002 11 4 13 7 + -0.67407448231591146E-002 13 7 11 4 + 0.12279410830260667E-002 11 5 13 7 + 0.12139784550969672E-002 13 7 11 5 + 0.34167475653297547E-002 11 6 13 7 + 0.34167430219263456E-002 13 7 11 6 + 0.42932324699204095E-005 11 7 13 7 + 0.42931559300584519E-005 13 7 11 7 + -0.32798959025317852E-003 11 8 13 7 + -0.32798933173439814E-003 13 7 11 8 + 0.12921272177487318E-001 12 3 13 7 + 0.12771851719313339E-001 13 7 12 3 + -0.13599339905799489E-001 12 4 13 7 + -0.13440703220619660E-001 13 7 12 4 + 0.98025131300906996E-003 12 5 13 7 + 0.97073647672722219E-003 13 7 12 5 + 0.65344316352705786E-002 12 6 13 7 + 0.65344222652037147E-002 13 7 12 6 + 0.40194385483102355E-003 12 7 13 7 + 0.40194369897694033E-003 13 7 12 7 + -0.23641193793054870E-003 12 8 13 7 + -0.23641132984764332E-003 13 7 12 8 + 0.12932589898540287E-001 13 3 13 7 + 0.12758069038221223E-001 13 7 13 3 + 0.91732810463294127E-002 13 4 13 7 + 0.90500398245799019E-002 13 7 13 4 + -0.22702545820424778E-001 13 5 13 7 + -0.22395347583122366E-001 13 7 13 5 + -0.18071039260586841E-003 13 6 13 7 + -0.18071031905570218E-003 13 7 13 6 + 0.12313854643760849E-001 13 7 13 7 + 0.28204527336947536E-002 1 3 13 8 + 0.27986478810751959E-002 13 8 1 3 + 0.24482694374642370E-002 1 4 13 8 + 0.24293422091637984E-002 13 8 1 4 + -0.12513899974263519E-002 1 5 13 8 + -0.12417154555904246E-002 13 8 1 5 + -0.16013192667118251E-003 1 6 13 8 + -0.16068878315798617E-003 13 8 1 6 + 0.26601606649238204E-002 1 7 13 8 + 0.26694154341994816E-002 13 8 1 7 + -0.21328591159299973E-002 1 8 13 8 + -0.21402791759183772E-002 13 8 1 8 + 0.22764475658737553E-001 2 3 13 8 + 0.22482763612877096E-001 13 8 2 3 + 0.19760449258977061E-001 2 4 13 8 + 0.19515923653454084E-001 13 8 2 4 + -0.10100250427501407E-001 2 5 13 8 + -0.99752560566379080E-002 13 8 2 5 + -0.65858708204183630E-003 2 6 13 8 + -0.66042441841776751E-003 13 8 2 6 + 0.10940771890875235E-001 2 7 13 8 + 0.10971289644345459E-001 13 8 2 7 + -0.87720672566030146E-002 2 8 13 8 + -0.87965359708551908E-002 13 8 2 8 + 0.11896472450708620E-001 3 1 13 8 + 0.11874667598089061E-001 13 8 3 1 + 0.22930148581890662E-001 3 2 13 8 + 0.22648436536030204E-001 13 8 3 2 + -0.99229741665081868E-002 3 9 13 8 + -0.99504934173407118E-002 13 8 3 9 + -0.66646941206865993E-002 3 10 13 8 + -0.65915394879020144E-002 13 8 3 10 + 0.11563713440805160E-001 3 11 13 8 + 0.11416138970394289E-001 13 8 3 11 + -0.54352018852773338E-002 3 12 13 8 + -0.53658925359948472E-002 13 8 3 12 + -0.16234110756601226E-001 3 13 13 8 + -0.15994316415603855E-001 13 8 3 13 + 0.99051463151839849E-002 3 14 13 8 + 0.97687695897950809E-002 13 8 3 14 + 0.10326629101968120E-001 4 1 13 8 + 0.10307701873667682E-001 13 8 4 1 + 0.19904250612441509E-001 4 2 13 8 + 0.19659725006918531E-001 13 8 4 2 + -0.86135266786764048E-002 4 9 13 8 + -0.86374162489415637E-002 13 8 4 9 + -0.45527883039637208E-002 4 10 13 8 + -0.45031332654894909E-002 13 8 4 10 + -0.12636755973684011E-001 4 11 13 8 + -0.12475644700995272E-001 13 8 4 11 + 0.75393303010189159E-002 4 12 13 8 + 0.74444334846262752E-002 13 8 4 12 + -0.16133115938787985E-001 4 13 13 8 + -0.15896109979004189E-001 13 8 4 13 + 0.70470693012043154E-002 4 14 13 8 + 0.69485582373696071E-002 13 8 4 14 + -0.52782755834109981E-002 5 1 13 8 + -0.52686010415750710E-002 13 8 5 1 + -0.10173759420625495E-001 5 2 13 8 + -0.10048765049761996E-001 13 8 5 2 + 0.44026723037587801E-002 5 9 13 8 + 0.44148816981335621E-002 13 8 5 9 + 0.13815719872103834E-001 5 10 13 8 + 0.13660306071395522E-001 13 8 5 10 + 0.13782362806197483E-002 5 11 13 8 + 0.13589662827777189E-002 13 8 5 11 + -0.16053346394259704E-002 5 12 13 8 + -0.15860857082667392E-002 13 8 5 12 + -0.13595470070118605E-001 5 13 13 8 + -0.13394249609431414E-001 13 8 5 13 + -0.51999047769080795E-002 5 14 13 8 + -0.51288908876839104E-002 13 8 5 14 + -0.86630648777688004E-003 6 1 13 8 + -0.86686334426368369E-003 13 8 6 1 + -0.93804488313926643E-003 6 2 13 8 + -0.93988221951519764E-003 13 8 6 2 + 0.84463934844195422E-003 6 9 13 8 + 0.83051914258012050E-003 13 8 6 9 + 0.91722682662234400E-004 6 10 13 8 + 0.91722562148615919E-004 13 8 6 10 + 0.80166801767094977E-002 6 11 13 8 + 0.80166707233972952E-002 13 8 6 11 + -0.43141625221226219E-002 6 12 13 8 + -0.43141577892233654E-002 13 8 6 12 + 0.62690943482913227E-003 6 13 13 8 + 0.62690897798198556E-003 13 8 6 13 + 0.19613917551874135E-003 6 14 13 8 + 0.19613977653702149E-003 13 8 6 14 + 0.14391285527615415E-001 7 1 13 8 + 0.14400540296891076E-001 13 8 7 1 + 0.15582888255516568E-001 7 2 13 8 + 0.15613406008986792E-001 13 8 7 2 + -0.14031222756858785E-001 7 9 13 8 + -0.13796699209509005E-001 13 8 7 9 + -0.61036479268199708E-002 7 10 13 8 + -0.61036406626121713E-002 13 8 7 10 + 0.83059174733731152E-004 7 11 13 8 + 0.83058663419164090E-004 13 8 7 11 + 0.45058841786475298E-003 7 12 13 8 + 0.45058775200259140E-003 13 8 7 12 + -0.45324184084311633E-003 7 13 13 8 + -0.45324225344397666E-003 13 8 7 13 + 0.57133959202438148E-002 7 14 13 8 + 0.57133954833499864E-002 13 8 7 14 + -0.11538623857415418E-001 8 1 13 8 + -0.11546043917403796E-001 13 8 8 1 + -0.12494032229997945E-001 8 2 13 8 + -0.12518500944250121E-001 13 8 8 2 + 0.11249939666033919E-001 8 9 13 8 + 0.11061901398281582E-001 13 8 8 9 + -0.40133506870834853E-003 8 10 13 8 + -0.40133481654592375E-003 13 8 8 10 + -0.45049316772115917E-003 8 11 13 8 + -0.45049329334031357E-003 13 8 8 11 + 0.98475621182714389E-005 8 12 13 8 + 0.98475952881155093E-005 13 8 8 12 + 0.15224855754378142E-001 8 13 13 8 + 0.15224855754378142E-001 13 8 8 13 + -0.38759565356396661E-002 8 14 13 8 + -0.38759567262790012E-002 13 8 8 14 + -0.13783363202770002E-001 9 3 13 8 + -0.13810882453602527E-001 13 8 9 3 + -0.11964573747316526E-001 9 4 13 8 + -0.11988463317581684E-001 13 8 9 4 + 0.61154468485817640E-002 9 5 13 8 + 0.61276562429565459E-002 13 8 9 5 + 0.91246824745484984E-003 9 6 13 8 + 0.89834804159301613E-003 13 8 9 6 + -0.15158053527404762E-001 9 7 13 8 + -0.14923529980054981E-001 13 8 9 7 + 0.12153406245302773E-001 9 8 13 8 + 0.11965367977550436E-001 13 8 9 8 + -0.73822438493510141E-002 10 3 13 8 + -0.73090892165664292E-002 13 8 10 3 + -0.50440527747520015E-002 10 4 13 8 + -0.49943977362777716E-002 13 8 10 4 + 0.15290291528690089E-001 10 5 13 8 + 0.15134877727981777E-001 13 8 10 5 + 0.71769231301913370E-004 10 6 13 8 + 0.71769110788294890E-004 13 8 10 6 + -0.47950077951485863E-002 10 7 13 8 + -0.47950005309407868E-002 13 8 10 7 + -0.33563117687225867E-003 10 8 13 8 + -0.33563092470983389E-003 13 8 10 8 + 0.12738512814138044E-001 11 3 13 8 + 0.12590938343727175E-001 13 8 11 3 + -0.13920951076779901E-001 11 4 13 8 + -0.13759839804091161E-001 13 8 11 4 + 0.15125763955752846E-002 11 5 13 8 + 0.14933063977332552E-002 13 8 11 5 + 0.65654774372159528E-002 11 6 13 8 + 0.65654679839037495E-002 13 8 11 6 + 0.57136124636585052E-004 11 7 13 8 + 0.57135613322017997E-004 13 8 11 7 + -0.37683240635886449E-003 11 8 13 8 + -0.37683253197801889E-003 13 8 11 8 + -0.59876057903913791E-002 12 3 13 8 + -0.59182964411088924E-002 13 8 12 3 + 0.83096433761208673E-002 12 4 13 8 + 0.82147465597282275E-002 13 8 12 4 + -0.17726542429904691E-002 12 5 13 8 + -0.17534053118312379E-002 13 8 12 5 + -0.35241205679146107E-002 12 6 13 8 + -0.35241158350153541E-002 13 8 12 6 + 0.35778440273165352E-003 12 7 13 8 + 0.35778373686949194E-003 13 8 12 7 + 0.83006870555747984E-005 12 8 13 8 + 0.83007202254188705E-005 13 8 12 8 + -0.17773635970744963E-001 13 3 13 8 + -0.17533841629747592E-001 13 8 13 3 + -0.17667278744386776E-001 13 4 13 8 + -0.17430272784602976E-001 13 8 13 4 + -0.14883304274248516E-001 13 5 13 8 + -0.14682083813561324E-001 13 8 13 5 + 0.52426681002421449E-003 13 6 13 8 + 0.52426635317706779E-003 13 8 13 6 + -0.37913318580269601E-003 13 7 13 8 + -0.37913359840355634E-003 13 8 13 7 + 0.12890130944346514E-001 13 8 13 8 + 0.12500675900347637E-009 13 9 1 10 + -0.14060534802927792E-009 1 11 13 9 + -0.23234469219139464E-009 13 9 1 11 + 0.13628721337268399E-009 13 9 1 12 + -0.14047505203553356E-002 1 13 13 9 + -0.14038675179305067E-002 13 9 1 13 + -0.55932814914505046E-007 2 10 13 9 + -0.51901580023834993E-007 13 9 2 10 + 0.10395991909353938E-006 2 11 13 9 + 0.96467236064394021E-007 13 9 2 11 + -0.60980121665674481E-007 2 12 13 9 + -0.56585113216947710E-007 13 9 2 12 + -0.15505494925517616E-001 2 13 13 9 + -0.15494143253458461E-001 13 9 2 13 + 0.26144135128269496E-009 2 14 13 9 + 0.24259854107336505E-009 13 9 2 14 + 0.57402992183429391E-002 3 3 13 9 + 0.57394172298459792E-002 13 9 3 3 + 0.60345279767158146E-002 3 4 13 9 + 0.60336067160940378E-002 13 9 3 4 + 0.24743111230679693E-002 3 5 13 9 + 0.24739352342556479E-002 13 9 3 5 + -0.73637354841639055E-003 3 6 13 9 + -0.74292077256538080E-003 13 9 3 6 + 0.20753178992125570E-002 3 7 13 9 + 0.20937667257338211E-002 13 9 3 7 + -0.73277815871702493E-002 3 8 13 9 + -0.73929256880543295E-002 13 9 3 8 + 0.60345279767158146E-002 4 3 13 9 + 0.60336067160940378E-002 13 9 4 3 + 0.50756836745644912E-002 4 4 13 9 + 0.50749125399968597E-002 13 9 4 4 + 0.11042987223883812E-002 4 5 13 9 + 0.11041303198714508E-002 13 9 4 5 + -0.58211793334996577E-005 4 6 13 9 + -0.58735897523087732E-005 13 9 4 6 + 0.29511490792376205E-002 4 7 13 9 + 0.29773852995991818E-002 13 9 4 7 + -0.63607906748901245E-002 4 8 13 9 + -0.64173392206472975E-002 13 9 4 8 + 0.24743111230679693E-002 5 3 13 9 + 0.24739352342556479E-002 13 9 5 3 + 0.11042987223883814E-002 5 4 13 9 + 0.11041303198714510E-002 13 9 5 4 + -0.10815982892907777E-001 5 5 13 9 + -0.10814329769843171E-001 13 9 5 5 + -0.31502827592780423E-004 5 6 13 9 + -0.31782623346240139E-004 13 9 5 6 + 0.92656049243097869E-002 5 7 13 9 + 0.93479768805998075E-002 13 9 5 7 + 0.32512271004276304E-002 5 8 13 9 + 0.32801302946055132E-002 13 9 5 8 + -0.92289789043165072E-003 6 3 13 9 + -0.92944511458064097E-003 13 9 6 3 + -0.73149300063166309E-005 6 4 13 9 + -0.73673404251257456E-005 13 9 6 4 + -0.39473660102141750E-004 6 5 13 9 + -0.39753455855601467E-004 13 9 6 5 + -0.23916005390649012E-003 6 6 13 9 + -0.22929853601086272E-003 13 9 6 6 + -0.16035164543228497E-003 6 7 13 9 + -0.15373456283020433E-003 13 9 6 7 + 0.24716584119392309E-003 6 8 13 9 + 0.23696940918211204E-003 13 9 6 8 + 0.26009047996019504E-002 7 3 13 9 + 0.26193536261232145E-002 13 9 7 3 + 0.36985918241046675E-002 7 4 13 9 + 0.37248280444662288E-002 13 9 7 4 + 0.11612295823150738E-001 7 5 13 9 + 0.11694667779440759E-001 13 9 7 5 + -0.16035164543228223E-003 7 6 13 9 + -0.15373456283020160E-003 13 9 7 6 + -0.30528126070965165E-002 7 7 13 9 + -0.29269295554955176E-002 13 9 7 7 + -0.41058282133123944E-002 7 8 13 9 + -0.39365295284796466E-002 13 9 7 8 + -0.91836684655705256E-002 8 3 13 9 + -0.92488125664546075E-002 13 9 8 3 + -0.79718002023102426E-002 8 4 13 9 + -0.80283487480674147E-002 13 9 8 4 + 0.40746484275578990E-002 8 5 13 9 + 0.41035516217357822E-002 13 9 8 5 + 0.24716584119392402E-003 8 6 13 9 + 0.23696940918211296E-003 13 9 8 6 + -0.41058282133124126E-002 8 7 13 9 + -0.39365295284796648E-002 13 9 8 7 + 0.32919726610008684E-002 8 8 13 9 + 0.31562280915042457E-002 13 9 8 8 + -0.29887320521834861E-007 9 10 13 9 + -0.29887320521839487E-007 13 9 9 10 + 0.55550278090034514E-007 9 11 13 9 + 0.55550278090040046E-007 13 9 9 11 + -0.32584314675212536E-007 9 12 13 9 + -0.32584314675214263E-007 13 9 9 12 + 0.13529963087389699E-001 9 13 13 9 + 0.13529963087389699E-001 13 9 9 13 + 0.13969924923254156E-009 9 14 13 9 + 0.13969924924332277E-009 13 9 9 14 + -0.35745251199551952E-008 10 1 13 9 + -0.35251672539367276E-008 13 9 10 1 + -0.95022926000178062E-007 10 2 13 9 + -0.90991691109506526E-007 13 9 10 2 + 0.21161299360304872E-007 10 9 13 9 + 0.21161299360301931E-007 13 9 10 9 + 0.31817370593133784E-003 10 10 13 9 + 0.31795144452944713E-003 13 9 10 10 + -0.32235656263219500E-003 10 11 13 9 + -0.32213088314979012E-003 13 9 10 11 + -0.86757522426754211E-004 10 12 13 9 + -0.86696637863696119E-004 13 9 10 12 + -0.33874607888405360E-003 10 13 13 9 + -0.33850351673153656E-003 13 9 10 13 + -0.57668411938678939E-004 10 14 13 9 + -0.57623032088049476E-004 13 9 10 14 + 0.66438162087388033E-008 11 1 13 9 + 0.65520768645762717E-008 13 9 11 1 + 0.17661502847468353E-006 11 2 13 9 + 0.16912234544553640E-006 13 9 11 2 + -0.39331597583110423E-007 11 9 13 9 + -0.39331597583105539E-007 13 9 11 9 + -0.32235635438319579E-003 11 10 13 9 + -0.32213067490079091E-003 13 9 11 10 + -0.22695772528700245E-002 11 11 13 9 + -0.22679891683733628E-002 13 9 11 11 + -0.64150224721246513E-002 11 12 13 9 + -0.64105326638579166E-002 13 9 11 12 + 0.14945259616464465E-003 11 13 13 9 + 0.14934898894965488E-003 13 9 11 13 + 0.43291057056791724E-003 11 14 13 9 + 0.43259914642342030E-003 13 9 11 14 + -0.38970857631107103E-008 12 1 13 9 + -0.38432739054614134E-008 13 9 12 1 + -0.10359767513632843E-006 12 2 13 9 + -0.99202666687601293E-007 13 9 12 2 + 0.23070868363823262E-007 12 9 13 9 + 0.23070868363820175E-007 13 9 12 9 + -0.86757768771615428E-004 12 10 13 9 + -0.86696884208557336E-004 13 9 12 10 + -0.64150219046513746E-002 12 11 13 9 + -0.64105320963846399E-002 13 9 12 11 + 0.19183326628558919E-002 12 12 13 9 + 0.19169899943219286E-002 13 9 12 12 + -0.53477111600813416E-003 12 13 13 9 + -0.53440181271805247E-003 13 9 12 13 + -0.32131165484606519E-003 12 14 13 9 + -0.32108235193842696E-003 13 9 12 14 + -0.29211560756414890E-002 13 1 13 9 + -0.29202730732166603E-002 13 9 13 1 + -0.11977716075246959E-001 13 2 13 9 + -0.11966364403187804E-001 13 9 13 2 + 0.10030012686809749E-001 13 9 13 9 + 0.27413347850500594E-007 1 1 13 10 + 0.72167896471860335E-008 13 10 1 1 + -0.28659312182332786E-008 1 2 13 10 + -0.16330169916380999E-008 13 10 1 2 + 0.59946604917848762E-009 1 9 13 10 + -0.29733143425767264E-009 13 10 1 9 + 0.17177419085782362E-004 1 10 13 10 + 0.17130923407888043E-004 13 10 1 10 + -0.17408350318315816E-004 1 11 13 10 + -0.17361043328640835E-004 13 10 1 11 + -0.46850205496223066E-005 1 12 13 10 + -0.46722686676553308E-005 13 10 1 12 + -0.18284253129025322E-004 1 13 13 10 + -0.18234092781143484E-004 13 10 1 13 + -0.31128434464829476E-005 1 14 13 10 + -0.31037602832941816E-005 13 10 1 14 + -0.58266968760454285E-008 2 1 13 10 + -0.45937826494501936E-008 13 10 2 1 + -0.80778059424305127E-007 2 2 13 10 + -0.74094717272529551E-007 13 10 2 2 + -0.80631857808970451E-007 2 9 13 10 + -0.64316856509420001E-007 13 10 2 9 + -0.12387529170492591E-002 2 10 13 10 + -0.12329558663173601E-002 13 10 2 10 + 0.12547721893981173E-002 2 11 13 10 + 0.12489008053572373E-002 13 10 2 11 + 0.33768822276678884E-003 2 12 13 10 + 0.33610816484844349E-003 13 10 2 12 + 0.13182189087548625E-002 2 13 13 10 + 0.13120505980990156E-002 13 10 2 13 + 0.22391997342006850E-003 2 14 13 10 + 0.22287337757558178E-003 13 10 2 14 + 0.26403881359447968E-003 3 3 13 10 + 0.26134799148706675E-003 13 10 3 3 + -0.54852674123850908E-003 3 4 13 10 + -0.54292504940630433E-003 13 10 3 4 + -0.18458242966141742E-002 3 5 13 10 + -0.18269692982073576E-002 13 10 3 5 + 0.97879305569109474E-004 3 6 13 10 + 0.10050952260342684E-003 13 10 3 6 + 0.31878909794139109E-003 3 7 13 10 + 0.32739656530793369E-003 13 10 3 7 + 0.24262049278114155E-003 3 8 13 10 + 0.24918945088273808E-003 13 10 3 8 + -0.54857323910963434E-003 4 3 13 10 + -0.54297154727742959E-003 13 10 4 3 + -0.11179511454977296E-002 4 4 13 10 + -0.11065269663007712E-002 13 10 4 4 + -0.13828829146786292E-003 4 5 13 10 + -0.13687417223350428E-003 13 10 4 5 + 0.10682982145631355E-003 4 6 13 10 + 0.10973464208625763E-003 13 10 4 6 + -0.99651627444975261E-004 4 7 13 10 + -0.10234984861522333E-003 13 10 4 7 + 0.22204105829283833E-003 4 8 13 10 + 0.22805179855089907E-003 13 10 4 8 + -0.18462375854626509E-002 5 3 13 10 + -0.18273825870558343E-002 13 10 5 3 + -0.13866083091563971E-003 5 4 13 10 + -0.13724671168128107E-003 13 10 5 4 + 0.85369455373077532E-003 5 5 13 10 + 0.84496946450757237E-003 13 10 5 5 + -0.21305888097181212E-003 5 6 13 10 + -0.21881823531552948E-003 13 10 5 6 + -0.33946099092519154E-003 5 7 13 10 + -0.34862704908969521E-003 13 10 5 7 + 0.16293013121733985E-003 5 8 13 10 + 0.16733569603908974E-003 13 10 5 8 + 0.59692455444428038E-004 6 3 13 10 + 0.62322672478745396E-004 13 10 6 3 + 0.65134777922412065E-004 6 4 13 10 + 0.68039598552356161E-004 13 10 6 4 + -0.12991840214950909E-003 6 5 13 10 + -0.13567775649322644E-003 13 10 6 5 + -0.90265722084216277E-004 6 6 13 10 + -0.91739361492336198E-004 13 10 6 6 + 0.65582417047972371E-003 6 7 13 10 + 0.66673080971092866E-003 13 10 6 7 + -0.15020049435639940E-004 6 8 13 10 + -0.15269584210640963E-004 13 10 6 8 + 0.19441275215492800E-003 7 3 13 10 + 0.20302021952147057E-003 13 10 7 3 + -0.60718505412953117E-004 7 4 13 10 + -0.63416726583201175E-004 13 10 7 4 + -0.20677579262198069E-003 7 5 13 10 + -0.21594185078648433E-003 13 10 7 5 + 0.65581639412276604E-003 7 6 13 10 + 0.66672303335397099E-003 13 10 7 6 + 0.10275827420491190E-002 7 7 13 10 + 0.10447085580705868E-002 13 10 7 7 + 0.10486742190003852E-003 7 8 13 10 + 0.10661671529818387E-003 13 10 7 8 + 0.14801056853540407E-003 8 3 13 10 + 0.15457952663700059E-003 13 10 8 3 + 0.13545757693805128E-003 8 4 13 10 + 0.14146831719611202E-003 13 10 8 4 + 0.99393522650961777E-004 8 5 13 10 + 0.10379908747271165E-003 13 10 8 5 + -0.15022260985279154E-004 8 6 13 10 + -0.15271795760280176E-004 13 10 8 6 + 0.10504006642906509E-003 8 7 13 10 + 0.10678935982721044E-003 13 10 8 7 + -0.93750145389103162E-003 8 8 13 10 + -0.95305581593681276E-003 13 10 8 8 + 0.62161628848790456E-008 9 1 13 10 + 0.53193654014423451E-008 13 10 9 1 + 0.62912931625294641E-007 9 2 13 10 + 0.79227932924845766E-007 13 10 9 2 + -0.67407929698862927E-007 9 9 13 10 + -0.37855527757742310E-007 13 10 9 9 + -0.96669345858627713E-004 9 10 13 10 + -0.96446886016047834E-004 13 10 9 10 + 0.97976660745463442E-004 9 11 13 10 + 0.97750382878381294E-004 13 10 9 11 + 0.26372381078242009E-004 9 12 13 10 + 0.26311344326264715E-004 13 10 9 12 + 0.10304438612434774E-003 9 13 13 10 + 0.10280182397183071E-003 13 10 9 13 + 0.17636669459161895E-004 9 14 13 10 + 0.17591103513821045E-004 13 10 9 14 + -0.21208553926237104E-003 10 1 13 10 + -0.21213203494026538E-003 13 10 10 1 + -0.22127717995039436E-002 10 2 13 10 + -0.22069747487720448E-002 13 10 10 2 + 0.31795244705972575E-003 10 9 13 10 + 0.31817490690230565E-003 13 10 10 9 + -0.21272088881561372E-006 10 10 13 10 + -0.20033105705447826E-006 13 10 10 10 + -0.51816749668533331E-003 10 11 13 10 + -0.51817068903168694E-003 13 10 10 11 + 0.24256256486981633E-003 10 12 13 10 + 0.24256408985133120E-003 13 10 10 12 + 0.20352334117512007E-001 10 13 13 10 + 0.20352334117512007E-001 13 10 10 13 + -0.79820413692080082E-003 10 14 13 10 + -0.79820418190563666E-003 13 10 10 14 + 0.21485700946861921E-003 11 1 13 10 + 0.21490431645829420E-003 13 10 11 1 + 0.22416373299178364E-002 11 2 13 10 + 0.22357659458769564E-002 13 10 11 2 + -0.32213369796398728E-003 11 9 13 10 + -0.32235997583106941E-003 13 10 11 9 + -0.51776585023166480E-003 11 10 13 10 + -0.51776904257801843E-003 13 10 11 10 + 0.84006199722768153E-003 11 11 13 10 + 0.84007298366422102E-003 13 10 11 11 + 0.43310070986545619E-003 11 12 13 10 + 0.43310289964994567E-003 13 10 11 12 + 0.32582165389515109E-003 11 13 13 10 + 0.32582295438716996E-003 13 10 11 13 + -0.32395239997919030E-003 11 14 13 10 + -0.32395335098044320E-003 13 10 11 14 + 0.57823260364004985E-004 12 1 13 10 + 0.57836012245971964E-004 13 10 12 1 + 0.60328213169821409E-003 12 2 13 10 + 0.60170207377986879E-003 13 10 12 2 + -0.86697653073011048E-004 12 9 13 10 + -0.86758689824988335E-004 13 10 12 9 + 0.24234311189499453E-003 12 10 13 10 + 0.24234463687650940E-003 13 10 12 10 + 0.43142090708438998E-003 12 11 13 10 + 0.43142309686887946E-003 13 10 12 11 + -0.89515743435245054E-003 12 12 13 10 + -0.89515147409496875E-003 13 10 12 12 + 0.60862082109979150E-003 12 13 13 10 + 0.60862287205667271E-003 13 10 12 13 + 0.36770622637393970E-004 12 14 13 10 + 0.36770141279381201E-004 13 10 12 14 + 0.22570940778470863E-003 13 1 13 10 + 0.22575956813259047E-003 13 10 13 1 + 0.23549125476434872E-002 13 2 13 10 + 0.23487442369876403E-002 13 10 13 2 + -0.33850249845431712E-003 13 9 13 10 + -0.33874506060683416E-003 13 10 13 9 + 0.20349474695632391E-001 13 10 13 10 + -0.50952011372714957E-007 1 1 13 11 + -0.13413536684215635E-007 13 11 1 1 + 0.53267831758893518E-008 1 2 13 11 + 0.30352184932644500E-008 13 11 1 2 + -0.11142017756499153E-008 1 9 13 11 + 0.55263716270658587E-009 13 11 1 9 + -0.17408339256312306E-004 1 10 13 11 + -0.17361029232876582E-004 13 11 1 10 + -0.12253100969288814E-003 1 11 13 11 + -0.12219895852351060E-003 13 11 1 11 + -0.34634433086368671E-003 1 12 13 11 + -0.34540545999195329E-003 13 11 1 12 + 0.80682572715744628E-005 1 13 13 11 + 0.80465358549334801E-005 13 11 1 13 + 0.23363709029401563E-004 1 14 13 11 + 0.23299514045169568E-004 13 11 1 14 + 0.10829831054058816E-007 2 1 13 11 + 0.85382663714342496E-008 13 11 2 1 + 0.15013870726775298E-006 2 2 13 11 + 0.13771666645842050E-006 13 11 2 2 + 0.14986696855379686E-006 2 9 13 11 + 0.11954297685362452E-006 13 11 2 9 + 0.12547723866570232E-002 2 10 13 11 + 0.12489010468210333E-002 13 11 2 10 + 0.88357772115459279E-002 2 11 13 11 + 0.87944286768525774E-002 13 11 2 11 + 0.24974153841252174E-001 2 12 13 11 + 0.24857283906427011E-001 13 11 2 12 + -0.58196209134037113E-003 2 13 13 11 + -0.57923826040846360E-003 13 11 2 13 + -0.16845680663126771E-002 2 14 13 11 + -0.16766851786031863E-002 13 11 2 14 + -0.10094542018915739E-001 3 3 13 11 + -0.99914516063025691E-002 13 11 3 3 + -0.54650335863228809E-003 3 4 13 11 + -0.54091450108947317E-003 13 11 3 4 + -0.15778393167413095E-001 3 5 13 11 + -0.15617251243416314E-001 13 11 3 5 + -0.15019020975399660E-002 3 6 13 11 + -0.15424566124879523E-002 13 11 3 6 + 0.17920639326848367E-002 3 7 13 11 + 0.18404936100713226E-002 13 11 3 7 + 0.32156917312902568E-002 3 8 13 11 + 0.33025610858095464E-002 13 11 3 8 + -0.54634549655519405E-003 4 3 13 11 + -0.54075663901237913E-003 13 11 4 3 + 0.14439267932088478E-001 4 4 13 11 + 0.14291792519025797E-001 13 11 4 4 + 0.16003463724103648E-001 4 5 13 11 + 0.15840022824271365E-001 13 11 4 5 + -0.21963124028721672E-002 4 6 13 11 + -0.22556871852424331E-002 13 11 4 6 + -0.19787483341553976E-002 4 7 13 11 + -0.20322051963884862E-002 13 11 4 7 + -0.34910697019866765E-002 4 8 13 11 + -0.35854089237881978E-002 13 11 4 8 + -0.15778234901986488E-001 5 3 13 11 + -0.15617092977989706E-001 13 11 5 3 + 0.16003301870463452E-001 5 4 13 11 + 0.15839860970631173E-001 13 11 5 4 + -0.43443211382436821E-002 5 5 13 11 + -0.42999515049219851E-002 13 11 5 5 + -0.48017068119673113E-002 5 6 13 11 + -0.49314419656407609E-002 13 11 5 6 + 0.26260004156872425E-003 5 7 13 11 + 0.26967343639792702E-003 13 11 5 7 + 0.67800252239802927E-003 5 8 13 11 + 0.69630620604895735E-003 13 11 5 8 + -0.91592450960371549E-003 6 3 13 11 + -0.95647902455170181E-003 13 11 6 3 + -0.13394008346094121E-002 6 4 13 11 + -0.13987756169796777E-002 13 11 6 4 + -0.29282895847493667E-002 6 5 13 11 + -0.30580247384228167E-002 13 11 6 5 + 0.10403840824099485E-002 6 6 13 11 + 0.10576283998602423E-002 13 11 6 6 + 0.68834954983744831E-002 6 7 13 11 + 0.69979500872106824E-002 13 11 6 7 + 0.12270828683377795E-001 6 8 13 11 + 0.12474862439474153E-001 13 11 6 8 + 0.10929792706846531E-002 7 3 13 11 + 0.11414089480711387E-002 13 11 7 3 + -0.12066220534297028E-002 7 4 13 11 + -0.12600789156627912E-002 13 11 7 4 + 0.15995106670755018E-003 7 5 13 11 + 0.16702446153675295E-003 13 11 7 5 + 0.68834631092211888E-002 7 6 13 11 + 0.69979176980573881E-002 13 11 7 6 + 0.12253401090673948E-004 7 7 13 11 + 0.12389774799508100E-004 13 11 7 7 + -0.37826749411062330E-003 7 8 13 11 + -0.38455501591568063E-003 13 11 7 8 + 0.19608636461623682E-002 8 3 13 11 + 0.20477330006816578E-002 13 11 8 3 + -0.21290776105048282E-002 8 4 13 11 + -0.22234168323063495E-002 13 11 8 4 + 0.41336945178952356E-003 8 5 13 11 + 0.43167313544045170E-003 13 11 8 5 + 0.12270750191663028E-001 8 6 13 11 + 0.12474783947759386E-001 13 11 8 6 + -0.37827686968470428E-003 8 7 13 11 + -0.38456439148976156E-003 13 11 8 7 + -0.10522946840889713E-002 8 8 13 11 + -0.10698571789807872E-002 13 11 8 8 + -0.11553714783810938E-007 9 1 13 11 + -0.98868758454552104E-008 13 11 9 1 + -0.11693356202900151E-006 9 2 13 11 + -0.14725755372917257E-006 13 11 9 2 + 0.12528822173542258E-006 9 9 13 11 + 0.70360442403173089E-007 13 11 9 9 + 0.97976657860634672E-004 9 10 13 11 + 0.97750373104708849E-004 13 11 9 10 + 0.68962816505425506E-003 9 11 13 11 + 0.68803845301109140E-003 13 11 9 11 + 0.19493116047794190E-002 9 12 13 11 + 0.19448166441798579E-002 13 11 9 12 + -0.45389086611597365E-004 9 13 13 11 + -0.45285479396607593E-004 13 11 9 13 + -0.13171061715993009E-003 9 14 13 11 + -0.13139948225847066E-003 13 11 9 14 + 0.21485712605886465E-003 10 1 13 11 + 0.21490443608230037E-003 13 11 10 1 + 0.22416408794174014E-002 10 2 13 11 + 0.22357695395814115E-002 13 11 10 2 + -0.32213394101569804E-003 10 9 13 11 + -0.32236022577162383E-003 13 11 10 9 + 0.10363356677535950E-002 10 10 13 11 + 0.10363200285982634E-002 13 11 10 10 + -0.42013707919682304E-003 10 11 13 11 + -0.42013769042598890E-003 13 11 10 11 + 0.13143488866149250E-001 10 12 13 11 + 0.13143523820482228E-001 13 11 10 12 + 0.32591240147688909E-003 10 13 13 11 + 0.32591110098487022E-003 13 11 10 13 + -0.12947983779997376E-002 10 14 13 11 + -0.12947950348374980E-002 13 11 10 14 + 0.15127908651398675E-002 11 1 13 11 + 0.15131229163092448E-002 13 11 11 1 + 0.15783507709114311E-001 11 2 13 11 + 0.15742159174420962E-001 13 11 11 2 + -0.22679973908027954E-002 11 9 13 11 + -0.22695871028459587E-002 13 11 11 9 + -0.42011732645135918E-003 11 10 13 11 + -0.42011793768052504E-003 13 11 11 10 + 0.31212255988362830E-006 11 11 13 11 + 0.29623686566498108E-006 13 11 11 11 + -0.56499048239638881E-003 11 12 13 11 + -0.56499181371608392E-003 13 11 11 12 + 0.33939531301652469E-001 11 13 13 11 + 0.33939531301652469E-001 13 11 11 13 + -0.19811426290042696E-002 11 14 13 11 + -0.19811422371913451E-002 13 11 11 14 + 0.42759162068854622E-002 12 1 13 11 + 0.42768550777571961E-002 13 11 12 1 + 0.44612145176088962E-001 12 2 13 11 + 0.44495275241263801E-001 13 11 12 2 + -0.64105581261751548E-002 12 9 13 11 + -0.64150530867747154E-002 13 11 12 9 + 0.13142652014703268E-001 12 10 13 11 + 0.13142686969036246E-001 13 11 12 10 + -0.56496832559796743E-003 12 11 13 11 + -0.56496965691766254E-003 13 11 12 11 + -0.20804099382586991E-002 12 12 13 11 + -0.20804327613851577E-002 13 11 12 12 + 0.60545842620124695E-003 12 13 13 11 + 0.60545643593419845E-003 13 11 12 13 + -0.78237716596180028E-002 12 14 13 11 + -0.78237734694102945E-002 13 11 12 14 + -0.99630523917624785E-004 13 1 13 11 + -0.99652245334265761E-004 13 11 13 1 + -0.10394769769735601E-002 13 2 13 11 + -0.10367531460416526E-002 13 11 13 2 + 0.14934618632184686E-003 13 9 13 11 + 0.14944979353683662E-003 13 11 13 9 + 0.32591579112032341E-003 13 10 13 11 + 0.32591449062830454E-003 13 11 13 10 + 0.33936498395601283E-001 13 11 13 11 + 0.29887093672160925E-007 1 1 13 12 + 0.78680234968653831E-008 13 12 1 1 + -0.31245492337376235E-008 1 2 13 12 + -0.17803783801553251E-008 13 12 1 2 + 0.65356110035618946E-009 1 9 13 12 + -0.32416225848278117E-009 13 12 1 9 + -0.46850336352441413E-005 1 10 13 12 + -0.46722853420161797E-005 13 12 1 10 + -0.34634430072000229E-003 1 11 13 12 + -0.34540542158134738E-003 13 12 1 11 + 0.10356827309557211E-003 1 12 13 12 + 0.10328755582946868E-003 13 12 1 12 + -0.28870029932512465E-004 1 13 13 12 + -0.28792483444785016E-004 13 12 1 13 + -0.17341740554899696E-004 1 14 13 12 + -0.17294308991237782E-004 13 12 1 14 + -0.63524906676438291E-008 2 1 13 12 + -0.50083198140619028E-008 13 12 2 1 + -0.88067369876389090E-007 2 2 13 12 + -0.80780931345958856E-007 13 12 2 2 + -0.87907975057338133E-007 2 9 13 12 + -0.70120728591507660E-007 13 12 2 9 + 0.33768798942248766E-003 2 10 13 12 + 0.33610787921267010E-003 13 12 2 10 + 0.24974154378777671E-001 2 11 13 12 + 0.24857284564409714E-001 13 12 2 11 + -0.74682731186340879E-002 2 12 13 12 + -0.74333241488923913E-002 13 12 2 12 + 0.20825571249482489E-002 2 13 13 12 + 0.20728096551457724E-002 13 12 2 13 + 0.12505073107558129E-002 2 14 13 12 + 0.12446553024826677E-002 13 12 2 14 + 0.21558429298138060E-001 3 3 13 12 + 0.21338255489269702E-001 13 12 3 3 + -0.38914690443557108E-002 3 4 13 12 + -0.38517308215575987E-002 13 12 3 4 + -0.77461394915836887E-002 3 5 13 12 + -0.76670297804335283E-002 13 12 3 5 + 0.34211999740419289E-002 3 6 13 12 + 0.35136228210674051E-002 13 12 3 6 + 0.32168269512598889E-002 3 7 13 12 + 0.33037364298388809E-002 13 12 3 7 + -0.15008078751955853E-002 3 8 13 12 + -0.15413531305460764E-002 13 12 3 8 + -0.38917187510286730E-002 4 3 13 12 + -0.38519805282305609E-002 13 12 4 3 + -0.21488490578250939E-001 4 4 13 12 + -0.21269027069432279E-001 13 12 4 4 + 0.10566053661729947E-001 4 5 13 12 + 0.10458142732089851E-001 13 12 4 5 + 0.31442255909857955E-002 4 6 13 12 + 0.32291980059149903E-002 13 12 4 6 + -0.36219075325495090E-002 4 7 13 12 + -0.37197706610915889E-002 13 12 4 7 + 0.18676040080580982E-002 4 8 13 12 + 0.19180689013689072E-002 13 12 4 8 + -0.77460046356448544E-002 5 3 13 12 + -0.76668949244946940E-002 13 12 5 3 + 0.10565996342914608E-001 5 4 13 12 + 0.10458085413274511E-001 13 12 5 4 + -0.70176150087660982E-004 5 5 13 12 + -0.69456836089781170E-004 13 12 5 5 + -0.27695602988239711E-002 5 6 13 12 + -0.28443935670861530E-002 13 12 5 6 + -0.65427953766710855E-004 5 7 13 12 + -0.67177088861950632E-004 13 12 5 7 + -0.22786144258400234E-003 5 8 13 12 + -0.23400773958206667E-003 13 12 5 8 + 0.20864010013631447E-002 6 3 13 12 + 0.21788238483886209E-002 13 12 6 3 + 0.19174939035416509E-002 6 4 13 12 + 0.20024663184708457E-002 13 12 6 4 + -0.16889918783372399E-002 6 5 13 12 + -0.17638251465994215E-002 13 12 6 5 + -0.11457559476714813E-002 6 6 13 12 + -0.11647743771836078E-002 13 12 6 6 + 0.12398486399014377E-001 6 7 13 12 + 0.12604642533744038E-001 13 12 6 7 + -0.61827368700249309E-002 6 8 13 12 + -0.62855394779782114E-002 13 12 6 8 + 0.19616299250196857E-002 7 3 13 12 + 0.20485394035986777E-002 13 12 7 3 + -0.22088022710388057E-002 7 4 13 12 + -0.23066653995808856E-002 13 12 7 4 + -0.39878468950522525E-004 7 5 13 12 + -0.41627604045762302E-004 13 12 7 5 + 0.12398409958916171E-001 7 6 13 12 + 0.12604566093645832E-001 13 12 7 6 + 0.11225436765539970E-002 7 7 13 12 + 0.11412432341318013E-002 13 12 7 7 + 0.16953989622665015E-003 7 8 13 12 + 0.17235402684140163E-003 13 12 7 8 + -0.91509388585487845E-003 8 3 13 12 + -0.95563914120536965E-003 13 12 8 3 + 0.11390431973975583E-002 8 4 13 12 + 0.11895080907083674E-002 13 12 8 4 + -0.13890414251029948E-003 8 5 13 12 + -0.14505043950836381E-003 13 12 8 5 + -0.61826927331451297E-002 8 6 13 12 + -0.62854953410984103E-002 13 12 8 6 + 0.16952438122410130E-003 8 7 13 12 + 0.17233851183885278E-003 13 12 8 7 + 0.23011194105880461E-004 8 8 13 12 + 0.23436707271141543E-004 13 12 8 8 + 0.67771015957846870E-008 9 1 13 12 + 0.57993782369451247E-008 13 12 9 1 + 0.68590115340169121E-007 9 2 13 12 + 0.86377361806002452E-007 13 12 9 2 + -0.73490736400261794E-007 9 9 13 12 + -0.41271562932122383E-007 13 12 9 9 + 0.26372384490799731E-004 9 10 13 12 + 0.26311355887871472E-004 13 12 9 10 + 0.19493115969183145E-002 9 11 13 12 + 0.19448166175468284E-002 13 12 9 11 + -0.58290998299604800E-003 9 12 13 12 + -0.58156589843102102E-003 13 12 9 12 + 0.16237760164003310E-003 9 13 13 12 + 0.16200829834995140E-003 13 12 9 13 + 0.97717869082718185E-004 9 14 13 12 + 0.97488754666007636E-004 13 12 9 14 + 0.57823122445416733E-004 10 1 13 12 + 0.57835870738644698E-004 13 12 10 1 + 0.60327793287382348E-003 10 2 13 12 + 0.60169782266400592E-003 13 12 10 2 + -0.86697365558827377E-004 10 9 13 12 + -0.86758394161755642E-004 13 12 10 9 + -0.48512167993411263E-003 10 10 13 12 + -0.48511213140024122E-003 13 12 10 10 + -0.13575793898908289E-001 10 11 13 12 + -0.13575828606280897E-001 13 12 10 11 + 0.44742738024563725E-003 10 12 13 12 + 0.44742793644276797E-003 13 12 10 12 + 0.60872729774753939E-003 10 13 13 12 + 0.60872524679065818E-003 13 12 10 13 + -0.29472624028808770E-003 10 14 13 12 + -0.29472556351912662E-003 13 12 10 14 + 0.42759165245909673E-002 11 1 13 12 + 0.42768554037296222E-002 13 12 11 1 + 0.44612154848385877E-001 11 2 13 12 + 0.44495285034017923E-001 13 12 11 2 + -0.64105587884849468E-002 11 9 13 12 + -0.64150537678564325E-002 13 12 11 9 + -0.13574949201982593E-001 11 10 13 12 + -0.13574983909355201E-001 13 12 11 10 + 0.11297739673190288E-002 11 11 13 12 + 0.11297860443262020E-002 13 12 11 11 + 0.10403467499362771E-002 11 12 13 12 + 0.10403479307109120E-002 13 12 11 12 + 0.60534241500907000E-003 11 13 13 12 + 0.60534440527611839E-003 13 12 11 13 + -0.68378804527243400E-002 11 14 13 12 + -0.68378788884849969E-002 13 12 11 14 + -0.12786620696997640E-002 12 1 13 12 + -0.12789427869658676E-002 13 12 12 1 + -0.13340749227942454E-001 12 2 13 12 + -0.13305800258200757E-001 13 12 12 2 + 0.19169971481674548E-002 12 9 13 12 + 0.19183412327324818E-002 13 12 12 9 + 0.44758340588667018E-003 12 10 13 12 + 0.44758396208380096E-003 13 12 12 10 + 0.10404278489863183E-002 12 11 13 12 + 0.10404290297609533E-002 13 12 12 11 + -0.19024864583219461E-006 12 12 13 12 + -0.18002702959061913E-006 13 12 12 12 + 0.33532179932546056E-001 12 13 13 12 + 0.33532179932546056E-001 13 12 12 13 + 0.27793433508574474E-002 12 14 13 12 + 0.27793425506734532E-002 13 12 12 14 + 0.35652073559056067E-003 13 1 13 12 + 0.35659828207828810E-003 13 12 13 1 + 0.37197025182240800E-002 13 2 13 12 + 0.37099550484216036E-002 13 12 13 2 + -0.53439223817096804E-003 13 9 13 12 + -0.53476154146104974E-003 13 12 13 9 + 0.60875590794124735E-003 13 10 13 12 + 0.60875385698436614E-003 13 12 13 10 + 0.60537856055730766E-003 13 11 13 12 + 0.60538055082435616E-003 13 12 13 11 + 0.33529140709592807E-001 13 12 13 12 + 0.78465831859346502 1 1 13 13 + 0.78348199333375723 13 13 1 1 + -0.37490117348212240E-001 1 2 13 13 + -0.37882772424064050E-001 13 13 1 2 + 0.33554536752939991E-001 1 9 13 13 + 0.33475981872558583E-001 13 13 1 9 + -0.18284199039036287E-004 1 10 13 13 + -0.18234023856945714E-004 13 13 1 10 + 0.80681083984581305E-005 1 11 13 13 + 0.80463461532798533E-005 13 13 1 11 + -0.28869521341046438E-004 1 12 13 13 + -0.28791835371812729E-004 13 13 1 12 + 0.53582602568755739E-004 1 13 13 13 + 0.53435286376021454E-004 13 13 1 13 + -0.41796848119602130E-003 1 14 13 13 + -0.41681833177828302E-003 13 13 1 14 + 0.31646049827242742E-001 2 1 13 13 + 0.31253394751390932E-001 13 13 2 1 + 0.63941527873971327 2 2 13 13 + 0.63694028138855874 13 13 2 2 + -0.15253933348342366 2 9 13 13 + -0.15183022760370227 13 13 2 9 + 0.13182198732936924E-002 2 10 13 13 + 0.13120517787869245E-002 13 13 2 10 + -0.58196474606277506E-003 2 11 13 13 + -0.57924151004297875E-003 13 13 2 11 + 0.20825661942094247E-002 2 12 13 13 + 0.20728207567902567E-002 13 13 2 12 + -0.38629048094335995E-002 2 13 13 13 + -0.38448298191899872E-002 13 13 2 13 + 0.30131565123137020E-001 2 14 13 13 + 0.29990577129195190E-001 13 13 2 14 + 0.61679875190163169 3 3 13 13 + 0.61403487998309147 13 13 3 3 + 0.26568403727867167E-001 3 4 13 13 + 0.26296917439485250E-001 13 13 3 4 + -0.23033596413819055E-002 3 5 13 13 + -0.22798291035984650E-002 13 13 3 5 + 0.10115993693060267 3 6 13 13 + 0.10247544386207022 13 13 3 6 + 0.78075458223979807E-001 3 7 13 13 + 0.79164498377956180E-001 13 13 3 7 + -0.10683723174872242 3 8 13 13 + -0.10832794302799567 13 13 3 8 + 0.26568439240523507E-001 4 3 13 13 + 0.26296952952141590E-001 13 13 4 3 + 0.61207569087054581 4 4 13 13 + 0.60936011364254550 13 13 4 4 + 0.33572110007148268E-002 4 5 13 13 + 0.33229115963016058E-002 13 13 4 5 + -0.12381724555756332 4 6 13 13 + -0.12544029631433412 13 13 4 6 + 0.51592949778909422E-001 4 7 13 13 + 0.52316472831389564E-001 13 13 4 7 + -0.97047721463437098E-001 4 8 13 13 + -0.98411221688511949E-001 13 13 4 8 + -0.23033271136148645E-002 5 3 13 13 + -0.22797965758314239E-002 13 13 5 3 + 0.33572187903764174E-002 5 4 13 13 + 0.33229193859631964E-002 13 13 5 4 + 0.63588035938172949 5 5 13 13 + 0.63292151642793348 13 13 5 5 + 0.11027016310010762E-001 5 6 13 13 + 0.11169086304623767E-001 13 13 5 6 + -0.14285514355836498 5 7 13 13 + -0.14484182978790675 13 13 5 7 + -0.92451903119982748E-001 5 8 13 13 + -0.93738812158168996E-001 13 13 5 8 + 0.75860221588139112E-001 6 3 13 13 + 0.77175728519606662E-001 13 13 6 3 + -0.92722079870326254E-001 6 4 13 13 + -0.94345130627097040E-001 13 13 6 4 + 0.82824482610537008E-002 6 5 13 13 + 0.84245182556667055E-002 13 13 6 5 + 0.46955717316341633 6 6 13 13 + 0.46892894721419653 13 13 6 6 + -0.50468013327279566E-003 6 7 13 13 + -0.51307502951447917E-003 13 13 6 7 + 0.14643801321319711E-002 6 8 13 13 + 0.14887263935927030E-002 13 13 6 8 + 0.57811619758854300E-001 7 3 13 13 + 0.58900659912830687E-001 13 13 7 3 + 0.38163663746703602E-001 7 4 13 13 + 0.38887186799183744E-001 13 13 7 4 + -0.10583767875668193 7 5 13 13 + -0.10782436498622368 13 13 7 5 + -0.50467834178104308E-003 7 6 13 13 + -0.51307323802272659E-003 13 13 7 6 + 0.49656521756839522 7 7 13 13 + 0.49638630669354777 13 13 7 7 + -0.10587734851928321E-002 7 8 13 13 + -0.10763874804661094E-002 13 13 7 8 + -0.79103620055145429E-001 8 3 13 13 + -0.80594331334418678E-001 13 13 8 3 + -0.71761587818709741E-001 8 4 13 13 + -0.73125088043784592E-001 13 13 8 4 + -0.68483402322320239E-001 8 5 13 13 + -0.69770311360506487E-001 13 13 8 5 + 0.14643690045176997E-002 8 6 13 13 + 0.14887152659784316E-002 13 13 8 6 + -0.10587835350818061E-002 8 7 13 13 + -0.10763975303550834E-002 13 13 8 7 + 0.49817455407294320 8 8 13 13 + 0.49802241589990720 13 13 8 8 + -0.27483272030567933E-001 9 1 13 13 + -0.27561826910949341E-001 13 13 9 1 + -0.99628331207970489E-001 9 2 13 13 + -0.98919225328249122E-001 13 13 9 2 + 0.50320138442558193 9 9 13 13 + 0.50547104432788159 13 13 9 9 + 0.10304437201839528E-003 9 10 13 13 + 0.10280177618142987E-003 13 13 9 10 + -0.45389047787481358E-004 9 11 13 13 + -0.45285347862009730E-004 13 13 9 11 + 0.16237746900613802E-003 9 12 13 13 + 0.16200784899156264E-003 13 13 9 12 + -0.30203768201152463E-003 9 13 13 13 + -0.30132420102819485E-003 13 13 9 13 + 0.23562297782789431E-002 9 14 13 13 + 0.23506557324502369E-002 13 13 9 14 + 0.22570997787720490E-003 10 1 13 13 + 0.22576015305929547E-003 13 13 10 1 + 0.23549299036670812E-002 10 2 13 13 + 0.23487618091603134E-002 13 13 10 2 + -0.33850368690668993E-003 10 9 13 13 + -0.33874628274365538E-003 13 13 10 9 + 0.62992237753755020 10 10 13 13 + 0.62992279595470069 13 13 10 10 + -0.65156911655961998E-003 10 11 13 13 + -0.65157317156265798E-003 13 13 10 11 + -0.12171559964970671E-002 10 12 13 13 + -0.12171641306988733E-002 13 13 10 12 + -0.32551394430156450E-006 10 13 13 13 + -0.33761383873076440E-006 13 13 10 13 + -0.14950154725713607E-002 10 14 13 13 + -0.14950318725699848E-002 13 13 10 14 + -0.99632092996309435E-004 11 1 13 13 + -0.99653855241487713E-004 13 13 11 1 + -0.10395247463564176E-002 11 2 13 13 + -0.10368015103366212E-002 13 13 11 2 + 0.14934945732668247E-003 11 9 13 13 + 0.14945315725215411E-003 13 13 11 9 + -0.65164372877973234E-003 11 10 13 13 + -0.65164778378277045E-003 13 13 11 10 + 0.60274962793665399 11 11 13 13 + 0.60274992324758014 13 13 11 11 + -0.12107398331062211E-002 11 12 13 13 + -0.12107445072261009E-002 13 13 11 12 + 0.70351312114451141E-006 11 13 13 13 + 0.71963862833821729E-006 13 13 11 13 + 0.27888797812196582E-003 11 14 13 13 + 0.27888786062118788E-003 13 13 11 14 + 0.35652609599466677E-003 12 1 13 13 + 0.35660378196390047E-003 13 13 12 1 + 0.37198657115682402E-002 12 2 13 13 + 0.37101202741490723E-002 13 13 12 2 + -0.53440341282273577E-003 12 9 13 13 + -0.53477303283731121E-003 13 13 12 9 + -0.12172433477592249E-002 12 10 13 13 + -0.12172514819610311E-002 13 13 12 10 + -0.12106447441519958E-002 12 11 13 13 + -0.12106494182718755E-002 13 13 12 11 + 0.60356431976864588 12 12 13 13 + 0.60356461906550074 13 13 12 12 + -0.40717008133948529E-006 12 13 13 13 + -0.41676626527707935E-006 13 13 12 13 + -0.62291267259514493E-003 12 14 13 13 + -0.62290325588994981E-003 13 13 12 14 + -0.66142846531405913E-003 13 1 13 13 + -0.66157578150679338E-003 13 13 13 1 + -0.69009498247424731E-002 13 2 13 13 + -0.68828748344988613E-002 13 13 13 2 + 0.99201721665051761E-003 13 9 13 13 + 0.99273069763384722E-003 13 13 13 9 + -0.16038586301525578E-006 13 10 13 13 + -0.17248575744442870E-006 13 13 13 10 + 0.37115173829707843E-006 13 11 13 13 + 0.38727724549077674E-006 13 13 13 11 + -0.22746378626500839E-006 13 12 13 13 + -0.23705997020258900E-006 13 13 13 12 + 0.67061866159480699 13 13 13 13 + -0.12813931618319357E-009 1 1 13 14 + -0.31131235493486028E-005 1 10 13 14 + -0.31041172045276310E-005 13 14 1 10 + 0.23363456409299124E-004 1 11 13 14 + 0.23299192143863014E-004 13 14 1 11 + -0.17341521069589849E-004 1 12 13 14 + -0.17294029311959209E-004 13 14 1 12 + -0.41796850702244400E-003 1 13 13 14 + -0.41681836468761556E-003 13 14 1 13 + -0.51797285057426556E-004 1 14 13 14 + -0.51654807090071991E-004 13 14 1 14 + 0.37756989211371266E-009 2 2 13 14 + 0.34633060653780376E-009 13 14 2 2 + 0.37689040982097211E-009 2 9 13 14 + 0.30063077836889127E-009 13 14 2 9 + 0.22391497859388043E-003 2 10 13 14 + 0.22286726342989364E-003 13 14 2 10 + -0.16845725710630979E-002 2 11 13 14 + -0.16766906928491888E-002 13 14 2 11 + 0.12505112246428390E-002 2 12 13 14 + 0.12446600934552801E-002 13 14 2 12 + 0.30131564662597476E-001 2 13 13 14 + 0.29990576565450656E-001 13 14 2 13 + 0.37341536335697852E-002 2 14 13 14 + 0.37166811575459298E-002 13 14 2 14 + -0.17337553279654559E-001 3 3 13 14 + -0.17160391370507403E-001 13 14 3 3 + -0.12109852768567188E-001 3 4 13 14 + -0.11986107269502912E-001 13 14 3 4 + -0.64618254255029038E-002 3 5 13 14 + -0.63957998362434250E-002 13 14 3 5 + -0.44880943872079363E-003 3 6 13 14 + -0.46094650359752398E-003 13 14 3 6 + -0.13010654639437262E-002 3 7 13 14 + -0.13362594441694786E-002 13 14 3 7 + 0.44862815660156674E-002 3 8 13 14 + 0.46076212489697252E-002 13 14 3 8 + -0.12109887402447915E-001 4 3 13 14 + -0.11986141903383639E-001 13 14 4 3 + -0.12694724366132502E-001 4 4 13 14 + -0.12565001148327261E-001 13 14 4 4 + -0.28757519366692554E-002 4 5 13 14 + -0.28463688993033845E-002 13 14 4 5 + 0.40313817989838757E-003 4 6 13 14 + 0.41404321455391495E-003 13 14 4 6 + -0.14694793377723855E-002 4 7 13 14 + -0.15092282523435578E-002 13 14 4 7 + 0.34513953275483564E-002 4 8 13 14 + 0.35447470096768045E-002 13 14 4 8 + -0.64617988756019559E-002 5 3 13 14 + -0.63957732863424771E-002 13 14 5 3 + -0.28757436994268255E-002 5 4 13 14 + -0.28463606620609547E-002 13 14 5 4 + 0.30032278663717677E-001 5 5 13 14 + 0.29725393498119628E-001 13 14 5 5 + 0.44913693716877801E-004 5 6 13 14 + 0.46129330924774642E-004 13 14 5 6 + -0.61477806996664839E-002 5 7 13 14 + -0.63140603246668349E-002 13 14 5 7 + -0.22522790231132932E-002 5 8 13 14 + -0.23132020823274872E-002 13 14 5 8 + -0.27354192826456854E-003 6 3 13 14 + -0.28567899314129889E-003 13 14 6 3 + 0.24567165475715094E-003 6 4 13 14 + 0.25657668941267832E-003 13 14 6 4 + 0.27358012923403387E-004 6 5 13 14 + 0.28573650131300224E-004 13 14 6 5 + -0.15208519775131357E-002 6 6 13 14 + -0.15461531632644664E-002 13 14 6 6 + -0.31236670852564404E-003 6 7 13 14 + -0.31756296260357841E-003 13 14 6 7 + 0.74385798103615721E-004 6 8 13 14 + 0.75621435040209369E-004 13 14 6 8 + -0.79286714621295976E-003 7 3 13 14 + -0.82806112643871209E-003 13 14 7 3 + -0.89549941484112913E-003 7 4 13 14 + -0.93524832941230122E-003 13 14 7 4 + -0.37466891215074023E-002 7 5 13 14 + -0.39129687465077534E-002 13 14 7 5 + -0.31237554945813404E-003 7 6 13 14 + -0.31757180353606841E-003 13 14 7 6 + 0.10575030680484942E-001 7 7 13 14 + 0.10750956559324580E-001 13 14 7 7 + 0.12768074887342431E-001 7 8 13 14 + 0.12980490942967790E-001 13 14 7 8 + 0.27341234515132129E-002 8 3 13 14 + 0.28554631344672706E-002 13 14 8 3 + 0.21033815119606471E-002 8 4 13 14 + 0.21967331940890952E-002 13 14 8 4 + -0.13725413164778382E-002 8 5 13 14 + -0.14334643756920321E-002 13 14 8 5 + 0.74393478439127431E-004 8 6 13 14 + 0.75629115375721079E-004 13 14 8 6 + 0.12768067688305653E-001 8 7 13 14 + 0.12980483743931012E-001 13 14 8 7 + -0.90541778408975288E-002 8 8 13 14 + -0.92048029911909694E-002 13 14 8 8 + -0.29406733645016809E-009 9 2 13 14 + -0.37032696791127553E-009 13 14 9 2 + 0.31507561334887778E-009 9 9 13 14 + 0.17694167790578559E-009 13 14 9 9 + 0.17636742506258394E-004 9 10 13 14 + 0.17591350994500810E-004 13 14 9 10 + -0.13171055127993392E-003 9 11 13 14 + -0.13139925905973556E-003 13 14 9 11 + 0.97717811843841027E-004 9 12 13 14 + 0.97488560743026935E-004 13 14 9 12 + 0.23562297850131531E-002 9 13 13 14 + 0.23506557552678046E-002 13 14 9 13 + 0.29198884581122192E-003 9 14 13 14 + 0.29129853246344796E-003 13 14 9 14 + 0.38363685504802044E-004 10 1 13 14 + 0.38372691849623020E-004 13 14 10 1 + 0.40020930963394999E-003 10 2 13 14 + 0.39916159446996320E-003 13 14 10 2 + -0.57623091000535036E-004 10 9 13 14 + -0.57668482512292624E-004 13 14 10 9 + 0.15963086224895289E-002 10 10 13 14 + 0.15963156433272075E-002 13 14 10 10 + 0.16186897635665528E-002 10 11 13 14 + 0.16186971509270344E-002 13 14 10 11 + 0.25794226766083587E-003 10 12 13 14 + 0.25794316577031447E-003 13 14 10 12 + 0.74734452063008466E-003 10 13 13 14 + 0.74734466728493341E-003 13 14 10 13 + -0.27698374754048064E-004 10 14 13 14 + -0.27698609659344775E-004 13 14 10 14 + -0.28843275355587973E-003 11 1 13 14 + -0.28849701782131585E-003 13 14 11 1 + -0.30093859191982486E-002 11 2 13 14 + -0.30015040409843395E-002 13 14 11 2 + 0.43259847993659873E-003 11 9 13 14 + 0.43290977215679709E-003 13 14 11 9 + 0.16187932035949899E-002 11 10 13 14 + 0.16188005909554717E-002 13 14 11 10 + 0.39620909590579977E-002 11 11 13 14 + 0.39621083302974220E-002 13 14 11 11 + 0.14660654031025710E-001 11 12 13 14 + 0.14660720916950521E-001 13 14 11 12 + -0.13942664496316014E-003 11 13 13 14 + -0.13942804722939873E-003 13 14 11 13 + -0.52183767237760025E-003 11 14 13 14 + -0.52183590061885684E-003 13 14 11 14 + 0.21410577505944146E-003 12 1 13 14 + 0.21415326681707209E-003 13 14 12 1 + 0.22338947513187934E-002 12 2 13 14 + 0.22280436201312340E-002 13 14 12 2 + -0.32108209020828115E-003 12 9 13 14 + -0.32131134130909526E-003 13 14 12 9 + 0.25797510433235322E-003 12 10 13 14 + 0.25797600244183188E-003 13 14 12 10 + 0.14660735547910574E-001 12 11 13 14 + 0.14660802433835385E-001 13 14 12 11 + -0.55584031240629075E-002 12 12 13 14 + -0.55584274235692460E-002 13 14 12 12 + 0.31154063733109303E-003 12 13 13 14 + 0.31154489177166771E-003 13 14 12 13 + 0.32219093020111311E-003 12 14 13 14 + 0.32219011110698931E-003 13 14 12 14 + 0.51593392332587610E-002 13 1 13 14 + 0.51604893755935900E-002 13 14 13 1 + 0.53829433850325868E-001 13 2 13 14 + 0.53688445753179048E-001 13 14 13 2 + -0.77382124169881692E-002 13 9 13 14 + -0.77437864467335173E-002 13 14 13 9 + 0.74746073099833438E-003 13 10 13 14 + 0.74746087765318312E-003 13 14 13 10 + -0.13942673099721925E-003 13 11 13 14 + -0.13942813326345784E-003 13 14 13 11 + 0.31144865537775546E-003 13 12 13 14 + 0.31145290981833014E-003 13 14 13 12 + 0.25603448966775374E-008 13 13 13 14 + 0.21731594519122495E-008 13 14 13 13 + 0.38195687337429382E-001 13 14 13 14 + -0.11125700762868873E-008 1 10 14 1 + -0.11125700762863693E-008 14 1 1 10 + 0.86741622318740329E-009 1 12 14 1 + 0.86741622318791500E-009 14 1 1 12 + 0.86357282235782816E-003 1 14 14 1 + 0.86357282235782816E-003 14 1 1 14 + -0.57310963455819203E-008 2 10 14 1 + -0.63036637989432256E-008 14 1 2 10 + -0.10125294793433064E-009 14 1 2 11 + 0.44682542280558999E-008 2 12 14 1 + 0.49146569386573813E-008 14 1 2 12 + 0.76627890643014163E-002 2 14 14 1 + 0.76440641173511634E-002 14 1 2 14 + -0.11407836676154094E-002 3 3 14 1 + -0.11384637986632722E-002 14 1 3 3 + 0.60974580284240444E-002 3 4 14 1 + 0.60850577363085233E-002 14 1 3 4 + -0.78727333436910392E-003 3 5 14 1 + -0.78567270137540703E-003 14 1 3 5 + -0.28567346375222556E-002 3 6 14 1 + -0.28723697391906948E-002 14 1 3 6 + 0.10265866435087195E-002 3 7 14 1 + 0.10322050708849845E-002 14 1 3 7 + -0.11969444564313241E-002 3 8 14 1 + -0.12034956151803840E-002 14 1 3 8 + 0.60974580284240444E-002 4 3 14 1 + 0.60850577363085233E-002 14 1 4 3 + -0.32505878646333919E-002 4 4 14 1 + -0.32439769200892084E-002 14 1 4 4 + 0.38474815746026550E-003 4 5 14 1 + 0.38396554396109069E-003 14 1 4 5 + 0.33377118191676449E-002 4 6 14 1 + 0.33559795416874460E-002 14 1 4 6 + 0.77535977400316526E-003 4 7 14 1 + 0.77960326426185775E-003 14 1 4 7 + -0.11403904905835387E-002 4 8 14 1 + -0.11466319077991581E-002 14 1 4 8 + -0.78727333436910381E-003 5 3 14 1 + -0.78567270137540693E-003 14 1 5 3 + 0.38474815746026550E-003 5 4 14 1 + 0.38396554396109069E-003 14 1 5 4 + 0.43913715322488030E-002 5 5 14 1 + 0.43824407187524816E-002 14 1 5 5 + -0.25536217552346216E-003 5 6 14 1 + -0.25675970343938932E-003 14 1 5 6 + -0.20470065868836173E-002 5 7 14 1 + -0.20582099732932759E-002 14 1 5 7 + -0.10977125209996640E-002 5 8 14 1 + -0.11037206505378422E-002 14 1 5 8 + -0.29318154209175781E-002 6 3 14 1 + -0.29474505225860173E-002 14 1 6 3 + 0.34254302749714338E-002 6 4 14 1 + 0.34436979974912349E-002 14 1 6 4 + -0.26207507387629962E-003 6 5 14 1 + -0.26347260179222678E-003 14 1 6 5 + -0.59238112249302205E-002 6 6 14 1 + -0.59495110188102713E-002 14 1 6 6 + -0.11987897649251493E-003 6 7 14 1 + -0.12039908217825083E-003 14 1 6 7 + 0.57874087687871350E-004 6 8 14 1 + 0.58124756347425928E-004 14 1 6 8 + 0.10535699701060687E-002 7 3 14 1 + 0.10591883974823337E-002 14 1 7 3 + 0.79573959643848590E-003 7 4 14 1 + 0.79998308669717840E-003 14 1 7 4 + -0.21008063939048139E-002 7 5 14 1 + -0.21120097803144725E-002 14 1 7 5 + -0.11987897649251491E-003 7 6 14 1 + -0.12039908217825080E-003 14 1 7 6 + 0.32528059581548559E-002 7 7 14 1 + 0.32669173880718700E-002 14 1 7 7 + 0.42191624481863217E-004 7 8 14 1 + 0.42375032443146016E-004 14 1 7 8 + -0.12283991910240248E-002 8 3 14 1 + -0.12349503497730847E-002 14 1 8 3 + -0.11703625538463500E-002 8 4 14 1 + -0.11766039710619694E-002 14 1 8 4 + -0.11265579905066659E-002 8 5 14 1 + -0.11325661200448441E-002 14 1 8 5 + 0.57874087687871323E-004 8 6 14 1 + 0.58124756347425901E-004 14 1 8 6 + 0.42191624481862824E-004 8 7 14 1 + 0.42375032443145623E-004 14 1 8 7 + 0.26710052667754322E-002 8 8 14 1 + 0.26825936307384693E-002 14 1 8 8 + 0.66254998436141064E-008 9 10 14 1 + 0.65591615086222929E-008 14 1 9 10 + 0.10642245813574927E-009 9 11 14 1 + 0.10535689494672118E-009 14 1 9 11 + -0.51655766894126164E-008 9 12 14 1 + -0.51138559490920344E-008 14 1 9 12 + -0.24941335038041004E-002 9 14 14 1 + -0.24950165101414140E-002 14 1 9 14 + 0.21045720387483511E-008 10 1 14 1 + 0.21045720387488561E-008 14 1 10 1 + 0.71825101406955762E-009 10 2 14 1 + 0.14568356070807875E-009 14 1 10 2 + -0.47379221403031916E-008 10 9 14 1 + -0.48042604752949307E-008 14 1 10 9 + 0.51118825035483800E-002 10 10 14 1 + 0.51107630934233515E-002 14 1 10 10 + -0.33619292102739061E-003 10 11 14 1 + -0.33611926025347677E-003 14 1 10 11 + -0.63723912879815991E-003 10 12 14 1 + -0.63709961889770687E-003 14 1 10 12 + 0.38375932298942837E-004 10 13 14 1 + 0.38366849135754073E-004 14 1 10 13 + -0.61982400257737456E-003 10 14 14 1 + -0.61968744559315521E-003 14 1 10 14 + -0.33619281830612346E-003 11 10 14 1 + -0.33611915753220962E-003 14 1 11 10 + -0.23504199083104900E-002 11 11 14 1 + -0.23499052352162109E-002 14 1 11 11 + 0.14062594822062159E-003 11 12 14 1 + 0.14059517421533907E-003 14 1 11 12 + -0.28849189406141321E-003 11 13 14 1 + -0.28842769907718119E-003 14 1 11 13 + 0.44482187647157470E-005 11 14 14 1 + 0.44473751063022994E-005 14 1 11 14 + -0.16408314110518798E-008 12 1 14 1 + -0.16408314110514240E-008 14 1 12 1 + -0.55998502275183106E-009 12 2 14 1 + -0.11358231215009862E-009 14 1 12 2 + 0.36939250955502451E-008 12 9 14 1 + 0.37456458358709516E-008 14 1 12 9 + -0.63723934936691230E-003 12 10 14 1 + -0.63709983946645926E-003 14 1 12 10 + 0.14062593774703347E-003 12 11 14 1 + 0.14059516374175096E-003 14 1 12 11 + -0.27781518775869059E-002 12 12 14 1 + -0.27775435177488273E-002 14 1 12 12 + 0.21414995399618436E-003 12 13 14 1 + 0.21410252243252246E-003 14 1 12 13 + 0.67223642854317335E-004 12 14 14 1 + 0.67208263395130113E-004 14 1 12 14 + 0.38375720869437105E-004 13 10 14 1 + 0.38366637706248341E-004 14 1 13 10 + -0.28849428599887999E-003 13 11 14 1 + -0.28843009101464797E-003 14 1 13 11 + 0.21415089331278979E-003 13 12 14 1 + 0.21410346174912789E-003 14 1 13 12 + 0.51604896548792757E-002 13 13 14 1 + 0.51593395054615378E-002 14 1 13 13 + 0.63952768710331650E-003 13 14 14 1 + 0.63938520913596193E-003 14 1 13 14 + 0.16187986899502634E-002 14 1 14 1 + -0.28673792033974473E-008 1 10 14 2 + -0.22948117500280613E-008 14 2 1 10 + 0.22355546786368233E-008 1 12 14 2 + 0.17891519680655075E-008 14 2 1 12 + 0.49553960503875187E-003 1 14 14 2 + 0.51426455198900405E-003 14 2 1 14 + -0.98680102877993557E-007 2 10 14 2 + -0.98680102878069088E-007 14 2 2 10 + -0.15850545998780395E-008 2 11 14 2 + -0.15850545998894519E-008 14 2 2 11 + 0.76936027635686779E-007 2 12 14 2 + 0.76936027635675516E-007 14 2 2 12 + 0.34318524410287330E-009 2 13 14 2 + 0.34318524423631149E-009 14 2 2 13 + 0.61840303324034049E-001 2 14 14 2 + 0.61840303324034049E-001 14 2 2 14 + -0.87135082390772858E-002 3 3 14 2 + -0.86747396760707939E-002 14 2 3 3 + 0.46573415772400290E-001 3 4 14 2 + 0.46366189737636024E-001 14 2 3 4 + -0.60133607428369418E-002 3 5 14 2 + -0.59866107429368083E-002 14 2 3 5 + -0.83518037355118160E-002 3 6 14 2 + -0.85429338401186734E-002 14 2 3 6 + 0.30012534241308777E-002 3 7 14 2 + 0.30699327553607935E-002 14 2 3 7 + -0.34993563770505170E-002 3 8 14 2 + -0.35794441216882474E-002 14 2 3 8 + 0.46573415772400283E-001 4 3 14 2 + 0.46366189737636017E-001 14 2 4 3 + -0.24828517791424753E-001 4 4 14 2 + -0.24718040553303955E-001 14 2 4 4 + 0.29387590890597704E-002 4 5 14 2 + 0.29256809780814743E-002 14 2 4 5 + 0.97579945952293353E-002 4 6 14 2 + 0.99813105662634911E-002 14 2 4 6 + 0.22667861357911095E-002 4 7 14 2 + 0.23186584523267506E-002 14 2 4 7 + -0.33339849091850024E-002 4 8 14 2 + -0.34102823317837378E-002 14 2 4 8 + -0.60133607428369401E-002 5 3 14 2 + -0.59866107429368065E-002 14 2 5 3 + 0.29387590890597708E-002 5 4 14 2 + 0.29256809780814751E-002 14 2 5 4 + 0.33542026030502090E-001 5 5 14 2 + 0.33392780229374794E-001 14 2 5 5 + -0.74655066049977891E-003 5 6 14 2 + -0.76363308062314650E-003 14 2 5 6 + -0.59845212073817832E-002 5 7 14 2 + -0.61214758078968912E-002 14 2 5 7 + -0.32092582002218400E-002 5 8 14 2 + -0.32827090518045524E-002 14 2 5 8 + -0.60539708253954400E-002 6 3 14 2 + -0.62451009300022982E-002 14 2 6 3 + 0.70732025862965927E-002 6 4 14 2 + 0.72965185573307476E-002 14 2 6 4 + -0.54118388262730109E-003 6 5 14 2 + -0.55826630275066869E-003 14 2 6 5 + -0.37466219274375510E-001 6 6 14 2 + -0.38092502504988440E-001 14 2 6 6 + -0.75819578159422058E-003 6 7 14 2 + -0.77086996652491076E-003 14 2 6 7 + 0.36604478564663390E-003 6 8 14 2 + 0.37215970447341000E-003 14 2 6 8 + 0.21755735502650905E-002 7 3 14 2 + 0.22442528814950059E-002 14 2 7 3 + 0.16431639842497407E-002 7 4 14 2 + 0.16950363007853819E-002 14 2 7 4 + -0.43380060251666961E-002 7 5 14 2 + -0.44749606256818042E-002 14 2 7 5 + -0.75819578159422112E-003 7 6 14 2 + -0.77086996652491130E-003 14 2 7 6 + 0.20572973484014604E-001 7 7 14 2 + 0.20916865411683121E-001 14 2 7 7 + 0.26684007792801583E-003 7 8 14 2 + 0.27130398294023840E-003 14 2 7 8 + -0.25365041289431801E-002 8 3 14 2 + -0.26165918735809104E-002 14 2 8 3 + -0.24167114259677040E-002 8 4 14 2 + -0.24930088485664395E-002 14 2 8 4 + -0.23261935447379772E-002 8 5 14 2 + -0.23996443963206892E-002 14 2 8 5 + 0.36604478564663487E-003 8 6 14 2 + 0.37215970447341097E-003 14 2 8 6 + 0.26684007792802830E-003 8 7 14 2 + 0.27130398294025087E-003 14 2 8 7 + 0.16893245790360892E-001 8 8 14 2 + 0.17175637093305302E-001 14 2 8 8 + 0.12298327409487735E-006 9 10 14 2 + 0.11756518307415379E-006 14 2 9 10 + 0.19754256425261439E-008 9 11 14 2 + 0.18883972558266670E-008 14 2 9 11 + -0.95884016095219770E-007 9 12 14 2 + -0.91659796741205527E-007 14 2 9 12 + -0.42770611210831495E-009 9 13 14 2 + -0.40886330188670596E-009 14 2 9 13 + 0.20797506382804793E-002 9 14 14 2 + 0.20683986466746092E-002 14 2 9 14 + 0.14568356025199514E-009 10 1 14 2 + 0.71825101362145558E-009 14 2 10 1 + -0.38056596124809257E-007 10 2 14 2 + -0.38056596124883307E-007 14 2 10 2 + -0.12229534569946560E-006 10 9 14 2 + -0.12771343672018804E-006 14 2 10 9 + 0.53182713633277062E-001 10 10 14 2 + 0.53322441112431791E-001 14 2 10 10 + -0.34976582602643247E-002 10 11 14 2 + -0.35068477629775297E-002 14 2 10 11 + -0.66296566554341855E-002 10 12 14 2 + -0.66470753132145547E-002 14 2 10 12 + 0.39925881426046791E-003 10 13 14 2 + 0.40030541010495466E-003 14 2 10 13 + -0.64485812140017886E-002 10 14 14 2 + -0.64655191726627238E-002 14 2 10 14 + -0.61128617072616776E-009 11 2 14 2 + -0.61128617073758151E-009 14 2 11 2 + -0.19643757505317292E-008 11 9 14 2 + -0.20514041372266996E-008 14 2 11 9 + -0.34976552368768074E-002 11 10 14 2 + -0.35068447395900123E-002 14 2 11 10 + -0.24453142590114402E-001 11 11 14 2 + -0.24517389265659269E-001 14 2 11 11 + 0.14630283359843689E-002 11 12 14 2 + 0.14668724449650866E-002 14 2 11 12 + -0.30013515707673216E-002 11 13 14 2 + -0.30092344584768125E-002 14 2 11 13 + 0.46286464488629163E-004 11 14 14 2 + 0.46408360024649158E-004 14 2 11 14 + -0.11358231077423649E-009 12 1 14 2 + -0.55998502134623830E-009 14 2 12 1 + 0.29670858131640467E-007 12 2 14 2 + 0.29670858131633343E-007 14 2 12 2 + 0.95347672118398691E-007 12 9 14 2 + 0.99571891472409427E-007 14 2 12 9 + -0.66296631474180873E-002 12 10 14 2 + -0.66470818051984557E-002 14 2 12 10 + 0.14630280277160184E-002 12 11 14 2 + 0.14668721366967361E-002 14 2 12 11 + -0.28903207635951000E-001 12 12 14 2 + -0.28979144556047335E-001 14 2 12 12 + 0.22279446692717612E-002 12 13 14 2 + 0.22337966775449066E-002 14 2 12 13 + 0.69935735613805292E-003 12 14 14 2 + 0.70119296457832163E-003 14 2 12 14 + 0.13235119151216884E-009 13 2 14 2 + 0.13235119164799324E-009 14 2 13 2 + 0.42531368081209569E-009 13 9 14 2 + 0.44415649101867315E-009 14 2 13 9 + 0.39925259127134201E-003 13 10 14 2 + 0.40029918711582876E-003 14 2 13 10 + -0.30014219724872433E-002 13 11 14 2 + -0.30093048601967341E-002 14 2 13 11 + 0.22279723161084740E-002 13 12 14 2 + 0.22338243243816194E-002 14 2 13 12 + 0.53688454143386369E-001 13 13 14 2 + 0.53829442137328203E-001 14 2 13 13 + 0.66534906670489349E-002 13 14 14 2 + 0.66709631430727900E-002 14 2 13 14 + 0.90106157642011048E-002 14 1 14 2 + 0.90293407111513568E-002 14 2 14 1 + 0.95337126247846002E-001 14 2 14 2 + -0.26574170487111645E-003 1 3 14 3 + -0.25714000096663714E-003 14 3 1 3 + 0.14203807690818537E-002 1 4 14 3 + 0.13744051690606684E-002 14 3 1 4 + -0.18339345778466029E-003 1 5 14 3 + -0.17745713629778508E-003 14 3 1 5 + -0.51661936734068419E-003 1 6 14 3 + -0.61289946372521836E-003 14 3 1 6 + 0.18565044207043358E-003 1 7 14 3 + 0.22024918472149645E-003 14 3 1 7 + -0.21645879817184659E-003 1 8 14 3 + -0.25679943929532618E-003 14 3 1 8 + -0.17913374697187335E-001 2 3 14 3 + -0.17827734641541328E-001 14 3 2 3 + 0.95746404891997386E-001 2 4 14 3 + 0.95288662519881245E-001 14 3 2 4 + -0.12362364268506131E-001 2 5 14 3 + -0.12303261923365746E-001 14 3 2 5 + -0.19649237991846702E-001 2 6 14 3 + -0.20002334291869612E-001 14 3 2 6 + 0.70610714737771594E-002 2 7 14 3 + 0.71879551899995823E-002 14 3 2 7 + -0.82328602027875019E-002 2 8 14 3 + -0.83808092290706508E-002 14 3 2 8 + -0.66455244572672092E-002 3 1 14 3 + -0.66369227533627298E-002 14 3 3 1 + -0.19875060287916912E-001 3 2 14 3 + -0.19789420232270906E-001 14 3 3 2 + 0.29277763526081536E-002 3 9 14 3 + 0.29242166068170483E-002 14 3 3 9 + -0.76987764207011302E-002 3 10 14 3 + -0.76987769616106323E-002 14 3 3 10 + -0.14138912879741814E-001 3 11 14 3 + -0.14138914111663901E-001 14 3 3 11 + 0.17931230502029962E-001 3 12 14 3 + 0.17931231861874595E-001 14 3 3 12 + -0.26895141508130219E-001 3 13 14 3 + -0.26895141671497345E-001 14 3 3 13 + 0.71867340509694982E-001 3 14 14 3 + 0.71867340509694982E-001 14 3 3 14 + 0.35520150799883028E-001 4 1 14 3 + 0.35474175199861846E-001 14 3 4 1 + 0.10623160833232170 4 2 14 3 + 0.10577386596020556 14 3 4 2 + -0.15648978901547820E-001 4 9 14 3 + -0.15629953450230674E-001 14 3 4 9 + -0.69441136172004366E-002 4 10 14 3 + -0.69441132112824039E-002 14 3 4 10 + -0.26612894643402572E-001 4 11 14 3 + -0.26612909365616229E-001 14 3 4 11 + 0.29812508803197083E-001 4 12 14 3 + 0.29812524731912243E-001 14 3 4 12 + -0.20934067760122688E-001 4 13 14 3 + -0.20934069323143522E-001 14 3 4 13 + -0.40355884523710049E-001 4 14 14 3 + -0.40355883586734025E-001 14 3 4 14 + -0.45861836742260957E-002 5 1 14 3 + -0.45802473527392206E-002 14 3 5 1 + -0.13716130659020696E-001 5 2 14 3 + -0.13657028313880311E-001 14 3 5 2 + 0.20204568281217976E-002 5 9 14 3 + 0.20179995055454288E-002 14 3 5 9 + 0.35900005594969538E-001 5 10 14 3 + 0.35900009017368756E-001 14 3 5 10 + 0.31583881754055194E-001 5 11 14 3 + 0.31583893748879238E-001 14 3 5 11 + 0.26293209368254779E-001 5 12 14 3 + 0.26293219173320417E-001 14 3 5 12 + -0.11200830013715067E-001 5 13 14 3 + -0.11200828828219708E-001 14 3 5 13 + -0.31768349517223023E-003 5 14 14 3 + -0.31768300248066186E-003 14 3 5 14 + -0.33468876846942455E-001 6 1 14 3 + -0.33565156943326992E-001 14 3 6 1 + -0.16806311270902773E-001 6 2 14 3 + -0.17159407570925683E-001 14 3 6 2 + 0.59454981360373367E-001 6 9 14 3 + 0.59976377380411963E-001 14 3 6 9 + 0.17355417599086931E-003 6 10 14 3 + 0.18570473832848212E-003 14 3 6 10 + 0.19141385079587584E-003 6 11 14 3 + 0.23238293161423909E-003 14 3 6 11 + -0.28719520060513230E-004 6 12 14 3 + -0.55189114177651644E-004 14 3 6 12 + -0.12426498626345463E-003 6 13 14 3 + -0.13186785815827361E-003 14 3 6 13 + 0.44382020639072411E-002 6 14 14 3 + 0.47506903640896648E-002 14 3 6 14 + 0.12027284774057257E-001 7 1 14 3 + 0.12061883516708321E-001 14 3 7 1 + 0.60395036315669158E-002 7 2 14 3 + 0.61663873477893387E-002 14 3 7 2 + -0.21365581280940207E-001 7 9 14 3 + -0.21552944326745760E-001 14 3 7 9 + -0.18935550268789861E-002 7 10 14 3 + -0.20345506491839141E-002 14 3 7 10 + -0.15586915608366589E-002 7 11 14 3 + -0.17051595853588004E-002 14 3 7 11 + -0.14339676586765920E-003 7 12 14 3 + -0.15988517427510782E-003 14 3 7 12 + -0.49606920619029067E-003 7 13 14 3 + -0.53261054530075874E-003 14 3 7 13 + 0.13718496391143269E-002 7 14 14 3 + 0.14612104055515048E-002 14 3 7 14 + -0.14023111330308254E-001 8 1 14 3 + -0.14063451971431735E-001 14 3 8 1 + -0.70416253631857030E-002 8 2 14 3 + -0.71895743894688511E-002 14 3 8 2 + 0.24911018210853071E-001 8 9 14 3 + 0.25129483604347462E-001 14 3 8 9 + -0.54988947624041746E-003 8 10 14 3 + -0.59180937863842877E-003 14 3 8 10 + 0.26345107498794066E-003 8 11 14 3 + 0.28764216880100308E-003 14 3 8 11 + -0.16667668822039803E-002 8 12 14 3 + -0.18194019077130408E-002 14 3 8 12 + 0.18081787265412223E-002 8 13 14 3 + 0.19445554519301263E-002 14 3 8 13 + -0.15192031687732662E-002 8 14 14 3 + -0.16148985542785719E-002 14 3 8 14 + 0.17701775420979888E-002 9 3 14 3 + 0.17666177963068836E-002 14 3 9 3 + -0.94614604415793856E-002 9 4 14 3 + -0.94424349902622398E-002 14 3 9 4 + 0.12216763346154661E-002 9 5 14 3 + 0.12192190120390975E-002 14 3 9 5 + 0.59391454271349009E-001 9 6 14 3 + 0.59912850291387605E-001 14 3 9 6 + -0.21342773285803984E-001 9 7 14 3 + -0.21530136331609537E-001 14 3 9 7 + 0.24884373122395432E-001 9 8 14 3 + 0.25102838515889823E-001 14 3 9 8 + -0.11783637669772655E-001 10 3 14 3 + -0.11783638210682158E-001 14 3 10 3 + -0.10522961309447881E-001 10 4 14 3 + -0.10522960903529848E-001 14 3 10 4 + 0.55043792394773826E-001 10 5 14 3 + 0.55043795817173044E-001 14 3 10 5 + 0.89623854978623514E-003 10 6 14 3 + 0.90838911212384786E-003 14 3 10 6 + -0.11019046914499448E-001 10 7 14 3 + -0.11160042536804375E-001 14 3 10 7 + -0.33404985522467504E-002 10 8 14 3 + -0.33824184546447618E-002 14 3 10 8 + -0.21640875931234961E-001 11 3 14 3 + -0.21640877163157050E-001 14 3 11 3 + -0.43965495121120655E-001 11 4 14 3 + -0.43965509843334312E-001 14 3 11 4 + 0.50845535119038131E-001 11 5 14 3 + 0.50845547113862175E-001 14 3 11 5 + 0.49589415106624799E-002 11 6 14 3 + 0.49999105914808432E-002 14 3 11 6 + -0.13447002577485554E-001 11 7 14 3 + -0.13593470602007695E-001 14 3 11 7 + 0.21929961646991432E-002 11 8 14 3 + 0.22171872585122058E-002 14 3 11 8 + 0.27445270426275512E-001 12 3 14 3 + 0.27445271786120145E-001 14 3 12 3 + 0.48943620384202947E-001 12 4 14 3 + 0.48943636312918107E-001 14 3 12 4 + 0.42124048958357266E-001 12 5 14 3 + 0.42124058763422900E-001 14 3 12 5 + -0.36669931992446732E-002 12 6 14 3 + -0.36934627933618114E-002 14 3 12 6 + -0.16702370223900967E-002 12 7 14 3 + -0.16867254307975455E-002 14 3 12 7 + -0.13806405421408664E-001 12 8 14 3 + -0.13959040446917724E-001 14 3 12 8 + -0.41166086695361183E-001 13 3 14 3 + -0.41166086858728308E-001 14 3 13 3 + -0.32265229865318046E-001 13 4 14 3 + -0.32265231428338877E-001 14 3 13 4 + -0.17266443518298188E-001 13 5 14 3 + -0.17266442332802830E-001 14 3 13 5 + -0.48293836652829586E-003 13 6 14 3 + -0.49054123842311485E-003 14 3 13 6 + -0.28199312570959547E-002 13 7 14 3 + -0.28564725962064229E-002 14 3 13 7 + 0.10742031933722588E-001 13 8 14 3 + 0.10878408659111492E-001 14 3 13 8 + 0.10726517737251383 14 3 14 3 + 0.14203807690816241E-002 1 3 14 4 + 0.13744051690604479E-002 14 4 1 3 + -0.75721202853229344E-003 1 4 14 4 + -0.73270230615988781E-003 14 4 1 4 + 0.89625328779038632E-004 1 5 14 4 + 0.86724345903676489E-004 14 4 1 5 + 0.60360076927382924E-003 1 6 14 4 + 0.71609136912602496E-003 14 4 1 6 + 0.14021796865861742E-003 1 7 14 4 + 0.16634969496320210E-003 14 4 1 7 + -0.20623118099795048E-003 1 8 14 4 + -0.24466557246808647E-003 14 4 1 8 + 0.95746404891997219E-001 2 3 14 4 + 0.95288662519881134E-001 14 4 2 3 + -0.51042882949303439E-001 2 4 14 4 + -0.50798858626052830E-001 14 4 2 4 + 0.60415510614571085E-002 2 5 14 4 + 0.60126679693631750E-002 14 4 2 5 + 0.22957520548975815E-001 2 6 14 4 + 0.23370071327039870E-001 14 4 2 6 + 0.53330827024234261E-002 2 7 14 4 + 0.54289155554816861E-002 14 4 2 7 + -0.78438506664715631E-002 2 8 14 4 + -0.79848040598825623E-002 14 4 2 8 + 0.35520150799882695E-001 3 1 14 4 + 0.35474175199861520E-001 14 4 3 1 + 0.10623160833232165 3 2 14 4 + 0.10577386596020556 14 4 3 2 + -0.15648978901547948E-001 3 9 14 4 + -0.15629953450230799E-001 14 4 3 9 + -0.89767622756703937E-002 3 10 14 4 + -0.89767633150124992E-002 14 4 3 10 + 0.35562746776263400E-001 3 11 14 4 + 0.35562762126418908E-001 14 4 3 11 + -0.33917130578715628E-001 3 12 14 4 + -0.33917146858646052E-001 14 4 3 12 + -0.16637422043893034E-001 3 13 14 4 + -0.16637420385906963E-001 14 4 3 13 + -0.40355901803156097E-001 3 14 14 4 + -0.40355902740132121E-001 14 4 3 14 + -0.18935985115858683E-001 4 1 14 4 + -0.18911475393486275E-001 14 4 4 1 + -0.56632621723361518E-001 4 2 14 4 + -0.56388597400110908E-001 14 4 4 2 + 0.83425953337215950E-002 4 9 14 4 + 0.83324533194000152E-002 14 4 4 9 + -0.11155823339530063E-002 4 10 14 4 + -0.11155825154755578E-002 14 4 4 10 + 0.14458621980929606E-001 4 11 14 4 + 0.14458623124781194E-001 14 4 4 11 + -0.20478970577085493E-001 4 12 14 4 + -0.20478971985956829E-001 14 4 4 12 + -0.19693113565867185E-001 4 13 14 4 + -0.19693113387352624E-001 14 4 4 13 + 0.84971668257529831E-001 4 14 14 4 + 0.84971668257529831E-001 14 4 4 14 + 0.22413134091752414E-002 5 1 14 4 + 0.22384124262998795E-002 14 4 5 1 + 0.67031761829723056E-002 5 2 14 4 + 0.66742930908783721E-002 14 4 5 2 + -0.98746930384024456E-003 5 9 14 4 + -0.98626911459367538E-003 14 4 5 9 + 0.22817904018991950E-001 5 10 14 4 + 0.22817903544459183E-001 14 4 5 10 + -0.38089579235060719E-001 5 11 14 4 + -0.38089592929201742E-001 14 4 5 11 + -0.38172920485451192E-001 5 12 14 4 + -0.38172933937081897E-001 14 4 5 12 + -0.61162114262074867E-002 5 13 14 4 + -0.61162111596396642E-002 14 4 5 13 + -0.64999685433419045E-002 5 14 14 4 + -0.64999690837417466E-002 14 4 5 14 + 0.39103872605231314E-001 6 1 14 4 + 0.39216363205083510E-001 14 4 6 1 + 0.19635865901787508E-001 6 2 14 4 + 0.20048416679851563E-001 14 4 6 2 + -0.69465133396540396E-001 6 9 14 4 + -0.70074320251875002E-001 14 4 6 9 + -0.15255056582257401E-003 6 10 14 4 + -0.16489991575434392E-003 14 4 6 10 + 0.87800581580245950E-004 6 11 14 4 + 0.11306499285176834E-003 14 4 6 11 + 0.14909073806211037E-004 6 12 14 4 + -0.68340442250373109E-005 14 4 6 12 + 0.19730314086097909E-003 6 13 14 4 + 0.21327295309206903E-003 14 4 6 13 + -0.53063026566738010E-002 6 14 14 4 + -0.56795881118228021E-002 14 4 6 14 + 0.90839597294268444E-002 7 1 14 4 + 0.91100914557314290E-002 14 4 7 1 + 0.45615106449529508E-002 7 2 14 4 + 0.46573434980112108E-002 14 4 7 2 + -0.16136982144811556E-001 7 9 14 4 + -0.16278493806452299E-001 14 4 7 9 + -0.13267735745003660E-002 7 10 14 4 + -0.14217515817841178E-002 14 4 7 10 + 0.20538332688359406E-002 7 11 14 4 + 0.22431274816921637E-002 14 4 7 11 + 0.42975320505750261E-003 7 12 14 4 + 0.46771573364387048E-003 14 4 7 12 + -0.49645316633132003E-003 7 13 14 4 + -0.53091657452627376E-003 14 4 7 13 + 0.83374511910780586E-003 7 14 14 4 + 0.88742703163873676E-003 14 4 7 14 + -0.13360567356359192E-001 8 1 14 4 + -0.13399001747829327E-001 14 4 8 1 + -0.67089786149755080E-002 8 2 14 4 + -0.68499320083865054E-002 14 4 8 2 + 0.23734058619287020E-001 8 9 14 4 + 0.23942196168364398E-001 14 4 8 9 + -0.39211936555042480E-003 8 10 14 4 + -0.41799236861312148E-003 14 4 8 10 + -0.39654641463908778E-003 8 11 14 4 + -0.43199364510306849E-003 14 4 8 11 + 0.21496016702398065E-002 8 12 14 4 + 0.23436536459527854E-002 14 4 8 12 + 0.13309315628368588E-002 8 13 14 4 + 0.14294426266715670E-002 14 4 8 13 + -0.13323025543675983E-002 8 14 14 4 + -0.14158162043653743E-002 14 4 8 14 + -0.94614604415793214E-002 9 3 14 4 + -0.94424349902621704E-002 14 4 9 3 + 0.50439166413673610E-002 9 4 14 4 + 0.50337746270457812E-002 14 4 9 4 + -0.59699397837975198E-003 9 5 14 4 + -0.59579378913318280E-003 14 4 9 5 + -0.69390882742491666E-001 9 6 14 4 + -0.70000069597826273E-001 14 4 9 6 + -0.16119754676488351E-001 9 7 14 4 + -0.16261266338129094E-001 14 4 9 7 + 0.23708701359345205E-001 9 8 14 4 + 0.23916838908422583E-001 14 4 9 8 + -0.13845432466283506E-001 10 3 14 4 + -0.13845433505625612E-001 14 4 10 3 + -0.17074744909157129E-002 10 4 14 4 + -0.17074746724382644E-002 14 4 10 4 + 0.34454357349996217E-001 10 5 14 4 + 0.34454356875463450E-001 14 4 10 5 + -0.10272568493366152E-002 10 6 14 4 + -0.10396061992683850E-002 14 4 10 6 + -0.71716024008856199E-002 10 7 14 4 + -0.72665804081693715E-002 14 4 10 7 + -0.18034589026400120E-002 10 8 14 4 + -0.18293319057027088E-002 14 4 10 8 + 0.57664116779499092E-001 11 3 14 4 + 0.57664132129654599E-001 14 4 11 3 + 0.22130286068637067E-001 11 4 14 4 + 0.22130287212488657E-001 14 4 11 4 + -0.60920802281362360E-001 11 5 14 4 + -0.60920815975503383E-001 14 4 11 5 + 0.32064613056888244E-002 11 6 14 4 + 0.32317257169603470E-002 14 4 11 6 + 0.17184656109831047E-001 11 7 14 4 + 0.17373950322687272E-001 14 4 11 7 + -0.31582727647768735E-002 11 8 14 4 + -0.31937199952408544E-002 14 4 11 8 + -0.55226063868629993E-001 12 3 14 4 + -0.55226080148560418E-001 14 4 12 3 + -0.31344909671201682E-001 12 4 14 4 + -0.31344911080073021E-001 14 4 12 4 + -0.60954063808064590E-001 12 5 14 4 + -0.60954077259695295E-001 14 4 12 5 + -0.32049199768959240E-002 12 6 14 4 + -0.32266630949271723E-002 14 4 12 6 + 0.33595762371758566E-002 12 7 14 4 + 0.33975387657622248E-002 14 4 12 7 + 0.17400035990175321E-001 12 8 14 4 + 0.17594087965888298E-001 14 4 12 8 + -0.25242136687523023E-001 13 3 14 4 + -0.25242135029536952E-001 14 4 13 3 + -0.30142473597208685E-001 13 4 14 4 + -0.30142473418694124E-001 14 4 13 4 + -0.95336341102404982E-002 13 5 14 4 + -0.95336338436726748E-002 14 4 13 5 + 0.13291430069270309E-002 13 6 14 4 + 0.13451128191581208E-002 14 4 13 6 + -0.25179159694221054E-002 13 7 14 4 + -0.25523793776170592E-002 14 4 13 7 + 0.76360166681091624E-002 13 8 14 4 + 0.77345277319438707E-002 14 4 13 8 + -0.61769235667615142E-001 14 3 14 4 + -0.61769236604591167E-001 14 4 14 3 + 0.12732296985777161 14 4 14 4 + -0.18339345778466088E-003 1 3 14 5 + -0.17745713629778575E-003 14 5 1 3 + 0.89625328779048294E-004 1 4 14 5 + 0.86724345903686125E-004 14 5 1 4 + 0.10229537334033474E-002 1 5 14 5 + 0.98984230712646499E-003 14 5 1 5 + -0.46180264764333208E-004 1 6 14 5 + -0.54786610305257863E-004 14 5 1 6 + -0.37018600604331515E-003 1 7 14 5 + -0.43917594102260970E-003 14 5 1 7 + -0.19851352007388108E-003 1 8 14 5 + -0.23550983681281157E-003 14 5 1 8 + -0.12362364268506117E-001 2 3 14 5 + -0.12303261923365729E-001 14 5 2 3 + 0.60415510614571033E-002 2 4 14 5 + 0.60126679693631698E-002 14 5 2 4 + 0.68956257646490729E-001 2 5 14 5 + 0.68626593267594141E-001 14 5 2 5 + -0.17564286083264172E-002 2 6 14 5 + -0.17879895431529619E-002 14 5 2 6 + -0.14079751866323622E-001 2 7 14 5 + -0.14332764197452027E-001 14 5 2 7 + -0.75503280042311070E-002 2 8 14 5 + -0.76860136880057802E-002 14 5 2 8 + -0.45861836742261183E-002 3 1 14 5 + -0.45802473527392432E-002 14 5 3 1 + -0.13716130659020696E-001 3 2 14 5 + -0.13657028313880307E-001 14 5 3 2 + 0.20204568281217651E-002 3 9 14 5 + 0.20179995055453971E-002 14 5 3 9 + 0.34060496012160622E-001 3 10 14 5 + 0.34060497986263788E-001 14 5 3 10 + -0.16576675464162641E-001 3 11 14 5 + -0.16576686345840971E-001 14 5 3 11 + -0.98725425901769227E-002 3 12 14 5 + -0.98725513828276622E-002 14 5 3 12 + -0.88471169074216538E-002 3 13 14 5 + -0.88471181911100056E-002 14 5 3 13 + -0.31769258125018411E-003 3 14 14 5 + -0.31769307394175254E-003 14 5 3 14 + 0.22413134091752358E-002 4 1 14 5 + 0.22384124262998734E-002 14 5 4 1 + 0.67031761829723082E-002 4 2 14 5 + 0.66742930908783747E-002 14 5 4 2 + -0.98746930384023069E-003 4 9 14 5 + -0.98626911459366172E-003 14 5 4 9 + 0.31867932791975528E-001 4 10 14 5 + 0.31867937371781854E-001 14 5 4 10 + 0.12335518735818949E-001 4 11 14 5 + 0.12335530329159877E-001 14 5 4 11 + 0.10439054329720749E-001 4 12 14 5 + 0.10439065741516379E-001 14 5 4 12 + -0.28057308721947025E-002 4 13 14 5 + -0.28057313717037460E-002 14 5 4 13 + -0.64999585774414993E-002 4 14 14 5 + -0.64999580370416572E-002 14 5 4 14 + 0.25581509573125934E-001 5 1 14 5 + 0.25548398146849050E-001 14 5 5 1 + 0.76507682011278402E-001 5 2 14 5 + 0.76178017632381814E-001 14 5 5 2 + -0.11270371686329500E-001 5 9 14 5 + -0.11256669926216812E-001 14 5 5 9 + 0.88141001951474295E-002 5 10 14 5 + 0.88141009175794795E-002 14 5 5 10 + -0.31971325431436005E-003 5 11 14 5 + -0.31971316624386552E-003 14 5 5 11 + 0.25479416611991989E-002 5 12 14 5 + 0.25479417102259113E-002 14 5 5 12 + 0.46588255973204318E-001 5 13 14 5 + 0.46588255958056886E-001 14 5 5 13 + 0.43479775745874978E-001 5 14 14 5 + 0.43479775745874978E-001 14 5 5 14 + -0.29917791481465883E-002 6 1 14 5 + -0.30003854936875131E-002 14 5 6 1 + -0.15023333514752389E-002 6 2 14 5 + -0.15338942863017836E-002 14 5 6 2 + 0.53146744012824466E-002 6 9 14 5 + 0.53612793988531077E-002 14 5 6 9 + -0.38733617678891952E-004 6 10 14 5 + -0.45853936285259524E-004 14 5 6 10 + -0.33591744670769154E-003 6 11 14 5 + -0.39707479671940955E-003 14 5 6 11 + -0.11560248885110643E-003 6 12 14 5 + -0.15571299916874808E-003 14 5 6 12 + 0.44840729574131552E-006 6 13 14 5 + -0.65685238139072102E-007 14 5 6 13 + 0.45659724867826059E-003 6 14 14 5 + 0.48861592535956607E-003 14 5 6 14 + -0.23982283087558155E-001 7 1 14 5 + -0.24051273022537449E-001 14 5 7 1 + -0.12042646548254389E-001 7 2 14 5 + -0.12295658879382793E-001 14 5 7 2 + 0.42602750087975809E-001 7 9 14 5 + 0.42976358334537494E-001 14 5 7 9 + 0.92570759473024119E-003 7 10 14 5 + 0.99535809690935880E-003 14 5 7 10 + -0.11964125931524109E-003 7 11 14 5 + -0.13208258536903745E-003 14 5 7 11 + -0.16689077302259157E-003 7 12 14 5 + -0.18028702757698475E-003 14 5 7 12 + -0.23629733898312987E-002 7 13 14 5 + -0.25376129043453658E-002 14 5 7 13 + -0.25198337768715263E-002 7 14 14 5 + -0.26840212740184923E-002 14 5 7 14 + -0.12860521588347235E-001 8 1 14 5 + -0.12897517905086166E-001 14 5 8 1 + -0.64578176011698537E-002 8 2 14 5 + -0.65935032849445269E-002 14 5 8 2 + 0.22845763380468991E-001 8 9 14 5 + 0.23046119494462124E-001 14 5 8 9 + -0.23049043732498095E-002 8 10 14 5 + -0.24780103506704164E-002 14 5 8 10 + 0.17312624005749223E-003 8 11 14 5 + 0.18686044652308834E-003 14 5 8 11 + -0.77500861394681275E-005 8 12 14 5 + -0.10823531924893233E-004 14 5 8 12 + -0.93152832824128858E-003 8 13 14 5 + -0.10025422174654572E-002 14 5 8 13 + -0.13511384141906659E-002 8 14 14 5 + -0.14366538735390360E-002 14 5 8 14 + 0.12216763346154294E-002 9 3 14 5 + 0.12192190120390613E-002 14 5 9 3 + -0.59699397837972368E-003 9 4 14 5 + -0.59579378913315461E-003 14 5 9 4 + -0.68140941834652167E-002 9 5 14 5 + -0.68003924233525298E-002 14 5 9 5 + 0.53090077387455093E-002 9 6 14 5 + 0.53556127363161704E-002 14 5 9 6 + 0.42557232079413414E-001 9 7 14 5 + 0.42930840325975099E-001 14 5 9 7 + 0.22821314736796591E-001 9 8 14 5 + 0.23021670850789724E-001 14 5 9 8 + 0.52037019489835461E-001 10 3 14 5 + 0.52037021463938626E-001 14 5 10 3 + 0.49247130156327056E-001 10 4 14 5 + 0.49247134736133381E-001 14 5 10 4 + 0.13490823385297503E-001 10 5 14 5 + 0.13490824107729553E-001 14 5 10 5 + -0.83547385103547428E-003 10 6 14 5 + -0.84259416964184192E-003 14 5 10 6 + 0.54928874904772709E-002 10 7 14 5 + 0.55625379926563879E-002 14 5 10 7 + -0.13624625785251743E-001 10 8 14 5 + -0.13797731762672351E-001 14 5 10 8 + -0.27875634078221058E-001 11 3 14 5 + -0.27875644959899387E-001 14 5 11 3 + 0.21501864003308991E-001 11 4 14 5 + 0.21501875596649921E-001 14 5 11 4 + -0.48941477587309567E-003 11 5 14 5 + -0.48941468780260120E-003 14 5 11 5 + -0.71569841142487918E-002 11 6 14 5 + -0.72181414642605093E-002 14 5 11 6 + -0.12068088013192785E-002 11 7 14 5 + -0.12192501273730748E-002 14 5 11 7 + 0.11278444854745289E-002 11 8 14 5 + 0.11415786919401251E-002 14 5 11 8 + -0.16990903674469506E-001 12 3 14 5 + -0.16990912467120246E-001 14 5 12 3 + 0.18504940907634580E-001 12 4 14 5 + 0.18504952319430206E-001 14 5 12 4 + 0.38998643889103447E-002 12 5 14 5 + 0.38998644379370571E-002 14 5 12 5 + -0.52066106548918148E-002 12 6 14 5 + -0.52467211652094566E-002 14 5 12 6 + -0.11101753231862314E-002 12 7 14 5 + -0.11235715777406245E-002 14 5 12 7 + -0.40446770479307144E-003 12 8 14 5 + -0.40754115057849654E-003 14 5 12 8 + -0.13419110089501191E-001 13 3 14 5 + -0.13419111373189543E-001 14 5 13 3 + -0.41224290648292370E-002 13 4 14 5 + -0.41224295643382805E-002 14 5 13 4 + 0.71308561296859821E-001 13 5 14 5 + 0.71308561281712382E-001 14 5 13 5 + -0.76722414632191538E-004 13 6 14 5 + -0.77236507166071933E-004 14 5 13 6 + -0.13520363495952601E-001 13 7 14 5 + -0.13695003010466666E-001 14 5 13 7 + -0.56418347452487040E-002 13 8 14 5 + -0.57128486344728731E-002 14 5 13 8 + -0.48613187279190797E-003 14 3 14 5 + -0.48613236548347634E-003 14 5 14 3 + -0.99487634554252680E-002 14 4 14 5 + -0.99487629150254251E-002 14 5 14 4 + 0.63814951800467076E-001 14 5 14 5 + -0.29097773054518454E-002 1 3 14 6 + -0.28872820673224342E-002 14 6 1 3 + 0.33996833097160832E-002 1 4 14 6 + 0.33734004849834661E-002 14 6 1 4 + -0.26010439656909043E-003 1 5 14 6 + -0.25809362331938524E-003 14 6 1 5 + -0.38834262509488547E-002 1 6 14 6 + -0.38969366494911442E-002 14 6 1 6 + -0.78588132244947767E-004 1 7 14 6 + -0.78861548581297470E-004 14 6 1 7 + 0.37939784070227077E-004 1 8 14 6 + 0.38071621567587705E-004 14 6 1 8 + -0.23485397976023850E-001 2 3 14 6 + -0.23194771706629060E-001 14 6 2 3 + 0.27439560267338726E-001 2 4 14 6 + 0.27099995537768637E-001 14 6 2 4 + -0.20993409177103859E-002 2 5 14 6 + -0.20733649342739632E-002 14 6 2 5 + -0.15971843348284713E-001 2 6 14 6 + -0.16016394747181174E-001 14 6 2 6 + -0.32321931667135111E-003 2 7 14 6 + -0.32412088429421029E-003 14 6 2 7 + 0.15603502471965905E-003 2 8 14 6 + 0.15647045218049088E-003 14 6 2 8 + -0.12273237106704386E-001 3 1 14 6 + -0.12250741868574975E-001 14 6 3 1 + -0.23656311717209014E-001 3 2 14 6 + -0.23365685447814224E-001 14 6 3 2 + 0.10237222025838441E-001 3 9 14 6 + 0.10265613915416638E-001 14 6 3 9 + 0.12710179407694642E-002 3 10 14 6 + 0.12539288312584478E-002 14 6 3 10 + -0.11256953974647710E-001 3 11 14 6 + -0.11121844487051955E-001 14 6 3 11 + 0.11002836976443879E-001 3 12 14 6 + 0.10869312515046593E-001 14 6 3 12 + -0.14173242309786307E-002 3 13 14 6 + -0.13989141856852866E-002 14 6 3 13 + 0.21440282024976848E-001 3 14 14 6 + 0.21127793724794425E-001 14 6 3 14 + 0.14339626489816451E-001 4 1 14 6 + 0.14313343665083833E-001 14 6 4 1 + 0.27639255559275652E-001 4 2 14 6 + 0.27299690829705563E-001 14 6 4 2 + -0.11960831002377744E-001 4 9 14 6 + -0.11994002101923891E-001 14 6 4 9 + -0.35479208521304142E-003 4 10 14 6 + -0.34903787886366735E-003 14 6 4 10 + -0.81340219891128558E-002 4 11 14 6 + -0.80359219419802678E-002 14 6 4 11 + 0.10572634997949396E-001 4 12 14 6 + 0.10443909826760469E-001 14 6 4 12 + 0.45607653881388232E-003 4 13 14 6 + 0.44867358688173735E-003 14 6 4 13 + -0.25590790538169979E-001 4 14 14 6 + -0.25217505083020977E-001 14 6 4 14 + -0.10971020912960761E-002 5 1 14 6 + -0.10950913180463710E-002 14 6 5 1 + -0.21146164511232448E-002 5 2 14 6 + -0.20886404676868221E-002 14 6 5 2 + 0.91509697823164424E-003 5 9 14 6 + 0.91763535709694769E-003 14 6 5 9 + 0.17429703197964748E-002 5 10 14 6 + 0.17221338678751947E-002 14 6 5 10 + 0.14828858779853482E-001 5 11 14 6 + 0.14651658611274442E-001 14 6 5 11 + 0.13847560479507449E-001 5 12 14 6 + 0.13680241867380533E-001 14 6 5 12 + 0.25593562185287453E-003 5 13 14 6 + 0.25281587272423076E-003 14 6 5 13 + 0.21896121670325398E-002 5 14 14 6 + 0.21575934903512346E-002 14 6 5 14 + -0.21009070118869076E-001 6 1 14 6 + -0.21022580517411366E-001 14 6 6 1 + -0.22748632029389954E-001 6 2 14 6 + -0.22793183428286415E-001 14 6 6 2 + 0.20483438015135184E-001 6 9 14 6 + 0.20141068029974840E-001 14 6 6 9 + 0.63443993402686203E-003 6 10 14 6 + 0.63443992061696340E-003 14 6 6 10 + 0.85514176449330931E-004 6 11 14 6 + 0.85514085794289839E-004 14 6 6 11 + -0.10683667785927569E-003 6 12 14 6 + -0.10683676295327879E-003 14 6 6 12 + -0.65105306576635597E-003 6 13 14 6 + -0.65105307029470329E-003 14 6 6 13 + 0.18857985510798470E-001 6 14 14 6 + 0.18857985510798470E-001 14 6 6 14 + -0.42515627417266585E-003 7 1 14 6 + -0.42542969050901554E-003 14 6 7 1 + -0.46035914198081716E-003 7 2 14 6 + -0.46126070960367634E-003 14 6 7 2 + 0.41451889193536764E-003 7 9 14 6 + 0.40759051888365403E-003 14 6 7 9 + -0.39624755793345304E-003 7 10 14 6 + -0.39624692439127652E-003 14 6 7 10 + -0.85032617923913954E-002 7 11 14 6 + -0.85032518231634487E-002 14 6 7 11 + -0.14387854868207000E-002 7 12 14 6 + -0.14387838845100552E-002 14 6 7 12 + -0.31415095513753256E-003 7 13 14 6 + -0.31415024897049729E-003 14 6 7 13 + 0.14655076312466528E-003 7 14 14 6 + 0.14655079243057064E-003 14 6 7 14 + 0.20525402834184356E-003 8 1 14 6 + 0.20538586583920417E-003 14 6 8 1 + 0.22225415667389471E-003 8 2 14 6 + 0.22268958413472652E-003 14 6 8 2 + -0.20012336468710687E-003 8 9 14 6 + -0.19677680198495559E-003 14 6 8 9 + -0.66976190667658673E-003 8 10 14 6 + -0.66976090549444932E-003 14 6 8 10 + 0.15617164706006471E-002 8 11 14 6 + 0.15617146014220396E-002 14 6 8 11 + -0.88043109931036419E-002 8 12 14 6 + -0.88043009356482058E-002 14 6 8 12 + 0.19612720097740040E-003 8 13 14 6 + 0.19612659995912025E-003 14 6 8 13 + -0.87827001913000802E-004 8 14 14 6 + -0.87826679616070149E-004 14 6 8 14 + 0.14219915203968323E-001 9 3 14 6 + 0.14248307093546519E-001 14 6 9 3 + -0.16614031427333007E-001 9 4 14 6 + -0.16647202526879155E-001 14 6 9 4 + 0.12711267060209897E-002 9 5 14 6 + 0.12736650848862933E-002 14 6 9 5 + 0.22128436702027417E-001 9 6 14 6 + 0.21786066716867072E-001 14 6 9 6 + 0.44780848666231343E-003 9 7 14 6 + 0.44088011361059982E-003 14 6 9 7 + -0.21619308583489520E-003 9 8 14 6 + -0.21284652313274395E-003 14 6 9 8 + 0.13972565764575411E-002 10 3 14 6 + 0.13801674669465247E-002 14 6 10 3 + -0.38675212075704838E-003 10 4 14 6 + -0.38099791440767431E-003 14 6 10 4 + 0.19248340446306720E-002 10 5 14 6 + 0.19039975927093919E-002 14 6 10 5 + 0.53068934404903404E-003 10 6 14 6 + 0.53068933063913542E-003 14 6 10 6 + -0.31486234700576766E-003 10 7 14 6 + -0.31486171346359115E-003 14 6 10 7 + -0.54124325683959685E-003 10 8 14 6 + -0.54124225565745944E-003 14 6 10 8 + -0.12429615355067813E-001 11 3 14 6 + -0.12294505867472058E-001 14 6 11 3 + -0.89797622528657445E-002 11 4 14 6 + -0.88816622057331564E-002 14 6 11 4 + 0.16376270270463136E-001 11 5 14 6 + 0.16199070101884098E-001 14 6 11 5 + 0.71524796557042279E-004 11 6 14 6 + 0.71524705902001174E-004 14 6 11 6 + -0.68383911154260655E-002 11 7 14 6 + -0.68383811461981180E-002 14 6 11 7 + 0.12628060325522662E-002 11 8 14 6 + 0.12628041633736588E-002 14 6 11 8 + 0.12143967385992858E-001 12 3 14 6 + 0.12010442924595572E-001 14 6 12 3 + 0.11667849874685920E-001 12 4 14 6 + 0.11539124703496993E-001 14 6 12 4 + 0.15286269321582771E-001 12 5 14 6 + 0.15118950709455854E-001 14 6 12 5 + -0.89414743481942103E-004 12 6 14 6 + -0.89414828575945209E-004 14 6 12 6 + -0.11553646034987283E-002 12 7 14 6 + -0.11553630011880834E-002 14 6 12 7 + -0.71074650886956189E-002 12 8 14 6 + -0.71074550312401827E-002 14 6 12 8 + -0.15603000356416966E-002 13 3 14 6 + -0.15418899903483524E-002 14 6 13 3 + 0.49711338750505916E-003 13 4 14 6 + 0.48971043557291419E-003 14 6 13 4 + 0.28245495315927060E-003 13 5 14 6 + 0.27933520403062678E-003 14 6 13 5 + -0.54459401629810070E-003 13 6 14 6 + -0.54459402082644801E-003 14 6 13 6 + -0.25367403976092736E-003 13 7 14 6 + -0.25367333359389209E-003 14 6 13 7 + 0.15575100112566166E-003 13 8 14 6 + 0.15575040010738152E-003 14 6 13 8 + 0.23487812815891029E-001 14 3 14 6 + 0.23175324515708605E-001 14 6 14 3 + -0.28033704392854859E-001 14 4 14 6 + -0.27660418937705857E-001 14 6 14 4 + 0.23983310165444057E-002 14 5 14 6 + 0.23663123398631005E-002 14 6 14 5 + 0.15929194166604689E-001 14 6 14 6 + 0.10456492065052812E-002 1 3 14 7 + 0.10375655068777018E-002 14 7 1 3 + 0.78975726845984125E-003 1 4 14 7 + 0.78365181063096677E-003 14 7 1 4 + -0.20850147257521988E-002 1 5 14 7 + -0.20688956718432753E-002 14 7 1 5 + -0.78588132244946426E-004 1 6 14 7 + -0.78861548581296494E-004 14 7 1 6 + 0.21324160344816496E-002 1 7 14 7 + 0.21398344971898927E-002 14 7 1 7 + 0.27659474764566078E-004 1 8 14 7 + 0.27755838621648346E-004 14 7 1 8 + 0.84396207283529354E-002 2 3 14 7 + 0.83351874004797058E-002 14 7 2 3 + 0.63742726176079989E-002 2 4 14 7 + 0.62953960117924420E-002 14 7 2 4 + -0.16828570220816307E-001 2 5 14 7 + -0.16620321254448553E-001 14 7 2 5 + -0.32321931667134943E-003 2 6 14 7 + -0.32412088429420921E-003 14 7 2 6 + 0.87702432889406219E-002 2 7 14 7 + 0.87947069832791224E-002 14 7 2 7 + 0.11376256514065088E-003 2 8 14 7 + 0.11407972488093986E-003 14 7 2 8 + 0.44104751010434927E-002 3 1 14 7 + 0.44023914014159130E-002 14 7 3 1 + 0.85010356004942486E-002 3 2 14 7 + 0.83966022726210190E-002 14 7 3 2 + -0.36788078781818095E-002 3 9 14 7 + -0.36890114612385429E-002 14 7 3 9 + -0.98794582662423483E-002 3 10 14 7 + -0.97416585153152404E-002 14 7 3 10 + 0.58177983846882733E-002 3 11 14 7 + 0.57615807066146770E-002 14 7 3 11 + 0.19151518924481817E-002 3 12 14 7 + 0.18932024937169903E-002 14 7 3 12 + -0.28130040984061730E-002 3 13 14 7 + -0.27741146598891297E-002 14 7 3 13 + 0.56983344624407664E-002 3 14 14 7 + 0.56089736960035878E-002 14 7 3 14 + 0.33311408376354556E-002 4 1 14 7 + 0.33250353798065808E-002 14 7 4 1 + 0.64206582160409829E-002 4 2 14 7 + 0.63417816102254261E-002 14 7 4 2 + -0.27785282245545969E-002 4 9 14 7 + -0.27862347420017450E-002 14 7 4 9 + -0.86729564739865071E-002 4 10 14 7 + -0.85551133191501053E-002 14 7 4 10 + -0.59622317211402917E-002 4 11 14 7 + -0.59088816974787687E-002 14 7 4 11 + -0.49557921222159957E-003 4 12 14 7 + -0.49355710632542854E-003 14 7 4 12 + -0.37858963759961812E-002 4 13 14 7 + -0.37351663783891397E-002 14 7 4 13 + 0.33828869625198562E-002 4 14 14 7 + 0.33292050499889253E-002 14 7 4 14 + -0.87944462334518230E-002 5 1 14 7 + -0.87783271795429003E-002 14 7 5 1 + -0.16951038744938168E-001 5 2 14 7 + -0.16742789778570417E-001 14 7 5 2 + 0.73355286287630841E-002 5 9 14 7 + 0.73558730667689703E-002 14 7 5 9 + 0.44892365698982464E-002 5 10 14 7 + 0.44260236664811327E-002 14 7 5 10 + 0.10058796908308293E-002 5 11 14 7 + 0.99475053195644913E-003 14 7 5 11 + -0.42832699094923346E-003 5 12 14 7 + -0.42155896971708608E-003 14 7 5 12 + -0.13113494999802574E-001 5 13 14 7 + -0.12931753461628554E-001 14 7 5 13 + -0.10469876180797337E-001 5 14 14 7 + -0.10305688683650369E-001 14 7 5 14 + -0.42515627417267197E-003 6 1 14 7 + -0.42542969050902204E-003 14 7 6 1 + -0.46035914198081515E-003 6 2 14 7 + -0.46126070960367493E-003 14 7 6 2 + 0.41451889193537815E-003 6 9 14 7 + 0.40759051888366389E-003 14 7 6 9 + 0.26045707380073052E-003 6 10 14 7 + 0.26045683608685801E-003 14 7 6 10 + 0.23465643304999835E-002 6 11 14 7 + 0.23465620143952102E-002 14 7 6 11 + 0.46499235047094465E-003 6 12 14 7 + 0.46499161707638304E-003 14 7 6 12 + 0.46742229185347411E-004 6 13 14 7 + 0.46742209418739119E-004 14 7 6 13 + 0.14655138595590336E-003 6 14 14 7 + 0.14655135664999800E-003 14 7 6 14 + 0.11536227681313318E-001 7 1 14 7 + 0.11543646144021561E-001 14 7 7 1 + 0.12491439449749018E-001 7 2 14 7 + 0.12515903144087518E-001 14 7 7 2 + -0.11247605117960604E-001 7 9 14 7 + -0.11059605291640639E-001 14 7 7 9 + -0.57454475993656377E-002 7 10 14 7 + -0.57454411141858522E-002 14 7 7 10 + 0.13110206642796141E-004 7 11 14 7 + 0.13109984282455416E-004 14 7 7 11 + 0.57308485176095069E-003 7 12 14 7 + 0.57308423119374499E-003 14 7 7 12 + 0.45269974270844612E-002 7 13 14 7 + 0.45269972409734760E-002 14 7 7 13 + 0.77237889309536593E-002 7 14 14 7 + 0.77237889309536593E-002 14 7 7 14 + 0.14963374552029086E-003 8 1 14 7 + 0.14973010937737314E-003 14 7 8 1 + 0.16201908233354009E-003 8 2 14 7 + 0.16233624207382907E-003 14 7 8 2 + -0.14588590167057260E-003 8 9 14 7 + -0.14344891546103506E-003 14 7 8 9 + 0.44615481677246329E-002 8 10 14 7 + 0.44615431950958085E-002 14 7 8 10 + -0.41602167594686964E-003 8 11 14 7 + -0.41602148453016380E-003 14 7 8 11 + -0.32879378449298221E-003 8 12 14 7 + -0.32879315352699691E-003 14 7 8 12 + 0.57133988777694983E-002 8 13 14 7 + 0.57133993146633267E-002 14 7 8 13 + 0.11034825451185714E-003 8 14 14 7 + 0.11034828243739345E-003 14 7 8 14 + -0.51100477006323607E-002 9 3 14 7 + -0.51202512836890949E-002 14 7 9 3 + -0.38595125747501301E-002 9 4 14 7 + -0.38672190921972783E-002 14 7 9 4 + 0.10189350162272346E-001 9 5 14 7 + 0.10209694600278232E-001 14 7 9 5 + 0.44780848666232465E-003 9 6 14 7 + 0.44088011361061039E-003 14 7 9 6 + -0.12150883516004050E-001 9 7 14 7 + -0.11962883689684085E-001 14 7 9 7 + -0.15760351997660385E-003 9 8 14 7 + -0.15516653376706631E-003 14 7 9 8 + -0.10843190062308550E-001 10 3 14 7 + -0.10705390311381442E-001 14 7 10 3 + -0.95296419091844137E-002 10 4 14 7 + -0.94117987543480119E-002 14 7 10 4 + 0.49250606759131841E-002 10 5 14 7 + 0.48618477724960705E-002 14 7 10 5 + 0.20128780579117700E-003 10 6 14 7 + 0.20128756807730454E-003 14 7 10 6 + -0.48051183303707175E-002 10 7 14 7 + -0.48051118451909328E-002 14 7 10 7 + 0.37190205476108754E-002 10 8 14 7 + 0.37190155749820502E-002 14 7 10 8 + 0.64701847235704270E-002 11 3 14 7 + 0.64139670454968307E-002 14 7 11 3 + -0.66452821515176593E-002 11 4 14 7 + -0.65919321278561363E-002 14 7 11 4 + 0.11139462000560622E-002 11 5 14 7 + 0.11028170411816821E-002 14 7 11 5 + 0.16892816381426212E-002 11 6 14 7 + 0.16892793220378479E-002 14 7 11 6 + 0.10934663242956531E-004 11 7 14 7 + 0.10934440882615806E-004 14 7 11 7 + -0.34563724304449212E-003 11 8 14 7 + -0.34563705162778629E-003 14 7 11 8 + 0.21181741855387463E-002 12 3 14 7 + 0.20962247868075551E-002 14 7 12 3 + -0.56058199782929347E-003 12 4 14 7 + -0.55855989193312244E-003 14 7 12 4 + -0.46743079985891013E-003 12 5 14 7 + -0.46066277862676276E-003 14 7 12 5 + 0.34095076686007259E-003 12 6 14 7 + 0.34095003346551098E-003 14 7 12 6 + 0.47930827042392659E-003 12 7 14 7 + 0.47930764985672090E-003 14 7 12 7 + -0.27058747891820482E-003 12 8 14 7 + -0.27058684795221952E-003 14 7 12 8 + -0.30889102653867974E-002 13 3 14 7 + -0.30500208268697546E-002 14 7 13 3 + -0.41626146190167374E-002 13 4 14 7 + -0.41118846214096951E-002 14 7 13 4 + -0.14398016244852893E-001 13 5 14 7 + -0.14216274706678873E-001 14 7 13 5 + 0.29975962779194128E-004 13 6 14 7 + 0.29975943012585842E-004 14 7 13 6 + 0.37867409125526769E-002 13 7 14 7 + 0.37867407264416913E-002 14 7 13 7 + 0.47666834864104465E-002 13 8 14 7 + 0.47666839233042749E-002 14 7 13 8 + 0.62207530009844138E-002 14 3 14 7 + 0.61313922345472352E-002 14 7 14 3 + 0.36908346665072977E-002 14 4 14 7 + 0.36371527539763669E-002 14 7 14 4 + -0.11429875145618076E-001 14 5 14 7 + -0.11265687648471110E-001 14 7 14 5 + 0.12259005622915572E-003 14 6 14 7 + 0.12259002692325036E-003 14 7 14 6 + 0.66155263000997593E-002 14 7 14 7 + -0.12191670578935697E-002 1 3 14 8 + -0.12097416162728599E-002 14 8 1 3 + -0.11615649393476851E-002 1 4 14 8 + -0.11525849947161973E-002 14 8 1 4 + -0.11180919745189129E-002 1 5 14 8 + -0.11094478746500921E-002 14 8 1 5 + 0.37939784070225349E-004 1 6 14 8 + 0.38071621567586696E-004 14 8 1 6 + 0.27659474764553443E-004 1 7 14 8 + 0.27755838621636355E-004 14 8 1 7 + 0.17510102164671366E-002 1 8 14 8 + 0.17571021523011812E-002 14 8 1 8 + -0.98401750589013782E-002 2 3 14 8 + -0.97183985558526205E-002 14 8 2 3 + -0.93752215449340853E-002 2 4 14 8 + -0.92592059486265119E-002 14 8 2 4 + -0.90243896740106900E-002 2 5 14 8 + -0.89127058758707370E-002 14 8 2 5 + 0.15603502471965653E-003 2 6 14 8 + 0.15647045218048947E-003 14 8 2 6 + 0.11376256514060165E-003 2 7 14 8 + 0.11407972488089401E-003 14 8 2 7 + 0.72016000593444684E-002 2 8 14 8 + 0.72216877639024318E-002 14 8 2 8 + -0.51423614887134775E-002 3 1 14 8 + -0.51329360470927675E-002 14 8 3 1 + -0.99117917730394498E-002 3 2 14 8 + -0.97900152699906921E-002 14 8 3 2 + 0.42893061653839657E-002 3 9 14 8 + 0.43012010711262066E-002 14 8 3 9 + -0.24209372532469631E-002 3 10 14 8 + -0.23863701231612170E-002 14 8 3 10 + -0.73070134870023649E-003 3 11 14 8 + -0.72426329516971967E-003 14 8 3 11 + 0.43964802766503211E-002 3 12 14 8 + 0.43585497029443743E-002 14 8 3 12 + 0.87702872088289852E-002 3 13 14 8 + 0.86466009885008601E-002 14 8 3 13 + -0.58874661133761896E-002 3 14 14 8 + -0.57917707278708841E-002 14 8 3 14 + -0.48993996401154758E-002 4 1 14 8 + -0.48904196954839881E-002 14 8 4 1 + -0.94434487704769740E-002 4 2 14 8 + -0.93274331741694007E-002 14 8 4 2 + 0.40866339216930588E-002 4 9 14 8 + 0.40979678719308332E-002 14 8 4 9 + -0.35705611243205511E-002 4 10 14 8 + -0.35234846635752784E-002 14 8 4 10 + 0.64069661879239087E-003 4 11 14 8 + 0.63661021319099558E-003 14 8 4 11 + -0.43724794227397151E-002 4 12 14 8 + -0.43393579459592340E-002 14 8 4 12 + 0.73203541093199093E-002 4 13 14 8 + 0.72187871795584167E-002 14 8 4 13 + -0.51088129200433435E-002 4 14 14 8 + -0.50252992700455679E-002 14 8 4 14 + -0.47160339065316316E-002 5 1 14 8 + -0.47073898066628105E-002 14 8 5 1 + -0.90900715247040909E-002 5 2 14 8 + -0.89783877265641378E-002 14 8 5 2 + 0.39337075886747277E-002 5 9 14 8 + 0.39446158931201536E-002 14 8 5 9 + -0.11352274790245399E-001 5 10 14 8 + -0.11192721274380098E-001 14 8 5 10 + 0.52080158978653590E-003 5 11 14 8 + 0.51284889259309318E-003 14 8 5 11 + 0.11052735982181319E-002 5 12 14 8 + 0.10919043586610912E-002 14 8 5 12 + -0.41758261114714377E-002 5 13 14 8 + -0.41162645154942503E-002 14 8 5 13 + -0.52856187687672666E-002 5 14 14 8 + -0.52001033094188961E-002 14 8 5 14 + 0.20525402834185234E-003 6 1 14 8 + 0.20538586583921371E-003 14 8 6 1 + 0.22225415667389206E-003 6 2 14 8 + 0.22268958413472500E-003 14 8 6 2 + -0.20012336468711777E-003 6 9 14 8 + -0.19677680198496543E-003 14 8 6 9 + 0.81038569920061399E-004 6 10 14 8 + 0.81038491095715003E-004 14 8 6 10 + -0.15871244046269855E-003 6 11 14 8 + -0.15871245359419837E-003 14 8 6 11 + 0.13578164976610228E-002 6 12 14 8 + 0.13578145557753109E-002 14 8 6 12 + -0.13245916210731474E-003 6 13 14 8 + -0.13245913248918333E-003 14 8 6 13 + -0.87820152215136013E-004 6 14 14 8 + -0.87820474512066666E-004 14 8 6 14 + 0.14963374552040518E-003 7 1 14 8 + 0.14973010937748810E-003 14 8 7 1 + 0.16201908233350631E-003 7 2 14 8 + 0.16233624207379868E-003 14 8 7 2 + -0.14588590167086666E-003 7 9 14 8 + -0.14344891546133156E-003 14 8 7 9 + 0.39701297161351436E-002 7 10 14 8 + 0.39701252868469339E-002 14 8 7 10 + -0.32298981375399277E-003 7 11 14 8 + -0.32298948342262662E-003 14 8 7 11 + -0.15496775676340072E-003 7 12 14 8 + -0.15496734612811548E-003 14 8 7 12 + 0.52182181645249572E-002 7 13 14 8 + 0.52182180103020649E-002 14 8 7 13 + 0.11034884800643723E-003 7 14 14 8 + 0.11034882008090091E-003 14 8 7 14 + 0.94728424375562365E-002 8 1 14 8 + 0.94789343733902819E-002 14 8 8 1 + 0.10257192579641305E-001 8 2 14 8 + 0.10277280284199270E-001 14 8 8 2 + -0.92358328971752467E-002 8 9 14 8 + -0.90814627383348744E-002 14 8 8 9 + 0.51109249749344624E-002 8 10 14 8 + 0.51109185031645776E-002 14 8 8 10 + -0.98625711311298435E-004 8 11 14 8 + -0.98625398295916998E-004 14 8 8 11 + -0.46618370425643957E-003 8 12 14 8 + -0.46618299859523042E-003 14 8 8 12 + -0.38759440737409102E-002 8 13 14 8 + -0.38759438831015751E-002 14 8 8 13 + 0.61532151944041604E-002 8 14 14 8 + 0.61532151944041604E-002 14 8 8 14 + 0.59579731831443088E-002 9 3 14 8 + 0.59698680888865497E-002 14 8 9 3 + 0.56765036357514015E-002 9 4 14 8 + 0.56878375859891759E-002 14 8 9 4 + 0.54640152982389075E-002 9 5 14 8 + 0.54749236026843335E-002 14 8 9 5 + -0.21619308583490184E-003 9 6 14 8 + -0.21284652313274951E-003 14 8 9 6 + -0.15760351997673585E-003 9 7 14 8 + -0.15516653376720075E-003 14 8 9 7 + -0.99775531860240574E-002 9 8 14 8 + -0.98231830271836851E-002 14 8 9 8 + -0.26543660012967097E-002 10 3 14 8 + -0.26197988712109636E-002 14 8 10 3 + -0.39281312524385818E-002 10 4 14 8 + -0.38810547916933091E-002 14 8 10 4 + -0.12455589991843964E-001 10 5 14 8 + -0.12296036475978663E-001 14 8 10 5 + 0.48861991032165761E-004 10 6 14 8 + 0.48861912207819364E-004 14 8 10 6 + 0.33327789149438362E-002 10 7 14 8 + 0.33327744856556270E-002 14 8 10 7 + 0.42744608609624002E-002 10 8 14 8 + 0.42744543891925155E-002 14 8 10 8 + -0.81480452993426631E-003 11 3 14 8 + -0.80836647640374949E-003 14 8 11 3 + 0.71966111046016480E-003 11 4 14 8 + 0.71557470485876951E-003 14 8 11 4 + 0.56929107837820267E-003 11 5 14 8 + 0.56133838118475996E-003 14 8 11 5 + -0.89406515185724435E-004 11 6 14 8 + -0.89406528317224256E-004 14 8 11 6 + -0.27251303901804942E-003 11 7 14 8 + -0.27251270868668327E-003 14 8 11 7 + -0.82458947811808668E-004 11 8 14 8 + -0.82458634796427231E-004 14 8 11 8 + 0.49050193377535266E-002 12 3 14 8 + 0.48670887640475799E-002 14 8 12 3 + -0.48938263885352860E-002 12 4 14 8 + -0.48607049117548049E-002 14 8 12 4 + 0.12200646170271146E-002 12 5 14 8 + 0.12066953774700739E-002 14 8 12 5 + 0.87968627876615704E-003 12 6 14 8 + 0.87968433688044535E-003 14 8 12 6 + -0.13396494592416303E-003 12 7 14 8 + -0.13396453528887779E-003 14 8 12 7 + -0.38991837803334974E-003 12 8 14 8 + -0.38991767237214059E-003 14 8 12 8 + 0.96221718054389054E-002 13 3 14 8 + 0.94984855851107802E-002 14 8 13 3 + 0.80370367767029181E-002 13 4 14 8 + 0.79354698469414273E-002 14 8 13 4 + -0.45792190621697310E-002 13 5 14 8 + -0.45196574661925436E-002 14 8 13 5 + -0.10250690707532749E-003 13 6 14 8 + -0.10250687745719605E-003 14 8 13 6 + 0.43774758686513744E-002 13 7 14 8 + 0.43774757144284821E-002 14 8 13 7 + -0.32421470071069066E-002 13 8 14 8 + -0.32421468164675719E-002 14 8 13 8 + -0.64157502521102533E-002 14 3 14 8 + -0.63200548666049478E-002 14 8 14 3 + -0.55656635102808560E-002 14 4 14 8 + -0.54821498602830804E-002 14 8 14 4 + -0.57613814498424414E-002 14 5 14 8 + -0.56758659904940709E-002 14 8 14 5 + -0.73428797934894675E-004 14 6 14 8 + -0.73429120231825328E-004 14 8 14 6 + 0.92364742310404427E-004 14 7 14 8 + 0.92364714384868114E-004 14 8 14 7 + 0.53019283980446710E-002 14 8 14 8 + 0.10167420258323924E-009 1 10 14 9 + 0.16801253757726894E-009 14 9 1 10 + -0.13099112196990959E-009 14 9 1 12 + -0.14047505143588226E-002 1 14 14 9 + -0.14038675080215090E-002 14 9 1 14 + -0.75175247882509578E-007 2 10 14 9 + -0.69757156861770067E-007 14 9 2 10 + -0.12075065792446370E-008 2 11 14 9 + -0.11204781926052337E-008 14 9 2 11 + 0.58610447076334563E-007 2 12 14 9 + 0.54386227722307661E-007 14 9 2 12 + 0.26144143943866105E-009 2 13 14 9 + 0.24259862910228153E-009 14 9 2 13 + -0.15505499359182901E-001 2 14 14 9 + -0.15494147367577031E-001 14 9 2 14 + 0.17888289960945182E-002 3 3 14 9 + 0.17885566689364897E-002 14 9 3 3 + -0.95613342651292201E-002 3 4 14 9 + -0.95598739320241714E-002 14 9 3 4 + 0.12344516296335160E-002 3 5 14 9 + 0.12342662043017818E-002 14 9 3 5 + 0.75598378613322267E-002 3 6 14 9 + 0.76270455885191196E-002 14 9 3 6 + -0.27166700659050167E-002 3 7 14 9 + -0.27408219815158587E-002 14 9 3 7 + 0.31675104490386068E-002 3 8 14 9 + 0.31956693490222663E-002 14 9 3 8 + -0.95613342651292201E-002 4 3 14 9 + -0.95598739320241714E-002 14 9 4 3 + 0.50972383353841619E-002 4 4 14 9 + 0.50964577799190794E-002 14 9 4 4 + -0.60333997309555546E-003 4 5 14 9 + -0.60324668007426165E-003 14 9 4 5 + -0.88326687915431801E-002 4 6 14 9 + -0.89111915270205268E-002 14 9 4 6 + -0.20518454262228249E-002 4 7 14 9 + -0.20700868524692840E-002 14 9 4 7 + 0.30178387907233450E-002 4 8 14 9 + 0.30446677342688727E-002 14 9 4 8 + 0.12344516296335169E-002 5 3 14 9 + 0.12342662043017827E-002 14 9 5 3 + -0.60333997309555589E-003 5 4 14 9 + -0.60324668007426209E-003 14 9 5 4 + -0.68860673314785409E-002 5 5 14 9 + -0.68850144488554234E-002 14 9 5 5 + 0.67576573381818248E-003 5 6 14 9 + 0.68177361400254758E-003 14 9 5 6 + 0.54170362175382228E-002 5 7 14 9 + 0.54651942758609648E-002 14 9 5 7 + 0.29049148242052776E-002 5 8 14 9 + 0.29307390054224515E-002 14 9 5 8 + 0.94745158972341682E-002 6 3 14 9 + 0.95417236244210602E-002 14 9 6 3 + -0.11069699045743273E-001 6 4 14 9 + -0.11148221781220619E-001 14 9 6 4 + 0.84692421649443640E-003 6 5 14 9 + 0.85293209667880151E-003 14 9 6 5 + 0.59938848222361148E-002 6 6 14 9 + 0.57467316511278900E-002 14 9 6 6 + 0.12129669854117658E-003 6 7 14 9 + 0.11629530210500502E-003 14 9 6 7 + -0.58564544747063021E-004 6 8 14 9 + -0.56146637056055715E-004 14 9 6 8 + -0.34047333705718220E-002 7 3 14 9 + -0.34288852861826639E-002 14 9 7 3 + -0.25715249294006115E-002 7 4 14 9 + -0.25897663556470707E-002 14 9 7 4 + 0.67890091135981052E-002 7 5 14 9 + 0.68371671719208472E-002 14 9 7 5 + 0.12129669854117614E-003 7 6 14 9 + 0.11629530210500458E-003 14 9 7 6 + -0.32912910530785607E-002 7 7 14 9 + -0.31555734903273118E-002 14 9 7 7 + -0.42685531854170333E-004 7 8 14 9 + -0.40928121652752025E-004 14 9 7 8 + 0.39697275682070909E-002 8 3 14 9 + 0.39978864681907509E-002 14 9 8 3 + 0.37821674519934534E-002 8 4 14 9 + 0.38089963955389812E-002 14 9 8 4 + 0.36406180332412006E-002 8 5 14 9 + 0.36664422144583745E-002 14 9 8 5 + -0.58564544747062329E-004 8 6 14 9 + -0.56146637056055024E-004 14 9 8 6 + -0.42685531854160040E-004 8 7 14 9 + -0.40928121652741739E-004 14 9 8 7 + -0.27025937691583053E-002 8 8 14 9 + -0.25911581608013255E-002 14 9 8 8 + -0.40169384180584761E-007 9 10 14 9 + -0.40169384180622097E-007 14 9 9 10 + -0.64522291703481750E-009 9 11 14 9 + -0.64522291704853867E-009 14 9 9 11 + 0.31318095108750166E-007 9 12 14 9 + 0.31318095108804251E-007 14 9 9 12 + 0.13969873866260698E-009 9 13 14 9 + 0.13969873863366869E-009 14 9 9 13 + 0.13529960718290497E-001 9 14 14 9 + 0.13529960718290497E-001 14 9 9 14 + -0.48042604744635662E-008 10 1 14 9 + -0.47379221394697815E-008 14 9 10 1 + -0.12771343672069210E-006 10 2 14 9 + -0.12229534569995476E-006 14 9 10 2 + 0.28441370735857029E-007 10 9 14 9 + 0.28441370735823796E-007 14 9 10 9 + -0.76674939721640221E-002 10 10 14 9 + -0.76621280207557251E-002 14 9 10 10 + 0.50427760608099618E-003 10 11 14 9 + 0.50392434176023133E-003 14 9 10 11 + 0.95581724256762503E-003 10 12 14 9 + 0.95514852281331267E-003 14 9 10 12 + -0.57675163814235037E-004 10 13 14 9 + -0.57629597868894190E-004 14 9 10 13 + 0.92981871642078924E-003 10 14 14 9 + 0.92916226619635758E-003 14 9 10 14 + -0.20514041356015382E-008 11 2 14 9 + -0.19643757489614939E-008 14 9 11 2 + 0.45684109047066328E-009 11 9 14 9 + 0.45684109045485064E-009 14 9 11 9 + 0.50427743481468992E-003 11 10 14 9 + 0.50392417049392507E-003 14 9 11 10 + 0.35254829540913688E-002 11 11 14 9 + 0.35230158371725240E-002 14 9 11 11 + -0.21092960090150355E-003 11 12 14 9 + -0.21078211437721090E-003 14 9 11 12 + 0.43290007627185402E-003 11 13 14 9 + 0.43258894137039459E-003 14 9 11 13 + -0.66485707124997374E-005 11 14 14 9 + -0.66449842178189544E-005 14 9 11 14 + 0.37456458350850018E-008 12 1 14 9 + 0.36939250947459075E-008 14 9 12 1 + 0.99571891470835455E-007 12 2 14 9 + 0.95347672116808056E-007 14 9 12 2 + -0.22174339335233551E-007 12 9 14 9 + -0.22174339335178795E-007 14 9 12 9 + 0.95581761032005380E-003 12 10 14 9 + 0.95514889056574144E-003 14 9 12 10 + -0.21092958343897820E-003 12 11 14 9 + -0.21078209691468555E-003 14 9 12 11 + 0.41670363012092058E-002 12 12 14 9 + 0.41641202789863508E-002 14 9 12 12 + -0.32130481603113894E-003 12 13 14 9 + -0.32107570161442838E-003 14 9 12 13 + -0.10094645352510852E-003 12 14 14 9 + -0.10087058601170471E-003 14 9 12 14 + 0.44415645292380145E-009 13 2 14 9 + 0.42531364258500201E-009 14 9 13 2 + -0.57674811299595413E-004 13 10 14 9 + -0.57629245354254566E-004 14 9 13 10 + 0.43290406432910803E-003 13 11 14 9 + 0.43259292942764859E-003 14 9 13 11 + -0.32130638214582805E-003 13 12 14 9 + -0.32107726772911748E-003 14 9 13 12 + -0.77437870302687018E-002 13 13 14 9 + -0.77382129844399952E-002 14 9 13 13 + -0.95965973442307213E-003 13 14 14 9 + -0.95896942107529816E-003 14 9 13 14 + -0.29211563589858526E-002 14 1 14 9 + -0.29202733526485390E-002 14 9 14 1 + -0.11977723607495759E-001 14 2 14 9 + -0.11966371615889889E-001 14 9 14 2 + 0.10030014364217327E-001 14 9 14 9 + 0.36844295974842239E-007 1 1 14 10 + 0.96995639947679395E-008 14 10 1 1 + -0.38518906751621049E-008 1 2 14 10 + -0.21948199056538883E-008 14 10 1 2 + 0.80569889762154046E-009 1 9 14 10 + -0.39962168641421805E-009 14 10 1 9 + -0.41396458092465924E-003 1 10 14 10 + -0.41284246220012601E-003 14 10 1 10 + 0.27226330035084429E-004 1 11 14 10 + 0.27152469215320356E-004 14 10 1 11 + 0.51605829836958885E-004 1 12 14 10 + 0.51465924327305359E-004 14 10 1 12 + -0.31097681660060302E-005 1 13 14 10 + -0.31007669565999484E-005 14 10 1 13 + 0.50191573377181090E-004 1 14 14 10 + 0.50055016392961764E-004 14 10 1 14 + -0.78312415363496513E-008 2 1 14 10 + -0.61741707668422065E-008 14 10 2 1 + -0.10856794313784962E-006 2 2 14 10 + -0.99585346713927820E-007 14 10 2 2 + -0.10837144353530148E-006 2 9 14 10 + -0.86443631228084600E-007 14 10 2 9 + 0.29850184230339905E-001 2 10 14 10 + 0.29710496218155535E-001 14 10 2 10 + -0.19631234789311549E-002 2 11 14 10 + -0.19539368910835948E-002 14 10 2 11 + -0.37210340090867208E-002 2 12 14 10 + -0.37036211157231882E-002 14 10 2 12 + 0.22401395457390574E-003 2 13 14 10 + 0.22296616458185103E-003 14 10 2 13 + -0.36194016401283518E-002 2 14 14 10 + -0.36024636814674161E-002 14 10 2 14 + -0.49629426267537215E-002 3 3 14 10 + -0.49122516481159605E-002 14 10 3 3 + -0.51315943839226955E-002 3 4 14 10 + -0.50791770386343542E-002 14 10 3 4 + 0.22549491139322621E-001 3 5 14 10 + 0.22319195158624738E-001 14 10 3 5 + 0.50458416502112326E-003 3 6 14 10 + 0.51820794224563809E-003 14 10 3 6 + -0.48149232486364643E-002 3 7 14 10 + -0.49450310936271728E-002 14 10 3 7 + -0.13210433489960179E-002 3 8 14 10 + -0.13567167396290121E-002 14 10 3 8 + -0.51315788437612218E-002 4 3 14 10 + -0.50791614984728806E-002 14 10 4 3 + -0.71917602501271106E-003 4 4 14 10 + -0.71182960719469641E-003 14 10 4 4 + 0.17626243055531947E-001 4 5 14 10 + 0.17446228862658456E-001 14 10 4 5 + -0.31217759823907521E-003 4 6 14 10 + -0.32060053157607275E-003 14 10 4 6 + -0.36754946944024284E-002 4 7 14 10 + -0.37748119974009633E-002 14 10 4 7 + -0.12599278740460331E-002 4 8 14 10 + -0.12939518585307428E-002 14 10 4 8 + 0.22549506712127763E-001 5 3 14 10 + 0.22319210731429881E-001 14 10 5 3 + 0.17626188708744529E-001 5 4 14 10 + 0.17446174515871039E-001 14 10 5 4 + 0.56818259518871556E-002 5 5 14 10 + 0.56237996676720839E-002 14 10 5 5 + 0.23683273741441775E-003 5 6 14 10 + 0.24323092956278903E-003 14 10 5 6 + 0.22949446791195082E-002 5 7 14 10 + 0.23569680888862500E-002 14 10 5 7 + -0.57450124093729026E-002 5 8 14 10 + -0.59002253600163842E-002 14 10 5 8 + 0.30757417131498186E-003 6 3 14 10 + 0.32119794853949658E-003 14 10 6 3 + -0.19021521977324895E-003 6 4 14 10 + -0.19863815311024652E-003 14 10 6 4 + 0.14440006845188550E-003 6 5 14 10 + 0.15079826060025679E-003 14 10 6 5 + 0.14819954783840455E-002 6 6 14 10 + 0.15066869354180064E-002 14 10 6 6 + -0.15859867529844588E-003 6 7 14 10 + -0.16123635309521955E-003 14 10 6 7 + -0.68760924232842994E-003 6 8 14 10 + -0.69904319445121955E-003 14 10 6 8 + -0.29363197430663907E-002 7 3 14 10 + -0.30664275880570996E-002 14 10 7 3 + -0.22414409305138968E-002 7 4 14 10 + -0.23407582335124317E-002 14 10 7 4 + 0.13996661034269163E-002 7 5 14 10 + 0.14616895131936581E-002 14 10 7 5 + -0.15860928606979639E-003 7 6 14 10 + -0.16124696386657006E-003 14 10 7 6 + -0.13421023863064386E-001 7 7 14 10 + -0.13644136926956957E-001 14 10 7 7 + 0.98479459895086975E-002 7 8 14 10 + 0.10011696897730921E-001 14 10 7 8 + -0.80564157598360733E-003 8 3 14 10 + -0.84131496661660145E-003 14 10 8 3 + -0.76836001735234390E-003 8 4 14 10 + -0.80238400183705379E-003 14 10 8 4 + -0.35034565719453295E-002 8 5 14 10 + -0.36586695225888110E-002 14 10 8 5 + -0.68762239540997628E-003 8 6 14 10 + -0.69905634753276589E-003 14 10 8 6 + 0.98479526066943164E-002 8 7 14 10 + 0.10011703514916540E-001 14 10 8 7 + 0.11938780500389150E-001 8 8 14 10 + 0.12137333572727853E-001 14 10 8 8 + 0.83546946037308423E-008 9 1 14 10 + 0.71493740196949406E-008 14 10 9 1 + 0.84556717602071641E-007 9 2 14 10 + 0.10648452990928607E-006 14 10 9 2 + -0.90598119442005042E-007 9 9 14 10 + -0.50878875104120987E-007 14 10 9 9 + 0.23298844260473467E-002 9 10 14 10 + 0.23245123241475577E-002 14 10 9 10 + -0.15324385598436703E-003 9 11 14 10 + -0.15289013741397964E-003 14 10 9 11 + -0.29044326216908563E-003 9 12 14 10 + -0.28977364409406585E-003 14 10 9 12 + 0.17631121766625087E-004 9 13 14 10 + 0.17585741915995624E-004 14 10 9 13 + -0.28264092890810128E-003 9 14 14 10 + -0.28198447868366968E-003 14 10 9 14 + 0.51107556720253163E-002 10 1 14 10 + 0.51118777907498492E-002 14 10 10 1 + 0.53322327948952870E-001 10 2 14 10 + 0.53182639936768493E-001 14 10 10 2 + -0.76621590932834417E-002 10 9 14 10 + -0.76675311951832316E-002 14 10 10 9 + -0.20687436741307612E-006 10 10 14 10 + -0.19665104236322123E-006 14 10 10 10 + -0.13784736255775519E-003 10 11 14 10 + -0.13784753610358849E-003 14 10 10 11 + 0.73849091506468273E-003 10 12 14 10 + 0.73849361664565989E-003 14 10 10 12 + -0.79820995617239400E-003 10 13 14 10 + -0.79820991118755816E-003 14 10 10 13 + 0.38110570421543907E-001 10 14 14 10 + 0.38110570421543907E-001 14 10 10 14 + -0.33611860941873623E-003 11 1 14 10 + -0.33619247023850034E-003 14 10 11 1 + -0.35068363818079413E-002 11 2 14 10 + -0.34976497939603812E-002 14 10 11 2 + 0.50392646538109924E-003 11 9 14 10 + 0.50428018395148660E-003 14 10 11 9 + -0.13780643447956149E-003 11 10 14 10 + -0.13780660802539479E-003 14 10 11 10 + -0.13883653644142775E-001 11 11 14 10 + -0.13883676820610811E-001 14 10 11 11 + 0.48347402637739555E-002 11 12 14 10 + 0.48347537493152321E-002 14 10 11 12 + -0.12947138368485369E-002 11 13 14 10 + -0.12947171800107766E-002 14 10 11 13 + -0.68145905236703013E-003 11 14 14 10 + -0.68145843689355944E-003 14 10 11 14 + -0.63709875552129093E-003 12 1 14 10 + -0.63723866103094443E-003 14 10 12 1 + -0.66470652769101985E-002 12 2 14 10 + -0.66296523835466655E-002 14 10 12 2 + 0.95515342891771442E-003 12 9 14 10 + 0.95582304699273421E-003 14 10 12 9 + 0.73841796207924993E-003 12 10 14 10 + 0.73842066366022708E-003 14 10 12 10 + 0.48346849156380260E-002 12 11 14 10 + 0.48346984011793026E-002 14 10 12 11 + 0.15378432883532561E-001 12 12 14 10 + 0.15378485380851991E-001 14 10 12 12 + -0.29469302553760090E-003 12 13 14 10 + -0.29469370230656198E-003 14 10 12 13 + -0.10355095818936741E-002 12 14 14 10 + -0.10355079873381719E-002 14 10 12 14 + 0.38366862254632879E-004 13 1 14 10 + 0.38375863464038955E-004 14 10 13 1 + 0.40030261109015548E-003 13 2 14 10 + 0.39925482109810079E-003 14 10 13 2 + -0.57628305196365167E-004 13 9 14 10 + -0.57673685046994630E-004 14 10 13 9 + -0.79819598101015410E-003 13 10 14 10 + -0.79819593602531826E-003 14 10 13 10 + -0.12947295207161916E-002 13 11 14 10 + -0.12947328638784313E-002 14 10 13 11 + -0.29470035956775009E-003 13 12 14 10 + -0.29470103633671117E-003 14 10 13 12 + -0.14950304945320514E-002 13 13 14 10 + -0.14950140945334271E-002 14 10 13 13 + -0.27608604839059290E-004 13 14 14 10 + -0.27608369933762568E-004 14 10 13 14 + -0.61968264698148291E-003 14 1 14 10 + -0.61981920396570226E-003 14 10 14 1 + -0.64653779354775344E-002 14 2 14 10 + -0.64484399768165992E-002 14 10 14 2 + 0.92915426551140872E-003 14 9 14 10 + 0.92981071573584027E-003 14 10 14 9 + 0.38107485886154945E-001 14 10 14 10 + 0.59181360637896320E-009 1 1 14 11 + 0.15579984885203489E-009 14 11 1 1 + 0.27226320937568618E-004 1 10 14 11 + 0.27152457622805657E-004 14 11 1 10 + 0.19034198712601300E-003 1 11 14 11 + 0.18982597869560619E-003 14 11 1 11 + -0.11389012307788803E-004 1 12 14 11 + -0.11358130968850725E-004 14 11 1 12 + 0.23368488872201358E-004 1 13 14 11 + 0.23304166508954288E-004 14 11 1 13 + -0.35933000673424183E-006 1 14 14 11 + -0.35848634832079326E-006 14 11 1 14 + -0.12578974711465946E-009 2 1 14 11 + -0.17438785315976537E-008 2 2 14 11 + -0.15995950808662214E-008 14 11 2 2 + -0.17407223167149955E-008 2 9 14 11 + -0.13885056195697694E-008 14 11 2 9 + -0.19631236411590761E-002 2 10 14 11 + -0.19539370896661137E-002 14 11 2 10 + -0.13724897983123758E-001 2 11 14 11 + -0.13660670764745315E-001 14 11 2 11 + 0.82114120975583711E-003 2 12 14 11 + 0.81729866473250477E-003 14 11 2 12 + -0.16844219934113985E-002 2 13 14 11 + -0.16765409617399837E-002 14 11 2 13 + 0.26001151152028577E-004 2 14 14 11 + 0.25879255616008602E-004 14 11 2 14 + -0.91144383425293650E-002 3 3 14 11 + -0.90213576527827244E-002 14 11 3 3 + 0.28848473428173022E-002 3 4 14 11 + 0.28553828761793600E-002 14 11 3 4 + 0.48369596633156898E-002 3 5 14 11 + 0.47875572822659003E-002 14 11 3 5 + -0.16258607248462351E-002 3 6 14 11 + -0.16697893547216050E-002 14 11 3 6 + -0.15587415874321595E-002 3 7 14 11 + -0.16008564734201801E-002 14 11 3 7 + 0.30686683582055820E-003 3 8 14 11 + 0.31515194469926430E-003 14 11 3 8 + 0.28845239896302288E-002 4 3 14 11 + 0.28550595229922867E-002 14 11 4 3 + 0.93205160003731434E-002 4 4 14 11 + 0.92253224730635339E-002 14 11 4 4 + -0.83008439692133368E-002 4 5 14 11 + -0.82160671666602937E-002 14 11 4 5 + -0.12578569822530950E-002 4 6 14 11 + -0.12918435924596362E-002 14 11 4 6 + 0.23476984714506854E-002 4 7 14 11 + 0.24111351553200329E-002 14 11 4 7 + -0.54139392659090647E-003 4 8 14 11 + -0.55602746421962287E-003 14 11 4 8 + 0.48372056429360818E-002 5 3 14 11 + 0.47878032618862924E-002 14 11 5 3 + -0.83011158728948601E-002 5 4 14 11 + -0.82163390703418170E-002 14 11 5 4 + -0.20608235935173851E-003 5 5 14 11 + -0.20396934329780750E-003 14 11 5 5 + 0.20041036521517520E-002 5 6 14 11 + 0.20582519274558284E-002 14 11 5 6 + -0.23030199975903273E-004 5 7 14 11 + -0.23642809231217871E-004 14 11 5 7 + 0.37438983451643169E-003 5 8 14 11 + 0.38450972115935917E-003 14 11 5 8 + -0.99146815397737720E-003 6 3 14 11 + -0.10353967838527471E-002 14 11 6 3 + -0.76703743882601625E-003 6 4 14 11 + -0.80102404903255775E-003 14 11 6 4 + 0.12221122889337695E-002 6 5 14 11 + 0.12762605642378459E-002 14 11 6 5 + 0.19975896820241648E-003 6 6 14 11 + 0.20308215713209758E-003 14 11 6 6 + -0.71907685185200179E-002 6 7 14 11 + -0.73103357832878055E-002 14 11 6 7 + 0.16386601092760575E-002 6 8 14 11 + 0.16659079483232807E-002 14 11 6 8 + -0.95064922503170131E-003 7 3 14 11 + -0.99276411101972199E-003 14 11 7 3 + 0.14317227094230861E-002 7 4 14 11 + 0.14951593932924336E-002 14 11 7 4 + -0.14179572842752933E-004 7 5 14 11 + -0.14792182098067529E-004 14 11 7 5 + -0.71909181379765262E-002 7 6 14 11 + -0.73104854027443138E-002 14 11 7 6 + 0.30609886620439316E-004 7 7 14 11 + 0.31114487566646766E-004 14 11 7 7 + -0.86316595700922333E-003 7 8 14 11 + -0.87752519111359271E-003 14 11 7 8 + 0.18723759202003779E-003 8 3 14 11 + 0.19552270089874386E-003 14 11 8 3 + -0.33008960247940750E-003 8 4 14 11 + -0.34472314010812385E-003 14 11 8 4 + 0.22826071239054601E-003 8 5 14 11 + 0.23838059903347349E-003 14 11 8 5 + 0.16386827135282786E-002 8 6 14 11 + 0.16659305525755018E-002 14 11 8 6 + -0.86316426520840052E-003 8 7 14 11 + -0.87752349931276990E-003 14 11 8 7 + -0.23037283647785582E-003 8 8 14 11 + -0.23419851468220717E-003 14 11 8 8 + 0.13419773998219455E-009 9 1 14 11 + 0.11483721156287266E-009 14 11 9 1 + 0.13581969440179423E-008 9 2 14 11 + 0.17104136411638152E-008 14 11 9 2 + -0.14552372293149151E-008 9 9 14 11 + -0.81724467260580927E-009 14 11 9 9 + -0.15324385361185439E-003 9 10 14 11 + -0.15289012937600541E-003 14 11 9 10 + -0.10712826794551504E-002 9 11 14 11 + -0.10688125303517856E-002 14 11 9 11 + 0.64096282161028162E-004 9 12 14 11 + 0.63948551911248438E-004 14 11 9 12 + -0.13171923982001311E-003 9 13 14 11 + -0.13140781567551617E-003 14 11 9 13 + 0.19971428388026887E-005 9 14 14 11 + 0.19935563441219087E-005 14 11 9 14 + -0.33611870530385758E-003 10 1 14 11 + -0.33619256861862053E-003 14 11 10 1 + -0.35068393009560772E-002 10 2 14 11 + -0.34976527494631148E-002 14 11 10 2 + 0.50392666526954543E-003 10 9 14 11 + 0.50428038950539437E-003 14 11 10 9 + 0.27563985887746383E-003 10 10 14 11 + 0.27564078978474103E-003 14 11 10 10 + 0.69409343682480659E-002 10 11 14 11 + 0.69409533719420463E-002 14 11 10 11 + -0.19649045320821695E-002 10 12 14 11 + -0.19649091513849800E-002 14 11 10 12 + -0.32411981258248333E-003 10 13 14 11 + -0.32411886158123044E-003 14 11 10 13 + -0.68142400813052384E-003 10 14 14 11 + -0.68142462360399453E-003 14 11 10 14 + -0.23499015764763711E-002 11 1 14 11 + -0.23504175849067780E-002 14 11 11 1 + -0.24517333476207520E-001 11 2 14 11 + -0.24453106257829076E-001 14 11 11 2 + 0.35230311558896144E-002 11 9 14 11 + 0.35255013049929791E-002 14 11 11 9 + 0.69424624938875888E-002 11 10 14 11 + 0.69424814975815692E-002 14 11 11 10 + 0.65928007614367597E-008 11 11 14 11 + 0.59474022732035116E-008 14 11 11 11 + -0.10499029432725396E-002 11 12 14 11 + -0.10499087254817404E-002 14 11 11 12 + -0.19811608618820063E-002 11 13 14 11 + -0.19811612536949309E-002 14 11 11 13 + 0.24046476874561493E-001 11 14 14 11 + 0.24046476874561493E-001 14 11 11 14 + 0.14059486965405400E-003 12 1 14 11 + 0.14062575099299207E-003 14 11 12 1 + 0.14668676523682785E-002 12 2 14 11 + 0.14630251073449460E-002 14 11 12 2 + -0.21078332822553500E-003 12 9 14 11 + -0.21093105847531474E-003 14 11 12 9 + -0.19653520328644122E-002 12 10 14 11 + -0.19653566521672227E-002 14 11 12 10 + -0.10496535589890289E-002 12 11 14 11 + -0.10496593411982295E-002 14 11 12 11 + -0.55454203783373646E-003 12 12 14 11 + -0.55454176578048945E-003 14 11 12 12 + -0.68377704405793343E-002 12 13 14 11 + -0.68377720048186773E-002 14 11 12 13 + -0.37542104715842714E-003 12 14 14 11 + -0.37542120263716830E-003 14 11 12 14 + -0.28842974200388578E-003 13 1 14 11 + -0.28849406436713286E-003 14 11 13 1 + -0.30092995383865350E-002 13 2 14 11 + -0.30014185067151204E-002 14 11 13 2 + 0.43259439069499937E-003 13 9 14 11 + 0.43290581483949631E-003 14 11 13 9 + -0.32402565225705693E-003 13 10 14 11 + -0.32402470125580404E-003 14 11 13 10 + -0.19811050225625078E-002 13 11 14 11 + -0.19811054143754323E-002 14 11 13 11 + -0.68377623131096301E-002 13 12 14 11 + -0.68377638773489732E-002 14 11 13 12 + 0.27888656648895622E-003 13 13 14 11 + 0.27888668398973415E-003 14 11 13 13 + -0.52198390812299440E-003 13 14 14 11 + -0.52198567988173781E-003 14 11 13 14 + 0.44468886326835403E-005 14 1 14 11 + 0.44477322910969888E-005 14 11 14 1 + 0.46394041682329900E-004 14 2 14 11 + 0.46272146146309918E-004 14 11 14 2 + -0.66441731244394222E-005 14 9 14 11 + -0.66477596191202044E-005 14 11 14 9 + -0.68144832179813314E-003 14 10 14 11 + -0.68144893727160383E-003 14 11 14 10 + 0.24043630403678701E-001 14 11 14 11 + -0.28725687049031734E-007 1 1 14 12 + -0.75622732689563463E-008 14 12 1 1 + 0.30031298894687609E-008 1 2 14 12 + 0.17111932299182873E-008 14 12 1 2 + -0.62816383267367163E-009 1 9 14 12 + 0.31156540368637070E-009 14 12 1 9 + 0.51605849371644739E-004 1 10 14 12 + 0.51465949219389359E-004 14 12 1 10 + -0.11389011380193145E-004 1 11 14 12 + -0.11358129786861931E-004 14 12 1 11 + 0.22497334217443205E-003 1 12 14 12 + 0.22436361615588366E-003 14 12 1 12 + -0.17344855433694287E-004 1 13 14 12 + -0.17297340860985976E-004 14 12 1 13 + -0.54473818025139427E-005 1 14 14 12 + -0.54320023433267230E-005 14 12 1 14 + 0.61056342495034421E-008 2 1 14 12 + 0.48136975899529887E-008 14 12 2 1 + 0.84645090990529060E-007 2 2 14 12 + 0.77641801915142265E-007 14 12 2 2 + 0.84491889713563657E-007 2 9 14 12 + 0.67395851870903003E-007 14 12 2 9 + -0.37210336607420001E-002 2 10 14 12 + -0.37036206893158868E-002 14 12 2 10 + 0.82114122629680178E-003 2 11 14 12 + 0.81729868498022851E-003 14 12 2 11 + -0.16222762745518208E-001 2 12 14 12 + -0.16146845732020829E-001 14 12 2 12 + 0.12504121194699314E-002 2 13 14 12 + 0.12445613207205898E-002 14 12 2 13 + 0.39243137550543355E-003 2 14 14 12 + 0.39059576706516484E-003 14 12 2 14 + 0.11559148355883246E-001 3 3 14 12 + 0.11441096756944142E-001 14 12 3 3 + -0.13231705391123316E-002 3 4 14 12 + -0.13096610205581166E-002 14 12 3 4 + 0.52925909504291414E-002 3 5 14 12 + 0.52385385390418754E-002 14 12 3 5 + 0.18492164960417436E-002 3 6 14 12 + 0.18991860978102818E-002 14 12 3 6 + 0.94398048595648772E-004 3 7 14 12 + 0.96957162052709739E-004 14 12 3 7 + -0.19812243773438404E-002 3 8 14 12 + -0.20347644529158048E-002 14 12 3 8 + -0.13228242156103816E-002 4 3 14 12 + -0.13093146970561665E-002 14 12 4 3 + -0.13201437792767067E-001 4 4 14 12 + -0.13066610646252766E-001 14 12 4 4 + -0.89389846850933073E-002 4 5 14 12 + -0.88476901255848950E-002 14 12 4 5 + 0.18472432417556172E-002 4 6 14 12 + 0.18971449458348663E-002 14 12 4 6 + 0.62078799008261662E-003 4 7 14 12 + 0.63756617207383879E-003 14 12 4 7 + 0.27791709326452263E-002 4 8 14 12 + 0.28542534075121015E-002 14 12 4 8 + 0.52927909223977783E-002 5 3 14 12 + 0.52387385110105123E-002 14 12 5 3 + -0.89392520291161973E-002 5 4 14 12 + -0.88479574696077850E-002 14 12 5 4 + 0.16425176405988032E-002 5 5 14 12 + 0.16257334293555330E-002 14 12 5 5 + 0.21969847130617419E-002 5 6 14 12 + 0.22563443777620226E-002 14 12 5 6 + -0.34812912483180139E-003 5 7 14 12 + -0.35755772342133590E-003 14 12 5 7 + 0.17782075680650898E-003 5 8 14 12 + 0.18261267945450570E-003 14 12 5 8 + 0.11278011126923052E-002 6 3 14 12 + 0.11777707144608434E-002 14 12 6 3 + 0.11263425978086602E-002 6 4 14 12 + 0.11762443018879093E-002 14 12 6 4 + 0.13397702388425177E-002 6 5 14 12 + 0.13991299035427983E-002 14 12 6 5 + -0.24956676403633881E-003 6 6 14 12 + -0.25375742028825159E-003 14 12 6 6 + -0.11373410440014174E-002 6 7 14 12 + -0.11562519965642557E-002 14 12 6 7 + -0.86971912715043259E-002 6 8 14 12 + -0.88418042431800178E-002 14 12 6 8 + 0.57584304258937431E-004 7 3 14 12 + 0.60143417715998391E-004 14 12 7 3 + 0.37861891918239909E-003 7 4 14 12 + 0.39539710117362132E-003 14 12 7 4 + -0.21226384847401134E-003 7 5 14 12 + -0.22169244706354586E-003 14 12 7 5 + -0.11373694898686459E-002 7 6 14 12 + -0.11562804424314842E-002 14 12 7 6 + 0.13387280445178030E-002 7 7 14 12 + 0.13609587313943704E-002 14 12 7 7 + -0.56501140131379809E-003 7 8 14 12 + -0.57440311422718101E-003 14 12 7 8 + -0.12083562530630513E-002 8 3 14 12 + -0.12618963286350154E-002 14 12 8 3 + 0.16948362351374324E-002 8 4 14 12 + 0.17699187100043074E-002 14 12 8 4 + 0.10843474761064517E-003 8 5 14 12 + 0.11322667025864186E-003 14 12 8 5 + -0.86973374079534638E-002 8 6 14 12 + -0.88419503796291557E-002 14 12 8 6 + -0.56501408465663974E-003 8 7 14 12 + -0.57440579757002267E-003 14 12 8 7 + -0.10889680172789442E-002 8 8 14 12 + -0.11071105450789285E-002 14 12 8 8 + -0.65137448832159886E-008 9 1 14 12 + -0.55740156468549683E-008 14 12 9 1 + -0.65924718090830505E-007 9 2 14 12 + -0.83020755933491464E-007 14 12 9 2 + 0.70634902325382901E-007 9 9 14 12 + 0.39667759103936952E-007 14 12 9 9 + -0.29044326726347409E-003 9 10 14 12 + -0.28977366135364601E-003 14 12 9 10 + 0.64096281919145991E-004 9 11 14 12 + 0.63948551091708866E-004 14 12 9 11 + -0.12661974892811706E-002 9 12 14 12 + -0.12632783648346959E-002 14 12 9 12 + 0.97723488209141624E-004 9 13 14 12 + 0.97494185301503388E-004 14 12 9 13 + 0.30785247999598611E-004 9 14 14 12 + 0.30709380486194804E-004 14 12 9 14 + -0.63709854963148562E-003 10 1 14 12 + -0.63723844978374100E-003 14 12 10 1 + -0.66470590087548149E-002 10 2 14 12 + -0.66296460373287021E-002 14 12 10 2 + 0.95515299970624836E-003 10 9 14 12 + 0.95582260561607644E-003 14 12 10 9 + -0.14767650490916375E-002 10 10 14 12 + -0.14767772030943433E-002 14 12 10 10 + -0.28694160957437459E-002 10 11 14 12 + -0.28694229197609830E-002 14 12 10 11 + -0.76886909740303943E-002 10 12 14 12 + -0.76887106046681563E-002 14 12 10 12 + 0.36724031622594587E-004 10 13 14 12 + 0.36724512980607349E-004 14 12 10 13 + -0.10354210323618239E-002 10 14 14 12 + -0.10354226269173260E-002 14 12 10 14 + 0.14059487943061914E-003 11 1 14 12 + 0.14062576102395036E-003 14 12 11 1 + 0.14668679500082645E-002 11 2 14 12 + 0.14630254086916911E-002 14 12 11 2 + -0.21078334860640454E-003 11 9 14 12 + -0.21093107943384167E-003 14 12 11 9 + -0.28698096674454219E-002 11 10 14 12 + -0.28698164914626591E-002 14 12 11 10 + 0.20998435452046168E-002 11 11 14 12 + 0.20998367799296338E-002 14 12 11 11 + 0.27721313048956978E-003 11 12 14 12 + 0.27721573174176791E-003 14 12 11 12 + -0.78238604359346861E-002 11 13 14 12 + -0.78238586261423944E-002 14 12 11 13 + -0.37542928398614979E-003 11 14 14 12 + -0.37542912850740864E-003 14 12 11 14 + -0.27775397744973724E-002 12 1 14 12 + -0.27781495005159205E-002 14 12 12 1 + -0.28979087477939518E-001 12 2 14 12 + -0.28903170464442140E-001 14 12 12 2 + 0.41641359515436766E-002 12 9 14 12 + 0.41670550759901510E-002 14 12 12 9 + -0.76899926655254851E-002 12 10 14 12 + -0.76900122961632471E-002 14 12 12 10 + 0.27726139326989576E-003 12 11 14 12 + 0.27726399452209389E-003 14 12 12 11 + 0.21776550252471731E-006 12 12 14 12 + 0.20574004227567493E-006 14 12 12 12 + 0.27793676134457699E-002 12 13 14 12 + 0.27793684136297641E-002 14 12 12 13 + 0.25667000605499021E-001 12 14 14 12 + 0.25667000605499021E-001 14 12 12 14 + 0.21410323430938471E-003 13 1 14 12 + 0.21415074888209303E-003 14 12 13 1 + 0.22338208563190813E-002 13 2 14 12 + 0.22279700575697399E-002 14 12 13 2 + -0.32107821999280135E-003 13 9 14 12 + -0.32130752290043959E-003 14 12 13 9 + 0.36752446321773332E-004 13 10 14 12 + 0.36752927679786094E-004 14 12 13 10 + -0.78237420668269796E-002 13 11 14 12 + -0.78237402570346896E-002 14 12 13 11 + 0.27792988904865898E-002 13 12 14 12 + 0.27792996906705839E-002 14 12 13 12 + -0.62289628660437365E-003 13 13 14 12 + -0.62290570330956877E-003 14 12 13 13 + 0.32228290481539585E-003 13 14 14 12 + 0.32228372390951965E-003 14 12 13 14 + 0.67209333242416639E-004 14 1 14 12 + 0.67224712701603861E-004 14 12 14 1 + 0.70122445331499748E-003 14 2 14 12 + 0.69938884487472878E-003 14 12 14 2 + -0.10087236975910587E-003 14 9 14 12 + -0.10094823727250967E-003 14 12 14 9 + -0.10354874897662975E-002 14 10 14 12 + -0.10354890843217997E-002 14 12 14 10 + -0.37544737267931492E-003 14 11 14 12 + -0.37544721720057377E-003 14 12 14 11 + 0.25663978836230148E-001 14 12 14 12 + -0.12813931588074302E-009 1 1 14 13 + -0.31097494407378511E-005 1 10 14 13 + -0.31007430959168792E-005 14 13 1 10 + 0.23368700714289016E-004 1 11 14 13 + 0.23304436448852905E-004 14 13 1 11 + -0.17344938624325503E-004 1 12 14 13 + -0.17297446866694863E-004 14 13 1 12 + -0.41796821541292405E-003 1 13 14 13 + -0.41681807307809561E-003 14 13 1 13 + -0.51797522117624199E-004 1 14 14 13 + -0.51655044150269635E-004 14 13 1 14 + 0.37756989192524659E-009 2 2 14 13 + 0.34633060635435537E-009 14 13 2 2 + 0.37689040963124887E-009 2 9 14 13 + 0.30063077814958977E-009 14 13 2 9 + 0.22401428848499962E-003 2 10 14 13 + 0.22296657332101282E-003 14 13 2 10 + -0.16844182158192028E-002 2 11 14 13 + -0.16765363376052937E-002 14 13 2 11 + 0.12504106360051134E-002 2 12 14 13 + 0.12445595048175544E-002 14 13 2 12 + 0.30131573245519083E-001 2 13 14 13 + 0.29990585148372263E-001 14 13 2 13 + 0.37341466561943894E-002 2 14 14 13 + 0.37166741801705340E-002 14 13 2 14 + -0.17337456957620546E-001 3 3 14 13 + -0.17160295048473391E-001 14 13 3 3 + -0.12109880764544594E-001 3 4 14 13 + -0.11986135265480318E-001 14 13 3 4 + -0.64617964779768973E-002 3 5 14 13 + -0.63957708887174185E-002 14 13 3 5 + -0.44879468185846360E-003 3 6 14 13 + -0.46093174673519395E-003 14 13 3 6 + -0.13010634911157647E-002 3 7 14 13 + -0.13362574713415170E-002 14 13 3 7 + 0.44862710963127000E-002 3 8 14 13 + 0.46076107792667577E-002 14 13 3 8 + -0.12109915398425319E-001 4 3 14 13 + -0.11986169899361044E-001 14 13 4 3 + -0.12694829619163024E-001 4 4 14 13 + -0.12565106401357783E-001 14 13 4 4 + -0.28756832650467775E-002 4 5 14 13 + -0.28463002276809066E-002 14 13 4 5 + 0.40315005284183167E-003 4 6 14 13 + 0.41405508749735911E-003 14 13 4 6 + -0.14694970967315906E-002 4 7 14 13 + -0.15092460113027629E-002 14 13 4 7 + 0.34514022194102895E-002 4 8 14 13 + 0.35447539015387376E-002 14 13 4 8 + -0.64617699280759494E-002 5 3 14 13 + -0.63957443388164706E-002 14 13 5 3 + -0.28756750278043472E-002 5 4 14 13 + -0.28462919904384764E-002 14 13 5 4 + 0.30032287594714175E-001 5 5 14 13 + 0.29725402429116126E-001 14 13 5 5 + 0.44907780872228975E-004 5 6 14 13 + 0.46123418080125816E-004 14 13 5 6 + -0.61477761108260634E-002 5 7 14 13 + -0.63140557358264144E-002 14 13 5 7 + -0.22522897562028315E-002 5 8 14 13 + -0.23132128154170254E-002 14 13 5 8 + -0.27352717140223851E-003 6 3 14 13 + -0.28566423627896886E-003 14 13 6 3 + 0.24568352770059504E-003 6 4 14 13 + 0.25658856235612247E-003 14 13 6 4 + 0.27352100078754564E-004 6 5 14 13 + 0.28567737286651401E-004 14 13 6 5 + -0.15208523444420468E-002 6 6 14 13 + -0.15461535301933775E-002 14 13 6 6 + -0.31233889924592745E-003 6 7 14 13 + -0.31753515332386183E-003 14 13 6 7 + 0.74362648021034745E-004 6 8 14 13 + 0.75598284957628393E-004 14 13 6 8 + -0.79286517338499822E-003 7 3 14 13 + -0.82805915361075055E-003 14 13 7 3 + -0.89551717380033423E-003 7 4 14 13 + -0.93526608837150632E-003 14 13 7 4 + -0.37466845326669810E-002 7 5 14 13 + -0.39129641576673329E-002 14 13 7 5 + -0.31234774017841740E-003 7 6 14 13 + -0.31754399425635177E-003 14 13 7 6 + 0.10575015600038130E-001 7 7 14 13 + 0.10750941478877769E-001 14 13 7 7 + 0.12768086339659309E-001 7 8 14 13 + 0.12980502395284668E-001 14 13 7 8 + 0.27341129818102450E-002 8 3 14 13 + 0.28554526647643027E-002 14 13 8 3 + 0.21033884038225803E-002 8 4 14 13 + 0.21967400859510284E-002 14 13 8 4 + -0.13725520495673762E-002 8 5 14 13 + -0.14334751087815704E-002 14 13 8 5 + 0.74370328356546442E-004 8 6 14 13 + 0.75605965293140090E-004 14 13 8 6 + 0.12768079140622529E-001 8 7 14 13 + 0.12980495196247888E-001 14 13 8 7 + -0.90541623935218064E-002 8 8 14 13 + -0.92047875438152470E-002 14 13 8 8 + -0.29406733663989127E-009 9 2 14 13 + -0.37032696813057698E-009 14 13 9 2 + 0.31507561312609131E-009 9 9 14 13 + 0.17694167770120376E-009 14 13 9 9 + 0.17631116883302930E-004 9 10 14 13 + 0.17585725371545346E-004 14 13 9 10 + -0.13171929506560897E-003 9 11 14 13 + -0.13140800284541061E-003 14 13 9 11 + 0.97723509904155574E-004 9 12 14 13 + 0.97494258803341481E-004 14 13 9 12 + 0.23562292988150496E-002 9 13 14 13 + 0.23506552690697011E-002 14 13 9 13 + 0.29198924105979906E-003 9 14 14 13 + 0.29129892771202510E-003 14 13 9 14 + 0.38367059613412799E-004 10 1 14 13 + 0.38376065958233775E-004 14 13 10 1 + 0.40030861952506920E-003 10 2 14 13 + 0.39926090436108241E-003 14 13 10 2 + -0.57628716623490500E-004 10 9 14 13 + -0.57674108135248088E-004 14 13 10 9 + 0.15962983366968073E-002 10 10 14 13 + 0.15963053575344859E-002 14 13 10 10 + 0.16186155739460872E-002 10 11 14 13 + 0.16186229613065688E-002 14 13 10 11 + 0.25793026447888993E-003 10 12 14 13 + 0.25793116258836853E-003 14 13 10 12 + 0.74722765090799422E-003 10 13 14 13 + 0.74722779756284296E-003 14 13 10 13 + -0.27608783549996063E-004 10 14 14 13 + -0.27609018455292778E-004 14 13 10 14 + -0.28842750925088984E-003 11 1 14 13 + -0.28849177351632596E-003 14 13 11 1 + -0.30092315639543535E-002 11 2 14 13 + -0.30013496857404444E-002 14 13 11 2 + 0.43258973615092363E-003 11 9 14 13 + 0.43290102837112199E-003 14 13 11 9 + 0.16187190139745242E-002 11 10 14 13 + 0.16187264013350060E-002 14 13 11 10 + 0.39620586676637030E-002 11 11 14 13 + 0.39620760389031274E-002 14 13 11 11 + 0.14660673153901750E-001 11 12 14 13 + 0.14660740039826561E-001 14 13 11 12 + -0.13942873751003371E-003 11 13 14 13 + -0.13943013977627230E-003 14 13 11 13 + -0.52199002958067586E-003 11 14 14 13 + -0.52198825782193245E-003 14 13 11 14 + 0.21410235750470583E-003 12 1 14 13 + 0.21414984926233647E-003 14 13 12 1 + 0.22337941626810677E-002 12 2 14 13 + 0.22279430314935083E-002 14 13 12 2 + -0.32107639214796661E-003 12 9 14 13 + -0.32130564324878071E-003 14 13 12 9 + 0.25796310115040733E-003 12 10 14 13 + 0.25796399925988599E-003 14 13 12 10 + 0.14660754670786612E-001 12 11 14 13 + 0.14660821556711423E-001 14 13 12 11 + -0.55583598830609938E-002 12 12 14 13 + -0.55583841825673323E-002 14 13 12 12 + 0.31163884089639341E-003 12 13 14 13 + 0.31164309533696809E-003 14 13 12 13 + 0.32228827622067123E-003 12 14 14 13 + 0.32228745712654743E-003 14 13 12 14 + 0.51593395248682814E-002 13 1 14 13 + 0.51604896672031103E-002 14 13 13 1 + 0.53829442433247471E-001 13 2 14 13 + 0.53688454336100651E-001 14 13 13 2 + -0.77382129031862736E-002 13 9 14 13 + -0.77437869329316216E-002 14 13 13 9 + 0.74734386127624404E-003 13 10 14 13 + 0.74734400793109279E-003 14 13 13 10 + -0.13942882354409279E-003 13 11 14 13 + -0.13943022581033138E-003 14 13 13 11 + 0.31154685894305584E-003 13 12 14 13 + 0.31155111338363053E-003 14 13 13 12 + 0.28191742614232898E-008 13 13 14 13 + 0.24319888166650974E-008 14 13 13 13 + 0.38195680871084145E-001 13 14 14 13 + 0.38195680871084145E-001 14 13 13 14 + 0.63938497207576396E-003 14 1 14 13 + 0.63952745004311853E-003 14 13 14 1 + 0.66709561656973990E-002 14 2 14 13 + 0.66534836896735439E-002 14 13 14 2 + -0.95896902582682576E-003 14 9 14 13 + -0.95965933917459972E-003 14 13 14 9 + -0.27518778729706231E-004 14 10 14 13 + -0.27519013635002949E-004 14 13 14 10 + -0.52213803708481223E-003 14 11 14 13 + -0.52213626532606882E-003 14 13 14 11 + 0.32238106992907794E-003 14 12 14 13 + 0.32238025083495414E-003 14 13 14 12 + 0.38195674404738915E-001 14 13 14 13 + 0.78465832076644926 1 1 14 14 + 0.78348199390580686 14 14 1 1 + -0.37490117575387526E-001 1 2 14 14 + -0.37882772553509095E-001 14 14 1 2 + 0.33554536800457967E-001 1 9 14 14 + 0.33475981848989471E-001 14 14 1 9 + 0.50191148387850490E-004 1 10 14 14 + 0.50054474850068194E-004 14 14 1 10 + -0.35928692216851619E-006 1 11 14 14 + -0.35843144779020950E-006 14 14 1 11 + -0.54474765536390100E-005 1 12 14 14 + -0.54321230799887827E-005 14 14 1 12 + -0.51797501122591894E-004 1 13 14 14 + -0.51655017397277770E-004 14 14 1 13 + 0.41661746703711437E-003 1 14 14 14 + 0.41547094042670778E-003 14 14 1 14 + 0.31646049365373088E-001 2 1 14 14 + 0.31253394387251519E-001 14 14 2 1 + 0.63941527233661466 2 2 14 14 + 0.63694027551523347 14 14 2 2 + -0.15253933987492385 2 9 14 14 + -0.15183023270194990 14 14 2 9 + -0.36194092185865296E-002 2 10 14 14 + -0.36024729582261336E-002 14 14 2 10 + 0.26001919440902206E-004 2 11 14 14 + 0.25880196075170548E-004 14 14 2 11 + 0.39242968589282427E-003 2 12 14 14 + 0.39059369881759478E-003 14 14 2 12 + 0.37341470305834769E-002 2 13 14 14 + 0.37166746384587734E-002 14 14 2 13 + -0.30034096747216896E-001 2 14 14 14 + -0.29893564869761503E-001 14 14 2 14 + 0.62486897068928360 3 3 14 14 + 0.62202265534142487 14 14 3 3 + -0.26014713589274971E-001 3 4 14 14 + -0.25748881923253267E-001 14 14 3 4 + -0.20482483834552908E-003 3 5 14 14 + -0.20274061882729391E-003 14 14 3 5 + 0.11087107374858904 3 6 14 14 + 0.11244922567128372 14 14 3 6 + 0.75137864271782664E-001 3 7 14 14 + 0.76147437434414378E-001 14 14 3 7 + -0.10186619126369047 3 8 14 14 + -0.10322243600035555 14 14 3 8 + -0.26014693439602887E-001 4 3 14 14 + -0.25748861773581180E-001 14 14 4 3 + 0.63331640891819696 4 4 14 14 + 0.63038376329939105 14 14 4 4 + -0.41901151892372998E-002 4 5 14 14 + -0.41473096528921389E-002 14 14 4 5 + -0.13447505618149772 4 6 14 14 + -0.13638638673988540 14 14 4 6 + 0.49193426376481171E-001 4 7 14 14 + 0.49852040189727914E-001 14 14 4 7 + -0.91751175667298124E-001 4 8 14 14 + -0.92971440386047530E-001 14 14 4 8 + -0.20481424301211159E-003 5 3 14 14 + -0.20273002349387645E-003 14 14 5 3 + -0.41901268105372360E-002 5 4 14 14 + -0.41473212741920751E-002 14 14 5 4 + 0.60656940528363068 5 5 14 14 + 0.60391007480533387 14 14 5 5 + 0.12109271971112773E-001 5 6 14 14 + 0.12280601802419317E-001 14 14 5 6 + -0.13792140042454182 5 7 14 14 + -0.13977463453995045 14 14 5 7 + -0.88459483226211458E-001 5 8 14 14 + -0.89638419327082261E-001 14 14 5 8 + 0.81778720231611521E-001 6 3 14 14 + 0.83356872154306205E-001 14 14 6 3 + -0.99217082512773710E-001 6 4 14 14 + -0.10112841307116138 14 14 6 4 + 0.89421842942637008E-002 6 5 14 14 + 0.91135141255702448E-002 14 14 6 5 + 0.50666151300976792 6 6 14 14 + 0.50665056992400914 14 14 6 6 + 0.34234355986562543E-003 6 7 14 14 + 0.34803919539873259E-003 14 14 6 7 + -0.20513300563986594E-003 6 8 14 14 + -0.20854159870401016E-003 14 14 6 8 + 0.56021525700695074E-001 7 3 14 14 + 0.57031098863326801E-001 14 14 7 3 + 0.36701431675509009E-001 7 4 14 14 + 0.37360045488755753E-001 14 14 7 4 + -0.10283097189231144 7 5 14 14 + -0.10468420600772009 14 14 7 5 + 0.34234284604964086E-003 7 6 14 14 + 0.34803848158274802E-003 14 14 7 6 + 0.48065208824777345 7 7 14 14 + 0.48020843375143596 14 14 7 7 + 0.25780534179150390E-003 7 8 14 14 + 0.26210146399233776E-003 14 14 7 8 + -0.76074268021901079E-001 8 3 14 14 + -0.77430512758566161E-001 14 14 8 3 + -0.68533368162954800E-001 8 4 14 14 + -0.69753632881704206E-001 14 14 8 4 + -0.66050116416863841E-001 8 5 14 14 + -0.67229052517734630E-001 14 14 8 5 + -0.20514085595904947E-003 8 6 14 14 + -0.20854944902319369E-003 14 14 8 6 + 0.25780466159798071E-003 8 7 14 14 + 0.26210078379881456E-003 14 14 8 7 + 0.47698332892754336 8 8 14 14 + 0.47647865926607214 14 14 8 8 + -0.27483271537826568E-001 9 1 14 14 + -0.27561826489295064E-001 14 14 9 1 + -0.99628326221005786E-001 9 2 14 14 + -0.98919219048031817E-001 14 14 9 2 + 0.50320137908230500 9 9 14 14 + 0.50547104132715548 14 14 9 9 + -0.28264081807653172E-003 9 10 14 14 + -0.28198410319071643E-003 14 14 9 10 + 0.19971316029048870E-005 9 11 14 14 + 0.19935182773840911E-005 14 14 9 11 + 0.30785272709459796E-004 9 12 14 14 + 0.30709464202135098E-004 14 14 9 12 + 0.29198923558438846E-003 9 13 14 14 + 0.29129890916185653E-003 14 14 9 13 + -0.23486335561261388E-002 9 14 14 14 + -0.23430766980308462E-002 14 14 9 14 + -0.61968712624347840E-003 10 1 14 14 + -0.61982379978126067E-003 14 14 10 1 + -0.64655143031327189E-002 10 2 14 14 + -0.64485780427723230E-002 14 14 10 2 + 0.92916360327619852E-003 10 9 14 14 + 0.92982031816201381E-003 14 14 10 9 + 0.59440809074709655 10 10 14 14 + 0.59440834897636230 14 14 10 10 + 0.13628156405463623E-002 10 11 14 14 + 0.13628226044054531E-002 14 14 10 11 + 0.20708249551107632E-002 10 12 14 14 + 0.20708355008581219E-002 14 14 10 12 + 0.54916762439236550E-004 10 13 14 14 + 0.54909325450619374E-004 14 14 10 13 + -0.53603556838953880E-006 10 14 14 14 + -0.54577860450687344E-006 14 14 10 14 + 0.44473427312726157E-005 11 1 14 14 + 0.44481982056509204E-005 14 14 11 1 + 0.46407866361478005E-004 11 2 14 14 + 0.46286142995746338E-004 14 14 11 2 + -0.66451197683065072E-005 11 9 14 14 + -0.66487330938272887E-005 14 14 11 9 + 0.13627868345841346E-002 11 10 14 14 + 0.13627937984432251E-002 14 14 11 10 + 0.62253461410412436 11 11 14 14 + 0.62253499761436115 14 14 11 11 + 0.75079380668925178E-003 11 12 14 14 + 0.75079841209428264E-003 14 14 11 12 + 0.10444100678086506E-002 11 13 14 14 + 0.10444304332298802E-002 14 14 11 13 + -0.49806994506546450E-008 11 14 14 14 + -0.53607410889327479E-008 14 14 11 14 + 0.67208334593873208E-004 12 1 14 14 + 0.67223688067523426E-004 14 14 12 1 + 0.70119405023639516E-003 12 2 14 14 + 0.69935806316116572E-003 14 14 12 2 + -0.10087028791056143E-003 12 9 14 14 + -0.10094609641788613E-003 14 14 12 9 + 0.20707523184035101E-002 12 10 14 14 + 0.20707628641508688E-002 14 14 12 10 + 0.75080062240960067E-003 12 11 14 14 + 0.75080522781463153E-003 14 14 12 11 + 0.61929361928980986 12 12 14 14 + 0.61929399294287446 14 14 12 12 + -0.64483169178952552E-003 12 13 14 14 + -0.64484353213199784E-003 14 14 12 13 + 0.37060101134095073E-006 12 14 14 14 + 0.38145265923879688E-006 14 14 12 14 + 0.63938519335927739E-003 13 1 14 14 + 0.63952767708459150E-003 14 14 13 1 + 0.66709629025084516E-002 13 2 14 14 + 0.66534905103837480E-002 14 14 13 2 + -0.95896948712944946E-003 13 9 14 14 + -0.95965981355198128E-003 14 14 13 9 + 0.54917113359992403E-004 13 10 14 14 + 0.54909676371375228E-004 14 14 13 10 + 0.10444157378442570E-002 13 11 14 14 + 0.10444361032654866E-002 14 14 13 11 + -0.64483562920552900E-003 13 12 14 14 + -0.64484746954800133E-003 14 14 13 12 + 0.59422726608150100 13 13 14 14 + 0.59422726683472449 14 14 13 13 + 0.37171430666378025E-008 13 14 14 14 + 0.36509726062134324E-008 14 14 13 14 + -0.51426538459198642E-002 14 1 14 14 + -0.51438003725302710E-002 14 14 14 1 + -0.53655349428053119E-001 14 2 14 14 + -0.53514817550597726E-001 14 14 14 2 + 0.77132048890362513E-002 14 9 14 14 + 0.77187617471315435E-002 14 14 14 9 + -0.29952340972755382E-006 14 10 14 14 + -0.30926644584490714E-006 14 14 14 10 + -0.29266314672350648E-008 14 11 14 14 + -0.33066731055316089E-008 14 14 14 11 + 0.18747426265604793E-006 14 12 14 14 + 0.19832591055391883E-006 14 14 14 12 + 0.27944988025435860E-008 14 13 14 14 + 0.27283283421158849E-008 14 14 14 13 + 0.67061861819054214 14 14 14 14 + 0.0000000000000000 0 0 0 0 + -24.467167461220871 1 1 0 0 + 0.50308271474021315 1 2 0 0 + 0.50308271474021315 2 1 0 0 + -0.42871904471783157 1 9 0 0 + -0.42871904471783157 9 1 0 0 + -5.3198577344808013 2 2 0 0 + 1.2695146788705425 2 9 0 0 + 1.2695146788705425 9 2 0 0 + -4.8388934699608717 3 3 0 0 + -0.91539175921756388 3 6 0 0 + -0.91539175921756388 6 3 0 0 + -0.65898767462747976 3 7 0 0 + -0.65898767462747976 7 3 0 0 + 0.90144221957489079 3 8 0 0 + 0.90144221957489079 8 3 0 0 + -4.8388934699608139 4 4 0 0 + 1.1120852878077063 4 6 0 0 + 1.1120852878077063 6 4 0 0 + -0.43296633551198738 4 7 0 0 + -0.43296633551198738 7 4 0 0 + 0.81278002457084542 4 8 0 0 + 0.81278002457084542 8 4 0 0 + -4.8388934699608663 5 5 0 0 + -0.10064364453170074 5 6 0 0 + -0.10064364453170074 6 5 0 0 + 1.2095785631321796 5 7 0 0 + 1.2095785631321796 7 5 0 0 + 0.78204568908277472 5 8 0 0 + 0.78204568908277472 8 5 0 0 + -3.2622855394069763 6 6 0 0 + -3.2622855394069892 7 7 0 0 + -3.2622855394069874 8 8 0 0 + -3.0808857016343452 9 9 0 0 + -2.5362058398210294 10 10 0 0 + 0.28839142515512450E-009 10 11 0 0 + 0.28839142515512450E-009 11 10 0 0 + -0.54570948668448360E-008 10 13 0 0 + -0.54570948668448360E-008 13 10 0 0 + -0.73344842788929425E-008 10 14 0 0 + -0.73344842788929425E-008 14 10 0 0 + -2.5362058399238703 11 11 0 0 + 0.32284938926059747E-009 11 12 0 0 + 0.32284938926059747E-009 12 11 0 0 + 0.10142867384720299E-007 11 13 0 0 + 0.10142867384720299E-007 13 11 0 0 + -0.11781072346444572E-009 11 14 0 0 + -0.11781072346444572E-009 14 11 0 0 + -2.5362058397392961 12 12 0 0 + -0.59495355963015534E-008 12 13 0 0 + -0.59495355963015534E-008 13 12 0 0 + 0.57183363187061717E-008 12 14 0 0 + 0.57183363187061717E-008 14 12 0 0 + -2.5362060283522236 13 13 0 0 + -2.5362060287847656 14 14 0 0 + 0.0000000000000000 0 0 0 0 + -24.466881479421584 1 1 0 0 + 0.50378954138149135 1 2 0 0 + 0.50378954138149135 2 1 0 0 + -0.42905961443463908 1 9 0 0 + -0.42905961443463908 9 1 0 0 + -5.3187950261369910 2 2 0 0 + 1.2673702193628931 2 9 0 0 + 1.2673702193628931 9 2 0 0 + -4.8389739052365464 3 3 0 0 + -0.91976673132081033 3 6 0 0 + -0.91976673132081033 6 3 0 0 + -0.66213720340993520 3 7 0 0 + -0.66213720340993520 7 3 0 0 + 0.90575052202967776 3 8 0 0 + 0.90575052202967776 8 3 0 0 + -4.8389739052364886 4 4 0 0 + 1.1174003259447638 4 6 0 0 + 1.1174003259447638 6 4 0 0 + -0.43503563056564698 4 7 0 0 + -0.43503563056564698 7 4 0 0 + 0.81666457989676711 4 8 0 0 + 0.81666457989676711 8 4 0 0 + -4.8389739052365419 5 5 0 0 + -0.10112465512936178 5 6 0 0 + -0.10112465512936178 6 5 0 0 + 1.2153595551687602 5 7 0 0 + 1.2153595551687602 7 5 0 0 + 0.78578335444708358 5 8 0 0 + 0.78578335444708358 8 5 0 0 + -3.2509901024541801 6 6 0 0 + -3.2509901024541934 7 7 0 0 + -3.2509901024541916 8 8 0 0 + -3.0808265156254859 9 9 0 0 + -2.5338227272028493 10 10 0 0 + 0.10300676667228166E-008 10 11 0 0 + 0.10300676667228166E-008 11 10 0 0 + 0.17722102331858992E-009 10 12 0 0 + 0.17722102331858992E-009 12 10 0 0 + -0.19491414692055539E-007 10 13 0 0 + -0.19491414692055539E-007 13 10 0 0 + -0.26196997697644653E-007 10 14 0 0 + -0.26196997697644653E-007 14 10 0 0 + -2.5338227275700991 11 11 0 0 + 0.11531371244728313E-008 11 12 0 0 + 0.11531371244728313E-008 12 11 0 0 + 0.36227854449112928E-007 11 13 0 0 + 0.36227854449112928E-007 13 11 0 0 + -0.42079089025966537E-009 11 14 0 0 + -0.42079089025966537E-009 14 11 0 0 + -2.5338227269108549 12 12 0 0 + -0.21250294759376558E-007 12 13 0 0 + -0.21250294759376558E-007 13 12 0 0 + 0.20424511239529025E-007 12 14 0 0 + 0.20424511239529025E-007 14 12 0 0 + -2.5338234005903466 13 13 0 0 + -2.5338234021353574 14 14 0 0 + 0.0000000000000000 0 0 0 0 + 0.46532452303179157E-001 0 0 0 0 diff --git a/test/files/N_int1a.npy b/test/files/N_int1a.npy new file mode 100644 index 0000000000000000000000000000000000000000..8956c200c6d2a28aa58a40ab8c68b645d6a08085 GIT binary patch literal 1648 zcmbR27wQ`j$;jZwP_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(4=E~51qv5u zBo?Fsxf+HhItqp+nmP)#3NXO+aZ|eIjB<+u$@}lWc948v&p;xWD#*{MRB(GgvD#qv zyuN3Avcp~U0I~XD>gFxqG5?+a7n0ox(;seo@-bVqFowPE2WPK%?Dckk`u_WYxnfWE z_ucG_ntS67+4jKfgVADW_KJQE|0sF-qy4)5m-2ROy}f_QH*QC7rdL$64`y#5)Ly2T z3z{bm@7%wkO_Mi2>a%^^<)C#fY%eLc4;F4P|G?}yvRhwMQ<4iKoMG-Fmxjd;EZkuJ zftmM^%J#z20W5xSh1*>+?S&am*rMSob*@2Td+azM`VTyy@# z&$cji+)KKaDHoXUi%(j5Dzd?TA55H58fH(Y?qsmNPc|(`UZDTYHv6FAI>{5RcJGsA zR!SH?*h{HB==x#yFkb5c+Z&v=EoEx27D=p literal 0 HcmV?d00001 diff --git a/test/files/N_int1b.npy b/test/files/N_int1b.npy new file mode 100644 index 0000000000000000000000000000000000000000..b1fb11f2b812a9ccb2a9379856760fd7c60513fa GIT binary patch literal 1648 zcmbR27wQ`j$;jZwP_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(4=E~51qv5u zBo?Fsxf+HhItqp+nmP)#3NXOsZJFEMT5fS5drqevxBLTp1`>hmKgQB+rMLGJs|{w4 zR5!0lk(=lNV)en)g=QT5r|SNNWOu^!KRK}Fr*yP1hP|2+_ZRQVd%OQ^r*n*z!PEUr zRp(k>{C-2WJuv%V^kOu7WBb{)?mzfwf9O;B`uW#y?{8aq?x3vFE2`NCv-dvKUaLtn z_52?1+~44xdPk<{v;BcLN=nMAFDbSU7H%;A!0f5<@Rej|;=%}Ln7hcOVetbCH<*85 z=FOtAy|8ouiyvI!HjPYsVflyLbiGr|E52hX2i3zF7M{3h_Ng;(y123&aPQ+1_uM3C zXHv99Ff;mvE%VM}@rT}q?3=;he&we^%syQDNfn3LlVZFKZ0}ATmES$*h3%q!X86k$ zC)<7B7_@2Ot3P{5H5Zq9n15jQ%roc;axKU^L>;`MpHXTCXmpLu7+thM*7_YBc;DzYclSFSj|!iCY$$i~2$@hCN; zfH5y43pJzhd23s1y>mL}tqqNSeXeY6XEgV*jj5ic(Oj2_;|L4&@Bi4jm|3VVP|y9_ z;3K#4AdmJI;YPu98xR|U6$Ji^wC^5O%Iime`ZWw^Yu5C7)spHz{vI~|@v%ym*=H35 z&lCH;vr^QAZgB1b+-YMs#NU*OF4mcn@)2D`FS@FUH#=qiH4cV{wX=%<8#nTvPZ3pH z4xHw#D8A7Ui8j@b6}-8e{?G6*Tt}R|9N9a}pSxQks!w^$5x1`ZyMvcq@tWo1VS2;l z!El)RPf&j6E?uB!Y+ircV)nuGhRK7C7x9mAF+afUvzXp&{t_2kKY#1j?^wQ93Hz1( zb3J4FT&xv6{Cd0aWsL>6{APNQ(*wJNN~XsL>1t_(7W@9+e!ihpp8EgBUAxt0Pv=YK zhQA%}ProO#n}6#s+-U>rtJn4R3TTx}H z$ogv>eB6Nc|BYM8>Z2qtoC{;StIs*-MkC$LRyN+Y|1KY4_&qq>;GC8NOp?~9^kTX8 zDu;X!(GCoJ(wMPq`Lg(jZ*4A#Mu}C8;%nc;!>T z^iN+>3qew5GL>~{UWg*Zkmvz%(tmPH|6|-kf|M=DAR2lLPWVx{L_*%AD$Brwi2v{~ zIg0-hH)vG^cbIb@^lckgG>}XsSYO|bf7I|+BrKQ@Hn0C*ZTU!|;MaJs1@q<4>DbNN zH7%%k*J1bcrd9tuKQ#0`{a?5vTAz-X)o%P}ae6U*9V*uSjXUg0*;p^OLTF8#+udQY z+4{xqC-n15MEzTDVNYy+%QHrjfBhHECh8R;-~S(aCUkuK`*jSs{+E6Hcf4x zKP37KH|68zkaYnWXq`@^`OEh?1pC?BkFK$DSJBx5ABab5|c`5w$H+mThBAUw!5)^jf3G~trZ?F z%?hJqr$&>YZG7y`&?g@xQggJaBscn>;bFKnINaUJ$vWqp4bTeSZ?d#vDe!RO(Wu&+ zsAc0}dc)+waOgPBcUxW0S)gZZUVqzS_QCXq$%Boj|BrDoKfvs>nBK(y5*J%Pf9uzJ zXT#Rt+}HBY^^ECrvDUl2%DT7kDq2U)-F|D7OlZ4LU}LAz8$pd6GvT11Qw>E1{S;l7 zbpBb~#&B+Cezg3Bn}3h^d7>nx&=Ku7MVZ4!Lh6=1p2}h?{uv%74~CO4vCsAwZkEFg zsdk=vgY=Dyr#I%S{j>as=?#+y!!Zr^t#6;hEwXcvls))Fa4~xj`Z;DFOmCPx7!Fwl zN!2f0{BiG6a&YwICNKE>=ownz9*ISyt7l8v{KHXXml(;dh~>x6zM~ubTpJ1(;Mu6m zyt%X|3#}d3^*8^TjHo%93=iD91o-n^s?WgcyOSdLJsQ@ub~ZAJSb($C_rH#6AIv-! z0zXTY4Y@}(ppJn~!H3!&B~mhth!ogD#s{Od0SC{)wHNx+-5rVq&u=mO{EZE_1&)Zo zNOtm;beWS-r%LWF93z5;H8kWRtIxynocHDq)J_D;vlt$AEZKWL8e60&sa>G(+8lmZ zf9#rCVF}hnP!>j{0h0Fm)4UT>&>2fKkf`5@a;~yg-xVV~pLI=|7`!BpK$#R4{XseO za4zx(X_dMjDos^=#is!FOX-A0(muANb-WuTRKK%TdiUsi#+^v*!fUU*v}HSiZ+Je`Qh8YP{>*mg1zC( z=ZWNmSyQMgX`CHHDM+!*#Xv}33#6Xhv$5AngI4Zz72@k23+9DC-ctRC)R`YF$kGvM ziT94gLI?0$QClZ25d-k>yAoAN0#fO^*HwQy4fSNcCLd*XTs9s{^C9w&>r>&rNjv@S z;4_F!g#Ik8NIZ1WzP}(UmH<|L>YB=euBcFxSE+7g+OqXIlh&(s`b{jbmArDJ+!zmU z2ZgStz4U_fabGF4JIqj~_S7-zXI{`;6)JN)KYiJFSIdSE-Bfe|87Zk@O_5BrQzXHY ztKS-QFT}qv=gfd!h5-J9R|8OH$^*yaogvHCXT^rCx_8M?z&!y$l2f?q{FQp2$Z1BgsE@ja-7k)-CqJ8&W`K z>ne}1oqxaYg}<))KX6W{hg-tiW+~ej+U}s76)?vaU(G#R8m#E z`ne9(@+EzS3&zi~i_zg7j9c)z(VZ8DTz;t_Iwp~A zF&PW~gA_lgNeSPN!uN-%@i6{SixjZ}5xRTik87(bdw z3x}*To7dYtTmE`~afD7>`tVhBCGK2{PiG_;Ik(dF`V~Rw*p=$OX8~x6<@Ifji2B)d^%I{ry7{f);*duv$eyPiV6Y1S9)qIe77i9@ zqur}I8-*_VCYrK02DBs_}d{C_v&P%WkSz0H93~Tg7g;l2!+xN&F@#}2h zS*^U2WC!8TtN8d~gXN!|M#R9G*THhkF4s`+CHc24`XTWA#?OtuDv=OtkyCzo%n`AE zdmy!W^96$SnN0QdMa^eNB)oo1UbTaPVEv43ywxF+;S8M2HF+x}`N0R=J*h2K5$)L9 z4VS(u!-&wR?@YWL=$zkq*>>w;z;Gf08H>&wYakf!i_i>bV`n^2+wOJk3rT{~!$TxT zx++oL&OQ8(j4Qw??J@&ZYav`L9J0L>ws8N%KIf!OxXcLBp4Fv2Z06gLQ>-k$-`ur9 zFYns7MCWVh`=lB@+pTg`bz0C+kMtVB`oy;%h9hxq9hdn`28wtK+wPAUHc(i_rgZUM z03p{GNp07SQQC1K;5co!Y&=XJ45zaH0jK{QF4{G-5iuP@&BGJwKDXULk0yd)N2u+x z@i4t%@?bc+R^vNagR0PBZ}aaYmU(F1uIQB%6lKfC!|a3U4U-4Md0p#Ws$h_hX6eRN zde-GF8xQjX%s!ajFnKVXD0UH}=^vE{-~LPWvGs%b^-}laUuU-J)4YE?4|T|0=G}GQ z5M|P{-sIow35DbeQeHpZ(U8LBL1|S7G)!A0XS`htVe1rIKltM<)yHt6n#EShyH%jC zax{BR2^PZosUKU5w~SUkWVZ>c_}H%uN3rzjz+XEMGHu^%N74|B*v z1G=AtuIVKsEWTlJXQ}b=uVePX^oGfU;dqAbE|s`bg~Y-h>?fDX{x6O$7T@s4$M0i) zfY}Gr8zv8i!^`^evK?Go)Ss#F_L*|NR-W!oN`f`i%{g+_K4^mGVdhOM!uJ>O=Zp2V z@%EVtrn=pkEw8{e&w(u_Yoigvrx&C8PcoLh-Z4BvTm1c=Ym4mnG_%a_XQ98`&nm&~ zXI(zCdd-vxEp(lZ=jHxv1>$~}_xf&eKzkmurTP|{!DtnKj8>c3KhuZoUhi&=BX;Pm z$My9e9$2D}t>0;=YR(}2{SF@Ic_iRHl|~1LHXkZBYAh5ByoS$mC6^46+LrXtr8^m1BObj`{203EeDTL!tdH$0 zU9ovvvYjFcV*0xa;`>Njzx`hwtXQv!sp)_3Gp)bT6jDB8158p`do1X5&;^=; zH+zqsUADhq_{4boOcUEx%caDV;PQ4^tJgL@sA{jjy)Wm#%SRaQpSFFt{hs%@{T@}^ ze$PkTevc_`zh@LB225eB+w94ji4$6Hyw@Ff% z2wrjrsoZZT{xki*j62o5`%D&!wjXR^!y}AF&)bPLG@C{$Q(Vg?AM>zW(9F4Z14Jx zJQQlIs$j?@yMTNjsqHoGmq2G%?{n*{CVW55vzA)ZClj_lOnM*;LXi`V` z+KS;2Xs^~X6{ot0{?vaLyU!N4uXK-1;GivyAyl6?I<$hL8fD)TmgltKN873xN?Nvs z0!4N4$zfKvMd!QN`1qff;r5l>j2H^rGRh%w*FGv!qq%)UN>M{Ia&NR&jZ)RhFanq+ z=wcbbXxZ|G;P#d7I0bm#;;TUi*CZaHqb)$>m!-cPyX6nSnit|9ss}Tb-wQ^sXoS zt!Y4hTT6|YA3J1{Jsb9WNQ0hlF+9~leiDubb>6t^tiEi0VECSUc5HE)@_@ADdlRq7 zBfzySa#l#)6OHeuYyNzq7%~eBZ>?xwSbyJ_p!IuSNfNi;!;p9B_kNF#<@|onOPBfm z9{Yc^-{Z6HjAz5f7s$9w+n;&XPpHz;Q;hbsQ-eXu?R#yGSCQen+?8umOOb}e^G4O3 zSC?(S8=I;({o22>dBr953nz>J)+b|msRl>47Ywq*mO_-LlS^|VO&ctx86_kwU6;+j z81db)exkM>6jC3@p4se(glx_C|HA1N4w5OAtAaF<^{UPB`LK=UfzwR~!s`c^y|GqX z^NgJw!(~)!?RIOWf)(0H$@*KK?S9kzDkX_Xyh>VLo+uH;lFz=b}<*e>Uyu^dyxY+(bW!nNJ{>he`E6gX`8kE>4W-I zY2?z{=ibJxj&!(tW0MZc02##v_r?H6bT4~Y|LS>f(2<#6r~bJ0^QYru_gUa@EcS_{ zLR}GRv)cG-Vm1wif=<^QB~Ak`)`vxP7rmilbl7R3Pg~uVd3nBf z>7PzC$wKm<)cDk0Gob!ZdPK~jG{~W_H(ysBhYDP;30x}8f%CYy2TC&BghF3egr7+l&y{93V3OqO}kya6im?>sYX1sy|5M>JK>&a>l6hh(OILkh1--BCNCCYV2un3awJjEwbJ$161#VX^RiY0EWZ- zm-UA*T>ZgtLi+Z$1NtDN$s+&0suZdcIQ&U(RH35*(a-yo@}P}4VOrL5;r_D}E-ze^ zG58&?*R0|B9Y=L=@vRaUcQ)hV!BYBO>NE+V6Oha-TAy@^IZL5K$d>Ycdq_0#(uhf|39cd zV0y#k!EpACsT-V-0OX=^p`Mp28>-lEd8FPgUv~V&?1SkIlLy23;vlw1JSrUt%31K8 z?@3*DzQz0ivk#^>Odbs9WY71PhL;J?f7trL{CX*W!oS{WIbVP1etGdbw-XBrOxN46 zsnrFw+Fzu2-|Y!mo;JZBGi?#aK9`w&HMR&_r`Y|r|)cE+l@qKq}S?;cG1FODu2-|)xB?_+*|*$2}b zCJ%-aNT=ND;&6S*^?Dswhxq9hl(A9F0C6#V@q70n8E8)EtO~7MSpUVJ525`lxH?3O zSA&RMsTC@sKTeYtlLxu)A~Idsmj66R=zOsIG5)90BK%J&9RCx$f4MDwJzyNK9`FuV z57>v}@0R>!y@Tx4Jb(AA4n;QC5iR6BwfM^JM?HF2V7);Iz#RR%uN{t6K44hu~4Td8tht6_~(H-NYwTxkjM1 z%Gh4_=4&C%uq~3ir8vOuRq-sROb<-fZs)#bo4BOE;_Kb}SWy2YiUkT45#KLIlu^mx z6sJ`NCmQ&|dGgbBCeW+cJ5HN^7Ob{rZJSom1I`Tgi{H=O1D5vJ9r|{J^Glw$zxbl% z91Hk&Ox05Qi^`ejE=@d#~fD^L7q}KZyC2K1B0H~E!$|tCH2>Yt3w2qUUWX2}60-z)dP)5qCWV zeI1}{*$MDbt@L5^xu9j+4`1FGTpdEyy{~oXvjBSJw!zd2>|oEQ zYIBZ#7XKVi6jz6!H_vg`TV;Tpo=WQ6j!Xurael61$A6!X@a0{skMTd57U6#$#qmEE z`#zzckKok* zQn}SlNS7$9@5fz3wAY)`{O%z!)LnG_IL8G(I7y+x;P2rE?SWc7?2oM=@zw6(>%l5O zcVqO+eZ?w*@rdaxQ%z;7kqnvaTTWwlcycbz_kH3~bl_Hhf!-4ZB)djlyu-u@`nn<& zH&8ELf57}j4OfSVsQqa|-D?JdPrnl1IFN-}*j^-zk|hzWe{5W=mB8^?%W-vwHpj2m zuYF8IJltwJLJ#yom42+V@rNs_NPgwSG)OqV9K*rdQ#d|r2CnX4DDe68%&{oA+f#p& zbt(e1->3%_U)4Z^A7-|U`6(`2KEUx=nQ(Q7xnEvnZ+Yhfeje)G*S3Yj*A2>bq1P3l zp6I~jong~u<2mE_td+RB0|;&qk)s6k&dTkLw#zp3j_S~gR-ss+rOxk3eLy(h6w@Qt z_Tc!eWw^Qnt7Lgyd0ROW33pa&Yg2<(ky38k?f{4+s=aHMrug1#Va$yL?6& z5qUskgX{^Qa}rAkKY9|_W70QK=pF^1v?iVig#-U=ek`lV%F_nQQT*7Qu-M>yIQQlI z0f)F^$kBh1L7Sfl9V&`WL@9v_@U#OpfAd*2jT?X09Wef9CyxJFf#ZKF{v-aU9OJX! z^?;^~`Fenxlm-vFe?xcTDc^E?hfT?@$t7Go$|x>K(f)R@xM zdfy)|p$r~KQd*L<7%YI*i0`SyyM^{3)bIROw8`&1cpca?j}-l?qa-tJ_1isHhhQrr z=hk^$38qS32csNH;jpCW`89hL>y!z%ez5QVY0D=#j}uC}PQhi=8hQ_!hpiq=L8R$xBoCi20Qu)0 zJIwc#!u~0edo^|iD9CR<9)#f5>7U|Y_mL;h%hS8{9ciYk9+IGMmUCpvfm(}_Crav< zkb@CYeOwj-GHfqb#ERx2YRCDwa~c;9uyOvhy@J!5_Ve!tJGVQ*tB{lArmHd`e|+PS z+{ApOQKK*!<1GXg4kd3%o3hcPsQLI-j*B~gii6$v$Z6g_L}lLVt;-4#^UV*gJ0pvM zZRhrkPd78+^eo)5e3gf;ns%x1 zG$#Xtz6!CMUnE>O_4r44Q!r5PiQIgcQg}i9Tx{H>KG#JW@3TErkk$jfSQ`=rWXhhc zb(umMv3+EsejUUJ=ZJSo>(}i3XX{6UZQwlpy9z`S#ZPRVSb~no?P9Ce&qall_l%5Q z`@u7Qp`MrPoEG4{FueXdFAOK>{H_yM&+hsBtA5Kgr0~10>b{TZcf7VNi~e1QTuSbx zuAc(#-}Mczv>g$@>JC^vpz!{DJ>WjB9`NZO)dPajH{M@)VU$Br?pL0$?H2j`cEVU_ zBkAXlvvYOiyd*Ux^||_P_L#tU>|EV-srfH;{d1kd@4T>f3%#D=T%OpqQfOB!-vw~c zGIacs>J5Rw{M^_x1W7-w_)#h-xWFDujgNobU1ay~yinsJqxmaO95(22a%?n4>wfxg z(;lovKfg_h-T#~ekx_#JJ6;lA55UKJrPlI0FX&q)#R|;jiA{GWhlw@q;7j}DWnd^p z&mQC#lu$&&E>iN$(Ej{o%ZHEur+q%#ps%4O9G4N0VlfxpoFI#t50pFbTRyH6a4lYBWj01$nAaQWO<&1Zl0InNTDK5t$|zXf)dt7c zq$B=DvV3>52xM~JS0&W77=qu-$G1vc+`-2A({>ZiKEbc_1R80J(8?b=CE1=Oi00tY zpC{@v5LLeiQIM+#>Uk&8nOErzLTl#Z=#xd_+fuk8WAlEX>>SA|VV8@7uGSY(v&5lS z-wvxNkVT`xb1MUjwpu}#_|TWQXde*5{XXv2x4)}T58~?6gTy4a#8U*3%dXyhg>iOh zVxaH+WK0Jd(vnG6J2jDWT=%iTlg?bOEkDeg2`u)?O zx9_PJj7RVBo!V4~q}~xfxz}I1V7+4R3r7yX@8|gAQ_;VluUT==y`i}0QGMKV;!^rv z>N(tBx4&9U{G#B#T@-zIl&WOJlkxJ{-g{b&~Dn+l;VNT)y;tm!MmKq=bI;J;F9t>yHyF`%G zzZ{VkJvMgP%mAB=d*9X4SRyRGVQ~k4yrue>eK5UY@?bbdWRCeCg&WaL1hAFqCwIrj~c7__5qzcHnD0+@182E&1b3WF)Zo!({xeDBzW-5ll5_M?cMiu)7LskkMex=!Rh6nheGB!xr6ig zJ#|YO^4gwfDc2%ljj>L|`OIyob7k42)H`*g zz52w3Bqm+hGo(sko7^OH_M59zyRSJiCUspi<9QM7J<>(8%T1eL`Qm;ib7>Z;qwBAO z`-!9YAVja;`^8oh=*v-}t=Vk^w|9<|#dJDK{IFLtp5L`2bs1&}Q84>Y-A`vJEknD}zowQhSlYJ2*+ zKu6XDwpkB|_*fHuekT6B@cTSd@p7wzjzQJr%C@NS!zh$wJu{j1X(*yN=(P8%3~a6o ztj#J`LHD{1P6s?zUNB$$@s{de*GLj?-{FPIXljaXfC~c7Q#-zu1b{u)hW)y!!tkO+ z*LK)A3LSVt<#o&B%(Cslt8s;f__imQW{+?y$#}xv*Hvv%34YL$L>Eh4$&MnPRZ^~7 zeFk|wyuh{2AZpq2DOJ;GMrJD^$w#Jz+de)Q8X4u{se8TwjSAmv{t_mGilnk=-Z+UO zt(&*ZpE#dbwtUHJ61Q=22Ljp7l`ccJq3F}pi!|T0iV)AEUu_Z_3%l5V`ie~OgHuw= zbm{bgWy|+UzeQ-hJVNCht08@r7?jx(r8Wm{MEo`E4xcaDFME7^|6vwTA#SlvK!Q2) z92=`rpof0Izs1W4-MalyKv`?~=R?0>b)oGgu|Qg8l1!V{0m1WE6#bC-Xk#f9>`3Q1 zA}a`A241pEr8pv&fz(EG4o66wWEmWMN!o*`F+c1^%8)hc7P%&jj90pSB$3#w1d31R4H+t{L!||I&-gAmKr1(x zZa5}{DC}*AKYmq1N@nLA)I$kBj}hO$us+qh!B&QB19Y;YT*`ayTr|3)*<-wU_DId@ zXFzM+Nn}+LDp#&3MX&vOac6E@V z){(Wg;a#A=kGn0pbwi55?V(7?bLMhHesEysD!9OQnmgLD0)GE&e%O317#vH>LX_c} zxSu5ZS~2uO8oouq?Z?D! zJ?;^3<8ZcHMOZ9kX~*hLGH@a_#s0h7*vygp`CYRdQ_;(oZ|@G)Slb4D^r@4$rTE7u zA*XjMM#HY`MBKIwZgk_aNcNPEDkYgXl8Fqi^BI?0wtSRYCEV9HCqVY|_dC6*l2O+o z(YOnT^?=?Y=(LPYJX~NZ8DiHF0$JgJ5f3F+g5`VDFWR@c$qI!8r*z+9l_7Y(R;xoF zTs(djYE!4R8`@SvM~6d3@Jm6ogUx!ZR!fzYd@Tz0Wkc(m8syLEc`?`IbL zx%7AKf{@U4!3V!^cw%~n9OrPA_#QGo;jlrxW~By!TWsLADbfnoJ%f>D zpN7$$(i<8hd*b2AmknQI>vU0KXt>BliV`FpbMV>a>)B}dr+9!4cQ=jdw zkAi)640I;WCa9>)qKi?%3({!zzE^G51}b6)mtQzXc*ve|&*3gLfBfsK5>~zVCaVDk zrdEGAhj(K}?|7&>T6K(4$XnD5Ro_lJ&AlZD+DLQx#*4C%ulyRrvCj_RvtC{E z+T8Ei;vWu&eNLl?=LJc1XN{E!#>>5z&sefY3Uzv)_V8AbKnLHgr<|G9hKo#v!P2yn zsNj^?=QVTZFZIsWUU_UUi|Vw3N$8dJ(7si9-L-U)1nZ|c{LD8gDqrB$TmNlab}&qw z?NsqJh(_TqEV@lc6i{ss^;31bxxDo?OYk#oDB3}MPHTAIIT-NUF1__WCyLnb z=@oX7a6T@H>LrSySE@iJr8}DPkqP$iEMp>RUI8Tx9!KrdmC;16^M|K{%E#g`(OAtF;u0Rguv5IMbUVf#BOzA!1z+fWDki zWsX0k4&(aCHVpUTk-3~?^wTIiIDU(m(#-25!S-V@UL);s%L*k(KXtTo`Y063Q}*TY z8*XGo?!>VxN&wdG-DGyiI$dbr)D!x3Dw4>Z#X@w;gej0T2&YYNOCeakcTr`QFp-3` zn%R=y5(}es^6BCnl78sE!@`>6ZyfFXV!R3X>=+kFqC>oHI zPv@Oqaa11{uMZ2YH+$g_h;nwaom%6YMDYCZ*FP05FKA0^#b-J-gY!4ns_MCXM0e4k zSGTbo9eLWn(vCb4q6BW5YXn^;SpWEVo0#N&=Y?=$y_di8gnPWs&!V|J*w^)bwpzgf zu5NnBCD!VPx}LKQ2@1^pJ&0xgyNSySvuvl|((^w><9-7pM^y~LJ|TxfC#W3!v&6zo zW0MiRUMhv~qr7G7lOLBChN>j<6b5~Pi)J)lIWQb0c2n)&877M!^lqIsoze%lPrD^! ztv)O}KhWXw0;{vghC;s>bkv4r|G5{QNI(9L=%xD85ceqf$S<7l&y5b8nZqSio%JEi zsc$B9kZ3Mrf=O=)!S-PCzJD)sqYfP3(*48sq#B6sOv%w3ONUb80ornkY&2b%kRYJE z4qSe$)NP$81wYQLAKg31kevr-am{m4g7NaUFm=(1@PKct_rU#EbLXM>24v{oG=uw@ z>s8lf=)u^nev5C7LP(2MbDj9Jxh?Ge?qZ%O4aC;p-uY7^h+w>j_XT<$vwFZ=j`y+$ z`U0S#&;O(Pu2_&FzDRGzEsMP5-^TfJc!FQ+hw8#pW+-dJvquKuy6_*SUZ~_!)oBG)by&~(F7bnj9ui7f>XBEfHax=_<*KCoN4t7SsS3zTYd z_2Mi1QM-~>-q=oIv_YotOoLf6(6ZZzQ41o(Sbg(T_vm(l{rh_r=ZRI<`CyO#$Tj+l zl;A9qT5!}z9E2|H>}Sdo1q1t4v-h}Lg}xuXewk)22d7(Fgt>KE;1PT;U*t02kLUVyUwz&5N z4cd=wzw&~S1!u3sT%Pd8Jzw{9pK5UpP8n=ktQg)VjD0 zbMF(QxOjb#o#LyGQxU2qx1(25SpNG1Kkj|O4VM=T1&)smWrrf7GoPAHi-n=J-5cU} zX*t1^(Wea*#+D28Luh=f#Jw-*`_Jcvd#i5G$ZHNG=k$>y=Ve^cmj>m8+^^+xabq)m z;QicXK$Yd)hhQKBYX_BHq1RjL7$muo$L;Rw91?|naqi~s$l`sJP`hCgT-VV5}{%UvVF z>n&{S9K$J`8PNKB)A5grJWz`q_a;NCB2*|L_UT+mJ`xj->>4v*hfN1E6t@4cLpKg? zYbZE!6r^u5MmoG9e19Lp*5zEEs}GK=Qg45JprqSY2K0F9tFp69;IZ_Rf&_iSpLc^r(=7VhLeK+C=}60FAM`G2l*O-1AC01AIsI&0}5P!?5y5^D*OvJw=jxmlU*x!PS_3O3OgOCNf_3Y4S z6l^=YG0-qV7QHF=oQ|SCgU&juDof@1fVv0S0GWXu(C<+D=moEZs=2l?COHz$&rImm z2-~Yp3LG6&D$=2n=;8N93hno2;ptjQ8RgA};OQ&5k-M4<%y_;CtUX8$yIVS162v&* zM(z6qTQWU@<&)&|i}}7<1%2y@;Y*O#L2AW?dN>uFHml<1!JogS)Bay^KCw*xkjqBXZk z*CXFAHD)6D^l07613l#ImVn{(Hd~6HomlvMztnolixz%!b6qUlVJfe=X>be_H%a@B zSnxsNMU~Fa;mjx``kBKJ`7x9<>($)uweb0Y{#IEc)2SqMT#=SMa_;X$9?GoOw$o5U zuQ$Gs?aFUJ&o5haOP|$8Gm~faUmPKP{ov0Z!;wqqOC7UMM^bl`1jysGAi9#d$StD@ zhN~A#UMU5l@AR@ek4^=l4O9;um0nxIbX(z9 z&OxJP<6(Nkcz*)fPR8Qm*9&Yy0m=EyDE<*%^pc#YWy(;FrahBLJ1$+hn} zaj3*TxTY?6df9*f5%UAgKA7Gxc`%&H-M-DgaPjT2R3BSEm|rh-KmPSIgDSp_&gICk zf#@USMp-mqWv;hbOawj9kKdlE!2xj!S2(=OO20z9g_#cK^ZlB z+r9>(l$(6bhxZc!Q}G$Yp^Lmoo2b~ZV2MZ+KrIBsxFJ*v#%tp5@~a6Clq zD>TVg`J%!)>)QpcMsTi<_y@JK5fVPh*Cc&P3=O)BMf49yfl*QDd)D_S(d&k)(UjPF zbl-rFuhPhaV7yhQv>7g@xF9Cy$0kp&8^BY`8wbuDH->lh;J-kjbX?Xxl1da4Y+T%U_D^-CA59$(seSb z=M18Z6gU2m$PJfkoL1z7Q$pTm_XiaOFs!qAl`^QWXF+z!azm7F|DHqHUme=jTm#}BNI}NadESyZ`?~fwK5B@>I{?k`x0a39Yef8Z zZ?QSN$*yYJUTgy#tGu^(jD$g;^gM5AsFrQF$xmO@MYONKJ2G_H`fLliL~?DfHS!T3 z7a-FyM`brpd~e(01ra#jQpebedt`I_M#uJC+aO&?w`{x@BVNO^f!s)QEqUuy3M-ni zY8ACE7XMFgzW{j%;m4$jR<#}5{PdANv_!Yi zB;=SPjV<2FjX@g7Tv0LZp++IWc<-L{eBMNz4nL6dhs zKG8()JYP!dFZohxJLdUPGCBu5QhE~M5#yo!sx2z0)W%=#Ah$81dM508c`O=jyr*FB z$&qkA@?!FZOW$ogR~Caz*IBJbJN03B^3r{(t)lR%dPlS7?IiT0*}I$aA;$v$@Ehss zVXDf3c#)u&D|=F)akr}NWOv1X_Z_1Dw>+lXev#}&A7kN1G+m~&*%8_U#eel`=nKllqZT7s4h9O#~G1ME9qznM1nSsx3u}%_JPssf#}2Zk)Sr+ z{RG>uY4(V&UgR0%=0VE(JVK0M{q)&{pH(9>g26G~;h!_2Fg2mlRrgaA#YE+WNbjUU z6V#Eng$5bmsIQ2Z+Xq%;L;kI^K1vH67${hA;bfV;kn-=YSfek zRkJDlpIdSk=m&qirTXDGKG7ju-M9r;AE` zZ-n!C<>j}B`xz;spRZUCURqy(X6u;k&x^l$ZrHd21N{A&N(|o`hj{M zg}xtRbE8geyyOSm+GG7dWQ-awM6MKTAw2)8j;&1j&=CY)%pq-8h0g%z{irtk%5YTq zt@1()yFaX#qux8Q`xH7hNwel*S}<&XA!Mr3DTZX5U(b#w*$`}x_&onucREwpdMM07 z+JhIacWg)|FHk}i4~o3hHANx%OZuC>Y)y3ht@Vds>(j7KTA}Z_mo(HEu8_6jCH#D& zmJ3NmV|13N@=Hvx`&n<$)^_s_uy#QL+9Kiy1cQ)&VgI3L+(Ag5bxZIk786JzJ^$f> zx&qR4)pfR++i$`5r=|KcN?SZv(%8WW=cT(3W_*D@>bx|cx-(iK9J!NM9G|BoZ`CzH>@vn2x^LFHyo`&80`Py0bA`oNqlSs8x z4BDs8hn%FO0Ku_!ukA(ILDTKRIr3x%)MZ<9bJyJaM6Sg`YXldh0y#NTG}g>h-vcW z)n9S+$>==KbOsl%TfcSsm^}TTeKmZ!|Fr)Smlxg~WY|6MtQbAt-dX)CAI%KU^OlmX zwrmjAPC$Di-=&)kmsL8Aa`oSM>sXiwzFO1>%L~OXaF?rWKpQr`LC+d5;cg4Tp6Pe)h!sadCiTz!N z5j%x*^N!p8K-%H=v`(W8RH-*#mN=J+Zt0)@DD)5bQoC_^!MU|$&BRxCP}>u6zyH_; zG;&SqP2wDH$+q!LvfCVw>5*}Mr%9+R!TJ;-Gk-<>OcLsjZYWX|B;4QJ8QMpjStQYI z2y_Z=%|&ZOg(;tIDMX{v^^;fkxg+iGY!94g<57Z?cCtZn1cY#xw+0FsLeW!G{~xPk z2==#Tt{>b&mjjT8b$^wBq6cEg5A|Um4@TGDn%of!@C4f1f*Tp$`Jy9F)(V|-yZ{A8 zy|%j_8N+9t+&wBWaRlQHtd1pr)gFut121!#zc56{S=&x9-<_*dNBk%&|K<&s-<^B7 zdrA+EFivT==0qX}c6q_qR=i;CtT3I$O8DQeE`NGZqqSKJrEt8^B(2nky6dGc+9^(f zb7L;M9??md%a1{)dQD(j`?HPRMRRoNHsugouOd7+^$g42b`3i`#XeUZBVm;d=4*+Lflhb6h4b&w`;$&1opSDwky3ni=wW) zS0iz70ISO~A@3&?2=?#wl-D*~JY|C>n!es@GUY&dnLg#bo3|jAN~?iBl`~Mo zPYPO_y8K*v1mR-;#eJ0Y=8$ISHszL;WsPXO7qHcwoL7oMN{1NXjg^KiiL=lIc}Q?)d6d15c_cLDUc=j$!~ zn_qx0aNgb2_Sf6=?V0+`^Vebp9xV)f+;}f;x_(Xv>=J`Zk zT(^Dx1)oR*_r7ofmltZP&Wnf{K1GdJB1CRPJENkgle1&OmC%2NZOG>z@TJ0W?+d4J zdBHB}tsjL;EQ%`A2>vAx3QBt!RiXjb1~spa&he-4^|Mqzx44I#R8J4}l1!csQ6l`j zsG4&oqwLRg!IX2>h0x()WR?C2^($F>*c>aNK_6T#xu z_J@?wJO4`hEnmF}wm;R0V-po~`-}qDcbVO;kB7AT>$HSbHKBjjRMR3?9o4h;jQKzE zM2uMl#9UGKXg%X#rQ1bL)Xl0^m0&{n?*n#l-O_8lq6%fPdv}vgN`XhAx<&{`ES#VY z6~8nd3I|If1}=`wG{im>P1yNZ398F?`>m>B0;e9??im|3g6-j**i5gyOAbAKH2G%r zfFz1~UuAfp$_5JCa?O7BIDoZh%Epr&%FxVppPm^h!nMGMo)vLtVc+Auvx4G;^Yu5f zMOF~4ib9>*M~B}{`hd^$bnMm7O6c@9-L%+Ic@$&hFTRH;9tw>=aX8!zhLyzz;!Y>@ zfU1!yM|5{2!SZ>nFn)Axi!W+jdF!Y5l+9cn;dx5XK1IYv{nDD~D-`bE zWTX&f@F#fu#r$3IlR8Vi7(0sdyqu<#WRAuRBevbTA&OioH>(d-?Lud(oUR}JM*h$6 z#8z|$+>JYl%xY$GWf?2oc>yCmOUSN`4`Sso5e z)<10r9K{WDXKp#brhUdCrE}-~t(5BmR1r(<2{cpDR;q+;JX8t?qPs$A4NjUq9%?&N2%hKL|=YvzxRh z1i3wyEZneN7qs%*zHQ>V0UsWe7rS|LBcCrx^zIo9%jOfEzcSDF3jR9J!y?1+qa=nm zSN-BG_2T$MUq5QJ{tG@)kY?@`xo!2RMQuONwJVKq$ouPSqNqT`V_|-aTdW_|?65s`{_&W8!(*ngZ2Xow|wX9b5w$r>6hNF2n^6S%<-etXku)B;f(n2 zDH}L?c-eRh{O1op7*$(66X>T3Lq~Y2j_!$uXXH)!Uw)nexzI;jS96E~BX!~{?)8Gm z4Yy9!aO>v}hyU+3D)o7s{m-^PmQmXe-uJUq?zTAtXG!Xz@l|J$vCsO3Q-}8fwNwX0 zbshmXTs&~Zt<(Po`osT8R8eErp$LRKRLGAxVZD*K!5l@8sYQy$*e{rfcXu2& znjBtt%3^3%s36yUIF*wc-No@+r~Z=P8ieDwYSZw4TWf3t7Z|&3$}MTo>+@QzWd@u` ztRUfp@&#R_Dx7|T@}?fba1vVnj^8>EGtX}gj#fCS@NjPbta&|e{cRDX-I`&a+Ng+l zOm#iu9(W*Y-FWSHG+qc_UoY-uNO$H(qbJXzvS<3N(cTf_+62`g2*u?E+Ry|;U-BxH z!f(;m@elZ|7)~_N`l=6X;pm#}$t^48JRu*K7igw_G9?oiB9$`^Kll6tek&#qhV%2r z+SM^CnaHbSJ}<U^oqv&Ux`B9BL^k00#;trvBn0+w4Ve()&{Ms?{Zf1cfo3%{z{IT=@#nHv$ z+fw+LA7J*u^oGfU;d~B!eE5p2%YyjXCK*`ceLWfyqPXc;??nQ)dPGAj?ZWpMwtvKP z6}*xc$~zDV8tET~%yvb6x$v&;9V1=k@7#rBt!E--T-oUpRWUMlO(dDSc); zw!QI!5QrKtf1f#i9NeA}IhTeAgV^mieXasV=+V}#AJrclqucRq&gS(>@a7Ru{k7&h zAouWfCFQL!g7H{tc}A|h2?VRjK@L7oWsr+6dOH*%h-w5buC^32hC4`LVD^CldjD1}lzkiLj(*qur^UvBgFu5%;@mfY`H_D z!YFu~#DyQC%J6D}hSQNsae-Zy(%)j&qjBfgk>bv;Ta7!v&K7rm-Hk=guUl-qr9Q{! zo95y1O?j&4`KJ9iK5g1x@@c<*pXbvK2^d8gQd^xzI8fX_b8K4$`~jAYu|YE){1@0;mo)N_woKCp6h1APBH5+Qy9zB zIJ5tg9kj2{*XryD2g{!M^Y|KYyjJ3}J5y&Q2=`}vyKEKUhI3VV;9-|Q5}mGtPIAp{ z6@8LMb^Y__@qG=S=e2g&tUD|nbYR*3wy}+7FrwBEar__R-ZLtyC1@8$f`Wh&1PO{t zj)G(Xr$KVgLCH~a&N=6tg9-=|Bq}1HLaTt706|eylqd>HRuBaJ2AMhU_YU_g&xm(j z{_NH4+5L1?bys!mT~&RyWew+f44f!&{H$`&0@R}F@qIwWwOSn1ToAanJ)ahH{J(4e z>|8uc=^6`8GF@kn6^;TyN1CPG>bxKhsve&gDz5biZ=kPUYx zuSY%M+xd&8bY>o~w_vLtUk}e#T&q`9d*Ll_?B6G1(mVSu#`OJj1gv*)<bX`&c!Z{QckPrd92rNPN=mwgHJ+~ou8y{BEkKxfuIjvYg0fd~dRoGD!IxvbvJ--# za6OTUu=h~PjtHqRln{Ns(u|cs(#&NRQ)=U zf2m)GejeLv8Y&{fp27RgbS171#Q{j7tEUF%#3M#I3np%P8)C=w%&$q07cUPI~vVenW?Zx6- z*-(CX=78&IHxPuX$F~Nz;#!+K$;pd&Om~b||H7c)rbZ5sS-6r#eJT^Ei#a~?sgHzO zsCs+|R9q|9QW~4wy|^9Yb*|6qQnN?GIiY4+S-}YCUNo_iru*ygz-XnWZ**Qme@Um)(b9+WJ(L>>QUTA)vr4VX8bqfT8;m(ejO%1JqEYpO_@+}Md&=i23~Q+Tv0f6=y!20sbue#2;u>VJ(k%LylXLoM+%Gw*AHG^GTq^ z|4Ei~ZWPD~(j^#ftb$=5aCdP(u7Tk(PA{I_%>%N0R(o5TLu%dG&Ji|+?6bxUwEQdL7B%^P|QC+?$6aR6OiieB$xO~FQ0R`+QF z3vj5;YdyW)8YDatxYZSneLQW>fQ8PF(0CZoZ(muJYXWTSah|CJ#(=O7{4T!uY4E++ zQGT&~DzHqg`OPPzM950V?;37%4xBzN5U9d}eLaYZXOv(#I1#oLygVSgCm5FOdNaEF zT^y({UM5u3MAnBMdsh*Rmk#p`8LkmfM1%4S3gwStI&dn$lrA1O5^H{X|H!=-cgYtF zgfOSB##lo#aO!JJsuBzx`+S<_hX;sCY3wAAi~yIP)clBB^@G*Vip@X8xu|9 z3RuriApKG@_=g?XI9Oj>ca$HlKfm^T_y`@CG&NbcUMme9xqDoDqNIR=@Q7G+5g&|e zZEt=kVF6=j*y$c4&yD}x`oX-v)ZfS-)Q|!8hJkkJ!Y~->+itCIZ3m=#R;hRyGhj!E z#K}8^Y2fmkJ#9lA+wDUZ$}Xs#|DHNq*b2GNUKiQaqqC^`sb#1<1oFS6uj^2D;oN2X z_q{W%5H~MYLJDb*GEw#Tq)~CLG^0&iwP8DtCmIp^$h%1o-$HENrk(ge5>V`lw1c-$ z^_^a$;-rYJ31o(oim;Y9raYKYcHuaxew_%aew_}geqGcF3f9fI){Q@`U$+epWf!Wu zw&G3CqT-6m?tatG-i$YG+ln{6Z}?~NrkHp+D7%pMq%JX_e*}E>KM{QHT_WIc8Xen= zr)A@)$FoG%ALM^y>OqxSjrDxy>Jg@4Fw_UEtN6!oim{h}xW`Z5i}iZ&-0Wn1%-wvD zbd}z?Kt2MBN4`0RiH< zuj!rq;)L~l^W%_MZ*#SPRq-=M1y-!^#&Svi>v1c{!t~{v8>25To5@A;7|ahE`Ng8yOEk`y_-c0_*v9`cl)6JYOGB z%`#WCKH&myzZ-fv6)q1DtG6QYS3Ka&vm8|;s-Xa<Wp+WETc69{HlXmmy>u|AtWhg4xUw(M>(Nl=(XS6VgtMpz2*Wq4LJ={-yo3@Q;XJ z{=#9DT}Y`8^ZMC%6MCTPry8R25GenWzCMcb7k;Ab!Yh0`JlZF>;Xa$KdVFfAxK_3d zWZJ)2Io9&Vlt(qnUqIUhcU1klr>OdMG>){t>enUxVf{KxJhZ=X24xqxQSqi?^!uYX z<4wuax8hCLtp6ksxM_pas! zU|*m6!(9FG-F|vNoUuPS>l*g*5J~VLUVW|$CtKt7xGWn$j{%SWE+<#0$nH*Ixi1=O z%yBNzx#k0hnJ#ON!W{@r^;x}IHwQ=-x=E-Mbq4GC_Oju;++7EC zNc2&}PK)yd2;2L;?^A>(c+WAUr`AsjU;C^gjBlL*A&V=T32|DWO{8r7x|S4pL?K+E z&gh0U-uWA1ya_bcP-$2x$lj9!GAXI-QfW+v`PHlmv%~3d&a~mHz)N{>Lb_t(XqFf( zzYvo3uw4hLw3c0%iNoIB3hX`Zep1m7um`|J#)Bzf_X^R_P7u1fA`^DVv-h2I9!uAbO!r;3zo4juC+PdAg{DvC{j8O`c&en1$mwZ zFP(cmKRwq5_(6K11?ldPKqJNWwl?<$YP50X$x#?&CcJ9YbDp3OW2Ha z#kPOU-#6oSORlqr!kJUA#|w1AK=n1%c!eGv_%mX(nde0_)T$vnvKgQ0mfd$W1sUgx z`8>95lC`ZmhO?;pg5;04>i$jci~3cMkGu9|+h$zr^*^j%hdCbFOqcvk`Bc?ZtZ(vd ztZtNXlOER--+$ae;>c9y{ECxuBxC<8@uq^ODlTuv(>kgw{)(q{bPI99L&no`tbhF# zPy5k%{1?tj%ayTWN}>N}@vTuhq{8bZx{%>Bzhh{SJ=mBgXcwnN=8Y2FE2GF#1q|o( zXhn&*Ar)$!YNOTF6dH$+?O^mqMZ-q-rLMNe1KqkHo++Th_klE%HU(l9VeQ?|W=56Ue* zSR~Q103YL%+9r_aBve1&(mOw0w)6pJf4^(@;zpn~8?pEp@HVJ}``dj*K7fSE^u7Aw?se88MqtEWMc4LDA1Pi^#?_&r6 zkB^?BY&`4)TM^RVjWnfzpHS~Un8ysvu5Ia2=YP>}nEhk6U!dlJ^7-7|ck%avQar+C zomU5;7vJ3i$0T${Bv4d%9@W~M=oAvPHu;oLeAiNk2 z-hI_|Vy0)Cq2L})TlJ>i@l~6*n?Tx$D(^c= zq{uq1X!`#2>eduE<}noluV~yl7K(h|JFctE{=6g92f;v$)szxsY~(zgc@w8d=8` z{oJ2k<%--c{K^waWQLpcym-m;3uk2UVZ)|fQ0mJ6rLV22zg+zr`2j{Jx8jbUpWBKD zo=V?}(>0sU`h~NGo9Ve3*ZSlS<4rO7P~M7DRENxq(Kb0Ta~zqk5>tQQe>0CnCHr>u zCOyl-PZR}_c^BepeinQ8U-)bD8*?1LYj;1A$X2}-1KEy0Va~pz18z&i33Bj!VJwg^QgrV@aExq%OVM`zUu7Aw?^wL{=Bf8Nyf3aE+IK2A&P9h`- z9^Q)i{Ma01CNDjUXR^L0(e5<~9&^5ui zv_>0nbz_0M>;oQT*JAll6(t0xm1QgmADBbo@N-?P{Kf!{bNmnUAIMPo52rdmKThI^ z0oRw)2iR1ZA-n(Q`SVM<&^_&)?*wBwlmc&c47#@0Um8M~E3bUY17<=21DAwi!CPML zeM-tPKoI3GFrnlXpIkNMygX8%3!m0IyEHCvksjfn&|?hB1?G=P6vcveCz_&k zkw}PMr|9*A+28NlXq+CaBzK#u@!*n<*mSU&3@jLICBZM?fFD|N?%Ht+!yoBV>M~_+ z|L6nsI{jV$nD^22pm9u%8NP`!+k#z`CR$`?4B@D-KpNkBQFtb1@{GeHs(NG4G@0gXSBW9yHES z3sWaq0rDKy2@is!_wE1DqyMJgF#E@BqvruyK4`w7=|STZE-05Xj(PzzkldTp-3M+Y zw2I$5Q-k$>QuO$FUaMP`|9Rg_>~!?lz3T&TG381R`^5SG{2ZFj(_JO}{u|iGJ)xh^ zJt=W`Sh-*uod@@S{O**T0hjdzCr`2`!WjWiW~S2_SdR~lgLyrKf!m(*b%f_$4q*Gx zy)hFK4uz@f3&o7L$2(&7gKb+Ig?ntqI5!x1E^Wf{y;l}5^MIn#C3&XCoyRM78>|gE zrsPAaHU0CVj74Cdf`($U(K%=ldj~O;P_~WF*p46b_iHPP>0=BTu*jM^nB-_2ymX;l zOfB($>R%WCWnA0ky>h*5`QWr|Y>h-#4k$e>%(_^=Js%ZWx!moO_`l}2`LAib*~IyJP;&n!ZikbU ze(ndpHuav;6-U7L*Kh^cOn>oBb9c!vdU`9Be&Mjz29p>fanXGETh|}^{QsAHu4rWc zFM14ho(XK?&IIk9)oU+=^fLF@&P$bItq(6bQ90km5&X~N$8)SvCuo#}V^8>6BB<~G z=jYITp$)hfFp|@V^*GVbJ3S31zeHZR4Od*G`Hf|4E<8M)*(hF#Jb$kxj;@Y9_m6SV zc$h02_f@j?mQK+cz}I89=iX3yV9cQwR(Nmdrzh{yzd?y zY#~$xv|-gmC-+fyZ=o6hE#dzU$YNY-u=ID;wsV`H*v{$eRJu& zL=ew77mX_S#2}WtCv!^~j{P;ftZD+rO?uo5&gN|5=#wfbZQ|Y$r(N*F4`|bRb(ik? zir-(e4}CVLe(~+4*r#9gSPn4!!a3jbAfd|%nZK&*!6;O|@sAz;Q@Np^J43JWOFqmL z)xY=_M0V#FJrZSSmj#hHakoTc9&F-b{JqC3ZBfMA9v6T1n2njYg%Om9lZmBs(SeqI zZ@Oc|S3YhQ}tARi_DR0{U-e|)v)Y+Q=G z;E0N+I~88hHhM9~gW2Z3F=b4|UkXGE@@bFqxq;LtPCS#ciBKW4vP#T89*|ZNH$0b% z0Ogmh6^!=S?wB8F{FUpIt*+m7f!@2=OA`H7;K5#{fmJU($j6$n-YXpmEHc?*MoItP zzVT!GSL0~4wF(##gfbCOcboT-oGXI>`$6BI5(H@NK*Y7$;T?YNLPcGlRei=k+1_c?f`M^&0@zs5u zwLr#wNhQinaW1Ulw|_|CtDMm2g;MC$9!+pDsLjPFf9vRr87yk?|XS zfp<6BCQ`xtiC{Xz!`aYsSgu54Zy|oHjUX0-a&uU=To0PA;5AwFnmksw7D>9<(c7l)Td|y{)H6TA*@lrdZ z6tGSfEXuQBA5V*(U+C+b&^+RAb5@|{8{_KaeI+nT_0fM+Cj>G?v3$$CD+!K2+`~CP z9tH}M9k~7IEVqpp-Oqo$3X;umnTdu$LZjr?QKK^;u)E~L-DWS)fq&PGf;|w{AN1nt z8x4aeA1hK4rR-e4w5B=CmQ#lU5MGME-$)szo|aG<{^$$v!vrbjssez(v%2<3Ix~1a z{R>HOZ5Y<`3zKfOApdvy0Y1R!-i%mVoiFG-^JyXiVFl{bk44!czmpzKQ<5=@vjzwE z^mM$%#Xde26VH=T{9Kr4Wl>IgOF!6uau0rW+5|q9!Cfd^1hf(@E2Bojh*KFCN{6Dlu zi;Y|MXqg*u`bUX?VY~*j#JOnDXe~{e;F|>LDO@sQkoEnH#>m+T7{dMR_Jq29BA3j-`LD`&(WCWP<1Zhz z{;EJH16UAu+i3I+;Ab_Zf={zW&?1SFjqys@0GjX?Q~%vRO~kMh@~^4%0*tQ0KA)OE526C#5|gT)XI6wI6X3dqSN-Hu1dBSG%MZ^`6K-mQ~c^(hOr7+ma zO2z&F-xChtnNOO3^auBHcGVvo(gvyOoz2d1;aJaSOgyw*z@7Mvo7L_KrsjzEep?|rwjjg83j_Jc3-yF(L`1;+11}p4PbyY}c_>Ki&rWL_k0y~el!Ni+E z*$L$rw&%s>z2Jp!4SP%d>%nfR^1Br3m;X9_nE3zJ9!2f1eNg*rBH69|brEWR&4=1w z|J(D}{(l~&uRBos`Z`Kq52EySG)iAHqWq&9e`t@`QT~xpGUB#Rg*zNQ_KE-88EdeT z+CviIZU7pMPca?mNQXkoTw+5@YpXyE(A5Ll%5o_EXY=> zHH3l+b)7CB##+$Y=6m#6Miuz@>EZh{TRu3@e#3)smp3@}pnPvMvR=-*NzS^N5%%@3 zH*n4*Qjc^x`;V@Io|K=J{^|Ah;Pf`Y4zLTb` zSm}e)1g;RL4f}kA@!`JNby*2yJy}aFQ`-j6a(Q2`lN++0{!N_))dSJ6&x)E+&L;{z6gy0@^Mp;;3I~+;tYr`dpmS7K#98 z7ZZnnh^xUn1h1d#EX(YezI2qo(1x-Lp4Rj#6?5oH&guQtr*9Epa}XLAmNPx!ESf+%l_C>AuHy7#@|-Ol&(_fh`B1(aQQ zroXHm!xaeCf?MK+NmYPs6#3;+`ar-f=|*;z#d*i_V;OqH(@S9wKkyJXlGM0>eJ#Q{ zi?hP;))WKp*ZjY)pNHb+wZF}VLD}6K9qtd2emGPtWlB_sx>VMWGrx51SY8kJr%1ix zvVm{?gS~9{v40;!=kb^(jwBpx+^mwn!g3lk+b*ao1P8-u&S!}OD?tGH+2)K-k_NP0 zo7wa7R1{!Iw$*T*vj;cHMmWyaVE?_5B5D1t@k|t~AGbPJ*Ubm-$sHb=GxLFcx9;Up zFb4sJ(A?rZ9V2bUAJ52G^~J&;1ol$Op#t!BW?RXDVC?7jyHF-Z);sDzJ(4!?(ms9Q zQX@p~)Exz_~K! zEZOUzBZ9s=Y)A>L*K0xm2#$nRQ`q&xytM#^Asdp`nqmSY?L60HYd@TXfq-;=AS?CTx)^t;v9>&dam{pO^5 zp~%o*8y}i4FIc?#hkC_8==#UP)@STcI5LXBn@|&w90+?eWXlVx^x_qRj6`8Gi(9 z9AzpyruS_Jqlp8PH}EiO+xsKh3z&xvFF79#1R8oTwUj$3V1Mm0KMTDI{2_2;Z(X_P zj_D&8sY$r$sQ~S~7!HKP!M5->rq&LvI1sw@Nq+ru94-Z491Xb345hr-ghhVv?wCHq z@T67^ix8lrs>vRy8xF6|+z)YflLOuqZhIdhe39pI%$41=IReVUgGjx!_U)KHQO|Fe zxjQW&smM=X&MOA6=fXPU>dF7{E0h1Soj6EN*-O&z2M1q%o|s;Cg@s4xj@w>~`G;?6 zJG2wcs|tLipG{%dUj2|1Bj1o*P6qP^8P0-lJKi7jL%1||nf zITxrRLBm>?1}U;mA4pwLOwDoyXPrNr7w8?DbT2OWZKSf(Kmu;~BzWu2n*TU~r z3|ynXk9ed1%pU!;*|JCRa)vz6HUT87$f*zN$-!oa@l%A! z`mp10x&JqYD45+c#CoPP8f$rNBMkMAtn7$^!Nn*@zG7bLctRV9ODE|*V;2Ahr1?*F z+a|(E)0`*YCKvbudh!XB2P>_TJq*BddrT>()x@5OUh?EV?YztR1>|M%JMzc+F|5H>R& zTp_3l0#5bz&AxmJ@Nn*yU5Fr*{p^2)6VCZ_;5)hPJb#l;yM9Bb;|%1Jaj?YcQU@7( zjz+hVOM+OGUEnegC>Bo;hXXGjj@O@~2EQBs@9winwksA8zoQzBR%eru=fzgZAS8**VJcIy-|ir9@D^nk z_Dkdx_z+54m9qSC(dC#2d0PnF9gWhY~$O?U$PT<9xtVE zE5kstwV6-tUIOpZC}3=dry?qxALg@|M2N zm)p|U(Ii{?x+H!}Uk7n*`A5!w=pWId{3C-6ZlxINBuMWHKXzR>o)qNZR#!>#lM%I>HpeXFS(6h^J+c+@C|GW0(In_xs5W;6NE;N+Th_f+B?ilaGpxd>p4#9B6yGs$z)*tr2BEe1jVGoX?`~?k^UAWIc z*3w;Uzhk`klV64kRqO$e$x?doK06?prETZSU<*hhw)};#zAd|OaZd3C&mWxk!cCAm zmh}8QK>X-EH&S~N>+wFyq+{)rFZ<8Wp>Y(P@sf;oWB)$v>5Pm+-b@F?oCp84ZM3}5 z8Y#9t?_%OU=>^Kt0B|9GUm5YF2cR45Z%2p*{4oyZc$hG7Z8@vI$UF*#&Fg~YcUbHJ zM@U-0NIdrM^D%KS+vX_T2OEfnadibSZTfmIwRAW%K4(X%a=~ZE^r88NrU#AFHn-ev zOZMk+$e47X+i3Zq`G%$keZTfEG#F45E21K5mCbVv=YN(i=m;L$I;y=;!pm9!yvJY(H+O>YWqFiHuc*BvC(9@*< z*Wzi>d_&WN#*q$VD4av${+k^B^#5r2p!tSLkCkKW;NQgM%x3*QnX>(T;kWOFv#-PV zwl#wNGDA6ZlDoHK~&jSG|GxmL-&cNJC$`R6<0yv;|dD%TFXvg~VEDDFi?0TN5 zwmdvwoDcRo3@HfXD1fm(BWGu~JSf;F+{$AYzhgWe6g}lAoG>L4+f!lTKzDfG zVyllUq`7Z9D`6Z5239RHSeZ(8jMq`>5O$VB8lK3k5uR*40rDMFZagwDfa}irtsz#5 z(C2vG!`iFbp!31h>4HyMJD%q=A7Z8aydt6evhmndPdH@Oo#p-k-GLbjhjhFvk8Uas zzQt>NRSb8&uIx$*zT^&C!y(#Yr+v{L(4t}5@wjp#)PJ}|Pa6tHDXuunA_RN??N8S? z=5u$%_wek=vVv|`PO$IEU1&w$mtp_feyv9kF&9z!Kx{=EA>c%{aFcQhh`SQ=YN;1t zEe~83f2DTq^Kjp7Hi|d2^5FhSt>{GxP8c)q6`vap=2NLw69@FfS zg~8I={8oDaqTs5wm_a=D`G8!pnItwRMGz;?QLC&X`4+;^Y@C3kC-&x{dPgLV^}`kX znRXt)vNx!U^b|fQUi%tK{#pi+`LjsYs6c$1enXG{->w53d#byH0pc$Cg|dF6e9kDf zNmd~FcJT7O57bC{Zm-VlJ%GfCt#d7;b>4Y=0D2s&l`XC3{7-M2Z`~&8(fjrtY0G@@ zR66k;GuHH=`^UT%*!&Q=PFD{S3Gof@Ivq!xdS`j_{X9P6v@bEK;t#jBi?ZV}tH*t} z;k7=lGUYm$4&V2VfWu5aklX0wC4n!l*VVv)WxqLf64`&>O z^I7S+%hNjsQ1yORw`F8CSUo`Z{+qNAX#SpUER`4yr>bua^`G1MettiS9sv~209mDt zXh{Z`A`pH<#Agh@1u9s1`g?<^cBO^#uh@UD$CSgRO20%g1p(NRpc2XS>KHgJ?32L~ zrT{4q9kP-z)`Ytz*5oSY&H^oqMAO!hoySAly?J71o8t+KT)lhfX5C@>-3w9j!xn%J zg_F#9AHmj~27i(eFuXRy{{0>%eR>}v^4_oOLR^!NWnN{L(5W+seZPMoj6=~gg2LgQ z*hBEWJAK>y$L#O_RvYNmO>=3R0~5b?ulGKJZPAlgSa`Te+Un9rLRSTS5ku{J2R&p$ z5hi+B$d zbLgd(1?;!zKRlHCKlvlWTx4^d2wnuX^!s12WqeW2-}d6tQK3zokzUiJZ*}ERAp|$S zm^m5j&){4mO|<|U!DLp)_B#DzAC?F+C}Ai8)_4wITNT}Fh}t|-39~lonV+VN*~H1g zdm8?APZ<#Ok^i3eT^bxYqh*#56#z*@_cK0LKGMdgGWccG&wZP|`5nC%d-R3a$h;BW zcoEkIkbJx1NYqS(q^B!Fsw@kM1L(D1@`PG~Jrq)oW07Kj?yNrt5g|((!TisM2M4z6 zx8LD~%e2zUl?NfDg(A&gA?0IoHIkhH$+u22lH;*RdMr3R@n?`Y55#`7eC_c6ho9(v zjRFkJKeKbdHm*<{frDglf7+KLF3(Pb3>6OlvOSd0eB-t6x~2|PGWlF``jBm*APJMm*x-xo^Rq|F{34TQTM2~UNKMHetuf$FC9RQ5kQH+#~Y@lTK zlC{xoeR#{H;3vr!?D<(<`myA2LmKkD;Nfy7DN7LhA(Azo#u&1CuCwghEe}LGpSjA# zYk`pBLnX`krqJGyBFoy~BqZ!>I^e6Oi#2_*-m;erC*47}H09T>+xAd#n4sLvOAGA! zOsO66#28f6(fEpHsQ}N37Uw9F)7$!2t3I}&_)`oRhKB5kl061O6PeP#3h2OK9p!Mt zWNCoY{YvKcXe9VhDW)u@Vgt}}{L|}8C7tY^>Txjk;mBSI+`zp8ZS3{x&~OaD?}O-Uf(ueY;ofv(|0Yl=E7YUxf*NxjDhUR)h_2F0m$_e6g~OH z3^vfoYvnbW!JPD_H_d~(JEl(n2EGzR#uYE(TC=>GI0p@+1`1bh#6vcOf`sXu94t38 zHgLC-1;WsOxQ^Cr$9NGXt6k*DCqU8OAQ5Sa(@C|y;VUlzb zo#Gj#9m@}G7i#AEukI0AXydTa#W0*n*F<9DxkLle<~hgC1mVU1^)y```B{h_|@ zK3==ph@WQN50Ry#65lO%^B7P`Kpjek|@tIFM+Fw{q&pheAF4RHSj`0N<>o ze9xUraIDsKwY?<=ycfM}q@0Nls{A(?6qSzwZ1qEP+CtQ;s|a{Bg6)#Cm@YKZ#tR|e ztp>Ay+92HcWTDLPhNvkHIr#FXJmj?lGh`O@7(3jr3+?BoWoGosz{-gpWWtJFI$4sGlzJy_WwG1Htk?=6$pxCzl zWl?rPPRB`h%mo+RKl-73mjd#9hnJii19bebWA?&nSN;g#OX}BdHsb-XH?NDOKA zb);Qb%-h?mOqC6;k{$GN{vHDleV`?c{bmNamk#j+zcdG98zfOJpH+5@_w%~8>l>t9 zDD`x+AX`WRj#mZ7$Zn?rKRXB2q-O^3`dj%rp7;8&(D>q7p^w>)@rd2=jEBWf!-s|0 zw>mSm;Or6cu)8jdkf{GbIS~mth`j#fCvMk%IB^`$gR}+v^@GXZE`K|!a-?18!mXH` z`5+H*DK^q9)ziU`8B?jYQFfSm<;m*@+7@sr^x8V>F~uFzhxQlHc42ZbT|Y^k3tSIo zdYEvW9pXG)>P{^@4Oo^MdnxI#kGIF9uL z%iHA0bqS1|<(#LvUJQ&-`a10o_4QAbzE+=}mP|zI>x3EA70pkP&_$*~c=u8WpsG!l z7>T|FUb!wFIGa)gu8JKpK;)`Ge}^^yyvS65$=~0#!MD;~^?EkY&8fCjPpTRC+*hfV z2zLdHu|F>Cw)2Iw^Qqsy?A8OKvSV`lw8O!Iy#7ZjzzqjK$Vj)f$zwg=LZ5vqI6-C& zQiJfw<6cri!WL4QhEob)Jl0~hq*()&d&OjQu5-ed(3HF{lK@uJ`qxb&<7~xQ57}oa zT3}5d^XMbtYNY*ZqBJ?ix5op@Q3cDNk2?X^dPIjEzwv^eM!Ih+7L1J2R*+5!J|)i+y~8r;YLrb^lz@Irc+kL(?9*^Crd-{5S-L5knVl9HRoK3_iTG zd9DX<-I;ljcxt=-iAVVhk5G2uqd~8%oa!mKsFxCX;gta>VOkhfV)B5EU%ll=M|S@H zOv0|mX=TF{jx7~W-$vR6alYG!o`+2UE9YxQToIw*@sdab#rjRC-PKoN8FLkDd1KDM zzW7>PYox!hUm}Ut1!)&#qH*(tWvziT15K3Wq9IV>o*Z~DCJeJ@I|-N*cCJ5dD{D+Q z{RP{D!X^|*yU^3$CFkVf00F0@0*gL@pM5>aZwJ?+3&B+q=C}m#acjNzpJ}>4D+eTqtx(c~o<+1&eVR-D zDhxReem$v~a0;xO()CB*F~^#|+N9Q@-qW6dG-*ZFu~!DxBvBk$ei;r7+|Q3?FsDI} zA^mWFVmYwE-3YLZS2HSFQ9;hH3m+mrw z(+$t;)&n`<)o#MTCe=_l+w%O4V7(g%(QDMd%FYVyVM5vln;5(l>-)8P^a$v`HW%8< zgFW84v@YWLHAWyv+(BV-QX32{W^$Ryx&gLp_F`p$q2P{{)cf`e^suCJitI3*+%|bB zTbM0f7nB5r!;_WQcO8e-4iDw-=jeb;Nu61lbsAXw!F-y?}<(`=Q{vtRC2615wK*y$2#E7&fjO@_%yE; z^*cbX>%<8+2OXeCU58S}j18cslucSOHv%3Gue;;zy0XW5#pB)fRyB;yY8taOAm0ccoZK>UN$V9?oMSOH@P)JY8c* zSk~x)_t|c?@d++ib=QsI`!O15l1|oa{27^7G}v6wNj{JD_X+{x z!}_i>z(v^w9BQ|kkhMfeV|80IRxk!@yoYC>Sw}sy1+4K|_!kC};P2?iyg#Cvd?IFd zF?jNVhC}RX6bPfJFL-?V9Q^2{d|K_ZAj~>LQBoZp2L0n@rV|Jvp`Re2xYut3l26Xi z+Bqd)jc2E=#MiD`2uez2`-&a~0e{&y`a*`5K(R(iPgv9(UjNL&AzT~@hr16iFlB{7 z>D=oQ1$XqIL$keoIJwP516m+-`DPn85MrPKu}=uq!(I zl#EOPR9VO|JM*6aaq2USrO5L$i4jC>52Ue=@8TB}?b!F@417i)(av)<3B2{o|32V6 ziLl=o#EYDghXVI!mZ*210=hVDDgsx1pn8h$v_OC+h)A<15haYmdcK`lbW7FY`Ic5A=rJ$Ng#TzP8@4`ee4r1y-T#!m2qxX?M^W*uwJhSeKp7_UADt@Ne3QHYRVMwl{!|RIZ^mk}KdP z0bBe$;vOs%+AU&=vN*fID`3@t;b9 z21+u764EX#r+*0_R55~c?LsTHCp34AM`!k4dH*{>5US$fCQU;J%VelZ3`B)tTO@~r zGtw@YWY|qn@@Rq)&BLpv2M_HSFD++753j)kzHQVg5T`jC&Ybu;-89R^X+kL5)xFJLkKIQ2A+^cySQl%ez?VflRPN4jSFDSb(%%A)5 zWxeu_>3fW`f3RcP9KI3c-NS+B3bo8!+QJ26pdrd%IE1nb>?ebR-`+{a8t(y^W_Jx& z0(Wc73w++Vz~3yFZMR=Kek0z0JRH0dCuNl6ONNzusBPD7nFBwY9(CMEBQVzgMd>Yd z03;k&@p8Rr35C8$#ckB_rsfRx=P>IR(QoY9tYb6|&h$s@lt5o(o`*+2_1Myq?>zF^>Uu$J=?XRB@&KxvF z?ysp0hTa^u(*sh1gXHG^<{)`Czp_J=2E;WyooRHV0v@Sb`nvHC^)=DgEqx8xvww;r z^>uY(;1fMPF_3KyE{EHRg5!yr$rQYP5XU#2YSzRR@E@UR{K%;fp32H5=MG~Zuc~TG zw^o~F2+DTb(lrF90P1&{_yoENkkj{l!%W(7_?Wt)ztvw18k6|X8Buy|o6nDgEe~q> zTL5xWZg!UlS8(LAn}W$~4Ddqv3wznF1eNDC}zXb(5vwgC86R?k5>fkzO@D#--OslWX&06 zwn7U+MO&_J`U@uH>z^x;b^$l#_DA-E+v5d(L(aC_dEs*LG#$Laa(dr{It33X7*HW% z)MWvFH*Oa5ApHeAZujMf#D~D_#SNJ{J$0hv|G%~^#aALcRP=XD?|;RUoK)wxEK7l9 zkGw%O2Rp)ZUQ7L35e~vD61nTjaBO>*vGn|~pvN}^|a2m)A}pjzamzYK=djOnfx(Lni|~W7wi6UUds+4Y$B41#xc2c$obCuk9J% z`c)r)X7lXl>+5TIu z?eM?$kN%xD{w48ht`Trm0#e~0(u9^-6rq9Y0w5QLKBlA7f@h3PY#!YZ1RgI%$$R-j z{^_6abhrNQ*IZb~o2vE9)_0g4LsX8sD{SJdDh1b0-1i4kxb81fk@Y03=k9Wct_wob z$dhs>?Ir)=|3f|b$#`^C+cTC^0=V(vU)CvvRh`vUx=NaJbd!11BLG z=Ls&&S8;}m|H$*-_=ov_$Eo7k_gwnWE&NJJE43SFTPuC}R#6*TzD{8Ia=;xd8Y*S! z)$73U691tK?1kIQfit?` z(&FU=G7FP`<~Qaz{%aeJ^X(G*@;UPhK*=SnN?p|r9AF!^rIb;JoK2Q3w;reh%>c?F z!reQMpFq=t#?e$i*>oqh0^IbNI;B%I(so}Z_x!TEHN1BX2UpR~c*pdi`G%$kjgx*q zkY;MPBM>EjM_O9U1Bt1~W3Qai+a{0y%189?(DFg^4NVUk=gKUeYZGl6xJD`%$ufZ0 zF&=szpyh++8=4+84$wI^`jZ9w{0H>$ND0a_T(RjbeKWeL#h6uo}_D-Qa1Xq>M4H@&x#-UC;S39ggT zhKL&_?y>aZvTbDHba^=Aacw>i@`mK_|A z`e?y3zsF<8^3X)lqlLne{@m5%&g}&^f}f?X%)AIF{`8p~%Z*eJ86|jvj05}lWK6jqQdY?$ z_J{;tjNZm6LQ!xkj+{GQQ4<8AaFS1wIrB2eg4=dEE$z%&JC>h|^fDNVFokb$!U(=G z8iAWmZKh4%{_{XhC6J6!N9ZyJ9v;OJ%^wXM=u7M5#Et)2T% zUy;<4Zi{)(UvdKuoswn?{guxwtz`N~`OMBI#ed~9e{Z{}Jdez0UZgDy*vw}>!&!Wi z4Vh=m`B>jC4VnL|eq| zf7LtxHZ4jGYXZcwWZNc06U-Bld|Ql)XT$EL4m|M_mIa6U!D$%zx55T!xw;q z?YKh8F7Hnjw0e5Wnh*VxC;xB#WB#Axyta42Gyy#RExyf&Es}{1zBSl^ZA{&U9aI(ZRSz4iv;5uTfaRuc;nER@DTT3$KlxPdUi8! zy8c}n|7IR_;AlyJ2;m7t2svBMo#s%)aAQ1?!4ORwCOx7ntQi}3Ye0#DgSY&26s#gy z&bi%j2{OUAk7raOKogxs$H$0R!0c9j;pMo+j@Nq)3TLoai*uH#0;W@(IyQc>4Akiw zMvLbL0rvWGmZMH_(8#8qzV_|T^>s6fo&ppO>v@fmQ@+sJ(&v3o*P;VV zg@fJmZmaCr9$j!8Y2*}i1v7OfdBuaaAXEB6!%cc`sG4zgRlZaP9x4^>)O(W+&b#yE z7}Q|@{RdNiSMaJsXEQxP*fvEv{V4=^Qzf*M??V=ik_P&9D>{D9PHX+JXm_d#GT9uqPzSFv~GSHAXD(o%vy$=5zms1?4M zul@h=_TTYbfB*kDUXqfP86u;Mh>%%4j!pK+$liNoX74RqM9C(r6hiVi8EHpSDl0pc z*+8Q2{qfA>`MzBEbn$xR`TP0jemVEM$GP5b_3+9Vj$m*ozL#J4igpKI z*%qP#{bk^M)vFap-DF@e70KOUmIZGW0i$QR0}_pUsSgPU^8YLE|Efn)W!-S+5ka&R zw{#Cio}=W?ePR(D=b6_&M@{wN)Y!u_FK9}^$E5kaqRRR}MYTC0gPI2gBE~FoxI=Nq zyJp>Mwi*(F=A(y2M2OzPRRm)l5P8H4S@v}zII&AaR_r30(23rr%=weuzy3v3AIi)a zO}8n&Z6zo2a8b0+{}8J5+?{47#6EP?1io#E-bAgZk_8cYvaWe$J0dtq!Hf(%8GFIT z{#wIRCSz{O0xHLWYEl0~u+h;|ER6mnytwNU73GRLcq%vZG*SHw_!dNS>7B~)fA4o= zKmTicG3;|@AH_^2MuO}*8x(8M|Km~ zr!Qu}-gim9xBSxKYLnRKJw5S2(O8Px`s!uq@&1&+(KCjiZ~6P~h16V}@%#=c9DZ}w z3+#4YS(HNRIzE38IoL&?1BVyM4y?UH_OJPB8uM#70^SrfW`&__4wflD6@T8rm#Utjgc4~gR4Oo2OWt~|ZZq6%wT*GSI1wgXcr|NV_+`mof; zw0tB-0_<(5b+r{SfF)9KCBq5=P}Fz$U`LZ0&idS)deEpu#u2EvUeR7WEDIW{4=u>| z>q6ba2;rb3<6{ReF$Y5`S@ zZ27GxRY1O`F0o6c250?m9M8uBl{2_fEgb zp{`cdh4l6V0gbxb*JsdSlZNk05wMjKPsHY^G<4l-)BDvj8SXdTNq_09D!kS#0qce| zLA;Jog5BQjVA?B$o?oz>fq?1<420A!~om z$fF?6P5!n~Ut6`Yc_HY=Y-PqHNr?I$br9Lc3uv{n$_+&*f@=#>?;q|*-j{!8X>(rS z-ZtK|^}Nt(dSq8;UOKeuK{p#B@BfGzI@*noxPWJ!(l_JBec`vGr;}@u@4~ja|Bcth z*5h^jU&iabZolKTl~QgghUelSx1>QD60gY^fBxbLO^4}I>1Q9nnHQ{jTkS?a5b znPBHJFOuVAiJ;iL_z{S!1g8a7W~mys|9y|^ zX;;n)Brh}+5c(=2^~?e*oZ{y&^~|jjl#xh1b6DI1x4>R=U?`%XR{kH4VxRg81DT_ z0Lor$E}gl_KHNF!~3t{+T9iXr;{Bnq!B1z0$_`=6L;(nB%f7pz{gZDQ_GO zI)5%@QG-x;^io-cD9vd&eN_KwRwMpn+5O~bWpy0egNn3vk?!wUa(%z3yty2$E8nrz-!f11LWO)P|wZq zDx{YKHh44rYO)eIDhEzr%1wLPo*ZzMQubI~4H9A>6)CJ+WPzh?$R72u*iaAw*;Pptj>%sGe z2&Q77_gUqPM`|p{Ye>IzO@9f+0k}>t@r>Ga2p`k^st6?S04)%-qNx~6!M~h?I_9LY+VsN+f1M{&~H4MNL%yK++ z|F$a(KH^%F-Z?A@4PQ37R#&G2vC(r^sV41l#_Og~W0Q}ygkO6Ez8&+6##ukP2h-kP zev%DQ>{PLN(?(F(v@xTwIt2(la9y}pHII_6yC>7tXqM&8O7443%#_;WE zeBs!yP@M4|rq8`#jZcSzyy0Xgi|rtv{%I3knKX#c@A+$Q5+|s>^p<$UPY-6=eRPQr z4}n~g=TdH$I)IkFW17tPxbv}|*EdF8Rww{Rxc2ce@mm5y#;RsfQgd*HqyAFL4JDAv zGmyCV22$^;V`V*YFcH`slp#}eA%vMVc`kIs?f_Y_E>>i+Y#nn>L=HTP=r zyWB)D9Fa)ypnNwZW-T*tvXB6uBN-S1QfNR!X|T;#P9t!4SMbTJbGU#1>rUy~ceBk5 zh#gq%+l$oUm41JAn<1MYs4G^-_8sGdSGi?5#jhBFwudg3AaDQ~pQW=d(V+ zIv<*Ysb@|)o>Gt0GiPaq^j<{jnQz^C(}$^NeiANQf~jYYnDwv|_z&utpV*ECf4$!X z)C@j2$ltvO4|qT5VZ0Ip5^Rnpomm_Lc9-OcfAq+LP6ZRe@@zw#{cB@<4QV?VQ~HP( zqcl}%$7!0W-E#ZuBi1K(xw-kYfxwqrakUfL z&_kM*?CU8TUICd?0mKD!%6r zL6{{h6x1lRIo@par;Tk7Wr~#C`%aK!K=f;W(^*IXa%9o^X^=QcrAPFDJG@9Rphrio z1#FM+rcprZmVB=Lj@Q9|8LwRr{EpYt4uvJR5uOXDkc{R1NW8ugxwno@Tn4EFIYku6 z?gk2PpEZ~=vjl#T&mO5fAqSMam-eaH$>D6jpayhJIWIMkD{!7}cb-6XTM>z|6D9)U zBOJDN?@){K{h({!N{S)d#g;@e?>LHlE!sA3^h5PqU*7GE^b0=7#$@7O= zCy_cll}AR749#ZnYTZ&`GqghLs=u}L_nm~pnT|vf9;Y_>vs?O4y8-1;=zr=O&>XuN2hu8B$&uA1sR|gfinDFZZ-8+^|zu#!zt=eP><>i=q=BmYpCTFCcc}zn> zYznDowp+=0im7K73tzazfYdV|_D?xe{~y#dONMb0;tAG*is9i$cJbw)Sb&}O8+|L} ztYBVUK=Q(|$og#F&qJU$peM<*(_`E6)mFMurKniIUOti3Bgd?uMku9nnq*tX>>DdUb*3p)$%Gdwfz6tV;d9ty>v4=tge+_-;`1IY_} zPxHNeZ?XgYSbm`N>Yd8A@lFjMn5IbOf!BCf7RGG2z@jm6J#i2X_`beg;91WLncRZn z@bm|q-=A;PXC1@Z$@w>DVW*@u?|Di+kP$}qjlN6<$gQsz-md2b{fZ-NJHK<`EZ@zM zpVwKLWWcL4XzGhUY;gX)*5kd8M#cO96U|SWNZJ4pv|6fDU*`!ILK!Q?H6j6h^SvJj zyraSXD$9GjI~8E{O~bw76jJcsNA=Hx;Z|Uyyj!)ssZ07!IGl$=FFpon+&vE&ZDN^T zYg$6@cGfDE{18ApM*JeUFc!X6@*55NEDM-o#vTvS@IW($nM09&xWAv#O&-nbS+In? z&1`RaJLQ03>(^(}b!wm`;LO9eSMkua-{l~izAl(8fS>LRNP;Yi-}7t9uD_dK@6q}_ zzrOM$D$xkxB~l{(T=5l|Uq46>ycoAn2)>dVFOrH00h}T3Z;s=!LFTgG@jCA>1s~@?9@LUXA3=U)BwZouQKj&H~(C@gX#PW?AJi_Nl|Dh%X7e;REE!6mm?s|c+)J-3*zAxIV<_M^@W#yW*&EQjx9_C$*63Fwe+EWI5 z=r{H6sJQdT^-=@mxdi^l3s3c+RlJp#hP*6%zrJ3$wVoG}n3N9es9oIl_@gx^;`Tx6 znf>-v`?nzV%+M_OC^=Hktb(6<53^nvSTv1pLGl8jh$soue^Af-lu#|Mbf6J-kn`%h z6W2q#s_+=s2X#crP$RWyHDMNFU{WsqKR&Du9qxt7(1QA}?6BX(WQm~bN zPW=n^W`(%ZR2fqKU-b*H@rS;;aVwbt`Z+hgfx~ zE)>j{5;eH@X2X?4+71HZe5h0(q!upcw{8D)UB?+{KN?i_APThTrqLzpM?!`j%1y%Q z=@9>svN6x~eDGj)^h~7Z`EA>;c3qyPb)4~Zf$O}2*1+(r|MGS90K(hCAU9Wu zQq_v(w({55a=~^h}#k$;X#=zA=w>42b(VQg}#z>0^xj2xyxxX z+s5-cZhfhHJ|1chQ<)d8TmZY5Q-x!4^`JoJZ=7%J9U*DRK1DetrU%85`l+q_b*t;% zL8l5`W2^z&lvnWuF@!&5p1$UrnFb6L`Yn%q`EQ)|2ahLZOz^jjx7Gdp>H7IA1tOTb z>1*Ul6PP;c_r=B^cDO}SJ zsb}7O5#JP3&zzi=awrk0GnRO9hddOi|1~^lUWBP<9=u)hPrddHYll~VQ?H#dhWe*o zTh{EPE(XVWsQbqqga@8u#zZM#4-L?%K%e3Bv49;xH&`xLI{~bIXm1g`8Ro%#KO)B; zyCM`l52H**YR3`~c`7bZ@>wA`{((dkNzRy zm+#VLeoBk#3yF)J@+c!b{6T^fp#oLHZt%hjB#p zMK^-O`lynqv8E3VCzgF(S0^M+>UpT3R~K=vC)wRbAaLpJTJ!P(U*2J)Zu+$(hq*+g z5b&OkZL7982)mP%$R>y8&=j%q6qec@UBn$?Hj=BX7hv zyh7@x``mo#iD5R>-a&uv0)8mqZtEl)_<9CJ#^1=Ux7z%^Y0@M?{H#tYO}g0eI)z zy_aJs0$^s6EPQfIA5g1kTU<;)fihB8!|2nvuivSeBK{dar{C!RmlQWd0ULEbO?aOFV8DPt5>mlv?4f{%2&-PuS=t&EqpzKk$UDbqDLLyuJb}NO?<*(1t~}#@bI8L z!fy?NC9h-R!P_r#_?U6JvA?a_S9|ZvW90D?4gV3ZJqq}=+^X4w_)!g!5rKT?RUn-w z*%xAb6+p3z;1>Jb1vn5>L3kU9JNgv2tKyM(uvPyXulImA*ZB~=Wy|_pW2{7h_6KC` ztUlsE_lt~u=WP-2qQ;)Ou|pitCVeeD&*2GJs=4?lkoZQ!(V>osI~)7ks!d9fNwbF7 zN8eb#twBK(WUguJ8|@Z{SN4lQ_$O4T+-%AN{QT zf5o@0@FEyi*D!vdD#bn&VIcr273#}+<^sTd#q>$Eg&9muB|egMMF^JI7VK?rl!uit zna3I7*O=oA!>{-YehnMXvIq>n2F+lPp(Nr5wx?{YJNN8_+*b0kCvLnz`NUK#JKki3 z@837t2a7{9Z*^PfOaU0#vy{{19S_ZqeBRxJ%tu2jZ^%$DYXXlQ$Btj! zBe&^(H}cv!t*<-y{3 z8{~z06{P^eUSGvtZ$VH)ROsKysJv}FtbMS0!^(rj*=Koza!w@$IJn1rp!44T`UvX> zSo>i0hLs14GlA#q>*ebLwzAL0>)7#w_3Mq-w`%X@@Sf#OP60!)p`S5v^vOsGzlIYR z2=SC!&InvVb47B5B@rrs=f_9eZ;omHJ5I6VXRH1%aPZHg% zY(lojFb!o8E2YSgA&kPt9c(<P=_q+m)*HjC zvB0);9K*Bmal)*)+*J^rf2hURxah@(}xsnz?Ukw(tV2Q@XV!A zQ9av>katOw$bHHO?6!BTF)_HjZT&2g|Hk>TCupMXWDamvo1D*5Nd{|a)Hf)*(xF6y z(#)3z7pOom*+WrvW!v%d&AL1h>o{UkuI|df4sx8`MRT72GBg|LNLHsXh1vVx(NO@e$sAP1@Odby%rB}V^5nb-d56Kd z-d1?{qr4X6e)Z9AmQn}K^Bt_p7_))dE)F+nKT4tuuDu_4YbA`ce!t2t+DvMSp!#u3&X21Qc(D58o_x^AEindCISxFW?eWaehl!5`x^F0Nuoc**$+@e32lmR zf3g?$yrjr#Grq1UdfJ`Diw3dJ%I#aG7+#H{VNarqh&;QVrhTVFa8R~`kCz+Cw>@65 zxY(mGxz0}`gjWO5O&r6s@mS)U<(C`}G&4~}(9?JBoAg&l#j|GctODM+E-5WnbRL|L8IK-{EQVKp zTw>^741)tUbo$RJZNOSv7k-pP%(nHDwT@H!jfklo{{}G5V$|59k`KOpV|>x#76$JL zk#i4;8A4+(AOr1Vw;f;D*X40t$GJeVNN^gde~aUfmQkmRfqBc`af>m^aER72MMv3k z+w!gH46$E$>k1vHI6k13T;N*#=T^^Cp0IZJg}4GJ2ws(RvJ_Cdg5Vujl#^d)Y#T4r zTT_=TRtt1z)tNf=$-{*+@SXlYY%t2CApqldPENL%ChA%Q1WxJ^0s+F?<(6T4(>^^GMh+M({U$9(adk5;1%p z^g*icG4e2vr3?Np!}5scg=o~v>;eVbgfEiGAhcs3QY&ZS2pTb=wclw8!7)o|S-Z336y=7j+oll`9&qBmm^; zO2);haev;1)eH9M_fZPj zJJn^YeKy@Mwx2&8D@ub5o=8}MfWz6@w=GI>ju*`q31!)N!NAz{J=F)+6zCptTLK^9 z)ws&#>i15f1`u=zcHcA42TzC!UtKRu1p!5G?YM>cVYJd<=fDW=d=QzEyED<_N^l>e ziXPbsY82p-zk4x<`Xns25 zEN`dYEb;+;8oqfV`QnWN0T9Wbx}iMo0{qO6q>-4I z0rVVOzRY=im@apFf0D5fcrf`2?D>xS_gS%JGp#}cu8?getK{ar!vH;Y%E;m^KitL6 zFL;ss7?>|~XZx{F5zr|AjA!&b4BwJ7b=rC90e#hr)`ktZ+mCqYfT?Iu3Y3wbo!cF% z2!z(e#_)y=fwYbIK&8DSEZ@^OCQ~g8W#17=5aMmFf6j4AsaAw%K;^xw&F!TuP;!UW z(0wuupv&lT{1kf#NXO?B9)Ds1z16H5Gzued*8j$Fa`&^uJ_)KQxF9ah*oo}ZjOt`i zUPJcdBsy^3)^k=Kwi`xd`P$0?iUHQ;S~@eZ@%Om4+dMz2Gb4N#r3Ypn?n3ICrC%I9 zDudLo1vrKBkhZe|XNsOXxd`9IVZqsw|AO!0iSbiuU-~g%*TO=PmKF`$>n1OB8e{^B z5(|s$$XXEae18Q+Mg@?&P)t_1zjoXDG-N~=R;)8XP!3~OE>R4qls$4v{| zrK$gL{V*x;8z@t(ZN>e4(?^}L|{mcQFQG#fa@trn&wB>-xA(Klp|++qLi%*fI^%Fw-#zU$D4 zFV1-W>+w4OFXMH^dc2;f9%yGaNrU$OW&w2w4-$dk9!6IrUhg0nGO0;P1-v&313zWw z!%JT+F34T9fpI5HxU>$GgN^##s=bWg(_CH@3XAIGvbZEN!HdKr2Rjg64N3K6Zv3Pg zFcH8SuB@F8o$FO!SDd~G?~k}S79BqeCtJZqVY(cg@r+9oXqBrxp#5D`<6lp zfMkX`#p|UG%CSS&J9Z@J z_Os)@KjIN3^JA}yEdl3;#LKo+au8)pNR?754fkr0#@xEK6SzhwS5`2pK~IMB5!P?T zL9OJ)^WQS{;R(JI&efHkIQv_9dLCQ9ZYr3s>Embx@(@i&O!`?{7r1sv3gIDjx`n&& z&oHzI1Gb!O2QCteP4>FBo)@Cume9Uu(}Q;1v%Z8cPQyvoHv{x`!Jw?nw`)JI9*A}9 zZ<;QM-1Pgc{A=U&Uo%{GFOa-|_bEY?em(*0;>xQeMfPcSr^}_vc&QKf?w#yp9oK`e zc}-*r&u{+TV`G0?wHX{fX754r!dJhfh6;r5;-2}McNJ3COy5aZm4onI(3&VvYa@IY zsJjV8A^!p2MOlE$;Y1`aC>q|e#bX%*@7&#mV-Ljxoe8FkPtXleiSc=!>%IbD@+S94 z|IGIJJoqB#jQx?c>egxjGLh;Xi(!}^d_@_)RE8aqw}=3 zZ9lUBYR4a|I#By?>p9GRm9IZ4RtBVo!J`5v+Ql5T0O7-76XkYMP@ODwm8X9D^>Nts zg7JD@NXe=ZSsf#X*A{}&C}dyg*5W4cqmu@r&|Qlz$o}qI`NLM%vFio9^}Ik69i035 zr!_1fSk7>c_kn4a7c6Lr#9>CZ$MM<{ZJhC5HT<4mQ~l-qx?+8PP5mCP-XUhofecY~}K$@{+e?UMV+I%?Ze~Fd_ zPCejPE-0pl-e-%)2 zzkPhu+D!or2Iihqao&EsRulQQ53^qQl~lmFAIS^M-v#?UJY1ol*zEhEE*tosEak#n zpdk37TbXjdhzw_aZ1guKk?b-(WW7+zx${&xk{3!OcQ@D|d>4tCy`?=8_2?h>Swt~> z7oO945)=Oc-^KMrwa1wCg6NcJbTpC|><4%&n{r3N1G#|9mncJ9oHz}T6RTcea<{`{eIzfu>RzL`uY&AfC}w%)=?5LqvdBD_bDtYt3Qz)?CJfuQ zU%ifkwE0a{_^#+miuaHT>I-Q>t$(g4?aA5^Xy?I?)$IslM*~( zJz)t_QF*216wx@_<5A_Ai~c&<;0W)}^22O$z~L>;{X6{X;M_ir_ThUeAkY70t9FVu zNE)})=F*JT-(q_>4%zb0ZP$jV1 z>Y^e=oCe)Nnr1JX8K^7T$710f2`;U)7+kZm1G=xA8!R+%-(UOQeEwwcojkCnp;7l* z#vGD{)@WZ{Rf54)_ln#;*Z}^{hYWZD77#C{B=|D}Qa3()YkV$o8Pzo<%`V@VIx5MNKBY&8u$0Dt_hcT_{&KfV3%X_BeynO@1y4?O?wqN2ha(q<$Av2qKbDyD zkw^AvKAv@Bo)p=S6GwO6^zZRfHTQQs<^_@-lf3s3z6;UPeLp$y+t9R^l9itzd>8mi zi=37x0T@LIIxYVPd>1HF^~BE)ngFH!eEn?0J^04PX!@>ZEO;MqkG1RD5Qu-7-S)0v z3>|56u}{!<``^3i9*}+Kx8?}EGp|M&-?0bP{8_I<%4{Hs+tWBVc7%8G+$SoJ$yjj9 zjQPjISGYe9*`!cXUK%wS6Y%ni*4)HN6X4+Ma{b^Bb0F69-Gs544}SfuT2qau4e8nT z=MHmk_P0&_ZE?bL=JJn91%9x?6>&pPoel11=^>R)poTv+f9HjdKX&f0aiRf2mzk^^ zPz#&pKU;La>2iSWzC$~OOn_+9^~+{?T2R1#peyCIH1hoWcV2itku)basSoULW!~E> zEr@fxb#$g0hx+pHY;%Y9^LGw7`*+<5N><;JAXsz%CCg(+4`6$(_tOo$NJu8BE<1M) zz#}Wn0&7pAL47e}SO}9T(BYhsIhu3|9O4sY;Z4GQepk-VyjyX?9q?Qpu8MgP3?n8A zN0}MIpwwHJ(at~>SinMLcbp^^PVRZ|MpRT1sy4jXXE?+Sm=@l}8bA%4^8Tkn_&uR&DZEVutSuYOUbu4#icSBH*Rp>ZuWyh2 zj@M(2`vp%_yMZi5GuB>iPWYXHBDwb53v|ghE72IY5O9wo&gytQ3XD9AqHJts1@1wn zZ6H+_XZx*OI$dd@%MNNtQpX&o6d=oOyeJH>2Js`gyC=>$g3l&ta%;5!1lR9;+%qW+ zmfU$}&PT1GM+9H~a5TdG`={_I#aS&bJeV#L_sj*^-r!7x7q-`&01_Z=@ z#T#=8LK}1Xeyv+Vo9xwJS3N?_VG4iM@M!r8X@i|-ckPpRmI1lzd12PoA^qqFHlVU| zkgJ?q$j?UN<6gU(l}<@;tcFET0m%z2fp|QRRE*&3 z=WCA(`Eh^$vk~58S!pr`;k&p;Px77@;k&rfyXK4GyI^pciI7I}LJ-^hDGc9*%h75= z>i>Z6!jTUD_M+u2P;$zCr{JDzAcE?t>uZ@7i1NBW&YM4mrmjEXqaid1L@EY*2T$St zzG zW`43%%UU2YJW-cyOdB$z=--nF@`9T6^@8MjULXkg?olhTnIB-|{cqK#oL)g&Ukm}1 zpAQ+{wLtjMEXgvYZ4AKJ`g%ciJujT+(jQ`F!+k$YwM=h2<5)Xr^*MPtAOLs%rTvrR zlGk45!LdD=y1T2Qfr!DOikoNb!7M+`qaS2RkX-PZ1Tm>MY@>(z?>@MJ>}4lb?nZm? zsaT5o(o`bO_IPR3F1DvAAH@BNuNZt83tu*mM<2iC06sS^y!uoh4JCVN%64Z3fz+ME zVfsC8@M>Se;cL+{Q2G1ui>G{WpIdmOQ?=5SI zq(I$}x(XDf0kl}^j`jGW2~wZ`o?q|%%lUPc_V4-ii5iooYXKpkw$i)wW8Vo#B%nPd zh0L!@N7Oszp18qd4zHU=+;jo6*Y9}!?l0qYeCY3Z9WO;?6!lgT&?MV+V0e&*X!UMl z;`J4_IVCN$1UP1^ry%Qg1hQ~S@MV5wgD?9zV(c7n|6X-b?$P4l5iZy^d9zkCl^2p8 z4ehyu@M|YzlWBQ(RCFG6{VD`0HDA8`@{kaeMG4&-n5Wb%y zkPKNb$TQr(cNNJC^HDck6b@`ZzEqed|HSZJ=mqN0V)!l|9#j$YNBAy=j$T%sM%D`s z)q=|yzKaWbIvM{3-^GcCPu?vbYJwgo6?ez;H$WAGVV2O9dbpP&i~ba{UbyE?xqk@B z3;PLY4pC1JZ986TcGVw=Nz#WZZIO98$tIw2!el(WhX*pH^S$gr)(hF!JR0p!_IM3Oaj^}j?fHbf71vhg@w=G{(g>&lV{CFsN*X32m;swC2RV*dD zW(|p3e#@ig`x}QWF=PL&J-ELg`CC0~{GIudt8{MTg2XlaT@b^ovG$CS&>P{|AgHN* z6&GiYHlOHs+t+XQ?|68ZBsww3wd>#Z#{T})ZXagwm;baVaZ}Ua8x_44wC*$=#PDhi zalFz>oAiNSb)=1NXVO5rU&o?X82<15joBx>zv8?2nN0i--^Jt8_9++~Mgkh?I070F z{DaH#Q#?0_Kd$V7;k%d%<`ly4U0gYR`yW1!#;k8$f5YdI*E{zQpGT(yLoi03*5)L# zDFlZ*&5zuU!VvV!5(tipngTuM?>(ts&jHR`3=uobW}9c0y2|pux}pE1w?CZ^Hmv1f zva>;J-<2ywBYIOfX>mXRktf{S^7ID;#{mp3DB4NEThB;;=QX?LZ z?38xH*?x+K7P%s^)+kfrrO};?>cGZVQw+naq4()_&P7C?v}Bp`1qA2)E>369)7zi_ zW94=VV__SmC4q!$Gfc%ueS1T%(?vpjK`1wI>ysf@H##x-{O}AO;lJ@ujOU6OcLX`k z@=Z;Z_yK+@bVk>-;~;Ic%%bfj+G1CjsTK5+R@%^K*27b-dQur?blD=lGy*o zM&lg3s7I{0cd5Xa;oLluGV~y>?cHEc=~tZfzfpccE~a6o zb{;sk?@02y82}ebxoDd0RiW-HhiZR4Ezo!{!)JED6ZG|we^KxW-?l#8U6@wNK5zka zl_uUEX%rkDN{eDApa(ZnKJ|Xe)dvhr0r|yGm0?10=#eY6GTX+}aJel}qbCbU$VRFv zJ7gg$?+bf+`4<$Wa(hTSgC%g9TnyD>7YE&KpR01(`8WC7Mt%LMy-VqdKgO^Bbp21~ zDGj^G;?xOI6M!$bE>#%BJ<-(RMff3ZJ0(6WB{c5EIbBL)ErP?`TI%+#Uke4vM&;j^^TJ8`qgTq0=L2n@0lLRL ze4sdeb>dN;BCt+ep(#V+LD2GKX(BRC|J3iF&a)Q~{NzF8(YO74?L`#|&{wKv@AVP~ zw@zlx>NSXf3Um60lOy85O~xZQ3gNq;?ja)Ii^QGNy1CPsc<`rw|8yR3juKx(^d>aN zoYi4F3i4@Jqt4bVKz|wm(nb?Els#Bumwu-TB`oi^4-+JVmHSNuW=MP+YHj!~j>Mfm z_4}vu6D|)zzaaLxw9l9=oktR0M4fqjPWb|q;M44Nd?x|gE7Jj^sx0^x&Jg;g^aOk- zf2nvDiKF`h_4fb2;@h8au;=&CFnD16z%@q3`eUv>yhZJ}#4~LR)qa-vD((q^nu7aG zt*-0>hHqata>{DL)MTp2OLwOvm=2I!i|YG`ru+S&Q;p#1GtPrugG; zzd*?+Opb^gonj8+28rVwpY(HIJLx$|qO0`2 zoD4_&O_!!Xd*7-MoW*OT6^>MfK09e27m#OzgX3Ks<<6V;|8lv-lYW&e67E*ddt8zb z4vj|jE%FJ%Kx@6`%8=AvfKPFlKiYitLrk3qerI_)#*EZR1_B<^_JMr=YNF&YNGP0LohHt9LUg z!;HBUXWKP-uyandsMgdHtV)hrP`t6(wmy}-gC{aDd4NkYJl$|2kBXC z21tTLVaLHY-ZkQpAjv&rZu*A>&hi!6&5&cpPiwodGsdrRwS&3;w=v=jL6ln5OF=Ot zj#m1rjvfwOK^vuJn@DgY-yIUZ-WRQ422QseC^*PM4l;IE{p>}?>8S~RN6h%a6|XW? zRSScY;(n?ir;-U_)S59)YCP#I3R_Q3X<^!<~_PJ<;@4|u6 z{6lM~CKQ%sS5`sdjn7op#f0vY~IH+NF0sc6)*7rif>!t@z$CY zWBj0URHxG5vn_Od?9bT|Y7T@n@R%io1VF-@eH8g>A+V32eyU)f804+8#&<>dmsqMQ zW6S@7e~E>w@Fj+S>0E9=+K*ib|DdjQ>&_z+sMyc1FHE;k1DeC`XhJ$VK)`L7q9)D# zFV5SJujJx~uHvlEgJCOp9}xbf71~lO4P<`MqBbb?HbNN&O=ac9?emA3dv65ZGTxN#+RS-fs!5#4@tHV_1POan8e!E&AKW z!^(rj`QEM7{e!YxW zz}g3^H>^BZ9Oh<6k6mX{aQ0{H_`&-1R`;{<`ba|Tq2mbu(uW=F(fP={*CqXgn=KOG z>cT&23Ssuw%4%hp_K|^ehm9*(*meFLr`YkcvA?a_Se#T}d8R64y)d!Jf507?$A4q7 zGWu}S4b2m-UjM9D0vrz;YRe)B`8OV5$LUu6Z@i9`2a8ic?>CLf3zZ+VoC6JHQSXy} zX?)Pv1iJc>ug?Vv0BqdB#)FOhZPmu=4J!{8XL`(T0K@zAvM)-!Eh-v)M`dPQJ1Gu@ zjc?evvsM2auVd|l)f-kGEKYETN7OFUe88;nf_RDB_TM=Ar}(z9|BY>|A7Jf+)f-kG zEKVI+$3j^=?)h#b9=5GITQu`7Y#-Vrkl}?$AuTHA$%%h>m-Y-*-mOA-n6Ur%UmZ`c z4(1i11<+U3z7j_`N}<$>T>jx*y1k$9)=q?n=}$P^lSf=;7}KC-UKi;wZ92SXG+x2% zAA;BJ{z@tRDAKB$lbYmUxP%Cq{j zA>I;dwzq~!x;h%ZUE>wfiO%}teQ)gdPwnA#dEC}azN`O%8ckH>0r_4wiY* zMwaj5wyjU9LlKkS&5P#Bn=qfWk}`3TjrRTm5@q;YAt(R(k+StV#Q%ew-lA>lOO+ zbYdGZ5fmvcr6BDRH+;9lvtUZ+7$6%Wa_T_%gA8=nWER?Z0M&O1B5DbIka^ROb@yu( z^nNF&jyp6mI6p54^Q-bdc~K4>Ae@ti!MRkp>`XDI4_;&?+Hxa2MbD0r>9Q!$!_!(} z;>GwUpvQ>)KYU1dVSmSm6v+0Q4~Y{>-@?eVpHbNcgHsjzIe?H#2g=DMEV3YcNUx9X z_NPR6iqZzC&Nop`0nV{Ug(~WKIQ!cddYYEo2;bAPf$PdVqPKCMk`5+Bo|CVg3z!j{ z3HzNl&pnre!)NLfX=Jv~mxlEl5<#Jl^oV^{v?K`vB8rrh3GHSjJtEwH4E2p8;2++ln7WYsVPEP03%rMF?8r;8woh&0uG?PBO0Eb!GR zFa?gZ^K`!Zat3%4eT_7VbcQ0SbM|M+wjW<;)^TQt6d!8MJ-*m4$g-Fr1#+z}ti|$lqdu$k9XLa{grbWlT4H0=1fTASaq@nV2YiPm zNj~4u+&13)`^R=c5A<}n1(X-cVyREI0H5N$8czO{0b(QLfg&N6fa`Gx`)b5V;MvxkkU`CZ zx_f@iB8NK^=lt+Wqt|RTBmzxkM@)^u$*ryGF49c~d)uoDxDS+q3)ic{4MmXWN>987 z6h7I(GX=l-ki6;tjt|K$_%|O?c~$Qhj6D3Aad{Y=^h0zM1qdIKhQCH)4Z?@S`|jyC zM}((Hww#YQf~F7>i`Nr!MvdV-ehb@9jqgGDp4Nn8Br$rUix}oNK;)5CQdhl+;4sJu z#FVE7Kw?#LPKy4DfBXMrb7`jL;P*}OZ7cr?xbGNq!RANvu^*6XPvl8(W2g@;kLXR< z`|(c)M4mebCyrupybFb|ja>Er7Z2O7=VRJ2HX(6Hm1{OtS1JK7e2@hFnw-%5?vUl6 zAq%ibc9mT46opj_0fb8#I-7ov?dN|z-o>kL%hySP?*!F%i;AVf*aY;-rO`kbk>m6F zxvm^wQo1ZPNM-`tSA~|lVsYQEr+Hehp)<}HFzq;d*JOV_{9o@2`+xTZxIAmF1a)1^+gX{N1k`{nK6F53`eIK%43mrzQtYjC<`PX zVEg%BkG=0vy4_MfAedN-%S_e{JTY%MaKa!7K6^gpmxS`IPtSAiVa@jNhO!SUzO1^!%F@Xk9tr*qtB==f2L!vWT7qA8*Ff%M0K> zUn?4yUr2qP3S(-D_necKhlJl#BP~*m!TxwTi>$lKa5fKr|I8yNI5%Z~XPD1q)A$K+ zyQAYGt_B`!@MrZsM(Qv#=3i)2o&=Iin%C=IYr=1frEZ+8_8@u6f$Yt3-0Lql`r%LC zwef?={NQfg(|vBpzM?7L^M_TcO(4aIeybvJGO$``^6jPTQSfQcGRZaL!<+7RV}Dz< z8GPH`SS&}tut)C>mvBl$_iTkXqE^Xp&T}L_{+lYyk!XHH^}!cKuF-zjE-Ja~V`8{u8*oI6)lKw1IPBJ$}|ebV8~6VlmRO~OE<#g~gy z#t&z_>%t|q@h!;y6I>@Q^hOl`ZFi2TLZ)J{QYWUegz$LOEkt)DlzM?9^V4D<9DN}% zis0t_y;@W`59_t)k{3A72bEYHnl8VYLEi%9mzRmZp&AxVG!&Dhps62a`OCM8!1Roq zbi)B{cyV6`OSC;gm1(wPR7pb?@^qP8ctv53vwYzcIxA!<|6gt29gpSr|1Swy85NOD zNkp>8eay_V_srgVXRqv8G_0~pONvst4hU^B=YC;e(k^N!X^9dj#XGSaJ+K5X5*vm)b?T^*NXBV@sASJ2`GXcGUoF{bPvFnwdA6+@10mC@MT?!iDy1ywoqIC-t z#Jsq@m?SDscgIb=#DPb zI}yK;#tHv;uRb59E*iQ{q=y8q6`Ox*$+u#86p007PuUxb22rfWsoq@wA+qaQFg+(PP&lkQ#pVft5n# zy5m=tDjm^>>cY2^?fTy>6Csx+t?$Pn2YBQ3gxpSALEs~HL-?!eA?PWuG}$I}WZm(@ ztru{0q2YM}n|l`0cQ7q|_~PzM%uBD2SMxPYp+AhWbKy}~w|()y)(aB9>cX@7{uNC@@szGq4f^H^4oi=PiA-(R_pL~7fFZnw47hmrl|5E!Eo`arrsT+Fk zL;-gm_0cAzlecsyyFY1#uVbxtQkXcvGe=yWQ9XBo=|;sPX>=8M$G`BXknHB#Sa?a+ z=hHJ{10ZfTTYYC!2y{}Qaqn5$3E7ieu$$R#f~}{R8efW@2R!f9PblAcgX#BRV~A9p z!@EA%1Q^m}UEK;d_m%7bdp3d>ru?>1=XBv<9Hm!0REGYGERzOwgkY-gnc4kwX_#k* zy?)^XmN3Z8?YMp${`GIk;GXp3<{S`XYO-}KL>scCv=+ar8ah} z-q7JV>v5KwHn8>nM9PHKLFi@j{yfQJ{O?D)?9*^Yr6K~T`^mX1%@_d@l8(;|F8je- z78-i{_j}>_rG%wZqK;4~C2;35v*sW9?D}iHkov1Gko$h<%?LGvmtUG6yKF}a%d==k zMk$j)_MR`dw^pqGdEevJ=b1CESip#hR%3T74){gHnX}eP1GH;X8tf)uhXxm4!E+RQ zVdy2N1+bA3@BCWL*Rh)N0Sain5O4d=ln2#?H^M{C_LSaGg-n!$^b@)dTTb-(&=?oc zAZa@NVYAe_@$~PK$q1nJ0%-v=I|r%@%1v7n4_~E)>d<#tBJC&OXFS>{z4DQYz z{SWkzboSj~*GKCGj?IH#tWaHWBA6nNa~=e4e9PC$-b4U_QiZS5leb~lSGZ8N4#ox7;>N04N*|RfUq1tsC!Q zz6?BiQ3FI{dW{pd^k9|)sBbYAYy@sw8ZT3QQwOqHYBRiz@_;NC18+R-i}EkZ zMbP{5F1Yx83^4|4`Fr*8;0=P$zi)SgD)l?U$Xn%sOF||&8*31J@X9JC+$9n4DfjR) zSLlKw3&$-VmJOh*U1LyL_;SvIJuzQ=0&XnnqA{*uI};z*XS-BxQTQ;re9a=m5Jhm zIT0j|!*_%s4D@^E`CuD-9Ft3aLQDZ{8`UoJ3#TMd4>{X=`vT>$ZUjTCih7skk3d7py#*d6K5%#4U0z2UZGipi zS5k2=1nBQc*y>S~@P~i!#sB>Jj==|{hm}k&=5?E+ZUpS^1;&ZF`k#Ac zVU$v@aet7}y6u}iW!u(cB?Fnf4nO~lgsTE*nfFA*kN~Bc+@(AhV~8|y797Jh_+&w#NdUfA;AsqvT$FdYQp&k#&GmkT?n0cJ1D@Y2)=hrZ4lc0=ko>l z#_yKp&G2mpY~fO1`dPmkSGXf5iTQa_9OU>_7bLg7NR!ix10A$;aq}dpc-wczH7100 z;1Jjp?2xkSvlqno{8*}0Z=48=0cJACWaPzSK)?NY@XAad9JwZM#8qzs%GLWaFOD4p zUWY=XbldG=3N~b!QdS=v*2E0!B;cQKj|YZSKXIi14UJ>T3$4+>`pW*X(g-VvksJm5 zr1ntprq0r)xd`yYO)UP#4R<(0(q^)7*%Oc~EA~l|AIICi1%EOsfxc4E+4%8>=C%mH zEVGwA>fju9;bgLD?n50ofBm_u+46BHUX~p*pOpxA(fs6VvcKeO)~i4Hn&8g)!`NNB z;H2uO?U+0>5O-xVU%1&0um>8>sUp6X*yvwLcAFI3vwpj0?x_|?3+*);m5#wX{wc>S zyX8pH`xLyEMC^!Vz&(C(25H_Gn2*)1mAq8|kaEA)37<;=bvl=8K9+lf#^CJG0|f>^ z;9GzFyjT+6c=n6KVlvYv;CqYpp2>Ydux)Zf$llM}0C&Y03n$X?pvssk%Xu#YHS~f~ zqtgD|FI_5SVjJ(U1s0z)NMrKd03@il$pT2<>-NvOaJPq4$GSupXiG56%DI~0eSWL+ ze|U^R`*g1`m`!{y7PW&B+8fdFTXa>Ra-jiynX%ppPpMB zRps=|LAdX9Cjdoa~E`yw~kMeRHl%}N8Uv+|kiQC*nKEamh@dPv&5?6cqh13jdxAL6*&hp&U; z=_`&K50!)4(~BWzgc~4rPT0P$s4mcfNBf3G-vSQ`y6t54io; zdZGJQU8psx45r;0k2jvl!7asuN1S2pFots1jWn=2f7WVmBAsEgr#}Y`S}KBA1;W7t z&Gxg@X69h8eaex$JZey#di&c^k90Vn(^c=$6bT|vsPz>M+rx~kTubg){P|__fr);M zV*wnro80nU)*py+54Th&SipcWp10*k_`$~85KyITtjYqGJ<&Sy7 zUjLu->m9LwH^26!{yD#%;k9;&%432(@>`t~V{O4)vQJ(Lmlk{!LSSf%=GXEs$z@wY z(fe_Ne)6^cU-EU^+)uua{wi^@AteaBCLF-zype>5j}^XWMml*Xm$xUeNLc7k{l6N`BRaZlbVv zwgUQp{C=%`UVXgF>?E^HqX4M*`i{qmmLI(7*mNjOpBw3)x$cgqp2GTbX%}>o?F3Z% z@44R?Xs#RY#D0ZE11)FJper$Bk>Lt2RELMX5j+SsWryYkq4ff->DP;Ns4nDEP)+n@ zub)48nx%Sskseatbrrb=q=(ev8??~T$q)0ibxpUT^+GY*qC^bRL%J@^NaR|!emx`* zb>EI#>JGeRdFSS_ySE@_ljS*|^qbH(`n1MJv|bSA3D9&#b%6{BR}B&Nfz|QAw;kkK zc(2vO8|1ba8$OhA1%cNDiRav`;Z~h<$B58+Aw)JvNetD6bIk9>?~O*SJAU|{-&)@n zd-;~c`~QOuQ$F*ir{P(y*c*B>aS^G(m~tztAG%8~(svM=l%+xYYxI>}4AXzy|K+}e zt#1o=G@zgucQ9g$0gpcLs7pn9g1}8Iq(hu;kiodctL|6~7{Ugq2eF=8w?FBB;hec1 zK7Df{0!S?0H5~Of2b7bJN&08LVYw7tLZr3jvd7>TPW15O4>p@K zp^hPIXy_Ct^olF}YBO32TCRPW8{L||?)=;;!PjEkZwP%Y9_hAde8BRbWiQk)q=qLw zf>OPCxIy@f;DS5mXx9!GZZWG@ba(<C%vke7cd3mIh8FtAk!H) zys*D{ytZ$1kNe(0PrUbwA~tl18l~7`-|s5j_`X^gbZjg%dATGEiC=uShmf{E;tikqpRI1z@Lr}w_LQMZ z$}2c8uS|jM5|*HM_E?lT(nGp_!B%Pn=@iL7O)3oCeim@~ww-SCyoYyw51%^acVTZI zkiRp-pN0Gu*4t@y71^^>oq+WMB^PuHekR(cRo5tqF-eH^{mQ?!{&v zHE2w-l*T(>!a8$qP-5gUI-_dCB_&fBFU=i2Dm_!!8>AylmAju|JJYI?xoW1dO8oOA z9Lz1)g&jseaQs8RCrs`L!y8XbN^?V=aU{lK$1r_;g&v$I@Reryq6ZWLHV?$4i-NWi z3iDk=1|axh!iMaR{D1IYYF%2(3u0biyj4eWWD4mFr!ZxTv8BUqufRx7$63r&kd5pY zNjfkK9#d_wp#0(q&uHYQEtJziJaSGmEUW7d5JlU}iys}=Ma zC&~quFw$e3ZXpRwU}FA)B=M_Hn2@ge_sM9S?mOtH)`G?luAhJV8NZ#MNf6Yl>(G*}4=qjCCg zad6*rF6`BAM)m|8CyBnGq7BUHO5LrAq+x?$y{RqI@fbdn`{Cdn5wLZ^s`GBPK6IJc zo9Kji=WcsZ%PGVMxPJcaC&pI9zDeHbTR_FV{!`KNUsDNb5wj&;mi@arX>VNPXuHS$9JVl|bK!Wms zNVi;ZcfJX*5&xX>=9>wiI@Q{CS$ID<$In;iJ+1-{&h(K{n0>=ajw{Z^C`w?ybhkN* zTd3j97pYF?Q#a0PVa@kEP?kk?VV|v}eDPIg7=6gwmU%%KYV8`3bX0kZIZJdqyS?-a z#`^W6A2@IGPDB}fO~M;b)YR+#P1ba*^OyO394Ox?EoI9~ypev=JFc^uw5Ne>-FW^I>Z^Y*_mIe!|BWWH7n9`Edrrjah`oai#|#Wp}usPadi> z3flWJWEJs__v*NORS%0HeHsA2NtMi0O2z@3+6MZ8%YlH=^-zd~kTle(%?aO3AOWA; zd1~JOef|4&e)Az0bL%r;Wt?l&?SM?cQ6YqNu5*U6?K`PipB#qj6^xP9l4M{h{~E89 z4Ewt6Gdm}sv#VPOb~mWnbyP?}zoh0%SCkLK4LkH-S#FgBNt(v3k{nimHgU0o_}2R8 z^8s{cf)X}}0lzP-DLw`gu-u5`aqt`&a1@G9R~7UH8V5$kA@^%cln#jo3y~~b9S?ll zYDJN!UX&<;{z&~@N$v+BvqTk3s3bf1pj8*E8W{~zZO9p3)a?Y+T@R;>5KrRUzpeV+ zALFN`#QjHJH1WkYw|xWPYPdL z)K1Jg#SVExT}EaRUmNO8_KW=mU&qA_XWv6Oi_JD(0%~#)xoFFwIb_oYES z@9v%mf-!3Qa zBMV1$At~K9L-3^z5H-#iqdX(W(yqw~@eaOt z%TpIJ^HF@9{E8NuZY#kS1BagPCIf)2;3;NAKo9zeoIcuTmyJ1Qu-y3Jln^NQj}(53 zc=Xc6&~NYl2fwX_|FnU5YbMGAHJ#%juBa|NHt6q>jPV3Ce2dA?Q&Yi!MI}%4DGn&t z;r6i6Ne+Jh^5S7^F+Vo)LH)z!j~Kk?^K5lsPtbq@hWzI8t=Fh-ABYnF$b{;G*`{RK zQ2HH!hbCh9%iQnjZwS zfJ0g+52&-=g$E0S!&`;5v>R-XfTUcS=TiND&R1?sm7h~MnGUAah7UMq#lyh{n{Ny} zrZBKv^VR~vL6F2${XJPu5r|r3DX0ty;T`YQ@!7}F_v)fR5Fm(p66lwh4nuTRoi!Q* zz*WU=^)~{DcdGa!2)ho#J2lU{GlInM&ga#5Y(4ZDmwjWPfz6G#dZp-ky1r$-_cd}@ z+7!bR)gTAu>rPh>@14L}9u-g}b|qf7ebY9S4F+*aAoJeEc<-kQV62$>CJ2^;FZZ;% zoO&z|@Acb~sERv+Dh>I965I9fCtHYl+z~EU1eK5{eWQ#r3>;(XdEE0Jdqd926kS6B zo<&0gtnTt4m*eJ@;j7~7w(qob@fLff18~~+QL;OYI9Q_WOEnlIfv0qH6yK2eL9;o% z^7Iioa0c)eiIIH3d%lw$Wc*|Nn4huxk=Lu^xmLS5Ah52dDggWVxI^?EH1E}@zMi~N z7na7O6;hDyQr*(#)GTyAFW1YY;b>+?VA~);k&4D?8(WKN{9nwkwU&DcS`p4k;*l~L zK|v53Q{?>y>8C22yGK4ix~AWHKexZtK-Z53u2UR8xe;WH%vj7IzTToBxcE1GJ<_w2 zWreRlMAlvIMC%2z!h+ZPQC+Yks&ajWbn@u;m=KU6zLq@3_qhV;%2`woT+l+i^JeI& z!7;=KYx!^W@hYD40vX6}*I0##+PY-GCUU8lRY>1ygXgl%K$0>h;5L7x6VgL^5lr%F zC!Yfdp4mY781Wm=CDy0Jh<8@^w^sY9q8oJ%iqDbzOY}ABdeCjl~ zxeriXct+uC(zG`K_EbuyWHk$eXR7boE=7odlYSjZ^wBIp@xFNP@k99E&o@0~mAPG8 z3;OPkJic&i8tXXqi0|~lx0rNi%7d;8i&(XXqdYA0=sf_-hNh}I5)g-D(!~5#j5!}~ zfBK3mUF6+i2wxo#Dwja(xkNrP^)^(u3qCbJF-7q?SmG5=&h81Vj){T+pMpR7@8=}Z zkKif*FG_18zT1Wu^fiCKi3`0P-1zWGlZ-sY$t&R^4r&xsr z9xcrUOH&dmxT_XO)_FbZ;%B*TJe)l^oKL-N>b49ZakddaQ5JEcAYh`-z?<$c=)%dtPz{LmWH=I2|gHcgfWzsOOzOj`i<+ zB^WfO0&skQ8>g%LTdR$;2Z!^ViiLGo_E`|H^P%)rR2Q_h9+nOpmts^RB3+`;ycfqi zI6hdb|JBEFe#6;=!*Rdz{^(;=7j_aAh0VS=g;jp*o6FKF3~>C0efg;U62I|Ac69}r7a#bIcbr(^^#9W7 z>y9o{2V&w>&(m6gv)?W+gx8z}gsR+64hKd6#{BMNRSEp>&srUivS0Qn{KBa@ zNWIwgF&nr`4(P>I+CirGli3$*Pr&8paX{JbjVH6EuzOhgrsspxktOo&s$I z)Oq|9C;h0Gz^S-cP?>wz=y31)_s<9ylMKBcdc!^s77ex!UXa$_u{25A3u<2dX^+6g zpExe?3Df6Gk?Xc^bv*xV+n%?kMRHCGLkGhOs$sXxcN!P^>un;x$A?Gf5X zWzs~zTPAXX(_Im!XWI*>dJM^k$J+TT9qF$9w>Y@(+10679VG9QIY}TzzJf!ns99!h zVFQI60u6E#IlycUPtt9qFZZo|K`*rN8AdhnsA;F1EVlKsQx9#N$ZtNt^|#h%jrq4) zA_H;k(4dURiam{QB=lEsC=0>pzTD;DxfR0MfB@^*ZbHz6Ss2js6LLdW-a8De~Lw z3}(k2WDmbg-_;eIc+ZBTD|&gZg22KK>E#J$+WgQ1^p}e-{2M*Mo8NBLtmpyyep#?s ziO+C<9FsrtTg=WE4j+&`oEL=+S8z_t5V3~r_ggnV;OzZca$h02m+N=F@gBAJ(@|pk z9Ur6a+dBWHPG7uv_pz`00hfi`41cIft-VBR5ez1Y&on&Z zl!dW9d>Yy9r{UbkZpF=Ja`5B1xFZxixaKQ zT}VIS+b^65t=cDfo+*G)c>6{MkM-B1W4#7K;v?2jwM(p|h{zgxvz|Kh!0-qh{$-Db zWUqV_BQPaXg3h!xY?#N-N%f1&gRr7!ww0~u@=+1f znA}1-eW&Gu_G~8Q#>%HGx6(fk{5@V*_xDfj+7Gom4wi*tUU=q4E1$Xum>ZvtpCxmH zhE*=CBymTfR*sISd9)<3q^T`pYWlzD-Ki*!vN0dqfj6G_TMqFzM_Dj=vEltII0X)R z)PhG&LG$maDRt^bK;Y{1rIScsu9P}^+m4f@fSWOh{GuHjW+5b>UCYepH~;*TJ*)qJ ziiCzbi6sCV7Z$<0Vvqkm-=q~B7*iu0v784z7KIB6k&azP6T9l5g!1or4@6d#s8`5p@7HxF)>xgliFd*arkD>z>g<>WRrUHpR|Tr5B4 zBjtQ}@KaBpQkXL6?+e%OQDlG*hNZ7l9yEZp)AZaTgt8!-*8d)Bx%?l$U+wR;+Chbp zxpim!VCo%O?z?Yu!Mogh#xfml(8^Z5h5E=*7?rcL_#9dnlRij4tUhgzH=ZDrCeCw` z2V#K%2aYJk;{E%&hiqGP@0lT8i57)Z8zP{}BCorpT?&jy(?8i)lnH!NGfg;=F5guf z@rc5!l|Uid{#n{-M|fHJCWnFRC9szLtB;Qmj(fz4MMKX=yYA1NkAlZVDZXs*KL@-$ zuL%vFJ_{v6Uy_R>ou^Nh{VmyFiy_ekt}pkTB*5rBmf~5{P`vFMBA{gH?a~DV?$*s} zH_ifjqmo8eA*3V4Y3qL}Fb2xgIXqp_4f)`ncvGE21e(|lP!toHz>D=yEJS3Xi3G29CnBx72!G5#Z74l4KT#_WxEJ}>FR=*1=r*YAG7*Yl|0sFw~ntdY%kk(&yX zi=EWxzNh;~JXW9oTJ3~}UW4<5nUI-J%k~}8MT);{bbUqtfq8|%*2n1gynhUPDC?C`elSmaN>hJVS| z6TkRcNhf)W?z<3}obq!5yx&vZU0VLPk5RDS}#uQIdCL40i*Q)ZAaWdgEi znCux2=i`080~P88`$Bzz%LARKAXNvZo9}Fl+L8(^{FQ9qs-A!k{ERb`kS-sExnZ6= zeKok|S8TNNB@ZlDzD&+o=?d1$-_^%^wjR&*v{!%=SA@TXrWJxkS_A)0nF%1l_(HD5 z*;uguo|_0S(s|POv`gv@@lm)xk!fg?y#1poygFqT+^&Bf1uQkLQuPtnO zAe-6`x<0JhX9|s>gKS)-R;mEB;H$mmH%AV5Q;bvuE0tgz=OyjjTk61s;&pIylOi-| zsC7^E!(Shc=#fIwp~W!Z5XiXGx=8^Zk4f^~PxKYr=alpKmEubb+vMZ6#%l&ZTeNQ+ z!||scPWi98K%ljAk^Hq9;P0^R6Li@DLqtbzYhn|jdBtAA)-FfbWhY>4anKuYf2wUI>%Pq@j)4$q3&$Gp_vKPK3-|`d&dK>FYwI3$_W?%pNJC4Vd zoM}gO!A#CRuFyOh=-s(g;|L-lwwuBH?RHi8qUJ1(9(q1=VEAhLw;U0;`h4+iBe|9w zr|lWz;|AAf}p{rzs7^(|G);fp9 z^alaOXBB-xCog!LgkqbsYz?&WGzgErd=3P^I_WIxd2QYP9R9Ulxbdqld=q)Z?lC3{ z7X4&g)8DYdz@w)tE{$nI7U6pG&&=zu55vFK3*Eo!f$wTT=4K2 zaEj@yUntVOjx&pTcYe8^a}BHAblGGRn5_t%zD{ z$&4-3bYQw$^j!gVyuAOBydD4h6SOEjj!$b%DythujN2&;9Dmm$W1cEubV=ZT8AO0u-5( z#qs5M;T`YQ{;J!b8A6BF3laCiJ#L}8fZemz(K$B&ym%vMb77DJXx6sN>>D%yZhLM^ z(UiL49q-k68!Lo+kE8X%WEqE)BB~3Y4m-ui+3kge&q*)dS<(d~r=F%NS508eFuNCy z^!)k!((3-!YSVpas}M!&1)C?wBQBu2;FfS}=b(luXs1l;I5?sYWaz^H(fz&9zU>>Vz1G9VX6O;C_kzTl4>W5CjAG%r!3p9LE$LS>B>8i#(Nuje7>|hq`hL@ z@iPrC(cvQ3hjICLJ6W@hfSc)-Dw-WE&@|O7c@F9B+Sg-lE~I|NvQA<@Zo7v6{d}wK zqsy#2B#-tl+>AC|;|z-hZzG79^fcArHwj_FqOlXOFuAY#gN-!IICZ%;&3P~0d!|A_o)F|U*-iXG;h0e7Y(aPXINop zXg9Y<1}cyQE!kI}02O5=*5i*nV2}Hb{y?TIywA7O->4?By#%(H9g^fPI}EMdIf+i3 zb^y&i*<*514v@8I!{Pi+UC`WUFJnA<3XZT%i`Drb0Hd)nPVF{^c*oz6;-uKCYtCT* zAk#IPG8IVJdadJ-eK4Gu-(t(W+Xw22DAo3CpoMHpq`FkKM}P*uItO>O68iEEgwu7Zu_fLiUcS7OHgpH>+vKX*X8gE+zfZl@jl-ov>z}N`-rhvq5F6mYrY(+#(?j83xk%c zNI|k-A!)7wCukrz9n)Pli;HqLw?KXw6vAHPVbH6Ote@`6TR<^KJlU*HrB0WTG zrD_B7i5@7{ERaI0X=`80o$J?waCh|D)*dYjnyd0O$J~Ws`1s>F0YU-riA*pqs>uj! zuFShJCBhBOL=JGiSvvT~`K}%>YqihtU)eBm#soG3{oUKL^iXrYf^ckT zOT-I8UHBsYSREx_)Vl54u?do#!kY1kjGPiFm z(#z}O2m7}V(Sf!6wbpUFi$Y9qNc{3!cN!^H*Ik-52vs_>vNcJG(*W z?7};|um7yJm-`=(ywGt^qU34>|b@^o;s7#BieW{UlDWm+XDXY zCppVlSmn7C$Lrgz#H;@Yj}79PDEL{fGn4CtB2^lQ%s>Tp07OczaQzd=4XLecpA`6 zAJnLe_XQuG?{#eZpbgcnJ1LdWdlD|EXgn-H*Ymx;4;+}@7Ykqf;_FR+$=4fB{N(G+ z*X`-4c_iVIIYslAgh(i9-aXS;YY0UtrZ4c^6^4n7r+Ttf~WF!)(or|4-c z-th~xw6}SEQXjC!=D#St767;RO&hXRk6{R22TAjPkO%rx;bfnXE}!_x5rO)b;b35+ zoU0$hM+~h<^3}IY9QflY2<0VBPGiP1mNgYDJpr4h@i0bH1WHbSGKui!g4-Tu5cndU zr^?TfF3POTfAnv+|M_WFMHeVDz4ORajxBut{X+_^z)@iSt1i%XwO7gQ(+A#(DJe7A z)9W68gFD%|)UW$M0^;i6LOOStTsoH;ceU5`;4MCptCdy)9xo6}>nH&I=fEc|}d%E|!g5zlbv53K)s z>h%D^^AC_--mq3_iz(8}>(;v|xM6n?oW1RN)DqPNil8V;38a_zNF={e_&?CgQ*2OW z<=Ax{Ofz9sdT1|z^MzDTShMOOA>S0WAF2y^^#LTKeZ4@;>5~3Q>HX`DUv(}}xjw``PC{raK9qD}c1cACQ1l3{7bBOKttDUB`h`_e)0?b8=#(n5goWu|YR z&ileZ9_G7GM)kmfB|npHjv&14E6J*up1PV0)Pq?vhXWGe&0&uVhhAubB2~hxn;wZl ztx~OL1l#-|T^IF>ZYw|dnegZQ+H>mf=GPpCKj+tcoi>`vj0d4yMS;?zMq^;FPNUhx z69soPA6TA4y4TSQvhrGJe(kgGCtt_${T*NP*8b#clTrdzZS=k$j-e&*6dx(ruaT{BzLvJwebDYPw4!B zU(-AXBxQtwfkQ{^#`@M^-96u?HT&K8ot?GgWtBL_KF4 zu-gqBpZd98I1%=+lK8}IYONpm&HsbwO6XdGh^q{JQbnAKamy-YyJ?h>1gzZplHidcp^KQQ{zNA93wB z8&gmk{ZgA4)rB~_4!_Io`|!?ZoL#uj4*U77cA{1=_0`9o(OP?OrR}l-ugY#PbVr+W zVQ&k-n+`}B#kxEbl?9l1=dFpc!`47l!NG6(5E z(3!7yL{MFDym(Q)=|9lRBMcuPs{LF82@RsNpB%Xf87DE*j7ilna660Xup7Eg-IF4B z2Gs=#Y}@UeqTY4K59ina`m^x_!GEgLw;(dt$t>)HT_{s0Y^|lkS`9KpRZY8LGH#sJ zSkdKM*g~7NqSLq9j`^?o=XH7kNpgZM%FPo(4qO71j-Rlh=($HJCO-U789u zPPrr=d!GS6PKYdwjOv3O1bt>~nVyiXg2@N?Z-WC;F3J~f60IBWUIJUq4ibO(y^h|T zp~w?noxa1#`6U(I$C5M*26f;~(q7fyU291e~} z*_t@Zf)`zx>e9@b;4z`fxEm=IJV{H(sj7JRw?FoJQ&i~JZ^s)iLL%1B*^UC6j2(Ah z!O^zg)cUl-6?|bK4rdM63yIxTFz=DR9Pe(8<(wODu&)UEBi`-)D0A-OgZ>TjUUk z@|q@ce(2@x(HB?nKz?&SsBJui?75XTRlX77%+0ovuIS}Wapd=}=;hgJJN(cCoZ10O z{zeb5Drw$lMGvs?V*Fi0e+oGn;U zai=9)T~e^gWa0-7Pb^ncm}CszcqL1{MWx!uFtKSN0I(tnH}yc;q~50Y^I9Y0(grAWTLeVXPDUl|t-$$PoNI9-C5U#l~~(yPzJ%xOD7 zY2VAm09-bo^^Um>0-6Yd4gtOady^ zM}vK(WPrOAsqAZ&_0N~WZWQ0_y1oMp=a5(y1Z;r~mqv8m-lI5^>DFlKsQ{fl+#|uE z0NUQrBec|7|NW7-*@E>Z3l76c8ECKNston|#*c>!$bh*i z#L*G+<zb@6WLR2kdiEFBLsRj&Fh|<4gqhDxa-i_Siw=3*)!H>L}1RbfcmbQgV1?* z24NlIoyJ{;9(NHR{8PXG^#2R}`A>L}->`eqN>dAspzJ2I@{1D=kc@T1kqnXuIN=>{ z-k84;9GBU97o(^R7j(OFm1cS!#tRBy4yZ9)b3>?XXy;QI|bDt1g;5AkT6JBfMN|KPWO!omIja_b`% z7L*4Qdvu6=whe%{f?hMGH3lH6-74{}!V%!qQ~0dyFeNZi`PhH{d&X~mW~MC~9y~RG z_w$WXHwff>ghyn)Mcl-2pt``A>}KdgwHriuyxMtyb{KnjN$Xr<$rlX4w5H)5wQMX+ z4BLkloSPhHMxq}6-}7|1^Iz*zmGflev-#Z^qSxFU2T;CI38aZElqExz(W|Xj-O+Wt zqT)?a9A?nAX0tEBDOXk!e@N2(rbZccatb9);M9rND4l+%^W^!S8E#Hxw zCsP;(@=bI`&{N|b@73q;vimT9^6_NA8spMmSs4PXQY`Yz`P1Q*;e%FLOaf3bvEyDb z!~kW7k1?{0JMqrv)p#N|zI?eH;SXPn=ilfNbOE)OPx;(b%Tr$exN~?M^^+U4G6#4?IQ?v4IJ-0F_Q#06a@EQmqvPV!{d|BKgGa2 zC^QmNZn18E-m+jH)7x1d|4EoAS zIu!z@Bd#5|cS#xZnIbdWGEy53(@3(rBVE2IgL&tj-6ugF#lFnXG{e|sb@Qlt#0P8n zZ}oALkNz}y$ZwJz2Q6NWJHSu!?Aw{5jsQtD?juQILZE$sShWP{JPmL1i54Q0fQ$h* zpZX(ylQcBAeGKu=>i*Vh-`k`&e-Oo|5L?cD7wP4(rhbf9Kzex=S>ub(kS3!d0J3}>~nvFfi*nh|6fAHH{ctq2?3#(Bc3}vOi3r2NeG+>Tz~RW->eEWjad&XIHUJLnY_<7h~~k*ab~tW7s`jpRx+zsyd#5me)7G#T9VJKfSrvs zwp&JZJEPX%(tcDIxQ{-R&6V8?y80#Bq#sXVE!z6&rdgh22g^Ku;7CPy?s}0JjyIk} znYkfmUlg{QjqBZcG(Xtc$>URj^59$K;p*VYbm$hDKyVi6R(Ue@78i&~{*fQUz7!Vc zA4Y|RRxc5hoSjg<~mk<2X@2VUp>tD-r;}0_se?^evBXR+U!SOueNus z_FMb5t>0VyF(&)>h3rQ2UYEf;CM$Jex0LhcTip6kHuZfcGty%_t&rv2=R*KkSWY~< zkH)E3L;BvDznEVKc8L4)Asmsz=i@G*^#XO7&HhPL7fy>38%UC*13Ru=^_J%kK!ti< zi+2jz@WRme!CA!D{Pa878~%c?!6)nbTx3tQu`Mm9wH4$Ueq`nnr46gbH9e}s518BWqG@rNFgX+STYce+{1_yw3ST*2}RDzD;X|)v{ad`9d zYCK$YCjQ2_)N2zpXB3>G1ktw--apH!9BBJD*zXXB?!umYSaqqwOrwzHxu9duA?ccT9 z&lKKu6A&-R^d)bik3{cW!;G_4T5r{Fq` zE1L+~4+*+%ltqU4KwQOQO!hD4*9;kE70$?>feu~bxm*$0>|eu_jMfV((>Zbcs4hhD zkLZ3xy4PMFUNdoMeqG+hnQMo5haj0}cj900wR;iOs5J81P7WdR+0z?=PbLpv6%!$)p|BuT;ZM7{#vVT8hY;Pd7}F`F!QwEHCOcVBFL*5R(Q1RP0q~!;x)5S{q;8sS0O_X4Nz6Xw!Zgd9NYf$xR)S*2 z?8g;=aV-Cxu81v$KC>ATkxP@ICVG@@xeRJPn_9W zfBb$e|F1rd!=WCgFnbtY3bt`@dy%&}!7YdCSsx2ILIxhv3#Mn~z-?G@d6&kab>rde z!QpV9oMex1ItiwWTJB)$1VKNWe|#gK2~>MJKk2KremtDtaQ5JEo5udB}kmj}4` z;QWTO2ZwXs{92RK>kz#0aN`G;*Q@c@YR6frH+dud)@}T!d>7sc!3bHN$|1UX43FN4 zyUe}>06nft*Ms=Le_Ht}Ri4f7af%y1YxTeSI1Wc$ZqhszU0;YG8b~Zb`$%Ej;Z}2K zz0fP0(khqy4O=+HyKnYmAr{96xN*9=zqQ&pdvG`hFU@(rLHkG%3AdgNZkB+)h60Vi zK@Pe<)g|THD)O6maD1><|ErJV{D!j!hhtLwH5R0t2Boc=_k@IsfU$6Dy{YRt7#zRh zcxQEgYqfFl!TAkm4-V(n&4gnsb%Dg`ePb_{4};^;f8w{b@Njv6ix19kID2q7inRht IE4s1&53LP#CIA2c literal 0 HcmV?d00001 diff --git a/test/files/N_int2ab.npy b/test/files/N_int2ab.npy new file mode 100644 index 0000000000000000000000000000000000000000..c6473d50ce9ab760dcdda083c56c4c54aca85114 GIT binary patch literal 307408 zcmb?^1yohd_qItGh}a59N-A9ncR-L5Nu`l)>6DW0?(UZE9uZJLMN$+4MKBN)RFF{k zE^zVpz3^w@<>FedS*PZiXYV=t*|X2NhcNLQ*CZ8o?hxEzPo<@8p=nNak%Wp{hm(q) zgi6Q6+|pd#Sk=T_OM7Ymb#p6iO}*_?q?o2??<@1>H3}D+8;tVbRM)PxW6(7~_#Vzw7y} zE)@hzCTHGl%7jU8aAz*sn*!{!33|ND#p~?6IntKU{rj#Z+ivI0{KK;#ljh=~xDL0nNX5SS!)b)=%!S$=N68SI^@Hy5`6-jT|39vA ztZdWa9W)K-_Ji*ElCX}4kG3rs@!`Q18+Z_9DY_Cj4@sVtcxpcN(UdZuk?K6%7K%) z*Xca?&B3l{6H}pUDeLUKI$VdD7Q7Iiie4TiB_Fjsey15%<*>P|7?4Kminw~@db0`7cYJc+cQ%3}( z4ucv}4E7k?W0g;#o|7cipdQQ_xoh?&&;~v#Dejok*9YUjHS#ZvN5Z1Ld5`bXq@vAd zwg0v4ol6OVQ>PNZ#AHO+5BhK@V9Vh7lPn6pPA;@P^~4q8_35zdKm%Q z8{TT)JeiI*zF0^Wm%m0hJduaxN2j6!@0kmZJ-ZtXr29|4Jq)6ubk~@0eX9YOO0IZd z!GMgz)mAOOwn5+)HHA~}*Lbw?YzyqhQxpOqAvT-)e#Im>)I}H|Bbx*?oGy-8a5@0; z-vZgM-?+l*9j{_OlzId1cGa&6o=AUE$(hWyrJ?Q5T>UR^_Z|rc`4u<&iR+!ARi*W( z8cJLE^`20q`tL+g#Mtkyot+E}4vU70J@H@H|5!FVZ`G*Zy8Vob+(gglf`J>+u_{+# zFEFJx^Xtxwpmpc1_3LKajiUz^GV2v#aDNML&M7{q%piD~beAP~jZ4bb>rMeZhxk62 zf6|6FpN!n9wS+Ln>jRG;+*q&zSi6*7STIXM*YAXBEDeT`xh1DslSds`(smfX7|{lu zyK@3_2YE5ZyJc8qBJFPpJ2b=EPu}JOuZYVE-8xO+6|a4^8k1`9!7D_TWEDTS`rK{j zVx~6O%wC%vzpyy?>dS8vWRHrZVe>(<@r+qppmnJzp5(CzoRZ}-wBDl!8**4E7A{MH!<-(GLL}EQ zw&yB;l{GrSHl=+0>-A?)G-Y3!r)DFV(0DE*EZwGYkFja(xU@E;(r~8 z7lkr=JptlJ3_O)rcIrT0G7vcwMOGjj1|OW0P4QCMzV!`FB$;@5RwD4NY6-%XiUy@j zAucX3twBsEH>)@udeg2_6+OY!}GQ&8vGc< z*(bqx6<9Eli}Q?zg1Ls@$E(7k;2g2Er4{2mVh`1ucG{!qz%uJvxk$b{h+!kNGT4QF zelQ?U#}_H=2KNtx*oL#x<%Sr*=8DF5Ts-ew&$Xhvg|Th`|bV@<{%NMySLJRnV` zrWXchZaHL^^{-ziY{s+ckiwIYQ=xz!`-M8ymjHP3RFBc0Kr8Tl#!e3hkqqxM)$LLE z5)ZUe%|pMLuGfLp{-f9EM8S)vjcOTT@bDC`qExgK2z`gYC$Mt8zN}vVukETXkPIv! ze6Ny09q)3=m?Ku;9Rs&^?jix`k!aGHBG-cZ!spWoK4BhTR(0Xs-S=Vk{bn#Odlvkt zGzA$Q=kH!OQ3SJZZ3f9JbfEa<`j?cX2#oLdCn#MABaeIje#{yu`t!J|gy@6V2r`0< z+iH-5w2!JoiW73k$$Ai$>R=qtR&}8&MCh@&y8(RjqQxuZh!8x#<4Fwrt|o*z2p`qB zCk-=ginN5;v@qtkstY^HgbC)74Pa#S@Vy-zT;S{Eg|``pZUMJc`xeS0qJX28mg^lsvjO@qp>f1&bgYE*vxul;Ry9w#bZN1)>MQ&ha} zN5yMqRJ_JTt&irns7F~SJ$e#!MwE=u1HjK8KY3Ew!mN}(Y$Q2`aO75r-y^?tkgy+X zPKhQK3{2jtt>MxHbY9mkcjuX*?GKX5vQvk@sza(SRr$;;b9jkuhBmV|8J?!Y&fV9M z2u0GRL`bfafq_2$68>;K=mkX!zrI7R-%5^t$O_0sd%hV~=B4E!pC_5brHUuj`h(hN z=A3tq27vM1*;Mryby#_Oc7hl`0~)Jy$B!gOL$OrJ0O!0=c-=UzWS$m%eehFy!lz^q z0?xI&k@nH>T)cI70t3YhfCP!k}y2*s7CJ7$ku z2Mc0fmAS->Hy!V4zZT`#Qa!q4Wg z>j}ILAo>^GT|~lX1f}=^k7g4iSkA37WSNb*-fE-P3#+<7bo)hD;cqjb`rydmdwM1q z(7^S)oJ}2G6RTkG}P&Rn&Ueffwn((8x<=I?@k8XW9187&so5|@Q4_h1bgs+$F1ZQn+p{2+I>>5 z|2?Agle3MaWB~XSGU!_ypbi{|mA~QDsiMsl;&&N4Shk8TN zruRc$4xVuOWO<|F{e6I~%|L;2QVNz)@36H$mj;X`XWF9ivS6VwM4+ z@%}2rot~873FC#|R7+XE2{2IZB`L1%B#*PBaW{ty_W6-rv!rvToL9+%Q=_u01b zt=cV!p~L0M0y(6=_~zTH7WpiK6b1YpS0OdEn zCk}_#gO|}P?>w@5|MD>0W}OImi+}y*Q6DHMB}RJH&Kd6dq@^jdC+aT`9Sn6sZ18B@ z1Tt?NoX9(WW!C3!zyCU)9Urll9RE!oVKQ}ae z-`^0n?suBx!7&F6GDDx{-ns%i3B{;Fd>6FwuG-<9>6-9{dbDX3`}cW3?Uc4p(bZm1 zY0T6$LstPN{#mTgiL`(M88084<}n1}vm%Z^ZpK2nXH^f8kGB5$>0kMAT(%LDGE4z( zU8Q^FW-Y7;&DO2yks3;m5cA`)pDq1i*Yg+&6(%9jc~mda(NZ21wC#C) zciaOo2uM#crF)_6uZ{RQ%99R7wRr+hy8F*~#${l0AdfTaFbj-#oqCMz6aZrHhdn=& zOuh~;AtY(=G^Gc4zVqCloo)6&C%HcOqwfFeh-#m=S0@%9%`q3sYr~?dcQlWZG@*PB zvkObG3}8p;!a14oa!*`S_y@axh^tV4-FP?RztR4)Mr?^xvf6-0y{POIsSf1$pz$Rc zml?33bYUN^mg@xyTF{ZsrtrXu9pm{{`-R(kgqo8UsQlUwm0!1o|KIub+J63Z`z9)03!vh4QqW4gzJ!X`bUiEa`YURE z^mvQwBSDlN5zKWqoMj0FFMX00?%2{ow()So*+gX+G|$j#k>LfuHXOk%)?fer9ypq# zQ9R}kQ-z9awU7EjlgPx+-%hMwHyCWwdg8`DiAvT-f>58j;OX0&*P%5b#gLwd5&Vc+ zFRbc99`%ji3wzM7C$9BRs?z7Q8B<=U_9n+dU5N(}9XGqbdp8XzM6DNAb)o+GJ@=Wu zgBZ`ZPxIqNqbIciQTGgvzhHrnn# z&GY-k<$QPp5je=Wfd2a^+UinIs>9K*6RnQN;bP$AOUk%)Jn^klQW}k8;eLO*Pb%19 z@L>2?hcxWif9AE?|3>YuHMkUJeYe%{l0jd#CMo4k9~hL!_w}Of|JF?#^@HwyP89BY z+9JMgpbH^OZ*7%z3aDVMV#bY##F$@Vch*OiJ7KU#ESR;RFbZI&D9xNYrw&c%@cq(+bGbwa zVAiU{CCy&{94umsxCMt4!*$DY!07PIX=_6C-&1Y5=c;vNH~M+VTDzjV{YtQ2c*mG7 z6w~rLSQ7i0XZ8A5t&i)+gf29YPoMGBQDEJ+_diod)bN&YF710GwS?QL)!){cGscrd z*jaFlf_vNFqh00WvQXB%gwuD(o^J`)nf;}4wF_f|xOMXsRxQJ};S%isuxz)Jvo*_n z6hZegj_5($yL?F8)$wds+i`>LKmIvHKJ*_x9|}#owiEZ@A5(E*g3rL+b*RUbZLWTm z$DB!4$>ah8k%J{CsMRa5ZT385Iep1yM>60{qWb-;VB+umtjOYhJzB%kz%G>*8tQ&= z-TZX%NKVfA?hKE*93uUbrwyms?(}6S$AJ1yCW<6Hen@SQ`r)g*I}D4K=R8}Zjj>;N zP&nM`0WWhHh2Zy~StpUoSWxMyZb+HI1VozzcIKD4Lc2I-f^GxM^K(4*6+WL(IJ=b< z5M|n~V8n;>bq~8dtefmQ|185C{9?a&sDd2x_g{E@Y(pD9D8MLzydk%FArLdtS?q3U z3aMn0T$`jsV5cKf!nrgVa8pkiWW1LC8^>4Y2fD3cukA!?Rvb)E`JiQSD+WqQH+No< z_W>VKIL}`>kpAxTfj5I>T%?QKF~&=iC7a9fa)iS|msoab`NF*)?)&MUO@ohhSNJ%h za1^>S6;2xZVT^~aJyy?mqhI9W;EIQHK8kbtQa}FQf6YHqdCQ)&BMf}&hPuiS2on0= zhYiHUz({`RXFAP0Xpgs2_n7K8V=b8TjxmwummskA5~FYbLIW>7+7}ikCJfZtkBZMc zp@Tk*Ul2?a|EuSB$sBJfoB8_pK3yI6X04dDI1}#2$@*HaCj?74qtAC+-J3Ck5oel@ zCccpcQrz)-7ij4Lb^&v)Dh}rLsMYag%{~)f;&a-}gJ=oI_!CDT9`Ze_-47v1l*R+X zdUdgW?*w4JQP$~eW(OK-x(XC5B$?O6o7Mg{YEQ-@NXhBh5G5wUdq> zRP1o(OGV-cW;={siaHOJZ#+w`BHjZEWg`5@h>kS0RJ~%;OW;Hs??wQ&L8m1*0+IO8 zl^N+Dx1ArU)sc2PcZ}*-0FuwgzMz^?Bo2}HM698N0NiNY=?{O>&YE`MmI zZ(QC`hmLU9rS-mz0~I~90;67*u#Q7(AAdv$y#I~v z3eFR(+r7Cs)ELi~wf_9qZT-O&U2xDBHAm6tA_1uT8}w{sGft2);9-UZ}zp{kG=U$mMZN?44t{Kld1s#M}Nf?yxw95la zrxSe__%#38-)QPQ$-<4vzkL7Ij#d&S1yTEc)=z@gfh9iE&*;Z3kT}C#>|^ncWN_@$ z9=|wuGvFoHv?I}&3`{-}^QbaDjW}j=S%q*f--dB#Bm9T9cYTlN^EZH6f1KS&T`*+( zUE+-7bDl{$HXey{%yrbq|Lkd4@j)__ejD|-*?xSEOQD^-uX*0tK95<_g|r2O zql`$qUH34JOG5IYFW%uvio{uzXp*bU>PDN-X81OjO_z1yEUCt_PW-&)`r2`X7jgM} zoV+d%FWP#y8Q$H{W6Qd5>u~`0(t6^x$ZTnuD_euc$@>PCd93UBG3~q?+_^s%{!sS* z@rzOi;Ep)ldqooti>Ep!dTj4N9jtD`GD!`Zu?*#8tLK8v4MaJ2Egp0S_NgYrA+@d*~( zAgyNoqlJD!XgBElG=HZW*v!709q$ywi#w+o0mDfbi+4N@hjnM4$x+b9K@s@?fp)$N zKomANf6meYPsF({-^g5Fm)WfUwa3rKGslGt+k&Sl(kc@r#?U5m#OLAxRY-Vm1?PJR z-=R+|vY<69zc_jduUmqN{ZH`06 z(Iw;KZ%@}0fdv|B-xuyJib^P4V-fbyfcmJTtTZ-35N10NVaK6&|1l|rj z2(4=2vtVSr=Cm_RS&G*)0^P@#;x$d!laot&RO&xHz7;*18o#8!q(|Ss$hIu;QJg}E zFX0$+yp^z_lZH8O)RhH)UWbPQC$d=X>%ey4DWu+XzcIbQt6K zusV*#&h+Iv(!)z`%j<kzx~9)(f8GE4rY|SNzEg zsS_LF#2h}g*I{QEJUTAQGdmXsyNP9Q#cDXiR5QacEDb4;X>{CH!$}Vce>1ZrOY+#T zpN;xoyPp(=Bhjx=aIGU4+I+c8!Om+0Cl3_!r{%muh{(l~=^B_pRSn8_wax3lSFpCf z&9+NWd>m0YwwBc|hCil&?jYfrp*C#bTXN&{&EZ=4b1OB>AfeKYFIz^k7+zR9QygCn_HA*hjApLXk+&^@b14cb; zrwvxI4df)~D3Q-j0`XRYIN=JW5a*ZSZBubi_;H%c@dA!1Ahl0@%2{mw_r6-SE4pnU z3g?7G|7F{^!SI^UC&e?t|i0-uX%Hj*DDV4Bg4U*WGi(Cy`kxH}Y>m{9dSrxWizow1(xTX3vFaL?< z`nCLP<_i+Y`t^l?-PUePbqb4ik^*EtN*1v<>nbwt>?Cl%ZM6;c>zg>fflKv}w%cuX zOE~d64=acv>mm2_6%I5b^Ijf>JihbD_(pj@LZ2hM8{vUfxSU^)wMcC#zjmfNyPRK} z2IZbv;$speeQ*iK_Nw`S6f(aSEuIf(N5;{F{$^V7ZOpHkh!Urk>{dVT*-ek+W2sog zzJybf7bUe6uZ3e1FG6Iz-W%NEwxma);?D%PqDOuB5j9JCgnfMH=OzD4O^V_3AnnE> z_C@m=lFx8F3GWh)|9c#r+{0FoYZwT&eCUCz-_2W{Z~xjZ9B28l$e#DlagC{ih+g9Q zH^7*5LONY!{ri2J;ikKWybp`q`g`~)8+@N{|EZJ5#S7EHoapmB%GLxh|64#T{$~0= z^V)3Ouhx8@Px#qRSrXD5=x%Csi#a3=IA5V%s8ZR!@5Qc;haSZjOuIUSGns?a9?<*L zjk}PsysPx<-4u-Z$>3$wxn_icKY0QIoNuDwQ%aA9M?&f#acA}g0r8Y=kC*D)pM|YN z`~g;Xt7B7yE11sQ=|40T^Opz7uIO>jEan3+(qCyXLk0csPA+iUj0?7*|K8K;{Mc$+XMS;z%5wdBw`fns8!?iv^g^fQN0S-7FyLuxa2;fl$NQZ`R-|u&^*5LAZ)GD|q z#X|Rmz>@DZ?%>p9hAp#I*p_*%@>|=Ap>Xr^DtL_rH9?O;hvn|6cxY|x*z&9@6k|Mp ziZfDIlp}#l{k~~_+Bn$n5N14-s|j8Ub+WVMX0EgI+VP>geZ8m0Zs=q%aFOg2`hCs= zM0_auHRhM_mj|)%_Tm!x=^oy2(k_BD|b`J>=*5s}aS@~`uPEfr(_I1bJZNoFu z$E#i9!-1`|jN>{Wv}Xy|XoNz$BUG(HOWPUi^-EQ>>;D_^8*XJ^wwpZT3Llfj6`T*J zW}9H+BUtt{EBzkKf^XJmhJY$XoXKQ$v-_R|FL$x?J=5!_gk!M)*D~bTrp|U17&VXZEC^5V%j^ zPHXF=E0{`*iNrfm3_s%&EG`_WMVrq?c&90%ep(clgQUk(m-vqsz|*FCPSS&7c#N1W zBNICw_IE)Eju}5FovSUvc-0gTA5-?ldlrET zw5kei&F$WhU^J<0R6_|o|01Wr9U21hRYLA%TIqtKh#Pudrs#ifC7Vm88T)kvG*8cF zyn!7IZ{zR?8tn}R>cL@ChhN?TkL{oT61Zvs*$~5vV|=$kgKqEhr2VE)Q^4xo8)x+M z1BqIkdXY~Fpdg0kS}>6r{Agv)1B>(^KY^{}U_lU=%oE>5juQgZ%NFxH%^laxm&WrF z4Vsbn*6lAKH)&+$tc4Q%w;pRom%>r4pVfOhYS6a-TK|`yw5BEY_JQ@B-Rbo*rtll~ z{B!TqX+ZHY!G~xDHb^5*9%Yhb4fBfV(`l&X*Ntm!f17QeAAQ=}xR?$;ovKg%HSPq* z_u}&$b&Q3vzoegPJTU{5V);Ea@z&tRj`{Cux1=z}b7dEOc{?!;et&yp@Lho^u(!&A zm(>zsYp(^@S0^(V*_-s~jLLPuKz~m8v63~$_8b*!BPmLWhsjd}-~CP{LUkz?xBZ3Q zFzeMhF?AV!fG;m9$aPT(;+OQOoW-@p81GD}vXJI;7f8N?-OcuS7U-nUyJVAM3-5Pd zH9YXx7EVz9pmOb22iDP3!X^*3Ft+Eae|6UAgra=N5s%->kn#^r0&b`v5N083zsYc8 z+wk_U(TN_4X@!^L5R!MszfXRZ4e+hYoqyh_+%~*bp8whgqvG{TRJ`7Uiq}|4|Bcsr z5-WNXy+u9RhteZ`z8!^c`!pf>e(t_g@}*GnXqnN;msQ|HZ?eHK%!2_>bd-L*`S-fs zW;`DY8+`r#q5_<=tY}muDFID(k(54FcY*1zUadcSe4u1;+b3sPdk`Jp;cN5A0$%T% z*JSsKMcW@5QHm4!=BYr@?tb0X$CrTjlL=KeIXAFB+vl^_8E<&3q_l{6_zU9q+((;G zuW*3p6{Mcpa}(UO<{00bjsE*&6(;BDi);Mh31^-Xf7<{kb}p*0Cm|SWls>hXZ&!zS zg+@#>CibwniH0Qnhy{r4AfLMU?H0U$ZvLo==K6KQW_GM<(4zpqV!`Pj*vCDioS-Zh ziIc#79iaG4h&v%J7~+)>yGMrvfKsxnNqKk<8`{rvjZW}Y)#WvK-vgHqpXo1$InX*R zhx`=X`uuLQ@vS{xhth=<4{nJ(8!5#-!D{<}?ySj-SS6PsdvX<-Ae5L_##BKr5b z#71~OQMw?=)2Z+EJ_9_vG|XzK9}Vcf7(}t}HiK8qHQgQ%iojxupg#?!HW>3uLFt0% ziDylsQZcY*7xsc0jy3%CBuu2euLp6NXe`H1J9{-{UW`F#@_kTC*_g|04p>$$?=bKK8 z-xPq~xaKULmnv*KS6wQqaUElOt{sO6N+%LUq}kpOd4Vo=$3hO3M&$1|GK29fE4CeP zE&fK^tNC>ZD!)F0%CE^#`E?&EzuxG2boW0(#q0B^czq8QuN_hGS_T!b<57Clw?#c7 zLFti?M{)Ku+a%y>)yl53GZYpP*G0G|xL69lQ^!^%bL2tcdCuz4b> z0+btd3as?9f_TAuaKi`U(e{4{-O*pA`03!lskB8lbw}VW;z%uUTnSXlNobZYNWqD@ zDqlvQ2u;XTt#WMNV?cG!q+kVYB+Lt*J>T|F z8r0f(GrZ@}2U=x$sRS3Dpd@?Dq4u5joAN0_>BN^m6hXTty`YDjCtKHiBN%d_|47bP ziMIXM`fGK)z>d;|eYq-SM=JdQ>03eTU1OrKw)7=-N39l!4|g=?6}hwNc-Qv7c6$u9 zURc!yi5vuwuDAmgMu=?>i`qgH>Ij@OMEqcnucWrN%SDX&t*#e(QMxdWV6;Tm^dMJJ zRkr>`YxwNLxtKz2F1X`Fg3st9DU9(}*9%oBUBE7uFn65I1$p9Ey>o8OAtLh=;Y}?k zI5(hxv+p|QdfSa!FW94WAyT(6#gIM)3@E(xd05K_OT9>vYnsgg&yTh9rNYCb=H~?nh}*8wP)y#3)jOV@ z3o!BnT#d~7fnVNY?60R~nJR9#nSqa80bM3nG}`@DTloBVu&)qS9TRJQV|pFhn@Dgw z(T4#3W{2b!W^Or6p@Ubw{G|XvRof*SN&jkzet%oVdy*J>k|$hi=T0zPCVCP9P9vk zj=%I;#I@1p_kd8Wz2=%dJaB;FYSoNBBsuRF8ekj+%RZJ+dYDB(qIf;c29Hx9X$Vh} znNS@{wO^jZ7qbSgZ&~Ay38DY|S((<+NwmomBD9W^lyHl~MFV}OoEbhSVIXKib(k4o z4HLPNJ-G(lYa%jE%Ax<%R&xtB%Qo1^C1kpp#OAC9nTP)n*01^VvZjO zacAV*y@=Sh`RzwdMwRO&3vyan5Uk;b(D%!2V!EL)psM3va_zA=MBoWeb26S^=daVJ zIdyFR6hZ#cY*)PWGH_ePU|RgWBUDld3{15u+P3kn+UaP0lyL+X5A4ADFn<=G4j9_= zzOD+EhEnDE*n=U=VoYWP)B>J+1dss#c6+{ z&31y*7Z)Qc`Fumy9vLudlzb;$@41`}tqyo(>Hl{;;!;N%QUk z1)TDg7o6n5&?%viUPDPhiG5CNL;~~Q%Lugbp1pV41s>@adA&IA2KL;Wx#3|g43(y5 z%UUj^!LRg-``Dff!;s0-8ti{KFy?1XEI}Djt_gC}zZ@a>pa5L-q&~+T|KEF_YTK+6 zCP9dbkLDGCl&Et)_f$=eH@5ljyx_-BCoF#%V|&KX0<7!`UVqaNwC!{H(szbe z@|n<>8-po`LEsn^?tPp>taxFEdy^_MXm_!a0l`@&g^^4G{E)nm>15@ z@=!ojD&nF{0widsi``3!%=5SDUj!;%Goa$N%lVaf{bqJ0UY|$B>tvK3^=wg(bkDEo zkzr99UeG`w#P0o8<3}k1s=4H}``r{lydpu2-2*Q$Bx`$YBE<)7e{EzAFNK@J^JU&Z zoKKhgQ|t|h{qV*RR|p%l^LKvtWi|--9rP_dB}BOn@0b?BX*ug`ScXd_Z$pp_)#uLW zT(zk9d)_X^?bQjZ?^HE+Snfbi8q1G|3mu@S^3fQ^=vzP+r3<_ID6Ha@Vjz&wsJ$*8 z{&yT3@!o7dpJwu|E`~c`F_|lbogS$Rc6&pbR7Al^lrGp>=tuYGUI&9u<3-9E)!}CS zZFaoiIn&OfW6I!LbogmgDJj^SOMC0J8z0O;=>j`Z1XV-3HZYGj#c!zQ!x*pR1KuwF zRt=~grYxgaZUB7_`${!VyTfjjE<^~t@s{)r1CF8Bwc3R+|Gt}(b7ju4NIfuO2Yere zXaM8g@AJ9bY~g2=E_CT$cz5)01o(2v(K7pDnChOJ{@b0-YXZh43DCDD8@)>Al++TpC8q4a7&n3zJWu z=97kl%eP$LUq0;y3;JXmh(j3QnZ(X$P=fyR@vi|oCNv(o;C>X#kk5rg$m8WGCm*T+ zh^Ip&2lx)nW|^OZh%UNso>rJnlkT}lt9d#U+Iaa17| z7i*(fnh*R#T*}6Gz+>J0I$4up$yi$iUYu0J?V&3G69<)>8nN@&o#(Sn>j|d;zFLoL zHAtMJP^jh1e zF2tz>&f>f1V~jV`_x6QCxHAYJne4V}bpV$h3@D`CGJ>?I^@1x(7pNY|Sh5hHA0O7v z^T1G%%!1ro@QvhC_dy9m7*=nkc1_d(-a)Mw_M&v*oqLP7wHW&OF+)7AiDyI-R0SqF zSf4JUZJ)b${AaobbN>0dPDxqANZWL9U6E6Blc z{^N=3aK~@Dg;Ja>gl<S)q@5J z$iK5#($XJyciZq*@!z3vxw(8~9TeH-Jw zw-;AD(&1JA&S)_9;N>^vj0kY_dT?5I&-y$X8*gj42fppQCN97Qv8QV8{B$cv+aH=< z6!1-5!M59ZGk+ZdkEQ6Hy&*AftQ$iXE5iMb;vm1#0Yr2${rwNOY#Z2hbGUI0oVV?L z)9@}%qMoTY#Ha+Q9?wwi#P0~saIyc z_-EVRZ^b&h;-4X@`enP(xFjv}QF!{)dkN=i{x`NBB<^PO;9rmXO6TrT(N0^}pZDRW z{9|~84M(S)nyd!Mw#|Qq4-Wk7Qy&Heu7xcsU5p4^ZvwdyN^FEH|EYub-di-tb0~hd zsI^;%cUAUlMOAhPBofuvdKF;}%SOjeo;Jz_-8yakqtBV)AHFXZ(Il2oS}W`$w$qJu zeE!uQtLG7;a7c}nZE|Sjp@wbJHIZj`fuKi*50*J85Lb-6|JKQl5{2>H)(;AIwn`;0V@Tj|?Z}aD)t2{PpeO~NTTT~T-1u#yU zAe{}giu}rND^-E--yAlY5tV|r2eAvJdK5v3`@<)0Eec?xe*Sg;S*KT`epBACt|ea; z=es8?FxwgOY0w&|pm417^S`@hApai5o(J@cm;EuuGnd>i{4~=5e*JVL)wat9ew~wP zV7nXw(pM?2LN`#r=|7C@1=buxoUDc>lR$K%S5raF4hDV+IaNO z<@8u04>XKQ9DUS|=*L!-IIH{PZHuMyT$~YN$iG3>g!E5&wXzZs(r&vL zjWWxSe8^fny5*5LKyPL&U*GPpJy);Cv<;sd|Bp_H9^FOgPC$#cpEetZr+LA$E?|8T z`>~`GH;d|QU=K6mqTFEICwo@}2gi#aC+yFx^Vi|Qx=x7$`Cu_ONZvuq1Af0rS#(Z1 z6^=+cl*;9s0Eh33a`eQOpuUT~{?-l&jO{at!XZE7Wal581Y0Y%Kmo`g82v`HDG~?<+Me6% zZ-TKs3m3k7hJ5!1C1N?xhX;M&?h0wQ!s9o>^u=*OfyB%kesCX!z+XWW4sQ zxks}Uuc`YZGrN#+^qOmR3Pi@YAE{1z36XKd2o~w7eV*7L3q*i4WsP;S&duIEU{2b~t`O9*$Pe79MNO1nzv2Ky^kAXgdy`9KmKn z;5-l`8j*BG8?Pc}_t(N6&xV*5XU`_2-6pTf)Knt*Xy}XFKY_$?VS2)D^;;71g*u5E zN9z5ZU+G+aJrtML$G6Sqi&n;t2Rmm-5YCmubHqshu+8@+B9L}_dg_pd29l3#WY0NM zB+i2){e8ZdaWIZY8;z&c!*W?Ca8+0b7$S)qgx|=BebOdE+kPAM?>m2RdA)E$cSRSj z$!9FDC*F>U({mMCHMnTeW4ZKOuEU!=tT2#3ei!=jRI5)Ou>l<{rp~szGT_OE$@qt) zCeTZ2<`OZnG`Iy~%Qc2AFt$$$3J3Y&)L)uH1ppiG44=^u^6yqu-eC2+VhodrV$XZZ z2}0gDb;14t%fJ5Li1%juU!eF*9bCc5dnEaZk@z;er$nw=`M?5x7ViCeEt(yEPJP8z zn~VAT<+n$l;@DktgJaXmExTJ>;T{)fqvM|5Q0*{JOlJ-&Fm`#RH}TyVq&mzQ_%uXf zY)|a)1uRP&9k7>AdG5+n^XdM>zE49cQ#o=hGsvAup1bQ|L2Qsr@CY)^J|wdl!Q zZ*cU}Yjw+4KJayLkRWPYl!*t)Xn_6(eWuP#^v=wqmjX~E;t>3 zc5X>0a^=kuI~Z&bH%uKOC`7CqRB~tK;kohPFY(KsfuP0tjZz*0AUM;6ziq}kYJxWVB`{>3O z*g5#&P?9>~=l$|fi}U23reJN2K4!qPL<)ivcnnACY=w7wi3O ziO-~V(BV%=9Le1$8)#F!VAR1(Ap%}M_<9V*~z(5M>6+aSuf-@u`KJt-fJSCZ~h;3r`7AW+73vp)R8JhSJn%y zWh=U%$9g}a6SHT!z3vAQ)kyf0G$_}r`pvH^9TLi3tO+FufleiV+{~Hy zK;mBFW-U&6I54dlP^fN&v3(>_IEjCLC$zh!z_+d*)be&t@YTz2FF{)u!mFzzU=J5E zt~402H1Bf$L3u72ttdJ&XSk*AlS)Ydz*5<6rk2hs>gXL2x0?xy(JT*Fvcq)a1p55 zXAEPneA6{owu0{@bqFst2g6Fu6`Y?Y!KNKdeqgdwwlY)%^Lo#9>#z2B9=?EB@Uj`t zUN6wr#uupUZ3AmieD-y%;5>Q$@GOf=0LJ{bdOzf}uGEpb77r}17aEdQbOCQ?En5px zC#YzyYQHj{t&f}vU#^E-$KQEjEA^0{ho+Y6A+Pjq>O>&xA&i|^1cp)?VD2n^#_=kC z@XmYZNI9||^1}6%rvtK1@$mZh<^1}5@3k%E*EA*jmhR^@ONWn8<{TD%?<5?qegl{=hFmiSZ*cnB}ya5-?4 z*&yTf%v^0&Au?W9wxxI6K*rI=BLhM2xp_hLsS*L#I^QVOV+Hn!BKlN7} zTl_7M{vi>1uPC~-Uie*CD2wD1J82TJgk#Q?JYK+Sk8wO&9Z&dc$NxNE=+wXdpY_7& zpW36_sS}aC3d_$IF8X&b*O3+(SJn$DB=gI;BDa#i4)*e0~s0rU7thr$VLdKFwAkpjg|X&lea zGzG@hmOec#w?PX96Z4)Qav-`y?Qv{8=K1HJ*DHJkP&oePrNg0(S>Rk=oD2v6P>)|) z2l=PWVSmDr`t%=a7{{~tXTlSwmHi<1dtH3#UqRqJbMVu5!7^}!jx$oTBo>a?_UAkh z;e((5;O*E|!nn>KtA6>{mgr=$){a~YP;EIQd#=m~Tz|ne*AwdoU!ibrj1l2xN(BIB zQA2v&8`K!%9oZ?CeR13xPI2e_TIjce69i|D#v}jExIcyEx~ zJ%&qn!RJbT+C*fXqL_lTfsxuCrf}LXbWvXfiyG~}yZ^uXHIq_K?^fy|ib)E~^^km) zXqF|M!(3A>*~oebVLRT%FUY)?lZ2Z+9vRwiK_`jpXhZA>(y(!#n0BJ$f)v%DWXk!Ub$e z0Z2W1hNyhjgY?hqbcv_dNV~BXdpM*b`DDAEd9sAFL(^LPs?ObY@!>=R9t*oi{JMGm zsP>@K?Z**7fRWX+RwD?Qs=a16vBCWPEINJKo7NHQ-`_iNlKbt&6``QQ zW!vHJR=_x;BR|E(5+Y{8i^a!{;EUWd%=lT->+HF#;Uv+b#A>{pKd}|t-z@JL_ zNu!SyV9FOQq0$Bs$Y4h`QY6z2XoVg3{=R_z_b1vUVmMTg-#@CXqJQ};nF1cZe3I(R zb#=f^%Xz{TM;-2({Q7jblNnSW=eFRb)Pn>{DFTNz+d=RpUYw3ZKeX-Zd?Z(v_^=l+ zn(9QamY# z(O-Y)r9G6d2?&CEbKS2p-Gv}$t4LbOG%t)byTs?;tPO~cmF&2qs|(!3WcnK~U0=s% zR7%GWUuXUA#2>rqvXIJ!!}^({YD^*l(6gmi`yuxF_oz1V??(HH3FzeeY~5gmA;EsV zk9yE^(ULcTJOPwWNyfzqsX$%vEA&|WNicN+TcfwgdEIz7>UX34zwGzMzS*4&zD8Y) zD2%j$%D357GFZal#G|Y7)iKfFL;BZoNst8EtTZbYkJw_4H$?L6%~%4w%iEEuWv&m( z#8|phXrrK(FX?%K^U+W;=>%&nxdV_5C|yh*Ndy~>`(O7n9U|bPd=>%ekEqSH{fvaY zS2(m~dtBkYxz`2+mn(cXaODtf{Qus&``7;0o_BUyR#TSK9+GAsb|_&; z1!6D6#iv`%;ZVx_xjwQK7{EmI?0$+jNTf5MI9KJ5u{}Fb-?Ljgj^HbC&w21n!Ck?4 z%MV1l;QP;ma_mW%KX2UVyLmV`db}?*Bfv4Eruq|)1Htt-$iJh5kG>ww*<}z)BkM@Q zeu;k`{vY1~T+4Iqwp4pWk;}|Icp)W_=AfYuq|G_Kf8b*}NHm+4qVP_G>`~zk1TOIq zL0$0TQ1kY^&zZ0Ni=CR!6z+U4P2SY*1cQIl=8VLd0y(U_@yovw;Ad?T8j1QWjOX(z zU#9~8#I`+YfPaYY%h=6Wc%e8+yMQMVR;XMR{u=5H^%40I1|GJMrhu|m&qERTYEAt- z;8lY*zWse)mHWSI;OEb3!U35AL|z~ebn$$G#XDjnl}>F|voI5rZvTZi9< z^IGINc_(CmWBcI?FHe@Djn{DUHc7NmDZKW&bQiI#4U9<@SGq1^10Kj+%JklO1AHeN zSG;jt8B+XII^nCK0rCfgIKC4p!XTC!+~Bk8e}}VbuZ`N2ehFX~Rs$Noy)fhYA`knB zqTUnEN02p4bySmYw&ZtYrsqG zAm~%%Pi@*{x^BE{``c`Ll9$!;&G$<1*ez}JNLmPdj%_I($yNYKIA7+Hm3xChv&VX8 zk@;sp%^roy3;%l_yIH>*9nW?Txjn5~0iDM$eQm*V16WCNDMHf4@OzEJO-^BN_~RXk z5efe-Fy}wM9|s5h{BbRAAu1pbZsJr0)ho%_P6UXtDor{No7uZA#yA^>?m-^|X z5p(3`x1?7uMBwe zBQ|u{QyNzJ-_k0^y$WTmu}4k}FhcH(6`cP^++-diDL@KHR$XdA;?!{rvN~o!84b*Ymor z=XpNP^*qmWKQ|V;O0rzJ{t= zzl8EhUq)v1KZwtrj$P%?ced?0M$B&^J-9D&v3%x>f?S*xtDuBTF*5A+ne5R zo=n$(@~*d`SVY6B{a5yfzikH-JpO5CkM_h_g3KJq{XqCSOU0te@g#ej`m7fcAyw6g zzGwIiS z@>zU$JMA?{e)Qx`GMO3tNW7O7L+guv+i}0Xm>#^p6v(4fCDa@K_s`}0DUYt7HLFFv z8qjQ^%lZph&S-!%^+{Kk6Z-8B8O~12UkAtf=R*l1pMQ3YeclRkJ=Bh@*E6XwsTOU^wPP88{i_s{AP1)Hi|l7O~VwP zjE)vvy|Vs5BD()%6MGbkGTKPdE|JfE4R8O(>)O4}kNAMY<$Zq3{?xUfe!FakXCR(u zzswC7PFDHEcf15RfN)&~T{;M}%#86(ok3AAuKR=SWxVa>-93A1lc+0jG-thL!{YXK zdin<==1G_K}-y&<^u4Qm>-PQusTHyW3%&T1e5t`H%W>mP%>S5<`6I@$_tLVR+R%p-4bK0L4?WLma)9v(J^J`G zI+^P@CsGQwSrqo)3#2uh&u3f9pn)yy3T1(6@VlLB{mj$S$?dE1MfqvBI@ae$p@q$I zR5Y9YK=YPR*7bWBpZf7J_b0}6tL*9Q{WV_8rx{CUO^!hM6v4pqcwJ|sA-Y|+3GvR< z+ePLVK}rMdmkmd2@Xq&2zvywg;55{$ccwpF@MM!(b>+45O*e-RfkK}vbcc^VxW{e} z{f1crVVT9fNs0ymHXq9ro^dH_BJ_x4*^jU;X~ZN48GT zOBxRMQBw-~kKKVKA` zrfKu>f;2ey-4LxmcLmx{#=cbK&xboCoJKacqJgq4BP#NQ7YIu9WiM()AU6gxa`nT9 zQ1DhV?#X*mc<1B(t@kaPnKZ%jnwybZV-|V{lU*SSIcR+H5y#+YCSt2gEH*!!g6vdf zj%4IZ3<>8Twt@L#{82ZZBGTBv0c1oTB4N*`au6H%M>ZJMqmf0Gp4> z^WX?cggHnhc+_$UCCBMXiSEA&Np1~$4pKZ_!lCZ+Z_f>RK-vi&E&Ey05;V(RyU5*!?VPol&02}j+9S^t^61uCw&g|I4UJGD@_w4)TQ zdmF$+y|o-^^NyKm2&JH#0WB{axh|}-C;9B`&+BVGii1COL7)kl=U_T%O15P?VvXdmqz@cOH)v z=jtw?J)W&Mz09sbh0W%h!59AB^Y(x0Pk;KJTxx5><{#&gbS|C8Yfoo@Cz6sI^4wtm zcl02S*chVg7#-T?l!5nZkwQnl5_Cx`rV;1iKVNq!;=xC1N*^Se7#*~`&H)*?PON1|J43Jeg8~rIBy}? z83M8n+%QVcfW~Ug^V5?BNTn%xo%BEsB8-d9N)#_g?U#CA+J>hib5rx4jRmr3T!j6E z1TX&M+pP`Cq^R5tW(L-GRUa%v*B90k4<60~qe@ZQ5g&j?{=iax~$FW^Sj@ORv3& zv8FDlYwAOuhi5o?R*=wDOvZ-9j}6+}DXt#h{uIaG-;28R%xxo9fiuIpN2(5$!LjCV z6gH$-onj|@K{BQQbRLbGpSco)KHv08pMDOAYyafq9oqH~w&ld$xd!}s%{$n8+7vO6({kJH$jxZ95P3|S)87!1j+Wig zYff5~udk1g(4i1C`r4Ou?CaX^mqZnK zOZ#0Z1Ld(89nr;NMDmbSysFy)w08~M&%AsUt}Nv-g{P_k9Vwe`Thziof0 zw~A5j$^^>G9-4Nc8Hh5oOn_O$5slDUCpM%Mf|qHgG@0pHaPd%k$sxM1YJKzHj=%DE z?l=srn;lCZ14{B$7lrV}!sO$Y?_&BRw- z8`Y3d&quS9ha#bcMyBfC*!L!)ZMz5~j^MxE82JvUrOsQxjB$3Y4zC25_8p@8a4{T3 zZ9ed&^t2nwxske~VSo)0ya^9|nyv`u?K=bi=LW z$l#D363^)u7gvr0F80YgI?3aL`;Sdgi0c!e+q$#)FE}rt=q)m}`-e}W4~qdG)*In} zKeo9&H6_-u05;4@r8aGq1oDo(8;MyJp(U)0o!TT0j(Pb!Pz+OnjN(|GPsyP$KnO?Xyc#%9j4zqlq+2ki|w&@ndPFOJfxLbm+gtfzi(&G+ZYL5#Y#FncU2&A zO!79Xh$h+rxAJSpg;4Wr5%N#;@p$)__b4FXqWKkg%c!4oR8JOiKDX6Bl6Qjlb`=W( z*t+o_{65|~g@E3!^QaPQNP^TdvTEiZ=0Kz;RMcsqgLnSyETaqDu=k1t@mWrC#hD<< z{h?EN(I&w7*l9l2N(5YFJ4v3-N};5U{T?ru6kzKK=QO{=k|-jJ(qo(|25)=a8<^*= zq~;;vn-LmJB?-vc-PARKwt$0H@%JWwyI$|%{E)%9g{+U18jS#>bw zR48@sa~Tl6f9jyj(~7iky1;F{baVRrAdI?~D&KMr!#n;f$Ag=Jt$c0Vdeh#ZvVJ7cYTOB08KPsOB8N~tBsY-G04a42PtWWJKphM*`DjT@%m)o>$gOep+H-XJnnH^LhS_kKXpOd zVnX1xaXC|^?gQ%>39@wk~{c{uMo^*cabma0=Z@LHw#QB=B{tv&xGmV z%J}?kTY$L8=e4^rqUUmiU03m+e+iM8oV=~91Rn&?Ncy1 z9p3qfBbPi`{w)*{g!w#-({%=ioQgvX^dV?(>+Ywu%EHKaJmMn*TNtDbOzx&TXaGeC zm!0bp8Bw>`17q49E_k26{No`zrYoZ1y0YrVN`+vcjgcLEyg?n#-kvufxS#_x)BNP` z7{Z`MEWkzkyE#(g3S>3G)@`3odo{Uv%nNV-K7ZIEHuNk3y(FTrXN?I)BB7R% z-JFLSp1Rs7An6J9qn&0*(w<}s{~mXEH2yr#h}ItI$X29%w>84szo=dJw`aUohcRM} z?Gm4$1h!2zme~PR?8sX@n6~gD@f1de3U!# zye+>`P}2*=TY31buTpO+!_^B5I9;f@QQRr47`Z4YN)f4z0f93yQ zB8a^6h_nn$KAP+BRp-Jqb#L%tf?Qa_)eBwMe(6G#`q0~p)>qNW{r|SzGky277m+mt z3A}x)RhEEvdl^${sAe~7qT{bEiS?|l;qi{-=Z3z<@abWTWV>7#A}zfkG9(#+JQajQ zUO2izv)m=JIWGppN2QYZD%lb5_6h|)h*Zmrgu8@k_BEc-=)K`ch>)NWFy``$ad_&1 zk7+8dWjJyn!#N7+fUCnxLv$r&|)Kuvz3KE2C&(wTjt#aD<}1L(b*qLcsk_!1JMR z9Nzh>FTdy=?|vEGwY(#}`-C49E{xF>TAqbxaW012Kc7KNU%ihSe~CeEH>l+Vk}rk+f$DoN?OW7piN8=2`ptH-0mK4I60mLd7GHe`GuT z$E6@(yUIDkKI^dVu!%?4~;@G#ZZ_v|kC^J0Um zwr%TpF$leFrRRrcjKQNffk{BX4~dmJvL4&z3vBcEx1IENh3JB`oz1ekYmUe7_yqE> zdAoH93odLES1x@BM@ue5s3kc~aCENDBJ}M|f1=P>aHzIW1k($#^U*MfcLG{_{7xUWqg^ zds{9;I&Y2ms|q0qH2%VInbHgKpB0u^jPZo5vnu2S3SO6GYDRd!ZR7LY! z?p(JC%fZ{8>wV6nBGv`a^2V)-{gEGRtloBovfB@F&iJrfZ`4PO%`CSMIh#P=tlaI_ z+pW>}L2GKK_d0O&yL)Z;ViDf?l;bJw+aPxtogUtv6HSVZoAo{<$DFl+=Eg$NXoepW z^<7FMpYlhRFPS~I>#x4PZDsc7xJs74%C3|u<5j~(A@r=ZTX+i{4?1Upj&+1yOVHx%wy-H5iN4nx@j`K!pJq- zs|XL;6TlOJmR?Ya>bD!iFuxXMSf?NCiQuZK>n}h`U%cpc-Yi8gyZD|?83wJ{p1G;X z?K<5spela*K-EeOov%I8BVrKI@&$sZ$m}QEL_450cYM=U=ZfkCC0s*lq9M(6>!l(;{MS3JwC6(cZsx~= z84O7qb4jg_Mub$0KHQP|aNrf?zG1s7K&$C6@_aA>8A{VJiugWPwZi)4LjsE&BPGRc?+t!yv8+rw8EK5dMRL?X!@ zYMic#L)d$g_k7aq2pNI&9ul!BrewrFb?oz%!IwhNHkz@XUXJ-U$`< z&v`%pN{N)lyB*gZz`q{5<`YlbVYCm*>0|^|^;5ugJo)189lFr<$WnKgf*F$Me;wF% z?=&L2ZA&_G-w9c;acLNZoQ845(3ve(iFoIqZx6#YZFLnS*xX1oe&Q@D&B&Tgckuw3 zhjM}C)M4lg)b381#PndMXt3{DBHV~AaTol)1=Tj1S5tgHiFZ5~NMAfGIFE5DVg$=m z^|$yB(p_I42Er8&=YEavmtmswDOsks0UBH0Ub}A!Z2f3n3Jc=0l$FDIa7pFS=a64#srTr=(LBhr%xHe6IvJP z23gBh?Ol1iziqcZBmB`gnu`>6#*W3EibFMVjM5~nvB3NN`rSblDfHQl{3D0E4w`Nn zD=OHmv}XT!*STHyABslXk4b;F-5H0rscT8&6gZ*l0IXq+Hp zS^M=}uv_5Mkv=|9@w#{3j>rwg>BmntKF>!w0UQVN<+ef8s7nv$k|K=izMQz!bY{)| zomFFsY7X^5;#wSXw)S3Vs{O+mFN0iAVx%JpK>K05&5e&`{aIu|7j>zNSa{9(>y+_L z+c|5BiZ!i~%BT?Bzw6b?Kc@q+MtMia=M-ToH9<`Nu^Mpn?~Wo#KDuUmr7yTmnUpTU zSdC(>=m$R}m#KQ9?Q$lnvY~h)SY`{BPp_nmcsN25@s*zI#BzAsquCM85GE=D1Qxo; zH9r~ed{pFZ=*iJmL*7(G!k;i*u*)_uNS+-5`2!4wYOlhP%=oSe6PG~5;8n(O&)pvp zwyQiSG}w(^MYGCGu{hw}-Z<}ox4v#iU_<#l!&Xce@|CHUxL-w}k5mq`g)JA*p)FkG zTy>|BO#P(!c_T9@Pl(E!Poeg|Zqpao4 z8<;MP6V=9fY^Vkz(N9E^IZW_zCXG5oT^{Ml-|ubxs(@Nr2?-2ERA8TCp3%yy{gs*ntSD-f~LG_KQI@&v$9&A~q1S7l0HNJ=_VDAAu7E8-_ z7;W;VNvW(?#yfvAp(znUr20UcCHuhx(}lwsMopZzs*sglL%H-01JI35l{9bDhr2gL zP84MySQWp?+RjZcpZFs4z$+$q?rXqRX2s5z0?wejd%fl9DvbYQ&8Lx>6oXK-`cU9* zt5y5|ZG2w&`*d7y(hY39R%aBbx;l{zbOlQ+5#eVcL@!3a>VY2G;9nOXct-{m3raqg z8pO_{HU51lc{tR}R|V8Ew((QgdlCCK8hNyqrlZ}rjR^ImZDHdNp#XhrbGTO<`79+; z4e$7`Y#!I!kv`j}2`FOUwXYEea?SQ) z>9lXX_!5DFJK`BEgwjyTZJQIfII_W|LDji^`vKTw`cN_Zf+lLrmT8_7Il5+h_j8L9 zOR#!7Tc&)c9(Mh1&9pP+O}aivp7hA8EKx)ytc=IWqq!lIm2w=#;eS7FW&Y|I+Fa)9 z3Xyxi+QbDVM=0g}=y)V42N75B?xkn3MYSznEZf5sLFlka!?>^`-u_V&kk?oc2qQv* znb9{S_}}k%!qelHJE8)u^fOEkv3lVx1KK5n=|VL1xw9S9BQTKtk*2ag0csDNSZ8Y+ z0-cNMUmj&{0$q}*$xZS2uLm1@Ue46ewhwht3af6$>V+erXHhYx3s?C`H+BLEZZoD0&wXi9gv~FYYJE=)7Twek>Z3@51T@wqueDy_hbrtMy10@RvbMf7{8O?fT#;@otAgC>0#4 z*tz)_nF?5GE9WyR;IBs$u2#y8v4Kd}fs(@ts~4OO-0xr31v5pvS5(p0ki67$8&3s! zWZ{_nvaM`&J)9XeBzM5o2ST2UxOlZlBc-o7uZOkWKus)(o|QKo8aK&o@hm@wYF|ib z?lHkX-z)orv&#LTVC?$(Q+bZa?oRY<2EwSc_9yQ(W=L>v4(Ra90BIyvbdn&%GWFK1#ZIU_BQq`((YYL_!9`N?;ywsRJVdQXgpVX3w%$bSyZZ^e&)1dy zv7T1-kJgC=KQ^fpj*v_!xpUScZ7db+?h+ZR?OAN%{Py8Vat9+)%$SlNm&3mvUTLpa zoJQ)a;#nZte99oeMIUmt1E66S(#8(UhF$M^Wc>%e=+be*Zy}rI6ky zJ{#p~+87+L%|WHZ!*ijD5lHmCEbp@dA!wFJE{t|mNA#-qslQd>f4!Sxd^~A~+>HJ7ILEsfpG5+W8tF6i{rwA3m^6fE=FW5ZNr#s}|>}yY>nP<;xMlfBV zd0dp2IGzgQt!>`i5uqqY&cpOr^C*m zqL}t2t_mCP*7zrLeIW79Gd{RXe8ckznLQZ2zq?^>EC+OKztijut!$zv8544PdImi< zoBFJCL2S+T#QIOv@nF~2)n!lliN`M@(N;UX^Plq2zADwyD$S#4DO!Y;<%m4U810EM z9>ae<<;rmIo^c*e!^UgT#!pV3%CWFx$LKfWi%H1F#N@e>n*=m*(jGW+LKo_6^(PV- zR?qjXJl@~7iRS`uyfeH4`?MeL-$PdbBKseji;CGGi&B152V*ffcJ#T)aE3AP3H(r@ zQ^fy%{Yv|Uo*l-fVQCmgD$TF)Tmq_(Yy09n8H_AG6!(Phl zwa=ebH;9>?2@-*+8+;TwG?u8&g5O{a zug8GSc0HEAHR*)+{(SS>35({rfaDF;Uhch4NS^w328V|~x-r_9)sNK+rv+Z?oyT-x zY3cN)^mik`Gke$j+AA@L?R>r$7Sdp4KL55&!Of{xudRug_qDLmU>pah7}t&=Y#u4_ z#Ab$_PO6AE;%UPXOc#o{-oJRSn~F-p;|j`?w<8fIEs4|b@b7PQXK0MBaI?d^V5WSL z=ZSDJqE?^|n@0*hY%URk)eEeGQHoBOE|kv;=X=Mpqy6W<(OlzELs`y6>3&=A*CW!& z&UO0T!SL0^a@|+#{z7mvuiepa3h3?Zt%9>M%23O3`_mgt7u+g4VNk6a5Myxy?-al} zCD&bSoW^*^bCXT&4;528bh~O$UwN+uGSQ23(-u`gl-_MRGGSCeTpDm)0@DR*=4pmQ z$1Vf=dWD&ZOkwoBoP&BP$PDlPqWQ35-!Q!+2t{%~7LPrHcI^MM^-|6ONVy+8dh)Ug znkO6Dp^oW7bQO`ES5MWd<4>2DuwTm1fwC7bd9>*R(EINNB`=XOJbl?#%yT9Vgm2c? z^)`5-k4~LtpV)ozj>pRWcfAh{QeE&tnwuv!pEtzb-w{dc7i*UTHo%` z_dK#b0sdZJ#gnIJ@qVAeO8Z?l#yTz7_4SL9J#taH*t~@Hb-JFDf#~9rtbXYp4R|SQ z7AoX?5WGWTt%G9st~s9PCB7S2W8*b#^V=pI_w^52A$1?SP)V zMua-h0tyeCEJkjSKn~18POlE|LQSzp%L9=oNW7%4idQZP@AE0^MpROsOC0hKCfSj` zb1M|OPIj8dX~8jpTMql8_0jZ$Mz6eGw*+^}^h?ehw}xD+=W<+XH=&C|=XgGgKi>Uq z=FowsA@b)TPOwte0gTbs?+ojh9-AWnXBQHd9C*+!Qct_@{YvPK?^trv32E5;R>DgMvr5X_H>oN|mnUP3Yl(uh^jsNT?&h_oQ6mKS@{_L!n|RVn> z&A@9?3FSZfW3z(eN}NT*NLZ5$vN8Dw?g|7T{eoBLY^h@Lj{om`|Ne}|aa*-b-!Bg4 zOQY8Y`KN~}GJ)SDH(!1C8E`TT{ixQMj(Q?1?GHa*`}-}%aopBI$^((l7E+M7X*%sL z&185U7kg9lMJycM&5|n0osC%CiZ&eZabB~3$vAH7%_cR;_=;?xss1s>kr@jaRtAU6 z{gY7RQ=Tv1HSN(ZTO!e2T-krj$M1Ok?UM<|ZM{feMYT;n4tX{aOgG)PL$7aUKZ@JE zAb9*`%65X5FmzEpD{l9b^fmi8RrHJ7nnr)X@rzL$;@hn=cUH#`MmEmzTa)BN$%evn z>8bwkgy`X7JI3MvTl@dFzw5})7(6!mf6oIFzYB@5_H#sw;_CyI_4Pn-D4Uod0RQXN zKiN-KDeGh$Z2rITqRuG0Q?11DVu}7EFLn!#7fZcFwg0w}B05vPhd*v68_{Sgc%g3Gpr1`*k)*(8mJqsAxvZ!-plR@v!qM77`GtwdJS(oz73^;2S zshD=_qXYi6N{oA&@wOlE;H^upaWmZCdeX&*pBYj=$zF_LvxWDsMat~oU}Ina9jsAE}B=^ z=7NWN<%s9C2-G$mXJIv!ig!GI$L05DCyv{Cy~2s%*+(Pvq8KPdKi5E5Rg%?1UVd;- zDKXM{8G$x`qxfX|AJ+fieVc2NBGIqph`wN~4$JLL~s2D85? zi$|kpk6W0JC7G<*KMx$Y)owy~Q|{L~h+!Pmgr}uoU-XtZAw2|rnqpItv@t-$S;yrM zh~hv0{M)bJpAT`|)=twYrlwbAXs7ioS2e>0bnSJY##fb(f_^WRThG1nK;riwe|S8D z|MTR(?fm|1#c^BrN9sF$UMxc|G;XopbMl0TFZ_zEcf~_-a={VWatBbp^sM2Phvy&r z+wbH3fAzWd;4ePk1dh*Fh~x8x)&Ju2J>C9q`Fxo;K3_PF&o_hP^Ks+&e2jnK^RZ-f z|KzFu=H^{3_{FnpJn@UCI=bN(Pc`Hp@l=0v08^>EfAaZ+|CsX#D<~$x6`E7q_nHVK+6q+EgljrbC{%Xd_FQ9H*XThvs-Kbt25LKeh^dy6(@d}n1tHH zg;$4va+uU{9Kd88pHCRa&0DKI^ZPc(Ik(lIgdyw4DGRP>6Kg^HGM{e%#~XCQaR8bA zf9CV;@cqT-6MOcH&nMgci_aH`c-%XfG`D?4&B5S1)ts_U8QJ^V$DLKA!-N&*x9H(R7(N_&&sI+cF1GyYI`; zGM|qQov>Ku<_#NWjV|---h2Pz^NsySKA$R%&)3!;_#*=28k*A599rfL5^6o!yUYP( z7I#)y=JWBEM+Yo(^M>_*@%d(a{u`gK7{})uW?=MQ<|pp{Zdbk^;~HM7HRE394Svx( zNx#ei{BiS8<}#meuKE|>dw0cu<9ol_^o#HPVE6>-?ehd^eLN$<@$Cxe6x~F1N~sDg z7Ti(~d@q5FcNX(#5lN!vtH10h{ztyI29ATgNJ1s+Ghl!w358t+Y$_1{F>SO3XVeSqVscH(%d-T#QE`mp%%Pdnr- zk}=C%@mN7ojl(U+n&$3(pru=EMt#Dkq|UpPz><@L(xoSB*9Y^*zx*kEfBvVPmXEH& zOc>vLEG|Pk5NyjZ!}#7sb7eA`>b3zcix>lIVy=jPJcErZYV9 zOB1y4%WP^zXcb?Rjv7YuneaQ4ECQj=*>z1V>xTZVtnsgI6K$azZ#c0X9Ksw zSbdsT=BoVTs~3?tU7%4eqTy?=Ll&=!{GMa?g?{_<+YWXAF&%!7O1%9W#+^Uv|B>%) zjpKVW?N!>Yt8x(RjvmRT%Jl^6bDUWZn*C5~3tt1fDWbaiY=V3mP8LXrZ^m2zk0m+TYq!%46}O>>jW=Z zBr=!dCgy+W&aywYOHE?ScIpVHY38m}!S{V9_m{rRL|?X&I(~T|iJnb-oRVh5-`;EI zGt{3hIY9^`Z`*QycDyUrUXB~j{(-z@e*!@Az_OhW9qpdUd%5E zl;QsAbIc!D%BFE8oLr>m>-@u&R$>HCTI>_6*;P@FEDSG`-* zkJS@XmYvP2`Vm00`@V=*c_AW8YGsRWS^IqCZ0x0<^@2T47kGoNIr3ulgnGOqH+{Dd zcyHS8B34)l3Vu6OvqDSP?BAdK{@eGKOq6$Ilzfp-=8K%l*X}6ylG?`0osOu-en#Z@ zfFktEI#~?`iJ<1F6rJ=uW$>}6l{GKFhIf0@x$H{owR{nWv%m=n<#31>rnn=H-IpNM z>`!E03;-0k5fuzy23;z?+>a-UVQyA*FCCjajOQ9&aW}_5|1w4DHq_JZD6eS3o+&LK zo#JAB+gOf0XZ`-c7WU~FbdXc5sZ;AJJR$pPpGcetZ#R7i|Jow~sg{N+k7)6qk9;hm zpYZ01Bcc-#v)ppJ5(HlNB=0uJf_20a&4M?wfHrc;w=gCLN;BwGzD~zNtjgC9iM}jo zm$%l_dj-MhZ+Tkz`{&-E7VCG4u#1Y)Y|=V^gzF(Y6-T0Oq4JpRh_hB5P z9DbEN(xKZ%kQ4??*!j;GS+qN){+qy;g31O~n6?91WrM!9Jf~E(;E>ehGLp;@0 zOs!S2V4O{^vpBf+_1Bd+4q$5rOVh)|WW-SCyp^jU7#MoStBNW!Ky8o1mXs~nbL+Cb zJZ2ah@Nez^+wbg$e{rP_PqDaJZ!3aZ2cH~#&~60tvBBftUzMWyM|ASbc4&vM3;eYE zw*#*D{fP0kgCr96@Z-2->GK=--%lWBSa7{Ou7}R>CiQHgIf-af@Wp^>ZYr3#-wg2nJ7!)B*N8#2!Dwu6uqvHA)@a}I_!?7+eC^Zmo;bV^aK6_N= za5?HgTPPZTHybyR=8t@@?O4bd9~ZQ!rbwWfYoH4(paaZtn&e-xd&;kE(qNyO=P zXPbR0{`X@uBcdLCd!7${WznQ8F$TzITke%{dRagb2V#`&$D`6AvVGa=25`2!Yv-e! z5RguOFE`bYDk#GK>;>n|3B2E@!lxbc$b1Va3Y~G^W?C!=xlBq{^-O+fzA;GZQ*9_{ z3nj7a&9^}_V_R8&Y!m{Sse|o$cSOL4q-QUuKmO}Ot`U*+rrfGPSL*WevwIcL@y=si z=R_^Ri!4!|`?Mvhp1*yrw@nr13&*6_DW@X}^4VrmD}5+)*mY=KsS@7#OAv=WrJu!7 zvZb7G;$tIpIYf)+maZxKuwK*W(C3rLf$dbMtE&>KkehKpm!-gQ=uW}2JAf_~eY~A! zg@1ohXY)3%Z%ILPFYJgfkH#Tk(;2xi=R{C#>UKIA?vM6gZ}T~JclGm4 zH8`H?ca>i})#P_?e)3cmak}sY$5Z|Ck9exP?sxegC#?Zfh@7(Iyb6({r|gz_v6pbV z&`q$_aZYIvgjBn0oHTvVis1wA&4KL6gk^5)hAF9-WsYmfH`+bI7(bQ|rwfJa+5*Rv zL(pdx8>ixGFTC@;vO(o#zc||wxba%(%IW=1otL4i>X$C?bZ*gjx48;c-JY4S`Um56 z0gl_cgPtRmnk5+wb*n-yHKihHoGus_i+K-4WgLcli za*uoFgW9d#8?vx5i6bFdbYOpTBK4s?KR`c&~*x59gih=nlj?|GFFN z_OQ}O!r>!3TQ9hU!e>E&vjWNC5XD+muOFcc=}u2aHQHUk<=vni%awCzqu*%VCgW4+ zk`)29@GJc9$1=Q>R-5%HhQ_Nd7s5q-;fYP7?uKq-_`;e_ZJlq3-URv_9=Q{Y-i6;5 zJTD%AN@M&M#|VXx#A#Wf?DhDscib^?{K}b|We{*=%;4s;aQMiaK-zvI5M~*!`gkp= zp&!$mJ{(H-L_X$za?Avth){h0aXRMBNI#_SRq)wA-~azpUXlt&^?dK0hn%*u^Q<0z zNS!En>?+3jq<-?5v+R>RqIO{}>fdfl`}%5&`KLN}==y%qlFubWI= zYfEDi6f4SUAAb=9RyK5QmZJv9&cNtS<}EX{vm&YeQK&y~u1m^#*1$~zIhcX)z@ID_n3p+H%IWNJ?RiWUtvOuIy`0T4b z=7&UAKvtMTBC6eZ)^%Ya4ual}BzS*ay&kd<$5VC0@l+XTbbscbqOX{3D)f z81?*&7E=?N&n>pL(rZFOzK58Xd9i13^@4-iFJ0i-bKXh3Xb|u5Wo18?d2bxD%xy&u z$?l^V$5mZoPn8nJkB!FF3o|%fSpTZK{4n-p^2+`3-7dzx7vU)G`ud5-m)DI$xuAxt z7o0lsHO#Sb^uQJy&1Idy_xP*+zvdTbn-4c$vvJkXne6gKrK>kqH5HXwTNkzwp!$8}5dGp9nbd$MM ze4mUfoDF)_>+8meNcVl(93J3@cYC?`2rR_hQlWxnE?Qq87B%*NoHG;LkD4RX(x%50 zP?kBxIYMVA^l96q^?{Ca$W~ljPVE#8aA_IN7ztS5?O(6{#IBw#0qFi{UGe*!9;m&~ zH0bg}V|2u3=_I?bKd8ADoufY#fiBsI&X+kz0AD%fwYVifQne@QXo&IGqny5Ndt4gJ zK$QCH$Fn98$j|a|tr4XSMBR*3?;g2;F7iiazV7jbp=7$S?)Q#J&+leRo!2Q?vfp<3 z%Xl>2{*4-O84o8EBPS|1+RIUHu=UJU#zF;s zCGG<|-R_z=I=TGu_(xZ8TwA6!l&tRR!STbf{vT&0F#a5)6tAxu-tqX;>A5KIKRK?O z%HzX2W3K|a46x}vNI`1-3zi+cm;RZ(Kegje-=D|vR5@@w)lGlksTSgRu{Qsa7rPzD zi;Xb|7>+1E2&b2HL{H9oLi!sKdG1+1RC|lh#rCcfkoG_QMl$I1&*DKbT*$^7zBYV|r0Mt_5$KIq|#@oK;{d;>u zwpOA(o)gsRqleH(Kanabe`l2CrL4mCzyqZD3-)Ba9cZ%bDP0=u4Ms6nimWDDvFFTc z+xg=u@aLnHJ=*fpe}6g%w#(%a8To=-&k@BS4}Yk-U3=dBt};Yhp6Lwo9PTI_ur5L7TI8OwMD{Rfulgi5Km$#NzGvFx<`1UV z{jamz`=Tes26`L0&;9ZE5i2;Zr`}N&98(hoy^4!8S4$70=nUU{lIsG0-2YGgc;)vw zIBsi<=%MFY9w$MEzpVX_U857rh!CmrFRbp7enBV%fk*n_|Jc>v{#Mewz8Gj zZM*t982aeE^KUr@A(66~&eY~?q;Oldf%a}0e3!l0H%}XYR_>4Q_WPn=+}13?gtA1- zNEAvYX?MoV7s+qve33nr4;#68m0$LphthK4J3_b1)*Me+9JiG?YM#V(ogZYTq?>f4 z>w@(7ZIcJvNKxMRd0pYwB1c54YkL{DI>szQxvRd4xJQ0}*j4`bwtfYV8h`QU2?*wIhUTQzEr z9dP4Y_Vl{;GTj1eB?{HyHaOtR8h;k^)nr8 z9wO{9eJq=42og;$=Ds2u1Bu)>#83U$hxs-2+5BY;n3X;kw~r%)UHbYKw~y_|yT2_^ z(nU&9a3S>{H#e1X*P)S{tg07p8X&c2&M13M6K$*BU`F+1Gd$k4ujvRGJNn3RwS0S? z5}IHQpQ{gd#XFv@<^)Gcm;!(}wnu@lIS+U^Pxd}4F@)J69$6j&O{6NlWAmddYDD~Y zig5g(5qevj^*l~P1f9P3w0OO}Io|emxSowW`_d7tzwXNmLzQSwLa9huL=J5py}Ve) zXMlp3?UF{q7=d@=LeQ|Z^s3{ZeDRCh8Z3}_6cHYTrF*BoaxnQK&FlL9?LmTwDdz6n zkweiS@NH4Nxx*Ll_^&+QhqP#SEOT2q3?A*$H!1~x;jJBp&-`GT@Z58%c@^}cOJU^1 zfF^t)+kKqSc7! zhXVcLL}gaRXJz~Uw!Kb&%3&wQl}asUEb@Gv2ycqLh^}!JK`mFY^Rv}Cx6QbW~Dw1=&e0z7ya z)a$)fbj|tG-gr3A9DDBFjcUQ1RzeBQ+3w7Y(@g@e6R!=>A`|kcVv%@#Llx=Mz3nfp zeUp_Hrn!Y{mXAvJ{V5^JCt+!`XhOQ$ zsXF3#s&A5C5bnfup?X_*5f{c&H88ZjSAuc#I^^zc45~kk#$rW?4lZ*O`UV@9gaO&= zMbqZ|z`wq&5Z%t5!K4IjlJ~-TFr*}sq>1VXVFY zuSZIp?772-nZc23XlP_q4V7#np}?vM6i;T$&xSpRygvWzH{M7Oy!*GcSMqbq_#n90 zI<#Y17q*u4%MxzRhq|x1OFs3Q$YtuIEo*@a;vzn=KipkDgIuEu`=p@X8U;yt1!Bn(WXXuX!Z5M%H#cQ+eE&uRRZIb)N$Du zd!}RWBi$~_<>8x$G{(LCxQJ;%on@=~u}AvA&)+{Z^?mL7kc;ECo@a0}=AAM_#RqnT zS5;}Dy7mKscR3YNu8|{mzV-oRdE!%+VX69>^B0HXwkDWY6HRLt18o_fE0K6QxS^^$ zPvmV-$k>zsd#)I=6LEf?aMTHJd%tmoZ(K`l_0S@V+z3#fsTYj6lYlN+9Ox*)p40ER-10)m^aN0B6l!cJ!2f>2 z@e89VVvADfIra9XQmkI630abC$8^D2s5k6}a~OQl&T*lz3W5j65gNoeGMs_#X0hIK z=$-^|&NX32yz^0!cJIuPoDax_6$ck%^}De3YdK6}R@T0pK)}O!M ztO^!Wh6#rE z)Q#yvQNz{kgJ&yIoT6wVo3}E&igay?Thdw8KT>eq)~p{U5)qMpXwFJO*FVk?&5GM~ z*SLkjmT_jC+zUo=gdj11tO6%jq`K<@X}&pes4^kN3Cji~D?8GB9rI%h!yZ^QWs|fHO*s@{&mZ6YLhklcRGeSEfeDacKI4?J+e6m<@uA}8zT$`jTf|U_P^7H z%Su}^+uLN3(2Y|0hnG&Q*}tG8Jd}wTSIQ*vf}`DRJmTtOEinzxLv@E_d_iPWo%o0@SDk>9v9nC`zx;(^U0=@f?k2*TqUqnIv;r%&G* z^clhGi$KyF4HuBmVDu2#iEW6E&?2VnnFap#o+{Kh+p@yp_G2e3=J%llEf3}#tX}XK zb`E#MbYbV%U`q*)6;x5!>+e!DL;r`k^A6|o`{Tb=QK)P(B9W23*DTwFuha_VrKgD``2p%lan@jomYI(?r+m{@+TK~BH#$G z%!>_V9!a)somg4W0y0S-5X?YyVOimtwN^_#>`U|+f4%kl^(uklwx(UcdG4)2U2B z-jh&??$5|p0NmJp;JvG8@T@}DOmsoTSyn)X|=Cr** zPEOl9tyh}Rw&G#5;df&oT~TAtG3vPIcxKMYh3s$uNlwfJxUi-}{zpR?>ID9f?BYpc z>lZA5EGmL9QC1R;NytxYKiKUh^G8JS0VN(VO*kbHr#d6bkL(S>v?V!`(a zPc2?|#|*M5)W3o46F!6k?;be$O!Nt|hgAxb`qq{oFo$MDiq z>40-+U%vvO=Z!~h*+C`&tyj9IEg|*htMv|K9%<1mY(e(DFj&Kg4sk(rfk}$$*z@DX zfbW3j(!CBTD6mD(R%nl`zeDryfUU&iT0sv$tkTt%p{xX#xsxQ;k$EJ=yW4tv7$$(S zMUr_M(FHvM%s$iS*MBR&9>r~C5aJdzwD1C~eo3bes>;A)pO>TtFJwZ8&5Krst6nfd zP4Lm^gAlaivD=+ZMJcTUWZ$vRRHD;i$o%!X%!E6GMgibmJs|u37CFpF&MWvPX#m~$ zX;nzi?frW1U#G)TM)t8G8a9`Hh|GtiH}!8UOUD7iE4QjfA~oRrfi|Uxqo*O+)l1Cx z4}IS=zqMRqRpcnLFM@k|6J-f3_V10Wygms^M1y&*A-!CKc)28|bzzmkmV{MO%g z*B{+;yw0B-*Pu!5C0lk&PNE)XZ#{iJotn{ zQ>iUH*n+>XRcsB3G&x*kyWUC68_V(Q%5uZ>IBC65!KaXV&DucL0R8zo4?>E^o@^OV zc=6yxGfr(VTP%&ClFI`c-ka^CZaW1-#N*RGW;sK?v4uQ7Rde`RBd0k;{UMyS(=N`o zM1Q^F`KMZkMor@(UicbcnzswQS2bAW_J9R6&yF7n(vkw?^2cy1`jB-Pt%Nt%C+ zUm1$y>MnYcYCrPGF?5bhD03*wCvUXpny^1v#J+lqOK((c5G zC~&GFzHaT32PBFKRf;Z400~{{*mHTMf35G|>{|K@n3VFSLv<9l)#z%>V~}jsp=Mc_Af_;cchRt3v#2lt(D_eqpJ0ekdRlF&gsS#NToz* z=AB>;ElxVg)@7mpKJspVm*fPkbsvR89~8IsU8Y5OZfXgLIVM#I^0R_xxzLy~ikyYh!PhnfZ_fP{BSP zeN848&O6K!oj&vL^=P;KKb?ov$Xpq~DF)KhY#-*&`PMb!S75V=vch6&EOeBp z&TxqG`)Bb#u#2Zki{hyoqj;)@D4yy&6faitKk{M$iWgg7sQw@-D;@;ie;X>08VaLj zA4+!wLHqh0sT*5sX^(;X-#u8j zyQK`1!UNg(3H{-RjWETz1s`~qZ6twJ=DUP;d{H;CvNYuL%VDTP-pe_(PSSrXx*P5I zw$gsdxG>rc&T-WT^IKYjDcdIg_!}~y_Np!I2#*MK@@9I4X&4FxU2-XOwLRc58qYY( za$V?0tdwxKq8V*_B1gon3<+<5Bcm)Gs|@F%s?J0C^LnD-*}nMkd?QW3|3ZD%1;YkX zABa2SSZ?{(@)=MZ*Y0GS%!)b(XjLKf#RR_uocM0HFJ~Toz1-cu-<@mD3>s(xPf^^~ zxu%uI#>@GDD0w-!s>T9(8Pd*#_XmM|eZi04n=<}d-`(Z!KEHRsOD&VX28N=zt=V0V4dJr|_CEY--A3+YkZR?;h(&2hb*;L@tYT{{CJ zuwi2~*Fl~EiR5qVjpYRIIi8wf6SKVJ32+j{ZJo%ZpTo>-09Rr;nI-b{VGK@r`A|hH z4JtutqRl_X`xa*D+tMGGr0Yw znfDxzU-mZ-^L+h&p#cnweJ|UlsDvbMB2FA3u7xVX^S1hum*BmKo)?}xalhG9d1mf> zgg>m)$p-rehv{&1p&SFkugj2_Hb_GFbxmsKTh<7_Zb-}bb(bmn&%=M!@7Hmvg7*hc zb<_1HPqkHE=La9j=z;nVo@yT*_Ya;b!`ktG!c!INgmyc8C)TxuA6zMOf4jGh@+lJ0 zL<29>5MJzU^(WNF5MJ!1!2e|ru)*S9vE{^eC#AqdCym5G4S{*3S1cTh3-reE0(gc=hsc-l~?780e+Tm4@ z!^nW0?tVVJ?tHX6I<98V_Wsv6?Eb$83dA>$Zic{xLaKn-KySb}rl4@3*bkU*z=y>+ zRzR?o!K44H76_`ls(!CT6WmqOxQtWWfOdUd5*~gyLJ$hIyR{xrw|KyBXEDbuv-3bO zZRo=$_A2H%ffqs4>T)S;>E_;^iwYc7t8%hFAE`u$Yr_n+LfSbwM|OhPYlLl#!M(&ECsJz zt1I7=2|+huO&lB3OK96WYP-+jGoclbyLDXsuvayBl$fEBd8QVA7b?4Nnp*^OX*oDj zZG0eDPtaDbxd@j_Gagjnoq`g)Q|@jW=wDBly+^*1;An%}J+}+9ORfRd*l7lr_*^K6 z=^=5%<|52H|G+mOFdi=2^@S`y2Wb1VyZwHh9~u40=Ziz}`6`Nj^7*2=e)9Romi{fD z&lSbzyNu%V4Wjsb9w!w5xuM*O=ky5j*^A)2na4?(nal zdSCVU7yRqg#Gf3%*e~lp_g!EffbZy*d2{pYPjf zTMmOsC#*Z0(2!kn6~ql6Pa)+-|Ni(_d;dDdTq*pa3*1+iXz380NU-@fhn*D+S5SPu zRTMYR8pX5w^}GLiyn{>jLl=fmY^Uw$#3`)k4UvPk;1>sw48`XQLUHr{tDRrJ^LjG* zLl@?%^!-LhUD?Z#?NI zpU>|<^7+b8d_GZgT7n%u-*S$i+YUF+a3$AzhiBJaT!{Ao;mp~KelgwQzn%E{lh3#M zANhRNC_Z2KOhM-k2XKDfaB_#wS5WLzu*1!Z)8wJq;n}U}M44eDoVk-ne)9QJ|0AD| zN%kk7@7`f&?;YNtc;uraI~>4UO{#Zy_K)8l@SOh7b5Z<7ah2ZfW4xsRaz4H#A&-BJmzISBPf8%?*9sbGp zKE_vfk&ayi2vyusuwOk5&r=psRh*=Ue3TR~sr(H9uYD$IgP=MnX#8oX<3IAfy-*xv zjw!4TLBm{-n^EvAL?{L3kE?5_rG-P=eA>b@**8I}Y0K$|i`T)g>-^X8SH2)0s`^70 zzIIvtxW68xN*k4a<_ok-JEPvPx`X@zK1!V+^xwz&W#`w?mF1_MU%H^EWcL5?RBKT@ z)%1VFQ|%qF{^1WxiR}+NAMzJG%n`2md8d;uUvpxCyPxH}OJEOl+2r&){pQA=?+^B& z@`Ycz@aW!zUv)w(z+Y+Z3{JWT7M)@L5P1{~G^YFJc4qJUlQ^LAg$c}`x-k z1D8;CK1Fv8_AGP*GGm3*k)XZj4=kvB;R#9?hH$P8DL=gd{ZRgpqUIZ*1{1SMt5v}sUaANOx@*Ybi-N=>G6ST+xxZZ>f2!xN&u3}(pTLQ>fuTp`HY$-gI}Ga|p`Y~wc&?A5 zFl@u&(Jl#W@yll5#p9+P;=*`PYuuGPxyk{P9~pt4-iMlY$}rLJf##olGG<9tAJN?>iWdCkeYMNH8N>=;2k;6{jhT^E^6I|-A`ac^Hq(G+q)~hCu#f z#W()8n`p-~g~5Bw zC-~EQ)WKI#j{~$<(eG~#*KY(+ybFY3QZp4h?GtX|CbAPZZad|!9e*&VuK%!eEd86v zY27-&z}J5rD^>#Fv5;O$G~!0vKkQoT_ab^H;Zi}f{&1BrWM{muN6c!A@Za7vkMmeV zs~6f-o5JrTn73vt$=`E9hP$2-y$LkXJsmTy<*60g_U;>(e}1^;3qAZ8d};64!=XO! z@J8t@_*!}Gnw4S(G@A7<9?+o#2`)D^SvG!uekxcv`{kR4B5*n`_I8JJI<641-)LXtD&D!DJXMK* z%u~&+`GM67;u-Z9G*vU z025p(R1dxMgJRzo9!z&MLg{noc%S950gKV+M>%Lu?0NmmX1ts=KScrj#g(G9>^izg z>;`j*4{$S$T!S8ta))>9l-E4__7SoBzxIn?|5xu81`;QxK|nd{dvT%-~Bp1 zwj20lWyJ(2`pXrRt4%@l{k1f;^aMa)bnJyE^9A5s8$w+}a~RH8)cBovsSP-?&2F%o z5kZQ1R|}3O=&u(xrT99+6m}l8$`mcW`E&*z?!@fB*$@dBF2q~oJxzrS*@n%8feOG# ziu&0Kw<(bR>{G~`E(xb|l^;4cqW`|=f%hL$Ki{qf6~0yP+Pkd)t4Gl5*T{RjX12>B z(f+F7%H^AvCq|s1dy6D@aApdq&1DMM){}rHjR7}}anXNX$*iGEh$&SGo z#GKRiiw{&`n9WzY@WI8 z_HPPsLFQnC+RjZQDCQB&vh0-#PhIbEsLqarPtECLHfo4r^~O|+uNn`yFI_&wFMtad z$`YS%^`n3N8cE%I_qx*?NGN`C@i9||j`wtxOVooQZvCyd(OTY+<@olYZfX*!b0S?P z(!vsGESB_QE&0I9XK#Ean`z{uZ7(^>i+q0bI>58A?|d>I0UR?` z%7fJ`fRB#*T8XAUY-Z*!RHx2^)JdyT?{O~vR{r*)F>^@kly6i?L@#ZwhR=|T^Rr@H!&c&bf3 zl`K2F*mqe+_dBmu0h5;>&DXN~VLeJ0YMyM40)bb6_3(u!5=S%k?B9A`l{lk}CnQ2~ zwo6ds^&(0aXpSAdw2>PK&aW99`xoQ&S+LPexu7Eu<7YVR}4;>FyWe2mZq_4+@(O;ijn3{d7-SHA6rt=M%uE>I! zl95%b(~8i1&3SSDwgRY3H@44v7YWVHUu)vL_XLFFLSKR@4uXEqusi`AQ?&g%A@q!Z z#LXA3iz~8f0Au)pUz)FzE(7++vf6zq@r3yAAG+O}(EMS$D(T%iX(32>*Iw=E;{>$r!NhOyFtSf^XcSFPQ>YK^ zy`=@)N>5kYb0Pb%`xyJB)Wt&&@)H=oL@|(q;dK7ZtIqIE{c{}r7r)v`}-9`(^c3j&>c+2Nb}7(M?%JqLky23 zf6p%sUmB?`AY9Y*Wxlu_&Z$Xfi8QG}5S&Bh3%_*X4ZL|_!X_E~&HulBuN^V;gQq%< z;;Fjs;;DW_>B5JX|Awb3Z02gOkMLqW)2vBC*>A$c04Zhe`ZFPt(aB>QoH{Yk}l6VZvk#p`e1CtDXyO^TEO zP84VRENZ;Ax+L-=U$|iRQx~dcn!dk6@`=Bd_qXp!j*doiViW;66t~rqm_P2zn={nUk_fd*~e&?>a;36!yScB$Bb(7rS8{qCot9Ul@5q5ii}2UfB_@L9G^1x5J# zMufS}!YW_MgXzmw2q&Y6N1f6iP+FeMn{@I4`ZJ#myA9=FV3CbTiaGkvQ{9Aby&~mk z07Lr^1&c?fK&@$SOs`|ypzh)=cV-I~Xh!t;4eoXl=wp*7xyBI(&l^t4w31_i2iwKi zlwmq(`xkkjmFs|{8>}gb!+f+R4{F2Rlnnhf0H3%i_wC#yIPnQL&fHfYT(HdBdTJ#N z_;oV-6_qJ~Jflv_=A;wa_U6TSlbA-P%^Aos(p8Rq!3bf+Po{6wdp8v64M)R|gS4a_-!gWv2*O>iP)U7?qgdI*U6E zN2eLcqCTx>SB8Fj|LuC@llaMTmGyreadF!h);}g{>DpfpvZD0g%b&f9c6H91G9QE%||uEr}C?vQ_}I?3u)jkoG^TAHgo3YBq|eN{`~H z`k{EL&rrPB+y9Xl>xkmTMr=M(8Sk=zrez|B@bL@*em!trkgd71|S zl&;N@%%eR6-0{1xrE|po`uo52??A`K8x~b@Pz%Lv#UiipFUt3Tfg)0~1yScg7xl?g z`5u>G_uIS)MPBsRJMFfQD`rS=VK59#qqwcSQCf^DXRX2e_jqcDhN^+hDmi_Ck1ur5 z&WZArb%VQqkM4QN4XzOx`$*7-;D~LDnXLgpj#BXD|j%KIsNWQ z)Sm4DnJeckNH{=v&4}fq9MCPehKHXvasE=6Iu#o;GAj zYDpdyFolBLxu?^70)Vj)vuy2=3-HT!hyKK(30%gbef(rR6a3<-lKe-W>MImab-RqP z*An5W&S7K-uprz#$*sz|T7-|3?DB}SeVHCg>E>N>Lf&_NbNdqYePnsiZPKMdf8!FNxW6sh?e{t50Mk6NC-lo0fCQNlYl*BJB2+uS> zpX_ks2ifbbrVmuvp#tS5%dJ&Cz|0`%EQ)6gJ(-6Z2Aj~oAAHtcn^ilI0Q{%KY|TDj zhfz+4`ac>nfUkaBl9Gu>0QFQv=NSJn5cOC=V&IGOZ}F29Hh+*^90E_?`^jy!dz0z! zC~N~yFNrR!uULT_OlJzL=+DFBhdzXJ=w+iFkKN;IgBzvaBX2vnSnSkojc{89O#Eui zr*D9v8KV1>^2CrR`JPAm4G-8py%vHqWB*%ycbE6K^KQpzCv}9+I`>hCpbOyumY%3B z05WbMY&=bm7Re8a?uG_Up5}(Oy=7N6EU5SF-x=AD`t)bL;M>PODHjl~lmdmX$jl)> zn3D5KY&uOH&NADx(rI#nH=?JuHF8PzY|qena1(E#5Ii5^Wa&dVC2D>~u|xGbAfyJ9 zbY7Vi2Kt^B+*VQqJ|T4l1vI*Qj^|~w_t|D{h2Z$SjK!9E0U%Gmdj2>;I1sPp`qHk3 z1BC`y=B;(qz;gCG>h@RY^RIWer_%kPKGCnnfGXf8w{`!?*fvsqDM0bjo%~6(KD;|7 zYk{wN0vG|Vp8LI2dyePnD>?%G)mLB|irbp0R(VCjBpiYZ)dRQYy;0m zoh=1Y6uQ1GeNTpYALQw1b3H*lil^%MA9<>uQ9M=q4`rJ>Jk^I@gKN(ao+`(S1A`G%K0(DqM1WE<^u!l3Vx%&IxX#>}Hp902@(*p|K zZ+1b&a_F~zu{+-RObuA`aVC)m(S^pZqpolKZ$b&ZH}_a=Y+#cPE3f_RN$|OGWq-)N zrB0P2ulf_a$idS&ru->P3AF9W$28t9vs8fhX}ToO5w8n=|Zg5*9 z5_xob3jVFUzkQ#ceB5v1K?eM01h2^>9Kcq#i`+$gB_QKdvEA@I8Pu?_y`h(64qabw zcF42H?Ac!7(MU(j#bPM1x*a}(aHYW6$IS&ffiSu98MD=f6;u&X0tamOgM;_4cYjPo ze?8D{f9WT_J@@~b0=GS_RZL{!z!#yaFR$15AbnSXM-R3DbWWk++%%?xvZlBs%-7N9 z@$a_xhJo_Z>s&Lif#SAmZ(6$eyx;|TIfPI5d+0*jHYq0MQcB37B0=Q-W$*sA34ie9 z$|{84Dt~fY<75I%`wn=+@OefrekM=otjeqVa*7{rOVAG8s8B<@e-@~1v~o|1!i+mX zLmeZ(Kd;{H|L$|E;xDJ(v#A5=ewU>tBwrZoFge4G=z<<`X1M!6CRp+*Eb_4pg#Kr9L&$ zj__2U)VGRTRUCohM$A{X)X-m#LRF=LW2JinFu6NFu0isJG+(uaSwt7E1<_981X`&3|HKBGH5!jFBCr`qdY|plPl2dzbzw@o4LP{9QAk+LOx0NFx zqHZG08J4@sy%Vh)mynGX3%Fi)4$A0^?Yj~ux99$uK0W<4HZuW!Kyh0S-BCK!B3=tT zSs@SC{+Lq9(%)UGMJS;7Pp-eR64`y7OJeP1WzWUWbx0A4t6 zm#}04vz#I}d^eII-W8AMSazZC!$~{;AH)I?UD%&`CcO;dsisRN57HsrJa#cT2A@s^kn2X4%yl*YxAEq0 z{rSin=O{ab^G}8?95Y(03^bKaX>TL>g0bU)+YO>bkiQS+&q~e$qd4|W9k(mM?z6zn zD>Y9fEYC#nk<4wP-M^^=T)Xi#aba(oM|kD{J*;^dl+lFb3w6HYBlUF)xcvOaD~9F4sFQA*4RIwlCmVep|p-;?VjN?`su9#Ca6?q5LWkJ=zAvsr@FwZBOOW1g{jrXZXCVA8vaS%tZA}m)9K2W% z1ywEVpN?N7flW3h6;-8Kz%*;)yH+;(^NG9r1K!7Wnj6nc;B6H;bsS_L8}$%bj~Zk? zgeke`bksg9pmos6#P*vyJjl6)&(5olcK_OKPkCHNS|K(P%Jaz7-9q+7;G+3xI)L0? zI~E>y3v<+hCM)`ZuDmBfDps!?7uDYHKi6M=gR9f(FfcxBRud~4$cuOw-cF*1%U9H= zJ$&V%^5*3QHgi&7NWv~y%FXs$d+e_N-_FIqq+4joIm07UgRXB7ZYu=ALMFGG!GN^$ z=YbPg;9g$MqXHfeNb&FxzVWc_p6%5gkX&>{?h`*a4k{f&IDoOWDZUQlSHZ`+^Ni`_ zS0v;f->!~8)=i5vG;uJCEd2eljtD$7R7DtZ`VF?Z>AU|9m25xoFD<)En{=(a$TU1 zuGEn?_UPYF)WoNi)@GAIg%gJIQg5BmZjW^(Qp*}XR&en0rEKZvnP6D;xPT8bk3>f8 zc1Z)t7uXIGdITc6@Y1F9>eEzK_yWaKef%GJs&8KX~*j3%VJ;BnCz z&ljkjWRTNoV}&cn@Nia;d_nY5hvkkgh`ARCiE7ON(Yhn_es}0#6<5TlH?b_*@htvA zdCFQt9qgA5VoB{g0bXMAOUEGdNP>x%?v5k*g5olR z$Rw$aBwh_hyS;Z`?;TVXYSrdNK$)O)>lL!^SjkwPpAIsAT~FgPys2~=2v>#V-!M`E zHA1P3*PodGR^Q#_{q3BHjYYSgtpHF;s3MQQi(#;wp)NTxA5yX0Lq1Ap3d{tX22C@l zz$jm4YY#i!p8Ye^_~uWZieu9s@xQf%?39zDCoz@x z98bP@MzB512YC#Degnd7wKutW`nz-)SbRY*=`t@4th@xh{Y$JM=b*wP(i3}s-hs7s ztB(yQ9guYz>k4UP!!sqHbqOzFr6U~(CYF4Ov~k-doi{U6PX`iTo{3+<{GamKA}HehvtUq!t#so z&P6}^Q+Y(7=dpjy@@oUoez+QYKcgAcx-dsalGP)@Ax=8D9qb5>Opkl_+Fk~jg!fAP z4bGw6-vU|NGw@OkK&+<i*p?h$TuEV|d6G(roqfbdXs?J99%UCdzjbievsU&5yX? zIhs>$Iq%;C{m_h>3ceJy`$NL?p>O9t#X;s%>v<~|IU%)c)kmjZ23WJ-DvND`2pA9E zcl4*>1eXNx8zav7q3zG^_WyNW2(_n=1qp%TwV05xelL)vtW;hIRDfHUqKMWDMnLMK z9{4nw?w{EsR?I7S79|MIk_sgm-cx~bz6QdfJzk*Y1x3azF&ES-YIQXAC;Tmb{q0>? z%Pu)ENFB2*h_C?EWxU1z4iLVrL-H{{>#~1Vzh7~2YL}8R_Lqak%>{K#)4X6fP($#Y zf)PC2Akld5r7{fA6*!obrvqAZ%CedJ(4TMnW#`wirYgSR{y}6vHNsQeYS#im7j43) zmwB;JLC`89B1IAo3N;hP=%s?QT@wA_j(dL|F0qKmC4DmtZaF&muZf4jZ9IE#%9v78I%14jIt~@vh zTF%_U`|7If!8u?mQ2oJahhilj%ErsScC8>zFboI!adu&bA7AUrO649kCBOu zJ43X~d)uOgwZEqh7LUKK?3)#bqp}~qNYnU(_u|Ln!)yFt5!t>z7FlIbC|SbxDI^S1 zgiw#DySc*&p@R?g$$Q~$fB$xVn_`n}%%~CA)(iP}*RTPhlcy;7q&z`_t8FzCh949f zC$F0Ee=gBxQ}BqyJrX?MPkTs9QW#t;y%#xI5|6fjioN&Y&46Gy5gJM3w5bVSrEF6k zUO^Pt{M!FeL2(0EdknDh^x2W=mW2kb%htm{pH`{^}l}aMpP-Dooxxe zdbi|0FDL*#bM-3imwf<9Vca*OdUcR4_pCHp8sW(Oqd)#vfC?(!J@+kzev985UO~ljzgmbLo`Lm_rUBUU40)K<1i~)qJCF3| zqyAa_ez_TE6H&E#T^p_*7-eW=kpVW}9TUuy9pIM@wMQwZ)nKiFF~L1sJ+OJBv(Yk0 z_qY1~D(8PaCRZMCV6waj*lsiJ7pu4cM%h8Y@zyL@x6Vgbxg-Vk22C)}y+{M!F^N}g zqWAuM<>-J%ToBns$R}=q-a0=|woSa(VY_X>fUfD64kw7=|NY?lQV5_%vzFfZ$>wJOoNFQGev+aAI?`ia| z<}((~hD+a{9rRVr1v)`^N2)Z;5Z7h7 zgLZywQ`S)Q_3RpbJmOc`pop5_Trm?^6WHrNK&JHC14) z)$yX%gDZgV^+MC)(bC_3zq`D@oip+^+nGl6z=7^Mfosaa;4W1}&>E(8r|$ekW7(|= zc(gjez%4cpChHsEdW7sfKO=j7q&nxp1u&jk5Efw2$wyj5pwfhkGvM~A#pVCAHhBzLiT z&+**)-efy$7!SU@Wb&Yma)G=-(KPQa#lV9-u=v4w9Wc`im8xEvfE6FM3f-I)@xRso zZ{I&1S}-VUN`(~84^9)f+k!i8-l{JY!(kgI^#vve6PS8#L~_TDzQFXWO2qEp%G>?D z=MYALuAu=m2o-CStEfafJ~NTY8nG*SfY@E}^>;o8aN1aw`zcNt6zk+-xmAq3Co3h* zn)cQgUS}1qcwJQk9ACtkYnd=YjD^x0)$!VB+neQc?=gR+0H!y3u%$5-fbPT>&x0|h zaB)8-b^@gWz{PMaihVB&aEdE>Y5P=xcd2>^3$;05sWni;mbr*_e4Yh2Q(So)3BA=+ zxBOql!|Sb#RE3#oVA-Wiy~;oX;CW7)i>(I2`TkV-fdDTc^zIB-+mIP_y?xW*?RpB@ z{+W%Z68OYN0(D)Fc&=DK_(kfNQK{Xsge~TVQ)zh`Aoyq}%50Gc$lqXgbV<2DSSHV zdFK6!pNJ$OO?mx2i7{Kqr?+mFgpdCF+OM(qH*3=+f@Q zOD|)AuOEh;X^H`Cu*!DjBFF|-x{TWPrrwa=VwA@4tOnZc=Pcr$9TwsalD@Q9YxFNk zc-)dPFQpOy?)aNEz}t0iRu90@d};y<-4QF%gWS#$CC_d!0RbYW{& z0Y@sJ6YL|K_TCvs0cyOy7CHL{t3DQ-;-ozDaNrW!_1k^@KSAk&=ms&-{q{b{%f{ku zi|7%N^cZH5O9SZ6JJ~sunGHEtPWm~KTtz$nyX|%NU;Cj8tvT$)ml2&1yen>LgXrJ` z6d#Em#lh%Dz3;sH_voJEqI4l%csPoO^%YpEyIp-k)e6?)=Sr%WHo&n#hFmJ!T+n&o z@x(y+wLQmk1EmW?1(T!i@#ORad!E@lY zUf_GD`*moyzwKa>*JUyjSWR2dwkV?yiS|_mUVBvluS_02I(D!WaIb0CXUgM3&*fsp z=nvN+?Mb>!=I2D9O6Gi=_Z{=i!c@0_Z?sGvFwuA0AdAislGG^UeVs6e z*DiB$oxlO0V3e}l30DIOCZ@HTiy4A4E0uwdz8BE87dB6ww6Xs@9KKC8=5sU-nr@Q| zd23}rMsIc|Twhhd($Pq+trrI4(mi4w{T;v->M( z+IkkNG#U=E0+Sz@gf%x|G8#I);Xved{@It>V_C-iMGuD)^FAV1*^Ax{ZhC|-hSgPu;V}Oy| z%1bgONwBIeK=`sT7aqPHO>}8h0_5iHf0%WI5~AC`IdqS!Olk|mO>(=c(Lqu;>XIu@ zUMT~|&w7v!Z%e__Fu#SfPPZi7ALV81wBkd9bZ@)9er}L!^|F~=+!}5FgoQEKJj{{j zJN!bY3q)<8E!{~>g2U->vXxp?*(eoazV^R+{uwDC_mgHeRW|v}A1RTa`2xXfw;#Gd zT7K3;4AF^SoH;%e|7`=sWkWX}yZ_%Mr|Cz&K*9P`7nDY76HJhN;wfsp{>7Pl9Pn|r z<5dyb@z`yT7?m#wpmc%cvD~-g2a>=qZr%kHAL%%XgR%Sf=$;Rt@&&W&KXsvbqh738 zc?uX;86f$_wl@kH&G zkR!nGR;3&(z{6y7l&_`O^LoAkRKD;_7h=2idE_S=!y}(E3Hu`rU;rVf`;MKPMLvxk zh+TC3q3)8lx~{?mT|C$eytUDP-eR?4_euBgN#J)Th+3@dJecRKb$xZP1}qu7oDmPH z1UA8~Hv^2gAQ$Zu{k|n{Fg(Tk8D~lu4%(Ww^iw&Y-5%9h%z1QqrXW0&ap@+nJQP#& z%fC%!4SX=M8a#U};N7DF`Rppj&_OJmmpfM(TD(nRlhe0_k$o%<^2oYRbmP;!e0+wI>H+{yvTvFlNrTq~pWb!qR|P)zT_5V0+k@}%gY*y3MYoj^pj*#fCRSZ`%FDL#0{l!n~92f&|fbgV`)DZ{74&oBC;LUjWY!#bDw9I z`%=JV)(BlYwPaAGt~u}^oCkbU*gAEs)Dk?+;aabg2?gZM$NDN4Y|!>k?WA>M$8$rt zFRv=CrkW9|=y;wAPN#tSLLFEV&A4FE#Gb+0oDqbmjxYMoyCS+#bk%p$2B@v_U@zbP z{r>)M{YN#MGLS(f13K1Rxd(t8+$yFa^pg^XI1M+J&RVemV{GZbm&>x?n`#naj?M4) z4{n1i)nZsli7DZU5V?w_+e z`1}H>KJ_4rb^l9nx_VXUM6Y3IH;senCWXeH$LmYvvyZwL&4D-XD6VUY9$0giCFb#V zgWntpg?H>=?Mt$k>&OIEAyhmxBO4vN>x=F=KBhC*V2mBKxNecdKx+f9hs%iLDp*4j z9sM8vte=_Y+Ogwz8N*}8F1qEHTddt1A2)!ZjIgv~>i7B3zm-=`KU{aItxR{9SHsld^DB3xu=Gr?5YTSx87jPRuVlMq@iIkfv5 zE8%sf6+>0<)_YS)TF3^}(9`*G&dUJzR{YzO0!rWxbh7@si~(ioX39G)rGUKYzP_3e z3TS$>@oXTcFxvLUEh;|wc}M}pqQe0@c2*t;CY|by16QomFJWO|!7E2!(YV?R0V6C) z@)bw~`i37(D;3~^Wr}_`F-;b<+v95(PKMG2Zn%Fuy?@7_q1!}^*od9mTQP#P^>JV- zMNeI8S_DR5z95WoBZqhK>qFGeG6K5Hn*^U;$)asfe(ElM@uCV`W|w6BhQv+LBnP-4 z{;V7md$MEa`4+@IQf3We-A{E}Je7j<^Fvt-L$0uM#6V`=@b~fUZ~Y}TZUBsxXM#J{ z(seuS^D+Em=_(Sp&8pn&D8!!vhRV(zJ4y_jbe(5Y(Dvs~_9eM)2IS&#fe@m7!PSC} zz((=h_Z#P>0jDa(r(vyQApPVeva?krX!nml*=uHbx#Sz54iq;#UhpI9+sE8ZpUz`h z0)Y$Xs>w;jfF2XsrKjTjzuEhmZgXU&Ash_mj=J$U$-plaEsitFk?=E07eZzqmJ(NV zfQ{8p_)qCD(9Rck*SGx)zOlKR2gGMSMxyaN7*1v%n=oa(01T~v>Vl!ZqlY?94}6bv z^{z|W>YnFAaA#U6$JTtI)IK^J!uRLFeu6tZqul3U2}&1?+M6@-$u0nkQ1+I{T&6vb z*W{DeNr_)H0@Cc)B8TiNf%-*W&sU7SaKt)HWM{m76LG{aj^jD#{hD=&_8*MbpUUv? zzRuYJUm@~?f-)}fOZf!;hdF+*f%8)rX1`=U&L`59V9K7WI`>|F&+X?&{doC##=1Cz zZ7us8&Us6%}_E7nDf$|K641CvquCilR4D4^A80%Z-1P>y7JZ`$Eqka8vpYs!U z>_hml5@81u*iXW%!)J9Z4_L!cN)6i78ZB_@gdRPz?j2a#NgX1$U1F$$ z^y>rjp_qcNJeI)y6x~Q+Ei+6_)}g)ZvMtdY^?3BtB@%f3Jce}($M56Y-}=k5V^j~m z>5GH=;WdE~MSSoAAzN`ORuF8D`K-LQpb04+m^ZHEb3q?tDs{J`$IBBe+CEbYkT2Nhp^&^l|zV_CK>{y>jrPU&UFlbyCdZlbI!? zu;U~;w-OJCOUsK7mdHV`VWzb+;f%l8lMn9s=$;V=?cU(i82f9$Pa(ovHEzLB36(E2 zNSwL5qYH*E4~uqm;!pnmub;Pl8|qfE_5upro^j0k6F_rS?Y%_yP~eKn7w*PvZ8;&j zFi$JwxuX;RYq@{=KNlRfCC4-`h}$M_Q(5BMq;*7(d{Oy=#F6$Nx^S>sB26%v@Bf=V+?H?Ryc4Sf6&?#b;5Bvt z`M5L>g)!4$dRtH1jH@c(^Al}edCdlkM~li8n>fJbBeGQ=QqQ8@{)zY$6t0sxu)F!L z5A*U_;C$$0`s=$|py9peIAfqGpl(rH(iDU^T6VR5YwZbx!fgy$+T(chB@L90AmDOwj5DZ%K{^Cjw9j+a3 zo1k-QV`88#Uq<73s$f^_urF~+<5OLX6;g09lyqohToa9yPJ0XvTcICkr4 zK}nV>BrvFToIvuyg9E*tw3AdYK6{>kdlnl6?LSz4&GYy1?N8Uuug}wZ-F(G#+2QaD z_CxaRQqZ=B>S|V0k;Rxy#|{8k`0W)?e_f7ee^Cad?*> z`=P$J3zAFQ&;v&g`!;^4;@i3Yj`^tO3HL~uM+_h&0n|-oO~cj zF;`juo)5qn|H@CKuK+{*roH3DLqT)u$5;#oH=wxMMM1j}4*pcHKYc#6u&;q#qZ?kc zyA4a4Pr=zxqKSRn?oj-3onN1`H|SQWC2T2r+G%0o@ah1?#mfVBU zf8T~;BhFEjI1XSbdFP-1s19oGyfC234gsnzE<^s?fnX)rJ^yY629&=_P)Dzaa6^~e zSx1m{G5f`{Apg`YwBso)M5uBZ2a{f-h z0q=jsjGd12MLT|fitC7flG5ceLD|1FQ)kTS@jH!|@j@Pg&~rLCriIYIZ7bI+tJ!Ef<9D?RY``_nKW zqMN?jUK0h`ZsrI2Sf2$(r8l{m#T)-w{eHzs=(zi|(K{)i>5TXOSq2vrPZaXR?9m1B zj|Q-n*_FXOR7htb)`7j_VT(LK`?vc3D(8Pa&dA26EK`I)nve;3abjOso`2m~DK-)W z4ZP9yVv+=EO>QIP(-&c~*E6-AJ9c~ax1X~;S}Yw|zo&e^P`Eb;RFa5~NZbtvcFQNn zeZ;t6a)Qrbh`JpNUc=HddWrt~QM>(C4-Z@Q(p881lGtldDPLO8uz#>rQbHf-|aQ`+x+t ztgSf5oj49C{EOP1vG)FcBX!dB3X6dX?DuOEZ3QA=9y9Q!4VDF5J5UuBlC20Y8PXF= zk86SdL)=+MRTXr99~4AXIs_C%Qc6HNheo=)yQRCkyHi9;0Rsu8hEP;Mln_BwLJ>to zQB(xM_aN8jw-&5t`CM_Wmw)aW?mcIpy=TsR&z_m{nWv+yAF_$H(2ghV3oMe8ABdpP zldmOM`z6qh&pq;G$)5}opzE}Z>@l_$P?73f8&K#BXB6_UMCoh6>ze|eqy|)g(iM;F z@VW%}($!@UUw{D`H!YlTs?c9=d{61l{lZrqu>N!>p&Ml<6iuZZ>Ac_!XV*^BYAsvC zP_5p6*4xKH(tz&3y?uNzLMydz_C6DYj24rm$UYnBwl6>KThosswLxdzs*0at3`ncu z*F2hO2Y#HGP{RkF(5dK*w&oRfn75hP>p#N@R-GO6$ux0c!;txKm@NA1p*>Wh!Z3!Y z;6uZ=QtZh5MA$_E-nO&G;Ks3=62*mGl1LG^j?_+;*ihCPLx0^0g6zNGdy+(1gx`T52wdvLE!##Q%Q7; z@XZ+W{O}86;1>MDeT@)(ds=f{_dD05WCY2mNc$YE3eDI^-%HA5oEu#Py(^@q8co) z+%BHYi~{}pZ>K#yJ*{i&s`0STg{dR?b_{%%WIA-@KqSDwD!<4yED!Eq6C7CM3WIlZ zWW%PJ-1qF?$K#=qUgACw*FvyHlQJB#9dc>Cqmm9SXiaj*^whw}q!;yc(9$i!}JsS z`OQxI_o!wpEo!XbBJE8-Vir?4(s0cYj5&gI2G~y3b`ajYFMP7v$_U(4N~&vGJF{p1 z*z&$RD-Fd0i$dY^SEV8VO%KW8RFDRxlfskbT*P5T#S5*B@iZ{`F3hkOSqHK6djC|u zNN!6{+hr)tAt3*LKuh7oAT=YXGvvs6R`Xj1(2 zf)ddME^^WMX2N(-Ie4%Z&%CGOOW(PvjWb@*faO(=?=y2S&7DY_M77y5^|J4M_XG6x z)?7=@b8w0P9+&Qq*wO`R*2sOFLsNkHR^`CkWJ<_7Fg?CsTLX0SYkH`bu!5P-KV-)* ztAiTdJ7gAx=)d1OX(=95USR=}J%>oQbRj0d`KwpA3>b7{xHnA=KvkQk@WiDc&_S3M zn7UMEg96hM1t{GbN^ELb8mc7Z~$46ta1lD#P-fF8H| z&%ced00o~bDn;Z3(XQ{E_lpDh{`p!j6Zn{R?XKH~JtU8Bz8vLi1$^QNoS2dRx@aoP zuVcXuJ|LP{!j#k9b-g>!_owpb%ZH76UZ#Vgpot3iz)ZMWRsCHMSb)3wffz#0Dad*m z3ZvJ7+@M$PG0$^W`91q*I2BMRPybomMfowG?BXdP@+tCZ{+uEpjkdGRiN=PZjnk~l z>&#GxRQSoh7M?xZ!-y3MA@wALLm%&2&rIq;0uEvYW@=~1@o0i?ol^|-`d~>BoHGV& z5v78ctgZJPPugay`?Gk+`#+1$pVOv-Ytt@2=S6sqPr~h{0}_r9BxkV^&C)WuFE;ceL1o5P}V(Y@QC@ z<21DWdl~tFETKdNb{~ICN9B(G{t<1)<5QTI1AtZ&mrN>>FC5El9v7+R1pIHD#qgEd zfE;jsnSak2c;xsb_E4Jv^+DPih6l><0mW@PsV0B4+nf3dvs>_ce=s%N8mWim3nW#; z#1|1=$johg8idmY^GkyQXuKT3obAjM51ARz<(PErd87%g_&l`n2g1;{=QSl^!SOK+ zObs+$+{zcOYxa?UPU`8X2%7)@NTG$&kFPPi$E40vF_| z=Oa_U!~|Rz#)TY}9niK%6Jai`x+wr|G&740Bl*G+2CA7-8UVQHf~P&wUUiVl3ko?u ziU+SLCTseZHQ}AtC2x(Z)IrY^vH9R!^z|sVY9@W<;P)?W0W0Bqdqd~+c>AMC?>=CACU(EJykG=CyWlEqLINPghcD+jxTws*v@a0v4PptELZXx}3^5&-3 zMM`P#^mT=w-D_U7+w)HUzW47_=U7PxPmH{I?@4FELwB$E@Uqx})uHd06M8A2arnv0 zM4h1y)yFxZ-}Th@Y%k%$hk^Il+Ftd1P3iUy>%$B!L1P67&a8cf$PkHeGaPcb)S=)s=* zA|;zRyW88&c>Sp?GMXlS-H;D*i+1`+mfq=*TZ)_16nWoqq_;~yJDe1Fi&HMSg&hV| z*f?spxykk%PZwLil-NlF@LvA%x(WY+c-Q2*s%||I(5om|JRqz9Y_3{Y(=SMX8G~X> zQ({H5?VZ-ZOMPoZ3r1VXDsJ$pfIs=a^ZSR<0eECyDzN^IknbTwDiHtl=mORCW2sB~UVxYB z+)cPT1~Bw!lG8jK$tq%?=P3Mjdk?iuvWvi89i25)qz1Z5F_hLm$XB2*w~u9Rjdn+U`QuV1P=w)gRgatB$CMMD0CoA-=-C>Gd*Sqt6`BS;YQhh$!&>tp!)PArpI20P(p0#gW zNrR70&U$tu&(|`3Z-OHax`P9Khe?E;_CDUDJH`-k<8lHZ<0@eeYC!tYJ7jtrixF_B zHHsk?>95lrT|KU9hk+R?C(4&K?(k37|EKTE@(%gtAJ+z2r+d~57o6Zzk4dwuF@*32 zcVWAQi9L{1BIMH0V29xhlW!g+$m}_uj0wc5*97$-)dS=zESPeSWr*?U3fleOPJ7;cs(5O-X;7FdD$Kz$6S%7{MV7VbL1W1E^Ho!G>*rvai+tQ%1aQ`2fHcVb!lIml z9FDOOw7qE_#YbZXYFC3!*&@2|a=rPJ-~Bd#%ldvICI(rb7O&JjFc*#X^@dM&>a3B( zzGDJ2nj*%PB48 z8AM+{Ys@8O_u(jktD46;C}ugq6M<`oZzAJJXD-ISr3%I}n{gfl3B5~x8BFn@ zPJVtdC{YWFU6HA%9?nMlev%PpJIryz8othYvmB1hFR)GAOiV_`kq%LB@CqaOf|R(9 z#+EM786-#s@=pVvf%Fk>_3s_8n|y6jrA5)UCqAjTN>0xRb8yz07LjqJ z=S0PRACY{aRIWT?714#L1&2B6hy1{m&xpjx>y3Eo@C{bgnS&oo^x(XfIZXLE={wSH)9hN941Ks9DNr&1h zVCl+!xif{1AS}UOz9Z2Znl>;U5h*$ZiwDw1#;$(f^Zi%2`noWfLkXzY-186ltO~VW zlkqwYo`nOkyfP%n__d8x!&x&TZgACG_EV7v8QSsKdA~_i}cWXwLe&XPcIO#%RtMX|z94x7-wDp#qvXWU z<$(srR)4J+Dfc`l_#mjDC`@WMI=N^6uyMUt-Bz-})xPc-Ki&eUatxAw{(y|93NZZ$ zSIY!?FNOVF_~?N)wZ7dd_R&4t!?D+W3Wt(Fu`36U+J^|_y~s}q-#iNbbKc`D|CZzG z$A4LZk01dA`5yM9JP{6VMtu4bw~+fEdqstN+e<3cGulNg9R5(pumA$_H;4wltOVb;V1(J zrUqs_^x~B@f8ulDKfhD@#~jy+>e<6V?_(fq)!3;IB+<}U@q6-_{ocR|#cdT;`gudd zEeYxvisg*oiTTfU{Pq*w&pQ<1xVIN#09#UZ2)rE&Md>9?E}Ch9qe9!CQfSC>3+*YR}Sd4yd`k>;D zR>z0wz0W^5IXAdBs8y$}i;Z%HONz77R1^d58^Z!re+ z%H~Hj_^sd#RoZ-NCI=AW({oezlo8OlU>uN)^LIjS&Z^oo0i}Z?lq5V-#nm9%Bss?&+Y%jZRdUR-^%@Q zKbblhn!x+<1^hhV0*<#ZcJQn!0?EVuSI#X+La#3>vl;Hu@Y7pUrpLtS&!_x1yRImn z>I#adI*8(_Vxf4dsVJT*CyEz){x5m4Eht`Wp?Sp_ihKFUKHH^u;`?;~;1GJc%4`d+ zy=N#{dY%bd$s$QaoU+lbum9%X5oDT*w;~HLH!qA`!Lx+C+K+D~VoO2RXWTUsHw!>a z@qFv8yWG3%38om^f32#7KKC(b4DS@f^{!X%m;3&2UF)dqzvZ|F*oSeuQslsMg*?xQ z)wAI7hLFYu5Cu9>+*b3LGwd||De$`?)#u{sxLw!#-~9h?|L3LGy)Zt*tkTLLXoC}c6;7wcd`8Qp`e$ZAbvVSn+ACg-i+s- zLCBy!e23z;Y8nmLX80I_u~&0U=VJKwZ10l3C2L}S05niOEL`_C0vfm%9V)z53`J4g zRyhJ?yzG`(KyfBu^4;6iJ;$@?$kD4C_TeCi=Z$)jasbHdVOuFON{99+ZmW%~&iUin z@t_fBPQzQ25p8>M4+-imv>m{`%xdl1kuqq_f(St zm4q-(G?*3$hYK3#;xR$XBZ5bDU$BGz1XiFzX#$?!&{bo!Oh@~At9=)w6W<;E)?2{U|Hd9_#~`ZM<=4+=F+W|8bhj}E6&VYhB?gn-Tt^kfHv#&m1DgiGB`+b>zz>9tB-?+T; zApySP42%)njDjkcx^kpQ0zl(~u|jQx+gee0dJYfaxC(VqgeM~W*gwT<=lAR1M#jt} zG~oxs6z=Uaq*g#d>72UiK*=V=7jS$lxEolir!p>Gmdw(1_*P|&&v=#^HRqi$r z6?p^4<+ZvWi7_BPwmq3-G6oWeVyITM+5op_UG6^@(br!q9J$$yw)4LJU(3%>x{xqt|GkCr8i*t(q2AJ?G!(a$ zf`+YtkTDOCX1birT1`hg{yVQDZ7BbjE_ARzUEI=%ae4YIK|}{7u1GR@4b%ZklN+(s z9R-l=i!bl{!17)3*?GP{l|Q3&VG_kt?Lcw!ELFF8s<|kh>Y>E9QU8Lc`T?a2flS!$ z(@xXC^PpDGc^C^#KJYPOiq*rhudU~~*-AjAGo<|&yx2LEF2wOoG>Iblqnn|l?-}7> zU`c({CII2K_EFeHJ0Kia1+`GyqX<9tPx0FMJ<|t+piArWu&6ui^<`G{+Z$u8{9S`e zIY7qabXoe=C4ju@D?N`{2foO#Jh(~_3h)wNyrlk|3n~)4j`vrl!BUgshZ#1k;K|lU z{;{m+Kab1_9k_qkIS%;O&bU?thk zy8pl!wtvs2(;xa43Dey zC_W3h1^ZQ)?uo(+^-<1c4UUkPM7Uhx&3Uxrxp4WFR6cbv;G)#`LrGbv)ffAyqykVp%vGYM8w1{5hz6;aYz9ujlvz(+Kx1o%me5y)S|$>iK%m zHgUL(D`nU5JMZs5l{Fn7|FRQ|(uL+?)wMb#pCCeUwoOs}HRG8kDw|_rd$yO3$`_JR zx^TGebgDo~FRVmyTi+xGSlVhf0mXVjIxXgE@Tcql)Azsgg*KEf98uopsTQMnszvVG zJk848=tFv44u!&hMr9!mTMf%>hY6?Bgi8 zdbI0<)Rl0}<)Rs^&(8MuM9xS{Bl0` zN;rsL=5X$~=L0;DbjH%`3?SH`8{>&bpNF)nf=guTp$i%E`>@YSDME1!A9>)I4L|9O z{T$&c_^P0oMUf@y~hRG1x3!SI#yo@J%_XxB&C@qx>@BPyVDB5#C` zP60%=54->Pk{aKT-X_C#YKB03G$@Qbmfv- zz>Be;gd;@If1W&lrrCx0MHIMkBjJrQyB9d(^6tE_geFitS^AT+OdP)Z!G+Tplnl?2 zW=|y|?;Y%HuYX%6M)CQwQG7mi6rT?p#piqWkNJG(QG7l@6rWEX#plaI@%fzo3!m=? ziqBVr;^rMd@$3vNV{AnX8-dj7YFt&V1Gu4A+q=bK`rCN?KJF}v14xD9^GTq%c`a1^ zy+io5fVH03d6~-QBuR{US^R2SFMcpiUm1B-8e=s(Zz zg3?8HB0)j%U>?N*TwHGa#pjFD(fucUz78enh^GkeiKN-}&?3Tn;&k2LzQudWG4#8( z#T&#Dod0FVn!V}&E1ypX#pi=1+k8Gc{B1s;*qv=Y9}|ktr;XzC&HN>wPsnVW&-Xer zG(QpH^WD98Vs49@M>69%w#BofGqW83jBw_jh*9)}A^f-NC_Z1pU-J2KUT^dH?CgrU zwm5(hCn`ROBYZxJYzjp~gqydX=+yZb;n~S1l7CIz7X*7zd_D=+zvJ^+)ot_n@*+?E z;thTm=?S}yZ~#x}m^KxCqi^33Zl3sZOy)AevvWZ4`93lH9iJ~}YMakT^e!q$ z7U3Gouvc5SA-uuVGaYmj2nR4w@R?^B!sko$TCQ0-&jrm5?@s!W-1}Bn~J-IDj!UNoiYrzFrjH+xjp0-h3#&cfvse@)SxN z*az_5nVdNZ$oD-bSUY(Jgw8Lj*-4p$7Zr1JDX|uSOMRQ~jsN-Y_}&5e+k9_>OSCr+ zB7BabuIuh# zOjE_Buqh4>qI5w)>q^E-coT4rdwam)AMm|dQFc-vjEttWr+|~#`2^QR!yp$*7plc6 zNgXolfEUkXa{oWzd*4U-Lx-|+kK~PRO2!3{owKbA3N{WO@T+e_(Y5z=ua<1~{Cp5z zwarrvM)6b=%eQ%|Ur{{OPz8+9Up&=`*Z-uywvK5i-dt-07B`ae!t# z3zxraR-EbO@uT9;rQxyC{%JpILEt`8Z54CH6Iz!0lwz+>SXcPW&eCxaHDo@tA34)>lMl zfOl^;QY60^xxO$zDi`dN{X!G@~y%TK;q`QY1%c6_|uk5*|cTnjqkHu zOu=~Y4L|aeDYh$^v}R<$@UsAY3!}7jU(ug`AikfpmO2{;8`L#U#v%11^?W~z;M?@LnYP5o}b5m+duxIhu^?B9JrKj9G^8-h1F~)9*(P?hCe}jI<;R6n8Ly6 z?4GCI(}q&%*qA2bCCTeuJVf1Fe3X+gpq!rXGZp$c-fNl zD_^*a(uHpX{4xRhMgOdQ|F-|Xe&)rMzxFGRg-vp{vk{frK+(ln<8(1Ez?Lgl5Kc>h zcl$)mV{{pybeYM#*O)oTp9-B>S3|#l5tyzx9Qq>`cJazvE#dG3<9pF@-Ic~!LAo54E;o4oJZK<|o7v+H*O zaD?$i!~H=c*!*;UJr^MBPt-5nDq6t<49g2_n9sOj6CT$gQ5!tSY!CD$g-)YwuhOYI zhxsEfING0Yk=`u=@S;?w5@Ria&+?_G`9BT8mA(a!Vh;fzxgM2Am3k7M?|eGb-G}Ut zG}n|!ZIAwZs{JL?aL&W2uqmD^y6=-Gcs?PU))~SFbH#1RYJQxCGA|bG2FC?q1by^1 z>Lqt@@$07x_b@iZ9dVm}_z&;y-~QBI*q>*=SE^=!)XbPG2EOM&#o3!xqm}&7s@~SD zp_LnQ-u?VkIK~rv@ttT4=HLB3r24%IcuCX@ihGF2eTvpb_SyBfS-b4~pZg5^A9Gw) zeW4mVWh`uoI-^f*7y{os_$)Af=Kt0?3?%H0h}G0)rrau6jRxr2(?gwIej`h@z$?Jqxj)udxnqAbcX; zmjVYFBf-PrxrG|b-Sho_YLEZz`vDYBbr!`_{fV{BQ?-cL=BXy5c&gGUUhJmm-|=F3 zQM_2gj28{v)UH59`KPF%F$>gOCE?C(7luWKo4NvPb}&zyx}iq$uEnXJQtQ$Bn zi1EfS`~Sv)<^M6qwc;3IZTX2vaAyj;<5E^QXpg|TdL_mkUP5tOTSx2Rsg^|Wvu088 z5VGFozxn&W{vY$i;z0}QNOoiC3_}BpQ}hy&1D@OWJchgXA83 z#G*e3*N&L4Z+6?lgL+2>+5PxjRh8K=a; z0qva;rWo1=pwouC!Nltf+Z+!rO%rH>BRrl754`xm(}**5Vv=64a$}LNyFddrF~6rT zITwnyy`0POzP$CJfS9er=49+;U{!F6<~HRyAeNtho&A(G%oHu&mpw`a)tCLd4HwTr z!;(U!r%94P+vHT~c^y}@>m#$oMw>g|6`nRIfqhxs@O!OQc1EWZJY$4sVyPer4hoC( zZjAH8xaqLMcdAyP1jSRW`%9jx8H%S`e&;z!3c^zz9`3ZnN4R;nljZk~A$+8S(GL;J z2v4=Pm!gFm;i(RjYot^?QGgdH?1;T5(7&IKBCng-BJaDuB)v$Li>S7f0sdtwuQhRg zwd(1sJjU=T*+bb8Y7KBrl8C^2IT0qwjJ`^_E(3_ghGa>oV$qH#1~+dE=35gz++Xc+LYF zQWp|Gs#Hk0&+ZqumEyT12gNBPh<|{aoDS-se|(o}MBR&@J#F=+Q zw|~lk&&u2dYY11Wkd)TbuTvhTDhT_Vwn^;SzZprqT8&HLkfLe!r&fOy6t_2;Y^IEa z562!b7a*LH<4+a3l}1IuK>UkrLsS1f+iQ3!?tVoi3X(z1NZOuo2oK}Ps9Je|I?mI@ z9msp{1A*n^@o~P8qb;ggR?cJ3_WWj_D9^9k!>VU8h*&Zsy1>Y(!8w!J0EpUa z8fqRP9P(EAZ#m4SfK<9QDL~i|QXiU{BYCO?a|h0Sn!Aa<9yvHO6=6?>gInAqmOY3r zuup!eF~O|?g!95WcaZhFjJf9~pH!GbdvO=-s7@;|IZ)Mwf0`C(S352#5dFb6x=w3ZtfHxve>_pNr!qj;(p{*tF! zfa0mLzGD^H(gpcs`FR(Fr}{eU7(*vD0LD;YaR%Y3vUc`qxFZ~lV{O;2^$=nM?ir`p zv`Bfh{gW^zPIFQw2Vq7TYo4BK;(AqD--&ytfXNaA3HTrE&eOcvH~#N@{fs zV92ptG(8HyUD`Fg5x{%G{Jl^gJ?~Bm~Ue`?oINHQP z?|6h@7k-8bPnYtp^Cx&HY!ZGgg~~Ja!FIV9fEbgA6@Q&GJa=!K+uD1SE&19>#2+>> zwgjxbKMxLt(M^565(BwJTk$k=;=vNb7yPUr1~7HheCa#F*&eR(q8FBbEq*K3n1-Ka z@A}|%V}SQ4NCu6rn$;Oxk>FAKEpGSpOo;6kg8LNVwtgE*E{h#Y2K024GZv-hyW)dx z{{r1)J<~`uz%2j!kfAp^aKprY=8(1rv^jjHRi08BC_BFHA4oO_E4=pur_WoX-M)5S z&%v-aku>!FU{$L7d#!~(jBh{h)dn;{@8rl;O@u3D_<5=YyHQ`TDu8eO)X5JX&BmknhU}{eu8*Ch60!o0Ay-I)L*9um%N`H8DlM|-c)nI4 zu?uaz7zEz-rp&wu-)wu9OFK!25K__rhx%d!GM`T&UUSCGG^e z8chzC4Vc4e@iDH54Rv@2#cl0Z>~rPw&;{}$Qk;fTXVCV~@=PUhlPEVhl#;8Q+iQw; z{XhDye(lvkGpP8cFy$4JFSO!D$6iEqLF)M{tgfbd;5y^8;Y#QPFs2lZuR2l!(_(Y= zVM#`4YkwD;bq#$z`#AHGc9KpD*qweW$&BO+-yacPe2D16JSVHwrbjhM|MuweqTe~l zz4`dP;wu@@eu&FIJCqEbpSvb%$t{g`e3qekzPq6`Xf8W^z!1q75`0cBr6IbIa(?t> zVMZ7HS*n!JQA7mw+QM3f&j~K}xK*87V!&rD$powam+e*Bi`zlPA864u9@0nQJx9j+w{l}lmd>aRD@a21gJ2%zs zdI*sB^lu3GS;gxC9nJOF&&a+A53xEM%#i2n3+c5~{1Sp_$A6c7N37Oto@gi~qM~|V zJ_52AT_~J!ON3#%!JI2=%<$6}#f7c@x|!83Pxl4-&vQHNC3$R~Ut$E%v^V<&RgN-z z{>6V)P1Fb4Tab%f&>ZSGknfc6M8*m5$$ohh#bCZ?|AYzTZYg2MfkfroW~_?w$oq3Q z_D`=V1AX}ux5Bl}j}&|sn8zIOUYi(hxO#oP>#o@S906qA6I>$pyI z#G+8lo$aHXzc?_^JZ4~dR|?4A;Yt=y+WY(A@mWvx6ppHbJT`7CMjIUvphTy4wBHQ~ zOKfvng(qUUsEyUZH$TNAH!yVf9M7_iI_FUV4_F~oPIK~&KRh(`(6Le{3yxjc=C-;F zDDLB?jRJ}~3p9E}iD=tf(qUB3IU)d`%nXG@XIaCY@%>YI^YPcx7HAE|J1SH4z4^c! zk-LOnk$gd#%qsLDq6_QA@h?xvG=M(MXK^*Jbl}f|v8gO8321s_-_nLO`tuJ}gfa{d z!d(DPAm#m$$5ilJyTuXGN^=mMIYK{(hVxL7{F8V zD*+j+=#LLyf4LBg%MuIj#=BACP4L5G)dIL~NWNgd&T&zrkO;mf!P4PK=!TYl;N0zJ z{_s4Cr<(tlJk`pEZJugGtrURzrFP(aaj3bGdvXUJ7`BuEdewwKl(S??5 zBjWzsQ{Y>)^T!;l81Rr=@Z#NGMWAQIqSHBtJ|AaaE^FdDBV+K8@9eAOjbk8iY&irX z`GWHZQPlvV3k?T2kF=L*K#AzljHv8{UF~^AOuhDuOBCS1m39?8k_@7K`Wkx&Dna>& zZEmaJT}lv#D+bGZS$ue+V{^+d)>EudK|9lfCC-9)aEzMq4%8c5Yg(F4$q$x ztOTycV4g?mRpY)f@kH4ZtowV(_UvC-arX6AUg=r}xpJU4JJt z)JUV*#lc3cNO9{&N3@SGzqc@Wjl~Ia9MlbnM&=iCqAY4>ka48@{=y-3PLyBip0-m(m;^)Hkgh} z%?eOvE^{diu6B?qbIxMB3P5Y#+)H;5T?n@)EunkW1;tQ2)n|XnQ{8;J%~S2?3JYvS z<`?!g^CsU$#*r>j`@bJT@&)~UAL54*UHB{^{goEssW#_7`ux>L7BEZ%SD1W5e?H)6 z)$OkZt-9bvW>-!tGQYt2(zY#569YIzMXLlM`GP`x_SZZ_7a}}UnA=)k0CVNerI^7P zaRN(aN9kAS^UNY&td=lMe-i&Rl_(^D%r9*8CwH48<46_v!>`GWYgHf|)M3pa{g zl{7iHceO{|m~+LB?FrB_W5$%{OcXRsGP*xfT>uU=ZgX2#?@)~^rs;w^Vlw%OZJ+jh z|5;1E!Fo9q1*QBf?Yo%*p||+G1_kH^I;*ZzZ6f=QX+}OPUq{BTzkF^gQImGtb-g?L z|38)Qa*~g|=X5X-4%scS|J}+`kvhDqO z7ZNkX;C|GH-=55jdy6=Ll+eP4#ujz>l3(y=GqNwjS4&5qTgdZuEoYuPi3S7O_s>p$ zyPkdJ{G@3EF%9b9f1$8~on`I!&!)t~8!Ry@BM4`E)7*acEz)0qWalfqV&=W)cwSG7 z*+;L3^q*Z%3SAIR0)djorZB=wGisO^@<6z)()3*q*2+SGJ!4O%{`=#5w&yKckx$l? z3G1&mmfg97?8A38T)u@eeOKI;PW>B>t4h{r+1PM8+{~u2z$Z?F`NHoWd|yo2We@u= zIj*8nM~;tN8HB{n)NQ&OX=ul%Ue~YZU1<`OJKjJ@_f8HTqD{Do5hno!vMWCN^4ow& zUWuZaL0eFq-kdqotOZx%l;b5Y_rtyy51o!*OhMZop?UH;$)k8UIl8Ik5U34*tUZVi zjS>TD$NJ-F#cbi%kYhxa16JVT^NBLe`vC7@_xA}p0PL> zuEEmMeZ>V{yW$#x$HW4z%DnHhnw0=22@BiA#I&KcitGVBGW5sGcHTd~%VY}0r4!Kt zK!r>&#jsx)*>}P~D74!PG(V%renr9s^~!EJnfc?R9lzh_-}$+dr}}IMPjv~!Qw>4! zVo&`gFP3I@n-@#M{^0uTQFrjX|A!IQH#}&z-({ShM*<2lUo@z=?Fju3@&pflx7p?2 z3yc#iLpTM%fY9@}wO=k6O_Uwx%FfyKJFb7kaTPcpG2|6!4;jS`@3PN$!-qIZw8D+4 zP`|J;kNLJX;74&=%lM>SPn|};J@2fCVP@kqZPgY~KY!&mb(|TnP`ovz@LUnRgyOvs zP7d(7$u_suyX>?ovllDec|5x1LhnL}jcR1y+==T=nO(6^`&FBp8m=YKUwVL5uayA; zdbhc)h56hDG6lwawr7<7CXB-b;g58(*3&XYgH%Em_1Y3|_@G=G>zI`?%tvus&rrOW zPQCDd>(bEm>-X>N$*(h=BJ_qllR25z$iC`<0a{Ho8lI3UyQJ>)JS+J8ZJXOV?$c!z zY8$z$9sNGf|N8lHcHd=3QBfE(&Jp76Ed=QlBqa8Q3hs*A>wm;?B|Vm`SEQ5&+0xXp zrsuOEwjS=YA(HG}_A399;~HXp*VR?l8J4m%Fo=Kd*md4N#ig19bFCum8o&vlD8oBs z0fPt@7rticLr2!{D>Dh9KxNueF6c`bu)joc?xLm(I^f<;I zrppXs4^Fh8ZLf?qxczilEilp>z>gq`fw=5pmv7WdfoFqElBbUu0H3=?F)}U$v<{FfeO&;`9Bd@# zT5^Eu^k3slowMO79>dEC%e43yp$67q`9NPDo7X1qqwcjEjNnRb-mUl zSne>mqcrG{)j1IE{WZ4Zr2&ALB%f?!oFMMyZEh>uSs8ZL3ids>H%HO7H0IWcC@p8c9suh&xPY_xx=`E(cw)3^w+$n~yY&A4tAshdy_kr;6YD zcRbad@${5E`Az!yG`RVpFz$R&8klntzc~Ia6$D>m)!pL7Dm|;4v@fmz%d+X;UfNwn z`+mO{6FYkDn?9J%#3?cst3f+HlAMHOv{`!4nTE4=b~+hYelgakPmTt!+3(eA2`jh}EVN)HbHU%9n%e zw8Ej_z~bRY-C7Bt%%Dnc)G8bV7#5LwG&(^^q5H>Kpakqck|!%X=Z3buQilVAi{93t zNXs|^CRzdMXzrqmV?OZRP08r9^G@LI<0@^l1LnZwxR3r_7E54aVjLqAYy-?!*HwwH zWTPF=x^{mvL&*eqw)?#{?lCjaA4I&_b}bgrt+1)x;!cM*qw`9i#3)1dr{}MyBT+2FQ2PuO{X z?krDDbT0X(WdgkO?<&Yg!{L>7sOo*)0i4HCsE9Ypgx0SF*B*u!-VqEBvGWniHi9gyAnZH`F>{xcp;`Z-^do zFEjc%lU4y?6t^{JmV?6RAMo;2Xy7khXyTC1*wTpt8>^aIhz>ppSb5bxQwA7N96+%r zxZgesm!e(YJL`iQr3)GC_!?m$S>VP>{5zHB;ea!S>Qp$wHLWFKsoUbVdYrW%c)?(~ zt3Gy~?@#6TC|zjb-{z@$ptyO?;g25pZ1Ggdwt1=|GJnTY-D$rar3+>Ed+*hEO@kY& zx39bzP68@HWK3JU*wrHd_o!VFzz@4PM59rQwtt^kgxCinbU{(jq0r#eYP9R)@V=j2 zu2MSid7x}c$BhC|E@mZND;5bQgBvk%H*3MEM?aD*A6|k7N7`Rj1?PcxBZq$ULTz{+ zn>+3068im%`R6O|o*MXr_jH)Htw9-(iD0$oxLpAJHgE`Y^2UUY619P$Ir=kz&x zS52T1OQ0#oY&byePt{my*@?k)jVbxL>G54g3AUb^m%la1-gLM zlHgmF$oh>@icynh7DtGLqQxlI78=!GyA$4$gLZvjZLU8Kj7bDu1Dxx;P8u+LJ@lSe zKm_1m%++fH2{5l&CUG#31Ein3EXj$L0SrL^zU-?22N*Czmzke%3@(FYHG4_Y|tN;&+vwij-_1E*Le4!qt3m?K;L(^E> z;Tfw=q9qbHsDk3QT9NR@ufDECyS{h!pS`Gj;kPb?bYgp)Pd0`^Uvlt!5w58r&Z6rU z=M?XvPeZ#b>z?iX&KKNKy0Ca)o2ObOcGqvqPAkXt~DFY+!?E^Jvw`ZG_ed@E-I-tl|=3Lu_DzxJ>{*{jE zqL((L5K>?`ZEyo+`YwzTor6rW zPiv_EVtGEP?P+kbx9fwJ*jZ3$K5n)qCJW@4Q@#lGCBq9JUHN`U zCc#sItv^=$S-^T?w&ctW1GN3akQN|Pqg8{la#ClDC+3hO&di&;wTTjFhf8d83 z$`z%a3Jy6m#`E6O2hJWxFz^nWz{}JNXXyh|AgSnMS|eLuD2LrbU81204J1yIS_DR* z-QHZ8+1*?%d;n>O?uL3qJTyB@cQ&<33Va=qw%6Ry0{$ZpyQ;f9V55HoKFCKuzubBM z{4OUqo-8~6=rr;iWmX{iObR|ehIea&+X=irPE0>czzCn_JX)FkvLEgG`hEVLpUumM z()})}0b3?fk1ys{kl&t@*mOA&uvAoEJX9_VtB06A%SABkvUfJPd&NCF9$r~{)TM0W z1zfP$J~(B1K}w4gA58e#VNqY|>Nvt-ay+weYK!B#(=NJYzt=~ojr}#?S#HmG<^xIK zK#RO>%@ucG`bAe~QKtoZVUm|@ahSN&WzKJLT+u!M&fjl_2yI?*3x+MVSNoIMLxFHr zbVY5n7Sv}k1wV9eLAlGcSGTyWRX%3i#0bZA=ke&4sW4r*1`vLo(RIrLI)q<$Cqi26 z;8`1(M#d|$L7~x6^pS&qi^Jqwh~Xjo7yP=N*Yh@M{>LQ3d!jzZ;`s*QJ$R-4;)F7_?=sZTu76KF3JTXL9eDnGRvPn1HISTyBl(%i8E{fU-K%#4 zz!)ADHfb3de28)9l}wu??DfL;3-6bLI%db1PH9=8-M%ko+?$f^bp#=?9=3CRT7c|P z75#p5X*f(>UEPgrc99${&CPbk5|AyaR%Bn(2AG#=Tb@%o0S%(hO1{t0Uk`s}Ch%Lm zN+#65{YsTF&viHi!-h0a|qhwS@WQ7!-C##`_h*DMxB_V}` z-z874*Zae_Td!xj-G2VLZrAhqbnfTzIOlrY&*O2O>wc*$=cdVGY+uR)+^f3pRY29U z_D+KiQo#0c=aluRFBq|F>B=5(gvSP6SPyVW0?H@vAgw(kh)EJJJX08N12T;5 z`4#?Kv_2n}#kxM<4c&EpK4!E&-?e9dSD%jstc`wm=b|ha~``3737e$ot8c&GRSErf#nPYtYZ1#^SS_d!`t+XU5KlS<4`41mk;{~?j12>F6oD}~~7X4S^wd|#JJ=Gwx zbv;$F-gP}yMeK>6`h5PaB0u%{Hgxkg_ZQRid_TrUlGoKhv}55jo?QvJ{JxH67i{YnivItq&&L(BuFp4&*5?~@Sl8#XKa)&vQg)?lIxIJ|C;ipXu}A zIj!sSHO39SwnX#>BRfNX>HyNb9eul|&!@3N;Po{`H!nHyT5%A-aakh9XL3h~D5%ZG5#{LRD4y9uux`vmj!s!kndV?jBhw9gK03SWS&J~F0^TAB6Zxzx( z;Qk-#dkY+~s&4EzfVEu;tG1TbU`$8VFd%mq^eX1-XcFRwr2%C50nujghsp#=*Td5w z92KmgQ&J7@>8{F8V`Hb)ZUbFzLr#p>Ut10%1T} zz?OJ>3CPD0IHy zW3kQ)->MS4r)n_Y@3a~3UVKa2!niHCSUbZZD18P#nC3Y5ZJZx?pz{Uk?A)Kc(BOMB z^>3`Nd#|kPsaEr@>!}8iuj{F*iC+7O(~j0tX*9E@@Mox-}S_z0{aFgZcA@ zw4#ox%bqIitQU}h%5k4Eqpgp^WU|wJUsm{G2Eo^Zl%cLbqb@d+ zI&l~L%91#-{~#m$oj*2zk21=gVSIB8d^2jBy@TMS7z>b5EZP8$9`*ZJ^oH=fcD^-l zl@NS+oh-3Bn;h;nER6ib#1HGevZ^kibTG!_*Jd$uI&2K&5{hYJ5ql=5KD4aigkWVq z`k)pAy7;hF>}`j|gK!E8>Jv^tzUfEUQ{HBffobG3#r)R&Fq`e!eEz{`AZ6rjG~f%! z{xpa9Euk#zH4kFX-Dh)+RtV12#61c|>sXK>=%FE(Xb;ti^u}Z=P6JA>#z&4pTjSg2 z_BWsBD&a;PbPk7maw}g_A>*@DSpWGp;y34&s4^5{4+*NsVGRc_l`q-n*4F1UT%uv1 zm5~+D>`ESUlePeJmq;HjL~mV3Gk?0T-iW*X{a|VPo_|GUBm$gP8~0-Y@t{-q^*#%` zt$E?zKh$wGxN_FWoy8t3Nxri_a6b^^>sK^eU-S!U15_Fae5LMW49>j?>x-S$0q5`A zhF?1B55c2uQv&%wxIDP<;R%O5U^+Wp^C8U!1S!^MGv4*X81L(J5eupMZHQIv3nh{I z+|n)M4*U!)I6^PpsuCFh#F|c;ktq1W7*mos`Wai`RY@U#rNSEQ<)9}Gz3GcF9)U+n zFP>o?9EpGCc?8+FP$-vwv7%A}a;KtZ0_=4my~IrH)POzk-19Vo56c$g_BYSZjq^he zGE@z90?>hQj7PRZ30$Q&H1Z*GM|9Ay-8LcS1T4c&&4bQFaO3yeJsP0(RAbP3s?}&c z)lsybsyEBJp6U&>UaYv-pXtS>qV-~Rld-gVLR}#JlZhJwvxMNbHcdpO5&*e19YmD< zcA)XvdsiZ1t1b2k-N3$Rm>L2FyQ_O8Y~mcz`y%f!1w}b@}Z4$uVI|KQJAa-8Yn1>^+QtA`Xd7tFi%% zZwWS4v6X|JZZB1vAJ_s)v~H`x*B05u_M-sP_Ba2Yz2p{e#QRW4ntaqWwj&Ji@A%&0 zMqv!UeZkT)97u*yF6+9j(l5W)AAD=LZM^F#+=M}z;m~!QdTIVj2z1k&(~rS(1I$lc zxlY|s0?!N9bz41))Aac9F@N53vwghp#QTerT|q!!jSEww3s_Y;oZf!W1(4Ezx`Zpj z23uX$bz4>GzJ`c?!2Ev2W;|m_ETXy!MNlJt=;f(bdZ4G5IJrdL6@>ccH#lL@0k==< zx~IBkmKDURD=4#{0IHZp0t<%7kIJe@cV#-E5!FlWGAYv~KGH8L!vw zx~;six&NEbo#)HcD&6>C?EK7u!;X%zDp z)$Y|XIT(x9Q>FMrJyj~Sp6Zx;X0R_{yf;eL9HmyJw|}U`IPXb;X!brDZM(X>NISyyO2b- zTMCAmx7~jxtOgb233NUBqqq3a-hzrU|4=B1Ja9=QggXhi3{lM&c@=_?UD4u6-ABNu zo$I=-=99OIzIAS2U!z4!g5E|U_hr-0!IH>yF;glnAoFTh_)SE& zwN-;%R&?%6_o**z}W`Yi@9*{aCcUQaqSw@vg8TpaOIvwP8ng_&};x zH&*0Tgtv`%cP^xzw8sJp?-I4el5m3B*Gr>bgD6N@baS_@I5}voy`HutsdnlGh8ZIFX7DXQK#^;iRcEUUf1qvMSwqpE^+V4CN+jw2K)i~AGN~8G;YV&wt zdfpi!5dKEZ22OD*_xyNf363|8i&)lc0Gr8RgM0cmunMi)3QxWGPNKq!u|Ms*`Nq_O zIAHA=``maP1C0M)TR?EKFTnu#nN(K1MtGs-%hGLZ?K^Nb<}{9bvI96JWVf_H6@D7vTlVR2Fj{k6SSNF80t1 zQ5(>FT(X(T#0e6-VtA`0Bn2tWFv1Jg zsvblJM{A*(p^V|!q62(*4u>1RQx17=f$fbQyeGitEY5Q_2UuXv05|fgXFH7j`LLa` z<-5BOoLA6fVL*6+uQ=iQ(NILMy5yL#!y$RN`Z}Z1AwC8iIIy}$OUV%EqxDpE|4>iW z1g)o9Bog2vi130}iQ~;RJ=M0>Li;t{JiMN8!4^axiKqYCssN&c@gu4<SP;%@WMAA)ht>>2k`UmN3@qD&q69)3TxFU4QN)uJ84z5 zH6C4qM^&#J@dZ~n_=|LOk@vzwmzuF*3#k3!T7ih15IoGfuG_lOabwS{#NxKEzcQu$ ze$R~j!TFr`&Y5#wFqCI!@jQ+kz||c3`kL7laJ=Goq(O-S!__1DVt*lCN3X=?u`Id6 zx5-YdftM{H*(=i`p<-2VVL6ie6Wd8xRpxGFj_9`PR=&}yKH`A!eBK;?^wKzcOT#0; z#b;`AIqkt98dW5aL>Uj`Tw)h=-t$4PSLOC=I)DUC_<_}erWnuX&3Hw=7W%i!qCl1x z*$w647-*qNIo+713rcd&W)eCC19FDKrk#kcly?rJBTnS@^_TD_i+Pe~PQnZ6hr$w8 zWI!+Wz`Mu$B*AchgkQ)LM##oFR6fAQ56f=EbQZljux@9n@o zABm*9#nO=B^t|F{BSYZJwXWNWdSQswV!*U*yh|~M6UHYJKt9zFugd8}sBq@oBh6*C6 zcz5k}2r#p7iJ(IAg(I{x$!omOKznNbTz(yFPh5KZ&Cvu**U9ERF+=?1E!g??@NpoY zhiVCaXMnMN-)@;t=+ha(`Jx{)-AKN0c;|B48ZTV$V$9HTs)MdyG&ojEjziMD!wa6D zS-}1GmnTjassrQ&!(##IDH!9OEgVjs%QFL1R{`T8BwwgZ+Em#AXfWcW~U*$P`<9p*j3=Z!#g zTl4%rQs<0du1~YspAOBT?}Vg1;qdbl$%(^AJzFhrMoPs1^6n<%yi?)|FQz;Qzl`Vr zKB{TR8z>mv_I@`y7fLPyEH{7>TnHH&cZDIkCj(y5XoCBPMo&`#U9i-=H2O-75iWU! zwn!(4Z+pIE6nYWQAonLa519;I+G_);80>P1Q}h7WuH9;_+~m;JYhAZ>-#l5Qz*UWH z<2hMfPW-e#33Qx3Kdk;S4lt4MS9`_!Lk@%NoyMe!&>gMYO6IlSwew~K#&|D1=QAGb zYlFE6s`x6lP_TJCe|LUBe)rOPS`Ig}XA5e8D&v z>XF;3;}e+_#4?uV>B1m16fvxPXrzAI+Zp z%ml=)G445nlNtyw-2GZ1S%v7SPJQ5vjX-qs+MfDrQh3Wk z1G&B4`3soW>yGyR5bSEuh51zFMN3E>X?GN}w=|M3+%Atvj7V7!Z)z5^%N!g8Uc`+h zUteym2iM3;yeGuVhxhPR+6Gi|pi`$RJ^hX(VCB73e1nDt){3p`w(1*c83rfoV(kCT z^SwjFF1XP-2;|!l?J{%r1jqb7=(mr>!tCT(19f{E7)N8UmlJu9P0W)E?TLS(9+JY_ z-7`IC1RC?d=aW&Gz-Q+puCf;E0mc{Sii)f(0paVzigd_(5vT{PSVkhYzrJ3s!09-Z zrwAV$8NYOU@;FfEE91hAlm!LB%H>0Z>M(VpYv1c#e2|EcKezhY_T%-@S=##2oFsUy z%aEKmA_=U}e#zEnOY0d9qWq{))-Vp{wx7C;5E}sAR_Um;g^u}>mzlDGkM?a*` zE(L%l2F-^h)UHT8-TspvRLSn*94#9;Z`e;CpM z5fltxG>LV9Py5kMCdxVS`mlA~R&9}jQIUDf^*A=qPpbh&E$yd%u)c-&%}RhToaNNH z$QA4Z%}_snkkqmQ2GMohR-I2RXAgCTU>t9alBmv*rAxy7*MpqI?J)OGe;cW=Rf#ib zJ;2xh7P-G5*?8{GAW}zqROxJT2FVwk_X|(BAiN;e)I95#n#0+9J=o6x^7fhTROJ3b?6I#mqmVihbMKxhT5}s9C$5t?i15N-?8ncGk8i;& zLa(UX^b#;Fo+>HhsUyaC=fYh>cnO@qz7gEMKK`uOfA% z&k5glK1cF}2V`-l2fD}rMYnQgpw2O@da8w8>w2o0fyZ?PkoyZx8F`kL zNF9l^U-RQ5BwzR_Td`wJXWNrhLr@3NQ>C0=eutGS35>%Cu6?-?hOvEjVKN=Ot_kQn ztm^8K`wMcVU)#aWd(*DPb__tL#55F(AsNv(FNqaV@eC7d#?P2`gNg`F7K1Gra)-lQMXgIHtV#we?ba=kskm)eFynVej?Spq7@C0YUY;C4{3skvaZb_y1C~`l^ zAlQwnBd}nLpE2$K=HHLD0>eqNRA{WFv-=uJ4E({A|4ckI@1JqX{L8pa!tEIyR9Rpp z;la6EQRyK5w9@$JD_iwcgZ>b=U+eZcv62Z;AcmKD{s89lt?A=&=D5R2f8EcU{l58} z+)UN!uHnk= zIqQ0E-zTweEX=#+qD8k|r`f>Sd@N$S=(&dD$uw)Vh8xJ)K{wjKg%TqnN;RY4`fIqj zbu)0yZ+ylgKkW&$e)$uJaq`=3nkk#VKE7-NAOFwzR3)#Z{I5Oog5yJLxGuXwSGcQl zpg)hA6_f7Of3CC5e)`pUVDIU$dMNUr`;TYW5N>lo6k6xqq$?u6_n-f71Aq6|J3(_{ zH5m7E{6!%ZlMkhm0=1(?e$dfS}|F_*^x%>ac%{+fJ zZuxvR@VjuMH)c;1{Qe!6KPKn=U&Gtz?^`tP`SN4ek{qnyC*iwp%M`hwGL}n2@M+q% z@u=yz$8jRdq0!UZPP>_Jf;Xx}tMqsLU_4V18I%s*;^&Qi{pm3;Ln!BbWdUUS)cj_p zGaJ&8hMl|jy!szId|3Z3ZVh2`1OY)gzz>@FXtP`bc8Z+ScAvWb58j3yF3f+18%t72 zYMEUO^N!Ngj_VF@X?LUjUme*Bd+%CbEBoty{uSQF=Zdk5LPU|#F#e&^XUAlI@!}B$ z%F=QoaoXcYRwhGyP$i34vb>BTe~lmDO|PFgu)*JR4VO`Z`5YCKkT^+%n2=j_l=yeu zy>G~K=>HmC{MTagHG9T62ou(DL2V52bQE^FxJx)E0}nY6=j@T6IAdPvFWRD_ARPIX(oyoca!ZoiQ13?DXi{+4-KNprZx{)+)rG*)#Ou-1afbMGlm#$tXybTgjj z*~ecA_iyD1?srQXf!#%r*7gP|&QKm~p=c@1JzKP;Uz^+8eBM-9e#;!s14fG1;0| z=WHn=$i4(-QKD#5p!M*=YUmkc-@3iPsVlW5 z82b}{>gdkVR%yt3CF3obs6Eil-;v#dUjQd%n%GVE6R9mK$*I>=IR6edd<-HN8(Rm*Q>Z2}18DuHs{eEyClMC-;MF>2{ zYqz6Zdi&2KtlT0nF59mxtx5iA@+#@l;V0A9aAeak6=d z$UfKKwfA4Y581>M3nE^(z8af?x_}AID}f47=v6BV&J^bRH-Cjc?Dl_o0&kL)K$ooy zfXzN3#S-P)?(8Y$X^hUBjNs+K2i5m|xjPH$y`C z1}hHHsfVcjP7&~-i1aZ|^I(`RKsc6~Y6KkF$E<2u)#3XJwll(eO#%JY9G$qH3XI3Y z``mbm9=1G)SB?!xQPhVG!lzvL-seI!16Asveb<0QM2yU`0v=3uZrf=&T?y~?mJUzs zP=KoMr3%ypv*54#|EtgGD2r~n-QaI)b=%-194j%|<6CrAQLgW27ace21^Hmn^zQejX@ z`)$c{oEw0WJW$8tMKM%$Wxk*ip7Bfn4SD@vo`_42|L|C;5}teCLhbW83)si2GYZNV zW9*O3eu_Zz!dXwnr&Sf~;G&VWZEr*{K$?i^Dn;MKHeq`z4>ta zYf2&^X(Qd|p?y}6l;5M`{u1W;xxcb=1PuQFwHVvs}f#ZX{zQ#|H=UbS+vzy@l zJ$~506GG<`-U+ss=3jU~uQO2Zx=jUWU7^#85xBPP@!P<`^!O0HzD`B2ue;If>xby| zH8*;FjcL2T`aLB&UOS`XHJ0dlyuO5v*Bt10U5(}=fj`WTn$djZ5+Uf_lj#P`+xI%GePGIm(aZM zgz$=fZIdQWGXjF1bwXkymD?Hi4;KQ`m#q4R|eUWlV4IKKzq0Ejo* zTzkF$G1L9yCR{{7!1LH83vOReL9a7P7&sAO>fNC=4j zLTs)MhsZQdkKjfC_SjZ(-$^^re$&I!(*yJSjW>pN^5#rLKn=ofi_3XjP_cKiD*uQV z98NB>F7EXQswev1oy-_QRqp4nRZEJ7b@%&ap0@J9gCJ!G3&&}U{k8k$t)<&{)Id@F z?L!=0y1-s2R%-YHQdd$9Y|rQo1qr*zgz24dq1!<%W?9(fD+JpeyhK}{pc3|1y6eCx4fwbi(S?kYM<`H=_oOdywGUy zKH*!`M}gOWt$!Q+oRsey6mb^@xCgJPjs>#9JA0g5!BchM^PuEBc*+T4ZLA!aN)Uax z8Ig!RHwCx!ccY#EdK{jhOm8~j2@8nfAyIr+=!R`0L#7o7d`uZ+UB?(ec~cK3oN|YJ zyT0wdj-|3~drcMRXPbIG0Oe4+jf0p6IB}&zRu$2`@g8J3-n)Ygz8e+s81+zwR%Ip^ zO+L79+ddOVXBK99dDzpXo$hMihmu&DpAZe-0Sn*h3JvRXLNx{xrci7qh`M9O*TloM zZTmPm@FVxl2LhMY)`r&j(V@5-H$e>6} zeZY%q9a@JGI~alH1qtSWDOq6`AY5VxCj-E( zzN1`E-<*UUXkLg9FWk|0mJROjPMI0JEdYMk-tWFIJ#Et<<9G_5uDOVBZJ-8nuG-FA ztpVU7nipz1r{vg1Mc^lAQQUnM6x+u85yI6Wxx)+;hb~iLaoB=)k~pq?i=m(z%?kyI zZxjTu>>$xjivihAmu>sA+wviUtfV!ZS>AUT@0lsgk=4Gy&gBUXcCYioIP18R?l*hb zCox*hVurhIJjNRpLq-d>$bM_nnk!+}z}&jJsi{G;T5>Lnyq(=`4hJXw5Y7C`> zK_L7jl_d4hR$W5NKjaBj8~g&-T~=U}tD3MY4)f_$5wUnWFQMc0Lzne<{ZM*6 zUY}B0kJr9z>-mus#h>xfhHl;qUesuFFa$*R-^u0_MuHWZ z3MG}yt@kGttiLo6xzN57l z9^eq4ZY+xm1ET1B;W(NXWWw1#-V$=%(vM%b`M~+l0Ii$)D&&w}TeE#aY>n z8!rL(qVokDG%tL3vVSUzdoRZGc{4CBD?1tK2R|ryAVal6Ism*eh>Q3js0*FZ`2uiR z=Y?HPqIk}0|ad*}Zw0&fJ^QO)gyx=vGC46iHJka^VeYtgB(8X0+f=7_LA%=fc4+u)r?p*@r zY0;YRKXYT;-zJ*5{8GLDe&4v;|5db>10TRGB_(_l?SL_!Fvbz)p2vGB$^%^T8tq*m6sCn!H}B5y+O~aaR(nJiMg2h1 z7wJ7$pEi5bV<9SijG>ip62t~GJd1g5fXQ>T>({kR^YBy z9Y7uGAcs;A1nn7;at+U8 zp=ClgnKr2q)OnCHz8W3_sGM8c0|R`w_zzQm;iK&tMdLj3onh4Vaf3VUW%_KwO@SS) zOU6AH9|*bZ^WSi%ZW}L?sOf@MuL&4c73engQ-Q5_74cGq-NE#66`S}y%#i)Zi~I6QSnvI?l?Jdmy#HHC)tMCbHaV zzHR&b(?wE?nL|O}ynIcWP!b>&YoFQ|S_s}hShuH3V;u*lZ9?Ye>%X_Z8PjpE@~t%J zW*-83+fMT+aMFvTZ0ncU3g^WZ0eiqV%{bEl$DPHk`e%y4CWt*UX+J7R` z6ijJ(6l1;+#l32m$Ur0Bz`AhI48a*EZrdL+=L;?eBzj$7HiMo)O$jQ8`Qc>coEv}S zzw3X86Z29AK07hS3na|Bc&T(&?7lRYz%*jdSH>UOYd8fHi3!UjK9CGWIU|RnfWxEo zM!1@4|I9B*$&Lm6-DkGMo8S3&#G3wM8G$Lvc3!iX1o2x_?9{3lV$W=kCxLZ& zj)zwOiWptI(=ECeUU=u9RX*D-TT-hW-yv>_3+zMYxQG@i_esuUUEJ zCol9Ze#l$n34wz%@wIwf;wgDMnY;*s#p_(LPu0Gn+~U6m6C#hOl{l!|=tf?jZ3#MZ zlj)ZVLjaUGpGngf0qbU{d+}i$a;?z6bra80dT5=vpYWgSA!qk$$e+aPltdeo zwRpWUr{83Z#A|bU^O|5JUf(=x%$JJ9QLoVCTva5#&GdYIyB4pR13J0Z_$cRb8M)3M z@KH~*o&6dg&7D$eTf?!Ca?t3~mW9I|*cDUk6yR-~uyRSdIb@CLIuJJO2sZqpIq>C3 zg(Ex0ai?keV^EOkA#s^nn(Q@uuvz&us5vNr?oIc+u{*~=qQ2qH5;Fjfx|FTha2sDnRTB&Wq8$g5cm=M1Hw> z;RtyCib-S6So9zJI?l(&m7wPJTqiJG|7hayP1U`u0PBP1A z$(<`n_(KjGoz{;-8_3Z6t-Imd1LdbdX7XigG=qsJ4FxGd3~DT_Q;@H$+Y zY$zOr&b=#(>o5jN4uTvcj^RWS>gl%H7ol9UNZ08}MR|73mLdB)X$ZGAmB z9WXY5tgq?%Nr%_s=)UxQXI7E*wMxw0*OJJ(cc8$}9_N47*V?!>^nVhs4>eydUW?cI zo)(U22#%Kc?&kdnFEn~$n?FV3^(W$^BWv;6!eWKJ6p3%RF%duWBmdH}?mx+o_?4Lw z*7ztI`vdKoJqBE?8C?iYpL6Sja0x^3D!X5R=8OsQeh>p~9}-uv;s4Qh{MRCkT`-QP z1^xX627zX%&m3JNJc!?>Z%6yB@xsHST)RjS95)Hi>thj;@ZjkPm1}$X|CwJiuTI=I z^m6`ZJU9CByJMC0WT;k$sra)p+V_h{zF>3Xy3ZOf9IRngbVuy5_X9S$2u>|QV`zjY z^*?yOYxj5Ge>aW)Sw|AeJ@+$Tz%zdIlNVySE6)AD>Q29F?|0vGim%s^tZLWu1;dne zUU*4LB+ZWSgn}Yj@!g`iEqvr6q*gme9tNIX#CP`G7Y-(h&t2wocLBz8@#eF&dXUt) zVn0od3wYb|Nt!n(VcY&`MdQS&vlki;1p}IV`nqBhBj8I(n1M$>jvD=Bd|0K~3s98o zXTF~mvu(UNv^_ua)^U7V8;`RtB}2-1UYoQN`yjm>jUh=v3iuZ0pHRlW{d$(e#Q8J< z0w?J1GmP33x{S)`bUv9qcmzK6JAXpHjtK}69O!&_h!*shX!jHHeejbvRG|&-Ha(!1$3hoIzHV+BRf;t&$K~*@MK< z!dAP!4rG1ZbKkgm@PF3V+9rP%uM1^{e#Yy{jCh!g*kdwvt9T9P_zPPO1teaJl~3sH zh?ImgXS;;6kvPh$)nWbx$&U^Tk1OjpVP3DZt$Q|>Q4mW=xtvFH6) zI^iD(FK`{y^6rpU2gYZAEY9Bgw_Yb|bvs#We&(O?{MEeJ{CU&Vw21)kTd_k&mtuB{ z?S;z4ktO|z-=@qJZe$|%T_FQ^&$ z|5cuFiZK6qe}Q4&g8o_^iO7CEUl7CA{>cmWZ&p>-cw)1ENG2@=0@`grsfqHaReK_o z>$2&iaxevv%U_g?&YT1CyZ7*u40=FyB}IoL!I}|$^zyxAcoAHG(;w~vcMDiJ)+>2~&Hs<-xi#7zUNnyO1Wtdulo1J}&8`gLoF(I3^X8FE;E z)~|Q5gfVj320<6iqh?x2og!Z1PCY>Kh25383-kytR1V(%^zMJ^*E{cI#r{b>-iB`_Zk&QtK*o6g8Sy2FL2)eTMt3ufj?Sblljm8 zTwi~k<{e$L$Cg*hc@5{eYJYGFvc4Ye8@pM9#8G+NqxGi$v%YT8r(pk+c-?bCbWs?I z*Xj8Eade2^8mtea@DO`06kR2}h2XRvP3>Fb1;&@Jn)s1;oomQuw#G;8tl-_B@R7`z z?S(Zy5`7^MFoKLvze_gn%aMMR#;%4p)`&d~t_By@aHNRUwQI72{@Q##%>IMKURild zd!L;Osa0GFQSTMb$1%{7VVr;c>iS^&dgn}nS`dI84bSZG{)b0J9ge(We-@*cBG#{h@diBA5+SGJ9}Xie@}MI{Y;)s<;|%ecY7 z%ih*pX?=1(o%{=SdY0j1E3ZB~%-M(!hWkF(IKGM4iKPdo(i>-Gqs zaV7{4;L}^jZJGc7b)IbZcheySVGmp^VQAs*H%zx@8aLXzL&AP|;47bac9~$$;4xA0 zp|-+%6EqXRibH1UGjA@&{k=7HGc}L#68!ukJ$vx097v)$C7}D^C}g4g(IucH4+{1q z%-cUc1{Ga`ac~hma4kK9;JCL`C<@-bp#4WNuP^5fHsrIVersg52r^#7QGZIGkD7Od zN{5}l>b%hfk8Jr~I~`>QYUa4@jJpNktffc$(BXgW-|z#bNB!&O;(~}htvT1m)^O&O zPLj~ox`48AMcXO$y&#?Pp1;|U3@mmjdadbfB+eU1W*mWgVoSXF9WF(Go(if;So|aT z&Iwz@Z#%PGifj;j2=uTHj3YQYEVl>~&U1i{B7uBAT5J%sEbh>I-$I=7M4hy3rv%1$ z0%3R!_%o8?Z@NNuVUP+uFQsaHny_ z#WPkoylT#(4$Z{h5fAX)f|s|jn%4Uu8D2Q3Co_Zcgz~1xjE-er2W^c6#QjZj@JJVt zSA%ji@;rCv%DLI?KM$0K#%WTOHMpds57UJeV?N@Qf`J8>o#`a};Lsp7NuO>cd^btu zYsR&8-{fYye|N5lw#N^R^F`&V0k>)@$hl=r_5Q>$NpL1teC8eT3 z7uFZQcitenl^Y3fzUfQ=mv6m#NM>XXqJmbZ z%#nQx8|_3S9+b5c-GedSQ?AkUtioL=X>XCSHGAqT+A`K~@_%$c@OpF&+*7HEtZS79 z3&B3l3n%=b0Dn{;xXg;0uFx#NE%(?GZ#Me#t7A&BmnBEq0BC;kOb92d$iQOdoZF#uz{b54*Z=ZbO0yvsW?fphw5Dv2l>JYy7hSep5sj3$Yw)FRRcp?Kw)ec4~frPJzN));< zzn`#+`B2Ylm?b#aBu4hpwgh>fo57F95BYGM4>W`#?{hyyCU|GGPZ;nWQmeij9R$Di z1{`e3j=YZtOYN|Y5^@VGaJ71Ccsna^$pf6 zRls=j@;7%&=`HQ=dn~^)!Y2Zr56WP-*w6!K&zfPv)7o&)`yY65rqW<=I@Z6lA{=B{ zMOv*;T7!*o{L>>-vvm~R<+tFttv9vFl}s>Vr%r1TV*(h z8{G4pxq3@~F~!ZvGdNOXkpZRHF3wF`8iA1JlSW|;zMwx>S(bL$6j~{aFH}NP_-2kb zOy#Z4w(Tn`$bVGU5&@mEe5|SxY~WbxbZ@jyEUZw#{_6K#4u)Sy;qN>v3qtc^?)uT2 zZX1tDu%6_F3OC3SjU#Sdl!U7n1;WaJF-+y?V1B4X4EPSSJ-78c3TOx9sO_weY#UD? z+pHBw+Z~?XvsnES+XLRS@VzfcnGW`qx9k*SMfMqY#}$ne*}~jJ)q?`oirXH)4PNj# zd)X&OV;c3jhQOrssT5#YksnSl*$M1byM_-sYC07_>>=`gLdyCUT8k?{zMlK^fK?U7{@9Gius@*Z8^Q~QkK2QqTF--% z$w!&zuSCHm|3Z1V!whCK%C684nStow&Np|yD{mXmSJ}3r8sP=^x@|n{t0erU2rqmuoPLk1p$P{xI=#x-86ZCK zqi=`ENPru|gRen7#1OfCb(^;d^Xq4`KOeY_481{kL9^)V-I1h|@Oy%Aa3*02z%%Vt zN}59Sv~-)DubwuCBG0Q*yg3xMZQn+|u)z!L#Hz;m?~ek__c$dZeJs%Jb(2Y^krW`Q zV{eSA-M-%8Q*^#?7R?K;W)mREJQ%z^wqsT+PX!(kI*{4ZX$>l9-*NZ~{`;KlWyIOA4F!z6%gsh^0V`RM2c%uV#PX=fTLN#`$YJi? zQKbXiSbZ}O6NQ4kRapl2&LjK2?T!q6_d_me4FBf!{3wSfECEF`V`r2AIef;~a$G@A z0ep^T@;Pgz0n@bJry4?bI5)g1VTX?giSIQpgo-1b5`oDo{g^-R7P(*8mW?JDo`3ur zcL~cKTJkwpdB^j>cXwE&ea5&zw`T1GKD{!ypQd}cM^zn6Ko1t#-KJ1Y+Io@5-5+E7 zG-vQwAF5=4>XMw`=yC`6q}yg6cKIQ2LB;;_4nGROPkh*5DMTOQ&nw($QMTODz7INI z&_(k?o#(+bK2c)OEQ5Cb#^eQR!WFlVXTLvDWg*(d6irGi{bF^Akvk|@Ims0YYjQ=YrJ4$ zeNyqtyd`jQO(d9HH3WO2(k!mZ3c%~`j?aoxw;w;}mmZ|Ahnz^zb83akMz~F=*u*af@>=^|tXocum&}Ao;?8#CxV}gcq>VHDaI3dVv|7 zJVxnH3_zJ@3NLp`7uZ-lm^^v&-}>9;e*f3=Gr^zk(cB_|HTyZ|u37H@i9|J_b)n4A z>5AWew|jVS@?I%Ds}LFBuDV#*=SjM4`$m#-cDynG@Q@bqXDd7oph8c3(d?rZ#2fE3 z?Q~IsdF-yZm*jPT$1ZA~I5%y~@zQpmc}mU-PPt9y;?yg_|LTX0-#vVw9AK(#0#?l< z_FoQ_1M%<9WSkjf=Z5XEwB9qNdD5_AvZWQ<&L0?_f^jx+X#`c{$T&?LocJ}{c?Y!f${Qme)W+IV2GLw~+m2n???;WyNlx!h; z?-3CSk&4JFquj@+l!`)%5K&~$GE%?GCw+gv2fxpw@15^o*WuI=f~)a@RXc%KJYhB@4U z%sujAAIlKn{QPxKsxv*rAGw!lj=bObx1aq!_AZh6kKxMz_Mg{HhVC4P0t*#Y$)^oK z@?>Gy1umLkB^fU}fD`RD zwgz2hV7?%?s(&mNmYau}ipK7J|Mg@IZG%j&9wZTKf2(e12fyVRt$H?kz;(}}g8P~_ z;Ay$3HQ6_R;QIafRc4{R^UGT(EJ{*u(E^{cSThN120%kW+D|sa17oTwH41K1LmaB` z4Vyqkki^2&gA+Q3@%@9}5W|TVE7y|El4c)u*BnVax>vD^iyMny!yl@`dAu|vw0bcMP zQ!qFig|S}Wvt!o@YR`ZbwaUiu9L(=O2o%>`Y^l!&M@L(pDPD~PVYIcHlDv*kM-q$j z@Q5(9x}0ox&o>nEXuMZEzZ4Fcs$b}RDRcxY4DK&~iedhI9aYkcFS$+E00YZKAJpAI zFwM0P{94%-Kt(l3Q3NDc27({7)ORetG;MEa6QOo!}7n+pe#y;0{wH_&i|Gz;O z6XOesH#DB2Kk9&-xbeq72QlCOG^)ulJO4xvM7Fw+^chP4;`>6R%Z*aNLgb^N#X}i@ z&HK5*#KI4}*L!KLpyaV@yoT@d%i=JGf?>9rI$Gag(2~G)T+!k@oY~F`&)F#Wd&*6q z$wt7b1CKDzUpwOf|L{?l!~NCZRz>kUT<#L^yi(W4LB9p+FrZlOA$g&NR?9EH{x!KtzHQOHED=CenU=*N5bV_6DoO8N78= zUpn{ec>yg$76@kmTV73DWyXD)$yPiS&*L!4uE_(tXNAiN(8|>-4Ml(3pX@9Y_ zfA4zxN`64QF=60?b7ne}i4F?BtLhg4qR^Hwx7-uS3#5f6sXyN60C9=CSB}Ke@7cb( zES@8;>O3L7jhX;CgDWIDw?@?W0^x%$D1(Y;?C|EZ6oY_^@zA*qznhB(bAR4Bo{8OK zxxGTdusPb6lZiwQVjE|*edaWUBHQ&s_I6%SOr;hteWSK#`>;*uPh@?thL>yPUzseP zhwJ&#!TUL)p~H5)aB({?v?hC&#nmQatVej=)yC2rxj!vw)qn2ldAQTwKebWM>Q*TS zLczei{kMx0NicLHgpjn<8Ze9IO@%s`gR`nZ6AeH8;m0+-n)C!)7_(o`ls3);42ezL zC6vW{ed7MzGTuYe$v{B9cR>Go3M@x;ZYHQ5gGLXo4LJ(vKu)!?f?;|WC8=LJ#`ZCd9P+rpauZ0nP_?nMB*9{K7Sw%neo%Fi)S0M)1Agu< zM9rhHV0qoI`SlOmznfoE_x_q+OW9WmSRwQ4hi^p7$d!zM@EPKWSxal6 zALMb({s0Z2FeE5*Kv4pr@4w=8=U>L_I@MqCdP6YK;vN#O36u_H>2XPbLTJ6HDkBau z<|0y9u>9cuepS153@NX<$_d7Ho%GD&8sE@H{dWU`k}TY z8Z^KARWG=0=Y>;;YdEF_O?Q2N=kNWg?VFrHG0gt}x{7pZagNr(vvIZBQ$4jX#Au(p zF;Xu$pP0`yLGr@nS7t8iu@8IJvxqC&e7s-{$oainpEVo9I1zWFo3D9+k9&UAR=seE zYz=1v$qQnRj@PXv%rW-oo%Z6s=sow&!x;$QcYKab;sQUk_MX%JNefy$<+)gpdclB^ z*P|H83s%)PC^8?&?pcrc#AmJ_FZh99+6QhQy5pd;;Svvl*-_vz#5&v^Jcl-;z|D*a zqz9L&JBSSHwDzpGOxGOrzQ_=kkW9%$78$^D?yLBe$UG-k^kz0CQZJA@+@9k^@`Cx% zb3e>H_g)|E?BD;kt$*q8gglnKYDk8U zd+=`OCLco`F~3Q?D2jy|rTY@1G3bI`<}Mz&Q}3~>erv<;btETp2j7dB`}*1qL4&QC zY;kZbT;QGZOR=#8MQaNRD$V&oXY;)m<5(#8H~s(i@2|IYa`j(L9MBa5EVqidxd!5p z{p0i+Qly&D+|+H@z2h1%JxjpsvYxzWy_ehe;BV`kCbs2Z3-*Aib_(83^PWJQl~{J) z{Uq2d-EwA_2lM;cJMBK5MC3EJs0!?7yRIbTi^Jz#;rsM1S^-z86-#e%cBsFZ{Nx6b zZ*1+@R3upV_H3VQ?ObY8O*}Zz6+9Dq0eSjv&6rcq&JT{R|I&Fnk{WWpzz)`}eDhO} z-1~l%EXIw8Wf|wdJ1;S&Xg7bbKoz5Wf%6i`wfJSv*tcIgBBH6iU&rkCY~RlQ{cqd9 zxp^GxH~!(-1spE?hckEe%rE|1kk&6Q8(tcD!$H0Ra6g1cOE;<&{a5#1h9DAyHX~i2TKkZ95n6~29XMiJ$g3(_jzB%wVnx4P0aVV zKA65VRdj_9b!=|XWlJa0H^RAm&L7y6a9)XEvxajQYwvq8h(MS37bnHT|L^{K2YQyQ z`vREnZ%spyrqPk&pQkX4esE-kk%gs!3N~D+&9l%zI5n3m zVppA0O2ruMmV>mp-UJy6FxgrAC$QP8dMXb1uc_&R*N~`}psLKw?ZT zcy=V9#jrFDm`283oBL`6W7?ms3xvr6ce=|s{hEfLCfh~yTli^=ub%o+$G%oKP|xoA-mp~*u4Yq@-kQ+>#MApZ#i%X!td}jA**uTf6a6vb z&X&#q-^&-hT{nT3`ZFmCrFZCy@}2;8+rf&eNqgh?z0c3QZKjo|)Z{>mq#CDOrVgCU zTtca3O`%ESf=}CjZ~-uzN=qg~_iyPy8sWBwy?{<#TbU{g9;R0woH z7&^l-!Pyb6wJ3ItB0BGR&iYqlr23T^Hq@Yh(gx)SPN?S z$*tgI+Jmw!dum|;VLqbM;i)=!{s89BKiKU5e7a}94vZ?88~5DUJ-_->zYw0PdyeOx z3fL+qjn<_e8b;hiKTGvxx*UovWA3 zL;T}UzrXYI(%bF|C9}eS?$MJ&ue?8jS6)IJB<_|dkj2h~Pb`c!I=z&uHyVfbUQQes zwu?hA6Ra|iKAT5*X>e(fPU~Up-&dQfE|TX_!{ytStA@8MQM{S<#2}{tFd3X|a%AU& zjcHDa=HFyssaU!TTR^8{ILsuYqn=!hl^AoQa_MQi3IfhU^Ec z3=y5eHs3C>@A-fu_Eh@AR(|kZbU{N;NCl)#>dFw{ETXRSlD@7{H^A6F{zodc7RIzt zMDt}mVPXP$snx#95V1#3e#HMSqVsNAk|n4&9k5^btZO=^1`l~-FL9iS$`)iv{XEX`C?3stj$aNJ={JL*2f-SMJ-6@jz24H1RFXK*9aacb zrIEcN_T$oLe^#MW^S@y{zc0CyFPY8xv$3FPGQk+h3pj!~^aWyKp#PoOxr_0PFlvea zosRG#x=HR(dHIF!sBtSso&w%A>9X)^vRva5sGaBkr}jzx)bmel@mp29&Q_QsH6yChEY~VSqlO-Z$x~ zIdD)99|`qUfFv9$eVv^O@UmRsU4mnh82i`G^Ov$_XhqNZ!}n7ecid}|ftJtf39mao zkPEqCDwC=JjTuxG%;c27_fJnQj&KNJ>|ZAur@VcNI{c{E2aMmtwGLIIlydV-~Ct`GNU=*Jc|oI!zy9mkQIxc+ClSq>BzS5X@zN8pP^4Fce z2tJ8no3G_DLVCaFp-(GAF!nde>HAC8Zxz6Jv;)au4nEiyV5=&zst&*2E@}LsAqLDG z?`0%T#(@C_zt_dIR*X#FV(^ZhgFWM4(;?$UzffuWN%>oPDm1Iuv< zd0s1yVB6@nC1ZtRKVNzfo=EMAZ5s0E*!Rg8BMsJvQCKPQD{b#&3^EqlCgp*^OANVL(uF5%3 zpp&Z4)0H9hg8dCC|8^uVc%+=EB2&u(Avdj0E#r#JU8DRG+;MiF2d01pMFOlQ3F6?UC3rg||(OVfDvNiat5 zL3ZSmOThHZ(rn5l2Uzvvk}FB1Ivnj5&bByB3n)mAgx`@`#<>4?o=?X0>eoq=yzo|2 zJFjme$;aA zz6C3!UU+S8)kuTn1u0*0-BmjafF(JQ^ZD`yig1L&A!}0zx@Mv8Y$Ee(8v4Px*@u|V zuU~S$TX90>*V8l9<)OYNCDu*{$B*A1|&bc^EWvEi(7kuJnJp7=F z`so(t2xE=PUhcms0#hiv_iH(3VeD_qK4mUnd@O(#M~0yUQZMK&Y|2M#i2;w$JWqQn zchta@T7OYPX<)cSxsn_l3*tKKQbTVyrjy)?7m6<_0QF>~JdabAI3j zgKSRPNCE8ABTGz%nvmlP-E!8VJaQl7-ujpV4rrTu(CK{e0C+J@G@TZ(JHG9_K6kb~ zI=^c75T1a}uB6;wka{7qk>Xw^k{9k9+Uhj~B?E(H5+@m*6EMh;YyQ|b9T=g3^PKPw z4?1vKFwk^iH?L^t@9%7@xEhT` zbz})GgEozSzONlU6g92X{8$?8adn}D@pUl9^Q8ltMsK*HLs88f*qd*VbtLLbhTOTn z2Ee>pgGZN86qsu@53vUuf)8m6$`L1z?;5XT_R4D2qFg}39(xIT86)q9?S0dc84FPM zVX6myETL#7W=?jMQ2@71%__=kq`SVq)BZoTc?oWNzE!k=?UZGnY-MWjg#d@t+0r;* zSDh@cVZDM1xknS=-PDZY9Gu*DQs%&(^^9-b$nl{~hBt}>u~{kO;YVY=r~54wfNDU( z4_|70Xq6|ytx`h(u`c;OO>ca(=ltLlIOA}tZVhE)KKrER=sJq+`HBW)?QS}!^j@8XkJJc zOR9M9u?$$NFHJvT9t8h1K7ab$BPc>7toI1uB#(^!5<>$Hedg8~AE$y>j#*JUUSWpU z=?R(Ovmo$;_vZW292CZS5~|fUg}QR6(t*>p#ot3P9*>L~N~Ym@Z?r+bMfZMW9jRr# zw7>cqEie&K^D4>MKwX_7Bm1&Q2L=s%-W9klqI?}sem=Ty5p}5%oMqO)d_5$D^fKj| z5iN8za-Kc!ZHvb4C7Vd!&;gx_pZrE&0C<^axlf;S44i6*WTyZv4gco=jrClRU zL3`Vv!OOyKv?KecwPse#<24oKn&+Y74OG_+w~E52{2;XaOe@b+9IzD4Z4)t;2C+Xg zx+53#p~&Ea`AOvY8U6eQEq2}|bc#XDlYLh(f8Klj;74*n9D2}T(twA0n+{07?LTF0 zDgx4s`{e=_Xf-SO>D{yd|u=JWdE zB1(ITzGnzoNBZuUVt*E?7mjb9m|#Zof@aLI$GJf!aQ;NT7{&YV=(!^6!qhAwbf3um zO^!A>jN`SvXAg^Cs|rewgJa5%SQ3VOZ>YZD^Bom0`Sgp|8WC9iIqgqG)Q+YLUb!WN zA_5@?MXRQ<70?r=eijARkr?Y;>k4B0kQ9x&GL|!`dhQxHeJF}Wbe|QZ^US(TYT^pr ze(;I$iyjC2_|+C>!_MuxUP&2Fr6uH?gV(=(JO8TN4OSR>&DUH=0o@aLZc+&}phNOA z$($ zo+POypI3r!XTfpBY`#6~we556ndVFdwEMJffB75*JoFx2d$i~VOzV3U3cBzBQGd(V zh+|T~vb#G6ouj*FJ>5m;A^SCYkSo=t?4(T&y@DU#`}!IeytI@4YA>JyWTZw-$rgn{ zc>go=#ge_}2et>Meb~gh(8fP=mZm}#PNoEh;vw%1-haex+DQ|@ta5(yO`8CiL8i!? z_hI+`(VgS-r}n*gy87u6A^4Kmh9Xv05E9>NnpSo+fNh=3vDY}&AYOjFJ-@Cuc;e1j z^1%E8_|xz0{QRqd##^jB71ZTk9?E+?Q5ffkwv7&VofCoRt^!?2U*!J6TECQR`F?g- zT9(<$hSUoLZNBH(Jr+^j)>BK5*qnt>r#BrjYyaK2@SHwxCUcr}CLzN1ed)k{4!@zErL18v(heoQ-FR z4}i5-RRK{KF`r-4e5X;jM&{Qc^EuOk$ozUyL|1eD=F>KYc68Uw>~!cU%;R;kkwKMK&?4&np#_63BwjCt? z;{c&Hb{x(i6%dfl$Jqaj7^rKR8C=mJ0?xu$z0Vi#j&D2tYiIk_$Jg;QkwWl^K7YJK zcp*?=`^FQ5tRvMv4_uT+>IFup=3(Zg?`VRJ6j9FRbd2NkPQ9J&&q`JIs|Pe4!092f+8`RP+AJi?}z@@`F&iVljHDpvV_&_gAc-p%)#@py2as9WuU%o z&zWrnV!&8-+I)P(=@KghreLS{!s;qOBReA{LG*NSC))nE8 zmi2v;IErvVr<-U0;l;|g>8<|_FSdN3B6W)wt3_Jqy`^K~lG zIzz4O9qAWYVZT@me?hoA5G=ndmwApAv~mnawVS%2X@{PRx5_GG9Ou|yw7jV6R6!p* z+9J#PjyBk~X(`dCH_>LYZJ0qa8t$v84ksce39!w?r`Fo>i3Ms;LY zeEXB%l+$EBz3u){TFd46yDe_(&0*Jbu zNhb^?MwZacE=iBxdA_=&s!K;@%fK}2nu*J{wI=oMO2#PR;gIr5R+g{Ze z@Z@vlF`8PNJzwuj+d8hiysBp&+=N=f@xF^v#h`m%#8+m$K!9p`X!A)R79Ld5E^WBC z_jt{_ZIAJ`j&hvmtwpLRSm}gU^@A!7`e5r?;=~w$clyo=Q5Q5Yp6~AL&sLhe6pczZ z(Ei5UGc@ZAFyQXK<^9A5_Dp`ZNQ+c}Y@UM-hV_>L3hjB+r8JDJMH~%+bxQ(d$zc(pJ-xU*&`g+IkReq`IDk( z(t*}Y>8?ohL+`ss3&fdGE!C3$@Kky8PyH27RhMV}AD*f;b>UDFC}E7_POFv1jkZ;O zbot9foG!$kGFuOAJSBNJX}W(>jsf8>4_aF~zbytvNflp12~EI@$5(jEJ=ZoEZN3uqloaW=B9eQGiHJSaD&&HWh>r0|I6gw43one_My(b*{l}l5 zkTaLvT4CH3-~Qw;s5R18XAG%PSm_ZsR>=5dVo$EIwCxI_qhh7Q zI<7~!D?TJ>^rutg%LCfuty10-3{bT3%v@@-IK0)R^Wa&mHaLD$_i!$O0f?}z0N)1p zz8-=<)uyN1lLel%r9L~V>H&ewRQ{4~GOXr*hVIYw1ZC^k&kv4X0Lhkqx4!b~|EGWc z)DOQu|C+@4jK9zUP7yc9tVP}0W$*9*`?uqh(8TJSA3`AB*MO{t2)Ff1$*YkjiE2>x z{#LK++YCrfnpuaxKLrL0-<=s)PJkJ0U#~wel>x(inM{0#!Z1GHsdKSM9`u`lPwPkS zR?KCA)N+gK3wf8}kbUZK0&hBuK7>oG?G+Ego`f{u;)5 z*@HA+msPw0o&1-{M1(7q7uz2Fs5BQ26_A@##bkm5+RRF|(GgIp)aPm|Pd;c=Tc#|M z)&tzf##x#KFy9|JW~_*naw{GNN4Ll@R#`!Dg(1ysAve$!eCPZe6+1Yo9x|uLrUSd! zU-9{S^MQ~jkw0{KjDe9YLwIJ27slgvIy>}zcS6rpm&?PT*?@gc3E_-@E-LQITWdvWTZp12F6acx@WNfPv z8sKZgXdIVH2&BccmpoM-0SyxvC^m;IcYXig{P^Gg9x`OaT!rvdyQaQJjU(K=1jd!~ zaR?vjpho0NT7;)+`hwP?3gM|{;s!-3{SSDm3yP!>RENgElwFBr08b+9C<)L_3`m1k zoXxY&g*D*NR0fs*Y8hzQ7}1+@uEx0kciL$_$M3YtnSgKxlOk&HlCqp8e%_UMROLIvD;Iz?1H@!3w?7K!E1B3of4uuluXv4{NX(XwaJCtqxJJ$+@%m1zCi$XJIt&sn4P>23g7vp9si=rt2gF!U zpdd02AfyvdtoT%jv44l0Z@-gh6#zmiP2U(G+*a|otG){!mB94)m8U(aY4FVY?3X8V zmqB=5LwrDPBA_OAx0V&LhEgn#RPk?I$GCswA{W=yZu-G8HG9Tpgahd3IWHM+lncqF zieKXTUjpq{BX6=eg@N~7pKkhx6vED=_A0Qdj>OlcV7qQ7jP)LT7nq0Nm^2x5hsQ)6CLu8^I5l_ccmcK{Z2xBT>~Vr{8i{!y`=7j99Gi9bK42c+Iqnyu~Ah4BSoQ{&qO$YNz(L+u#}q#rHCb$FTY z`u@)I`BS^%&5+{^k{4LsJmW$mJk_TGk~6DYJXPc8S`QJP>e7Qbxhi44@V;7LTAZC2EHjM#d1wE&-KxcR zoREd0QkD-5(-MJT>BBCp;@+QbnDf$h>cw)^=Y2); z!ZkUGfa_G@K$9Wq3olkEj2ZSpcsr`F30;v$;cW~!^;n6&7l`b+KP9&71(EH%kTWB5 zHtRYgB%ItV{t}LGhT|fLbY__W$A?iZe}C#d_a|z*ULf1f3k-Pi7Cz7eN<_!>WIaIM zFH6-gNxWYXBs1Q6_?Sl;W4$z^U-RqyznowDZO^Z-*N4{PBJV}G@a?I0D>Af&!Rx|BU|MJNS$=i^B*^H^{InztBmLLV5~C)NJT}mYjM@idf0GyA_rYi= z4cxw#Guig)6rj4*s$4jO0zcTT6ds$?LMs1$x3~2UaBYK1p%YI6ajAPQy3Z1y9*nIHAtN?^oxTJRl!u{6NKq4ZL!_xqXC;05BiQm=E;0~noA_k>OyV?DjjzZys%%MAdhfN0L;8c82$c+PZp|M*l)~2)y z#{IuDzR*-Il!PGl0>{nD)HNh8oFowZcmv_7*45%4T|juMM@i4w79c#;g`+HIGyexX zReHCRf(b~ykee#rnTzCw7d5g^?^cY0oLN-2k9-(-GfWE(tu?^+bd2vr-7EHNU;BNf z<0p`M;Yh0c=LRG%IPiRK!6C^8LrMEJ*XHh{pRX7)jeFQbDq=s>bS~!i&v*7`^`itL zQKVi#)~OXmk-UI=$FBR-b9bn9XET^=(-EGoaXUfwjUDKib}9)_?|uLEZJUFBQ=Oh* zf)Lk*5XlQ)aGrc$+s6YL%?T;K;28j+_Lbr*4`NzSF*AY&UPoKh^{e zJ%Ep*TM4AvkFpDE8^98sClNQjHqp!9XZD&wM8Q41*9&Y#B)A0mdI3ei=>ZBfv1 zy;)YBz!JJhmGn) z`?1a)L%6MNCIMI{&nAHp)-UffBJp5Y1T)2VerfO}vaF-YnF=uW_8zb}VFn&|u?^&Q zq+r~i=c&8LWq<`R_x`AdMmT^npYJ{S6d(vhLtkEA-8cqWM|h-2T(`KiQ*6haL*Xmo zNhg^;At-dz>fo9h=J(SfAq`#WiZC2Xl5xKh!b7E6QN%JB4D%V+F{6R_n4cg{^a zJK(-KqM~*A)Gm99+Md(>M4qP%&pUWbzSs*+WLzFWTZREK&sRl~&BPF^>wa;|VdJ(+L z9^w;vV6r>m8fC6NDERH!0JSc7?R(KR^wkCMx!fS$>xwV<^r7F% z`<64v3!_{QtW3hVe}?k7CY~D=0PX|migR+YK*#uaYx_hPV0+dz<$2x^md6LDNFp4V zhCmb3FDEX*puw{qRShCgbl7OM0C#u1`ICRGa;EWpkUtB9)cl%ficZ16w#Xy%N|&J2 zC-@d0-vcr(l?(CW>4DPTV=}55I$&`-UPt|9yjEcP6|eEMy1%X=ob7AuBUk&8cs+-u zB&JM@ydTXw$5)ro9gt#0jMAL61qusa7Fh(yz-a1=8eM5cjK|OMjnLFv`oo~dSR7we z`7`R<>%{BPy@_DZ_Wbh~iB^EloH#*t^9@Sk3VEbO&=krk?i^llG$YjI`ozZzFyH@F zO2AApV>z#pLkg*pvngy8SCJv`#e>x-n7!_4m97g;iO0eg9A6z4Pk)vS9(KlTih*Nn` zght2?M$BcMo6B&Ao10o6FCuxN!&o#T-p~_d#1MH(kHziTzN1HGet4Uo2L2S1XCI1K zLDnannN=c!pi{F|W(dg(>nr+sK~-N+ndJ|ky0(k&**25x{PvcDO9 zRgH;b6%AOYPm&>dVX=py%9a=l+z4Si3RN`rtk>RBnazliE~+5=+93v3=a?e1)ew^~m#2@>~7D{tgl9w4VV$4z`jKU-yDo z!#F9r(vhHrNJz@WIvTuY)5=JGpbW$0xlWdq%R-MAvjJ0Pc3`Kye`@1;X`U*;@`X|X zHx2D?`a*sc4Wip9Tc{@6dCwp%1ca`By4#Zw3tRd|@RSA=z`KiQ9=NmcK}Mdj(f||8 z@6WW%tdk69*+RoZ&l-FlDuVk}AJ9zsTA=H^<0`5#9*Vwqo|}|60{c#%%BAX%0gq1n znqSxd<@`GEC-pz`>*(`hqXWo$5#D%hnocA0>nW4Vc*dWFA&zsQ!2uWKd3Y&@tk9S2 zusHfxyte+!cx{dQD_-{$diT(xr9j<-Y-1ZFUXxmWbT%3a1yl?}tE-PG!Cjs^3WMAt zP|###BtCBmP5Bc`q#A|!e$}K=nO@zOE9kIyq+x!c*<~d~_)T;i)o7Kb_mE7wmaXm3>F@!h0%dBg_8*PgO?G zU#n%K9)43h=@WLW77_{wrJIf1gIY;Z+M7tdkW$YOzLghlt|jY=&<$aH{p`HH5^56| zpT9-+BLt>&ndBopT8VQKq0%l8Wp5YcjnoUNq{%j0c|iuBPIq(OW7l}>{JlT5EvuwV zpBp;^8EEuG^U7JsGaO+MET#l%Q;$Foq+ZD6=Z{cA@&X^P%&Q{ly+41XFvx{($si1h zC1G}4qbxj#ymdr8RvcMZBKWi)sTZg;#oAhsypVw&$RZHh`+lN7+5e}{C*PeL|9?5I zuWpOYf1aJgc%SZ{bjSx3O18MIc%Gklwm7bfx_sGER@^9@e7lt6pZrjAH>TAl!ERnb z8dnFc9zg93WV%4Usv?Ag2hJqs*V(E~|M|LICq5v3b#dj?d`R>_26}Ro_-_{XZ&CWZ_ zZ4a(43xvpR7J$I3q=uzBXJKY^V{Ki5?Vk0NF81&{zl?-To%?=p*M`9I_t|G{ocKq`!2| zh=ee3zhVX?jqcRkpLqAIxBl`|#9JeKK=Z(XQ<20Lwu?JuNlEHJ@q}OY#5euYi6KwR zHs;6Kv)-Tl{@*^oGh%O<%u0`X({jd{?S4G4zB(5iY;^=x^!&`t$6e=8!s^`b+<5T+ zlTUg@-u@L&^_EidKRi|ZXR}^o2v0S&nTURir&=kgG7^e#PTMRha=a1#sG~=b%1ML^ zs_Mk^4=;B7hO6%1@M4>qT1vNgv1e0TNVat9W+Kh^=_*1UXN~Yf$h=i3@YxyNbQ?%M zQ(vz!a2EXTpL);g-1Uo??{9q)+UxO@SrBD&wl8+eo)=<;)YF_);7oF6+P8Z=;DUxc z{j97%6yRAsdnca<;wFsW(Plr4j$a;pZp(=I{?;Sr=KVvjLQp^G`WnNKe)9?)>NZ5| zF%-k4SwVE3#PqG6yu=2=-~J4!IVJTU`>afuXxhdx-`{H4{lohN7A?A88(Rs5jE|%R zOc^EJ&(HU15sZz7)UA3k5#e$-h* zgwGc~8}m3H;q$%or;YPLI83qyT(5KyKA*G}mj7LZ&v)wL@IQRM^4h=S^Gyh;{KMy? zJpAq27N76rCAyL=KHqJw7S*Q+he^T5j9`n;N44QS^8e%WsR$NQZSna^+A=G)xOqmk zlayOLJ4@HjyGI2SAyx4q`7jv;sC03EM0}{kf5zjt-(h;>r-~rm;sBCF2Hf4^^JPz7 zf4IfXt58dqS3jZ%qwdk%d!MQZSZx=Y7pw&L9AD^J3#C#J-XM3~`r9oIpmmHv+7_R0 z=5a~{xq~bqTKZ|HOhyk;vI?(-b@tBZ)4Su$mXfaugAFCFQz)rIp#$}m6MYJxl~Vk} z7N5_vdcVpRH!qs?`kO7D9j5)a^ZySUswg=HD!~#NsmEn6l>tG@oHk?l5lE)C!n(x) zoZqL&r;hOXvKn;Nv=DCI&hKN|7JI4?{xeM)@EtuZkJlpvuZ&B64jmu>)F$HndTY55Z*HD) zZ7TgyglBiEbcEso!kOD_&egR?_-{?oB4TKS&*!95g!4CiK5g%NZ@2h-Ld%oaw>W@5 zS{6fZhcTi0On4ml5pLd1vVk8&(dr=YG<)&^gfqu-a&UbU;XOUB!5(b;3*OTcY9%@w zg!lASo~cI;;SFxue!E77Z~&)IJ*Ztp_uSN94KchJzU&A`!m#wb@GYtAD}we#>Gw!GiF;TjNEW3X!~!W7U1Eted#!#3Y%5V<+c6=mV`i$7`<1zQZ>V9kx_@9*(C4U`UeZnph695Bn18 zGW8uBSbT*mGGYR?vO8ESL(0<_NwRPGS=;&_}bh{vFCz7%iXfRC@vL91U#C~ zHxULXuNv;Q6}3I<-OGD%u5|4*=;jqrSG%JR81Sf)T>b3f^(WRQTROQ{mfP}AqypLJ z3Ko{9_Ff;AUZD}AiO_*bcOUAZB$S|nS4+}qv@rbnU3zlM9!c~OyDc4B+{ko2EmweP z{yF@lPH>Cw&8Hb+;{F$W?`uCJE4TRG`>>Xou#vnlZ>0Ek@jVwPxpZ;u?D#r5v!qV{ zZoCp07M81>4nx-dMT}>gka&H5;(qPdzu>9133z)IBk|fb^stm9!c$#7Bv~bE52py;6(!&$(u?x|>9>$dn%I+z=_tmvThbbc4)1L643kv>Xv`QI zDw9CgC+`V~zh2}7j32u5UeG6Cd_6V9-N98&)Po%Yxg*tmjdnN_3 z=hhhR?JXTc-UIbx*RlYv)z9o~!AWWE7l!)cp6eL%y)~OOj9$87qgT_UTCXDYLLg!D z_k4zKR86s1wA9CO6s3v&=KOV0=;U|vLf`9gw7uzRuPc1trD?6rE@K@*p)kFk@+>+H zyfbCcsigf15UCeV)B%-AUlG_bwL(DjK@A4sQLzYkT>(83P02so)OL+mI+M4eb7%w{ zARIYJ@HGq?zb4_l8xah1FWI$MrV;=mgSaADZYd~kRGOuW+_%8={C567xqV@l*+LlP z{d%8(>3k?`tTk+_&v$`zq|+&k2MEE@`O6CEdno87HyB>gxcB+4v6#j5YpYNYPSzaP zt{wzHrM$l4Y8nV34rShl)q;LPwd5>!Sq-K{=$h4jlE>J;cG@?=mO^yo12Gtwl$N?Q zNDMmN!_*%>9Y&KKo59mOupjoibk4=RR|3+Xf;9V2?frgS{`J9?$Z%PxCe9);mLdmD za7XyA-qnWJ^@GJYWk-sbzQ zoDNik8B`N0Tr;BZ%<5rtkva!(qnngxdkQ{Ac}VXFva2 z`?5=}WlM@MYUC@5jt!|7J`Z|S_Drs$TaO%>b$fXTTIY!`a12@k;bB~KcEi2j8>ttbk`c$Hut}rW`CgY? z&>95+cR8a=!t}uO`ykb_6V?EykuLw{;y7yJJ>!PcPt4~dA+Dz6+HVg*b!wvzg%};*+-GP)9eeUHUP}`YIRYPM1FGt2z=OTLs47g2J-tZvrd96F~?hE!s zSe-i)v63wgeU9m~+t;2%DV$)bfAvij<9Mx)w-DsYq>H|iq*h{ya9dB}5~l0pFhl9o zm{!XIQP?MfW8e2-7{$g~TK4e#Dk{eHz7%7rI*L>K0byWjBF1{XZzjTt)l$%I1Ofed z2)C6a!@5%eCk&VqQ4~)gdEs_ednv(&925w(=O6doy+4koE$W;*LlEp3DS1)y)dwC; zLC;_2O@+CUwOVDJLNMwxwp3-l2zV8ExuXBn-t$B6jkseMYmny|^m3NTHVY~1>>%||d2lZ28z+FOyqPtN7GMO*mnjIkm zTHKoYYzM4>+sW^BCx7&zH0n8@l%+E4SC3t*ieTveI$18YGV~XV-mp8t22L^h zkRQ!*03tyeg^!TuNGBb`&H8y|;m-c~Q#(@bcu0(Pd;EX-w}JewVftx~W!ng*99cwEJO+G^mb( zs!+a)SP3`ey?&%0yN8Ze&%zQKmtwJLV&CzO`RdcT?>(X0T)vGabz9I zW$0^VBvLQXv3?+1M)Cq*$2B9%%`2#{9+Z(GO2~TM!Pok;A*-m>tQF(+tljbLPyV)i zI`w9&JPZ85*zluUS_BrTMif3r>IKU3TKs7wFLc=5EuU8s0)674)IaI}uRqfkm*76u z9L4xPa!TewaV+mI(#O*-xp^SmR-xiULAO3|f>*pE%>JF@=u504Y6h;Ws0QA$;~gYf z=-1<>YG$cpjkd3Hw7#q##rS$aQRogei*cg5NLp`*A>7tOba+;4$U2fnc-jZ5XKDb= zi<(ZjUX-AJ9n?(%g={bc}hSx4#&JkqB6xL10tM1= zH>SCL=rN8jJN@B(^Ti+TQn3Jk`u?>gkPH)|)N2-QvO%w0?)-yPVgM^Cf;@iaJ^C}2 z&&|6&^vGPnaaT^d60B0inT{hz#$X20zk_NE9@wlt4^qof1#E#L3eXFGv`cW0M1 zhL7*rzSxw{B$i&1aF`L@pn_aKpIkEJg!^XE->1%0Pq?i}BpZPNe-g<{+z==T@Y`|lv!*6YEN>T$?Ak`)~zHy%G$b!{cTRfXuIro*h1b!z%=uB*roWki1}CPPHVGtpX%E zX5ZfkUPTd!^9p2M!8~4DDY0GlL*g~}5mMeZe(Qfeq(FXmeB0?CJKGm&@kV=^noz;of|EkX{RP@EB3PK0 z1<*OSk3=H%!ZvN}E zA|z6PScmPiiiUKU>6{{IbHx?nsqtRSNzTPMzWnZo-$(y#doFD2oKcEHj5Up$iwIx-(BxL+eatQkL4R14CyIEJkm>oAc;!l^+Li3c;iRfMNKI_ zutHm)+*#-Ve45PUbPF+mzU{YNzmEjL3?(+EHo!+!To_z8g0KC#ZOF%zAltT1V(ehX zM}8wPKlng`gji_L{Yg4)o%5I@0^H-75z=Cggk@gNt87G8;M%r5g+sq|C@0S=p8a-e z&w9V@{M+N9fwnhW+}6uD)rngiSBu*rC5QV(QLVL$0chm9s4F&UA7);_cpkX(d=j-% z<^|MMfV}HrFMWh_dO_O(oB6&Q_(*=s;ET>d@bpDEj`gqt42lE4c&c$Yf5lTxQMvsO zPj!Dse(9Eu#At?TM*;~n80Qs;L3pakJyS|sJXM`%wWqdts*m;0|HF$FW5@meH@w)g zNX?8bUaX?6%K{T(&q_KAK`f$EoH|nL!L0`+9+0=uEg8Ts_L_RLO%AZFq%W`d|FCx6 z@mzlY|CbSEC0j^l%FZ6IV~>n%viIJ5WpCNCXDUKOh|23UC`pk~kxD4LkRtPUd8f}G z`h9Ni&nsX5yl%(qbzP6^d7kGypXXfHx$cM10_9#&$yu(9`TjXuD~VCz$D~k`D({TP zk$Mx~X3pQ?wq{v5EYcu4WTHBsT}(xQB~I{N#v@!HuI+ma$s02?t~`ybh#2PkZ@yym z<6HPCfoA!Bu`}CgBBRZiuS;+>)Wc!W}d)p0#VEeTl zZmW`7+Pxi)t6=`B?#$Y8v}_b4czloXk9fWJ`2V%s5M^g`aN!_Ix@YAdZtIDqx!fI& zt2kNw(MKV^XjcK7X{-vLKlFTmMpCcqR>R~pfg7_@{-7b9Dzon7RVbtQt!Tb066SqM z3XS|=3+CSr>d@iF@4J5dc6GK#!$ti=Yr&%?8()?KWkCB!>*x{1NXUpLxnuFu2s$XW z#$Du2*mr!nx@*tiu1=fGSNxBvfe_12(oJkM4r=xYB(*82!VQxLYGn-8`?gPENz)73 zd%%u!eMZic?$EK9sJh{`57d`$A9`FW2wFmwsq8+v0S>JZ{Orc;ee20MZ94PP=m6>i zJjhui98JS%2{a9lNl zKTHMX1)?Yiyaaml1JJ*ZbBdrW+6*b~#Y5dA|OKSTHn-Jn|1uRZHmac&ghP=lOr6hW@}fH%vpPN9P`V&#>dGo-90H{3ut1j}$~Eu?-YhOTve|l$6i5G+-otMSII30gx72 zl}__Q=a1v}+W&9m&V<6vG=Ut*{NBO@|Bf{nyBK>)`+GVpyLIwqjEpyYaM;N&+fg5| zuwEC-DhR+>PrrWttRA~9kR({Rr9X2G!vF7 zU!p*DWJ$sz!U5c@QM4#Im;q5YpGVf+EQZe33sqck#b6?AO*Git0z~Gd$J)1*VQk+w zj+!g^4gr96>M1kNIUks;B4aa#aHXD+VjUHITLzZCEFO0p)r1@~ePo4m`C!gveH1mX z1^r%6+YR=)W2`5JH}mKUPZGGK@*z{oP!-M^JZ3Az#s~0~HU0qb02Ky;iSLXoLHz4E>NTB`h(Ci5g072Ja@du^pE;0EzTJ9ozexbp3arFcAbEwk)1!U z@@fKVi#LIGSmD4lA&K%`i4{C~@;TkASM(pp|670C`@P73^+xlf80b2nXpFZzI}di;tRr4{g4{0di!7^ywSsK z8~<1aaC))|GCXGnh8o2v7lfxuVz9aRf5B7zI>#U^es}`3kuU~bl8S>qIk)jI$Bip&Do#bcc`-B91R-l1W+GVPi;E&`XVCq&w16cauk_GX-EYN2sQZRQQ7LcnpGT0}T!$5KCyJ2ox5YLeBOY@=|#{Nhw$Nn1X zmIxk~WfO@q8bHs3UHsUDWPqOH0z<@2PpG>!le;X2?3)ZaI<~KmpbLM@T|9M{6K?l7 zy~}&0h_PNh*^B4Yk=CHdOIsZhD#9~35+2pAa!@F=WDuJN3zYd)CkuF=gB3-WpR8O% zftwQN4U%vT;luuuK3-bB80#^$^izimWdNIz5cVTfN^s80=k=Qs1E6?j)JY`V4tAG} zHOOwYv3zM$Zi^nsD0Wd~(<(6?)X~6($e_(x8 z7`A_Yo$i=F!(AjVtQvkNp+b17*CaJXmk@5A$KfH~Erh4)VfMpF9O0=F`Mn7l{6FBS zZasBMN<;F3HV}`lM!4d~2=N+9?-FAwe<1*;|QgTQ3a0ABv-dmq` zopbS6NM6uSr{SkKkPVr#7w}5UV?bnbr(Lp>IanM^xyess1y8TxYKLCOe7v()@4ATg z#V0rPpyJUh8%Bqcpf1@w4O$}-+U7sy5cAOnCKN2Ar+Y;~pY#01%J%*9X@AcbYIpMj zZgY%g!s-z?;r8l4%uOA5USNoVGmHuj2592)#_{gEeg2*=`0nO~Lz>fAdI7euR=}-u z#4iA56f8Anf0KYN(}F}&*_h8)taiuOnSVLH9@`yXuQTFUZH$#c8P8Lfk0Sdb{21fm z-5Fn(5`Mokmz)F5J|;MkiblhCyYV{bFXOfUZoDSryjOWkpaNM>KH_>9;cUlAUd|*! z;`RGWC2V17*`Qpzu8!O?1_%nB3O&B# z_rD)|qEP0iLS(*>jH9#h1<4CvtM7crMtG{kITxARRc@oLF2C~rjPO(k>-n$G{U7jD z%{&+tcIFF#5znwoki1|YxTPhTJ`PT`JqxsIhy=7|%Q;GyjlE>t^H6E-Bsyl*|$#hXX! zkokfw7l}wdk{6b8PmPOA8-bt8hYak$=>f*TW0^L6ry;Md*Uu&&$kv8YH5zxEbLUZ>jp-YnTY3fE!h!eN}`R828tQFP*d~$E|@#;@Zi3 zpJFlgMT4 z_@VkWMc*21JdtPUK0iEY&wNz~ygycd zTC>+2&wNX&6Ew^`i^NNczRk*ov(&jB$< z7J>agj}ukY?;}5Ds#(WTusGBeFvNk+FKKO2`Ct~0A z>C9FhJ9dyCJUzAI)pI?I+y$6%pFRAkNc9{v3Bu~@z37t|F`lm z$wta4W-}nGLxlY>OB)Kr99iq_l7$kxd0|Mb`m*y8Ly)?{Cw(sS4952PD6(@Tup!Se zCB=dwuQ_4dp9Dj{e^x-=mpCd8U)(nG2CUlsg%S(V@DuCl`5JQo)e>EXmYd_i{MbZ8 z6|OmmzjS}7IY|wpal?FkXOyh&M4Ije<~5utG@HWU7Xuy!Mxsb)!bN(s)m{yL zZ)uO-`VkK)Pu=X5;gW_67T>L&yypTdBch3I#hMt`&qq_5BElzDK>zw3qNid8ps~tO zJBcz0w%hUh_73^NudB?Yq}6I*NqKwYQmF*&ivAU^IsP(UpQ8O0ub;lX>H96s6Ff~! zdo;Jk0m~OxOxm?yqGQ!g`-kg>gKJ{Xp2`KHz_BXZx5th%0~;6MxnQG@vH!M?4!hT| zvw{iMAszGkO3-rS!ORY~^T1U>qd7v82ssi+CF0s0=w`ZaI>V}I}Mk45~C z<>j)q0F4dl5$95CD0nxdVR1kjbUi9EBt`N<0VK^%Ycq!3!#tX$!}}i(>QM7>e$}#q zbNLgI%m`1lS7C^Hho>r0FTXB{esIy^ZqY*s+|u`dG`f20B_m@Dj!)Y zfuP4#Rcylt@aMR6-EFZ6H10&$@m_=jIDfj(KYrK?Ae0Ab5El8XlNfKsnT zu)J3ozND_aYJ}tk6w8~l1Yh+)_xF{ETI9XEz1NFrxvL{|;cLA%2uoA)2+Grew^#G# zoPowBy`=9`w}_L%LEn#)aT5j+(7mD8>zSSrxV}4I@ZQY} zD~{F$)ts2`mxXh*2v^j}5$fP(E0f7#&iBsom~8HhD}`ptTvb%Lae$3j*Ti1Z5zPL0 zebe<@3XDlp?MXt`wHzgwQB)ZAMD`t(o%(de39R_vJ#Tv>1>^dWD)0^q(Jcci$1nXL zZ%cr@cuy2hk86wSD^_87M} zBgamMLd_s}&4o~p3r7yHR`VZ0YQ=8RzT?tH=j#jm_zOOM~%+>be5c5gfwoeqtA z=j8;P<2Werh@D~0HT!!j+q9rVwSIYLz94z>yFvky7tU4Z<~QAy`Qv)`p6}nv*^$Lc zJ3Lj?a7gqHPnC0&?dlFs^`nN9gf}u@nDw(u*vSjedF6@zFL9O1FEL#aPGHz> z2acvERM%*500*j4=|N<^Acp@GU5Vrc(^Rbpzt{Wc#qQPr+j6^U&eRUa^{(+5DxSMz zQgjF3F~7zd+xNQb-`CUcX-~E!jD^}{`9&YK8?YD0SM<@I5Tl4)tZLNuV@I{(6aCJ!WO1cg86422hl;;_Y1OZVL$ zsCIR-yPxaoh$KV9S$W##v*FO$lD4?a;nR^ViEGP{>a(7x@fmu>o~<{ASy#i%Xc4n~8zEoL`- zu_O>InMiy3Gy%9yek{a+S{781t`rOAU_O8Q?eE{8OCpJ>HVY0AN{MFpJum|S?>+8~ z)13o0yE;AA_sKf$@B>Bm9yPaDMEka{Ff+Pn#WD$U;S9EtG+hM88Tc~`pV>k};$QZB z;{2u4SiR_T>b~H<^?uul=_hZlOGshOlGF|Eg6linRv|UEk>a5WBCqyW2x-F>&!MVFgmZe%mUt!-*_Y(KdhI9r zJ5-R7C~44C?c9IbbHPUaU-4AG$`1d-Q+?5&EWD$Gx_XuKD8f^9B~ncoLwKrFHnOri zJXOsGv&_pApo4J^;Z&j8dYeL=eMl13%+HoTF=3gJD zu)}S|X==m?Ky)e}4dlFtlz~I$%BG!%g4A|KHZ2;dB+%onS$nozIPz7 z9Hym|@)Y7+A?O{M@79yskB%~ZTVK9@_&@C>OM&P1-KeAgX|Mllf1uFZEReOMKo9sk zm)2Hz0v*B$vS$c~>5;JsitKDIpj-3E{C-dvOje%pA~A6L!#=?=&+lIv!eEdM|GLi0 z3(&#v=p>$P3gmsC>eGIJ8@8C~Z@T7l0!Hahk8AF7|GD1(_4@YyE`e;~zO$YqaJkes zgS@i`;_^&x#5~Rf9{y)ekj_3E6*g@9~(Hn_~w#CSJKi0o+77zWY)Sx*Vyh;Ls=w#&nxlV4kaYaXqu*QKd&_H8FKP%>4xzYs zy_U_Xg+ZG%r!ft}VLG}dUbt#w1{N*-dp~8bqlDY&baFQZ;Od3kf`dV%kWE{$e*T^( z#{R(7w~=;a6$Z8Q`N4*3hN#V?@Z?Qo{}B!LOM2oPrNHh&QWfnpUT~B{VdaZ}GPsW7 zCRjvxs&l#8vpZWUV9t z-$b`g0rI}Hv5iw8L4^?XcPw+zu+PQVz5|w_deeSppiiC@TSb2y#9&Q6j8j*Fn+!Kr z$1FWiI1T(9w!%S<-@?NeB^6|EYT!!GFfLz3pRf zx$l0O-T=WF7($4)#S$=tpJR>nT#@(QT^K2DCWeKqq5}{6w=Me7-L$DIALkpYOn!)a4yM zUqt*N-yJ?5PLRo8@%bi5JpbYIQ6BC(y2Iytk$cXEGe8KQxrTe<2*T$Z;OV5?;q%=p zDvtjD@%f4bXH|Cid~PFC?K|8&ljFCxcX)Q>6?e~5CLRQpD!FW(1>%t2sH{-@oIJ+< z{=*-_0;2~JzJ?RwH=G?l-%oM@mmO|i;LSz~11l!{mG|o9 zm)WCsc!LxQK$^u6F{$0hAG5{fEz|bN`mb4mWS_@tBq?3hW3E$}58? zj?YQwW#z$~yB&Czr~=<@cu5Z-yup5ImVY>aF{37&f5YeFet2wlhtD_3Yv%Pge7?&u z1^@8*BG#+Kcldk)8LLmK5kB8F_R?iHgwJRFAaQkv&u5=o@?eM0ho{MUi3#EJ;h2wy z{0*Pa>X1Ft4xg{*%bTe?2%nEKrB1aG;pXYtD}16scy{6Gjgy-QXYL|}dwMg%e><*d zT)2kt`Pj&Xm^%J~&nGVX^XLbJ&qrf=uOl1b0Gd$IJ(DXDL;vRHQMX#xh9dV*Y_%7s zE+ZU_1`@i6R)o)Yv-$P5^ zCc-szcNi?HL3o318G&Ov9Khy{QQjX2ZzDAMF**+6d(-;2<`w=0-+PRfR+Jgxdspe- zy111i1T(Js7k@?aLg!7=r*whTpw2F(A(H$UIA>G()W(4usBSI0?C`zA%(ArqhVShi zqTA_)@V(`<#Mx+&`2yY&=h<8D&q8wQ*q6XQ2#z5eFxq>C!ayR&!0!08KjINLZsF<+ z-g00PG)Lq<7Y5iYlo>2{rk&Y5YPfH`hv90=JNBsajoI($ z1lMjcnVA#-oj%>OjRysRe7jT0vD4bnkc3}BJ=c8SdIzw#*eBmwfl33DhgRJ-aP<&D zHdCW8$m$dN{4_Kj96AKrw?qce6TIuhtGN4rKWE~R|8`2j8SpiFt>!ETGq{G8TtnNW z1D^+&UVe+{l=VJ!oA7Z1+GWH?rJh;=O#QX@_q+y=-LL@%3nFSaY^dCXPf7Zix5xW;EzR8OF9}YuAL}5yJWf-M<)LvlA+u z8b`+0KcgGoNFwuv*xFp@GGrWoruD}Ui8W7j_gs@vuC^4Q-i}QW2n~blF}Y!$-zHIa zIOJG~{vuvyczk0GMB;Ub*>&3jL`N**-s}!fHToriKh)7hX@9SyOhDqO*K6p*P*MC%V=P?bF4o)e@?M8pV6ewZj!xe|R&j zmNOn5$o1|bS5Xq`I|sYfdG=!{k zWtMt65ubn_Co567dkW#G&%Zxeggjs1VAfV04&eriHXYoz3jd66d)x2ca&l?enU`o? z$a5-2o*VH`nunq8JEY#~Pv8`riYKF#zE9jKM0E1*u=!UiX*{ae}dOnQ+6l{_lL>_qB;?0)oP+eCjegxk9EbGzs%*)g#C!g&PpZJ`G>%)b76|||A0)-BA4kC-Bt&z>Mhc*x^CVx% zc{wnJGt6mDjQRSNz4gV&znB$#I}ZB4A%BQEmyWj8_HIPe7=_9$I7g4wjqW_D!$phWIOzT)6vxN=YD;i8Tb1u$l|z}z**KHML}Gk=J`vINjyivI`Eq&oolEPePmVOlcet$whi~hiM)JZ` zT~t4XBpdKH?<~BNLJOGvmKVR5_oLsOv{I{M#=O0;Hr=*7acv#7kazhpRxdB8c;i4> zIGYI0CFED+=t_YWiwc61i#pIN%5BPYk`Jh54m!&sJk>X(o>q~6!Bb_pK#f)+QSXB(z~>6F*%Q`d0B1Hs?)hKD zYeIFr1Kvoy{@7C%QGnb>(r;%2K7^L=-jRn^W_QF6<_nw0kCi?^@`6<=c8-LjJd8jaU%tX51S0)gdN{YaP;6(X2%alRVcb6FU$EL_ zYRI90W0@B&5NJaKpS{BrhyrXLFM0 ziT&ZP2>w%_ouwkcm{)6oXkP-ngiY+Yoni-@&FOE~-4FtWwfF=Isq?6^x3`s~+{N}C z&k9?VPRxCX0qs?INp?4*p#S2-IF!3J7*1EVUAQR(WbP*TH`^WuZeKYIBbxRf&t^SB z^UfpBi_b6Dn0<;#h3}^)HL`MbK>Njsgq(6QP^!uQ$x)CDisSW9xfWslQ9paz)4!F6 zOdh|l{UiifhyA~L(+Pu#i9aa=qTx6kAYuYPYY4Mg4l97oAyScEGLC)wFWc-woeDCZ zjOV0#?p&(~tfrFgvKC?ijS1VSTM;pEptxp2(^L!|`IZs<%IC^+(M}}a2|5}sU>w^_?|N8Ri*X$R_^M!nFm5sy5zGJEK5{B)_cvRs7 znO{1R7yOrr4B!5+0Dc!2zse#!)$hI6H01w+r&<$su6T#1+N0Elhx@`CupBcrRTb2N z{x7p1oI&n~#*j>3ND1>`rnTG+yCd2 z`mzkO3Zid(7#VeFkwv*1TmQpt4V4`DYKd@M|J!-Z^i8!|2r{7sj&foab{4$;=$+wf zhj17mL*5jB(H@*sxF=?i6AoR9doSgkE&8wL`ETdn`+uEXovhEk1-Ay$Aew?<*-+IL zHZ>KX?o6+sj&50&%;dzu;7rmhw62)*>i6n(?b_44s}oY}_@n7d87Qmj6qRFO0HK2i|jsm5CwrNtmTRi?+E zuTvqM(}$PnAI%<{27P|?;?rkJF>Y^P9!i|bM0l|k4JJ$JNWJA!Y-*YJ=!wWy|dmX40^Z65rh<|jB@wZ?j_10S@3MdhKs=B-@ zcXX~&Hg{b7w*Tj^zuOg)hNzQ@9s_!|E0ZNx_B0Ax6kl(L+gdVn@4(8CG{*Jz`@H|{ z^UMz{9{(n9wDxOthEJN2DBu2H+}2jw2CsO8<2uyCx?pi>MQZQyJwo&E^A^kDN7BSD z$CWGalzypxDStX-ecW?F^r0>|h0aWH0j^LfJG86tWx~F%duCTBI#u1^%H=XB=F;8% zq&^f@$h@&DF{S4uqTK;?$2@8 zJ%XT4?KJ3bVj{;h?FaYP52j_QN6s;C7-hkWYv!a+>ibYHwj(%}AFZOSh*lro#L)uB z`C~f>UMhmyY~)P^m-fH@x^JobK3Uv(sG(R_yufY+t>0Ted>R@8V|R6mS-U2t*pk3d zxlUt-4Ce3K@3sF~eFrgRf*%+_54+B$dIPh?#d^tYYgn*rPy4RUWp>U@GeykbU*D_u zw`I@Z1M@_|{wT$zt{kbp7<6Fo$Uodx_9wQ6cNZ-HZ6;q)H_b+yk5=3pP<#>{3bn5t ztnY);GU$*41+C=`SI=4l3eTfgu_eVp z3U2Y~kx^lkvL*4MJM7UI=LbF$%e6x5Ff@=G5Z%$a@5__=gfk6{I}|^Cgm6xczFOc@ z6KFx%ORZjg*Bszz@h_gLpX1;0RBar7@l>fSmnL`YDgAWq@s19eX-!}k!c#qE^>(u{RDcq(=b(m9 z!*N8Xo@k-)w0sCWZb4}rpIZH&^RLHElqfCz{3E{oTl)$6Dtu8zXt}Lx;+^Xe#6PX2 zlM}s2z15d(9xFiX897#Jx}(!VeTegbPVj&9exLWP;&iI~eR1eeMfIlnxFoz_^sLhE z2nYN@=22tDcmjyN8Cz9g6opqQH9Y;!>iu#2@ALexpPljUZe;UmFe&=VxazZXIR4^g zz9#PlI2<9uJu9yOf}*%jU;beV%{NigN!~#i>!q&sM)SWn142?RG|?@k@PECo-@i+! ziqDS5@&}E_xf&l2i-W>TZKa}z(jaGg#p?ou+lu=$`rf2fEjYB6XK$BS01un%{HzqS z0792?B=NJ#FxC^rA#J(J69DXJ%BKepc>)1vWVP9R3M4V&y&Z&b0446@3Ng@K1v(?X zg>CMapoP-|_u#^_U|_6P;L5;7jP*iG{HtM+^7#*)O^kYaDLtum(IleewgRQ1B~#X8AO4s46iHg=$~{G zwtma}Q1W0&M^CacD5?F-igr*0<10|{zVZpkhV^__;j;u>7E~&idWiY+`;ik*zAAJ0 zg41n}TSONTzT~vlbnKWW;L{uDn5;Ah{j)L|9|`TieZH6OBi=Hw`&^OFQmG*zJ;IxA z^41sQ_EsnublS8g14bMv)5ZU)1bxRUy-W?v!N*P7vMpP6I8rCKu%YAznK{y;Ns#9R zzuVdGPyJI@sG0*bKqYnbGA*7aNReT|lT{K2lVSoPvo%_hvY=Yog)IiPc4&&oZ#Q%-hBNWEzy|W-wC5)qqOf4=O6Bw16k-hE?tni+$@| ztm9*Tf$&t{d?~;dA9IKHI$V)`2p=h5vN&`e;i-1i&Lj&RwE&cU1OXOHe_`qB<}{e^5R4cvvlLW_0~qC z4o}}thtkDRm-2Z$Y@I`$tn?3plH36@2j}_Wl3Di_gFZ zTp2clJWeJs_spv$?1gL){|GnC7~!@q31gcjU#M9PD{`Eg!GI665;hSqabiMiB~{?Z(c(%+-OZaYdho z6SUyB9#>^sY)hC(^XZ8kmN|HQIN|y=Tclk}>EFh))B`_HQWG)%^uoBkWiJ=$T@p%z z0y-ZhFXBnVlIu;Po79$2uOz0-qeBOft~|sQ?Qn%>KWpkmI~)9Q{;J))@VZ0-`{%c_ zKzPzriQb0;e0zDa--&t*?U2RrlcmWMG@BpRRicc-xIXsAwd3b32~v=}z#1-k#YRgT z`hQZkAK_$%`g&jNUy_pnqmuiPo3BZs(&uYiY7b8QalL!b_iyDmv$Sv5CS@S02kVR1 z8OZ?e@`J!Y>oh==cdSHhNe@02b6#@j(18!n647{jV(#y~`jQ^J-)JbD~TP zdEw5Wdb`r(^1a*8fy{!GFR>ip8FW>ym^JL%e^j0KYL6g!L0-y$4{j&Gya7YSJ1O=s z{I>7yFBzX$^;h`k&uF39!ew zK5=))*N^^kd|kRbzP{(9tM$M?u04*&q%zs*Yi##+^~bQ zL*bvEQMe-Ocr4M`5p@{*-&ru3J-1pR?+f(Qv1Q$e2 zJDP!tg}cAga0QT152jzDc#CRhdctu67jr&Ui})M>7#`2K^?@4nJb2y;eY|1g)Ohm4r#8^|obO`CFtVO(^X)LXE#|y7 z{CR8n`Sft`WK!zhk1tYY0Hwls#yi2^o zemWn8PuQr1`w^b%gCwa}H$LM+qX&<(IE9%1@W;1Xzi+*^mNw-&WWEqY;NO5o^1>y1uEx&$ z#h@eT>;c8v4bu;T zT{pO9oCrXVV9hII3oOvs6s)Evb!gvuC!#hebMw@|8nQjq^Q{q-N;}E@CmA@PI4j9G zkx&)rOnksmVwMF|bk83Le^bR+uQMK>mta*0PFE4Ls;Qm_|K{Jl-M(8H$PxTZY<80lOf6 z;vaU}k zfm839nxhFkfwir5<4uGEsA~NDrIr>Kq%1BZOwSgCr|i|TZHXx1rvzE!W$d#Ux3^2g zZ_TM3sG;$2%(^2X4XDK$F_3T$2SV)E%_b18RLOPhiI<7;;8B%9)l4JjAN9vWv#@ni zN*$Ut8RvYNd53lkK=9B)F6Gj8yKvRf(2t;ft+$0jIVER`+m4(UK@9v z7CiV?(>-^99vFq()*$cI4cF(p4QDPW04vR?4=rI|(R+`_wA?Pf^m3}e z5W*+Tf?`{ia3RrcOtRV=zIi0CS&Xb#?U}yhdrTk%ybHblv-(8BAN7N&-o}GyNkM!U zF#c>^L*}6)C~=-Pjzf5=?}v0B+(dY)uW$?a@)2$x*Uij8h5rMd>PzKL`r=Qmp!weU znvezvU1e>^^)AJNm|K_P#E9R6*xZDWiwV+DzF--Jz4hn(5mWp4*LZ_t9i`x8@~gA= zoW+3y-OoJdBz&-WSh!v$f1+|3InU+x?@5G)6-7m@VPo;ka3J-d)_AAfda+_p7C5nJH`rL6g8?q7(7 zg1dQvZ|KPN%*+_D`NZu>KW;L{dT!?~kRAB00nBwoQhEA3A*S^|C#F}y&KwQ!FW=?- zz!nV_t`8o#qofD8BMJvOt{MT+G-jN5x#QIzV%M>{qCEUoFuG z2)DHf#aw{hkqjIkT}uC)=mkEF*Yh`R_0T~eI`1%$T7vO0ED6O z=qJK;Bri}53iwdH(gf84DYBgL$Nsq9z32P4GF`C?&7g@XP?O*(S{1T@?yrpwwF~is z=(+P8tVmw)=o-T5Z<*=6(lbZt(R69AUxFzy7oTi{|7wPD8c&v`y00a`+0088>cEjhuhyxuJRB{U3Jz= zL-Im^jaN|XlMmoQJ^rZ?L#=(=Co3kULZYPyt6POaqsa|n7?~@jBTpdIqKGr*M)HD> zq)fU|Wem_9xSPSwzW?=n-nvee612L2>vbllwimK)QKa@j{h$o2*_|(3-OUSUCStDC z9Z=Y}eI>!!$J3rhfcwcqwdX&E0zVmhKFf4>cw%?HaIo`NUck?Os-Y$yhp}EPZn8tA zjx&5d)9vc$mkR!^J?;HosyDRgMMoKAG`k+JP7wyKM|sM=kun8La6CPi_$(Y`X|nIN zNQ1NO_gKy~MF5Wl1;_9fdq@zVrj&9H^Z0UBpvC+Ba4~GSNMk<8?FSau%zckKnZcVT z0k4kobAvhMpC8GT(%_j_S6#i*F900ejrVtfA?PnZ=O{6Y`TZA;$M!DuiK&1*;obpI zkO=XUmn?vu0l@Zhdw5ny0hmgN-1l@#g6jE&1|lOKP}BC;`1)kx-;J-|5d0cn$8l!Z zYdIZ*$w|11Rkk+3l9_V!BatSg&vAJ&fsC)sa2_bj_D-%o~dwjw-L z>$}#gN8fY9yzz2vEo8pXdsgPo1d_8I3jT&fkT6BCjqnzG;E0 z9!3}Et8PQ#p_}|9$b8{>X@dDnBrkO8n#59%eZV*#?bVyal@u4S@B;1M2z?n8UBC<- z_FEfoE6C?lmu7>^7q-Nx6FHE)V3oU0x0x8ZZ~yJp|6j`tp9d2vrrDbFhE#};Sf74aS84p)`=ZwB{Q8$hIQy_}!SJ z&FkugKh}R~>20Je9*Y8!3P$V13hc(pfNqq;Cgs^Ike>#A7LB?FIO|a_@bfUwmwW9y@iWHKpxOZPx>#sb zQcR&aqfgP*@E?Kwg1pR=^DH1yS2=FwHXRV~k=eq^W!<-Zk)`)_zt(twwxx`r8_oV8 z+h&k)sW1Z!EC14wI56=jq}v=!(x%hPSlRBo|9K}?*LQd%!*!zuv~)@WROD4<{CGSF zeDwQe&+4&XIx@=?1N3bBf1bLxe*f39*cU-aoTuz$Ui*Q zg?em{0K}fxJfA3bbPVQY)~+HvRrL3+I!huB9L zw{J2AZe&T?C}4{3mSaci?QQZqGJV9JWnRvl&xlU4)+viVX-yDziSsTU!WI499=;5* zM(TXVe0?ju{5Qw<*S<@!Hk>YfhWMxG{Brv>q~7lGW#qRb_Q-Q&HSOqVyQru;xtxOs z)p4E?)SO0_GV)z8T9m-}{^HYQ$?*;sSro}E7QFd=5!La+)A}C&5;_%MD2WH*Z9L0O z(Y(R<4K3~Mb^Q%?7y2yM7sUr1Qt05A#VUrEVHoSZC^Q)4jEg|g7?8xgIHL;-JPNF0 z{B?oJ5y}t=gtsyLL@1vnOb;}CWatPNTiQ~9n%D1`#`#h%qv~Nu9`u%%D%Mxm<2SN4V+KeeO6mN1hy~Ws zej8W@!dJx>!oh6Z8lra^-kaXFV(6F1udk zugCzR@ZQAj?G|>OB>AEV~-!^N%Ov zbd@Xmv@nCb&r+G*2|X;{L3ib+G~6;@&Cc%R1$PYZ;Gte;fv$HJci(fIg^G*Dc66vE zv{2xJzhoNb?-y6*CfknRpatP6^9@(mHGyACr<_Zi1jJ>uIm&@>Jr2w-ez7wW0>k;S z8}7n-aJ=iu{bYn6k|i{Bv;QynAzr!t8bk;`gsY@Dgy=bd8sEfjKSQ{ATIEM<&KO96 zwh@b}utkJ}5v|qBg1qnCxq2#xiR&BM<@WU+oIE{@+uPQuHv@b)$H1tO)=%w|6X5Ch zAZaTj1$f1+hWY}+DXA~;S?!IDLC1-mf#03qz7$dM1EloLzy!W2g)zrduK^eSw#zc<$b_4zHln$%y zZ86j(VdmD}6%~x*As^$rP`Be+=!Qz>7q^hSV5)eI*8_(M`ag9SN=7(Lx1J~YfBP_s zIyyDTROP;k@^WsHWT;j}>1y94xR9QVv7TV^Y!uPiG&HdtlU@Rn7f1^vIHYhQLE{Wt z$Oyt=(iKpt$6A+#G9&@)bNRi$9={0SqUw` z!@k)%_T2rizg}>Bm=W0}4sfc%h=oO^VCJ#9Ghf+`fbMc8q2ot=Kz;Z2LyfH=R03%d z?060S@IR*RWDdFE-OZ~E4&Fh3HdH+erJk-nk~_`<(A6426gE*n6)vVUr_+N^6h2hL zTrwEzT@ZRTEqqW5O+1%ge=Q>w)LV2WBKB)SBbg&b>Cx=;%TAUT}p1vLzz81Ry-cudBDyKQ(J&D}v*d@~w z3+u+?S9V6|gJ;aQT}sjVdDdKI=O@Hd?V%C%o<=;?Z%wnu&wUuh6o}`wjL_iE=Z_VR z?jh>h1|>qjZ*4MDf~vB9>9uO(;Jt#uMDH^L7I zY2Zs!Tgd#|zx}WNZ8x%gf3w1VShLC`vv}4VXu5lnL`r%B*DcNbeuz^dcmHIduQD6_ zvFH567A85kC+#PnFZ%4m4e|N5nVkF&pKr2KgUbZv3kO$^z*rO)SnGD%|3G{`WkN6e zX~gIACJPl6M|{3<;^F`B`O;o*jL)})AnQMTzHa*D9xjwGxE_?{dWGVGMU9N=0mSF~ zv;>c=eYXPB!jtD|{trIil0;4?j?b4Pa%L{DIvS2KRAgu&o?ShO=e}>Tih!fe>01h! zB4DAGy-ILP2=C|p&-M{iT4*;#9Kc60+F3Y0pSYgoeH=H>I-OcEaaJC%p8evrFI*X# zdY>9lvKGVp`T0{%&(cuA2Jr?d^nILh96%?P{ux=s=hHu|df`D0;(6XArVOQ?zioze5WvcDj(m-h3Oml<-y+0wq{HhM(4G!_iwTdDRVE=`gFI*eo z^Qke?D&hEik0@<7#OKSS_{rycEyCs2j`9T(1+S$j6c^ap1q%fbpYPJr^;>%opKr_c zvu3r3!=yV*`LF_wuRry?C2HEh_&V1)hJYE3ubB*aZqD}#0PV4D+xZYTZzM=hyBP88 zj&}w}SRl?^qto$Xdc=R@JNRRa1^MfiI2yIM4fyNckG^qc$Y1lQ+S+BHd|}|n*ZT($ zpRdx+a@7%W^XkGyMAs0{j_06jG>$VTQLqNubGJviVNq|I(nQB9mcM6^Gf#Yq-sKZr24mB4%vv$H+4%<)NccPKJuH9{lSRO z_oTO8b05kV_%86R9YMUo$K*XMI1b+YZJXXh@01dJAQ5 zfX}Dy+Rn_3#u3uI^OWW&Ur>4XO2!$*g^PKm!l*nGbQB1+IH zO}t8>Cj}`^jC@KyuL*V6CLQQV@aG$e+l|PC)|$WxBa2B;T?Deki~$`|_8JLb(0 zw{)sR))kHJ=Hpl|@MiRVwN1^~K z3|@ZNF=h%PRr_715d(XJ) z&18`3!p`t}gv{^pU#I)V^Z9_fXA%e;>$4j`^GId~56;}L-v;+_5P7vo9RNkmP3hK9 z7-mHt^emIJ1@mH2#@~78u@}c~((T&7d`Mo8PwGB2A9Ar-d};;FBPDa~>d;5?JIygt zeKKg?1!I?Tl)E?`%d4^_NH|0lqy)X|shk?caF%)ME7IaWzIIN0@%(D%Hh7k0^|&e0 zx!&XE{{iI-jQ)k**U&hAAxDe;+JRz>Me3W@Gicmvn=Vx=q_~RJh5b7_H{h>TcE{B5 zAbh1jH9`26^(eRj9juVD~lJgkz2?oLtRCH+MXnl`@1PY)!;En zhQh!18~oLu{`iCFC;LUSPGR_@B=Mx$KpOT%a%6n%+u=BFv#OiQUDxFvlaFaoHqX+4S?e{sYvezgk`)>%dN>`!c_EU&3su8F?3vxUIrl z3o+YKTsXwAdyIG|#czLK5&lFQ$snx0?lu% z4jo7NLeR|vQG+NhV#6b6yDH&g%P^jwkVx%+N3%X>rim}|- z3Gco#srSbUz^sO(>>Lk`zwTeR_n(%fENoT9B@yuEUA1uIkKwS!@4kJxy(vsEp=?xq zO9xy|(Tg1zI1K0Bh#S+=C~aEr!6U{q)ueu~ys>592Sx`-I;{UN&MqBP$4&0=>lwwk zn@*gBP5Q9-!1$-2WU1fn@lWmf^K&Iu*EoX(_rP5%bw^&7>;}Bsud0x8zQ*(y-^B!= z^KSj*Och_RP=i~d-~Aq{9@w-VwU7NuzJ?GyX6o0)qa^}e$+F(IUp0algTpud;>BT7 z&i(JKDSiNE3>GRp4%l>k67OfG>3X6A@*hXdi0Z0>6744eloYbiR{DN6JAnWwmo_FY zPzeUXrHv0B2Y7GTzK0B95~&8nc+W3sEk~#7u6>g^5=3ma-FpsGdb#xWK{St~>9_5u zH_8_}_k6Fw#Rcs{ZE6C$g+a6fCeDDV1IuvC-MZQg|M}~|m?r_Er{^#aHHS?;qxFU9 zcdJ%e(nsLM;#b#v6^Ot#_s2f`X#P4;&4;R|of0^oGLce8^C6eBG%_`^@ShLK{IK}^ zBAO4OrhIQ$h1M6K0prsVG>>E}bOO7C@&#sRqaHWp-@fa4Tq$PK18Gw|W435~{jj`T z_ss^z*HM9F%+C=|wUonxIuWfej5Hmor$9VaDU0&cgD79v)=0PSB^qBxdh~xbMm$w< zPnNHy$X~lp?PJ`Czs_%XC3zhAYZ8+AD{*Ljf#X33b^*;J^<%YKkD+`aK4m}A(-Jn! zMfI|`?}*01tG-v-2e>F;X>UvoZN}gJ?a$})&+9UpI+qmd_`(3Ih(e$0lS_w{<&^Gj!1xrBb=Z6dr) z8MdFD&2%juqd9g+!uyd?y?aO8Kq5zD0Pz;Rsb)?{3sx7uPJ&sQrb zJ(m6b|9`4?O^x(E`K%nK^i2E0{!hMOYW@pQ-X;n)qq?q#jVeNYAC9tJhzm-?w53>A zTM=@r<~0`@5o1;bmUW-0;m;lInNDoG?lmS;0X@ZWI=!|h^u%Osp^5VOwtH@DKwr(| z!XCsQHKJ$XHY)1FOp-1}QVkr#(x2EPFD4=R+aLT>`_8KP3x574g=KUcF2~t}9V2YT z>0A^r2`6uKfU-kmG(w1TTAFWiNa+#{;Nx{O|2KH5`&W+(;p$DZ?kI)<*`qlZnvK(8 z$2z6rc&ZL2WUBFqr#c|5(v0K9>UVR9ZiE*bc)fW)ju&fl#cN3iwNIwqjJzhQH$L?s zdu3#g$C4$$>2UfQ>2o_L&th|;DR|~r? zh|0^sg^bV_cS;2RYLE4H`KM*r3jv+ZO7xyT>oDy>88gtcjhk_x*b{EK_ETrz#rNbs z#dt6()6&tTzWI2hoH%{nG1wNKQI8aQcL8zMN}M8xURgts`O}^eg`YazQItekq~|tm z-#@K~KR>6IS(Z$E;S6TFnw&FVoD~z;XdiLra^ zASns1iXTr;4-Wd>zbdL2ZWe!K##@iNhUt-$(QeE_u^Janhvg&B%4xTB-tW{BFPXdYWSj?no?Ug~I%S zQ?)9}pqcEW&R*i(Fn4u!E9;^Wl$UkCypRll%Bwp*KOE)%x_|w9{%OhZMu^v$!4HxU zZhM+^I0w)Wn5LNTbAxZ9Mk98s2Scf|REJn|Z2?=Br7HQb1KxV8SI*n8%P4?gne6)E z=V$T0|5z5gb9$*In4nIr+YxgH#_>~4i++uRL(SWinkJZKZ|dN~Px>V(fn`0za0yp1g6w403QhG`<#xfBY<2c%s{?kOBf9 z3?FjXApm^#3rSvOGlybPt%s_#%z^!-9fS{;1z=y$mpVT`A8`7r$7d=9c_3ft?z1Lh zg?D{2YCWyqUmgr=62ilC?XBQ*qgoLHCQ0C3RP5ehBmnpc3K?`|)NKzCcx|m zW!fEeCDEl=2T zx=+=DaP$17U9ZxuEDU|&Nqfy_6kGk^>n~r=7wpaeRl&1Hc3dJLbfix{fa(OCz-sl9 zIO5M6S?|~D<*CA{@}-h+NW(RAqBP$TWD}jvh}JE8$3j%VH!ruMsLKHF z_FlJZy<{lS4f}+6s&V#@l4%e(Z--#m433YaR@_^lgm|i7PAW-lM?BTC=ly0Q_M6|& zCwl#m=*;Rk&J0hO27kC*2i1rkGIT9@1H@wSgG^{2l+y+MCH{mWl#D06z` zd4<4^A3|HzWiLW3kp?$)^d;b9I95{YfjHZypY5WNzy9dyRQBV91*q(NpiNtWKfg77 z8&mnRt1qz0FuEP4q7PN<=ox!+;(@Vd7~$2WRH#9Jan2EOTf1(`lHP5o1TQ>XS_8ju z!>wJeHWnDZ-tsxAjX-^uxgj$21T@#(F;r%Z$J){`=B=ieKi4u^^bTWQgL{QyRXE>%|aK1#TJV5%WayCs0EY@gnY6P3&t;eigds}JB7qS{1Z2$rm z@I_ILY~MB^n9!arbf$;`T&7#7YMxPs5Bw;|Rp_-q)ajfRSv5r%Crq*2M}U8PAY


um2K*NM4~uEo;pH%ROs*Z=;dE=VNyAY zJ#mKy7<$FmFppp5=T=rMVSl?tvGvCK61gKYwS8yM{VFv`hZqmel@(Gzd!XV2xYgJ7dV2~6l?@5 zyCOi}3puh-f-uN@;4S4gb~RY6y=HR5&jfIOZMo@FaAebZ)si1;M9Ylee)7{n9b~bv z_vP+hDxGj>t3KYAk1*bC_&6xfLo~m@2{%9783$>QyEv$-fz~z$BtP*Z7 zDAtqds_sw=70yJJM|Tu}vwgEHjTg2JEagIs& z4)WJTHqURhMA$%OzqWpY9ar)0-w88UHP|wPp_+W>aii_w!2P{I_3n8Q_=qK)IcUTV z)c52H;<&9&N9*{0$X^4CBkWJHylgPX)%mUsEB@_o9UH7$7jFT8(c5-fB0=EwHT!xr zku|Vo=s0@L(h9KZrs&?SCjwNFwUs?vWC0g;N68lveYmt+QPhpg6YusvbVHrL?P4rw z#a!21cGCuIEHoN2q0GRx{O+g6lFaa6p>496ojo)9LoL=O=b^b{*Di$ z2Y==Z4Zq@o#d3pWIvOV^N+x53#C3s|9D|FCY$*76Xov5Dn-|{g{ii=8CUZTLkMe~8 zP=E9ziVKgXj9x1#p9G}lTufs#Y`{+O-7fA=#$bmPBj)=ZSG?=vPrX;oZ!ajIe8H`? z`n&~-3!|zjpQQ+S;hw;}6(J(hAI-j{1b!HOp`Mp2e&xk$t#zV7kc<?$bPYw_k;-i-YiCS0HFd%?%|J@vfinx$=p3Mg`zh zKyF}St2z*?U~4iL^9Hdz4doq!&hW@U8#^PF3=}UmmX0b&19MN`S@H&WLaJrv+X`qR z?oWIF*R@jQvHZiXh0xh&$op-qHr(OsxYs1w5oGctE z@Z-Lx70lcsK;?{txV-4!{^oz_El5r~`bjv0gY)M+ZYQh4J-lbcPU;519G)ik#N9rS zjzuRfW1a>Ue>D{7F0}^t_!H@*-yVmoip#=cRVjGaXJ!sjXMMdj)a^;ppzBZsA7n}E zxLtMu%gDF;bO@PX_%Q>C$>_nic? zG}CHZ(HsV~1fN&6#cjbXn?<;N00tcT$`PA!iWE2&me#l(VF!$z)wI=yWVlG+J+zB324c5uJ}t)UuU8Dk)E`F?l3#eUebZTQvP*4=;E zbI>KMSEDH$T##Wr+&dKsr^gR_=R8#hc3YRrUzXZH)*1pxBuEMqmXdCVm@aPm`RjV_ z`0m*`S-YYz{`Keo z14DfjTd$bIFXK{cTsel&ci!HK+rSJf5a0nfoER_1`JRIQQgf8PgXZAR`|-W* zKk|(FvgR?cy>iP}HN|7#V55o0wKZ!XB2pFj!CVmjAWm4hRG<%cs%WjzKMLEleHg#! zp@)d4dWg>c(4^D%T;SZieGU-<@=%WbOI%y!P0eZhwJN2_s{m>zMFTfoB=k-Q-yEZ7Mv_K zeCnbZ1QUP71)Wn*WoZ@1w+W;S88;?@Fd>%kCh7@60kTA zYwnA_TZldjzcXd~VJFYQk@-2v*CnQ~@>_z4E{Q!XHFS3J_~sA7Zr=@Yyr>QP8@8Ui zatZ(OUBGtHHNtlh@PUZyEYE`=*!7Jwnd_?kv%+>@2n3Ib$m72s>AiG<<+yS-aPF%nm-F`p^bVR6u7i3|uJ3SqWVkMz$gQHO z6^enh+9NESjFB*c@Tb3~-=M#Ct^Vn+tEN?+5G+YRszSP93Fk0q-CbN=n`{DQBNmMM z5ocRt&N0aw`RiVtUJc%}dO$ifh<>0j67Tk_BQ{BT5NrU_2_kJ)&Ygr`xi48eMSZ}$ z@J;Ew*D4Pzf`mT3N8DBg_Qvk-1!sWBwH5Y$ni)(XM*8IWMf~?axzPsmALsv!x&3H& zudae82n(d$!p?gHl4)fu?b73b3>rO!Wrzca2}`9ioB4aZ%Aow-lzh<{CMmp^uQ_T5 z->}{)5g!Wzqt!p-g4G(o$yOzv=(|3VUT zw+#Rmw+JLrTzJMPH`Evs3(d>;=PePJ3}65J=jWHrZ*a++H-qc~?9MGxwxBY1p5Qt6 z5_UI(v7a4^3(ivKTYIPoz-yU(=ciRQ;h*>8do7$SCjS}k0cWQSss>FI!IL)*mi>=J zVJo$>cPNSr&OOgnF`taU3PIg|va_3CPc^$1x_7+mpu=5 zT}5%B1vqC|BA%+YfHc{Ge}Sj!M_MvI+?Row*!=#GAjgnt7ArZJJ3dB7oFEH_6|Ndz8wT+5uY5sl-_N)(UmQ)> zjgi}Qf00bNU8vUR4q;|jgQ}Jryd^&UDM7>)E=&E)7pQLhj0-)SO|=sY5qRrStZ@a8 zUp4`4j)4~r3kT!f-;y;|I-Bn$fTcaDFN#M`K*hkCyEJlW9;83w$GNl^SZ1!e;~L>v za9z7Im#Ow7Bv?z_wlCZmSg1Ytc6bVZzPE|YkqH)+cwo!JRNzBo0bSm{eYwTe5n7j? z+-b*}2)-zAIPCTh0p8&%p(oOOVSxz7>r9CecwEfU^nNw~Z~GqJsNlZ99|uf5b8Y9W zVjyMcDw}GnE}$8HDtEs|3?42d<00LG_74Qx@4c((2M4=pK&2>wT;sJx$a;003XS0I zGOd@xR}JBo>&gP|D2{Gn3VC6V@&!Vz$2)LwLHK5?Re{gBP3yVr*y1sc=zW&?H6YZR^XJfg8Nz&jf&Cv zg+Ph=y@5Ih0Y}ho8$y&XIMc=*BSLXu+CKm7o#&fB->>%LF4+;pQ)OW3Z)89`)hD}N z?LLlps@}>^ROZgmfghac|p8U;Aor?EmdrmM`zkdIa zrj-1@$#EU-y8gPf)*Bn%w4^o#=&-rMPnFt*+%R*;Rx0`txAi_@yPQ4ZxUTE3m#tQ; z#$O&gg3-ArUdNwafHSuNldPu|ct9f^A$_a>@FdQj;BY(-S-!@S)wd;Vx<23k(vdc{ z37cOG1?4&meg-tUFf1aUX2!1&e*79CNj@6^#{)^!oekqRt=IX>o|s=cGVW99p3_k< z#(j6GiIOw;zP!A(Pd^)QlvQL~NyTkik5_;yJLq@<;GGZ>)W9ae_q!RiJ!*`A?n{FD zcrg!X+_?LdfEYd8-a*)#5ka(Rz5OW%M29I>WKVClJJMkzW}=v-Gq6YFz;)CxKb>PkV-MRsTol**OX3 z8cxei+qd3N@hx>@xi0i4+GFiQ!>2uYNw6=>7sCx6Sz#zLFaNOxvlNOv&B&?{Cd~`(^2cUI2EQKA1k<<_x6C2)JVrAq$>QKAgzc)B(DKC$&it z7nE)5_(Lmi?cengpGCW;brS#mt#JXL{e%e^ux4E%4{$m!YgoCXhFrnBMFOvdJYKk% zS}f3u_@f3}PMNO_zr?ckBnaE4ZN+l6Z=;YY!+(G4!nRJ6)vw-|BHiT&ID4`NT~6Y3 zJic?untqI-pON?!4#;&`gscTzZA5KlEC*xD7xi#3BjL}P+V-g`^AT>_tXO$G98v4WHW+3#0P+~E-tqx-h#Ty?js z*24R6x8LozZjVD8p=#VkH#jc${OYSD7ud&sDQlW52^^he=~`~z1HyT8C*=aQAjbR$ zQy!b(U-z$n&p$0cl*Dp9dg2L-Nd>MAam&HC4^Y7q$0kINrYOUa zohFS_ECQR>V`e|!b2lInafotSpO(ghI_`aL&2yfBw<2}5Af6O(Sua_K(n*7X4{M#` zNt+)pP1%I(rP;;|xV|5YQ<|iPivD{J<{hU7dN*=b>;+Z9nhi;zixzeI3!m+dRX%yb^tmt!(m#*+B?DMR=sbF$jz}Lb$bcc)sR#nY&bFTYo8P(in0-Zmvjm5`dNKwZBe(=78qVXcKrMaYfRAB_ZA7% zY;Zu#Vc#JkRba(Z>eh$ORks)j#7ah70SZqi<227NW1I=&_66;IjUS%N`6dRE8A9F#}SR6hKUchcPw8 z9dA9~c)B~sNrho&DOu4~AyeqS870sXiJVFWCD|5V*{qtvGmE z6?|WlyHAbIJ5xC^-8-*K4iwJ_M*Cd*+rRy{e!Twoq~xzOGm%1&I=PkEZtFN;Jby=g z*1#C3M4rD@wqONvxbq4JJ17AwG1K@%hScBwIrktR(L=5A-{bxD@B3dR>BF<)1b**j zhBL@@D^OgxE|J&%YJ>|&ciBJ1_D*6I>Yq3{Bi=?xBVPfe%EUhEeyL%R^rl`v>;Ef>!aL?hnDv)3V$ z@7R9)^}Jbf*DO&A216hC-R<#0IMm}cv+LHL2%ny_9`3OElE(UPBI zz`H-M>#Ub6hY#|`6N0qJFHXR%XTfi-h#h`b9PFT4lK`HTRh3HH9$?9~BwqI6 zr`@!DA2pKllW$AG5xq#4B|0?Tk^j+h%1jQZHT!vg+qoB9;`>6v@Z>CH8i$X?LXK@( zk8AX1n?#`?7Ro654{X4#1yhaHEn@@ftA;R>nEpwgSZkZ43B5AzTl_jI%5h52!)}^^?|6U#M{?>-V>ZdMh z;I1fEw;RO;Y1J)5l3|Xbiq2l2mnnK<6i7Wp*6ORs~F_ z)?Q{JPRXLCA!QvqH#X0^rk8u|5C(hnDQUNg%wPWWzv-<1-L;C$E=5}btDYm%c@O0a zntR{a)}y$v|GETMjRPM@Pf~s5h&W8etV$k9ZT;8|LJ`S4A%F>gmZ}BKP^u%XWjmu z-~g@YjUB~3(7D1zH@VbI15n@?T{Oij4c_#siDtg0h6Znwql(10Y+CPV(3bZv+%UkD zva>Ut6$AR1?>8LPk_TF+y8EToSYhj%!Q>z@OPD6IBv%<0x#{}+p||bjqlqm*{bJ+% zmSGkk#bB9x@jERHOZ`Z4UsC~eSRD_rd7%WZHM(UR9L0aX)1UR+Z~pr3@SG^*lB#dL zepwb2-OLVte0du%F}TV0n)VnlU!=l5p*aX+K1HmxwaDRZU)GgfrW`^F*i<9BmZx1| zc#oITIE`}In*A{|k2SG8C|@`oQ~j76#RZyomj{F@457hw!|j%c!}L+uNd?P508CB| zHprv#^=HA3p2Q7|ul=k0>?$+h9v8jdPJ;MIWV*y(_y_y3m9n)Z zqt$==w?F&upVz?Y2@mgo`-_qDW_r-7e-(C?Zxr=R)Um|3|(6WDMR~)*MH|mOL9|L+sxB@A$ITL8QSMN zK_VqBi>28l=A)UIG>*^LS(;xNfVg?X-nPwLh-bG^o%Q?P^qiHx?IHxr{0$~#(Y_%6 zq=>I1^+vE&fr4xSaR5J7Ms3@V_h(OQbilq-7R7Y-s$i^C zilQkHK!tk7Y8-FyU8VPJ90#z*mv#| z-Pve-&9<2DpNlwvB?WSqaC|<_Gh-RY0Zg!|rpEF4TC|-L)SVRJ(9_IayO6)$`!RyX z4DtC0yhQ0X!sjC>?~uar`D8N>v*WmiC+<`?S)+VG=CIOW8{z;~jOvriuO7gxbMv6+ z;dBnf=WFv_{jd=}U-M|C7>>_ZKKv%V8_grJiMT&ZM)|`0@$(TfC@#EjR{jqM(E3u? z5)UC4CWp*EoE-7J>Fh$YLN~zo2HVfl z_>tljdJ6dB0>NHyNhy%pIM1Al_}<<1rytU8fbV^b+lti>@x8yybhICdaDx*>?k^fR ze_*nsoV!yqB|v&%8G$$AwmMHu^10+(`pf^ReV7T_Us?bh4UMU8+NVHDq4RUy7uew^ z+Ly1g(riJMIGIE2GY!ysaYjT;TKBK}@%1wTCuLSkk;GC1ED8&wD#TF{C+;dP=@MuWKThajt)*o<^WNr*qsa@k%>e2;=zPJ=QeRwC_#u?r&YBHPvc}@7-Of*U*aA7dUQ4s@YaIU_umKl766k zL3=Ip1|NzGu7awy?T2k)u!p|S7aekt^m?ya-3I2b2~@xFccS@gJ!=k%0<^xsmuK@; z4b3Cv-+7$AfbxZ?FwF%uiWRJ~+VXQ@-2$wGZCKnGeJ1vOj+IZK3jXsU0_R(P?1Bv# zcMp;)sz~S6bFzmvd6~d;-zPUQlrK=$%Tot2$U(LR)<7W=F>K)hon^@v{aE@?nKG*l zjIRqG?X%$FAOOdng^zwg_E?-5+ar#2Fgj-B7`1F*ggLw7!;IoWKqz{nOBQCO>N+5ov0$7&tlSpT{YdQnRQ)L+Mewl13 zfDw%{u`kn-0z-0q%<_$Y`?vMybDVrQuK524v9kL# literal 0 HcmV?d00001 diff --git a/test/files/N_int2bb.npy b/test/files/N_int2bb.npy new file mode 100644 index 0000000000000000000000000000000000000000..84ce579b76c13960ab2a8453de56d3dfd242b953 GIT binary patch literal 164720 zcmcG%2{cyU7dK91s)!UC5s?&%NO3ZR3}v2Wo-)t#JP&1_XOUSVnr%afA}K0OG$&J~ zkmRpC_xpc;kGG{Ky{*+c>pb_~{W*K@bN0UX?9aUtj;SdqY7rAj5qWW#m^v9datJeX z95NH);AZA9vvYKIG_=*Xb2Ksi`Mav4i|PE&P8Nptrt@7+K7MZIU;lXpc5*ZOFwg&^ zO1JrLP^`E1uxU?!lnHtcL17zsOtqgeOUlJRz7CTwl(3Gu>D~o` z$BA9v{LSuby;;d3T+0BKH*2f%5l^{jFzvf^RGdT?zSBJauW>LutUZc{Yu{+eNO|Eb z#PczxC04|tk0m*o9Vxm03=hL?z~Mfp9^3lf&K`M&am&S=FNVi_A8FJ^bC!*V*$vYN z!+C2oawUBC`9*fd#`U)?<{!*%m_C@iaW`)fwp7~4 zS^u~4{`5LEp)k&$xNqBd7U_ZcEj|+aQvCrcxL`DcK*|G|L#0| z|KRKM@B@Y7Puz%vXNvM~?*WruaKIFE)gpiYPCoWKJhJt&;VB2Kzf@at^r={e@)*)O z>(;449Y`?V)^@!STgiYw#={>^)y|>nHjm0hxJH5BVkk-rkU?O^nbQqfh~)Dlbt|oc zzsAAG<-x=CP-^bIw6O$?*vh*Fq7#r(Lt{Oa*1yX~7``74x9}US&qr=Y6h(Jhf%RA! zJQjG;Y*UoCZ2j&^3({YWNGjZ#Xp|c7|z5&@}u?MumAWuO#gcVPpBJW8VMdJ zcKyIB$)?z>rbW2JM$R5PSdx+TF3Wd?PhwET1KOu|JCgny2gAeKbUfTFaYHJH7wI6Z z=dp)oEEw&WW@6ZUHsPP)VYryS=DiiiU$`103yR3CT_RbqBJaeTH*e#YjfdF{(+9&z zJ;9eek#KgAow0HKZHxH_vm2%lChyTd#>M6V=AYl$t>!OrvGwz}^ZNMP&^3=&wfu8C zWA^-AyJ{7G{4v%`=#&Fs; zn#TOZ?R(Lyu=@;)Xs73D`FR{h39dvR`|JHlY8^e@-5~c%x;)I7*0Z0n#E6Cd_D9{ zhxro?G8g^6HrrzLi^e3h|5a(amr4xUq&mHU*k<|h(>FzSzrA(EB0SrGt=cs|&Y*^G zRgurzGts?t;n3=;Gk`zdrTVr!x77@bN70Fo0e9+ZPcOn*>Uy#B%FN?JQP6AJ^Kf^l zHt0Kk7^&@cLE_&|2v!?9!!2@}u(?O&@1 zZ|ZJ6?pGBM*WymFKEK10excBw^Uw)3Xb@GM4YqG z>9gUh1zK>us`^cO@=-WHGRN^;xd*+lmL92>Bs`yOud?~5usIfeDj(!$_G5!Sm)7o7 zAw$$nH(XvmYyh`62~Mz8??q?wlQY|A%^~A#%+Z&I9cW0s_B(5R6v6g={!pf$eQy{7 zQmq?0FHB+Vy#__|b5m6RLtme>Qx;;TX(#zal~8$ZmbUS#9(dyJ5s@$* zPq2MgptE=0U5SBR>ud{!PDq1}7;oov|6xD{A`IVhO;PIEbbe7WbM%_e@!YwMs*CjL zQof|W=5Xes-&LhKw!M{3gxGkZPm=pi!E?&QOE;$y2p%84|6>!hBi;0az+oVx{%flR z9FJ5CE1Jzj?qiRe!o~GK*rW7NhDZ)X*tfnMtMFemE_``Q^}XvtkC8mfLE)W7qZ4j! z(0Y=NUzI5lKAub)cS%Y`&bbE*-WD2ggsqSry9 zADmXFz<{WH%(|VaASN-@+`rWurF?7>ml`1a`3+y+oC9PJt1l)NkepNQ(VI$JNc^AR*$78A(xE|Iu@H^(C64~6=$Ug&qoF~bGB?_Erjd0 zRIGC*UoFDH_b+}w>(lJx7|%7*D@)9{2I4g{uJVYv!53Q zVBuU^RXXE})LI92Y^!xgCw*h7w(FWMlFtv6J*$(G7yVu^p}D1*HydQlLag3jO#;Me zP4)ds7Qyzw_q%lo`_0yKnJ}njwo6bm5U!oP7VVLaojogE*kmK4V7ITmc$0d8}fqBhUjiyseLgpOudJ^E{iy372i{dd&qO}?(A5l3`ygg4!>5CGs1;Akb2`CvWm2`|``BgU zeLw#~dU$mr$h_RFdcWfeQaq<1Q&=7a5f#o&#*T5oek5982fYWH`WA4^LBxk(d%jS8 z`MIRa4Uv{Sx#*oELh$ue>on~-9XueWrTHxd2*Bj(BA1IVlu+crwe#Jzim=|v^VW!w z47h4N(A;3Q2QZxXPOe1?l-CKiPe`~^VNzrY#P6!5pzltD(tTI;J_^^O5~^plExk3+ zK}_*l|5G_o22giYP%Yj+2`qcuB{=&UHHXPhCpew1Z-|T$I?W$kUpL1qG-rMdd9%Nbs41Ba86$(*dF-n1H<_w-4~f8l7|}JOVrxc+thcw^!C1|<^$RK(q~RQFhi8& z5+26(F3ZNl^ucf}c^x#b&*OGaA8Qg8IfA}r5WgaQ?+1DZ1CreGoR^J<*$vYN!wLPo zmhB>A9eQ3Ulz+CT1pT049I+}nzid3rKbYMxeJ~u#D<0uj->A@4XC! z#WyVOEF~ZRIOZSBZkRq8&N_4A_#(wRbc_7{F1=?3|HaYY#W#HU_!+dGepxqx{YX?SZ$>$oM!#t7MWr z3cvI1jEb%$VtrM!vg)N2Y|8I2uUv5e9THwY(JkHwH%my)mRO|xcK-a%zSpnp+aDO8 z0B3a6z8Za_LrM8x^k>Yq(Ns=Q>RJ~AFfKb$(D%Jbv`Vne=n=U!((!6}W2M%JB$@2C z2nz=itZ)0H@rqGTU$oh$oF2L6~$R9&0m2-eRv%#3L|BN|-nHnoYrP=)V>PuyD=MNy|fC`D(v8T8b} zq?YoSppo36kx&km-|C}+x6eecTICXOCKavnds%JB69k)YZBu$rO!)p6zF%Z<`%1Rv zjfZyy$^uUmS?#NcY}795C|bxMhxYHKd!chF69Pytz9s2C_1p2{%l%y++gDP`Y1%~G zp9Y5{tT~Jiq@s2Ghv(=Y#iNnR_th?Zx$w;Fvb3F-3&Hls$4$iTE0L722P*@S z)_V*yqKU`1bLm}=1e4ZGr!99E@8jc-f2qDYZeMAZy#LmD*#yXHHmY=%G(rPrR_qhR z1;}R42R`GJKs41%F1|{W@cr4};ooQa-+iWphJ;AoV@~ig_+wkd+7n3UG$Zw9A?sz& z7Yv^pZ=cCtTiM+hr2|9I<9m$u!6@T|*{$(C|1KY4xPRK7#_jja;r4rYar-@#xc#29 zxcweR+g2XbHV>{W9;@EdmIT~v;z$j?&*xLcxyq>$T>fRSUqQmUB z`KAxDZZ9?E@03QA+sf{a9$L&xUdn$*I&7F;d6a-+>qhQD0~erSq4SE^6&_Bv`)|F`CfW_ZLwqdl${iC8 z)zjJRW?kuMDgBo^{vNllq}nW0AeCzj9|I+C@6W75=mgWF_h|=_uW_U4c8OE4VV`LY zy@Bs<$Ga2`c6=7MuVj0<*yO?X8XygMYHc)j9&Kb>$;incgfuEyj@9|a0{JFbqx8~r z+4_CP?JIqWu>JNiqPQ98_#L|3UO&+vV>fqFxY^++{_qdurMGVf#v%m#-Y3 zh%E;nr=5v;tGy6+`0x=uqeK+4HwU_TNAuU524 zzI*DAC^Ey<^ld94ph&c3d+2fdJx6f+Jp*L_X1|AN zkHI?s-j}F1XM0ASR;=je({E0(kO$U(+h!muV0;<9+HgjoO{yAgPqok4Lv(rB{ySl- zeD3G|RcGtf*q=C;r9KIE{7|a5inDIgBDE7GQPa5)cFVlJHAL~tM5NcU`4=|=c!;h) zs0ZItd^A2AnC!!;j%y?%3yYAdB9*gHleZ9ehH&wKP&{s&-6n3;ns3gJMIjTNI|?$h z;pJ+&&b>+*5HkJb;e)7RNE6%0@##@9DqO!1-?(vchfus`oPQ?njvgcV?u8y7Vs7Z3 zN(DEW$4opr*(gMhGvvm%bBOsUpTM|IE`*LO#8Hpm#J8pJt#I?;mg&&VaQbNQZ}<9W zaijv#?z(?moU$Bx@}%yHC8vR#NmCYw;yGYZS*Sl$SN>i7!HsUA{xG2QonNJKw!Xvs zVOR^P0@yRq^j|DcMv2e#3sho{fXHF?h@7G$fZ=%lW&ME#SATdPCN2KD*boj@Rg%pJ zori&92BHHjb;xg4L8c&e{(f<@RHxj9#rw|_xV)h8j{R4>)>OOpD~?9v;#)H=?kM5n z!BX~K>NtkeX0LGVXWe51>vmT6eS-CU-nsFTVvRs_QN1-pRYd@w8_%0ny){Y&L)|Y&DS4xT)tQz{1566nB6daFq|KP=t5UsJ)&Z0^GM7r z0F~D}PE~0VUSGzyFXkW2ZkRq8j?>fPa(b;?v`g7q_$G7qvhyuA4>12=cEj|+aPB;^ z?V(j5{5>^n{b2JNU*DzrD{=J)&11aoTSd7Mv2PiZ1dFbdN=Vvuxrm)V5 z<-u^Z4q)*BTc`N)mg-~rU^uS@fd1yy%joQN%6eY5Odyu=;1e>;L;bn8)2Hl`5f*o_ zc(9aw{NtG2FnutbhcX-Ld_AtA(o%yV#iu0@e3E;%uq_9$_=d$De0fXtG5=t8!}P&$ z+6#njN8M|XPlJ1CSWNbRarAfbZ7Do#9$@~#?1t%s;T&}q;cH}G%p1a&uY}{fYAXv; zGHf?SlZsRAA0QJlW8`)QB`>c3;$Kf_|2VD=@w|^JQ8d{Bg=a9Yy>3+s5-l&EtXaSO z`$0m-gPo7@KO29;|E$OHKe6+d+v3*)B7Rd3FvZn7i2jnlYl!3T<`kR~9q7OIKC1|> z?hsUJCYnwjf~+np*k4I@1o?H3xnuI8(be**8P4=Vg8hw;*NNk^O5^GdBid_kQLJ?b zy3||G3|n%6TEp$}Bh!;;mml@4se%!~{>I1a!0}m|adn3WCEh{@PFum5=?#WV)!9&Z zHtWgB2t&AVw|Boy!t(jz12{hGH(cGpV12-qJ8lK&!iVufKM7Xks6pL8GFt$WP3aE0 zF3Ydy=-~LQvADWJg-_AP_cZBf+U4zvDIW`%(>>~NIx-bX(zxr^C`T^afB5$OgsVeb z&ef(oI&l!G7p(s7Jm(C@%l7k)@38vkc$T<2gx&B(yIvw=G&);27=B|Anji+2ivs9Sg%dG!&lBpPmM>eaNUWs4Jagxtw+Q@K^vLJhnp=(N(%}12az#_byN3VXgF*>(?s=!Z;wE9JS!3_{ zNW>4eS?doxmv96*9U8q6Up4SDrQo2rRYx!$lihUr`V|+^WqNU64|;!av5(-G6g`M4 zRpl>o$|vUsgmB5Y`moWAzU58B3s^f>eNYi_*w14u}^2vs~CkFZ#xLj zm-yzpisQ46;pz@WP34()w&$P~d`jlg<3_-B`~l76E+147bGR{L#bVwqzPzRSD{*|* zRk*rC{IJ&LhVD2Zxg|kiya9;N&?l#H(6v!mS4{~hU2sPkal~} z?YZQ9!?)kR>fhEisJAI@|7?6Y z>h^;MiZw{GqxkN%wo*vouiZ0HTL~0vwL3BJ)sjrCY zUikv8;jlchl?&3j`k}ET#vSFo?_N7JVT_JAT7}XNsi4(*3+pr!w|)p6k0=gjmB5n~ z_2G_irWweal(Uero}Ze~P#HXH&C4&pR|UhD>CTnEEkl7_3-Lf0w@wMgv%=}~zU(At z*&u03NilqfHQ5u=U$^&j5o$L|M5I-xzUmhfq8toPW}} zoeoq8RG>1g{m$#YS3;%7Il)f*e2DdKmw&$76%IFBe3uQ3gHT)?75+_pTM9qhVPPJ0 z40`Jf7?dL6n**hV%9${_Icx2iBXKag@#QvC{wT;B-%8{Yg_gZuvGF*tU5mfBT?w_P z9A?_gCx`X^t!BNw3hjHY zf8;=AF&eOK@^qI9g(^nU@u%vGpBH@%B!A_F>fGL6bz;fwTZDeb(bXZWzv`-Y?1z5U zI}OyY{i;J^cz@g4@GaCgKJjI2|5H(Wt7wQ3;xO%{ze^n1SaQRnWXxMNw|7V`y zXBaoOQ??gP3#JIaIbTN(qM9XVny>F}u}-DCJYRSHTfMOBHs|d7l@~fpXW|0p^Tb2y zHQ%DteZaEoEA4i!Akf}mmo15+5yPd`R>mX}%l3aq`?X(r;Znr<<3IDnxFRP7`9m{w z!t;W-Bi|Lob2vwW)9NgkN7|foG_PJZ-mBadlRxvq)WILaKl22SVet1o4lY2u&%=W2 zVinq>`?SE#E*^qDZ>BgeP_}G5%&vsCO@p7j+>iJ}5vkk}&2A5Hr`X=V`MMKa^crI2 z?p8uO?l@{kyGlUh_JwsCgIhm@;&kG0+V?;mGj$Z&a8SWK$g%+TJ{NoPdVMvzY9~PP zaIylNGvxQabIC)bsSEMI7q?Cc#k+>n=i|}ICl~xq!G~t^=TF=VL49f>~+D^G|S5d09k$1!`&1JM(#86>5<=_j1lG4_&(_ z8T4wWKZ>MY5lg2L1oA%?;%Mn_;@eXAEL{uppdd18EM}@0l`5>TUG+2x-7flkI=v?z z8Fe%~s;IFCtu@9y4&1@uk9$AvTh-syr%7<{$32K#w`psJAo|qRcdBs3F8D6AJ;ZTz zDG5~>b<&;$YbHs#BHT?oj|xg zSGpna$W>%nxkKx&?qa?S_PihlBfswB(@qiny1y>O-S_h0?nljV_lZl{d#U3X4we@# zBtH5Tudz5LI1xVW>Fyrqs~`d~O+O-@K)zAnzYlHFJMdpJtseJta1qX~jN11Ab3 zFD*MiV0Odw!Ekn}wbLaA#UVc7);yVq!H}&rLL@t}{O4QDKbYMxeK4GN=|YCY*BenX zoye{&X!*|%*gU}egV_z!2g9-W`fPpB;l=Z9DSu(>2b<|{;u(-37eEj2>e=xgY`d~ODHzU|3-!!1iW*zUf>#F~YqrZ!9`10}l*gU}e zgV_z!2g5O#|HMEBXVs$nodm`6LAFB)s4r*iz-PWxXeDhbI2mk+oT_p+uikQI(fRoJ zg!UVRCL2rV;!t~sa>>=FNkIQK^sJ|ValeHfJ;Ry8n(u+T#r zb`19bhoSd9rnN}~k3TD&{Y%!3I2ba!IXCJ{>o+gu0Duk%ub6iBB zGvYI;{-{kSk1B<>J$!YA4SCaS?>L%M>ie6foK^I#=g?gCJPX?IEA(3;R1(;8Wqq@FcrS4LMjXw1KdYyVNDt0@r(wog@TW=ly;6;Sy-eZhWL1iGf(ojO)~pmqDd z^(kk&!_>FtjZ%B%(965F5$;X_K<95y8As*-<6FiK%!8KB8>Hz7a&THc7Nwww9W6EvMu~~*SoReOp&>5SV8*s6g7tIt z>;!j1A5c1Vxn*)(8FqSKPU_eY0J`)AR~V)Jp!cJj>*1UgXr?#uvB?)1=(`fm+hkY* zUJ>Q2;g1Fg#=Bnp$@P_d6?BleysK*0ghm@qt95P)a6lw`l~j%hQXBpnbjVf{dGQ8@ z%CMdx*nar)3+va9mUSi`Fh(ugWm^v_=AuKZAKl-w#}#EAy}yFRP!Z8K$r@4Il=)|P zSN%@N9&k581_GshJsGZGVQ+fqo_sD6xW~W20%<|)7QP2@BZ7)ZlzOrfTn|2r z;JH(c7}=1h(IGEbDew7tjZ^498y{wuUNsHanyd=SQe3ZwX(UigxtSw5=SfHn6n;%X zc?_rwES#O?G|-CvX;v;n^+n^wu04yx6y1?h_xn zN@_^OK5!E4J9MR=w_*9;J7lvNXk{go10x=LTPWlG6kwrqdaS{S6=WK0F2H>`WiIWo~!-oAE&gN9Ia%9>4xCk50?gAp0I zD3H*8xT5-ln_&MPIj2K&mDd58O0^e#bygyHyzlRZ>*P;b!CWX+GJWw(y_d~DI&RXm4*s95)UuDLOasyp-`WQg$ZGpGt}yV%m71o3)r zw_2Jg0XOZWod0~@Y#qJQTW~2FD7yV9b+727y45)vg*u6g^dX*ms)Upp5sUojMai-N zxTLFOSd?@W)pBI1t`aFniBE(Me&EeUT>XxDN6r>3y8chs0e0RRPW4dx`%Q3wjA|fu zgAY2L;!bkxoKihMNgSus{Cm9v4%(Deotbbnp6Aq-xqO2Chv8uDRi1N)W+kG~kr>}O zg?XHFxlJO9^SBqyL`@C!{EL%UR_iMQ*>juyqV*^WPelmD( zA$jgHSC8KhAGHCPvt)N; z4}*=*<2QR`sUef5^R&KXCy*Ym5V=Ug$7O#HIoZtlvAR|~6d05rF`YF-q-P?sbH@UJ zf5VPx-8elM={=u+XdY+A|3|UUJTB&kKW)zzI1c3>*8tW&t-dmjGJ@?h+Cl92{GkTw zET{cJH)4rSKHSD^ce4=oy0J!>Srj5#O`-Vjg>JBZ(75}OW+gfnojYv$X*Q!xs9W-Iqm6v`PjAY|u|;?w3SsTaR7yEK@)! z9wS~VO$KP|R;83Py9npwTJYXDa|VLpOp7Cn;;kqk8QHbUEHnXG)u+vj$SI-xD~z67 zpLhY?%2b+WD`(`By;{!R-2fcveQ%CFk0n^Y51IV0cbNnulAFajea`NHc9X2B6&n|o zlMk=cNlid^r~6qR$eu!PRgUOv<+g=Jx^s5Te0x!{r`QGd0>b&Y#&`9Ox`e8OV)*A? zt#6$0D(Xy2LJuiy$})Ol~C(Hs5CKd5@tQCQ!P$u@%sh-{qewz?ILXc#|}jC*N8@k-Zo$EQ<}=~KHG zsxO?O@A$T^1M}nf(|L`ZXD_tPi)_{&y{}m7|19IZsL@D8aa=baT1jE$m(RZ+whFKP zIuey8dabINP3yfliszsfrAjb|NFosv2I?$=^;22*?Jz`?a|Nb+MZo|cEu3KQt zG8~4=B}oKQsnZA^A7&SHFE`a7Wo}~7?abNcgDb_;(vLX;R4uyyWOZ2oQ0AOT(1qiKzRJa zaIkh0E-%Dz`ZWw%hQOUBNvD&8r%~wc*hYSHdBpj)ubEoJ2qJ9X-jhbJmYpApae1M# zow3r0DG^a;y}P?JBmkipEwLxX+MwJ$3_o$ArLI5!iHnW%Pun~Q3L93^MZ&Z<9BOcBo(*I{vj{Xf!lP)+3NevnqYEknM+5jL*gsdt;)3N~Nrxw^i~5M*w4 zJ&5}tiazQaO16Jf1Us#jrg_y`Xv6j1h%Ks-1mlHUQhqM$_JcTzeg@asa8OiW?Pw57 z0`1U!RZ;p1=xE%=;jp6tAe3I0z1!?0@(4BVq#`wd+7!COWwY){aAtlf&+OJD8uR(<(1*cK z1b>g9_$sB$%!fDi37>z+ebOHjZR;A{aXm*1)@8<}U(7H>UnQK*57OAeH~oP8T~lf( z!&`{VO4B=X{V7MCvDp7prr zg-%>vpl;wF9xO72@)NwShJD7Mwz_)cyag9J{aH3jxsY+$e=lYw?s);r3wrydxULiF zg1m$6>yEQpKx^p`_Y;THIKH=e9v9#LOZBZs4iAm{v%xl#3@f)6ZUozhO8JV;*=aV^ z72~FH+T9=Rxn=Uz`BDY4Fbgocv$qU6>GGDH+QSR}0>mHVYh2K*+QYb=ng`$uqjt8< zB;ot}WOv$7sewL{wLaV0$|4OJeOe~06sAZavhhA$l@YwwG_|AMuL}lpV;}E?$-$oc zxwosInt{J)GcvXz{C>9{?0R<{k46gD72JCUgVDxWH3ZOYB;k9%_&yr*r4Y zmO<1R<7(dz+rooeyY7u36Uh8_?#y1#bwEY+{`EIrdT4!ks#Up~7gk*hysfdxkYN3u zN5|bRE>lHXUZeI^_WEe|$H*tW7h{ot)uEne0x>9)Idqe_^IjAvF1yk)$ryD%$um=Ua>30uLCkgyg+)6Mu9E3&~8V~I_v?2NE>M(H_7Q6PR7!~Kpc*-(t2 zMxVW|9bh;&wtZ=I%vgMXztnnS*_kRp%9aEzx0_;;>D&Y@TlO6ymUe430J9eV6 zm78cMu1lgVET*R}i!Q!@xZcg%q!^cq0(3;eQ@u~YRgII1d$iQhEOCU2DKj9JvkGe& zW)0ENiI3*y8O#6vJchHuLN?%;MmBn^{FWkMObbThHxS9cYXZr9=5Wa~8tA3K3XX0b zGlKn%Z!b(A3@26QHIX=H1Y(h(mjZ(*6wHtnt`%qxcMhK`rqWvc_XqIhE!D^DhUtUh zM7&r%CN=RC1%C{<-m*cveybSMjc28b%Z}HWe=xgY`d~Qh!-ygNUNZW0%%Q}G@%ys> z{v$RIF#lk7!}P&$gg1I``-!`hz3`7?>j#_H_{W#(Pip(;ytb@CcQqn1ocAjrni>hW zR$Vb9rr2H(ReTMG|K9?n*7oih~C8K6iz6n{};C&|6?9gss6rA3_}q}@Ztmg zIsC~xY%6U1b@BUhOWAW;{vL5XbqEp~rKL?( zHidL<5Tu=d54UEGIQ>aJ3FNAu!OK^66fBai_K|ifBA7k;}P$0u5i;}h+{@ri11d?H^QpNP75fiL9|{C9k*$esnhl$3S7 zV<53T41L<~yNQ7di4UwA%?dn-xJkEAtthiVN~y<9lu}PFS`YZ+{?opZps}2Bz9nLc zYRfrwaz9W%k>J!e*Z}F(a()HL_UJXy%f!BQWQ*|35KjeodMVKI~#1+|ZRkVQ4ra~<->nN1(Uf?ZFjvG%>8fYTzyA*SA_x3FtPil99 zx3-(r{P&HeX6(b9;Jz6B2C?GPu)b=6w`9_@fmZEt2x^GYOwltvwQPGTDNVEqe{(>a zR|j&Ab6BA_8{-?yh6CU*QN}OclH#d-R@Sj$s4JT0)%lq1%f^#0rLrXM+JO|qcmgyg zx1dXkH$Ocd;s4KWz5kfUROf3D!=D<5q6VBYE4PNB#+K(#8rgII!#ll99utfDqo{!0 zCMf2S?j^o!bp+eT=o9ZXy4A(-?0e2L)awVdp;D>7cm0saTs@CekuK`C*hyTo(-^D{ z(y?T$w?ti3-0np|+KAlx+555Q6$InihJ5CiOUnVqR&Vtd2_M+JO6I~Ee}C8_RS|rk zObMDhyK-J2E08}|yJ7PuBlJ0pQMWAE5n{|qj|4rv@t@uB*U9htg+HjAZ_w5u=}6W? zC%J8qwSIw){~K9!nB&KTif3Yw()g*;*Ej_F-?EIJSm8mi{NLeT$MK08aC{;e9G~bE zj!(22$0y3b@ufokk}qXavcQ*8>C53@kV^x#%a6aE$Wlc&`lM>2u9>1;icO^{J_#tG zQa?_Qgm6CcZ}kIffsJB`DBE|#Cbl|5X#1Ksy{A$Ppw33Fa(_B<-E?2x-GOh>{J1^8 z$5bMF7HBUzJ#3K8g7ZQKB}y(A{yUHQ_`l^bZCgRXfAw1uJW4vKb%Q?#_>D7m-_wv)?ExNQ%Oi7xFUW-dosj4kX6r#H$p-< z-qHg>Hq*FoGKj`*>)fo1+Op?cv5wvixaov^h*#faGqV7_st+z~6`EkNa)Gy0$|1Ne zTwNRSe^AxYwH8=5-hCFq#v3l4(7ns_fM|Chj5k-8SA=K58XRwl?Zlh-OcIPEc)TCFBYc$HVn9wToVPqKe*W*cyiW9p ziASB)k5;{`vq!e=>m^&XU189Ai-?AV&m#F`-tT?Bj$T5Ww`k_^2V0@kq4wS91%tp0 z$6Gq3Xdq6$Js)M4sFSU|N_hPo-+yvm8QSB@6=;f4d+`*a43 zZk-LeeXekkeemTi)i1^IiKuaP<4d^u0RO-OpGdfQflp+>pV#@5=d+Z&rH<1ww5bW( z4xp3wzCOz{@IXzg3krNL#{u)%dX-W#|r6!uhysf zNw6`db(}`t6h7yBX}!9eMDTngUHjzFh+ZU0bz0l6KNg0(oL<_q&ws}zpt0I;F46_9 zSLaDj^9)6Tt4j<#ZiWIgX|{31QB%bJF!}AVJA~)ov+Xm?x3nWcTB85x4_`~zukNQm zI1+fs5>J#o+SM2ZmBsfPBX>!l3Ag(C*)vWA`{NBX*LPht zhx)B539FG1oLpZPZxW}1^z674Ng11Zpc@=pXC}lA&{yX*xBP<+6Fgt4n#T)nIctNz!wDUE_JiOWAg^zh zDGEI9+cy*&uZ6aW$sA>=oiOlnKjg%-ptveB#{)XbNS~}v>{1Tl&#Ui6V+Xv-gQ2v0 zRUA8A97NM}rL8!e04vt~X#JLH0s~iVYlhqXfa+DDEA>X#MfRh`tGs9Y%)9ill!m z|9wX~TwX}W@rl}Tbz@@g1wPSc9G@uE`fb#|;1hY{@&aOD9#9q^Kto@%gPdf;Aat}b zW7kAAyz-lHxh0!}`d)mV3i$_oscX2rpm1Z_?7F-ktcsW3L{#dHcsQCZ<>z@z6cu}l zZ_M+U?CuC9G?~dSns502!S8#r?m542jTG#!`kYH!MfiMM5x4Kh$`~nRt;ii#}Tdp-xF^%^`HTI=Tb!+g$_Zf7+DdZLSt zr?17Kokck#`wIj?@C(cBP9ehUhsAZ#-(O4Wp?In_vtlod;PdFsiU=bONHIK>=tZIk z-}SEg5iwc7I*KSN5t!f4=~8P<6jp|DDr0wvia>((lhPsyI~3=Njvf;tBmNW$`$y?% z<@&u~I`?T-TXPf`bOoP(b~zAnR!I!$Jum^9q0`g!T1OGh`N?fjQyv7*w+*4HR6&Mz zu+`^Vx2JOuOgBso?_u)-#s>xk5z6B5y~biU-JCs~DH7b9$ZCsHRAx-bFS>&G?eA5* zv>F8CP3x~Nm-Tc+u2G|PwKThs!Ase=$j=nWd$aUQ%>*JS8wabieG+hbGgX|Xm4?)6V4A3I%u)$&OjzY{EjoRqycFBZo$D@hWhBvMS0H2hpNEcd%Q8> z^ZehV{V?G3n0xW}bCYq;3!3uLzwYBLlKTc;%;$+)xc35larf7upD0d*@Gia{e|<02 z@0ES<3nvek7p^G>YLCo6Pk7>Zrt!FV{mlIiyXMgHzvrlldtOk(<%NJ`>w4lBt*{fv zTk5Jg8TE3!79HKjs`{?1h+u!?>x(@vwBhoCA&yT}kK+?HlPvIwlqsE({{^3@4fni2 zHo1@&Z1**95Mdug(h8psjyZTC_p)_rWBs+z@nQIb(m&u!9mG8^P~q~zkk_8cYKkOu zwN3ZTPkjvETaP-<^O(-q2RJCs^QZ9bvs9mFPtvG==Lyu#MH2UF{5-+__{i`^=3$^d z41XcB^*fOU;e{iv&yC%{R-vuGcby&bE{}5UO07m8%PLl1tS>~ts&3Bn?)hw{xM zb3p{-k&15QV&!rN+0H(}-ghZbAF}cYg}*NJY^&CGx}$|k*1bIC`6d7j_GELRI#*QQ zJ@94d2Or8eWw^;`Px$)*`+~^Q?WEO#LXtOm7q=`Fho4|^&`bj6^gf5m&8NZnE~A=# z&TPGf#2(GCAr-hoI(TK~9S8V1G{?yJX%g&@fd0K*b7=~Qd1`gv<~2uA%{nQUjzK3l zeK+pA46QpP1Vp^Q@JbbCnmG`dGV)g=f6YWTVi7%N}`Ca@6To?=T3pCs7}`dU!vg7jJxT(D+W-g+Tp^*M)>{Y za6($9NL?^Gwys#TbCWYVPEXx&Xs3QgDOilrfNo+@hY8b)x``vsG z+4tBnD3AyBlvEvmaqT2xOv)M)*)5KS2g7H=9&SYYzD#gY9jE_icsnZsADJjCBB=~= z=6y9$Xy?&~x2x_OA!4h^x3}*cM4pLX_Uxltyq~DtPh>*pF`rjzHV8IQ*}=07wV&;G zxPu96&se5RE!uxJaCq>$1$shtLAmMl*JbaA+~;RLBinHt6q&?VHoWqJlB!0D*_;08 zMdg*w(#bOP-OFu@xsEM3=6>b9^8Nj?@vO)-*|paN!v6TqtSb93wAt^Z z`-V5eYDY>I+iwDBE9Kq?b9vjA%_pkB@x21_7I;{vaQvu;XV=0{-qJQ4pJ=n{;ktjp zCmIO6$eSKJU;lqEp6K|c5gd9s-ZBzLqU4O)509B1BYLqCBiCRx(fhl4U#lxh6U;}) zpWmNy#|Inc=YgWtCYt(r|M)&9e)`jH)eQUC{pR^mJ(UOF{KVPMEo&okbnmk9@bUk& zZ}a-F@y23xxO6=0SnYuXNGwvCt=xVRyw?|XWhh9%ql?dD1NcSI1Kc`Axb^d=^0D(u za5&q?-*w$0VuvY9zmUfop750Ig4U-nYsBjwMH}wE6++ymeH|S6p$ZodbaCqxlk=yo ztKxz_?K}dVjDsfd+FV$uhj=%VS#k7(odyeRf3T~+I8_r_GO@F5X!ZhbT->>iiwA#- zgPm7!cEN6M52Z|gk5WM%dqqRYEk%*jkDbT83vSm-S*e`5yVe+)8mef#X;OwcTzpGB zxe#|SIe*%QGA#HfMytd9Hk||#k+2YEYP3R%1G2g85uWIF@j>@GUk*t6@KqzzlNb6Y z7UHPUZ{pihxRsX{=7HG?+S!ZDTquTG!s@D?4muD&)Go7eKN@4v7rQn4Lo_d6fhc%j z8@i6;x2FFkzjYsu-+GRRGfnr337m7u@Vohn8Pz!6cG@-no?H$6$-|7F^pSDL$?NVy zh6uw6Vg5UQs{+>ozjbqxugGza5NK52oOQxq3>EticS|}eqpT~AGNRG`C?`}vi|fJS z{W4V`U8s97qzmtn{Y!>pu^dLKV ze(Vj16=f6X(KKClzQ*i^>4V`g;qt<{I6A|h@w#X1z^^#E)cjrQIOZSBZkRq8j%d(> zV@KzCwQt?n$zP>sEIa>U^8oV?W;aY945wjT53BWG@LRFc_pvu-y1I#~|-7tMH9Ln5ayG^e=5&re6t)flWG84eqI(Nl~$~ZWm>HYE=$>Qgj@_)p0 zUBzA&?KEFs9MPUwnJx_d`d>?siW_zZ}g9oHVuPVh-Vaxz+h==1k|`OP#EFRrTH52Dlx5Y#N;5L~8ri zbggSWjMPZ@`s6mLLKLrh`HD%UMSj5_|DX0Pao?{S!F|6j2>1OuCfxVy_WtJkb$==! z|2%xYDJ>q~l$m&eZ%TsW)0X@tpEmy90-yFd!}U!*-|bP~*j9D2wly%!rYFnIbQo%# zr2Ma@orI=3>4OP}h+hA>I%|w9;yx&cA23 zQ}NcrhgW6M+cyi}1c|28L^go=a43Qy{Qi;r&=VF`3 z%(Kk%SmrtNlzEnUo+YB9Vrw$Xm?TMvQV~%q@w;;G=lguGU$469d7i)aYu|Ive($x` z-fQi3&RXjT=+d=EhXI+@yXUcr!eL_E>F(!CCV&%JkB@6$E3Wn8MYln`aQz+Q#hDHh zJ`;%m0x38zx(Pyo;YoU<`@wEd7g>+b2pQK}FrC10HDTw^Z^BaBau!xxp~B^1A)8ef z_-RcYi=-Y}Kqg7XX4hr>#tZ z1MI%_7-COZL!9vb=}Y)`F~;+7V|je93=tQ5MnChW@ddb_On@e8N)y<=VW1zm6acM5 zm=+%yTmtI&&)!^qVFw5NylJVHtYC6#bRNO?+Zf{+zgbZ#zFY;cuT1yiVu!(OK?ACb zCE}o#`VI9hd|hxdYwWA!o(u5F2YZd`0b7j6N9QN1UyrO`XNjy|XNjy|CxonD=l6^H zb*TF>Z6Pw=G!GeX+JKBVeTa-Vji=g*H*G`4(}w?LJnbB^{$L0_1K;(h8Ndqf7`bLR zKg21!?ds}i16S^0x%eRJG+ex1e2K`o)~RgbTU zbStj)jS#Jq!kZ9`<>!A_fvyrEuNP0hM~`u+Vtjul`NPZMk#=AxK7Q$X_;ILu(r1IG znF1EroK9S269y)wRB_*p0T8ldlDm3>1wOmFOX|ZBGdO!f>XSgs|K!1;^Z8eOMXG0I z!J#QY5;%^28+3tOy-A=c!yc-XACu?RO9bN2&f-+wNdlbqSAC@p1a9L$k@64aTEcs9 z--)z)PX@hU&m)WV!e^fFD6$^kXJlL}Zs0EMs*Ig~?}b;Io}WJK4*ae`SG}j$7oMlN z8(?j1)EtDY?=*#slgb~nohi`Vd3_DNwq^0_KDVK=1F^>@4kcA!es7U4ltR`E@kG9N zmu!5g%v+R?vAogcl8mfhSAwilgoUg}p^B_uxA2(ZXZisdt9E1C2{A>%yR=g<>@!!RpqT^+m40MOpPJl7P-4#Xh@jy#AJb_v-4s;NBscgp6 zmf^I;`y%QO3Y_-~D3Yt$w%*XkL+>9oxhH;oSqmJ0ctYiF({?+6{(toTsKc7|Qy*tV9y?-;r)MqR)Tv|+Tx8l#4tbjaTp2~J)%))7nVkpU`eQrb@N!8m zY~BdyU1>0nKVk|*t<}jL_apL+KVF=^8J~jj`o?K|rcQSt5`Ii*{uuGY5R8tlzUoKh zE94IEf8b1;0ISC5`|9k@!Pvw#ZkB*(Xdc~iCOzL0T)AMcz0RJ7G2Rzh+M8}T(Qx+C zuB;oU{NS_w3js5T_i6souHq}si2C*;p@j5wiI7o~ut9}43@kv$%T@8}Q18ks-VTBg zjQM$Tn5XZCfG4mjGoov$vVa}S4rjA-7YFA!_s6RzKUG|Q{8?NPl z)E^DI01uAlyY1Pfj4^$43Pd&}PY@N0Ie%#8oMwge%lFh~6c2(=ct!V=uZX}`eAMY5 z&z=D+R9_h{k1#5;AI<7 z^f6S%Q8)?a4ijI%r%3?UOf8+R;T{!e1;zDa!Gqm6%_21N^X2|-fI>N|yM%LrwM8>s}PZ#3g_Ut^K=sCqF_f2|Q@4nx= zX(#aW_B3T8?BEizzSC=DoYd>YqZ)hqcK&^ha-?0jhOA#lfUIA~iL76DFxshhGp;q^ zFYDK#>%)ggyWsz5E8dh48CN6}n|dQNsO*;TW{#&q4!%Z^zheQ*8qh~{WooomSMdA zOpl92M6znavNl6$U)v1u?mge`DcoRKamQT7ueu6631-QPiztVy9?GdMLRWzCs7mY; zH4Qi=5x^fcfVqB|S7vB1V)6nKY8!VQ91!2lYpBoSRP%;6-jkifEsTa-WU2VX&7Poh zLUq_%)FBpUw7 zrVe2E^6j{xRAXrI@NC5?a$88<_fCnF#1b;|i_zT4#5|t%z}1JRM^vN0H=6euhjmn; zmM3d}sa+6wl(kYc&J+m;7?Xqe6i$OG<|i@)pA!I9d%X&Iu^C8}zYtz^A{k@)!sBRG zvDG4=^q{n;e7Y+f!LL?$XBQ2}8*>twz65}h-P5$DxQS3Im5kpc*&mGBDSGZJQiFry z{EbS7gE3xjtuB|2w~~1P2T=hkTzp4pefv%Ntq>VN*t<7U_lFDIMHKW(#X10lE6Xi- zH@L%y!CN!hMh@`4)C|G=pd!Zf`MN!MTs>_C_!gF&H*6)LPC}Vb#yKodV1s26CUgiG zcki_p9ASa9rTZ>^oM436O~HG9BpJiQJ(T-OE^L2}guZ{!`=Yum<*k*8AmG`>eaEWP zVOCzwiPd|WKq{+l{vf{t&?FfzydD$?zi$Mt+sXTHb?(Kc?c{2NMF+-{e_cAyHNNg zsqk%T6Rbhj<5NP$wdN)1CgLZRU@UKRdF)2|3n;swj;vqjhOA$=Xu=l183*e9m-Xw= z@lgK4exzNUvIyIDH-H^l6i4`S{J;v z+AVRUSPi(%l>2;a5e3(h(wq31oiN5L7Vkd)zR4UignJfy`!T^azq;I{@mMH39KaHY zsMkj@q2AIkBLlh>s(p_Y2tn3zerzIg4VX~_MeUL>x3}jcUk9g;d4ig}n{>7Uap09z zt--fC9dM-oz_iA)K9oxA>>f0Ug)2g_o~G&^5cj#qM~6jKxb)ILOWPFld<(NO{j5Ab zcOWX&_1xXzGIV})XLT-391MP-0VN;Qfp>mVg4lIuSa#&88bv7P{w4bQM)gO#`J>aN z*gz5SLdB_Yamc+G!+q|SEjXV1Bc!{A4l4Tc)IZ6@##mmc@zL92joT5P`pV#?kL8Ua zPBR#eR}*P-H3|q+D1EZIC_&Z$nO))Y zEA&ee)J^bkNJ;%>T^Qw{eW)`Y*mN&;a%+c+ZWj)f!{b4;qtN*sFHOS zY5K2$ZTpM7FL6-N3Qyk zi8n$4C#llt9>kCdH>;7e6tvuMQ$9HA*ZuMqdtKeVO zuS1{D(aB`}P5J2c4tZ?G14})%9oVFYNJVKQ5P`EM2!6&%y{yvsC-J5V-?P~^<7xfq z2Y$xWhFOzK97g#6-iCtjH{)rem{Wh^2&jfj^x*US{}$gmyADatJk*4i!QEnCi)_Ki z^+fDi-XutWX%o~nh=&O2A?4HfhTgG{%(Bq>*@Ym^w90;;U6tk2YCXG z1K;>1;ECsMYxm7LpzvdELIqM&kVG;TBO9avIzMjd9b2S6Kp*dS{o@;3d=q6;4pDjH~{|o(wK0bPXW@u|2 z__ud8gz@8na&C&dnR^ex8sFNrW`}dYj?GD}DT@kX`9C|gc!+Gr`Ur)8zwc=%f4VV{ z8rW|izwb0Ovl}^}^ld+EfIQ_vJ{CZlrh!;HZS9}!AMvN6A5U-vf}Zbo1%zZuaMG3f z9`znJm@M4<#z!m+C6@i~*G#tEkD~WaTTXTk-Y;=J(8&1CscBPJ$iS59rR?AZTryWZH|@gQ z5BU}jgq?V>oF?|Y0Q3Ar^m%x@dgXnbG6sj%tK#$rtiU}BMj2hpDDXXuX?RnQsy!fX zBth7TuI5`=N{BkH==WpVKPN+Ny2&?p?ozx>eVu()`zH=Zdv)QaU8whU`l+wI8czHZ zeSPrlR@`yUi>-KIFY&E7-8FCFpE#^(<3HnCAN*y!DLVaq2WrzY5qU9*HetbKhV!_@_P?Q<_RNF@YU`5#ohJ;M(ueelCB6$?N=f`_2gzy*9G-O{6bj{M*C+wbt+ z)@-eVYoALi9m(xL=#e6s*S9z!u{IN5tpg1VFTAIz)8PaHvES>&;ZTC>Pq*rOfBDP& z2cDB#^}V@YG4z{mSb#9%*|tR)Y(zbhn-{U4@xaeCnG$A#CXnLU2P`V~uvkkdSJrW3KJeh(M&TX&1WFX3ZS(p0? z;DC{*W(7ilv-4#wPrDFs==zqwV2iX1z5MS-zLYfYSbw5$D42%YM>bM`=cRRaRhuAi z8|g2!f7-GOJXt5svKHRiF&>H@6wY(kxkYOE6tIr;7uw;LT{yxtYgCwqdAt+)`a|&z zMGp#xAL%c=78Lwx7v_$w{gd-GNv zoTk6VeM>V0qV_3j|DcceyFLmBf9kXuy-Xz7Ju-y%Wxpi+0-lu-aWTR1VG|txeqLBa zX;J#l!0A7IfZC_O8z22TiXIeBtC14hryeUnS^Gj@<&7Q`>t3qm^%sD?U2o{Hoyh;w zJ1BjCKHl&8D88ZSLE-Gaw4uaLeHjpiw&k3cdL<&Z)boBB@f{76enaV<-;Ixc9VH(W z-%#|RaImOst@$}4K?q63Eqfi?|Mcju^c(v4=zY{WK*o9Y_&$w-7b|+AaTR0oeNp^AK!GIi@sAnS}BDP~)MuZ-o9gu15D6 z2j#dlaOnHPRaKoJsPN?`4xzyIct`YcFzp{j(hHt-=u{Ayzsf8n4T%|2TXlkw25@AwmK}FM2 z1U!8Au}Zo9|HNUH{9|0pk*mE$tLZ>tAh7p_Z5qf?>RH|!u{|Fl<}Y!DE#LJQl)nYG z^PwsZNr@P*w}BTvtao?C|8qY7ivOtJ31jqg@3mRMGZXbit~&pd_y3v4b5H8m)6H$n z*ZL+1+mS&*iK9DCU33 z$7nVAf6+6P80xo)dz~iG-y|#-a)GI`<1s}TuTNK2CeETj(LbKQNnf9WSsE{V#&)NJ zh^6(9??bJVl?!#jxQ;h4o+s-5ABUHN-8;6wm-9AeO0#8{E_%zrhKoRT-rpO`8 zQsE{*VV;K=J zR*#I%LXuYmXEAH2Sc*`D+m2Lgklw5Louq!(x0!%{W*@ku!B3p?9@&bUxcgNXo5vpW zizw5`HMJXsi_DBp2hbbS{4+e?_Vs~HdJJ%%H*Ml1>fD~7M&MpKaoh5_olmn)64!B( z^WOi=KCH(b*y5Xz_)mJ6ufU%;#!Yh(eVGw3(nZp`igJC&^>6MRAELVQpL}Du z$?=n(k{5<&H*u(1k4E$(a8dt9wTUEFXWgZ@$Ki+F#Si%K?mTo1uF-vTSOYTSc#jsR^bnnegx%%t6@aP*|_41u5GS>b03eK*Yt{r>#H5ZIj>M;@U2X zi1S{#4A(_ozKU)R1o9+5*aUS$fIW_(xb*gk|H(_nPTI&3o!@c)XZ@ zPx_OIR15EC2{<`!yvDq21Cox7Md>{*hLb<8OYvVQ2E=;TDlb-fK&@T#4*N~2!EB%n z`%J7VeBT%fkE9l2Oz-1HcC3=7v(W#NI`PttO5nWrWJ%feO1N}2lGb@K0u~0ze|mB? z9(dT|Sa?54fsz}p!sR$R0Q=(8&exsW?ZEH&+a3FXK&wmw%v6(-FQ&$TFuAVue(g}8 zA?V!BXjTaoN{t@`h(bg`0Uq-^P!I@~vrX@4 zAnKc;-;Ze@$AmNniU&f6!S}U{_PW6O9gFSLM{Z#Di?l&aix0HFf8Zu#ULf?K$z2*@ z+PQuS?I-KjIS~MK71o9?+bh6@C?Si9FP@-jnqo{t+6R32bd#*T*$B3!nBylpY|od% zls-w$cl%o|dw~6d+Pkw6alSh9p9*itn}ZLw99=9lO7IKTm4b6Z7T_!Vuza8i^Y|n5 z`RGa4^U!J=0NEU2cgu`mIL_b&^nnJL`WSnDO(PgY6PgA0cGy9ZmojDa+>Sez9}3?N z%})4n>l~b0F$Q0>ZErN#$V1A?Lzk*Lb^aONE&l&)C-7zuPweuz3QCAAaBLP+;X`%Y z@TrL6e};#m^H1Ax<}H1lh1A!^D_i;+2dS@nk@~u$e#;)UP5zxdI)$`H{3dvFAFTL6 z){^$i+JP`2&CkH+sU8EDSxWCveGUK`{qNTTaRdJuKZ34(>B9XS2}3*F<7Z7n5&1{u zq*i(X&{PzwH8Ruy#M@iGAfQo!jS@J~j`;>4+2GAse^?F1_{|zg=fy>3!PjHbt6%r& zK(Z@11yi^3;Mu8NT@Qwfz$LCAeU;fe0?hoc>Oq!pK~c5Qp%k&m@U-= z-TGJ^vW%GLBh+(>i5fSGfp5hGE#*!bfNb1=1&(@zpK4RDfPcDvfAzofNW1XdpqJxb11m5r zEXWFo41k6@OU;i`*x;0(G#5T!0Dv}iw9|t-*Dn@GyAVoRdXxdn7aaKJc6LJ88xArn zsNu=D!H+YnqP;RfU6|F$^;gm9)Ir*X%dM1ZOFsgk9REDgQ({*rzUy>tN~kxG zTUSV>w0mm+*R#fP`v%OPf1$?RX={c&U(%oq+dGZ&9ovUkq`zQyC`*}OJx1&gZ;W5%KJY^)6_dn|k@3`_) z@|P%pBrSGs$9f;IsN~>XWt{lxo}rSNy+#2OK_}ygSSlT5=a-Gj3#7JfjvP{oyT z-B-s3OgcQg8YPAK`|T&?=`!mTq3~0R=S;f|2P`7GdhFv9cSufCccIVS7vRg-PcRry zG-GYt$9gIp0p~3{B+GTVpsl`P-@{qV*S97ak0!pcGDv+mLLMEe1qzt=hBT{&0JfHu zkLp)~KzIio+XT&CXv1Zg+*qXuH0Jk)3s~sGaHPG|ClRxejXh^}ynj%5)ICgZ)@e0hn8}M8w^D1cKul$%+nNA* z1Dz$ABNRY8`+#7}A?9uTqc6E(bkX%L2s$Tr>51$;C=g*<$guA+7#rDTd5C80pUn?7 z&zahYJ~+Vc2Ug!PHgM`@wgv~56<1QIe@3H&ut))7Wo6DYskrW#KBWV9 z`!C_h!qXM66G|0Fny+Q!(PcUAf?c{*=Ce+0Q2SImRe%j0oYWC}U*XQaV|l948i~ja z_yPZCFWii=g5a@fNy3Zx(jeJ~`8wT*2dH|JINbf}7+^NgqU-M`+%bJ>PSr#~8K!Vz z^+fMsXB}wjkovNZ^ndaYUvvFiJAt3eRueet2G#bz;WoZy4--Fr*keW%@*m#@cW5Ul z-VROO!!v{leY80X!(kZnr|%H%)bdp?P*oN4e)xS5kbIRdlRg&&1F{2ZKjE4{ciyBP zw{}YqB9`;!(|`l)EL033h1#o-rLVD(_9*wr-`S&Bq&>>XO-P(gjsm#C%pdx_r6EtemB{xxZFuTwuLq7; zC_F|Pu|znB`TF=3y=Jx=nY=?ul9LEtXZE(rCGoLP{whWR!* zp64|kcg#<+wQ;RsdP~^RZE=p|jxiixuG}|3?hd+CI$t|-{@>5nzZ&m%zmp>M^&nDT-^|$3*Az&7?ajHRuj$@z z`A1WK=^vFK?a{uLBi`mxG4Ojxk(y{36Nna_6ew*v4^$Qh8>HTaf#+YdIi4cEUynX- zg9G2MIqbQM$iKoReI?Nd34TzwDJnN?`ycPKf8$ToYEm3{hGPh72D*t~5848z;bg)~ zj={ha=`Tbg?LxTw`Ml=Fo$IqHslrDbi1#}Sa@uweHPqozCE-^_o}%zD(qE`X+J(w% z&(9^Q5$<@sef1WSd)Mv*KSzzzEu6Rn?%)0r5KgTH36TCmH_|TX&6?6Yr~^C3E0?b& zrI@$`nWL132j{(D8!cH^b&xG+LHY~PNV||0NPC@-({{&r3R5C7^Mf{kW?uYBK&Ca= zU-s0b{hAesNBRrRSzC6&?e1)9Zh*zMb%ehD(EHd?;cl4?S>WR-`q}F`Oc>AiOw1RN z5uK7hz7K`-@GVW00fEgQ--nua>e{Dxj+YNHrW194Q;qua@$}4XxC5V0VfXU+0R6W) z;-+aXpgK$DVo^8d-y28aptq4|xGXYqhOff|pzc#52eW2`eCJI3pEG&>HC^a2HD1*Qix$31I&I05vYEMez+q4+`g;JxTtl2lFzUBrv8_>sQvS|>srRrUF%-fzklw8;^(j0CzJGV-YA5CmMG_4 zYI0=Fg0YtsZbr>D>A>Z;G`(6PUOyURmrD)*S^OsoC!K$GWfNCiKu44(jlB8x()n3W zE{oulQgH&!_G2zOO|E-HXFC@pxZgMyG#78AQ^Ap;Jx1^(6178NfjaAmT?qmx% z9>PVTBbpBKyA?Z+bnC*)((`3pQJL_3=OXDjn@c;^*H4f*IZtZo+9_neI>iqc5E*c{Tu1&Wf0$`Cp1b_FA9RP`@Y}2oZ<}5AaU~PCGN8~Uxq73iC#!# z?|fg~9mH*=DYbw%*ti^@>AJvgJfr>81kq52Ws9C+B+jbFvB$%Rx}WI$`Twf_=4$)&dhcHg+%9S->lf z#rEf~dEt@tFPtUE7yqOGcjN!+`jSxF`X)W|C1;~HaRMjm`p2^z!JxIt=rLL%z%^{u z`lLk?cK9@%<#R9)QF7gdMaeI)P2c=#eAMqX(lvqm)r3Syy*B2o5PTcDrJ*v4peNL< zxa=?jhi~uM<>%I?L4vDX3e5&K2oy~_YTs%m^2S8ac0x)NW4r)vv!@4Y#6*e~dvi?@ z@)?dA7mtXw1 z4uU^3-ag<#)9ijyZCc2S0b_blq&t=d)9fiCeQay#HPuuV1ecBo!`QsBz*2wB?*+xpxt9XpBx^U&hYQ z^IwqkR3LG#>lulk8%_j%-x=N&Uoe2(rM&s&74G2K%>n^Ds)QZWCvEll!JGp(q)i-K zB448c?|ntvf7HlA;`zc}T256s8(*0wQmF?X^X7J7=VD&J6J752+DkmLpev+o;f*FH zbAdL1_~0=dGk}$_g`-`l&r2Vb0Pp`0pJ}DU{P`X_-Yr9ei2(*J*i%4@H`r|kZzfk! zl-K&geSBN=6e4lRC$*dfaxl+-M#uZx{(&xvSei^@P|Tv8cZ-3i`R>R=*ZwAgX8$Wh zDfGi0BGGE=_iy6_h#03h3BZ6tICrSG_mS!}#`d9%hL7@?Un5iu?iekKyab+8Yu^1@ zX$Z3e#ytu z+=-}Ix{2f0%Qnb*tQ6k3I2C!=E(Tn@IIrJEjri`vZG{;_ZTtV$a~4rnMBFQUjPY!J zWR9fW-rbDH8AmvVpob{N!Fdy>^~$mG^8v*`jq1!`Qh)>)(@wrYGv*DKX-tk;Y|uB0 zmnAh%Q+jOEH@~CT-AzWl_K>3p%(G6Qeenwy5RvJMgWV~n@zXF&2j&rRg5vX0s+LO!KA6peZazU`mTO{PZB zLoud|WskrKj>~w-cw+nWlVeoUd&*AG!;fk1^973gq0G0|ui3GpfXnCL>HY>%=x%%% zckqWg6nuTsYg~u-KY9F)55KzpZDC&O+L=p`!k_p_XRRs3E~mVZ_%a0?H#L6m@P;4C zb6xZ54)=nb>BWckNMIhHL)pg3`t^t+sK77MHD8Iwc)rOsJnwLA%t7_JD+yy?E5M|Q zg^gE!0aSfs&O(zH4+rFpDF+;dK!>sFn`|OPUJ(~pfMPZm_%tnczAeNVW4yOU_vVR@ zAmTBFxa%rY3W0i1p8cV3iIB*RoB!@mB5Yo9OPxjJkFBdtB;3LBg?v9?`GYnKct<&R z=~D&f@nu;NTnB}t{2*VV?fi*D)^PY%LyDPSA_yE3b-0w54?D0OA8#ZS!Nk0rPB*Fo zfa@@R@zTqKkS;LbZBs=FuD0UR{_>zVv1_>cv3E+tmmW1Yl8KC$SDNo92 z2u}?zQjENj0X9FRW6zHW_2lQeDIPilZX#ARYD*b^XIQ-UyqZwaf+xXAFkEXJjp8>2dbr0f& z(Ez4>*RfsvHDGu~jP?^13E)b&wr77{2oP=L93|ho{k`C?_Svs~A5Pw-aMWuGe9tIS z^2AC9k7I>^=zT+oGaj8V^aK%~>wvTJg0ULpVA)`g7uRo_@2|%F)$g?nJ(l$yX|TZy z_pxE6KA5%Uji@E_1_6z`RzE*7fd$_^Yi@>`z`{lUSc(}f@T+nD^!FPhy068ALZO_U zfA;dKB^*6zdsp<@Wys)<`0zZwENl{VDRFj^2HkwFOPmwNJI0G>l{avk-~e(COZqYq zVlb!3`*C@I0sJ~Ed~d;!7*MuKsk|;@2JsW&#f=JdJI0gn@1&_1bbXc#ctK%$Dzv}QR9JC+~HF32g(PvlF?Hy``hggfIX1}Zgu zus1ZYz*<>5_nfgBd`d2IXo_t6`uPrdrRjzCi7%ly)jAc*5FO!jb&44n8rmwmlg9pm}lws%bmc*g?L>Zq<-Emr^z z?_96NygWce6fV&pl?qzAt71F9pNBZcQ(n5e)S%0WxofVAmT=BaBKq*)pT7q}@!$0F z$x3aC0C-|8S>bF-Ahdq=I;5C%o6#F90Xflb0!Kv(U?p>=kQr7Qki9O%Kdpuh z@B?FF&Rn3uczu7D*t6%8q6lQJkW-dj(1Z>Sp$;wklwrF@)RU5FDR^hBW4gVB1f)Cm z8{u%Ag64BRrgoP!;G{^!?kQi)?JYN1@BK95cu<}bROu^t9-PZ^$jrE73}VlIZ54IW zgw~&YMbzq4!8ZnpEZetQP?hzG$R|lDh8B)!=@p-wkYZOW%g2X~Je| zPxJ9toY3a@D%}4$2wV)qJzHDtf-(P5a!0iZ=O0^b+6C^KcZJiQQ{dxnN)|2`cd!wC zb>D5>2Kc5{Q8C~}At? z`$qhu4ii{rXjJS`X9{vVDRyb9D(x6gi~7Qw&j`D4=!euZzm90o9Y#UDi!cF1Jm||S z-lGR|Ro%lo33OphhHFBJxXF(3>V`anrozRbgVvyn!3$LwW~nC3e47T6FX7#!dqD!u zVNpbrloG?NZqaePq?0?ApF4g31~tMi9OF2zz`urwD>=?SnUj$KUdCK$-%Y^`Pbbc% zw)2|7AcOBmc(mnrOdrZ$K-q=U>l(C^IE-K_>Hd&eCj-1qr0H={O&pNTUe&u+jQM#U zeI4ya`U~|)yFfy?+dB7-Kd4q-y5Dc21W#BpoIPM^1&&z1aaAu3#F##2U!Jd> zk>_g~9p+c$i1T$HUtEFCgdu31&rfEZbAi`}j?I=<=Yt&oT(vURd@yu;OJDD`|2ush zfz;Q&PK0&i$FZ=9hQQIU)Ta-$`vD?{XO(4p3jkB#`{4r8JizObUagw046AKT zuIgRHJU*-bi`{Yy10qiLocL|~;9DTMAU{PM#}N?68jQed54d!L6}QSz6R3EAL9Vty zV3jo$cOZ-z2C)%&rq0V?ERQ0WF6)vmbD+h@6Ej|N5Xx%FiP!I!16dhGcWXsepPwQH+Xt65&IhFkf8kPK>FlOm;D0~#P}s#Bl$y9uEz27K zrMAW+%jfuE`ciG2m)Xws=etO8-%Wp^{XJzm7Q!x661S!S z_vQuPOTzlzBokx2zR>kqfq5YQyq^K|&$FSgxJrZgmN=HLrK|#=dri>tsE-C#Q?ERZ zIL``0D@d^O#g6P4kNee^rxpl*L2zI+yZ~Vr%)VT!8@}!iXzbt5vGmXa{X7cnmLJ-H zVSk0_^}QD`UeD-=`?Aw z)ziQjZ{*Q6P74u6;Jqhw44yoPF@I)G)OD!}8UdoQ_i6fUG9dJ^=U~6UWmp({BaMp1 z9d?PQu|;Uo!vw`g@^LL1;K-v%+ZWChuu`8yN1IRxpa+xDp72g2lcDhw(|KZ-Ds$2B27q6n+lJ~tQkh=4XdveBWJn4fI+Yl?FNvGcB*(^g;B3BW*v~L8wUI zC;!A;4r6}S;>}~_9H)d{5@Lr{rmcYh!^FZ`nG87fhB%;#Mj70Dd|6eG8VCAj^X4*? zNP=UrSBFba9S0}JAFZ)nSI3y2*B?JtI)39M5WQDq=6i|>+EINb6FC?FC0&i2Za6ss za~1bMxvo>N_roofu{J@NSNb^KWZ`5P5*P zv&OhifPw4DK^gG?u-<{yZ_IxL+Ks%G%;}Wc#=lY(sRV<00F>+kJs-uLhHE$T&Sl7H zfQ)Ij{b%-4!8HHEqI5Pokf+2tlw(GVF+b4vyT6Y_aj@KNM13#bm@h0XP+Nv!0Lvl_ zDAhN|yn6QnxW%0}eCsX@KjI59QVZ_o^A)|ZY7 zn}QL>#8cVh-e7n9v?Tk{o#%%yz2+XtGNA$i@$FQiT}J_tmh0ZYo2;VSZ^ zLn@rN=pY|!9Nq&L>22!`eZ1fGt+}J}6~@)zE$=6)Ht29p-2*pTd>5R|&!)hYq9w+gOKptrqh;j7SoL@#k7p1QP zFIB@Z#uIm0KV~#(16pon$_wJhV$7d~Sa&6r$~^Eu^3{R*u}~nzx=uwBXa!RYiEW50 zd0>@aq=Q~YAhalc(w)E*0*QJ3a_)6mfp0V6y{*|%7~@@ajZ+{j$pOSE5pNFc^#jgN zC1l0Z%z#Lk%V%o~6IefcTr;OJ1ZLifbJC~_gb5x81)ek@&ZGClBZk6#Fy>FfP;dAB zm{_=`N{Vfbs86TcyGKcSSqA2+7#*yflLnMIm&~p3f}x%rUB+WIXJ8w%rLS@SQeP|e zZ|Un3N}rrv5c)b7M>gB(p%oP0Tk2x*NfRhaks_iK2+2citv1x52zl;r)T&)giAG2_1i6Yo&D~99)F?NW1V>_jJBPj2_I} z+ukH4p}Fn;-|cVo>kmXS>)ZM2!Do3vQ>&s1aB@#arD*wms98n6K83Igb!<90ky$Un z)%m++5oJm{#>0JAQ3%f3!@(|<1*?-6fcB`+*y1B`sEijZV~DT|#7VmrB$ z#Ml*I#ua*JU)1JXxd2Iv2ytyR%s_3GKg;k?bZ_c_Ka3jTOReg7pT=Ia@Ky{s_4 zo)|jC15-r`?ftRDA$Hhd3nEHAD1!7CIFNQ>0$-auD?xt8{A^KLcm2d`3eVEgj_67| zLW_5it&=I?&>rb8cp&WpyKj(^cXABIcsYe((xrt8pil7}=Kvn&`91w`1iQRD5Ip); zid$?Si+Im(URW?|0_IPhOndo89}wK29#G`E8{Af5(Wg&X4gu~ROhZq*gO z5S_oj>lb#~&R*(^1NSeE;hGG@L;C&S81nrXVZ8Ffi`YyR*jqpA%#`X3eV5Miu+uw0 zrUzwk?X?rQziYrR`%yB+ctKBN2>l34fqV9PQn+UnyD;eZ6aXZjv3LuPHB?ol-%3gj74las0p`0T7n+ zHk7O16ZTM=PVHlG1UbIzo{`O(AX9A0nk)eGc-0ZLBJW4X^uS~YE`iIzIN)x=PIn1Q z7KXjtrLxM%2Jdq_lMfyjg4l`KGB{nX+txF!v|h<+9#eoDb|()?I)ca>7umy-!ht-} zUuZzu1$p_8s{N<+x847{^@V;tzLK2iUG*K(}BiR7EBc&c~`U`#R z;uOvZyO6!;y)xPKa>sZr5%R&zE~bEbC~b(sK?i!(-K6l$KMhXaGCoX?@E4jYSVvzW z?1D{x){nLm`WUZgbo!J`?&ZdE+JO>rk6xlaM7+TAJ?~TJ_?sZWsZviiBP?8p^_8IN!+&wFe>(23{_h|j%RN?mgVe9yGbWi)Dn!nd!x zJnb$+qEOZLKp7)oHd#k8d_50LefsWSGZeVv{Xm4o5qGTok|V+oWVIQ-&$dRw=1*5U z*gv0xpG3LEC+l*6O!&jmk#Wr5AE5K+29loBNE|0@{mB4FXXvOd=Ewii1w4N9CLugC z7Si#6Ju`<&cT681EvdQE139qwka()!C_nU^A5=eNXbgrHlA^6T>EPn@sdK5vIY46n zl=tX2wjJZi$~p`z1x5k)?riTKxyyhxMCto|UN2ZXwS{x$CIzo6p9N%I(-Fv7+j%?+ z-NiKi3q}sWvj5sU0#R>}bBE!e_MRlr+ORKYuc{(>&gKketf9>VJP zhyq8jZ4yck91$6{%zcucyCfVj{_SeOF5_mAFYJVUffmgVX;kiOoXH2oW-(OPLLO|} zufM}PcR!%Z^2h|(#q#-vpt>p?^y|~_is1$^a$&~78fvhySXMRXD-ZBxt=;93=KtUL zHU4(@Y`$`d{BC^o>poLh4ouc;BH4^}&pQz~E@!*?~G&dPHeYFV-S(vU6j)9%=AF>4)lf^K6OWdrmbiwcLFoS-2v2i;R94vhr8?OMFdWhcgEtIVkPi2hCM%5jS3_rNZ$xz z#N3`0-p2`%^HGN9Y811;y8}=*`1J}s_L9iJ^MhmFlf=-V-;m>g`X`aJR~r4|M}#2? zXKro33-QOy|K#~A{-OWgxiL`sEmH?x{G4~*PTvuf@W`D`@lbd?;P6;bj*@eM@}3TMB~P{_5}c;M0zVRh771mpFE z&QH`jK*e{V2p>_Kd5z$j{mzpuj{>-G1UYhuM*-<>dgZlJvV3y zIC2Q$>Kv(&=av}T?U4El!m zhGw3I!p9_<*(*dLZXLGgu4WpD(mN=9@VoKRucP>eq6dY8KR6ZD)}9AQ`f3+>xY@xy zV(fUQhcW=A-%xr7eZ1fGQSw3Y4Mh(MM<>yUfwM9hyi$#>-&-pOQF`=O`t5gksC9sn z4~lOndQdoGmKPglBnmNJ&%eWO?<+t4|IDMFXb2S)6grCWx#4#>AMx6L=1o`lP10}X zQP&Ijy(cbT5-!DM;lxrC|0SOOQqbzHdzm2qPR+etPOdPbW}>1nFaa8M*!;Lzl>$Dl z=26dwXM#g-4?mgYbK9~0Oh)3|y-Fv2J|q>s|0==keK-Zo%W{Yx&WQ&qD-TqAVzQv_ zsq->rAGbe`{v99CuO}es`HsZFCh_WUUU7vKd^i+^iP`Y;Q`r<6X)CZ|BfGY6a_8r3 zlVG7RoH>8cxUgE-s+>{eh5SHm7${^8S&t1JaJIn?wx-pF_lN~ zdy`}cIFm!Jd3jGLRO2B%YjIK)1S4^%6tQY~zDt5n19vTN?p52d{03SqPXwGbf)mq$ z72;FpK~hBLyNmZ_fHIPv1|*IfZ|*|)62p%1(B=83eKD%opLx?s+Rw^1^Qa*|u}LNS za??Zkm!g;YC7MSCtoAOrzYvbjHTjv(e8sNdukxAC&Ti#1KRJ^c!Gg$VE_lXqb~B&( zHqJBkRz#k0fiRgL;@v9%Ws`zqh`ikDbMim)wLkJl5&ccRcJW@}z|DMZF7qCdO`Pjf z!TOd`XMw8O3_Z08A#}m5V=XV#0r9N#)O%>n;F)7-`W>T3nyDqp#~0px#`t+ffX$<4 zhv!zCOgezCD3)o_M1AeZm)Plfu(qk|ahE@)6GA@W)2*t&;DF^IZfz z2i^Ts{SY`>DKji_kpmdh^D8>2yp)pbE@(F?eT}GasITGMB+4fXs7RE zEQMCD8(W`VF9wrNuRh#-dI_}aH}HD?`5ZJ?e<()KsB`It9Wr7MK&W>__;&WUUVqoe*B``gpxzREM8ij3}iofkeeim~T9F-u!6f|Idd^rL9M6{K>Rx_c?58YnRg8r8R00X@Oa z1ye_9RIMtp8ewQ6&UlS4@5V699z%y8jP314{PvnH->4a}r`KWbQ3HZw6d2PccF!2P zIPJah!{mSbug^K5F_p9IoATRMadX_0ho3}=9;JUvN6#J^A5x!V%;|{VI-doOoJZ`@ zP}SP=9l?qDLNccDi)d3mdhz1nJvvD>K$xar_iB&{?w?7p6#6OyW%9cBmWCJs9zJ(1 zzZEmkY;#Xu>W;{^=fmy?a`EhB1>pJXqA-G%02rj(OD}7l33KuX)42BrgJY~UPB#+5 z!O5oA6gd}g=bI%I>3&`Nd@)6@ctOceQc5-4B<_GdAe)l;fH3> zdnUPQBrXp+bA7n_AnzpX_RR6Vl8^z>Of65#%2k0l!ftj=!=10u7JH+HvdtPK-Z*xd z6XD_I95`{$P$wVe*0&t=oXCY!{tiNUwCMm!jneo|6~R!YmK)-d4nXGmrF0dt&F5-w z6)z87ah?6K|0ocoT;Rw@cpd5WU*EJUoq-b&){01<2JbqXdi{hGpmrFIne3~xVCSMR z_4ia0u-2QJ9#`$RDSo!X3nDd3&x=WiGH%xQj@mdu0`4VldqfwudPVE@&l+x^_^`R` zYMv2Hm<<)Zd}=?au)*g*UH1~)IBMuCK>c`^|-J18NmFAyLk4g(X8r?)NR{=8M=1%CJYxx?V` z{l_W=!^k?Oot4zC(h7bW5h2VkGz7G+MaQGu4}cDCl_Wq^gy}B+UdK(J-^w2wujlL^aBV{P%sPsP zoh%UE+CukKQ7ghvxa=k$vxxASPam(PyN2+Y58@AG?fwt=%%-K07u4Ur0y#Nx=~_V< zkU2w^^XaY}_`Sf>^Eh7%c&;(yBG=joDqo+B(|LJ$+xaEBm_UjrG#zrM{ED!3NrhF9 z3lDs^R0S7xvPpi`asxQ(__WE%3R=eY|B&F={{7kho53wFk$sG(4;ww1JgN%szUO+a zop2H=89bg)_b`I}VdWNU?WRCl^P!8v;P%(=eS2A7U6YD~ho#boNXR{bG{}BJX%+;O zDsuLoT{DK)GH#7U>KVgcz58qN^|vcix>A66QWM$YizVn5Bog$#>yfI?J zt^@Svw2e})n?nM9E3!++_iZ~qC)Vr2K7s5Z#n@a(UzwmcrIiCN)zwVv4Eln-m8*Km zp%L&#&g@iTrU}k?!|VB)^AGbiZ`|*EO|-;RiP58@e+^StT^?EobF&wfq zwJVAuJiIUpQlS)zSN z!fXZm!KXror@=V;^JlTK{%O`6pgh$x_O;3YXzg+3Iida1V2vKm_7MbrkM$<@f^tQ3yPqmZK!pg2xngO3IGH1s zARw;~&;|3Px3%=3;2Y6z40Vc|?6F_33tic$JbP_ZAg5tRc7nqMHnkPmQoRa;l-Z{S zt~e)xtZZct^ug`#@8RRsSG7axf@ox#qOM{dC{s}2ha?6rY~KPAZd zC%3;JOzQm1Q;ASjxcbE;z3_1cFs!@5?C|X*Sh6I_wEt=esa~m`?`|}QUA(k2^1x-= z_K{LfcwIy4g7I|?efrWkK={nL{=umjNMbeIUaqGLiFSMrJf3C^q)YIkzLd*s8&7O~ zz0j~;7o=*5s;ncK;g>TP8%9GcAQc_$Il^fUpqaOZFMVV$*f<`zwgcDK3wzh=LVZQ) zU?zVc#9OhBRzDO8y;j0@^=E4WJc5_Ut!9;R#`_3<-(S=I;r;cc_516a<9l~vbcyyA z*iBtS?yrw5T(T@j)(_$1Jee;lE1@{+vTIXk7ED{u*T#RCudl4<>rdaLZ9gJ97d49Z z8UskaKEdXC&6X_@p0FG!wHN8r;9Z%?4nfz*OUe;7gum!uTZzZ_h~jZ zfI_&uPaWY+Yqu)JSHOC3`NPXNhc}f#hHBKYQ8W@d@)9z}S4cr-b4Gmnk5=%P|0{IN zY21IG={#1yK-HZCiis_=IQ4A6TKQq}a(@&MW>S?dsAPbFR~{wJsd+#*)(;gI7 zaC-tuA`ssDy5Z9Z2YfSwXUoLO1Y8B!pQW9Y#W~*YR)t;-4>yPSEOp~Tp45PC>>>V_ zBmsDnwnKihR~;TGWT_=dl>i^X%+N5Qz^4A`Lw>Ipl-BEl!}As{7kqJG_uY_n2X7L1 zB5Tqs>M*^}|2C@3__EXd|*-So6N#h^Y(IC(!mP2%mZ3{G8-6!e>5g zl*9ZP;WNLe^w{t9AMlyIOuphhLDmbV_cIsOkh;)M^VnE6{S|1*yqrwc8VAk>m@{@% zw8JOulm|H9TtvUedKH46*C}x)@mtZ=lEp+x{vOcx zv)~HlGPKknZ(4FYAi9t$@hbwTUd@#}q7LeMrvs_x2yIcTrwN(Z#_==-%_ z;)M-Fw~g2Gnvsy98M)7j8anOVqXmvJU^G`)D3=C@v)KeBG{J)CL0hL1zZm{F^KBwHuWSsp&C|`1jLa7M;D6hmnX?YN8PSEJ5Jj@2=11<(u zKNnDVv^M@?s#NeiOE2N~xz}Fs z=D;i2jzhUH?X;G$;D`XY-A(<(pvMXhIj&q5EQ*27$q~W{1Kwci$Dtetjx3zVh1-aFn{xZ_>>b$RsN_7l=B8wD(>a?Ss1D*$~-KHU1IE_LQy8StAo%Qgy5}o*;t8 zitnwSi=uGGGf^vhAW}~b6=MthR}tQHSkkiJX}L^5%Y9SP-H8xZN|?;2ttx@&U5mSk zH0S~A_v~BLzP6w-IR0za)hwL-=@*{ie+fDQv~t9J5W>R?OvCfOcu*X8d|Z{Kyu%N5 z_rJGz0qlVW-J-%_-B|eXNZnwHu>`bGtt&Yvi2Lv9yUV|mP~pkI1hUwiB`!-qBj;Z+ zxyhd~@r z)NJf*`A7*vcN>TDBhNuNo=-;oXqUy={~PDWph@sz1BTCxcZc>X!e^HLBFr^`@R{X* zytT&gnMrGNmodDxoxX?HIQ|1Zv#+n>T{5p5;3Pq?Yb$FPO!uFiAm5(~@(p?S^*2m{ zFxRGZQX36~k7t*0c*%C#_T6CZF8_Q<6nG|iKa|iD12%@PhX_5o(M-on(1hfS@WbT@ z)bnT*pnaWtc(qb{+jy!ghNs@>+rTT;`}cQ6yTB7V&0Kfng5mQauQmCf#-O!6msEox z3Ow%Zp(rIy#W|igj$egw#fM;5J2?BZ$udOD0@AIBb{f8P0^>>YSE%+10g3plh4D7W z;4j{HHvOHp+s2EmlRQT@W(pq7wJryrG=s~Z(jNy+v4i;ay5PPx9ue+E0OX@uycCnE zx9v~EqI=r2WU+wbZpRt&##mToFq;`LtPd2{>q2cOk?VCH>@j~_;fm%7z zV^yzhpaN3`S!HxC6u$C&`iWW~q^b=t8WJ@Hwn}1Z%SVjC{Cd9j`NMpz7W+G2pTCxc zQl^c8vb6mTl}Nrmm*l5>Xh{vI%}BEF&-sJeA9!^Ks9nJXr{&9#%T(Y}XRY4{He?-% z4pDzi6(~DAwjtW^USGrMsEa(=FaUB}ehcfGRLDbE_v#F8}ESGTEixzO< z9A6vVx8^fOtb*{F1zlGpF??osHh%k02%q^p=LdF7T@cDk0Hq(6Q6Hv_Zr}e8_{^0r z!e49DUI7c)wXFSobpTIx=QEjvn@~O^BWfp77aAS&b6;0Xf|zy@hSSJ-8ymkbuI*jV zvzDkIA^clUn(wXMZZI&j{Uw?<5E4EKC~8CMf~%`a%npqpaDc#q?Ae_(oa1Zb_c^1h ze@jTr0W6#>{C2L^2^zdKZzXIN2R;|AZs;R*L8(|yrn_Jkg;&RKwQyN(+xER}K1H=d z%@#f&KJ!iV7NWCIw^MoH!FP12#AiP{q%NpX-z8IB`GxYy`yk6Is=sZ#@2!KGN2r7$ ze}b4I|Dqt+U8r%+mzf^;uCEtl*XzQ>Ug^VY1~WMSe!kJ4GL;H+M>K6={sqEVonR~A zx|2lf?20;&Utce1tk;DU8C6mAM?swJQ>*UX1?Sa4(25Er8#nIvgI^=E^qi3Mrweu( zMviGj0fWx-c2P6I&|`tFy(=IQ82617ek)7{{Vu17m?yO1oqL6Hk#|+$S?YIgBsFe0 z$D2gP7;pFc5V)XIsna+a3YUV!_L!u*LVx|AhQsYKU}whr^zwmJ7{`}%&iJDS;1a!d zOx|1szPmHgXIqH-?=$yUQn(hAT_JvAReJt{Ch#55E2KMR2#T88J;;8gLj{99J@GM? zU=AIcFMzKKroDgPU%&Xn`|E+zzwfUXzGmqjM0ANbJqr4#k^AdLsY)-dn^N#;kNAN{ z1~JHUyl};b1w1fK>36;k`onyE67@S@Csv!bDKBc4SE1NE@r58{z3}8gfFq_Z$bFJ` zEc-f+^ZePEU&iYX8`~Fpg9KI~{aAHRaFdq8;^_V*KQ z(>-{ng^r#2|MIA7Eb~#i314vDr@PhnAmGS+hv7{tCJ(*G@Tez3vJ>Sx_n|&Gt!P11 zBq~Nj{^4Df&F9sPv+=s~d`^c#H+4WXAzy$UOLrj?IJjK;Y{VTOJ(qb z=dK68TEn*;pTF9F;}l&U{5e>g1k&X+9w#U#Lhl^d$H#XH=DT%rl^T_Ucn_wtwBJIu z9WPGn_9U+3Uc9VW-GCU*o@T-CjMC(Cu)c%vdyZGPtxq08yR zhY|{6V2#Io?v<1i;K-Y42c@eF@Iw#L#EQK)aDUjUL%*c9ZM2N<;Q=@D` z2H?y7-LOm_Q+s3Hr3WVfec+saGkYno9>MULqjvO6_aS`d=p>U^44>J}Vc0Pl;Td!N z81t1x_`l`^gqavVv!R*$Z@#v|JnNtEwH-|!4q*7&sit#BFgT6IY?m32YC@4J&a_5D zdhnb#X7BCGE|8Dl#$zE0AAt4Gv`o2jr!wyQTkX42f6x(%qpq#SJxxOF!S_FPIt0Pd z=sk6NVtOAKe-y**<{JU4ts|NOhxWlGC0EZQ7F1|Q%^KqBX9*}Q{=a>_!6RAR&=Q04 z>N!`ejrfg0E@JW?V$c0_{YhU0hhj-u$L0z*usZBrI-L5y-z%(_NW1v)ao^t>QlI^? z_b~$+{YqI*78#%B=O4ml5x;3yOnr(&?CHTzQX4~Xetr-sb|xP~lP5Y7L=4U-`+Ung z6Fl@CXFkdIl;!!>1HU?=S9ZOZ#qg#z$*ehl$N}x%EH2o`4#j%iBmD9f(fR>9vdGKV zP;YqcOE5Tss~7F!ZIy8Lr+7%^AOn#y`n((cS_Zg5`1 z11fVwFDB0Nt?OofZ~{0yuO*fZ+q@rKx;q^XA8V^?(9|3UErt!=D3lhozd^mj=#n;+ z7|rMvf3$u6t#6?!gCj>A7%}=rJJFa4+~gQ@E|?_26Eyz3e9>C4hIzzR^w0s2fNK04 z^IB@#`9)pZtj_$7U1LcE#y z@A>p^<9Xxz#My6JEGX;1C}$Bg@h%-mHz~YYJg5#noVY*rB~uU3vEDv;;%6LOs990! z;lzD^>P9@q05?j0ZY}6Poa@dOqYe0GSRTp`v%(;n6Uf1%4*c1Kl?7jXr!xhpee59D0zvQ}1MXaVL@w zw(5W5^?>2C&-D?%O>rORbSY8>A*6P%cSR_IbSf@#fmbp>aQRh}d#@sRcVWJvBq#`Y zbAB%IMe^JE2Hk8--r3mSR_!XcJ(qVO<1<&FV_nu@3|{=It_UPkgr&mP`o{igAU)5Y ziE2d(jO`zD6MJM1nN6-dBSZ3Nj52-V|CQgi!t2hPn`T4eAYfT8$`36LNIy>%=YNa@ ziq@+!4CRjS*#P1E%jZ&1)mJl}Y+e)IK3JGtis)-d6OjD;6MYThnLZ(mz6Q;!R#P4% z4)(hH4bu1Qgq)r6)zrx&D1+c4Un)gT$T>#OBGV)EH;$WbsqUZXYfy3}QGZADHSUpE zYX>3m=I--N`lq@Z$PFq%IE+aB)%I_pyATU@#LcUlwc9^QkXqb!--TiSTj=eP3z#_L!dG4bKE^h)KRFitrB zGE9XFt#J7B5jVIzn=GipX$Bt4_N}IV(A+j2)*dX5(6Utur9lbcSj^9nHWUXzI<^N_ z=iK0l-1qgBZ?|8MuzthZgT>)bVf*~hKO2l3uK#&RK?s~y#(BMf?eCvnFW#53YVq-~lTpE4+^s2mSjnpQ*pX?>3@M9qy zmrgsXLg4{=Kc(~9?>Pk>uBhq?805heq_5a=7b5ZTy~t>o_J;9R~d$ z&wxc@$8dG7EO5`x;BLv)Q&7OXpw=PR7y4Ja99c^}v+ep&yKWCD$#0xIhFwpM@Vubr z$JdmSRK?Jh^W~cUdk470);asG_UN|9zk@Z0!t`J?e4^od=zR2XD9<&~R`5O^eotv` zpW_t)l({3SWVs%|=uj&4uYBD1A8qvKft3rC%_=T{54I&_#aTkm@QhmPY>O?=z_>}zC?<|!M|8hGZr_mzN5R$ePBV@mblo1ix!*Xm@G=yi zw%In`MtgB>Pgf^6V01M?Rz5(C&c^M>^EnGZ7L^uU{r$YP4Ep7>XX4fDpSS(Imw)oh zrAR&<;B&Ng?`=eff^d4cYx0agAj(DGV&tX-uIao6qsV#p)3sT@^)6^={z&iQ$57W_ zdKV=9?wS}JizaVMJ|_z3c+=ao5YfB1|MU3)jNV1UBB~UlcTqbtz#Ymo3!cAxK>a6r z9yg2bCSdeD`UL8(VC=bf+-YYKg5yHSHvNmz6psJupALLz4oTu4*5bchRIy zs0E#_U&lNY(72A5tp@l;+pL6w>@s7th~FL%zj%w$)vzn&a|u9jb_=>?vMR`eRN-)& z>#z5LlMKlOPevWk#~=6)J$IDfl;5_(57uRMEIFl!ei^TD=piyb3wlK<7+sALHk0>h zh&}R_=#Fa$j&9&Yaz{M%w)4Zr?{nUG#}SOKhT_u6W{l3pc$+&aiIf}d9rE@oqX8Gr z_H67Q+ot~%NzFe`jG9;@tHtPQeCbfSj?vj5S!C+Uu?t009%MC_4hq?X*R<5Qs9aYI zkF(d^J>3ujtmDelbgh6Y;M?~R)519D+HaGh6Kn@L+N`Qo%Wyy60P7FztNyw@KI=H+zjS8%8pB{j zuXF*PK?;1}CHR!QM-ToOVUKSOcHOpprhK--<7ECYX94g0H7P&1uS{M0t4lD%H$M9I zOPUmrv#~gMrNCa4Be@H*jJ(QaaGNPeBgX-roZTCC%sC%-rf z@;d;MEFx~*zP9@X9evP2hW6kjkj3a~pe9g{IS`$V;9hmQdq2ZbsQr1yT0g@6&R?;3g()Xr z;;wJ1BWS^Vx@`yA$Ao>XM>QHO2PXPZAvzQZxhGg0W6puJGvQHbG3wwHfABYUa!iI}O_86Jzofxd zt{=pHS|zY?e{Di7jUf7->b!WUNci9W{kP*6q?s`im>z%%GcXZLMEv$JNlK^@v4>V) z{-OecV`XS1cWbvVAW%0Y%BOGv_Rh)kN{j+17y7%jUnRpf<+rVH8%==E?3h2A;zimt zGcrC$_(S<>5WgLJsu1Rl*fVHyUhfowQ-hqDOj@V4X}&gAXYBZhrwZQ;>C{`lCkOZF z^83oo6yV2$#cvni8A5-(rm?OyaS%?=)^Zp}MS2kkd7MOFr(^=Nz|S!%WS&_eGM zj{3m?aw;2Pbsj)-t1XsGLju}=W7@|)upf}K+#MFZuLD4lQ>3Ln59COAhR02033A>f zk}|x&{e0(c*A?g8*DcGYg*J9{8GNfs6Dd<4oES#rsG%fggp;a@vh z4sP<_v%?QdhR7`d{p;0Tmu5L(2k$}k0X<{jUWyhNdlL<;>g=L=vRq)f$w-TvOTwnl zZ{?4T*HOEe>2(zn;em6Od2`4)&7GH;JhhSYILWL(c1e@!z-LlLGvNVRpvIhqTo&P- zZ~Q#2ZTj5G4~&T3g%{oj)q@DH+0F6|z6+vvas8Hnwsjph*yBeNU5@BoIO;#=k^B$z zF0P#IG|iZL1qf3Kf*#f;K~|PuP(3&w_}ff|cJjA?>1y_FThDqBs$Jxh+IVH#{tTj_ zl*LQQ13aHA8I>6PV7*Ce?cC?%aIVad?CeWtz?;p;GCkx32=grCnH`O`jpuLT`}Glh zGJqeOXhXRzV1b<8`CmLo!RT0i<6UzzKyiWkK}gw(+oap@YSNBICOn zV0rp>!cIUMsO^qiGo&_z9UOM|$;A2KwWDtK{r>@8$$DLQ(WRR9ad#nL3?*X^TTBO> zH*-gqB!ZxUY69P?r9N~JyPLHuI09$;`quNc{~zXS{`GwQFK^Mg-f_U z4`aH^vVS2y2#y3?slZ3hw;rYS`fPykvfNpz(o8|ubf6D^jXy| zxO3AO4*zga*a>`b9*>;NqZYb4X+XW4@+DWbC9FMD?=kR<3cNIB3=TOQ0EPJp>4u69 z0w)v-dir;vIIHleTRH^bJu{=a%cfd5chMl42<-Cat);+rz?5O0qDz8B$#zd1Z*^(Yu;yz1Sp>LScJz(4t``_p+X zm~HcfB|y*$R8iZObqaXEL)PhyR=%>J*XPEC$u5^o@j9*eyW zZRYuOXL2e4yWq@^b<^ zCf;%iesqBsZbcktPul+d^`0k=pXYciV6ios)ftC0XlU=cpX+%n40W^Kn`CGP&K2dc zr+t+NI}UL-P*NP+cD!KM3mofp;Z*6~h8N+xp*L#>*NG}KNXQ}`9Th+i`+V(5=@6F`n#S9s_RByRN=yfG!+*pDN6dy`Th{_^0I~>2Tj4Fwy(_{#yPI@2?}) z@2?M)M9v;BD~Bj%;Ta)Bw=R4iS_N}|EvL7K_O{Gv7{lKELh@TYys@6I`?i^{)tp;0 zY{#lW^%4;tJ)(o8re!=n1@KIxg&4=(smL`pu=Q_G%ZJ zxRfBc^SCqAcFwoFUhE4C&4j~vn(zS?+myLvYKBT6sj(?oR#1H`6Le*()cm!1xNQp*I!6oSe2CAzpUg7clIS-7oPKk zSL^V_3L~UJU+P}=>^v%*{jo8Bs@|}S3qjTk@q*@qBuHHto7%Y#qj&M;1DUn0T`OAo z1+#r3qIV&DdP>^nKhV1%`s%)lSufBT30n;#b>Te2$Aq*aufVqv`5C7D@jy73FlP2- z8&qVx%NL@!{rZqew>VC@a2&3%NIk@3P6YYy@Jt?kriLtbhhDla+Cz$ZJOTU{gpfex z>}_*$Zk*$Jqdx_B&6fL-^@3w)g6`V0SQxS|azF#v0+(P~!<8jV@T;#{HH}#q_VCKi zadfb5d;FyMN{&d08bEg&F143V`Y`8$cq2)gDZ~#upc8EH0aZl%NI@DoFRxbjHn}F3 z@wV~a(O&eObBcgGxn@=g)#1?V&i)U*T``d8*A<70CSt(J8#!Gjzzd{aDS79(l#Mgq zj4+)_5rG?^jS#1^RZPZtJPIPUr9Aoy!SwU@VoxbF0hi29VFiwB6@YSnqK=JLP zbN{>uXS^qOcy;&D6avf zbwP?ZOPZ!cE{tlFH9c$N1S;O9^jMxs1a+njxqZHefYu=v3fhDdIO9c9y|8-WR0f{e ze9j+FM)H`3Yq|-m9xMyzg9m6m0e^0NRdJ&WY^)y5&rwIt8NL4G^u*6^sKdwUrsk}0 zKM#&2V&$xhNFh` z$1i*n2el=4*;TH4;5`0u1_uL-@}vR&xzm(3$obal2?CM52v3`D?^tG->;rVd*}ku@ zW8J|(Sc1fPPb;`{*D}cPvIT>APpJ1?&cYeb+x3GK<#k7}yD=vv9yu?ye|E%gJLpj~@f;>mMiIl8uAm zj52iuG5T=g)v>5$$yBIjOe3!J;Z+wPhA!zU zMEL8rFUl!ySf|6Trv7Ld{t&1&B*5f7r4J}{>%;baSA=;6zw`C^Kg`!cM!)m5LU3{a z<$wTisk`Am$pAm3lle*1B=rC-SNi%}xNHpIE;wRgr-%X}gKoaH#hl=VTrKMx4NIKI zkM^iQ%>W-Sz+)leF+Yv)T9inQFuEFehqA3B8NGqkBh7O{$j=W(&&hH>R;z&uD~UHj z)j!ck993(gSS4_dx3brxKKYXP(89BQ*H3ym(974%mw@oJzb)68mJvIF36`G`W8;$0 za#vCczlZdu{#|ww`;A<3fJsbIUrxL?1&yR%)04Q>!3p}`b>W1QsZibnKCrXmXwRd} z9h*Ln>->|Cms#CIX9^VF5IKGlc7yLMI0%gmRlzgmQI=w)E{sKXFM3wl!PPMuTPx(8 zW?cK<`2I`$hxCE-UWJkB^{%8p`Pw}IRdE*jMenH7`=;1@BI@0h2F*4 zM6#R3cbh>A#m(BflQjUf(g1H)cfs=#+;@%mr_sS#>17H_Z4BM;4yv7GN$liF7JZZQJp3`QQTcn{%e1-r#)5 z^9(asD{*bS@}e-PUtcdgU#|2>1Fb$boy z(fmHCwA>SC`%Jz1zr2)>fX76X&svD6gC#jirBE9Vc+;Gz=(Tk=yx34RnkHil9YT4{ zMaWIT`1<|zjX%7e1Xthjktn)MmesNC9TS9m|DU-!vF2lC4YJI)nQ2x6vKzzyO zPgjI+j<1dRS}6L^^;~gpFuq5Yf#$w9{Qk%^?pQk$u$k;H#;g~7gq|9iB6WczDNwDf zPIcROGoeut7`+S92>P`cMDHTD_mTKVMDODAbv%-JWW8{9;SwjNE_9Gg8~zu17w++$ zaxZSQLlG&P6JI-8;kN}e$D8CuauAdqPJaMTe{C@AeiwTM8;i>R|q$a>*rY?MhUQWxfFRJz&7zvI0BXd@njd?eAg zi%u}Mx|ku|%M*-;f4b4T#18`BYOpsV>jkS~EA26)F31Fo`sm)?zMjWM{6B5q3R}s; z=xogN+7Yx+zg4DuJ<_7iHM8w~*VykvB>02Cd^bLdM@KInqpNZ2j!gqbXTx)E;py^a%794FufgX;DN$}v!(tJMA&Yaw_}ODy4<8VHOnKARaCly5se zo!9NDUB|gblij2tXbsYm>5??O%0S3;*;PI00yr`x|JYY0LaPTmv=V_h zPulJ3iwQuY_IU;ivOh^?z_r-rDKWSp0y1ce)BrmV3Z-F%`}z%wgMH;KnVGn7(+d{I z!_QQy4#4WnrFkr#<>vJO_Iv;T{d$(t_iEwU1!eAcGN&-Q8b=29Q$Ij- zHuMR1h6x2aqd)KZnR}+k>F@dQF8mU08!PVnTc={GhRHt=p!zubd!x)vVJ*YBTneH? z@m-ax<)dske8!9NE_^``N82N%?2+^Cv3B2rXa7j=A|dX?UwRkZ?y^Z3{f?mV{0nCc z=z)%!4!R%FyD*rK*2U;u+?ssx7^8P_R~!7L=V3lRw)ao;JW3i#?_%^kUi8f}&m;Dz zv3FVZAUITctodDs>_AtzAJ5qmM^HXGx}vo&01&^Hb3P)t6LtPQc@shC|Mm}K?cVBD zN418>x+n;(^0VMoakWJ4-H#2(wR{hw5Mm}Y#kd9G!C`?2eCXwE*xqEmA zy2|-XVr6{j-{ZLz4)%Hig&e2F<3LoniR$uUWPIvh@NmW>e)HLNAkYA@$09pxZ#04v zelJuqx|C_#^9PG7vC~SiW{L`~ocE8qjPToUQcT~XP?UuZr9S*$Xh+dEZm^fJ6H)vf zFV@#vDfHv_;B24$eaQ;yAA8W2H*I;KQ2?+$@KJ~e;n6=a@ED+ba2hDpoHP(Elm=(_ z`p~_BKAY@26~cSntKm4bIr4}!6&(fHOurCN*`0t>ZYrnIJi>6=u!H-BwkYVCaw(+3 z*Z%waV(rBBmFb|u;457(VCGQFO>{2-%#s)#eaM&#`reiwymLqe`X|L`rOm0penssH z#m4RH3txRMcJ>FkALJD<(UBDl0q0Yv`E{SV!y`e&ahWd+pl*Bz^`%M{5VxRK>;3H; z&i>zMf6?BBcg&MwaMF9{+uLVUVP=$>MwNvzbZ?j{FyS->yB~2-`kxI3&+Ve_y;Y9i zwm%t8S4<%)rCSH8>>v`9)@g9wcG48>f#@-!`7Y zhl6*0I5k1W)XKZ=5KU;~ob;N;b`f=t)BWt^j0+InE7(5yP!U9j{#fD4`g1;BT8dF6 zCayR7cdNF*lfeVYY9uHc1}42d7o>q=nW6CkL?6PKz!oUnI|z_3dS9Mm1tnE}h3#Ic z1QcmIuiJpk(|4prk2{e0vsM2auNyuc4W&bH!Wqe0r%yScie(Q>?JpFDE#mmQ2l~o@ zNzW^y90gJE7|%+9vR50N%N+NIYk`ygj54_Uv7r5Z zh$5J=I+}B7S_bSqf6DFDOGTjJ;G0^H=v@et`)ZOSd8e$>TbLfn2OGctR_(Qm4TbWE z-z=9r4&Bjs1%}EJFSNeWf{Q6k4ksD?QN=^FUp@`#!`+fZ{H^nu;OfULh3`myv!Oh# zDuU#lt@_`1UD_`qOA#3#72arxS_J@y2I(?B8>T}a|D3k9Ati8`l%I;RKpotC$0D2c zT>_TK-ge@V&0guIMnO{t%b zLmo#Xa*Gc;fWuy4f8JVSNU|_{=}h&UGAs8oo8GMzob{Jjm3N3+#p9#X+th1jkT|$_ z@3xS4<_OA?TsSJPX%>|#onOadD+l2`d+fs5S#-&*YIY0`QM`XcYX`tRKm9DU2>~i- zCY_OeE4ne@!K%sFUJ7ZrKl;#4bsJrn7Iwka>1zQHy8o&%OHFsvcy*UctVlnJhfxdf za;PlgpjA+7>JCH~ResM8FEf5J5Qr)uRJB)uD=;{e>XPQB&u{eiR&5HZQG$~;anRw| zPgjk}7-*+7apk+@F`%&4ICjUK47@e$8@`sM3JX`4Ae)!kw((Z>UuZ>}9f!{4_;ZA@ zhoPA+YN^962V}_5o;$xbiq_D6ZKxq^2p4OT4Cno}ujg@*eU9y@J~2Q?`5&f?Aptf0 zJdfB3hEW>)x7=CY5W~TXF03`mBJkD2mNSBPaNmEl(Z8Rx8r&4TlprzfvE$1eD$p?V z!NcJweVFn2``6l5EkF~Z;&Y786~NGG8|wm(ZTmAX>h1w^I&CocrGY-pLLKZV&r>j)?->uq@7$Zb6^QWhO>94rn>irw9KRK%Q zEHqsT^~?6Ys5z2H)5_JRZQXvL2X;8s#Dr5p=P$iFOejZ?@aDq!s2>&Z9KUS$2AQWe zDe0D&`LnUVt=gx3tlyd;I6g(?%5z1+P{!F(>N28(GHDp z$(?nC2S)2xl}?VJlnVZhrW#|bi4|O<0>@S zt_Sh;s)d8!Xql9xj~*z zag@_tu9LcFg9rn4zjury=t}8xX>D&!w~dD#AFSW7_F!>}%jT6*4)_9E%dTAOhRytf zt?b!&9UBMO@xl5HYY!HuTy}8Dh%+1K{D7T5*tp(^zg3%&Ji7v;zZ6&Sc~ug*?;Rsp zZmUJ|+q>v0oj3^b zKyrA4mKZb)&IupSifQI!Qu?_aYtcvpJs?X$?xw=L;K?| zXvpYfqOkc5n|C($w^bWEK3KnD?ZM(`9~>YET0;DsyYNW$pvT{N^q=zER(RMrz>W{r zZ&-VMSL(M2-i;`pX&CuA1aaFJTblMEX?V*G>@g zaguq&+8a$EcJRzvj26z%3((FqZevGv&}Lo)Nf?}biZ1rsmDWHC-LtBS=oE>bYd5>G z#0Z%W_-7m)kbnXSzx9yraQ>Mdl0ENlJtS(TzB-IOpe5=j28S=vZ!rVWLrOC9mXksB zkaRvxYd0Y}Mbour9N~!G6K4(48q2_0oae9Ojzt3^MDK|*q;d8I;5E{*Zy(vrSuY{> zjP5#c9D~Cecl!LBhZ;EBgN?I|ug!`&ZM#D`(FDZB*Xb0+P;NVX{?c8#n7#kSXL;rS z3xW`%9Nl=lG%8adJXemx=UANP75xvUIdz5FWuf$EN^;VMrx;^+IF-O z@-&=3Cw8<7-rrxt^5|9;d>=QK|A4~+xb<@A^!4~aw}_}Q6YcHi7ol|=$=DsjEYjt$ z$LI_h_u?^_F(9`0%IViAR|iGOR-vOXPiVoqdMIhzetNoY&$V?NAzwCGZ;NJt<|B|W ze?tyFoyjGTEXjh`KOLkvWfBUp{`}L|IXCIIX4h2#Ia~MpD1%{?QyT|kv)p%-Ue9@r zOP`Iw`-ksrUm?$ZRI~Po;l*!%|HSdV94z0zSwq1d`ZH2p&JZoop-Vd%39Uwc<3t6? zWQvlcgSSSHr&L99w(Uh*EedFh9#c1;Q9)+T+O(D$;UlRJ3km_H$OBziKC$q|(Kqte9%uwRb4hfVqoBJ<5 z^!=;3=xK&foa=*qxwcu;UVoJI1C<1gDQDQ&K&a)%<^uYxPUuU29*}!=E|@w>qtvB{)d)iqajp*nZFgfBW{;um>jtGUIIQz2Q+(4WL3VVAA8Bee zFcsi>=6=r@?x*JeG-BcfohL5*rH9nF^Uw5<+Eae(A$dI1D#X~Mo_hHR2Ip$q0CO3l zha^|#yu?A}3s&l~MUxSoBD=OF)0;7s@WRqmE;O0OIo|wC2dr0)U5EO+=kYOq)1_i+KkItw+OZYA!&2k@HFA1YK`>6{LF#ccRi zfUf7BS`?fv-MxoMJ0Z@r`p1E;7c6!j5}EY_=YUL(<&FhNJE$pg{x2+dYwwCSq? zoK)9-MX=^UJ-rsMNgjQ`n}tU2{Ict2LrO+?KJcM^50c|25rWi~}?+>+Kf z`_tu#&GpN~N5NQX(fuBLL&#S8?x}H_G4LJ)E@$wN{fBEee|@>^4o*IuOLE{>h2Bre z#ta*+fW~G2WQv1FakfvdY*5%CI|mN-yjS@mtqog^B#%2bIe?UxQX(t;`cOb$Nm_8o z2YO$9IV-Q{xT$|ZYL))e4TgX#9yRxt!x#`L$_%^=Rsas^)+VP*P2gRxuS2vCy+B|^ z8X%q9{(1$!#3(X)N({I$sEHj-QH9T3FHBg+9)!yeK<{fuD$qP$Z@Y3q2s~(eDmS6W zv+4W(Q(XPi|NHko8#NG0fL0s=z3fL-;V{*kH$w?0A&YCPv8<;NM1SY-J9xtssD;z8 z6$~Ogm2Lj*mfTzIhUg*vD0mY;kLV%Y3QK(zg7BNu+-@b4PdS6-9>P-f`%d6WoWoMz zf1rn?^-}v0>FHNM?BLlClPN`jGuo8{<>>+!b{9E=7ngyehF9jKc_V-oGu{rJSKv0y z!@F#kN&}6vq5Yaxy_;AHv^sY5R^a_`I720`Xw)SExkQ$K4vOeODnmX`ER5l7e~RO!w4Z3|D_;n!nQT!+&`amHi%{ySeE`onx(x}L8a z8>b3i)`!A;u3?rFwCTY1x!ZCFqLVjH5J6~-a!mGGKh%9{B545nTtIKkXo*Y;t?w>3q=RTg|P4=q}M8%cTsHsRfi(d!Fcy<-&|6 znkr^?d2lVj$=vY&wRYX{RDb_JrIHzuoxMv|+4mqbdylMaLb54)?=2(|B_ffA;+|4e zR5Xxe7b<&1D*cX6-F}aUzCHTfeER3zx%WEH_iLQz>zwm`zn|}~{&?eIM!(I;=j#I3 zcR`=eY&i>h2{_t7WC@U;;b62xIv&fz6b}^8dNWqU=IV8%1Iy(uvPd6#1w%7xk{#Im z6z};U@tExLE$>Mzg-x{!%cTX(sAk&;3%df0-G8oP?t&V4TI5O4eM28g+}cpK%TWMu z9SJU_-f;ky%aP}(?Zf|i$+u4bK;L&kAZ@O76DNs2Jb1EvAWBFV%I-0^Ra9mT3o<00 zR7Y5X7NSs-eXR0OW|))QG1&l|<-Ir`oPhuHQcIz)Ex323LLzbLhw0=1Dt)G})j`)Y zD^eb3q?zgiUH6oox|(kAEU}-;4npH!@|p8TT?jp0o_~*B9W2o$ZF`>21J1}EYu~(W z2%E@3AM@b+G0+{^V)bNm1m5vpJKmp!JTRn0b>XBSqwuX>UC6ThaJTVwHfSxeho`HT z65IyqdO8=j!*@M9I5;xce>vZ^{r#yuZ+^Sk(^npL^3tAWe3=M7zMhv|UQ7W87kH09 zSulcEg?P8gR2jhPqk+7Y0RQX#Yw;}^0==D4UAR!}lN*fmkRB6c?6*d`7mH`(u2>*F zr0GMUZ}X5IlJs?1mc;)+52=ncDxnwE1-0I#V_L_CLHnKXn|;q*fLOA?ksTU0V9#TF zL5D3Rz=^f#!29Pl>yDoYui_SKR2Rr5NQX}xii5o2*F{D@IlvcD_A{qn3W1`du|H{RUA@AGT&znouB|CnFT z(sCFqrIkPdjnO+B1S8?xJ~cBQYaPg0+j?dK&94d08f2Swg+aTj?|gm#FZr732VdWz zyP`#oISc)#?lV`>gacFJ1hN67lP6!f>x~@ZYeAX*24bYw9z2_KH}8%+ydG=&Q84Ec z-s9JJ+GoNhB??Awq1YI2X$S&ezg_6udmNHnsr0zS$^k3!_&{6DI^3h4F8&Dh9AVJ3n?)6zJz4G6Z`bwmkaKPV`I4i z;pG-3QYKo!^6bM(1dkU?=SwW*akqmVy%x^Co0Q-M9`$`I^Z4^q-S&c#rGQWnU9`Ns zZ^aZ8wbD2^~rWJ68!xMjf*|q%H%W;|Ebch9{6C0%IDrbX6cauk%RMmll zX02G$Q#L5nVC7SKXgAzi8WDe7ff4WgT8sB7u!r+4S}#0^6I-NMN&&M$j%RkE>q!0G zo0xRyouMY#9{8JatS@p zT+Go=Id2a8t(&CP`ZhzVCv~q&{sTQE!Q`cEZM0r!a2!i`h3dk?Y-N+sy>Ea*yNBJW zLt(&(VxyYw-CHocJ1k`8V>RCSyw>hRYV#ujXuYuQT1UYLR2O!;3FHK=oCaJZQ=RS` zS1@L3-p9PiJs?}1aF<$)@w)LE&!6sc-o*;|i#bzQ0xn|`zA$L+BJIR%<}&3b+(QH+ z&rzOh-@gGo0VenLz7nk)PoVI{=Qa*a(C(&2z#Y|#VGq$ccy(qI`0)9`{J9SYLCb;V zk$zGIAXf9MY$w}{cyPjLXn1Oi0chac{9caJ7^Vw3ywkF8#=373IrU-Fd%Wk@Emh9j zvp#*n2HBRSmyyVT)*Mz}m%|}Y$cN4EWMMS$cpB8^+;#*SGi_|`ye|u~{W2*nlqRw6 z=3{%TQz`Mb&sk!8tIr7z_((=*`c@p$%~U_z+VwUSYJUlHJN!Bv3TfB&_yliPJ7nfkcH;#b<8m_7&X^RRp&(wKUyBpZRo}Sdb*EK2TV$% zgRCwV)5LwW;5BF7*3DX>z!eAv7^COHC-1r&=s7Ba*Zwq7T2Xwz*u#8FrYw|I6JARk zPvd;ji|t})Pa^)X3Eqjwtx`NskMz$yuT}|D0?sTG0p+muKfg5Fw(oVi4FhQH{E#r) z$^>+HgJR+Iqmn9BR!7Agq+ALt=5MCS+`G`k53x!ij{vfhUB z5^>Z?%h90NY_HAbv0jjQH84IUP!3j`9c=((zpfwuWY5~~U-wRXx5;9lw0U!+AHOun zv1ug?-A4pY4Yvdvy)c1a&fK(VwikmOZWD!KZadcP&wHnHh~8h_4>z(ehc9r+!Rh9& z3(2OYF#AVcP&X_oFHk!G0zVsiR88a04{Pmnqjj@9b5*CNaMcknJj$D=C_tEg; zkGfz!{c@ZwFbafjFUmSKl!&)|=6=t|`T4ZLm(C#f*GT7OE&iX{jdu>6xw}0Q*py`5 zXx5Gd?O%$c)K3`#ceg1)$Z-f9jkrm@j}hq*kYx~E`{)28mZAM1j}bVkH~r4x8vgoQ zR@M4O4`LHRyaA2j$Up>Wk@ak>ykHGY-(L~yRB?cl2Z+xH(}jT{U91}8m^&=CINmpH zdkoMEeAO!u%*5M1C8FW8r|i!ISpLaafhQC=SYF97`nG^&%=MQf7}kSqQRAx0d|A-; zv~sfS-FQgk@|~|q{*tdPd%pAa+gfLTqlaAZ)WJN(Avtrv^tgs?B-|c6a(Z6miTJvf zqliaJjR^F~3Y~qNt_>F2rdiS#@qfN9x}JV+a8VCfHoh!*d{zd%*XQs}#hwm~iQow; zW2C!eYvM8-m7WBSYO4D7xp)G)Aseg1(uROc|AWufSNPwbFy`K_GZJnJjCz(?DW3X6 zm7>i>!`U>TeM8W-8%W24Apb?#VyG-6n%yCF2=nWH>2q4=;FpnhfZ~42!|j4@VBq=w zx7wr8VAAb-T`=*nC<*m70M;f9Yt@WY>5wOdpu2Se`MoxtqA5kJ)H8vAOv_g`uX0tV*zHjnQz!1eGt}cZa9#hnhFIX zTOGHKgn`=uX3hZvj!;Ej>0uq(2Uu(GpW1Am<--!U3!q2pemx0uU*PZWt$p;PCES=L zp2=1(2$BwGiSPGKg(~c_0Fy=a?9F%Zw_>vQo|0;IhG1x45d*f>p-t4MMTo}KwVzm~E3yZLpC$M^ZQa4Neo zi#Q{Eu`49dj`Moxb+rL570nM+;uboVHkYXNcn&g!10h^i!N*=rW@N7i~sds z1(Kn=8r}x5Gd2Gs1FIBlHoE5dMo$*1nlH_q3x9)2vM23R{ge!h4a6r-#vT17UQc2c z^fxnyLv|yy!14@%O+gKuH>f;-%a8R!?T@-335=)SY&ZJl@BfrvYrh|ektvZh6#`Bt zSu*X%_W;(XR5W`QxIoVP41-UHr?3Z?1jDb{GJ=C?A?`)_TIQ3%y973=ZE`!cmE^p+8raZ+o+3W4o1#5aGMMf ztm-ZWP`*8L8|g6Ne)nG;9mvZraOt{X#pORJL(FjuHQ(8PbeD2Nq`%p8q`(Vjn3i^{Ojdf`&?>AK2L=h!+l(Z>0@J~ zSn8uPgL6B!!)@~FkL!at0Y%oxjm-g!K;Q!AQvGhOb=yZ|tiQ`F*#jg$i?0_#_bX_7 zA5CZrOb4cM-*LQH4}^a+u?DYY?*wYSa2Dh`(W!oJ0+ z0PwW@yFKHW?>OBrXtjF^@xOkK@A>@h_XAp6FNJQf#u|D}>8v!kVN6`N{-e9JQP1O% zGSXqXZiQ*<;2M^_5z5K$m_dL!Za<+@G1vL}eJqJI_V67|i|mq-tZD{yCj7}7(^-5^fmiFAsRESSv zOwd@Q4I}tA8=d3XjUDG}{+41ai+8?6ZZt_d6smv`ahk#k>CIs--IBfDo<4^?*UWcM zjj98yUY0>snKqB*GmdE-{@jXvvU2|)oLhRcZ@KP;;*BSdaYzv555s7FcI@8MrVnq_ zeI`hwGytIu)9L8SnPnXSYW~ck*?{R+qx5syxO4Hf#MnL2GGCR>zHJI4> z=(8GSJUqbtRPIdv5@tS|js78K6FAxQM85&M{{6wJuz;1w2<+anxaDWQ{abt1{_erndP^F%In3m+pG5&t?`7*qoLGryM>aY zR{{&%lc4sf(@FzSWXM*uRmcIKQ>-3)@`BeLzryR*@ez8%n57*@S_{QzF(z+_qZ5pn z!K_f&89I7q@ZM>AyyBi^{6`rZ~I7Ej{P%!9D42k$?LWL{ZpIpXgIH0tq&Gc zdUxCFhjg&y${DZeUG#wWYMsR{($APQ~W)^exV8Apj8mGq=nEu!Y@R|MB~}|@Kb%B@RN~PZ1`QGLT3sSc%X-o{w3m3MyEZ? z+5dyz{sc%#mUi_B%7eZuVJ~won}WA5&wX7YH3M7^MI<;+2>~V9eu7alRp3uL07%Wg zVCfwW>nia}VR#-8CtX!k$Gg4@Ze8py64u4$Wlgd@KzXq1QqJMsQfx5o73q~LCK8aU zolMA_X9y!aJKp&v?o}zqum66<+V;nr7cE4gTe}{GZbAv3OVY#y;m>#?GY4DjeWPNbzj-(bjP^}6rnw#?iFP>4Q zJm~Dk+!}k(qFD;o?avEFjq&Zn%HY%nofqc^RN*3gY3mup4#wL^`TLY301*v^Y_bg# zfW-n~hjz&0jpsT={AzXl@M}c>lh^phTb)D8=CnX0Mqzh-|2X1NU#Y7a%?!#wyDilu zQq~G26=jXYsBDEXu7jna!>lm2CfXnfjZ;3Q2Lc!Vg0JQGO4L03(fkH#s!_C1X{YIzIU z<9gmCHwSH6LBa3|Yb2QlOE5ct@&KW0nr_ z0ls*wk9U9eM1C7(m~Q>HS{I0q946YU2UH@gg*1_l2Sy{6U=-;gT?{dlZ9#fS2TU*< zl@PymeIl$3LcD`7-dLXKbP$S<$pCY(?99k5t5Jb zSWcz?G>6`kRe?S93h}7Yrl8}W{|CSQ2|t>JPc#zc!J}El@idUJ@~Y+>=QY7RLOrMd5s{pUi{_>`>z1+`TUcGy>*QOikPq7a)&)p z-Ik|#E>nZzBWac!uEfF&lCrg3O=UMg$L^z-*&^n!r(eK-aJ1B8b^KJq@y2U($_~4E zEgUm*$L*~>njf^#dCF3tJkZ)cMdIHR1Phy<1iGKM26Yl-p~qJAf60%Vle%)_%qid@ zL%e=cPc)QpdgOe9-3)s4SACWUQ3dBSC@LDaD1pXvLSfQ{qIk!9ZG5(U+g3va{6NZW zjwTAi6sSl0@N%f7FW9#GL-Bx#GSKxk&_Ca$0>j8H#2<4@{Bpi)`}^PHjr41Za}N|vJlO$m78m**ToTSxtz#=iCMC+|5DaMo`U@x`z~S4o)~ z3_qzJyp?kRtNi{Q1BO2WaP?z%ToYFSs#|JL+uN@H`ey9A@KQeOeb8(J)63NNQh=$h z=~0g+DKt;($2LCjhBarHeS2!;0lU)ej$L;~@t*H+b*TL_e#RuT{>ke<#dq!Zo`q-9 zD$D$^`wjio_oDSeid$xV1mZW5h-w=eq`P!(w2g7&Gfu$r!dO_3f*ynf&Z}^vaT$U=j$I`HcmCA>+V9!v@^e2u;+ZL}^+ zX8>E&8Nj?qaY_(B{@0%zjUE}a_-n%ta#joxXq~m|>P9{v?jel)ft^g5G8>>MiE3CT z(lH^oP4Qx|m4!GQWyzWslar_L_Gii^gG|pj6Ie#rrLzOA=XSErEe@i(9YfnK@esv_ zZx55V=#V?KzDE|;%vA78|D>0S_Jmp%fOE%qMY{zufZmWo?8(A`TSac z;_?6&ADrKC_TX?5O}h9h2k_VD!;K$YUa!UfQ@hzuj*boK^NDXsBThp56q-Fwc|2%7 z%C&>9w+iu2--F@6Z|0&CDi{|km z{c4{-K>h z4B+?;$2)8L`%@biADrKC_TX^b6Ey_yBV9n5#Xc93T3!r}M}Nm}f5OA%0WLl`zv1k` z;Y8&~NJ?lI|H7Yt>i>7&Z+T4r+{u~x=XxNQi_z=rbBdqyss6DP*Z)$dFElkfy*pUy zC*Cubol^1_#QqGaikeeSKk|;sJZNDvWW76hOJg zW6e!hqCkP>Q;{p0>({RvYWt3(C3MK`?Bi6(<3v$;^qCbno>Pf=T3iHj1f9O}+J%Dl z(6W$H#@Kc9b=wbnh<@Oxn3=s)xsna0bPoD_K4}lbYw2ir6lcL3JDp&e82`dgP8 z%^w98R~pMb*quPV#q}0!PYB$2<~z=gT_vqEHc>#Dlv3o{ZMJpeQAcw)4i$PrjO#Uy zOn3~k+CQ3!pg9IJi@w`a&F~#Z<^3+TODXv8pRD!g-?oAGIbWYL8BEvihK*Ccy|SA} zuPv3D?Eg7F?#`7tuIlt*6|$LJn{6>?nIv5Xl;nPX|8H?;KG}3pT$aap70{-Hwt0gb zW9PE3Z}-6yYR%>!Z!5ytC!~tERyKii^I^qj_bNj96fZR)147K`fp2_qHwW<6m8;>Y zC+ig)l2z4^EMCR2XXD?*#$gLHeCFRs+ZSy_dVYz(#uPd31(Z> z1N=&F_VI7@0E^S|lvecsr?AUZtMTbP@FkTD`AvDVGj9d5Cv&u!eHDj}!DOst+I!u6 zg!8+2kIEaV0G^-ursdYZK(EREGd_pEE(-paI(-tS_fAB#p1?Yjmlw?BGGjaHb{XvR z^2G!)%sH*<@~M!3xdo)thdV#q@l$9}_pE#@jPGvAUlF?ud~Xr6oo)z)UroasotY9K z8H;J2QFtpW&H2FfVLT(W-2|het*0KKh^SZc6 zq%`=#Oa?a1;4*{ zO#69kAUWTg^Vb3nLxqs<_B82#$GIBQXelrivu^wTtsmC@PG!SN<4wX)%vlG~@Kirm zjIwZ!j`FfUR(Epy;ZIG5%pZxPXd)9sq1%TVT*B;pSwZxgL_LQkxKUu{I9KDeCO8GR5epusu3+dQp z((4yCmn;8__tSdSztYR2GU#(!)yo4MxyC)nZwiAd=G@4h`AsF0t2pm3(T1(+<-Pwn zq1lG?@-R*h4OaC4L5gJR-{=7f*&J3})dRHr(3hr(;zQtjj)V>QO?~%3>jPxZOkF%? z73bcF=JO2<7k|bN=cgy9!UsymcR?;O`xxFbMUYTSP&jT(13zU|I5odBgwY|R@0&sZ zm}*Zt*J_Uc^%xw^&m&b#pR2n!B&KSALaliUctuZ!T8g?t&Kwz&*w4oyFK{kC$7Ba~ zhAeKwdOH4czCZi<&40oRGwwb$Q3N|!I(mI%Bk}(Gl%UF}57Fj8o3W94f;D^8b2^zd5~MKE9}C zoWf5L0Y~-{ND(oG!>#_xAEV}rfQWrfuOw>`)O&Xd$qd=C|_|#Q4`w`%PPdCU`PHu?0ok$>W0PJ?FB_S`nsj0efxJ$!b%; zbE;%O&2%p;S#h~F%jE^U@(*m~PLT&H=K~#TF8!)!_lpD9d{Ed@FG?SG90q0ePV+Nc zLoFjuxyb~ODoX2T77<&ktvPJPL7Bi(^WHH4Kq_PVV3q>q|-&vi*UW~uqKVcUX;3mo{ z3e2Aoo*YX;?=d!|bnp5-=2G+ z_lHT(tA~0+e#@`tpGIYa%ZA2fn`!p}%4;%HA<)9(w1 z>7-O5ZlsRDxyX6SLEj75eORd>`KALUpSXS*QrCeyE{DF3to-%)^0oc_sqI5WnXW(^ z10K(4%8zgu!mDL|P1;;O;K530DaKGA6!lG0d!3{JcKZ`mZeBB3w|&nzjpCY+UfzW! zi}{4q{A8q;r$dw|`5fuxbx6@|;r$Qv^6tw!)i(kGgQ!BOzXHD|(JH_xUN0 z9zsCMqPtZp4?PzeBe%!CMI1QpIzsRuc>VjkBtPoHgQ(ozM~q2u`}Xs(-%<{NgF4cJ z%_gBBV(WH)y~CE^QkHzRny~}k_C0_6ov(xclCNui@byMaPt63u3AoALYf)<`57K-Y zy;6y;Zzwi><@G~4s+dGSb3eq_4_}#aaDO!iXF2^hQ+MX$eZDV}3DkJ?yuswC?47$C z^x(rT(_BXWB;f2abIqwV6Dno3YAYgLzJwJ%uTRcbLHVZ*eu7>CP?bPZnpo=y_|te< z`@QEkhnsPWBISG3&b9w^ZuEE*|QD%3%|*TkIG~D>W;4 zq3mRw{Kgk@lXGkqjFtjj#xVZHgfZTDHy^1BZ+qko)##N(`Y)To(+STKk31BD7ta&b zPC1YQPiAke)(~Z=Lpgf0uu=o4P34L^gdKpdNyRu?a`32iV0+8rayd*9 z3Q}wr4QN@yhUTyI4h0lq4db#xm7|P-`&crI=o_P7^27Q^UC>M=qKw6;gX;0|*TyaM zu(Z*KXtzr|jC-nq$xCp8FZLJ*_LHu^KBR_ovg)9^;Mw+^jrprGoMhg@FrAkM1d>P9 zZ_@BXogr0Uk^Q#Nyx_LZs4@QUV_TbVq9b;#3}lWVBYgK$kAiRzpF{JAGbYf(a0nJICyLcKs;E(xr`(Mtl znXi4HUk`6wsyfeb7R>qi-IEzU0}>U)s?ZJAz$VLJ{5aCR9-|7moq*=o&z8UQwZdQW zb?pznwtcKwTupEiSbXHWTOnBtn+rYl4k#8wzdcTOT9A&aXPq#6GUDs)M(N@AGi@Qa znQ)+EApX~rUQW334|^Sl;as*gj`zbrM@MW|ZIKvMsr^7ym~01Tvu1|BAYHx%4yBD< zqvrsbo?c;by((g<5ef_uLwiyg|5P{C$^)yKpIrPasuh)?cVT+ ze>33<#$xlM3U8#BH-C9l2lF53<=Lq)I5wm8LWR&{Nr39Y6Ti-9+DgNKPuyZDs3{!m zEjQZ6vv3nC%(KhU>r}5he({1dM7@^`;C_OKWZL{D;HJ-16KxhV6eoUrNPJ2UKCu`} zXpLIJ_RVKxl2+q?Ki}GXnHQ*|39bo;Rs7Pu)-R)g{&Anl=7xh%qxleP7)=%&s50wI z*OG=TnYvG(Sn}f?KUazX#jDn?fIIPsudm;)?;BlvK5N@mJJLmVD4zwTjER}u)au~E z-8tHW`ko-3%z*OZXBYVKsmju$W3q6$Oiv>cA8@t0bVO5y!`>M}T?{-? zE7seY^ef-2wP$S`!(rmv#_j^t7Q$z@-Bg7W)3#1`0t2D1SbZ{;h!>pSD(UcaD;4aZ zCYh=3KMb;(@>5@~Si+F>t-*wO8F=Sgf&I;cBxh_O9ba%P-+4taCYS5xuDBB%=staS zrJWI?g)!1NRDyA}1xE@5GXU&YCOu3=2*0R(dr568i8r2D=dJ<9T}054BL7a+v=HDt z$PgR6-4=AI<&OqPVL*UJ>!hF(5fCv^;RVzjU^IP3o5XewGkfREojsBGU%wz5Z5Xzk!A$hPf+gY8s)x*zre!@6AN8DSG}Mqh^N)^$#JiqcMPhxhuQ&uPgej~lc-1jWuc zS3MLmgc;kuh@}i#17*I#$J(^~fH;t~qti49Vxg-H;~g`+$In{(RI$v_)I3&zB_!=l z_AV>Xv!U0;Bg_U=@P8fW(h!0ZLX018r0GEx`q|zI81_p%*7o(vc(DyI5@UPpxvB@N7%3HEvc27iDp!a^zM&|%o zN;KiiA9bPFKA_vARS|GMjOSVagX_-EYq@*4BnMmoSJlY#APqY(oSH$M)*1*qf7FF4 zV)3H0JTYL(f-CX1I0xSTq?>nnDQ#~6?cFKMp6xb%aqx1U#=D~y zQP5`KJ74$xC0`%w`p(zxgXx`<_a$L)d1}G&gJF=kl<;naqcLnKO!yRvbX2(=z2y}V zU-vVZ1v72d1(ZxZ8UxW$c*jrX2+0;PF9WpS+$f}H?FUPeFZE;?eZaJTjo7SGssIQ- zFx($Rx_nxfa*l|(hk(srVhH9iVeNG@o$hT%#}oi*o{pb9HCeJ^u8!Mat``c*D~Z?fVNC+~KZD;*?4QThP99bleKn z1{D~j`^u5cxl#sK68En?MYks`h7A(h^&Xsj6VSV`yUA%wbTf=DlK(~WblXi;4t)Cmf$ zM|yd;yJt1MkS@~N^ToH#{A83OH1i6`{9L_LvbYQwLQcygOLyP_P1=JPR2MwMh!~!q z?gIk$Ly1cr>%TvQ{gBbFDFb=9waO;wP=p+8J11Pq)&k)4kM#mo%lEnI26pHC}a?ZVSgELOU!&CLH@N>rZ^#Ygq_qs417J9~NQv}|4Pp$2%YVI3@ zFPx=w^Evomzhw(xp^`341|=Fv^_=X^u;g71$hNlzrH79^6=;it2JA@}NW>$-2M%q& zPh0%qhlOVoq!)}pj&$5cF7^Mvf8*cAJ*jX9ap#^SFsaL$(P(rCKD?ENyIf}6U0U=H7~HzqyAyupj{S$P$CUn#uahFa^Yy*z zCi7lyPw-iGH0l_&G<-I-zE-ORl(=dlU|6gV|AlA{pZwy+%~Z)-b(!M zSG6&6P8n*^0mhpRGyPhQdP+wgvmV~#VQn5hhScU}@o4J9lM@Xih+wYp~a1| z3NVS8oIOoS5=f41THJ`%3-l~sF-pD0E zY%0>rd$TXc9)s2kZa_VEDT2Yn=YNXD5%$!asH$PEOQryFq## zh7N4^xQ^BflihdyKcl)Jk`-}f;&9)(H+rApZ7ao zr?SugFLnA#>9&7Mx#ES5d!h2|ksLMli}7;&(HrgOZ`|3Wlh%#*_=i10KX7c^wYKQK ziiS^(B5qa-x&SLl+cT^(d7yTS1wSzd{(9*+KjMzXs-CmWJjp=xIP1IHr_*4Ryu3(W zsv!_~cBsIO)B~F85_;AXvTcq_Tl`B@3B&amaIL@9($OK=gJD>7Hsh6Et&cEtTDPFnNF{eE?>L2 z!tqs|zUdq-BfT?QF(tOL+h%x!vH0TjDeGCq@cUznBpd3ko(zF$9!jST&d7m}D-OZu z!n6VHAn|0KGdXO2u!VK`oYqf&M2fH6<{`lU{?=mMh{>idI;^bqv8$^%di!UpoXFgO zDXHw?#x?<1nG{+zjr8R$S`t?K2u$N2uE2l%zP&E{|P0Aq7iCs*|V z!Ew>J6%-$1=+qj3{1&ekaM=Xe6A(>Dbr<3IhfZ=wJ`MrPdk? zDpqkMxSlNDjg7_|k2B#}@&siJhVB!0`NfXY;G+u^QH%)q;x4A5_hkvf5%pS^CZd%=_$z}@!^_77}W z|NSr5Mw_tQ9y+kRyVuP`TMfQmnyA^K2!O)2*5`+xiUD%|on!h^$D!>jH3nZ{AMkJE z^t;~)W|w;BObWv%M#axeGKHbUnfWfxbbUzGR^eOX#|%t$EG|~u^#sp?lf+Ub{PD(n zlfZakb^NH8wf>XWzdMiLeNL*=Ec93)2wMwd?7T19fEDK*>Q~Qkz>E3fNp=My(4a4& z?ZM7jOzfffuA93=;2G*yuWivdo!8dicms`}-}U>u&$CYSZg)XA*Jc@^;v*}Jy)-s0 z9?J%mS}OPIqUYmtZg112L%MvAyzC^j6pKL*vDH9F!3xIJvGB<_8mGVO_jjM)FJ_v) zfb6+XUdYD=g@JSxhqB$&ao`wVZFHx|3W}6WI9z-s21Sw?6xpVf;2yf$aGH<|BxW2@ z7)5;WyMBN7xvvT7c@yL}Dmt6m`}d4tVL1!AAe|#DuuKhQoC$`vPd_HUI<*m;JRasL zU9JN^GhHI0-Sh}s@!aK|JmQ_-_4~Wer9#p*CQ*E52wx5tBfUInrTX)#WM*KIv$M$< z>E*H7UHUvot_se{5xk@G{DK9S<0+jHkKP7ejBox2zx@se_xUw`Keg*951Q-y?-(u& z0p2lzrKCwi@aPtO@cA-paA{!A^jjrT@Z=hHztZdMpZu)*^^JqH(wm?2eO!NkI!-j@ zc~YdllU*)y)Fwi8q1$XiHmQ*xu$|gK*M9mPRxssQag^#ZhS>F!mBL^y_T`kl(<;t4 zzWgiN{Qv(v-Jfu9-+K<_=IUJM!6frHst%%j(;jakOE{VUKP)>L=Nvc)diQP>$e%KU zs>MTd=K0IN%pc%gZnb*tKscIqT(3te93J0%U+|fJEEr*n9oi==3eTt-W-ByEK+YQn z>qG~s@Qyd`JaNbUd&C9vljA|U|48DS(Lk`{F&}>_XEKbq*gcmiDhR~}BfDSFDS$ME zDp7q_R=o2Whl4xHh_I?V-t>mugN>I&Z#V(j(hJviZ{~m%qlxuL%)~)xSnso0-chW@ zT}|57F6wpL*Y>4hkCdn+Om5K+npPHtzO6SrC0zkfxwnN2Ger-`MUUM#yAlaimBVg~ zXNoWWNdhh83+Ld_~Q%9ySs?zG_8rAsU zUxo7{?)YZ9ZZoSd8OSMkIo0u&0kUs*_6HQyAWJOtWWmKfaNw0m>!6_obf9?HrZmos zcl;jl@%}S@qI&rAR`VK%`)`k>FWh)0zA$6S$$g$(K|ER;TwW(2pbNi=(An4>-41TB zYUs)$JvP>8n?OCg+ZdUvSj7Z{=|)Dw2rXBbn(;pTWgRuI1+obTNur|U5rhU&QosMbGw)P5|E*C ze(4zEx967(C5jO5{97E{@BD47XeCj6*sTs_btApJZ-r@F>yTa^BW0x|Bhp2pJ+J=S z3h9OvIvm>g@sS)nN2zrE$UrVuN4b-@9`9cJz|Jou>9i>yD% ztD)Diu+}K3X^JcYY9)n!6>v_5r;m_fzf|o9?#7>_xDD9B>xyIPv8Rt+QwScfc9NMNW_X1nb5#vVe+~ zU!}n$nR`3g18LyTqjRF^o*a`0Nj43T{Bsy1g>tpnl9(#9wmt6(^&jVFm^7v=`jKy&N zlhx&t_p33Hc=Dmn7s z#zEP%MKr&@YrT7E_%G(y5^<^9%@B^`O@dbwXuU9e$5NUG)rI@rv1-oKXrD2W+wTj~ zy;lAfO5Inc1J6te+(<)wAhU7rg}>qJ0NRBwM#!G)0jE0$&R9X6h-hA}5go`_NVTKB zTONu^KQ$diI;sz8EEql`z8;M{euxb54&~Ab#@C1s{^Y;4-=C)1UfPTNX5~UagPjV7 zHSe53;Y(qla5b@d?zSVQsv}v&)WQKg-OJK+j4%((IMeFLB7XDj!glriggXbos1F?hD1Rll_d>sU{+| zMG8W^@iP_mqiNy^vD)_*_mrUZoM#$$h7PLRA3vtut3&aL6YX7SLeH(0d^SID@s-;z z{I{U4_R(N-98`@iIl-|d0^TP~*mcds8`kr?vJ&5+g;n=*1kTq8!)$Q7hrQt{GJW`<03x_YF5-V?7+Cw_x<8&uecLI9@TYl9>QK-xC{Ha0M`t|E# zZ$0WNocDmr2QnM0%8ZddvFz@ei&i8#@&Ip!^f*XLXN=}J|o+Opr2!$|_3AP)42X&3w@9{BpR&2sAP zw`O5z5U)+Gr7Z^YHN7nszZgKbqkT8;#B2vAxsUeKdHH}{*{tg1ENH&D&VR+VK|QR; zwE(7-q9!w01#K&yA{Fq4N1-lN^A9$euMj?usVXlH@{`)hHh7ilULv6|Po z_P;%nu!w0CE`5?Mpd`t@jP@y}n^-ff(0nv6)7Ov&>2y9y*2-Gd<=g44&`Etm1PHei z`(8r(y=i1CmfnA{A0qa+B=aT03IFm@e?QtsT1ucBu}A9#(kzX|*QhQKq&{ajg5Faw z#DBzaAKDMuR+R8+Gvb4kfN!r&|6+dqP-Z4|J^BN=F^aPHJXZDcTolu-q7jeQ%QFW2FMh-I z`@3WDQ;o9KJh+?XIoOT%k?#9w3$HxU0c3|%%Z{SDKy*2SbYN}>tSmWF^cV1BJll^x zAVB)97s5>Ig8xFlRqXts-Ump(RcyrI)(a_8Ff3}-HS#hSJLO+(+!OH<8#>sn3)t)Jz9u%ML#LD{bwiWv@C)m$hIdi+psAW{%j2C| zpl$j~Ub)x$?`Oc_kn`1S9ppR**c8QveTAH0$00HGxh7{gM00@3I$HtEbCB<#XxIAX zeAk};pV~Nka5#oFJH4mAWP>x#-4}a0ghBVlTcS4$4?#ykaRtSm_2c3EhO-BU^XTDy z6&t~9aA_jbSzdx0P(>Gd&lmsy^}IjX@w@MF@xl2GXAcfX&9d_f_m?nWjiqwnsbj@^ zyspK?e*Tdo zBh%(KW<2bJ)%MJ9nDo9%jva^(HfWJh??%t-;l?R${QRl^wcq1#jKfTCTt(Lx7)heZ zCeS`om~F?-d9+?2H%nZRkN<+@ T56*8mdvG{WJiBOCbz}bzOmdD5 literal 0 HcmV?d00001 diff --git a/test/h2o.xyz b/test/files/h2o.xyz similarity index 100% rename from test/h2o.xyz rename to test/files/h2o.xyz diff --git a/test/orbs.matrop b/test/files/orbs.matrop similarity index 100% rename from test/orbs.matrop rename to test/files/orbs.matrop diff --git a/test/h2o.jl b/test/h2o.jl index 46f7a59..41f1b17 100644 --- a/test/h2o.jl +++ b/test/h2o.jl @@ -13,7 +13,7 @@ EDC_CCSDT_test = -0.330249143963926 + EHF_test @print_input -fcidump = joinpath(@__DIR__,"H2O.FCIDUMP") +fcidump = joinpath(@__DIR__,"files","H2O.FCIDUMP") EC = ECInfo() energies = ElemCo.ccdriver(EC, "ccsd(t)"; fcidump) diff --git a/test/h2o_anion_st1.jl b/test/h2o_anion_st1.jl index 06ad27e..4fd8691 100644 --- a/test/h2o_anion_st1.jl +++ b/test/h2o_anion_st1.jl @@ -7,7 +7,7 @@ EMP2_test = -0.073645765995 + EHF_test ECCSD_test = -0.086578672000 + EHF_test EDCSD_test = -0.087143018852 + EHF_test -fcidump = joinpath(@__DIR__,"H2O_ST1.FCIDUMP") +fcidump = joinpath(@__DIR__,"files","H2O_ST1.FCIDUMP") @opt wf charge=-1 @bohf diff --git a/test/h2o_cation.jl b/test/h2o_cation.jl index 1509989..a461984 100644 --- a/test/h2o_cation.jl +++ b/test/h2o_cation.jl @@ -10,7 +10,7 @@ ERDCSD_test = -0.241910345272 + EHF_test EUHF_test = -75.631764795601 ECCSD_UHF_test = -0.168407943239 + EUHF_test -fcidump = joinpath(@__DIR__,"H2O_CATION.FCIDUMP") +fcidump = joinpath(@__DIR__,"files","H2O_CATION.FCIDUMP") energies = @cc uccd @test abs(last(energies)-ECCD_test) < epsilon @@ -25,7 +25,7 @@ energies = @cc dcsd energies = @cc rdcsd @test abs(last(energies)-ERDCSD_test) < epsilon -fcidump = joinpath(@__DIR__,"H2OP_UHF.FCIDUMP") +fcidump = joinpath(@__DIR__,"files","H2OP_UHF.FCIDUMP") @ECinit energies = @cc uccsd @test abs(energies.HF-EUHF_test) < epsilon diff --git a/test/h2o_matrop.jl b/test/h2o_matrop.jl index bf0526f..bf6b4f4 100644 --- a/test/h2o_matrop.jl +++ b/test/h2o_matrop.jl @@ -13,7 +13,8 @@ H2 0.000000000 -1.489124508 1.033245507" basis = "v5z" -orbs = @import_matrix "orbs.matrop" +matropfile = joinpath(@__DIR__,"files","orbs.matrop") +orbs = @import_matrix matropfile basisset = ElemCo.generate_basis(EC) overlap = ElemCo.Integrals.overlap(basisset) unity = orbs'*overlap*orbs diff --git a/test/h2o_st1.jl b/test/h2o_st1.jl index acf8e88..60a3fdf 100644 --- a/test/h2o_st1.jl +++ b/test/h2o_st1.jl @@ -11,7 +11,7 @@ EBOHF_test = -76.29524839981325 EBODCSD_test = -0.0852347071335213 + EBOHF_test EBODCSDfc_test = -0.08583428759404194 + EBOHF_test -fcidump = joinpath(@__DIR__,"H2O_ST1.FCIDUMP") +fcidump = joinpath(@__DIR__,"files","H2O_ST1.FCIDUMP") @ECinit for (ime,method) in enumerate(ccmethods) diff --git a/test/h2o_triplet.jl b/test/h2o_triplet.jl index f09b4ce..47562d1 100644 --- a/test/h2o_triplet.jl +++ b/test/h2o_triplet.jl @@ -10,7 +10,7 @@ ERCCSD_test = -0.27614920708496 + EHF_test ERDCSD_test = -0.28995913689122 + EHF_test EΛUCCSD_T_test = -0.2903721324779 + EHF_test -fcidump = joinpath(@__DIR__,"H2O.FCIDUMP") +fcidump = joinpath(@__DIR__,"files","H2O.FCIDUMP") @opt wf ms2=2 energies = @cc uccsd(t) diff --git a/test/n_st1.jl b/test/n_st1.jl new file mode 100644 index 0000000..d101195 --- /dev/null +++ b/test/n_st1.jl @@ -0,0 +1,36 @@ +using ElemCo + +@testset "N Open-Shell ST Test" begin +epsilon = 1.e-6 +EHF_test = -54.510599961049 +EMP2_test = -0.040618302979 + EHF_test +ccmethods = ["uccsd", "udcsd"] +ECC_test = [-0.051205093083, -0.051642622503] +ECCSD_T_test = -0.053854392354 +EBODCSDfc_test = -0.051994090819 + EHF_test + +fcidump = joinpath(@__DIR__,"files","N_ST1.FCIDUMP") + +@ECinit +for (ime,method) in enumerate(ccmethods) + energies = @cc method + @test abs(energies.HF-EHF_test) < epsilon + @test abs(energies.UMP2-EMP2_test) < epsilon + @test abs(last(energies)-EHF_test-ECC_test[ime]) < epsilon +end + +#EC.fd = read_fcidump(fcidump) +@set scf pseudo=true +EBOHF = @bouhf +@transform_ints biorthogonal +@test abs(EBOHF-EHF_test) < epsilon +energies = @cc udcsd +@test abs(last(energies)-EHF_test-ECC_test[2]) < epsilon +energies = @cc uccsd(t) +@test abs(last(energies)-EHF_test-ECCSD_T_test) < epsilon + +@freeze_orbs [1] +energies = @cc udcsd +@test abs(energies.HF-EHF_test) < epsilon +@test abs(last(energies)-EBODCSDfc_test) < epsilon +end diff --git a/test/runtests.jl b/test/runtests.jl index f3d6a53..5c027be 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -21,7 +21,7 @@ end # testset is the name of the test set # tests is a list of test file names (without the .jl extension) TESTS = [ -("FCIDUMP", ["h2o", "h2o_st1", "h2o_cation", "h2o_anion_st1", "h2o_triplet", "2d_cc"]), +("FCIDUMP", ["h2o", "h2o_st1", "n_st1", "h2o_cation", "h2o_anion_st1", "h2o_triplet", "2d_cc"]), ("CC", ["h2-"]), ("DMRG", ["h2o_dmrg"]), ("DF", ["df_hf", "df_uhf", "df_mcscf"]), diff --git a/test/uccsdt.jl b/test/uccsdt.jl index 0ca7c1b..a2a1b92 100644 --- a/test/uccsdt.jl +++ b/test/uccsdt.jl @@ -4,7 +4,7 @@ epsilon = 1.e-6 ECCSDT_test = -0.170787150063 EDCCCSDT_test = -0.170829455099 -fcidump = joinpath(@__DIR__,"H2OP_UHF.FCIDUMP") +fcidump = joinpath(@__DIR__,"files","H2OP_UHF.FCIDUMP") @set cc use_kext = false calc_d_vvvv = true calc_d_vvvo = true calc_d_vovv = true calc_d_vvoo = true triangular_kext = false energies = @cc uccsdt From 17c9f5a985b6b08bd897970679e56e333bc07e15 Mon Sep 17 00:00:00 2001 From: Fangcheng Wu Date: Fri, 21 Jun 2024 14:52:51 +0200 Subject: [PATCH 21/44] mcscf doc updated --- docs/equations/equations.pdf | Bin 348136 -> 354903 bytes docs/equations/equations.tex | 182 ++++++++++++++++++++++++----------- 2 files changed, 125 insertions(+), 57 deletions(-) diff --git a/docs/equations/equations.pdf b/docs/equations/equations.pdf index cd2021b46bee1cb8312669c3ad7b7a55bac4a9bb..97931560b80b028af260f0419540bf205db435f8 100644 GIT binary patch delta 122679 zcmV)DK*7K0pB2~C6|g7)5+_`-fi&4-`17&*w)z53;#~xjIsqyHHkYu&11NvxSxbAP zHWc0GSFnTyj3o4cWkTw7`gNLqW6x^R1;L8LHyB(VZ8N{VS4bwd!4s1>&7+$LWJQmo zdydW($XZy)x;R0mJe!?-m@r}y>WM&LYj$G^tO) z@W+I}8da(ZVPX^X{?47G5Sc101+zajS)C?DuHtpkl&#Q!=V^a`o679Q1rJxH)!M@8 zA10~H=DSlC!soVl0+DD(q|5R;t=n0^j(^_c4?>WPSGJYUt&n0QqiDydPti1*^mdHV z|DUzm+N0xu>>H3zo5d1%0&1k`rQ}LhRT}rbEhg_Wc^Fc$a5SFO;JF5`Me_6^J46wC zpT1uuoESZXB4~d;H0(jyYAPlOG`p;7ZAC82xhxMvm2m%UVZ{!>3T-DU3MOJ;nnJ>{ z&PK-I6bSkTkip}**s7aCCMuQ+fa^40i<`#E?O+n?L=JvxbkZhEH~P3Og>6HFXRx2m z1839Fibm(d6xI~@+erh{9w~~Z=i1=tb-=^H6z_9QUzI11LSL z;q}*eQO5aV;JgZvc+FuwHuGkkFWQI6H0op0zPB7uo*AM+mX)sDyMrP2k97dh(Q91W zlHZ+{h;@HcUdJ^gr0HL6g(hNM!b+rB$4z16E*XTSr+FcJU2(ui3P0yxBt06OC^lB}tqP4Davkq;B2d(M8fX`8n^LXUmg)P?d>Nt|VOy8lJ{ z6|1}N`J(n?w&QZXoJX#%@3~qy_(|~4Bn$v&>2;PCK!DY4d(qVUq<|RAk!0k8ozNXjDPnc3JRadBUL?z2UU ztAZB)Iit=0-<_X*^-}SIOJb~H#rb7nD6v`>+BhP#DbC*&Zzj*LXSbVbH7$iv6FGf* z{v+Nlr6ZP!Nb!H~YO$_2Q^6+p<;!}rsoq86S9kMGeX(5pN}0U6Tg^80axt5?95^^w z8#%nL=9lI3CD^Pt)xvYyL>4dWYW~i@5j16naHgc!6bv*YMmG#3VbhW^t|mXNey=x> z5?=phxd~Du2T2RYh*RJcIdDz5RguH_b%l4ho-8{C+)RHqtJz}8CTlRCT;juWbrY<^ zqmNVkGn;Zd`QSfQmv@VcAS-aWm@OjN@6*yhjlWi(ZdcWM9a(5R!=wAgJeMlRtRR-F zprWKKs`y9F3_%2EFeXsI(=5l%5k^%@ROi?j;!I2MtykH4Wq+lLhVv4JNTwi+avq6( zYvkyZOUZwUQlcmmx?ghA9HG>1l~!4$W#C2k*xnM*91BJ4mPMV@SQ6bi=9`=hreO?| ziLw-6Yjs8-0LRj@{z-kju2xle&ZH$8T9!;B${Mt$o<;OIcbH@4VUBe@$A+T}Cu%1C z8yAyjL9i5rad9-s_^6RO8qv=hVXPA(MlnRb! z#l_9po42%hhlj`$L>gOs45T+5jOWGcv!7%B8UUi@C4Bfa>hga?WjMefJvDsrSs2FK zK1?XvLKuf9bR#AoR>C@fWJ~re8}2@pB~eU$Hq)m2q~oWIwn&Lih@A*7am;|IhGlSP zi@|><#V>p*xZCE7oMN0v-i21{K{N26OFg)b5k(1gwkQp;uF+wYcP)oa3hee+WPJD~ z7QM*oA^_e*msP8a>1ndg$xwtVRd9UQJC1=<95VMYA)QK-2~Uy<1;l|DfwV-$@yrs! z4$T4q4C7Ar3>#(>4a_Ho)hL8Q+sP&rOMHJ=*NdxpwTWM{m+^Z9*5Reibb5>rkn&dLn3&_Egja@!*`07v)c zyT7_@;u2|A2?VC^K%0QMzkwF3`r@BmYuD9ui;RFucEY0WB?eu658AYxcMJ5btNZxH zH?HeTw5uT)Nlv^0Qhc&U<3bhRou_~8Q}VPmI*qPxvlXycE>P`gPGyIXcKd3I&F1l; zuIsUGQ0&d*rSDX<3_YFZ>`3)g4BGEE*(887Gv-kqc-(3Ern^_mI#Bz1D-Xf+6YFg( zOb^b<4W<>w`&zbuc@W$h9nYz>UXN*=^{pa|4SmbrX5@eomA!-+^Yp*gBba}ncs-%c z4>D2{1!y>QAw2CrL^6Q&X6)^3BPFrjq|KX2`_=Q;&tLAEtmR;`t`^nm>OLkdq|4YD zTy*UMC_YS;LLUb=!98zN#bXA~SXOJZWPa?zPwL zDEA_tk^Opv_9J9ie0(VJ-KBpALAjk^({U|>c{K0bbwl%YK6te{WECKHPSu(SxMgq1 zfIz5T$b6qo>=Ze2{}|66rFV9PQ7U9xi5$n!w@PtvvDxd&{i}sP^5HI6N0GD#4-OXE z2>r11J(#bp;-}rfAn~X}vgPQ}Kd5S&sf-6szVsN`Ch@~zc=kAlg^7*tN-Y{w z(jc|;1$MkNa$0*6%9}3A`5ec42KAg{!Yc3a&biKd$B%5>91VYiyDk{M&R>za-~!<{ zX)YZtW#*ntdt@{V@E@9y?BjKP;it0e`1SkQO+DW%7j=7y+Fv7wN}?5-%j31GI7BXc zTfpIUEvC+9+!qwxtG}BC+N3^)bU~bykGM|R6W{Wn_?CUV=)L{bV5w_FZ_o6;z1UCI zAh-D{>Ztj=b$fsI9-z};^d8`3`i!l)W#W>|y%oSPJb;+M^uE@JX<{+rGEg(Mvo~rh z*Ur1rz>5OT?TrD?E{Xwjmo`TqvetXWdw3{?-fqYc|NWy_jZ}4||39$tRDDL)v!3=i zSd~4ju1B`Pnx$Ahnz;A*=~-GhK!*(+Yxjp=sNeb9@}YmhXd;ezk!?~nZpT*C*%PpY zF`MEmNlyE^D?z>R!b%+7(=tS=W=THJr)9BRxEJ~Dbf1oA<)oa| zkCvCf8a>X7Nx3ZCFp34kz}%@2Ba>!IyK#PvOoy^m(QK5!e<3U4eTYsge}LA_S6{=elHm3uYZzHm-Wk@$$->Y29d{^#p)7J zVluawguM0mrd;cKQmJi2bt+{Rwm5dvqT?kjm}~9s%VM%voi2-u3W)?KFcQK%9MhJR83|pHx{xHh6hdp9{`H!_{6=KR1L28nHd92*7z3= zOsPpVlXb7Rv4MfKtQi;AST<5X#`D=CpA>GW>C&O?X;Sf3$y5;@at$SVI?EThb|unC zgrgPypB0mn`jvaqLp?XCP>pV$#i&;x0?dD>o{2`o1d-#9R}*9!ScuuwjcKO=qXMPM zQEE0QmE#NiQCZAxqhw_|rMw~QJkC_18?w+BP-gtE^L*ik0Xey-M?8g_ik~7&GowO& z+Ld4#$BERlz}u<|&?BJpYB9A0=O@4cP5@(;?$yO?F}pyk`Db3Wt-H$?d2#lsy1sv{ z?C7*MuK4tNUjljatGw>B{^`pJEac*BHd)j*-zPW+LMsc+l(Xv4^@qh0`Fyi*x9)KT z9eD97zbTiCAVG@6^US@P-n_i%Ik}(69^U<5Ve>w+n1HbCdI7=nd z-k_V(qEf><_0L!n3V+esI2Dp4){{u_B2)&g0z-wmAkvK25EknOOtt~2^P1hptr$9s z)o5Qu^#HB82Fgk80nrH86)MXRrmG66e4d9WT6N{KoLLbB7BHWKw-M$znA?AyIp3b%c6<3K_D@OQohOf zHaZRrq*UfjpNLdhE?6WJECaU~EH3`99lkfS#T2z&uuARWV&>2{FBWKA@kz049DKN2 zp1S|}WQq;X!>1?9t3T$Ss%L)|!KTxz%UOO>J*rH+yF-9nRBx_lMR`?^7&bduF8)@= zaBYfa>l|<|cj1_WLkQMx@WlklyWY3v5zx4_eh(m0Ry}Mraf+ozbOQuvqVE>qnBZrv zW~&lsinJg@Y}Dy)!5Jx6)$r5F!oB;$LA<-EytDfEld9XdQRxLPfN6i)ATgp_;0>q> ze&5#|G@z=L8(hX@O@L-d2n$RtCC_3c$dn1uM}YCemG_ZwbP^)~yOw@j@<0S!MF=S4 z1Z0dq5do8!cp(AIC*WOLX)za8HiLNMr@Y9&j#0=-YK-m#Ik1_Aa$lCw^iL=A>D7E< zg&D2O8|4C3Rl}%7 zcF!t@WMO0*Si$ch-V@`4ZCgk+gpx{*qy%F~M5hO0z_n&w9!S#}L_v~Df9Ts-iUSiB z4AT{Lg5yIiASxBKgCQ#A&^suDumXRnW`n3!QSH_N%|#sQOo()`i9s~6cC-7JyI*8xQ5mKL(U4gorj!O) z^OnXs#fEFmu>q+5woYrcffuT5LuX+x zof?dG#uR!ROl2Ja3+*Xpe)Kq$ogW~3utf28 zW-~x-OsapZTdg8pagY?%*A*@p$yBv)YIo_36V|jU;&YV!GJr`5>dQde7J*pj``Y%y zyR*G(cKvJzKn~cxi@x-*y-ObY*e+@2v;A`#VjJI5ZS#j&?Zf}y5XTI0NOQpb z^C%c;ZhT96XE18a8?k{?yN8Dvbmn@0N>5-Xt=fNNGhjXeT_riQ>6oYHpIrV zp*B|fTkQ{S4qR>7KgEkdthlXo_352DTO zp4@*H&sI^MNj`*U*(QX3AwC$^-grE_myiwi!Pp=lj1BR@*iauVP|Mg#;tyG`l&KVa z7GEtN&^g+4OFTE>S=@axi1?^LxXZ=%T4rWEyi&*M`KrAVJ>KosNgBE}JS@JK;x6u*bhTQ?qL;xLB+wiU4tGXv+ zg-_|7VF-qj#tidp1k+FN+3-Q0&7))w26#5QeZ8TLG&ozyI?^r7%G_Nvso%NjTJ{Vq z1|R0!JaW|j1kQ~f?%c2^bZ+Dz=SJ-eEbP9(@=!S@IVi_8NI5xft8OSKC$0WXL^*#q zqYlYkc1VW%jU$QG+#?A#%22=bL`OUwnuBrh;qj5U$ z-&DVT9+|g+X0k8VZrNWJV8lJF{?4VHxvf#{PCHX$?BoQH$00JiPujWZi%5%@K{-{B zXYO*k*iH$F$H@O|c}Q&JEdlKTb~S$p*wvPcB=4O5+1il|F?E3D9>nV6p1GeE7#rqz z_H%Xcb`T%n9|81)JJp-DxLQ*i4rM{P9)uij%LgJCs(QD4h_Z|D5W3g&71up8O!s)d zh5ajR1nr)rx|=UIP&UOw=Bd6MSML6>(;hGcu+x{?=u1)wOszk0l1l9ifb4$>0Pv~z z3b*{YZl`>Ram#d&r&gDWNK? zd3>BILmeqHWNmoQVEuTbio1KHAuXG`g}AC7F`aRp+KGrFLd1u-tW?!xyNJrSouY!Z z)r`ncRb$s%O)A?ut}T^2KUaV$t^}_uyi(J}wlL zGg3oRscmJh37sdlk*x)ZNW5k*T8ilyZREfn#Y6H~K%Q#I(;j(viY-o|l+dY9A#0=1 z45Y9juxJRvgJFxh#&@!cfGl`qupqd3$gsp$Jcz3q=xDj+z%#E{dRu=-HDjTYww0L5 zzRh-d&!RWm>evQG_~JB!{g@z@ow1T_Hq)8wifSa-Ryw zvSHcdostaYbz7F<>ZX6?+%TbhE1~pxV2Y<&HX3`cTDonHkSH@YW(kHP3(9XlGd8I& z5S!S8VUrw&O|%!AP;N}W-0W6l^2l;C7_)~NiGDzeAH^gpm6^iKClkJ-ONsC4Vs;tC zgS$%k#?xgPe%|3EFWjX&HVz@*?Ba4hJN;BWbqBvy@J)w=6L)`(a~mWX!Gh-CFj}V* z*R<*c$c=+-YkX`@w_Ue<1VkBsVeJu0n9NNvE6cp%!6bUJTq*lC74mr0NpLZPui#XS zMaO=dv7Dw%X8vgGA^CdKMtXVOVtDYI8TVkV=w+?A4}pmgG?mPy8$}HOvns$lUC!rA zjF4_3p8%;QbclZ+W^$j4u;-6I1hHOqda>%SIbVw{&hYaJllkn=+2YKeP~HrI+W10w zmQo}G)|%AGmBXk5#z;_RuyV`+AlssLqzKbWlt!$r{rZ9M zKDZVUN0r$v@gz$n9j0Syh>oc?9iw*v1=Sl#bZvlTXjE%F<4Pc{)nvv9QbH8(JTLlHz!EYF6WfwtM1-7h#F!~s{eNLwL9a7~ zsNuzbn-E0?3Bf1S{w`WA7dNLfM&DtL?O)e#LA)M|9@EEkgzyNo>ep9Iv^y86w`Gf{aG}U1PC+=#Nc|tQh_`) zDd#p0^fW74%|J>D3s1T}O)y)ysY~}|pf~6R^MLkdpaUvA6~-vG8h@nHcoh2*1{HA7 zimVj+O^96hsw5dC!%bkKeGF1bB@0mL6TlGBtWIWBUL5+CQuPnmr%0hSD3Tz-c}@83 zWug>Nhb7-nLIUfV(n63En70J9(7j?P0h)~*WyS3K3a=QGx?*Uh?N32%V~|cw&vWvKK1JWYHv(B~nZlO<768TS+n6lU5R=#$QR=&2{{|tXLh~| zbv2_*xzPYI0S&r|On`jt=2tH^!3MJt&9>~pS?<=u!YaSrFV5IJ6 z--m_)0}Y;|hJTUL4B`D)5C?fLjjtjBAm~ zwMyf9n6BTS&V;^SCjo_5LOERFiLBR1IfnmUt(yT__h@RXUJak{4S}cWe?}$rNi1SC z@QNB?=GU#{&ST$mId;A0VfGc_2Uz4hYLa&m%^ObAe18uaibyNoLabNhG`Xhw5I?kw za-9dch6qv0k+?Q>N_JU?u3;rabUI6}Wo{o|UHn?zR%OTZ|)8>5B9*&@6l&W9$vDeNj-Cn31bFx$pOfgl)7{M>EBIh9*bgeki7Pt2$jH&u zaDS_!!&aps9EOPKOQ=&N5CNztDG)D?%xPAA!K@TgcL0u7it~6&f4ok_;htT%J*=S3 zv-`OO13aP>F+-lT%?s|I3cg>>=K;|fP$COt<_VIOAmg9wX}KI7ORWkB>CL|<8xq$-wUO_Z40;!#97w`Z61Eps_L=mQ-dVhnLyx!Xuh~CX5SPzv?oZLlWJOQf5O_1b-%y z%53D5s|T>RE#}=QSOdltiaZk5$cI$T z9GBt{{V9%CI_rp{ThoUI@)6k_BdQs?<3a7}U}TiZx9=-F`SfU2GhQV@{{Fxs3O&4t zU>7Z-$io>BYgE)1sG7;gteVNATz~Ikc^|{+L*#w(Pu)3&yT~4z=JJ3*N*?fVK( zz5!J{;%OnHF{k43d+m>jj>fDq7^keV4vqBR(C7<6qsG2$3mP3;SuqG5jd5gPK%v1g zMI~~~)SAW0jY8AR zmK({GawA(HQ7bnZr`q}9T+~;ToNl?O!wy+fP%-FmjJdn->xs_YO>FMwks1q~GTp#C5PuKPDn|biWK?6M?u+0{7DYW0g<0V4`oJzL>zbXdSIc~Jdy_5g z4RB_;?m{tA&`aGiv+*f!w49Cq<8Uu}v`Z#TbZ`C@Ht51!_m#m)BJ?dHQG&u(vu z2HCcF=5A{{CDZc4Hv89ImR}c*_AgeC%5JyiswKu5C|i@ttAEpXi<|1+w`HDvI<4-7 zllLUqOXA3^Y*e+TvyY2So-Nm9>&w;6Hp}hne-&>4@j&J#Tdsol$q`}0M(Xa9qt$uR zvxt?pl{VO~L-v*vutRi`$>T{Tj|DtwyE-_J)QM9y++DYA9!au!qGt1~q^vpUi>bgt zz=DK<0IwZc+<#E@Ws`b}rj*a87+}?O=ZUr#6ikOeC3W=Xu1Iz{XFm`2#7B6(Z(rwb`waf$xaVW!F-jqqhiHy)?`b{tnFo0^>ZG{ zKu}`CI9WN$7hwa>JS4GCx@ghjSA}gnm34N*VT%CV1YZqOgm`9NhrGLSEV^c|vOgT4 zzkkcNt7j#u2dlFwzP`KNZT41_Htfv)uhN)jZHrMx1e?Y^(qM=Rb6l$ zQdD#&lLU2u*TJwtq{{;gUXOtC_;b;>9HIpG#69Y0fIhO$~0V#j&T3d75 zxEX!-uizs!jj*@_OeYU%VrRXRP1;yHZ6`@*WJ|V{$d;pvo!wvG1A>$Q8kDHm+4P|= z7HNXt<>0%V4-(BTGMc?Q_}k#%rz2BjjFCbqo(;}3Ly6ToGX*}m$OfbAeg5L-=YJm@ zzU%clv$-U_zGgaqdHCk!c<_Jk{?YMZaQMbG~#dzRz& z?VIPX{o5ypuaEk8dUAX+ID9kkuN@s9zJA&JIQZqKBS}MJWFd%@8n%{pFzOZ^(8~I( zUq9~)MvPK^)#SR@7hLCemy@#|H~FQPtaK=u;Y};DK9dkoz4(DLld^xp5-M$N!?Q|S z1RCQ+a#b(+Kq*b>EC?@(%_6R zDvC8MJSm(LBW2bvh!TI&FQw^yMIfX==CL!DuNPe;pmW|bKqrKap^KFDg+cVVD1s+e z?xhovha|d8Ap@xel^GYLuxptDZ)g+X6NL?D1oGT2T5hUjDRbp;aPZ}TK`qeC1f_&Q zvf-vg{Os!B{YRRO@bH(65@~F9S1!GBQ6q6N%}x&f;md?FfxdsWB;Z}t8rwYYV}DU( z`iv4$mz1w5#}SH5-Sayg4UD_U0jSEviK(|GCO0X)7D2_bP*@Ah&I4KOgjp6uF!2~L z*OI!zY#)Yl13XGhA!3xDrnkcqu0$jAS)KX7i)unOfCC~NP?yX8>3YK$9iTAzVmzFq zSX(4Sd4E2ey92VxbTi@_za^>;*)I)vN9%%S$hG=#`(% zuAC{Slk4GfGQ0NAuExvD87@se@~dD$`CvM^hVlNoa>L}c!0T%9bav5W`EU+ZeGduK zf=~pP??6@My+X$-d)Mh?F+TIk1rOnQnsVD>FOdy`5=wv7PS=@=dRd8v>v7g>wlCG> zByktjtDjR5s1Ug8M%mVpT!@x&RjyiG4X4veRv7sl8Ln)iju){)i2@yn`wX}_Z|%UG z5@pv#csVckbG2Bekm9-w)lEz@FZ(aG3YAtNh~lD6MQlFO##$TEhEjGCTn2E2*bm+5 zaDFjPp$mU_oa;7 z?ubY8KNFAbTZ>RrdZ(eqpRl!YEGwwxt~PMW0^)}M;N*Xi%dgCs1 znMTv=lyZqyVb<~P_QfHX`@e0vgv+S)OF^opbs&EMsb1&!=>)V)=vL4;Ds^$6DGCg6TNYb<+J&fzj1uVJq=LxQh`mnXrX@$OVy}av2VU?ZG027aFWOKI|N;MZ=J6u zAA8-aMP=D|;#NiG;^_^FMhOh|qbfuOby+r8RJqSWIo9Q5dj)gr~gMvt4Fi*+ffEgQ`?dMW~rUT9T}6G&;vNYkt{WV2)w0Oj-`ooWik ziLs;}#~~QG#<rRtYN(BZ8%&0! zVmzu8W1p|zSEo|0k<2eLfAQ|s0d%VP!0LVe@rjq5JfzB)1t!Y(Rav9)pY+iKn3O6% zcvVqqiBc+E)rboj?WG9c1NSY|HigkB$ zlIBzaR4u`Qso(HMaL6DyLQhfHkX^!^nfXpozH|b*q4O8LzM=VXOJ)}C2q*~jZe`|k zSxTpMQWRW9Nl~_Tkh2y7jlLJ;#xp0&u1~__Ex~ZI89y&~Lh0x6&nw%4 z{ax}1Lv>ABCZD1dLJxl{swczKw(OB^Cqz)H*97FgbB=Ab9c8hCsNevM>4e2FRYV4_ z?Uk5tVXvu=ds}uJ(>fAG%RSouXN`CKtGFgAMwUU-R;6!1pj=IQB z2OFh|QMK!|$9<){?mj%t^lbRe$PW&xK*w!c7ERJ$|0)q>(aZF+`A$dyQ_z* z$gEL4sBHOqP;P&$=@fITy()J>w3X?~z3t3(cN(_YDmvxIuq{7ir~HsD`Jqzz(fq2# za2*5E;Y4=tBodeqoH=eD*ZK!k_9{M?yDGct%yDR&$(!$V_Jv6?BFlN|TT9Kuc%Z2B zbGd3s35-RY=)!ac$z?j^a_f|Hzan>M zH60`2Vc>VFg{OOskC^Oabn@{uO454}74Eke%>5Te%1|4fgzNQB@amWA&%?pNe*w37 zPuP>;XcQMRATS_rVrmLJJPI#NWo~D5Xdp8-GccF1!viRP?Oj`Q6FU-q&##zAr_PR$ zTKA=>TK13}a*BmrlJl^|vQ;VYLV~%(PJo}kt-089k!CdGv6FCkfk0$UcdM^o_sBGP zm(b+5gTJ30JUG@iVT@QQAvybBqA4*-CEDWOz>~AL$*b9~PapsD?C9lT3e3y|IZPE( zvnNN-PfyN&{+%A5oShv#alg~EfBf<6(6HIr$*(V-AD{g8$IHiu2JoLRoQ@$Jv})+J9>VWf9&|==-HFQ*Jr;!I2N=@jIf*tp^(;$4#wP~16ol3;22jiLAX%a z>a<**az?b2`G*7%1P)WiK+aC*Z$5u|dzf-9XD^n2Z|BSW$H!m3EI%J|Hv4|@@%;MY z^CurIG)VynL)m28o_xa3f||XXf0{4P7k_d8(zEOL^ZdV8*^|=G#Y6Cap3YaRi}T`B z_?YFz_xv;S#r)&^(;=AI^(z0L^JTHioAbq+o5lI{{B8d4^Holn)QKimQ|1Um5-msK z6w$?hd7U1nQq5izYgLsCMu|pgrGi*qaPri*CnX9XsjT{dN2O;Aw>C*Bv8WrVCdNYk zYh)7aY~>T2`_ZTb@IQ*Z9{q<(>Z1-Mp_C_vP^0sue?wNp>?k|;qqBpn1BM5I+b0Yt zVbY+!8Ui4aHy;mPy{5@q{N?WnB|@9zTekFnW5N{?*5Hqepr9OgE^eGm-3~C5rqOy}yv;4G8Vc?#B zb7sg7Rf*D$64rIjk{HSB$K2G!VlSl#qlM-|!F1gV5-KcG2Bksy^cr;rOv!mjrJa;{ zxoDXg(dr?(Bc+{5ah@M*b8j?eX{&oPAC#>BRqprEH z!g09;nd54hX-z5y^-5=UD$5g~Ue(6vqtI1NNVTp~y$n(P!EgA0^j4^T?W2X`s`Y_- zkHQh8c6Jhr5KpUsA!>FzCsCt%wWhj8^TK})=xBWBV4LT_dM%H|TknO}_X5R#ya1IM z9S?G6#(H0Y5@CEA@5>E3PVr-T-^YQ>$2rOf8lg_3*Sr}JY8!^z%r0O<(aOu3C7?tM zXRZiZ^>F+B3F4IVfm9d!Kign0;ilLrqsZJ|?7|1ag$GkEtLPgufle? z1h{fp6%OGlUxno}@}$wfW@4erl>&zG`sr7gr2Q|J?5EhF6#uUD-+Tk%X$`i>2GpjM66O+Q`bqNSfhsrnRv6U|sv z0sKmi$H~{=(%eIlBm(3l`t5iVHJOK)(@`>~<88%HSGg#p3K24Qc=<-;uU`j(A?16h zOARAx+p<(zqy?olMVcmmjYId%&ou3Bq-mKjDzw=K2h{4#dg|o>H?_8r)-@cq#%i;b zG12}!!wIJb@jUT2Q7AI*OJ+DaEnh~~Kp`DS?Zv(t?ThTkK2B|$655{@Ixx#daVovJ zXOq*VznTSBOWS@4u&EUr#AbH{hKP*LC7z-~6OeSVoqSYHKAmBILfJaS4bXrYbSfAw zRH-gZc|)e++^dxWIq@h&{j6NOP442Xd@9+QsPsw$s?vx%m(T+tLSdw7D9p;QFwNFN z+$k+Kr)2sqDg}#?-jz(4B~uQ4M+F;aI*rmay@7JFN;?75Y3c-tY%`dJ|kt|eX7D#%JgceE|SuUh7R&J{z{-+)tQzywrXLbE*;sJ zYJ^9b%4*tSUBszr%@nc(&Z`ZQ_lFvTg|(`mOP3oOcrKkK+OUAqk>pHOfyt-}EXry* z*t*rOd`E;T!NFs&ww_7yI$RN#iA8BoZq+NVRl8fryfB&kF3c=vsz>IY-qA0+kwHamR?4!hThW>gkeSzXQt87#Eyw3wIQ$;C%iWh zq`-9+3sPpWCYRAkOBju-G_|%uz~$Z7GbxKMU9F1 z-L~oHT!4*#Dkxxw$mjT|TH)(%Mb*0Ya_R>#n9dNjiuP{ngk74UCoc{PZ9!^H7KJ2C z8An~(5En;Pd>rMGaa8sTYmnLpfGTR)l*il>Mt7{`k+D`z>;nR&E>MW{*cEl2uy3(e zXTa>Ct2%MDsi_9V zYjM;+RwReR{!`?A+b88w75;MQw9izjRRrb+5yvQv$-B#4Z-O$Hhq{+iIiDcejR3!I zr=)Q`b~#Pvq_P_}24_xFma}q#(HJrLXpEk=P1X+u_hnbY4VOj3>ieHr(R)MRcQUho zB4hEvZUu7N3xDRuIc9FoegSo{6jz4X7unhJU6TLsGP`T%9>DlpPnoOmlzCKCTMZu| zA6Ov<0{p^1s>|vX$ri!e^abzLc5KQ(9#fx={@~YfU5wOD3>h!ky=s9_H=GpZi098q`@0;_?w0sbXw6*cUV6J1~#w#!<|z4eH#j z;qC$BSZ26C8;Qz~ozA%3ajd3MmdMlHMdgPKIqSRin&~=WWGzi=rBFF2A5)C7+nU5$ z?Q9ZD81`cU@_~%60m$Fs;JRBhUJ%7~q^F(&66%;LT%++29g)YO@#~vWlT-+Q%!;M+ z4XzK;c>T+U(WgH}DL3LBH#6cLx5u7m7_3!fuihSd^b$wpr zt>+T4VB8{wB2#K@?7f>Z9H-N-y!Vl~TMO14{^q^;1)ANHO%mGFw@Q1kB_`JcYep15 zLbQ!0syLHtw|LCp7EiZbs?m0T86R?^DDZ(S3;*R*4UnZB4~je4&~hY38z)+4LO(5N zCl=I-uMG=|8ac>! zoCI*9vJonQCsl;D>>Btt^HOi1Mx!Fe*oJ<#?z|OxP2Kv|__uS^9q}oDzcgMKm&QkU z>{L2z&NT#3vO;tlhKM$dj(g#C{k4(e{vRhO);BjoO{U3Qxy#+RycWFN3wIMjq~Yt6-b^C8Ape^6s|^#4cuqchLRr9^vn6 z6~OII@ZY^w!M%BNJ7R!;U;P~5A83^Ke}I3#t%3mq{CjT|>~wC;-zw;6vrpM7xHm6t z2U`VfqEzU%M$7iyD%krQ+xuu00OVC4L;FyoR==9{@`&mYG$wUSXXWGih1w`w<>GQM zD5>jhu18+oh3sAZP%>R9-{+n~&i+-zmRabTOMR%?BV9^^-^IiSM!bRHJI??ER?51=C{=tDi%DetF z)<&$#(8ELGhN$5c54-WbRmhGh`7(5%)0L*M#)Uj(HCssaIwq6)=@I8pM)&=_Lyv__ z){MrWBH6|1%qQecv4V~WgZM#?b{1>BA1+V`=jbDI;GLn^x)M# zY9fYeAKc|+qjs+NyK|P~x|1th9J7JF5u7>kufITuxywYJ1%KL5J9=fvs^z#rOzMVJ z=OVFqgh}uxySbdWMzp(--(mh@|2BSmOS4_;@C3IBp9rdljj|{Qo@@5nwWs%{M2avt z>dhFM8}#gWVui7A52)yH$^5bHeia>Z?8=`Z){Ds6``$DAa<0NSR2wp%zS6V}gU{-) zc9N`@n!v#i9@-Py8?)Kb4V^de0^9ZVYLjs05O|D+<1W=`f}7DD=J~@9!H<~(T7W=f?9`0^F?UZpd$RtMB*5xqOxGwCj0FW^+!Ye-Pv-sbOK9!@7x zpNZ=oyCjtueOBw;gL)Ou)EYhV|jPK zz}3Brz>?_#1yH!z{#V4s%FD_5UzvA}j)DULH!A2t>t@xE##tI!h7>jdr44QtAd)P$ zK?*aX11XAL(QMA~@$BbdKGONBJ)Va0bmhE*96pfA&7Lx2l5@+OkrAV`mJ(HFEiPC) z7Bc>mlNPRa&605#$3d2K6I0laQ=@+}-Kf%{D|VP4#S?sx@}1tg%Oj(7w;6aMo-?Es zbE8BcpgQn1`N!0`AzqP5v8Houthxh;1;-axfPk~E7HR9=$HH|Q*3S3wguFAl*3OIEV zgAflib%YD#&Ll_8poPgARyATfP0pDuhvF72%{uhUgR9Q&n$OxU-Uh1Q6b(}2;&ZPO zcEcq?pmE>eMYctzgzKmll3^HSb`~XQm9v?Zs=jTpR+z{DOiOidQeya488r0S53M=Q ze^UeKtF&ZQia=$(2C2Go`$)b>J~kYxf(&99uIh&ENO&eG-rwldE2tUjGQHWDoJ++p zi-uevlW~qB#75ire1LamTtKUBABM5aovHVDp|AaxwZqe+v9$B4yVr{ql*Tfp=O8qk zmR|8@?crTmpBCNPsbp#k|6!WY->-Gk-%RD~iR+2&2amx~>slS^-QzX31%!!Kt?t3} zyg;eL35(7MVieXOtXPLTNe;}co_2kMuFK_PP-c&pm&NgQ2k_eFUTnqV>tkzg=RW{q%MFThaOFrz^>E-ErLs z^GyJ!e|{W}HX+b+h!2+ep ztW*TMz#?hS31HQ^(vmBxi;l;MKJqSyE&8_7Sw3rxzy&NY3d@)s}po3@h5);lW^UV945PC~pv8D!4oD*s?Aq zd{u>xN+rkI<|X~RAY#WNFf0CNAQ^Tuku;1>x6uz#gg@U#39$k&^^_OogB*Ct#jDDN zN}&);vQksTFLLCAbx6!oc))$z8DE&HwVU``xvPQ7yF9=dzFi~j*l$*-6DTnhm}eV_ zgM7E(iLO5d(_TmTMqoFj(cbFIMeW>?7`(r2XpJ~_ucB{id6$FmNEwXE`rsCdq)}+Z zw7nFAMUIg5pfwV7?o=+s5X?X}t4MxGZ2a0-D=9~xlfYH9kraQa&5if(4=aJu-xujW zYPEo`K3*jeJNq6_q4A>^r{#Oa48ruaEQkX64QladU3pJ;R?jn!UP|SC{b;Q;sYrk3 zR1Tz&ql@FeOS=G)%ib^+EuT@!E{kB#3kaB;ehzTIZg~vANG3UUiG;6WBVG1U-3SMU zE1Kx!(&A5PS1m0niweBLrtq>B8cHKECddF8XM98fXvMB6_vcs%1zq@E3@Ua=PSsu7DM9Th5`u-*CG{ExQKgD44aQK_KV4?HX<{@fHpwzY#=s9E7swWqg@ z9{rX&j%<8X8zEfz)g#h#wNQ0+Ztc`9PTjhtcN1}c>WF7DXS~$AENaW>hOZ|*v}@-o z!E|g@eP{w9&BEtuHjgS_T21;4mhKMhF8ECo1^Wc!c$TFGG5Nh%S}1rU-A1xyH9^1^ z2P9_;CrKqd5}d~H5eO`$c*V15i1v>s7j= zb!FtGH#U-G=Xm7!-sN}e{nnMV!7ET{A3Ax8sL$;bKxmZP(klvsNCnd)L=+1|o>ci` zMm#sruAgFc6Th8HDI*9^Kwq^5t*P97qg5ACDA3&ZE+~vRBj4L!(?8SQ8}5 zghvb2oGHXg)Azn8idNjX1-f-A*)gSt_<^lYT&lqN*0U@9{D zp2+fZ&|D10)zrwr6JoP+6NU@Y) zi*!RW-V%sKzn2HKeVs+-X?YP|rQS&9`>b%CA|PZ2q=S)>p{d7cKG^Z&=3O0kpX6^o zfeTK!VhM4t2g!S7*fr&OQC zGzH04%&p9$>?)Rz&|N==(Lg1^SIC`}W5+`(7o`YM(8`9OfoX~KWP}2OqJ8re2Bg^t zDAvqbe@Px3ap>*i81X05TSRj>?gkS806DeEawqGST62YxO#O7j>ur zllaE62!B;GLv_)W(K>{^w4b9kI~?8ffurC|B;Qyyc5Lx64$3t8puGQ;?3BXuWAine zSrIT5g355O_vNj51jnKzm(I}2BlxEP3Y04P?s&CyL=SXr(B@H)h`87weC&|t1qRAc zItFHBl6KNkc6UD&(2B8G4)jVuORB{=8CRqG>dWBL62*Y(EfkCudGl&fKciWf3suyx zfSpi=T0$|1kVUfE-0aa>{koBGlDJJmE{n%hMfeVFg}Nh#bUjQ?F}TfyGb81t>zVpZ zBByEn=pqstG!E;NVCLnedy@uWz(0XtgN=~&b~L5F9 z7mCu{H3{%h@P_DxE4dN&>u9kxeiVhT+|2WpHq{v0p;ktwbhp#Ry@8GeFQ&2$DlW0kKhA78oC-`VANbQ+SQ*N<)5RJ)FCs1o|7ogxqW zkFsTc{uvK*tBm&^;CdP3#N%`~u!li{A*;5>K32Kl9!wm+n6PVDnzdRrQ0az?66aJg zMpNYnr&et3JK`m@mqQ*m5R2R(l64w?o(%^ivi??fa_r6xfU5??n%OiV&r z9UT#lCLELFOClK5?;^vYwgilPEel>omJ|0)w-CfB&%I=)tyBEOZ~2ttd^$#bY=u1= zDqpel0Ple(#7}n7Fc!Wumw`F(9>_=-fkxy0*8Dwsunixt;l@#l+uEGR}h)_YlyytLKy8?bhUAydyMEr4MVC@KsZJL zSgHzjELO(lQMivY(t91E#H*L=m>GEa#cfH}tK@fJ0;Sb-YjfLP*GLk#5sGs|41zXU z(p=Cy)3J}w?eT_O??&oYC3PVA(tH=;_E@ZpN#3Tr2)o71VawvQwkLYu*K> zJ{`H8eXdDk0usgmA8b>W;*D3)RC&Cq5*J350J~3W9bTKYacr=CY~yV zLo@@%2n}y(1$H{rA8~b1Ba+dC3X+Mu@$^Y@$WU7<{LI}Y*&E-{W>&KNY1=6#CCe#f z6~i0G4B6)ZOABcN;>G6)fsittt`WH0oWIRG$GE_|C>h>wLh z2BcD*CP%mrnT-#d*$T_ISPq%RCdaaBVF5AiJ-h5olE0&Ya|wx2i#}4FJCstDeF#_r z$K6Z~%YbppiA zpjFIWuv`|Lr$?5gkIR)DEN=KQ#h|hgSRS5sPBxsZxQd64iWy_VKc&vNFvrRqG1Qp) z`>t#4(Tg1_a}v`G_eV(3cm-2huc0%*eLnRt)bPG|-h(Pfr3(^YAFO{kbfR8BRcbHE zGC7%ipv2ixW?H%bpN=9%omYY|JP9Z>u?()V*+4l6veloU(%&GP3g{9QQU6P$ZF^jZ z*h0^5^qUYdIx&VM+)I@Hi=Iq#K7ytbH4#y25aX{nCZe0YxDXmk40TH@oQbQ2Gc-pv zK8L=XEa9{ zMNzPe$}5wm2;vW@Gy4hNT}g5yL-q-pY4?WZsT9tt)Ca{Y*T+W^e^4Ys@9#vV^dB_@=!&xoFCP=DPwbPVPk+{f^R|=QE zMT+s4W^~c2t%`;fHX-t%aT6Fgim7`=2d)HL_2n^PKn@0?BC2grSoI=VV} z#ZAjLK{`1>pq1j-97O|zf}O#u-Vyf&DK}qG?251A=0L?5ipzw=?iMOn-NAPz<+h`) z=82>J({wuy5{L6n>30Z*-8ngv)vbad!<%wsmMJPOSHwgN3`1H1@PG&&0)=V9m@>am zC(Ga@$XKSxn%=?8dmilsP+h~dPAXq(95Bd8kFER^(wk^Q{lso~!n*%$O8V8CE%>^m z?hxY4MiG}4&q+}^(97AZf>h;%Hj zR3bkt;x~ymmj1v83uIOz3W?X0&&|V*0AnQnhWfqSUAau@d;tV2bsUVv+&2GVqua_~ zxs8emvy^SPeBe99ktAJAB=lVhN?0xEaBy6{_#LP-Dt-1Q(!fWwoiw{b%$c)h>Qx>8 z^C`Roa)=D9G5?F@$S&AEBCYkvm|ugB4|VP|e@S?ccbyeB3pl;6q3_t#TMQBHs9$2X zc0MQIll8v(x}1qB8dJArAaz((9*4TXvv^@t=k{PwR{3#HM??E;Ir1$?6jEg!wvadP zd@g`@ulDg2D*ZxhGkpC1_x#1C<#uG zi)vxGqScLPe+=1S)a%xX?-D1$=!NfGBS7#bz}mwP09^_Dun7mYmpTdFuGGzUYF?4l zxHhVpBeVXrEKzR$y-#YCX|Aa<0OvsbQCe3uJExwa+a5A`k0BT7vKHFn_wp6x zAAV*0Ef94i25uFZ`QdjMcgp`={VU!mJ5=>8VY0VTF=&u9NY{b}E0)th($x6V=xUZF zU$-tv0jS#NLj;U&9cl#h@tEmnmCeqpSqd8V^c8YeSI~i0EmQrMru zfFS?-MS6rqpy?j{n~&oQx@3l~bh>^}a)uRYx_jr-Z+)7yPelT)G`^R)FzMh&i^QCR z!He(cz8Y)st=n`43d4;r*%BRNt9s+NnluN@%?51ae5u`7O{& z^(^|Qxc5zIUI^{6Y`Tt(bMvm`$g_psKupH-O-oaJ6|AUZEW}?0{GwDSI{XiEBn{ph zaS*vdIfg5~WL=D*@vd~}9ZuG+3uL*_l#;x{3eAmLNV{hj1UOwf>2=o(pIMCH^H(SM zJd+7SEtvqvt7*e&t}5@3b;BPH#_twO35s_AUF_Ev^)HTLl<_f^|!p;uX^(z+*8lDXu4|jHZzYKv7GjAey5| z#laP#NRl(qdfkB_OQ4Gba1_l&KfT_QC-W{GiiiATGi-^D|!`4mU2@vkm` zy6%m5;Ai>R2QjJf0N}`g=*`pYLE@=V&qGENb^OAGL%t&9xp~#Qqefh0CoB)%

^yzCiYpLMcw2$#{;?{<~@*66^3=r{|2 z$HL?JSW-l?!VGED9{ANltn@28RCcSDMXSvF38oPb9?mS4L^q60dtmB)%9`z@1pgGX z-8nDN%a$G>CcSp72qt9&z*kbb9?W9Fg}Wy+F^irLm|PoA)Va|NSJK-7ieT7_CkSi< z(2dplC6lqn^z5$b@k7k^J%IrRyoQk20(V8DEe%yR0@OBa^zHw8-4W=xzqybC>%_t@ zs3)?8Q~ER3Np&M0??~Eqkcjr8@eV5I@A9IsWtCd8WC5l~*Q8?;@x{wq*1hokCSK)g(WiFuS;X z5UvakDvYS)Faqh4wpk?x0ja;;2rca=ft=1ubXE)r1s3LB1qpGWpt@iclRm*a`~dvY zbACXDYQajHupk^cL76$2(uDAUsQ}tq&RgS1ert7tyZug_Ja0&8Pl#iax9T0rfB*hf zIdQGDgh6gNEdVFd`Fy*`9bf{2EH>5II1T{|5OSYeb4Rdp%UQT4uxS4H-5S|&KZ~@` zMK*z-qOWBZiCE!Y8bvCQb92n-nKGzF=Wtb;IUOw5o!vF~hO(b4AxVv>KLp&3xEZXn z3_N~)cxtVUm}!20y6L4&?YwGC9>3VOluzxrHP}%(=DPDK!^Qn*{*KfWi22-a;y*KIX#`6Uw|LD8gxq2Kx)On>0(uX)~VF2CigolH)sSRMMNu`*A0dp7q{-& z-P|8kko9q5ZEcXBGNiPBR8T_$*rc@(aPqdArR;F-3ksB12@p5XJM~guDL^-~MP_q} zzp)LpP9~8DvRSv%VO6Nth$t;rdTjxEgXjv@==3>wHqRD@;sCQvlv7#C!4hD9L2dJ1 zsKJE$Y$&GqpDyPa2^!L2p>`70p$7wa2^6ZJ0OtOQcH+hWEEM#af1gZb_)Wnizx(5= zaBMcQR_`Vbp3>!@IoQT{_8DaCkcLcYj_);J>jzZ+lhr=qM_A$ZOyPBj$}o}}3CU_S zWc1-B-|3CKga9y4A40McDLtWbFa|&B3ITa3zJQvLYL4O5k|Q2{T-bZVd-NIzSY*fT zN|oQl*2~;8lNv9}@;}))`{5YB*`i4u0VTJfnTVIgd@-eDgH-*?Sl-f2heDZb2#sUD zk+2>y$_?guZzl$%Q6YiDlmwCGmMIH@MOLJL%0zMSrvT1*u}kUYhnzpeBW+5$MOy@m zIN{9qPcCYMW*Um?s5o-X*R+&)Tm`R6NAp~hRG?bkZTO8Ku+DbF)?DS;26Js=CS#qEaOR*!Jo_^&^|$lecOe!;PM3)|gi_`#6wfM7oq{(H_Nz}UwzQ$XqZKFBY$Q17DQsKqFl#0){6|n~~RilCM9)*U;pvjJf zA*eVdBt8v3v8w_>U~`MtLUF!YOz^PDk+%OhfdNr3zyPQy*|Z&X6Dqo4jiSQE@^NTY zPEP4&{GM>qn2@C2eqQw(mr~|hH)2>R903naQ%uNFgX$=F);EtTruV9Q!>018M|!MN z@Z@alB$m`>TdOy75SUH(Ab`9O5WM!@IG#)q9+(ogFAx~ID4(EUCj@XiCNU5PFUWmQ z2B5(Q84QAJ){zJK+we^|-S2HaW^$XOAh$P9jdhLaw_j|-#~lUcTL~?y1)vwO&bi&b zLt%z&NZ%7DS5i)i!Y=(^Cm1@2FZz&>pZxj-Nut&}Va109Mnh4Bej*eLN*Ad9c2sLf znduZpbDQ0}4esAq*&bbix+;(vU1<_S1Flr0-rK8JBv+3zq>x4-G9so=<6WNCVC!e( zl+va~ynGS-+06s?i~`ZN!W3EiD%^g?ub64eHKICutWyuRZ2&D*iaGI5gEJ(4vz(@u z>qhfU+~yaG)Zw#O^N9|LZe1a&+BrM6#%nAYPb7ln?h@aP2|3S@n;=#?ZX12gK904ze z0Ol(bAt;PL9rNg~1Bnlag`XE{fk%NCBeDShdk%;~XPu~heTMt43sX%7fC1FSZd%kG z;pQEsaZr+%4egD^RNS?sP|H@(V2MM_~%)qsNVKH#q|Ec=iki=-q<9Kju zsQh1|5_px9DD>Aq3pKCB%G@%#LCz;u3%4Y<+26Cm6_eNs!kF=SG3TYZ3O!AK zYR6}YnAX)GCg>b~Z=C38fO5^Xp~9L`#6nO-v`G-~xme^M{7X26&)daGcIg-){JC^I zR=}7E>{_%X6qX0MMGY^y4l9!ns!k{zk2a!-%huClX{-}(ESWpBM>GKrk+EG5Ip$hR)SzZ#fJuKpHc5ZT{_pULorI zA8F>Buj3ZgU|^P53zSJ*q4Xae&Q#-Qyu1G5JiRenrg-{Wf4hHaDD6$_kV3*Z9m7)2 zixjBoienG-H+s!^TBNT%^lc-BFx#nJ^TUS*mZvkO5?c=GxC(9#vmLZqNLZ5870<{= zZ>}xvv|SfiyC1TCHtsY zHY&nkR&y*fhDf4`|A0It8ex+P#8J^%2pI|OjjdsLd0`l2&Fm~(ED2dyIFbgIsR7zD z&RgQhy;mCdP-<|dyK!4I+YxZ-X`*56uR64tx zL;9qMxU8MP%o+L$q}0iXC=~|+1xXhx$G)#a zd-^{nUazmL6q;t$oHO9)8&^#ncL4g*f0J_zrAtj~r#u-yKWS4cAx#$}2m*aveeVxx zZFTZ!0dWF-o~{>uKeyM9ykYixdfi#MJsF*OIR@E!z5GA6pG$3La3OK^(YhP*A*Lo*{oxcaCtO)j#VQxK>d$YH8 zSuF&rzrcz16iHeuoHb5J)&MjXZNx$H{4Zg}i{kg)%U2t($1!LK=m9vCK&1h!TuEBk zl4a9gUeA9xnYsgM^$~$mY@YQZX(+O=a;UuYXFeFl(%BYcU z=m1&I5bA!$Q-(pi<+|{qW!Y**1iwlg4&gw14DHOk%o0{|Mp=~u2!Nc*(s&>x{BA2= zDyobQ!E=>wQYI9NM=~LovOX|pfh!TLY@AXjCFucZj>MI#N(eQ@D!33h>GHmbFju3X zHXzi=E@=}u?hM)e5;)4pIZ*YLnT<-w(3q`$TX9Rb{AUwF5wYh(q8NniO20CVMBJpf zjYb-;d=}Ad*dXz$A0RAzZukX-*l#_MPGTX7A#22$*tox+=(ZffHKO~$GRGzuA3{Tf z3}g!76)uhEDRiy$c9lnFRvdEfuEb_H`C-GfM{5q0EFT%5D93p4l2r1tyW%Wx7BfJT3y5LNE60^@B(SU8!&IPtNv!*KGu0NeL7S* z%|~8a%S)NrfB-?i_OVk9F>a7-H?G!UUAgM>G|{6uyV;qUW~B>uA~QVz)!8q4t%7E$ zGEuNKzJH&7V~CcU>uD{eY$#Q<J0xUwpo>%2E$pA(@nCevT=S1D$}grq7c9s@ z8+n3QNWaW21ONkOM1#4)Eu|=Q02Z8Rvp61O$R89)%-K#vKk2BOObD3+1@Qp9;M+b9 zJ7N_b)quI9nv4O`1cVVL4Gd+TlMz6y z;V45+_skf$g!;yrSfgDi?bRYbnRH5Yp0yuo>&jh=7yrW!))leq*AEDcq`AYvyFu~A5-<1SrI&Q~x}{Ijd{n5;*dLT+?n3Co~T1rk|+ zKX0FuOH&beL>w&OM!@Y?xsQX}y@dv(#8&{03|b{ND;a>)U@_8bIB76oIjVJmcxu*YlKiufa&xG&dn8S9G=uVxg3yyI z-;YNsgbMrvjtAY4VwhUZX$!}3X|fBgisounWdRLo8q{%MWpx^EbNd8!%52D!=0Xy;dX(*w z^Q6CHc}5?nOHNv?`I()cP0x3dq%1SF(WkL!Tb4o&$dPiR!>JOHJ7I@fI}xhF)&qjI zY8NdEY+&U3(2nd2q*7_k6!?ts)URrufCkP`3>jhJSy#-9GiWAGQ8P5W>nPSwNjdVa zv48!#0wwX7?XA(LopP%Wfz!w~p^5p!oHCQOZ6|9B$O4Rr`jJQ;6k zu||lF5f zLN?$$u+pD@CXc#fV3ttmVUr2iqe0jG@BWeZ3{zb{y0VZjpS6TsjUrg;*OUA@HLU6<1bSFgpaUKYq24GU(EZhGqC9zYL)CPe68pZ{d z$D>b)n#+&44bZbd5;Vj3nE!qG2AJu5J**PzMeeTnLGUm$i%aG9Tp;PKVBkyMW;7dd z->Q9Z)_o2#_~?IGJMjHoa|Qm060G&2HEpe}o7`0BaQl~K?b%jdD*%s9O>k$eQs1K5 z%anvu`A2n1=~py-zZh{H)f3UMmN!uBrP$X#_*}vk0=Q7)^e6mmY5ali2B1OfU0&5n zr*S((tM!G3$fkPdV<5u)2Uj6@vB$wPSOE{BvZUFNSUZNdOrKy>l;A}<-~pi0VnCmt zcHz~dS$*^4-_a({{iUO|1*^T|$q#4j+0sc(uoE`<-$%jmVv`UG0h~R%${s{(VqnJE zKxcr(-%SU`^`LksI{e050r)!L91F%E*RcM2Fi)DaZ}dc(Yj}2N^9L&FGphK$VFeoY zZP|V2vCjJQ-~8Ha^h@Y<4WtyIvYZZjb#XLJ->bfB1 zNOD&37R2|WiVuf>S`{Y}Y*PjtR??ao4cw^+Q(~**cAmg3!U)T8#l!T@!7BK2Rv>Oc;cWB@QX{) zR4t<&78;M{X_&0S{ju9!Z1)glk8``BHjRTxy%3b-jn1q-fOMTY$1P-PpqActhtiBw ztENj;$6$_@o!%GP<;z`GX^Z+`KH8U^(r#ABq}cAZ`kIu4m?I+ShiNB2nWV0)E7O2z zgqQ8Wl{L%VwRwtBbkD6gEyO^Dm61V(K5W6DU$o1V_`etLy+7vq%N!_g_pf6pCKv50 zHd&xzQzx+*fb{#}cK&&r!nPUmA2LZV1n?0T2cjksRi=fZ(-gk9DxEGkob2fk&`20y zk=2O!*iO4YFH(H5lGCjx&ky`qjy`#^+yh7P`w8!hYGw3#pi!=j4-Pt99#WSoDog5a z#cd>|q24P;d_pGf3jTN8^Lz);x%RbvMf(!s*EWd@fSo_h7FO$>Qd^VFqc<%n7xY`Z zuUsZZ&92Ns5Y1W}P^OJyfvpX>(Jt$flF<9XPLr?gsO);~RAdM`Fl}eH)kuh8vc8$7 zzp8<6m<)kAE(`nPYy(gA=RPc}aMRY@@KAIv21|tG%0jQbD+J;f4TZ!^(9iSC?L6{%v<@=sEQ zFoPHS+ee5c6?Ai0i=tiZFllaOw?F~6cHS3u0P(`O&Culr)b~z(h9pKfbEQH3D49Xy zahzi!CcJ-~sea2B#_!@sif-b+_%D60Qr#Z_9M69E@ju-v4yt`q| zmwf;ztr_77ws|=^kG7TMLqz(Su~?%Qf_PB6R2bkQUUA&}-i%n?{km`)5@0={KJ(?l zfNyq3RJn>^1mj1bfe!4(xEvXE)E5>H&;%t|Bt@aQ0e!NmJ>^HeG$AVc2&~{>1M!Nj zT?q6CQliUXM1rMbM!P%cuEv8r*)Uzs6%TJ$M&+`x)*6OTs6>A#X&Z`+sz5;O0ET735XPE*Jq)#t)RTWvS7^}g!dNt_-j(VY zhY{68k&FWK;_CUIe-C=YD*<-R9>7UbqCH)`+r#^?&Lq&w;g1v^7pI!w(d-hU4&Voh zQ$=3z8%jN)tl3w7RaAbODnMeaou&M>W~MBw%uac$kr)0vm2zpk6`!lIsrq_nB3nP2 z12U0icOMS0{j+|-h%SO9Re$rELF#hZ>aN?r>;IW76 zW9<02$~h;7QjUdc!_tXwk(5n3#sva^MIdKhgfLNMukRyGfT`nc+#jUPNRyVh+ zr!V^pVBzmemz~u=;>q!OJK9naNtzg`db^ut*!_MVno=3sfBor7v)@@uv#_5VyMKK= zbaHyNJLKo-kC2vPK3IUIMGhJM(WIQo1^Us9F1fZ$7AsmYS5 zywz2$RE1{2R!Olo+1_^+P>yrSv=VkSOl2MfND$AoI|Z$BLiNg^B^5Qu%Z+YFslhp? z4!XnH{j4z%%P1zmSa<%FHHp`fZt?#Q(tCmQlPYO}zTYTc{0AdfqdoApP^2Q_^>9;$ zgp_xO8X^wjEBqt4Ir)bj?vp1VMn%9vr6VRltZl3@1I_rHqP0#H2T23a6(KA&F=iA1 z!SR?jlPWObaI{xuk=j&zS=rxCfs#hg;m-Mu$Ru>8ld9~QyE#7ZlHx2LA2(3`RxDo4 zB6t39;!f?Ear6qm7pSbd^%+r7$^N&SY+BLk*qDjH%%RB}Vs(PZcxn(4>NQ8g_OgVc z1Yzl8)~9@N%1LHc=AwM36vPpd75;sIWnkp!Ak853p*>melsY@uK3rJxDP=JizBNx5 zzD(@FD>rq+8O4W~^A399V2(t_QbO+i&FhhX6?W0@S zB_IBs>8HxyVeE3R7+0+Wi#|90EcCyO4S@;AkICdG#@g*QK?x|R%i5Y*Yv8zm4W2pW zOtY6!JBZg@Dis8(wRUoa$Co;Hckn?Ebdv($2*hd*dqPFzaQcPM^JsUnOBGa58*$)! zxBIAa?#N_|=9EZnG!Yv^C>CejW`$H|P`7OB9kEw9C{mY12J=|uxbgNuy}8t=J~fYt zL@}jzV0G*JLf!rON=>@Q4(~>Qwz{VpJ;v=V{(E*E^<2P7OWWRlV8uMqn8no03T_G6 zQOmj<$6HAXolkS8a7M-B$0lFB<-=itt{RT+E<%$@?t$&bz#;7~Q==OJWT;2{>RFzdJOtcGICW5%(VuOR9U>G^xhPU=s!bi0yUy2?$r120`Iz zBq&+&C0(tWVKoaOT6n{v-TYijMkxf?NO9wzjmq>uD8f)M8e40cAKp+<-DJcsC4Xrr z6p;cWw1W;Tk%QB__edcCsuKasrdR`(Fj7f~G}XkfB&w%uI*=IRlh1P?tP+!GGxhQh zprEb+rXtBTp{|tDy6yJY%c`cjQcXReDUEpI3(yrl77U7VZ%8zBJ!CxV)#Utni^^RY)r`p744|lkBuhlzJ=w zOhtE`dFQ=m4v8p8ke(%APkZm=$#ZxpAg6fIrimpOtbjfI?;L#K6}D4#bnzl9Sh;#? zNtP=b3Azf^5uOGBJ|HXS>+S`axfiUh^{-(BB0meFZ6+ahy|Y9FY-F;dAFk`!$7N}_ z5{4|`Y9=<{j&o$fv2)scTI9m}Ac+0`v*urJ_MJW2^6NfQr zz2Jl7`mpclLUKEfQEYhlOQ0Q9B+N$O%F5OYaZX?r)KK*Z0auGniVdohV;gq6)gg)F zK9V+q9LzXoC#QvWd7(u>f*9k%^jJP7iH31gJFqeR*!5LzCsLRtwyNseH$VSM&*9$+M)Ltd?a^NY}+!{u$t3k)u zcP1(=!93kU!1$%R|A2t#%JPiB?`x)l-A;vlbMLsXN=BP)s&vN9?mjwwzz0pmR1?&N zTKWP(PRUFij31GdW{P5pm`eeFcU>A*;J=@t&W3Og zV8CMb>h5&l;A|%OSK6uP%Wa!W>5#$3s0$VFVJ z^ri#Q);`SjJF;947%I)&>A@)EgrW0=N#Z!Tl-*7Z+WUb8Ed4v^4nmSPGy|wm3@2Wt z5p)w{=(b$55s@51#6w*I%a=ooAL^TMW=m^;{E1b81FqF z2G$-I;;QY$Zx6#bDC$e$roQ9R_?%hN{CdZ>7HKNrN8sm0x!b6%t-m?Q@l7NN+M5A@ zbdK`9VVaFdaI}|0Y-pLpt8!MWtC=n{FN0y_Y6BH>!$2z#U z!-T>&N0}__c!GQ_kOkvVd%AM3l6GLuPs1?>-=-oI6;+AP{Vf?!KYy#@lv)LdJg~g? z$$VjKf0I(7F*`0o`CUP4)t~uv7Jz_|v1%C-Z=XJ2Bd1s8B z_UwZ_s=?SW@z%ORM+PSsGfgBXcbJ-KSFC9{&=E$TxJ{qZAm!WDM4= zUjoogkcaP4GcrmVYgxZ%rI!Fy0R}&~=TQwXSHhdj@{y>t^y3+iOzW^rs>y}*0rFH) zl^zNaPnJ^p{vfUga1OKmUw<-#xW6?-_<7?d;-tWl9`s-7@zy&IY#G~)P{5bA9MJJO zFn90Sm3~6oA~rd=g45}h5GDum#(06uFbxVI_xJsVnFeY9pqQi2J1qfVSP&w#{$%qT zP7cRrnGTh4{Gl1F_kdb`7yvZ-gDKq%#fv9DoW_BL=dk_ZnQyd0Xbz6z9kwdTh;>aD z1}4GoU&lrH5mV?rUpk?gFPdo>O(bcrZHVUBr9x7uPcrY5F3P#KVntF~><<=w`Qv-t zTAEexr0ltkLo$ z_dc(OyAQlU(El^@@JPhq$>y+X@I1Yd_g4pjA+Efy)mANRL*3J*+b^DA*FvXlt3ESC zfRBrn-_w}b8S@2U^Jzs13#*zakgf1!Q&w==TpVU@5u6OLRXtRdkF~Atz+wV0TX+u6 zxPvx8Un;RJ5$K`vIrysoT|?~U*?JCMb1QjRWB^gvJY|pW8hS#%Jwx))nU3l*4zS>; zY`J4uGdsIwps*qE#4~}CO1O_M6$Z!4d;>iJu35iZ&nnp2Cuf^$qq;9BnTgYkmFlYMG;PwAB=dRyv*&NUGC7vwKHc~yY@a*5!^ zI#p<$^6jHGl_1g-L##gPC{1q6ivUFblb>xqnX<&%(hP8=;I+wXD1BMORjc@yD<}U8 zS$|ck{6DmW$^)5Ry0QBLv!pA`N z>>L%@+5fwmkl$i_e|fh&n+J65aa|L8Y~8&;<`f0|({5Yi+Wwn|(Cc#!qYObpJ0?uo zpLvi!4Ba9b%P&0QJxsN#>{XFHj zW)U2@WqRzl@=&i>M?GM&4zR`}8XbtPz)av?yiZi5uwXhOMqYQi30WkNhlwVRi81?) zLkW+KDHDp{uPZ@v2HX$!)h{6uTQicthIJXy76+2CU=l^5sj%?^gTf58$#4=%QyYpI zk92%hJl1=JAq9MAKw(vL&4?g9YM2&)9!3i;gR}3eH(My=VJ{F;jn$wZB47Xu{3c#3kgq#eDqgk|sSYWZ@ z_n{buEGH#qAP%YR95Rw1(y&UC?Om{j!ID}|4G6voY)NC@>L4tzuS2~&Q76I-`*{UX zFVh96KB(iazc(f{04tKJ$}&t1oi=C8$8e%(5Jc1wY%>V@t1r_Z1?yzGljaS0;*IOxwl;*7nLNkZbxTo+n2N3oXfOQm$w@6|TrbTKVZP+9W zQRD!u5QR%4=zXABE>c{Kdu4<@lzfzdauiv*=S&iUL#Zd_8i77+i4q*dYHmWrCBduA z^&s}F$^i%#sMcLr*)*jbBw=jnQTR36%Oj!6fmuBTXIAu%5cdOB>16a#GXkiVj*X#O{&J&ANiwEGx`t^83G zD@jk_dV8L3ti8m!2eUL#O+G39ZtS-Rzza}6&0GJIFhhRnpa#(A?9PG3;~Gab zNlZw4s%kD#c;Yj#z4Tx^&Y>F4!kHYY>G#`}f2uJA_;|VQu{dqI<1)D;DC!+L%*D{m z21~bE@<`^oR;OmOM#W5AZQ7E^ z9qHEtf(w*vUg8Cy<_t$XI^xsx%#139iFC61u=H8s@au;h6Ryf063P4;Ap`(u-!J&8 z%c=JO7)_yML4&{kB3w4ak1C7znLd&KB%|!o=0?$TY^{}Ae1+qJ)}g^-dSG5lPj%B|uinw7ELp-XzFT`bJhxM8 z`>cDQajcc1Vz#2(9u!BYT4tJe(kC%Odz~nVZLz#msP&3|1U3^PZ!ITPBJDW2Twi7Z z&o`S+?Do9G*qe>*QVCb=NYMLKF~Om(K^m_}`0MdIHJ=qP%7?Xojc>;akeM5Z=!uW?a(|0$_U7d?re)w^E< zBDKHC(1;27u)>l~!FDB@Eikz-im$`~^%92S$dw1upHv7AlK91`f0ogAjqsI?#j;6S z_{$CdTx235f-sQgLu%QbZR6pj4W~NXFvRmIO!I_h(noT>z7+q`?9UpG-f$keVxf8- zpt!g4QLP5s^Ew($m6FRAocG-dsRUKIY8VO|OWWSm3W0fLQPD~=Dcea*-OfsLJ15FM zZFc*kZPZMr*(v=xU;g9leKan)(fa`0@qM02IkCt-)$HCphwNV5lMkfq^t=bR{y^#r z#IgL(Z~@_9Ni*^SMrpE*c!h==q*;1P!}td(cor-Ee;0L}O+iU8z`!j{vB}?XU}H!3 zY)P9wynooa{=XW*%*dFw;QXH`TB9{#ha-X5^F;HRuA8a1qSgZx8Xy{K3<`}X%1_GV zV|Xkis7a2OD4f_gS5<&Ii*is-uihmu zpW--8zj9a}PqVOJ3naaw7K=i?u#)_siVF_X4TOyPPufWocnFo39A{h{P!P%UYLb*f zl*R<4_Dy>50>h>4DZGNulAA?OR&it)2igpWL_r;Uqj?j$&TyDF5ZRNAt758a*1vhy zFC~dG3cs*Vd=S2n9%vE+PSIYJj$neFy?(n-JRq%@!m%u0v~h)pC+23|D{bz>4@Imb`h1Qk?avvgyERTz#Pu|vg(qMC_D zp+z?FLN3f8;v@(tUrtTeQ`Q*-^W5-AAS&HgBF7zIP3Kc1(e^f;0%4dK2#0`@ zO^HFLHz}d0)0Zm+*l$BFf*5>_$N_$C+*z{L3{f=0xwQ?De9!&;@i2p`pk(^?`&h9-w8V7*~eCmjn1(G3vofB&<&3 zDtHI?L+hu4EW4B13Jd0+&sH8^OE=mP>^`5e{&M*4eK$D*{#||k?$yELPygDGFVURu z(6aw+cd1{aSTe|bdGvGLs@}4k-~FukV9oRG`yTUUj8=a!H?N0h{|a9)rwOlzY77Ci zY0?rsh~RX}lELb2nb^hgWH!G~JfHr?$$9@A`8;?s|M+!$E>~|N4UJuFU36Wb(KC+4 zl^)TNhvgpvK%d|13aM zR;GaisI3|Bd*TMn2A0`^u%K3S8zlnfsmV|B-)bHXeLC*186rV^`2@}4Yg+N+YeD(jGRGtW=+Q&)0%Oe_s%3CNAcYtuum(mjD#`}pm`EZe5|{|n50;F@ z5eY!@Aas1=l^P3-AG!kbwkN4y5&v|eMWzb^=BhzsJJsfrxO;s{DGG%5UP!CT=I)Cr zuC#IlQgQjN1tU3wR|4xXA?hu|eRObwe3(hwYo6yl(}RL#K@CUlDcwjWD?&d@cO9_1%X8rjBB`MELls` z<96MEqNSPp;lVyKT(Z&2ACYLESyPh%TVPTlKKw;VH(g!~4$qO@`iqw#$@D|@iPJB{ zm&5H6Ig%Kok(m08S|`D?Q>~);f?Wzp)e_BiLOr8Cg;d@Do?uyR_2=DmnH)dC<1{^{Cm1ryCsjQ8$6Y1z$fHQ+uF3xlZD8u_A&gw=yR?k!``*&gCVu$FJetJmAS#_QZml~V*;~CuLgTe zG?}TBVfFjU4=)abZx>f**O`E!S_S^s3lpElD6?YMzlF}E!{@-&H~NDl&Z3wJOY4yM z1`A>*VUQu29j5iq=_LRmm)xTO~*9dNF0$j`SQ)ekW-RHQ$R-PAr*XH(ADV zyZnoUZ0|PPU}DnTBQqO%=Dts^t=b&8l()<*0!61&yuD3a{%Xh3Ug5TS)nYs?b6MdR z7m9QnplQ)!^>KdZ`DVJ1$TwRq9_BnwE(AqQ(C+jvFgGf7{83(HH_8n56ysY8_B!yt zpuHx_JpU60Fu0ihH;1yY{wLD^cfw0LD3}7UoPj&({66B)e=l$iH4DO7aD^!pU&sC0 zQJezf6)Jjb0~nL|`#Rr`K!*4T32CI1q*J7%VIsuXb@aYJc_vTqufO2X;P87`NHnmN zz)j%j(>A7}@~TmVD>FNw=sA(#<+v=8Xe2VGN#TUnuhTJ5)lI=iV}Dn)5vH7Up#}j> zx`SSe{93vap6ckL=`&6gPZZ`L`!R%^D&Wd?=G(iRrDg*GYJ6_9|Jh;f4<-j49p5=g z>8zxZa=>PyPl9ogG@#UsR0!Ck30X9T95m11o6eMHrjILTu^}$myt%23fyudtPBs$I z$kcFe9@%d;Beyp{aS|lnE?ZWCLaCBOd&n~=|JxaQK4x71s0TNTF zq9lF}T)cakc#r-hN+LrxW$*1L_$t$!pCESweP&1UH zSpX6NY0t(ttL+#Krf{*sxZ1L5dSdT5HoD~)W%Kr=@&}j)ClZVzmg}Nsz=pnGJH=Z6 zze&a7ys~6jbpK9#gUSl~V^Dxr;;D~L6wa(SttaR!A;na?KN>L>9p#O2ZySbvZx2|v z-bRfVGN&>h9>l%ki`V*J1O3+LY{+V#7fgngs4cs%oy}yGQCPu~?DL)qyAa}4SXLy# zXjoU(B2>frJ3{Xpht=Hz9ZxhhG9U`zcCb#cA#cj0tZMno1)I!%!BN1w$+j-@D)cW>?RU(}W3bz3E00UD>QmBay2-mR;&*7gFyU%e zQGf`i1MBJb9{Q?Ea@QKBRSk=Dp*WB7^b1vvLZTc9OIl~zdcmbzg zQ1V_WU4Z&*eU6Ouoek&qCc}PO^FK}F{ht2>}mu>pBkvgoOpLk zr)YlcLpCOh32%f&ns5;1O;8XWP&^ZVMgbo3F!s(O6t^I^5FDx$8d5`rrwYJ&poj=H z3m9X{Ft1D*c^d@j{;mmq3ab&BE$SiNHV=x?gD+6 zc0=E<`UK8HEkw9~(C^nk7nMN$o!1}T@Ej4p!l?k*7&zuk!D4P@76^R@K zlp!fFg$D?iEjXz~z7MYd1hj3t5<4U^65Dk&!s1cU*B=*Y-ul(X8Ff&tI{5X*JBbd( z-~uc9-)9ee$_=lQ|~M#AssGm0m9ULKp~OonsX$oiAVHvk;QNUWhn6P}?5d@>bLL6&fZrw|lh zb@oOZB>|@>q6)k5paI zJ>YR!=-qN;`NApyYW|Q2e#1;IiOrd5f_9J_7g#6 zm;F4{(o+Y&Ri&f|6e;G9Hau!>5nfRK1%Ot61Y81Emb)HmOienq27jihY$C44J_nj; z_? z$(t4SBdstTyElm90M3Y;?S3y!0|`k_1nERNH0; zu6mIMyCw3hcYXiqWsC=n*e_+21&krt3@}~m^>j7d$*aBYRPHgFHO+h`mQUE}=nduw zFmPq5Zgp<1WW89p-JjMxI7HdDY}xdM%j9L4$P3mKa>aaM{<$0${TGozKn-^Gu*N67 zT2_G5I+Yxkqrh6F+D#2I0mpkqDhWqiZWgM%pt)qmihhc4`Uf7g@`ZYX6oA&f_R!{` z!%Kr0Eizi-2}8#hvU>D_L#sWMS-BV$qrTy;EraFbkIr!YQmwrO8}4B^Y}dtv&D)pP z0sQ73b@gS&c#0epT8Hke=*w{)_ch61>Hczf3+wINr8(%|@zc1~K8N#`^kM9)amPw_ zcN3%5vbEYYqIX~@nu)RC1eliHYiC3KGO2HRA^fU_oaG>`# z_Cba*7zI~^xJ;07Mr1%ZS+)Homtd>HZew`1G3+t_Gq zHMVU#X(o0W8;xz7jcwbu_3yolck|xW%;NW%<;&@r%Vd31=-8j1s};Rd~G@K(f2K9D6fdUtTA7t5?uSE_|!}`w=v4GH5}LF3%5a z>dTg@FCHGS2JO`*SnRF|`ScmqudN>3G_MRMdGEUT!Omx8fK6)$lK{3x{e6&0TSs?g zYnQxdn2zlb(CY5UNqmE%dBYl_&J{ascelT0 zKRDl5@3fipJ2us1B&Ied4t-CsGVsQA|8g*ezWC8Bvx*$-pP=Eign+EndB5m=If9@F zK`fylVOKP80Tqmgky|Kc6Sjm7?JNA&+1}r0IFUT6x;xuT&0lw-KeVdNWemDMjNB?1 z@o--Xcz>|XbpG}`J?TU`x$3IX#gk2!L|6JTt>eaHpZqH4G!-EK9G##DdWnfS%|wS% zSz@41OAz{dPXHtbCB?(#KJpJQ6S;$(V4m$5h0my=GFCnnjIP^7OwEAuGig98eXL zY0_5hxgQ=*N0U6x^

}S3+blL+Y30e8OR7M9iLl!IavKxGkar2BN zm^>DR3{X7dBbQVu_0UIXdT#@#&>F{Pn>`tU`;B0R?t~;#9oi;%3(7}wg>(xWY}&$K z$4L1Y_|Bp4p*g zru%f5oAKXgI0%yX^?YD&X2HJIqeeD8Z%eR{pEl9BkYBix`E!Q+rkSSUWZ1H4;f1E&23XVo{4|+7eh%X4PN< zNtT11(Q3@WjTg{&k88DB42e)g2RMDj)0E;M(ltd~@&CoZr!BNWWMd!r!|G%?Eth+`2WvP>$@zCjqE z`5*>9ij01z>HG#F5!0APcnxRv@BZ5r_#xj`R48H2V7e-%= zH)u%S5#+BQBw`LB5iSjBF0X&QC{|*h{i-bN4D2wzf}+DT=tad>mA$?_xPJx*hDCni zYAAv2^)(wDwo1O}$1!D)Y%>!A)E1jP9Zc?fPHSju*270pSEp{%pG3|QEXY@Y=POyr zU`guiC{;>r`^zo)QJa{EpO@FuTX=`i0E!Grjm7|Gz$UkMUsau&5ui+f^ntN~!t0gY ze9KiwGSB2H?@aIDddYdAxCP?RLHh_1{DAOf?k-FpS4 zhvd4Q@61Jw0d93_^<)u+7#x5!7Nd1We*?6>8%?J89lDiadii>zRL-$PCl7d0wXC)% z+9R=~;G0>bOQOxvlq?Yvt*(&(3qL8anjXf13oMEVv`{~569UvEIAb}{84FYiWBna} zW>m%PR(AW2V&l#2&*&gkFqI}GBx!xPO_Ytc;v*O?yc|VT9^Oe)EkhurMnY4GhSYKN zx98~hgBbtxS!PdWprWe>F}MabWyi(IR}^Xv8cFgOYHg}>vDR_bA*`p_D6h&mk#xZx zg)#$LpQ+1Fgr~n~%*qW!8a2~U=nM+;29Vx$Vh$gBhmrT1M1t6*+lT+gj)t<|S-HF# z^4c{RkmEh!*h^~B4dehDm=VIg?}VOrzwUYMi73Jq_^VdU7*b>!K?)1u{`J7C?d}r2 z@9__%AhmuEcC4b4LQ$y_Nu}C`jUOnaBJSEg+!JuUs}W|R3@bRpDLb>NIsaHYU>Zle zU2q5gzMQAfb6JQs6bOM={@353bQyAZ_njxr=$I@UhjXxh$5S7;_Y^29v2-dfVGMqz zaAKT_G;|1bcq7aG0|QN<%yX$PxdTVCO)*LkSQUUt9w`g1NY730qiNT#E`UQ2<_F&-YiFd z{?1ncWCYblhQb^;pc_$%4APt#&uj4y!|9?g{i(bnPbKo+A`PdWP}0^v z?1XR9j8cTf%Exj-Mkm{*159C^)vhF>aS(qoJOlL>Via*dz+HGI6kZ(5Dt z>?dukwDti@JcaH%Pl9ER6N*V>8?CIbhp|F`CJ5JnYF>I_W zxnnq#ALwcTNZ@QF{1blWpZs&fUXGUwH`<*kd2^JRU9kv`T5pBbJHC_19a{o4K4O0g zq#;ao9Iij^>j%;fd!%$hW73}X*6JA^K`09$IH#r;P&ih&ws%&ueDBW>u)94;W3KC(0i@@Sz%bOQpl1qbKC22dk z)D}nth(EZ#yd-|HpRywxuiYhQG{gf+>sFT`v(~0*+T9P&dEY~&X)3%!mnGyEinum- zg?F+YOGTK~;mN<0PR&ld$PPoYbtn4rq&{=7Nn>KYHq$g~n&ZB0YGCgM*-`6d(v#OM zn{)@j-hhEc(U#-y0&LzA@3yrx_v%k~jz6_3*g@o2*U41pTvads7L$Lsm%x>a9vpkJ z*&8Q#;-{uZM+#imVuHjg)5%HPP4^luVy%ycLnN*_LKkcQxVC@QUAfQ^#b{IJMtJ%T zJKcv7HQnx&%#3ODh^qJVaXFM4LRs?1_R*U-fGHJI2>)%-m?#p`J?L}9MxU76IMU%` z-!##u{)BAb@mX78hw#bx`pK;ddiM%%E(RyRrDvS#x!pcLilOBj3k1ISB8b+fzjsfY&x^CKm7yYeNx#pK&Sghb*V)f znP(E6VEWrWlr$S>Y+Zx=S(^{SmYN=})crpW29bWwMc>Jf5W{b2gum&QE{;Dp;AlY% zIj}&>EQueAP&~PX%Ch{S>rmZSFyAp0$Qm<=@d}>75dP&yC^@>!VLPfsPmM4Szbxw4 zDUSRqZ|P$Sc2{^5LZqr zpCR5Fo6RziP&}A=EjciAS}PS*apSv6H56j$Cr-mva+~#ymbqf`A2&kLSZgO~xENr@ z8cOCiFN+8fjsMWn(n&`gy%t|-Zi7I}0Pb2biH46>#7}%xBlcrT2%(ThO#A-T^T^Nn zmhPo8U6Lw$sdSD+l)(4h%=3#1$awULqIg|KL?WyHWzyM$YGg|#OlEr=*NuamS|xsl zTcsJ#^DxiglLdn86EW=rM7-%SRKs&yi)CcbE_t?3Ka8W8wUq_C4++pdP# z*KON5%gT2P9JsWtuXnADkFC8nD^I?o;?Wm3XS_~~Zb)x`a&>RAAupT)uV$^O8y$L8 zY7_WCBRCktFuU_cr|w1x@A%xh={5u0a^))Fx?*qHhUK5jk{Bz0ztBq#*dO$q7f*VP z^)|@hy~IFHcAZhMVITO>s%C~Y*=iiwth#h-zt8qmqlR~Q77ybyLkXWq5ok=f&9{o~ zU3n0fxtZ<)UOa=Y*F+hst3GpKj0WQAy^>}Qk?>9EtLez3=9*dwOw=TQxxjLi7xX94522}NGhTG<-e2qcq^GLs@9MCUO6;h|M(2A-4?0I@%tX-M$A4LZjnRas1p1ECCxwsa9A)RV2sBO+SxUyqt z5pZAyoDM$9j|`$)2O}u7()I73!?OeV*SPox2~o)uY%%9nB)rZG)Y6;4SDz)eG6zUW zGEXAw&Xyi{8BpoV&cBqtW1(QAMHdeYbTEF<2~t~uQsQ|5FqD>I``L2J69N59xI+(U zp><&UrXYd&65nD0GSn?!kvi@}`D5U55~mso@xfiqu>6E@jT^8{?36kW^)ayma@#`>a!rLZir@^Uj|xoH?u$`4tM`bDDFAqw(a@Y6Kav)&_+~BCR8YH{e9q> zTz|Pr9;hm(!`y27-fx$a5MSJqilQdD6gtcn#7b!WYLrnk0>QS%#G;hWWyj>0KnrFcXccm7 z@DgimxX-awOEvAC^9-!0rY%>axpVaplrZkMm59*+wWfWn%}=|R6+foN*rJh>4tulr zB2#&UpPaU3nf0TcF3@#u_STc*0<4Djzri4`u;tF_XagL@66lMi)-H#pd4wUBX}|P` z4J(%(OzFCL>O7aR&7tcBSq)diCX_Qc<7T?94#C6HbxsDjUXGr~x``-(tJN}$7f)~e zEIu9p>a^WP4|_C%*Us0TRu}1N;up=P{jh!vyx@xkn8J@P5VqH9q9gy?84r>;IFmub z57WW$%(-6vKFkmI&F=I2a17CrFSEBO|-4Nxl|AE zT#pv8KGpy9l5zh67W6zfb5%3xR6)g;#zn^mi1F zn-lB;=9u@c+SA2*n7=*x zlOd_B6sh+m+Ij6y$2{Ni%0umW{PwRwuha3E$^H++@JXlai2Jihh)c0~sb>JS?iXhL zFNaogFFgMifp=Obs+H_9IMFG*4fNR;5S31K=GJ5i!hsXymH2(Bg1&{ppQy)@cL+aG z=fks&d<{(ZB;iR7ge~Il+-2iU&sP79!7cc1%$2PQ$4x5BPe0tuotZz?kzEHOD3;Y-6Y(* z|72yo6Pw?!e*TZDnwh2kqX!lg)VUtIFA5E}R>>9kAE#K@>MQ0EKtY4+TNmz7a2jU0 zF#g9W)|44+Nc4oI!za-1^;1WDD7ZcssCED2ARAjf#WM^jF!Puj*}->f)lWNBGFy&F zo`#m^aeDgp%P}M)bZF>f?rjXw$Cv98X{hZh+M$EutavwLEp%vCKRfbk z;cVmc1_b!JQMzX5d*7pccl=V}yPw;6dD~TP<@@e=r^9gVpfyY=DfuNBl@Vp-3x>XP z+$tsBP?Eh0Y<73^@&U`LS6lpTjXU$w;9NV;LFSn$LqLn~CeiOVUH>ZU_M1PEQ`a1h z9$#HSBEK|ReFLttS(>R7(@=_Z6tTW_fodfBfy8dt#Gc{JQ+_u=jNIrCJ!{`3HrZpE zB^>P)sH6fAb4h8!+zvMhtJEVAfVN zCy<0(k~A7M8vfBfNt5XVj$x`1O(ijbt*@i|eiYCn0N$h~Zib+y!tECozcBGJ;QlqL z&ikCP!2(_PKJvq}I}gv#GS0X8^>No8vOGkaaVh?hI)CAi6XfojNvNnvR0-x3%*;Uj z(@+2zAW21guG{-I+I?=X2nNoQh(s3E|p)gVVHT{futPo zl+ZiComT0`owf}oXi4cx9+$HpAk~^=aIOQ3aPyWB zfGg!P@m5s?GVpbpSE&dJgVt-7&Fo<u>A)jYeCD=q)H;;Wx_6O9DlSQO#H>K zRahzv+=maXOhE}wFAF#S9dUk8Iw6P6W*81h;l7ND1}k!4owhh&SOq;sL_;NqKT$Gp zz^M`>vh7eBeIkkIuxSZXU0zU&)3)IS=*mMxwiMukKSc6Q8F7(UNBGSxO0=oj@xXVW z^QVlfOoE)$g>#;!2L60%e7`~D^;BLK9jO}Pf)X>d|4uWtYAGJ!Q<3eUy8oVlFF}v+ zFAM1DQnuzeR_S0|01;WRk#}kw7!_J9C_BB+FsRQo-&B-*z;7#BVtf}Y4!a=(Km;Bw z5K+up{ivIUgM#mLjcS;vDOI;@TOh3)oXc#pR-G(lnv9|ZNP}Wr(7HpJE1I5_r2TsF zBd3~jB7sXjh({(Bj}jgSB}bY!9PX7$z%etLPk+;}jWRk@hbc)e>IB1Z>qjIO6!6GR zgGyn7d_8M)pe-G`J0MDkPm0C^c2#-7?gWX=X*Qbv;W8!8;0RCn(q7XFZQ`)7>(W)f zgx*eJ!vo7Hgyf1z3cMrrzzBRfQb1STD|!QyPv#d(c=rgC#ZUp${!uqB5}b?InJjNG%l+DD7DPFtq5d1cBUH->M!cFE*(2 zDc9K{K!!v?I-g`&zJ?(Oz8;-KB)c|U!;ANHi}fruITKN3X&XDmymq5X?`Eht)Fi{bS?b$fANtqT-v~L4;T7?cG~C3Zu+L``&0=Cyj;nbmJGr?Z8JGFPeBV zqW%h@6gwh^1{7l65%caIjK@p*{`4Tfb4&I`yvfxrA>UdmE&h}-g*pF4M~H|QEFyI9r%Gd3VIKBo z+h+}i-uXqKk~Lc_8##=_Tga7u)F6&@oei<`Ym{~embvF(ISNNYB_6_SM5xSC!IG8L z=s^pPsBpi7ww8_@fZ{09%fHQ9HVLw%C{ItLQSFUpCL)Pemjq|o->w2ru;mdcBgggVB#GkDjnofQl>6le)A2 z@4`;jUz(0PNi|Tj9@H9yTGhnvGT!>b)~e^58C?idsO=VDMIXaZoYpm}tZ|LgvCDNEH_H!!y;HwU#`xSroUsc{`c^mMLON#OVCUxG4gEhLV7dl6VN zegamqw=O}p5JYI>@tTaY3r9Dm5b;5yf3Mn-_ymAg<;KwfH&T;O2COajnP!P}>OvuV zY~cF<_H8D_XYH-<1PtPLd&?}<*)he;`OQ=aBiEs$&bI(U$AO4DXXLH&X!_$gQc8lj zr?BtPXc7LbusJ@V`01X4FzUnbproq|6&T^(r20|1c;&roiB9Z!+>xO?GX1735o0iEEPQ;ol~!KacPa`= zK&W`~lcUxEP%JYZdAc8Hf$!04>YYh8Gvlyk8-gZz6>v zD1afu{mrFn{ldml*(74PqLyAFIed3#r%<=^J>AA7!=_>;4IlG(B4~cAiMe2{ihl2_ z(PjksaDUu1Nh#K?6H9(oIgi_d-D9?{5K=U+(3Z-D{53#pCZag+;%;7{wIR7O*9dsA zES;e`pr{x{)!4}GileOZ)KJyJRG8hkgp>(Xt*LcFUvNZGEXjR?W8WqZHkGfAC=0*) z#y;H_RP{t8_gcbEW17e8)>knWeHG$N%x~VZoAWKbl9&)9An!*B_7o>lEr4KA+?yZ zys-r$YS$Lr_^rgt)FuM0BX&zTVd9Y=X~@b)Z8vhDA$mMJIZ8PWB@#gD8A0d(jGEH?zJV$MP;ghGii z$!AKH{MU^onG8pnAWEo@Fel~rwOM4MBq3b4jEGrn&MMM~77O@l5cF84Vrh6&}T;LP54U@=7`A#;4h zHrPnKCE%X{Hv#-t5O?dRQ-7)De#my6NH>>K za?V&$rs1-FM;c8@-Vm=(Lu0m0(4S_vQNt_ZPU}1;g-=edRHv)x9iOu6aIsSBe# zIsN;<_LcC9>|&s*8u|;FScF_ay{?q+!e0|cTzP8ERX8e+E;U!sEPWZ~KlF~wR5DlT zh(;^d+hPJPiDSxt4z2+@s?z*Erj09`#nm#GTUjh|%>q8{)Y}YCYFqDbk%p21ZcvzD zmOp!Rj;a^&YS|C^wEDCl%$^Zdu;f=P{Pd{}ij(rGa8^h7@Ho&zd*dU~YeVVe^vniK1?F4E%t2+J> zLHJJl6OMut^KBPMPoUVEHwo(nFmL|%E3f_>DtOSh{^O)Zq#h;dHl!HeF{$-JZ+Qd- zM`g!7DZdpuM7w$O?Fi!+Hs`a!vM@(Yjj~QAO?Pm%?k57)I`i1kq#P2BmelxGR~BSe zLh@*bQQ#blzJH?w2^!8kPCNhbG@Cb-Zv-~PV^UK=Xd5qX)AZpYfrtN$rsB_V_E+Kk zIz0s2IkXfR#3u|3{=IKvs7A6PwUCyz&v6RNguZyhF~Zo>gPy3R**Ms5#eQd`QTlqwbG1JZyk#e`8}?y|6GnsfZf)nps872N zB5;76wz?9t-|6NXzf>v#?SLU!@=g#BlK+YdQxw6 z;XT44$19^G57gO1svW8nL?OS)P^Ur%zK0ngl}icA6(D%B&# z^TzIUW`Q-uC}Fb)&ycA0TqS>yhK6ASXdcZ-Ll@*jm9tJFe)qPA=6temy#-K7ie$SC z2YYjj2l*l?x8dp*T~9i?RyOtNdWxh3Qsb;!V~t$SOOAz1TlyZu4U$W)7(cw`DGq=! zBt*5tM5s`zS`{!pw~pTtxE?ttG=R^{-gz>%65HLGGSO-I_(t1tbRt{~@K{dVx((cKby1J>Q1c)=yS=k5N6wlKOO z>f|?v^75Is>it8d&CQv%<^DtEZIaHGG6jiB!neZ> zo!i}Jn(=ImvUaNAkUJIqiGpeUE7TWAU59DA*&RanCyLC<)i63VtdoUdp=xnpJdQ zm%m#-u@I+pHMQ4$dWL{3k15t9q#Dd+Z;qp%B8V`n+|$!A3{A>d)2r3)mPFV665pZd zfg!qz*ElU;%iNW8v7Tjs(NGOIyd6M-m&dB9e0VkfvsUE=<@>r2&Gjw5#8XK3pr#*j zoFtMqJoB+a0@SV*UdIGs`xANB>El5yVb>{34hAv{!E45RcYsSwXG zvCYo(romivW7L!Jbzy9w(!*vRuVuu?G4g2_?%+E(s2a?I5Mx!9mm??;oXGvqGQ&MB zn*_mg$-o&^^Kkd{w%c#_#NkbDS!z)pIpEHx;b(Dy5H0tukZF`_*qu-w=w7C4D`PettBW1@`H6=g{y49itC; z@beM;At+k^gLFV{F9SgksXqp8ghT{QYxw3*``op#L15412wMUi`R`pPG5X$%;ef{J?XM!FcwwBsD9?O;&dLk>u z13?Vs$-}V(u^{@q`NN}DObg~C{#KO)%Rw0w0~kx3T?8bb7q0FeJffE9bCv5B4HeiG z!T!h(8NXp{J~cQ3UmSXn608rf9PTRFn_)-O5A;15%I`ZcH>X|> zevM1X8f&)(r_p5BVR%f~udpkxwfw;yfp$_# zpK8J)GJA4dF-|4+Z-pVvb;an>+LyUIsy^QmA;7`y$|_MX zELW)(U%*zcuh?;WJ;Nb>_&EsI3u2zJ%)2;FCYHrAtIq3I!Lh|%IuqeM& zRQ9`@1x+i>Q)Qfa<&mvyjT`g$i%yv4zL~7t2xsItSjM*fc^s_M9ltyAn+l?MPy}vh zp+vxxNkO;!nARZFFtmmJj2h%?$&ULXdLpz8A~`TNBU;?T+Kj=eSGh(+fjSd1K_L)P z3octlNSyRMJ;IV^)E$L@p|flmCK8z>Z|H3+`Rb$g@?i zDRSHkmQMu(XP`ce8LmlO%f$2N4jj)F83H4f>&^tgN?It^Vy@RWm1D>w~esp6i_ z5wmMRDwey>GuUi{tLY;2#ZX#*HH=k-W@%Jt_fhoii$+creCOx!dN`p~CzjFy0#mkN z_vw0caUAILti;h=fi_5(Yu&fK808kQ=kmO;?ElM-ufD>qO+AR~7Y@x~(F&U8y zqw0j1g9q1ju9TfoB*KdjxGSS3%rs0erYu)4O(-$Q?M>hUY+$skkZnH>jt+x_#iP2g z@fohL%w*t6`8=HsP$q6>nB7>99i!<9;}z~e`XHL~_*^c6R|5*y$!1X2`Fr-1O>-(; z8g^#rcs_$0P*&NTp2XlL=cwqw<#Ro(=5xI=7jjA9X;T!X$ft|OKz-q{C4@OkZyDvU z(yE(T<&5b)AOG`9vyin%vFz9W_&cte-3ACAT>knM72Hlx@DffCt!$_${1$l&)P1Q3 z_U|;`HE`dk{#m!~2Z>TM(^qbCikVUIcDh#)+btCd7tL ziDTbdN66_hupNuqTDXYl!ikb5!`d5c{Oa}2;s5avik>-509 zFt)`l@c1z37+D=jtRA_R=cy>7)OF;WQH`}!UR(zP*-e)!6KqQRv;89_<93Gy!O2pE z_6eLu*YNXtKOk*mNKC=+fl{2OBno!scOH4XrS`<%b{Y=}iwp0I4#Z|gyS!mRvyfCg zn?sdBNI2`gc${uue_>IPxVY_`x&|o4K3mfZz!nYz`YImdV?U!8t{_iMox?n&`4CiO zmnyn!(zrsioy*6-ac5rG&vb0OP|USx!~wpVnL4L(ZHg1nf{gnUQc)M*xq4F z3r4bPy7mZZ{O7l(fSx!Dl|WEimGrg8ti0K}CA@MxkHbCt0lHn$?)Z*r@*ADi$ROx6 z09ikCFPY6mu_RGwcV-5@EJU3q2OX_0gEh)_TWc81Os=9?qVFO)+vIU8`udL`gR}^W z9*NE;E%Oz@xcn=gUS!f;1R`yztBx6@|2^Ai90Su;UsF3q>*rPedcn`*d1zsCka{-#r3D|}s53Tst-6j=T0044c(x>^l&PLwusJ9BSur6&dC0li9y!GeuX zy+@<&dKaB{hmg*b%STIV_vZeZt{~A_03QeKKC|&CX7Chla$oY{mnK3bP3ow0vY9Ib zWa!mz8_CO}+I&9jHsLwMQ|B|8CLdfP%Jsm#sUAO3wq+;^KU_A2vVA>41+g^)prN24 zfG_)pAElHomx@d;sDs6&<>Jjp))7q4Gzr}U9u;UEwCM7Y9ERp4@{=P5EF(-zKp~-> zWMCNbuRb=mzuV~YTciaPY-KJm_q55feru-1T+Gf}ZrjJCm(;GXR0j~HlJ<-vd!<}y z3YmFG)JDXQqTnf1*NL2pCcPGYz?tjA<6DdPG_$07Eiiu{=HS%;XY~O!jM)J@UL@J~ zNS06pwnmjze*bzt|`>gTi#yZ zC^4AJxSUYkmf{1uH(S|VOm)JbsV_Eozq1%gHF|%p6V-u8PE!524^sUAcAkYseh(a& zoziCLxv8Me77GPiWOn9@%d1Dj&wwV=V;mhq$`rwSp`Enx#&u1p>NL8Tupwjrl6W0B zV?bVZugdwmL$jPyU~%7 z!=9k5E@0*q%a+@LkCK)Lxb@5d0Y*FtgxUV`gUi?>NSFk=5sU^%l~lZK6gpsi&Q7IR zj`K!}xW<^2V|kHc#)tQG51LWE5pR8+W`r#tmKhJ1Lr(L*? zxxA=(B<-7^3KM6sJUdzVle|zh$+GM`GJY62kaJDOjjJ!xqOUuN74n_l{^>u;A226fx9!I}zavGshf_wjTGya~;JA3k; z&*7EkXDL?;l};2xMs*{i_|Z#R|m{x+; zq+j}AvaaPXI@+ZTM@6|5X9*se?=4k}89~UE44hX#h~~Y;crI&0ViH1u{V89Jftg0E z5^*Y^%01*mtlFrpLDlZaVBZ}?ZMDCcWR0|5@FJSwLVMTNcz;X<*Xoc<`=KXOXp`Qt zgzY>!X|J^n#O6u0GAaLU&(0hAp3%dDbpfh9&tsv8$kXVFP$6qQ;1Jp3Ns{uq19!6M z`KRRpa~K3-5HTMU{xQoN1vdgalMfHzl@K2N%f$MRut1r--`EKd%EoJ)SVBzE-1|eD zIf}9xw3J^%QY7mEhPCe|8m7GzyVzSg)`Sm1%~_WWd^4yZa&~I$04tIRMCqsfG#s~C zzDygkG-Kh|cTka@y4j3#p7|@jDp*3k{^CVH8v}EaXmaU|XennUX&oQmYPD)&_l`$o zC{bt6Abs)kkSrv;&&(+9yX@_}V-4<*Jz9H%YCce4yUIt4a|@94xKQ4HQz z5|u@#fL4JhgLnLb%XZy@{v7yFtIc@D?-suDIO6*62La*8PTtGmcBwEgJ`n@em&gK= z>N1{mvyJk3%_>dSj&z$wbA#Fq3EV6c&S+1j7h8?;XeW5CbV%Rq_iC^luSQj!=(97Y zQSbn<07z4o4T%(&H&uP*c>*LN^P%}Ac-o3u`M{yHV!bNSN*91ejCR?tFCWASz{q*s zV}JY7*UA1MUK`Q({vQwm2gm=vD$UN!{@+#U6iY(TanP1#4kAzpP;egOvo%JGdRt943;NxnQscB%;_Y+<)}Ny<)-h z1p{I2|D>ZE3})@HxQv`@lwp&bG0=iG#Al%F%@!&HU$>wYH-Cb#ag=4zA5HDmX(F7S)!%Ag= z&Cq4a^)3jCM8YraZI5uK9=|{!-6T|h^1O^@u*U{{0K`>fgY$RE+O#H=Ap%9O`N^HC z=j@J_W}S)nR9#(uQhI@4wfLaP7WMCBC?p&-Kdca(JEVl?(tdu(-g1g5$}BDx2%|xz zT%3^-gf);L?m$E)8-)SEXq6g}9NTA*PwL8d{ia$XjO)w_^T7Jgy5I+ZQ)p3H)Zj?D z=Cdy8fs?-C=yhu3wa;V-Sivj|hQ>z}t2=gR4d)LBb(vdi;l<)=7KMd{jaod(1~aUZWf18nR3E9}b>ke&Y-G+UgC8MaGz?HRF#DGs<;7x?o;N@ESFGV=ny-If5JvN#{PW z2nzjN=*|Lp6Eyu=k|dJ|E<*$|<(0436x*UKxkLM5qP=pB!(n_*l||f;m`ha2pH0D8 zHn(CKe%2cJCx=)#({D;GC9NP2w2~&T$n`D1p`IsJD{j> zN;TO`=G72oMq55Fw=zJfFKSYaz{zb5`I|U<)BoW_*gYWn{pxBb8jta?3cO9*hT6pE z2_*mKg7sdydVk?;->+ogh;_f!5YQ5l#uGolTC>X z|I{!Nyypz!R#dQR>uZ~_Y&yg_|B{$PA6yVXuRVOOQM>!*7u4fyVHD^w*r5JUS2ssy zYwAEmlgd7JN+ahX#n5Z=16fg&o2-NA98sm%TA@I;5uRwmMZcEZMqL@E%+?G zJw+W@o6uc8@sEP}%E%xR^Yb?A$6f>R_aM0vnL^`@>tTEDQbFAa)vQbZQ5COSmU5DE zy+Qrdp}SrkpN22u7c;W)Vb$sl(U`?Zv|b)Fw&DGBFXGfGx45)Y6(sIw5%PN-whQdl95^D-V}`6tZ-Ykfp5NX}H4 ze3@uZGEo`b_BuXn_^?Ex^Y9zUd5y}EGO9guzG1uhtmW^~*(SJ<6OLXcMdD@x&jpxS-&Mw(iIF&n7 zjSf%$)1I+ObN{hdTW#g`$ixCSG`rI8=(UXSAjY;N0)ZBAQqDTMxs*>mBfPW|5rRKFsqy0a8q$#$6Hd$0|Z6q>QHkVj762@kt+KiFkvQ<{|xe3!g~{aH-;1XZH2M;0YRFr@)J`x zi*K2UFfdv#PBoH->x$Zv*U9JAF!&XvS*echgb~UqOzIELlXH@&wxvE&iSxF^xFrR% z$yWZ_cEEuF_2x3}&p(`ZDE2mhZgmVdoTd?|uNHxjHqZOd6MYHg7)N!U?W$qD#W0oL zkU;3r8rgd%b)j9GMOOrVu7FJ2<(+H?>*;x~7nOxnKWzd=)?A$WG!P;Si^(KV1Y846 zQ?u+EHUACTa|UP(wQ&++6hT>8DJ_^1sS55`1E^_BP&4Z<5*nReYl2DuudH&?{Nc1e zameBkRlZumVxejp<5qTY=M)l1i{acmgEB93b6hvNzQ9-#O7mJa#$P}rXn`aWGsuy* zyvMta?Lg+2HxbUBMu58B{@B?mu13Jk#M(!kkUghLbvIrzEt5AyhAF_336~RKaBF0= zT9$48^Xn!;;V+{Ahx9n$c_W8F3br8x(HYQO1Tk6A*Duvm?!U;Z9G_Z-(FF%30hLFt zo%k<|xGo%AD~&5h?WmU$22o45>0d?v;h-z^#q%VhEZIxU;IlM|pniT?O^xcG#Gv!>hSfSuRqa^|Ol`m~ zZ9kOI@^mh!*$%d9ZDD&B9|DX;`CFi1d2!MI<9CYdzZ_}vnh59(4E*D8S4QVE@=MeH zz<*_UT%0Mf3Xs%@oSgs9Z^z7?(DN_(uTxVuM!Oa9*S~}c<2SNM{X7T=_;V^b?HtGe zxqkxG+ifaw-sKUlEM%AF?yk_K$wi{Ir{6>3ez+QKheD1!7?*~(HN5+jZZL8xd;hwHE3yz{ zTrOz6-Rc#j^aK!hM#Wgg=-<&fu$Q&Hd@4Owp+lu-(b5g%C}S3Oe!69aFBUk8D-Puh zs?(SDRpniGhL~?tsd^~X{Hr^MlpC?&jTHLXYht|!#%kotU8zD`y*&Qb0P@K2U`%S# z;pB!nH$lwDH==&uw&i7+Vc`2pIW(%h`m(2MI1n<;!AR13aenakWBJvo`hipRfq21B zT3~Ktl>8G=AfGk%1k02`PNO|{Dp~mBl+3@%`dyA1I&)P(F+dn9u8O`q8yL~l_UYC;GCmMR63CEY?%ME|0`m9cEg7z3>vGSn}Q-}JL9`AnFPe#3h zmo>Jpz0(c43H`#YUmb1whX6f4psClb^Xs#&rL#?YL*eTE?S8`@V154~L61k(U3$Ro z{?|X^08J`S#;%6xI^HlM(2D-+qo$=>Yr|wL(Na4_{p3gU^2HF_*NHt4s>zxYG)}g% zQ;-pQc7{A;5^k;Lk<)gFL=g?&AAzM%UPIQwLw9aE-6u`RKZG5kV2Ron5=?A)wG`ZBwjI6BgcHU zy}L9%8$QV32^wy&@DdaxY8zZn>|)6X`Y0HzNq#^y+l{#aqj3}8`pYGy^Xm}u$^Vb7 za|{k7Y`b)9+s?$cZJQHLl1V1EJ5FX|+nm_8ZQFJx)@I+Yc58RP{nyp~bpPtEe(K!k zTn7YHQ0RPt(70~h*k-?Wec@XWtafl}DmPo)TXS{&y0S?a81scQ!nvm>G`Q6IhrH65 z=O>}kS46J(6*g-#jxuHnLMr&C~G|;EEvaj82$T($6?xpf>obERC=uqg=bH8>z^LToM^qF}9Vs47C$ZG8Tnr!v zgQwOdYk@)*PXkwgpeaqQAW}a>va^-F$QQ*IfBx&xN-nnyOrmB_`YijZr(i;24S*-m zkP}D20}S=oJiA_2#t?!*2r`ZHzk}1Ea6v5s&^SrM2~anLA=7`d8pDd9;jJbU$Upq! z??N|G3ZL1KUPoH42m@@jYcGQ-?^2CN&hn*xIcsVQ=Jj2+ASw7CY(KBk|C)9RWm<(H z{CGCM&ptZ`Cd13%UF>c~_9YbG*@N%Ef#f3JT~+l;Yp%a^Ph zoRb`_qJG=gxA?c-(}JY&+h(Wgw;|4TdW?javaUY2-`-phQdk?3Va>d?i^+Fd!t_T{ zsB`^E-*&z=&}Gy=_xjbxzAuaMvu^960$|};F>Z}!_`@P9^FH?MrN(*)+p1@D}X0q0%sZRlz)KJKi!{%60l027IAV#$9D zc)j7BisD|0vX3}f>l;h0P_jtj6m3edLKsyx%l7jR|f1)R!ZNfRFWDcvo& zoSM^$hk`Y%Z{K$qchcw-N<^rq{{%YR5V$p91LML&u=|QPZQVYi8&dKD*ev%D{nlfu zpfE8z(EVXbFl7>k7W~W&4l7mtp|N_SL1;*DVh+Ef^LEjB*@tq`czK*X*ctJX(Qm|{ zrKdJ$Iz>cV`Wf<{1U27uv{$S+^%+-RP5V>{dNymJqN@VxMP*{A3TMXwdN&)E^zY``3 zecm$aKK8>Ki_80hb0l!Km%T zMnU@m+|=|v8jbh`pP(oPw9EgW-#$+)DthvVJm?arbJL;%C_MyrF75Jv_z(X#34%Qq z1rwZ|nLC+9^=qwTGOQZt8BoM}%^VSi*68EXV@1ysmuAs&ky^@7Cd>h5ESrN@DQ&^Q zGcQ(OQOwwafEWa!H?dsAf-KtYCr3H*m&_FJ_#2L!Xikc1y9Ike+~iMv=q#wNHOT`I zPKKAZ@4>AbKA<>~*rb_fI#D!{1MANmiZAsmT2uH#7VNS}J&&xn;a6doLjaY? zO%k;|;F@m|ma=1H2Lkk58BS=&n+28>uaZcngnBlL2slHr<9+NwTHzVKqB6OOdrO$t zX)x{P9(m`^Z2e;(oMrZn2qc0wC?ow;lnWnbU?5w!eKW6@F2{g<6`!M&I3LbFN|>$Q z%|USJyR6%t7WgBU{3kFP!*i>6_b26!^hs_rG98JrFW78fa~+Vnuvs9*g&kULhQd*# zls$~)Lxy&Wj`mk+pXDEHgq6*o4n5VM(X0oGj=jbjr~{?6Q5tIp5c;>>^|slu z2n~7^V*NOAs}nKYVe|q-6`eZ05W|z`d*iB56SIZC(jNe6Dm0Mh)_TWT8Z`D25krcS z8I=fBJd=%~vHqXL1pV8uFeU_wwk3_!lG*EF5hhQXL^1fhqP8V{rHF1RTvlQfQMv_7 z$u|1bYW6$KDx{%daA<5b>Rwo1704?5P%1yPyYoUcwZBUvsu>*IR45iRLrtuKWyt06 zB&Wur?QsLB@NuG{!_p#G6Mw-(#U&)@@&cj}Nqf;@QM0tej(th<*l}XA#o6Cy;AByg zO0n-bWlIB$dG)IPglRHgmk{>+G5I4)NI`W^hdOgDWo$h+A%4$nRWP$;n6WLDUse_( z9L=LBj+!G~&%#XbzyW~~h?rK|H{R9afI0fa^YaAwrWWK@o?Z}ZtLi%0@oVwSpof)F z<*dpuH;7{n4_P#GU(%~}j*EUF0F|)Ah$1DLD81u1%x-2*sq2I$iAnBHY#(du$RP68 zQR*S*rm$HbXNiO&cS0p{cX$MU`U@1ix(kTRo}THwMOfKAl3pJ?v9wj0gI49&J{Sy3 zeuiOS77RAUY=J%#-Ap(8_}1mgvQ!uwHLuEnAV_SJ8u!O{zZ_KqZ0vk!>g~~Q9>IzO z!+#+YWQ{)-f6W}9Uv$n2tbJ(0<7I0v`9)hGVih2$dJrC~-m3HT{;UMHX-@dePc z(6U~twFceJKO9LC67QcH$4Ar1F3?As&MBTX5w`VEN1FK4>^v~GYJYZ`>E)Ve70^zq zhFntdcL&8x~iHl6ohZeiring6>hEY4V#_51bHdMGA)0?76F;R4?Y@*6QrLBA1!bTR{^~ z%x?+{L~$FWAF*qNiVx-f5V1z6*s$im(d_kxrJ2J|r^hy(OEnlqDllUCd2l4v*18cX zDpYh4eL3(f-=26vXNF)U?3ymb@h#92}bgG^BHI^Y$f~yP_Qu3##fw3pnM~VxXrH&K z0Au(q`@t!QImff7mxr5&6ViKieZ!ib+Y(pyszH)t5XYI9PGx(tge_jxi#MmhD>AYf zhuMGMDX_CM|G%S~JSf% zxjgq@#FpUMkBFQ?NCldobWamKtOsc2Nr~USzJ^8R$VUeCwRX@)-QsmIY+#i9 z9~4h9Gu(bgUrB=8FwIe-Id@zH9wHAFuT`^OS=z7R!rQ#Ql|M~~sH_SsBad4~)C+Ws3RKUjs)WF9&M9Hi9tMP&#J#czSs`9#aEZ%>6qg<@6)iHHwu#~Ox zi-Kq2SO~Eb(|Y7Zz_Vq!ej+4EZ>>FqWT!SqQazRhHCy$4qV+<#gLR}dH7RoRhy{UUe<#xQCd(pp0XVjb_!&$6=l~X z@hn8D^kEAaxzOYff>1l~YPAVO@Q(ScsoiC;m%XD0eV)r`vu6I4{Ah3p2v2Qkood>dQcuI9F9_k;y~w%JVxx#)>) zCtY{8N#sKZH%pSE32EU7CLC#m)6e*FYm6%)*dbKkG>zz15`{~D+ClP1Y^FiByLz^7 zWbo@;^{S*03GpJ#&E2PecR!k$13vZl25-Xetvq3_7A@NDx^H{;%7Bxj`{zRwuUf%u z8Y9j3dS749H>1061hKu=+Tu(>l{^nO2zGp%z2Ye8nVm!hDqGNhqn1@-1!SyCN}|C$ z3B53<&1uZ-vyka&YMH#Z=~*am{OL5UhkL1dN~VVKDkgS?!JoP{$zf(g6Y&ro9{uma zbi$FXE2P+p&FZ4+y#R)MNof~B`$f@Zc0131sV2NZe~LVSCuX7*%sIID&qRy6f~qS`dI8mYc>=? z$VY!@QWgE;(`5;CvtYL;0DjZ( z<@=NW*iRjSKJ4Di)Sx0a=2xL=Hg+yoEXSmn#^oV^Ay<+Sv>&8q%SamgS+l4|pB&PH z`>wlu&{R-RA`YtaqhWdflb^gHTBgz$bwuHDYLc_s9mAcdSng#}>C!T}E7_tEpJ-yL zqKFC`I5&SDnyb?)JLxfh_3p^r0y44`wv>eAkx75R{JVz;PZ%w@nGetGbf6oJ{hUcL zPO`;qesxO84mxR@m{Smr>*V3tsMssp+wdUj5)yh&Qfb3C6faq6&@{Jic3SMS(`{^#%I#aq^71|v*M>jlBciQj!1S<&M~ip=ix zMTOsuP$NbwTX=ga`rGT_=>vZCFivL}#cL`D`8l$QO0sNl|sMG>;aSmho|9ibyy7c;}|X!w6}7gu=tLVk(KmO zste^bZavvb&26QFXTbao&#o@%&t&J}Ex>gfikaNA4u%fO@}G9&CMQo&6j+2m(E3bQ z*>BJiwkojyb(!@)3UqQ~ASfd+X1m6W(*8>4PWzLj;5ngWbGK3E4kV4U6{8aQkG!7f zj}gqj-%gg2F(mpK5kOZddD_-9bl*(@1hg~+=;9?TI%IW z*G9qOlG}S3y^fQr+V>LgLwp;GT-Z+i7@<6_oMzWz%x=LPb0ZdRy}?1rW<38Sp0PkS zIJNaowymv9&s@3Yi)gdbEbFYHOkIev26m?1K311J4VPPg^*uD6`84>!%A-M{U}}f` z#avs0&JHieI9;l3G|hko@CEIiTLY&cT*BoG)4y3?wn-+7+&+StdC zXbhp*A5v55By2C%#i%^}oqZkgDcLkBf#-qK0CS4%m!>`7`HkDdo`~wqqUr}BSDhZ) zErJ#$O-7x2DVx-7D2^tH8U9J)4CgisMY?a}rGl&XP^*>)`p+BMX`8^-&bC{jNg z;+&eqKQ=WvI#osD%;0YkCQmPg!-z#x+^lFlQ)a(|UuJ#M{^v~r<6v$=3;{)vpyK%N z4R9pVYpiq#*yrLik`XES~Tm;^B%PXK6=jULbEI~b6AQb+JMr?jybi!Cr zkSqCfGTqi+IA3_V&@cVk17bRz6@(iC;wk0R9y)BrZ`(+X1S1E;xf)`H-<%y%6vT>I zjd{4|zDsl(UWb=^xzpIx$<@^ya&@_`cN>cgKo|$Hs1BqQ#{7XCz~?^>(uEI24Q3+@ zxDNhNgjQ~XSo@^W3QXnW2Hzp+&IbYGgcP|T79hwqC*j^^;SpAlB+B^#AMjyG|5*&m zwq3OX!mZ8of%KUCcqMFfOgt&9rj`=PfN}~Kq6;$KgMuO~qnowRGvJR45|sAN2_bq8 z7)O5yQ<30+v3syT&iodcw1jrJ)A4-80kTKX?ij5yMwz#7M57$2CHZ(cs-5uXm5} zJ>(tZM#^DlLWe*GQ+h#0NJJXvTsGln1v++U3&^^TI|K-Q2LCw-k|HA!$QG~{cm#y1 zKm~l#2EG#;;+F6rkX&0dM4P@S4JZPrejil_Mj&r)^b*VDzeGS@0O`u9$v)ecr-7SK z`FkP#k58NrzR}Of{ZGA^dUA-{(6kTa_fILrdQdU_PgZw|iu}GkFzRliC6Je{BHbLJ zWK9AnmRG~f2=HqM#Qq$t7@#W@rZE|+&2K!R2dO9ta6C|I8N4D4^vfkNOA&Z_ECe&! zF|zn1-q#Y17Ft8We%0X?lyJG0&&72cz^V`bpl&f2f{zZ*FiY%yJA6z0YAhiWHgZK)Q?DR zqQApXFWCEF)jDtRw_wZVACSc4I-l^j;L9YR0nxEGA0g|}$2YZaQWH1Y7;lC#(B0;r zOiw8zJ9bap-#DQymb>PoQwcwRzo#rCLVT)y8alDN1oaU!#R<88aPNO^3)wQD3`73- zBPayUhWW3l^ueyB9KaxVF<&7-%_>-%mo+zX$PR7dH89Qp#;jfdX!~b}Q+i+Y>*y!v z388<_X?NOs)epy;$0(ll-gEeckwjTK5BH+i)svGJw7J-Uq(uxK>_J5nUyp zyE;b5wEy+w*8B9_8;!~IpT8<+2<(QFPypT3ceg~gTdP%@zv`KDoq;Jy+R0%ACkS>w z-xAxNT=VF6%Ds$zrEM1HoqN2N@(&~9Cpv3r>%N(ws-}bq1lN)&ik1qErJQeM9QgbeqYs6(o#4h=a0vZ57q4XEKixf6tD7l}@0>=N(bh zhjX&M%&*U~x5431utf<(3ZJGIeo(P(E>qiOL6C?qAO$0HQN^Uz(M|Cq8^iw?xzhN} z)&BXHN=a-zbcwCwfaG+E;YK7~G7D;Ngc8>R@Az1;!wk4L;0T+fVd2B;r|{D_cd4AZ zQ)B&iTKM^Q5EauUzjsfH)GxE*@^-bkMG2gB$JYt8n5?=nSirA)Ti32}Fvd57s zC%rP?fE>U<2wJuUOYv5e<2co>u=Z-sStaLrbHbsyTIXym#Z&x z-i2Q+M7MO^yg#&;wIIGQ1Ey~AAuaXk8mD&3<4f1lZ+;&e1NTw3CM#P(t6s-0`4c*h+yUY&s)?yR;`lQtjv|_?KEwWXN zD9`DW)EW>`&SjoWte-LR*ZaNvwCmZDx-7a}HO2lSNnnfM5L{#296tQ^R3GTDYHauc zc>|ylouZKDvj}i0_>RWk1ZsB__w@f3g2Gj=n*l0eh-_1y&EN++sxR{VarR{W)}SDeg_h#*ntD9B_JA!%k!1(%g^?Hmr5_-=j6!&LJ= z8kHKgmahk4gdxI$>ba%ZPm@BY9Wn`UP-b@x+GkXH>tf;_7f*LiU^Bd3xKvFfj010~ zFt9wl7ZAp-J@w=)RBQF&U=nMNVrGN0;k!A>MKm1+S;%JH#eCpU_BAf%NvAa%t-TUC z@l3uW>f3DNhs6S7<;S(mCN!s(**|$6TIA?~_T)NLQqvt=OKS-V!`9!)rY@OJ7o}T5 z^l`+ms47BhBv1~R%fwDg)>hwUi-E{FTb`ai~{#BN*QSawv5rb^7@5KgvaW~ z<&90w!A~LR>}EU^eKrs!IOmC;H)ZY$<$C3gcTGkfe}5sDTvF|vxqjTe;;#2FZF5-5 z%Wo*1Qa>lm5eK`|qGt}CJlxYbU+8UFlJtz&FYB#o5QzFfKWZzb{`&_~jtTHB>!6=Z zddhvSM>i&GU=AU$?=$4oSChvP@?02$x;}BEDo-zi+fLa3Z69b^1CQF+$P5*GNm$AG zn%rUjwcSu{XPn8{^>K&|N87Ze%9Z+6kGvn&K0f((tLRK(nirSJySH+Cj}xO+Ox);?V|VizS&h9aQ;9VXqOP>Oj*w4g^Xaeq8v|6 zq;bY~5dUMu7rtFG?rz(veW+}&tJMRqm83`=}T-$sV2R(-*~jduELvwL!!(@pI0~qYIL{j zBYs2q@2igx2F>1RT;)nv8{pqQUQTCrL?F7P5*mW%FcH2w(L|Cf1hUyj+AYAD;LP!}5I*-9IrUR=)g*W(Pv7m#;&Ltb8Vu7GI+4FF^{N?_IH6m3UvxYaUu4tHM}2 zA=wV@k=!qnJ3tU2B+|7ueg~n=^p;Ba4t|wRDwB+Gov)NjdZVpl+97F{&TnbkTX6U= zg?63Duq|!N4?jK~(LnSN?s5+)rgV|Uq3pknIT%kPcCn7Qa%rf_9yG_lv;O6HzO8yu z_uFX5gM!K9x6o<^?K5)$MPd`>}eHxjRJi*=lo>&7PJ&^G7>#Q!o}4& z9jzuDhsXS$WZ$M;p%p|hvskI!lmxEaq{A+AH+H--UU)LPwln_W7isKYhZDp0qOyg} z6#tqdaMG1OTS*X`X&V;tY&9Rl1wUGs>FW=rc&7}%3st-Q$4RU%ZaI0r=cAmtAjXW+ zI)?79WeX()79ic+;n9c2K~5-!wa<-Nk3P-|D<;^%+xc} z7m2Fs|3Q;2LzRC}qaaO&BWv$npdrOzsrOf(%oa%QEF;>?ynan*Vpg*f-RvOSU@;M( zrIQmSyc^E-#MG+^ss&8pCrZDP2%OMlZ9sxVzsL2O zXan#A-n$a!<3s3^JAZf(WO31%reU{~+7_L3TF`_xvV?k$?uKv18JGe+=b6sqRn~m( zG8Q{*Xztn)92GcizN^Q6pK$6&u&c6(AW3t}D(AvJC*%~8E-bz6kL44&j;$-L^O1KGOi8b`zuSE}^K207hl=gK>99nhZ=~{>E`HZ(4w9oI-@3I-4Rvb|5$~?RLq6UP? zI+z>vS-A?!Pbb$PnGT)leP)Ubw3u#%Y5V&+VP>&b=Nkbr+|;v3IF3YCrEk)=1DT3lG8QYj zV1WjK5XLI-Hh~`J=+6;qpTgFB^3sI-qaBCZZOx$Xd;Dvz(A-yXbc2MpU3C33`0!#Q zojIFby_p?0{IB8|v-;#d4u{mvn5f@~=?||cBA-^Ze-{b!ls#U*FzA{V*#hTT8+jAE z=e--V-c6EObd>PahG|vi{&gpGTPz9NH^i;sSj-`6FB5eLUN4?|KMgNS7|E!!a_hI! zdN1CePihmFn3!|;Z``B4~}2_82DcY z?!{(*1C~ptMk7*z|xU*)+W^D39+6Bw77;lZ5*!%6n7J|;ptg!xk_U|7lu)<+DVq~wo_BfkJ zOOVsTev6;L1wDA9*nUUyfJ;F`Oc|&aENy^v9-u#>5MLj>6Yf;RihUU&E|s~{@-B`1 zg`(5~xMM!d(DIZU9lhp$tr%6i{_ICwuo!UKJnOhK-(@Q26rCT+Y*{I5l-@4l2RYe0%9NyLuA-y6#95-t^-zS(7Inro zHZ_FS##2(|eJcrg-~3IDh~ih)?WsjGxHY8DQ;$JJ1A{c;4??5&JHr04^)$BF1$fOy zWKY3Sww$ia0i7UA@y08V-JOgqj#JNCxD@Vo`_3GCzqZ*Km+xB#dHYmdqEOy_NEqq# zVkjQbdY+IY{UJMNdWEr(T@VhsB{?|mQ;sl9eP3FU)JG|I=p^9NP!zvemj-XrN1OV9 z{n$K{Pi(q{63xvjp?PQHC62^LBufrU@=;bM=O)yW14iM?R`A0TOBdCz-Bt%^*k7FW zO2RNDWGE$dXg!{gPf0zY&w~D8Mfg?8OZ(;`E>#@<06Ac)RI?Tvbt;M6y8-8k@K$(XJchqK`uq_W>be|^j!EdR#C zZa@(|DS4hV@Ru^OU;N>$14O3z&j*2Au%j#`I=bi-wuESFfq2~aWchr2>Fz&mL@Gr6-v^dGH_-H>CP+ab(q6Vg4(R zJ5p;w$y+bEUis$(;cu5q6sY&n+xsd%Y*lo%e`sw_NmHk-=t@!Vq?YB}_Hu%aCr>(_ z4Ee!L#vu*+r1MZ>$^EQ{45c~F<-}jSIO`yy>wu<%77kEtAAT5^yoD@Pg}Fw*IN%nU zq4~prFJzQY+QI@WrC;A(Z`?K#js=uear3M#jV;ycPbmEunP>SX?*rd>l+hc5g)MSh zu*a}o}efJd$zc_R05H`g@7v}s>|k4bzLM4EovOe>-h$?=<_iv{^Mbde;dBG zhd-vGaI})!3<;yW+TTt@|53{PK|=myZ(t0hI@{NBkvLq~^t0B)G&b*BIWQ?%MB;8w_(1 z$^R^K3U)ksIwn6ztJGDH7Sgnio&)v;Tw-SHD3p*Gj=k$t@;|AL;MXjEGodh|OrAPBw!I zwdD$<7)#F)M1QXr!!mPYnb9Y@pm1=hmQ>vC*f~N8juD;Wcsz;!=w*#G7ZupwMN9ry zFv(=kpyC`A>5UXo?RlIjKp?4rC!xoLKejaCU1Rv#bA+%UXW|+{9O{#bVpL5Y(YIvD?uXn-9W<0{OO{#e9&ctDd0&lw<3z+$c~ZRFrD}0`mENsz>{y_pKow*7Z5PD7276zNHdFi$FNX%# zwE99Rov^1E=H)0DtJW~qK#eD$b^OF@NLp9@w)WXDUN_o&L{OG5GdS3jb?ro5rTmpsO15#-r;>!js?+E=dU~0U&{U z>YXfj!BSZIFmr>>61RraV8R8ziqI{MNBZZJFF&2)u@cs(TM63WEeJgx8Ixwo$fOqV8#zDc=ZW6UB`x!y_lnso3lOvi+oZ7m&R9Y+X@iY0ZE)d9O@uc?VezE3`N+7l5gG5+z zO7$vT8e}L`Z6bK#)yw$+N8c^<+RD?a>K~{rKX72?(VPYYmtt(w2YT)BTvp1-Bq*4l zq&0a)*%g54MaWgFolj-D@I{PuI)EJ=M0DG<=_RX48C)F+lEscSRx;tu)5x4DdDapme-mmt- z__$x*q1wXhJDGZXWha(xf`|NqZXprHt}&{NpH+D`gd*cVl+e#$J>H#iG(ieHQf~yb~&mM#nEDj8l)$ZI*zTl z@=PZZb@@yFICmAsVi=)<fSQ3EVt+2XUso;MjdC7m%6rz6pi{hB{d_<}r4VppRSBkBnm`&^N09U)F! zft2fAJlnbQ+=iXX?!A1%9Wm3pzRMr6YRUrddVt0K!13E5b{l@igu0PrhmzxeuY^J`V*tJQ(>q;=X!d_ULzQ*INzG$hn@>xi1?nV^B>7V1xd#Cb9v#R9W&Jv8rYJ4sb0&& z?apd2L08oO^mV=5Xp+uwq|q<7RmoWkV3o z$@*T5KvE3wtg(CFCzEHTAdh-6%ji^U1#B@MFb=qb+e1?bj^+K2A9S~nr6cvUP6U2JGz z-r^90)2Z(tB$?%nt{V)gr zaYB?l#Kqp7x)Yo5=0~ztRRtEknit%(G@Z!Q$@MabsxM>3;fW&WIC9TVm&n|k=9nkjq3mG#kp>WysrmGq?LI8L8(#VUVhWO9qTs2blTswVvISu^eF9ywA;nYYc- zL|X^Irb(^YbV}VSIh>9hxj8t@1r!U=?#*1R7~*9+Bhw}Ua>^gfV9t4B+i7PnGO$i9 z>yy0S5cw+&E5GYMx6$?obrw3mY13_L4qUC!RA#u$PvGM%YD^rjns#IASXNmW?w=i# zYxN!wpCwWP)#Z--lCD42+sggnf!3N!_Gg_W$DBTNMxWhOl<8dyfGxzknwK`r0f-92))B1p*A?1 zv3?nx5{1cwr<*q6y>R5SmIHmV3(n(5&60D8WZ&Zl;Gan5gLRHN$|Lj4s1tgci?(%` zg^lg#aYJ~<;6dZ4DU}{>_$@&QOL}EQGj0J7LJDh`Mk74q%1JL@ zpm9-$Frk!>tT2(-$#*YmOB{G19$7bX5k~08kxx9R8Ux_B5O=EjKK*e(cDboEGNh)+Pn-_VA#Ov9A=dI}-@sH2^o?Um5=b%!*Be4`@fnmLqj zrt`L!OW)E0(toOp7Jij%Y_d_3pj`U%mJ6g=y|6%5j`<ZD+PWxGY@k%5xi5FKYqL}*r++WI8uUX1 z`c;=HhZt#@^5C?F{uaCGxAWTwlT;n=tg7kJ=CHE%M%`x&V->WT9GiHn1g&mm7S%;C zQrp-9lkO6AmX|8~o+c7HFF$VooT$l~rhJq$OQKi(MBKSX1m&|lSf`C6B)S*zcr2Hx zMz9vO4Rz_C??PGg(nB-4OFhnMV%Kv8PMu{CE`FivC|(XX!<$y6TsHcMHs#>24nIlNGj6ED*(n+3@KRtbl^W7aK{{Epou2iCx}NyADKuK;iDMRzA=~h{ zsH%A7_AbJ^=o1!>krn9YN^@_;wcctWneu?W-j_;7m>{Uu;B{p}#J8W5fgqOyT9Gk& zmoRMc*m5<4w4*0z#Bw_7Qs-mM_v}7uxe*^BHfB`>5)y6`mrVRCvHsfhe{qK4mqF3qkWsO6&TC#sQ2)m9b?I!oQTuyMFrR8 zW70uk?4w7D=tVp~36sSU*K(rT6nxPKKG#M~IVV*y!xn2G`sz6E%``X#E@0qH(4fH< z|MGW$B!YD!5!Jalz9HGmaidKL8Ugej#r*8b%8z05zkx~i-kaVBx!$;dO?XMTTN?pd z#q`Q1sdgVvkcx)4L2*c()vCw0p$o#1uIOdy-67g{aRqiC?`{8!2^aremaz+i=G33c zV8pTeL#K!S>-GnjMz%ysgoxqEOVrVSRYoXY8{W}$wu2JBPtz5&!4g3w$D;KVi!B6x zy9x*EN31t2&#Cq%YjsHn_@}E{3pwEcMx3=3=L{q*Y3U7&8x}*n74XPYHTZaFaxW)u%DoP0Kw zBzWFSxQ$FI>8xK;qoJ8je+PvD@(x#Uf6LQ{u|2;{)`&+7>*1G%Br`JY={jfsaGbr@ z*eW>L)}*k*;=o`1zR)nD)G+MZSNRDci?O@09ApO_%$Ou;YynlM`KS%H(bw=?LH*9Z z;)_>6Z>Sasmo>@(Z0@x#^TojP>MY3iEMPKICV2i<^Q2vl71Uv*6R>^_GS-k9uzNdA zz~k~{)5<&*bD+G52zJP~49AOPEcbYd;XaK)Z>%`EudoT?N<+b$Yytn7pzg7CPB-a2 zjIS4J=C8(#!lFIeYEeruL+Z~Tgj$;R?eJ&TXKBiS+AI$v(7?j!y--=f{z^Gb?)F_2 zZZ}6N1qzl2iI6}i$+JZd=Z8-Oyv@O+h}{DoPxL(SL=9-havyONB_(*k*=rh!Zw?ff zs;PU>LeexJ4(U5*HAVn$fYrqwbtMl0vGb(NCFT*dC{yf^r{3qGB-imVyT7e5Ej7IT(Ih zh9xDWs1M)#Sc|{a8hT86RS#wRCt*X8xUCAs?H27o5XcE`ojIi@vxaty)U;`|NC}oq zL--b_I10UfUuwtz;t=31IxWr1duuJ`;bpQO5`Y%7Jp7f#4U5eg8j5}dRkLKP;CwaS zxEFEed_qxBNY%(Ml-d5%5eb|B_2kku)471X zQK1eXN!MGD2Ov!|R;nE2?(G=}xT5Qy$R4p#kcG@8$QhlEE@|XVkzPPvy?GGVtB^!* zR?yWmH$bxTu|FbUV%c(dpe)S{^F4&9{YEL);82?zJNcI{p_4N3jT`IL^FVn!2lXld z*UmB(iO|P>dW#|gU0mmLU)+{goz}Byf};}Uz4uQ6_tsRL+5RU;8N1cr|G4U?IN1MR zga6MjGaV26|7oV<;bH%uW;!fz78bVTo@_8`zy(r0;TJYz1<4l_#?KjPVtQj^0t6g^ zgBf8XGJ%?5mPEFRjDeC`TF$MBjM8Ps>ErYG`AYY(Qs*rFYGdm1{ru6iU~cvxp)puT z48y1rMv(*?8HS{c(GFrC^!obR;pY0Az&43z6FGqSt|@0E1!OR z0voBpO?Z9ad5X?&AOsTx0~K}m$qXsR)xSHJ(@4vY7iR~=p(Xq$xGU6guXPSe&=oPG zc0U0M3>OMlQ&STc_VPd=JXBM%(E*4%Acl$rLKp@OaS2%i`9_bM1M2Gk_8ku!i(GgL z^z;Th2fj|sJ#Yu5JF^?t3f$qoneE28A-EgVZ3eV;)Cxp_E9}g0)C!=n2l=o?0vU#U zt7_}20C)phKUksGmb>-WyDK}DwY>ZY=W)TN)s^=|pGdetjI`FW{}@>yFJ}q>%kT&; zPNp1~^!7a_g`lv+OLU-|j zy`-FOK92_Y#5y|K z@h9K)5iC3m#ImRj3dpZ8fqBd`;wv|kunohbw&%WFK@hbpz86qXej(t~hpo#rg<*VQ z<&pT_ko-_{X;zIR#{9Ew|1*GA(bFJ4PL1{!1^dm9=C_67_9`*bdV4Ee|$ zwi_I+bY=D%HhkXXI2GdYdRG8T>f#E*ye?)!TqblO1xW%@YzN7|jA@S`AHdyv^2lf8 zp-{)0Q0m831O|U*Ca^;f(7Yidx%%_IepEO}eOKz=z$@vyOzOGcDh-M0a@8UT<*{TSvFYCAi@B!F+Wxp3;>xLW{{Ln6(yJY>(qe>pJ@1(lS$j4J_klnERJI~mz zO-7uGZd_qQgbaX4Oxyc2TS0pn;`qZ+-VGcKShqd*GWMD6xEmFypU|}}xecjcR~W+f zp<^)Vr96n+0VLSDk$rhK8{}q9@ERUcqd&LUISQ-tYxXshIPk>Pa&PBo&?DpzpllPi zd3l>VUCdN4yIUhSAO3GUF-Kd|LMh!{<0zjbfG+8}@0jRz z*Ysz?z$4W^DWdMr9^YR>-<#Wl1DE@HCL5KJxh$%$gg~!e&RpHt+CJLMv$poTq`=@l zVc$Yv-Xq_XfZgsbf1!-uZ}88NC~gk?{NMF`ec*wq7i7^@_ui{=)Go$IzQ&KEw=*^n z|0iMV>LMy*&OFqp22_Tlh1rD7j5D!a(}=SW-13Z%xogcS;^s$Hoic+UhF+yYwb!k^ ziHgy>4C#q!gV!t0g{^SkyBoax zL`u-D&>h?0OtadGnJYCxcUs(<@|3icX2M?Me7Pfo`OazEeFsyt=K3fxQJEA}^8;!V7m@S88!8Xy@Y|p% zSEWq9OzNHtj3;Ff=aT{K{*j_+XyG^S++E6(a#?j-)q7N^QA}pWdj1Sv|uPSJ;jmFh2r^ovPnQpo*Mb)GHaMB5c~&!MMF1Um+x5!R$@?uRFIT$ z6*RfgolIC|QC>QQCi|6TvI!L%d3t$2@5YHQnT|TQXPS&F*S|U-VwbBhlrHXBS{$#V z*{5FXo6ySk5iMjihiBtU6)hp(yG_i+&sV&cTDcUmzaC`wLxn$LS9t2e-z!By{d>WA z@cGIc`mCUT@=f$-JKoQ|%2)cvqi=|T4ZAnpyUIvN*e)tYP866(5!vx1h_#b}u+v zLK{rAFcphfJ44RJ(JZkJ6PEmRM%p%*2WTCoC2-9YFebl$RQ5YlihNz|`zXEO5gZ-6 zo^qOhi@V0haZs2q3-8{^?7^}`xSs^YM(ab7GmViKUYs-Eyb70Cuk`c^<=Cj3mDK`s z8{Mg@S6pE3RNm;r<2~m3o*0u?3MR3z0 zriiQdYufn^u`nspjiab+7D8IF8RVFREXn}(DAvFUt=^B(M7&I|Yiw!K++A$078zER zaUE(Kx4PC9P9e&doH4p}Xw*5=*b%g@Ynz_}{EKa9W9)pr68L#4FW>K)duc{Xew~kh zGa>l=ctC?e`Jj>+*-T{4yZ^E)QmYcx?aA>C`a7$gR%pc@8p|5*M-6mxWIwy&f^Svv z(k%l|O(mZOUkuy^rU#D+Y0R?ra3W4vi!93Im02w2o~fHYTm+1^zTMTcdu7_T+fMn> zZ+_c9Z|(scPj-^GvfcRDW<|EAs1Ln=xTl<^0_DPP{hIW`>!WLh-hsWIjQzBQ-Ma`) zq9Vic2a$Mfe5&*In{`mnqphiAhy>;7g+^0k(wEe8g7TNNXYQ|nQ@UIqCkxo0wD5d* z94xkcR$|`x$t$OF(&e7X*+Fq$KXz6X?WK6Dp@D<(LnfUY{|Y+Z;MuvBE#_T+4Y(k6 zf6Wu?ggmDr%W$%p*CVU4L;Qe<;!qn0eMW!sr4=sCS-YuAfn<@V?qnAKdJ<=0?2bu zCTQk3U7Y9b4kc;0(PJVqtv{bs6bHtSXq9a^?QMOZ)nNh|qZ+L|TdY zvfs*mf86&FntN=iS=fdqv`w_4u1eP~P|f18LuMy7AkTBZS;>3BWLLtzzNC9l38R=q z8%V1WCqlO_D*QldW-${K^0}O8hw}-GTsRNUo1<4pc22U?_lQhGb1T#4e8}VHnZgY7H^isf>w)W{s;vsV$L>{a}2SO71`5 zJD-7~fJA;p55lUP0-Da`2Ru@YOr#_HgsVSO`jj z5Ewx|@!ebBZCNR>|M8SqdJuG z4folT#yXREf?#}kzG>9@NAm?=j?BQh=p>z@=zGk`OONf!q?WTXy{1;mV{c5Zs~jI_ z$kdvL7ZV+E`M!mo81i*pVhZ@j#D921k3=X+x&6iX%DgOp(JGG)3jFGSRa;{cQSJIL z;25bq!a$e9t4eULXN9W|?D8mJm62##Vq|n>pH(kdwtX{g+=;&MDIYD-Dy&wDO-KI= zN8+Sl%$gV_1OI#e`&RKja=l00$S{!nBx07vUp+#Q0Ti7cRr%c9dvhV@BuiGhG$)nW z(L7)L@=}$5KL-6f^?|%}mv~Xl5a^@2<~X=_l-lZUYI)No}A*}mk?A}ovX*Vtf zN52*gslLpqlT=F3AbsP%)VIHZ>Oh&> ztDHW6$KVXDKiu-IOD3JZ|L7J@xF}YSAkT`08X<$b^7cOyVesaPUDu^OgY?Zl4+|N5 z{6u*zas=n~(ih_R_;qs(>KU@?P7YLs<10kUm>TSEtFQqKwd zvR^e&<)wzE_uwTtL2A1h{#r;9xi2@;_T2G~f%_!P(9gtXB}gEUZYxudmn7CxHxt#j>|9q%5ANA};Ajq;j&;h z3OH|Xam0LXpMo7KnhRxT@wHnbJa90PL&8QnvJGuYd&hG`zrWFp?OB*@%kk7hYvz?5 ztNnpgbQp@FrmEjbDpttaMn@B-Zh^&rQOe2aGY(pv3A?1d#vA$fW?7ZD`B3C)dau{| z=^sTw>xZV=UvUcX8qKLvkdGTd@tfupQBf(C^ zb8&NHAp*7+iIebf?Hd4{q4wNZ1ia^@^wb`C$yQy2ren;Nf~{Gr7Es?tm5B0UDb{+C zFQRN)=A94PLkJ%BsT5GhLDLa`{XCN7e&mJOS;nA@uZ=fuh95~bZts9201wj8FgB+2 zMKY;po1h*uRX_E95Ru#VC;2d{hg)keiMh(1g8P({E0=8e?Zqayn@QJZWp>_OnCzOh zqsS1`ltl_Sgk{4UqaKpW7v@C}+gcFzc$dD9MVW>+ym0{(h~7Kl#U`VFm+aZWGPkm< zA$e^AAiF25MT2a%J@nl>;{|IdRk#SFNFF}vah7d_u3+#uxlw{-U{pN&YK~gJ@hg?j z7QRxzi-9d%TEH%ggTH<)#nmvRmfWRmpF@G$b}fTCcAT1CNr*!7y(9JugTS!UG+wL? zXDrQnXKNM(W8pzX{2z;dHT(S4Ts=4tUEKRfwdSwHYHFVmSxfnU>MxR}Mds3t!Rfb? zh=+BYsulL;3#N0=Z?>m&^$=<*RYIhfi=xr`z7H|rfgBIkvFe2$6n6+VJft#S>ln7s z@uG&;Z%d-rlWLq#8jLEBO#1;FUiw&MYe{bpP24U9m2aHqsAkiDqI)8q>E1rIG6`Q& z)Ul$`OSR|QQ|jbj&i=wY0#Vh$u_~Plb;@RcQ?@|9ynu)A7_i(VGzVL1R?^VIa3^@2 zgs);hjKMz|yuZCv=zl>Uzlox8|LeVZmBX1SuI;bK=&0Y9hG`XHrl-DyUNuj-l(ThP z*pvE1@Q59U^y}4sY}sQPlI=WGT0Rzc2f1kH*Vxf?c_@BWAF>{1-O(}TUGA2s^yRgE zEROaze2BbR|6%G^w0y|^?$p({CM4k~DK;@S$%eHJx|1hKTzkH`=2{Mkq#BdMWg|es zPwpXIhZ}HXLi>Z-YW2i=oxTeQ9S6^aHlR}W@+ReD6equ^#a7j`dpP#4#9K2kLhgK4p#BGU_#kn*rm&**R zrK8eZ(`Jr;8>mqmI+e=6em%uSr|&cTE$AUc$5C8ge5hE?eWOP8<>E7@98Zz$OSD1v ztRXou&?2CrDh_{H&AOF~ujT7)aD>g;4LakDk9pab$D(MJ6`kFv*hi$T>)`#y3?1L7 zT%1{x8PG&Rm-Exawo{AH3)e4xc(`;Qx#3s(@h?$-CSD%!v-UV>zImp8Pu;eA5U*+D zS@6vy_AZeBq@LU8^6?uFa5WhZ{Q;VE*=~75-w6bsx!m~7IT2Mx<6&$bJXbh-WWL&X zGYIZ066X-tBe`SaFrAY|_alPV28+lTZ8JVnGaj#X_J>Uo!O2{p`@=Q?^xX6`v&J83 zEbn}OC+J9?T)(tfnchWZQ7dVD02JVxcJzw&`|c1sN;R=9vi&BdGIk@KQfQLUm~ilOfrk@*w0G^4(^F|Zf;CZ`F~4@>Ci zaN>g)`i;~W+l_OG3zGWf9@~~xaF{M&T$NXURz@on=GirwR=*T!ha~-y7i0~&yI5l8^*2grZ=AM zDl~mo$PLX%?%>oek~eG_mXojb8xioxVc^okkOSiB@I=hVme+tTAI%4{hr`*nD-2VA zf^)J?(L)w0^{v}qn3>DJ^76PB&?Twn1gkAd)T}HTzk&8CBs`AwNgZSne(VQaz96;@ z@A@I^eGii>o8rhig#JY}qw0MNs6b?wNT+PTnK`w}<{Anqf4&>Su_w0csccHdhv<~h zxIwJ$3W{+>TFBPpb#8h94O%F}HzLe`MJYNku{v#(^*8w%p05?1Stz6T^d+mz0L#|K zMPseI(PzrxMJ@yBCtL)5RzBq4*ry1?l6l=tKxmGuH7~ajhU#Rk)vBeUy~0(!FQs2# zd+af}Uzx$&U%g8-a75PzFhVQ&oI;-=J#sxcJ|SZ!>JpEaXJG5XGBhy2Zp~AFUeeMQ z-X#n9zIu%+F}@TG#h&0Nvv$FJk6+{hy$oJ|KF~J8rDauX$TK*?%zGTgvoSe`G~{*Z z?aXBkiF3{z4h!C=zL=-(p{q1bPxs53r2lvwuCVB&Gnm;pF|^K6@!ZO3nK3Ry+0z<) zp_yvrs zP$F6x=3T(Eux8UUrM-1Hj=x$$lG++?kxxH!CwITk;H8FI zasp+)%69H`Daglp^#u+!^n!z*#vi;9>^C47+BwA}*{T-`G(?ntt>2U+2)TSeoet2K zi(SYJeK{Hg4e}`ae$bHhSQu=+Y8CVb_ws*<2Uq$z<*dB41WG(WYpZ@Y-V{8vFM?H#dij?D!G0rSh&FV1etTa zv=!&Pj+Uo&Y9M++h`&YcM*T2-i5$o#!4@i~*dP$1gl9C$)a&u~DVg^Nwy)>u`On^e zToa|-S@U42NMO*CnQj9(z%&tzu_{lRyD+=RJV%gDaTmBiS6{!U#mt6>YqR@Xgf zJgVf2de`}Xz@JjtGH>)C`9AhP{fjq=gsS1@mqFlHX>l z?SDlm9#{)#U1fW7aAmhXVX$w;D2t508CC#IcO0O99`Rp;JPBnC&ZNLpn(L{&#eUCS z={g@+xi#DCd4nSq=Y(!j=EZTWxBYfJ#)peqi_(mx$`Tp_QF&thMXqEH1Ro8gkC%wi z#U}1It}gY7r-&|vlj#Q8WDjXdugx1RR$MA-c6=So2sA(|c_)sK@XFyj=wcz2|CKnGD%=H5E!wO}=APRqPA|591dhM|Y%JZu4r#RLY_y#Z?>0k(r-5Uv ziqjwwHQ|&?y_E@kF{`cXJV^WPb{aJz2G<@__q)=Jd+BjKxB3K0-7BrFc*3~c`8nN= z3KUr!Xn1$Jzw}L`GjNZO~u4&Se@|V>x-ba6ARKzc`G@%^F7HETl*(G5T zXqM5q7+SX8KeAfgl&W||LXo;DRKlT`^(Mv4c5R_H@`$1)?^)Z^^YJHDAvBc4_7_t# zf{RqTt_^rSVia|b(e(awl{}+fqHk*A-ZDo>k7|GjM0_#uD3_z4ZToFCd4m&w=xH_! zx{U9;OtGj}u_s>lb`o%*VLeQc7~I6b!NWH%t#xd3De+2rxUTaMQcO9h(Z_TIQHt&KukwN;Z+;C~vRgQD60T<%a{|Y>g0g;4Mwn z%RRgHO}gp&Ey+&Ru>J$W!yfT}RFFZR2(#^0!zkp@YV_bu1{ad=N1e8fSb3#QB8GXk5K1hg!W(;v>Zm)l9vB#! z+xrbWrTqc#6oN}F@#9izXO6vCB*uAs_Xm|uIp&#&#X~Uz{o8=FOoAi4DF(FqZ_fy7 zmcY1K+#H#W#B?XBnd--X$DsXPaG2|jIAo>Mj>&kp`aIh+6QD->_%@QtI1F{zNNzd0 z$9V1O_e5@4<3P;Cu`U)B)s{C@bIDd7P&SuQp*bp^2oa?Vk4wc|48?P+u?Ipw%G4i& zh>G%?Jj(#7%!3qIxpv|_#L1ubjpq(^@NXNV^*JV^gh7W)QJBPkNJJvy=HU!-sW{#X z{1r<3)dCBc;%~5IlXisVE=r_#-wxc8D9FdWx6OcBTs`3GF%mwb z*6fhw5!pXb(yf$^j+UcWR4CA1&=b0!GoR@LF%?mG!Q71Qd7s<+r9Nq++*L%{t9PH1 z3M6oOW+^pENEaBXy{vAs0FD8ps0ga@ltvaz^;>oV$Jhr;tO_WFF zGuggAe2^a_p}+4x>(Vw?f4ww24|^-Hny&nwAM=#MabERJ1r_d#VJ@LVI^empEV^2VxO+IxOy(L*pW<5c0I8F<6g`>DdFu`n{~lqq9thKzE;aM$!oZWHlI6lFGk!8U%~F) z7s-ZyY_K9E8xHeO7OGPX>OCQPUzxpj2#ruSO}O@S$LvS GDiXsj8=ZSs%8)2bBl6Z{Gf`~@1;gKG7c>o$eJ zS75j~d2Cb*r$n?R`vM!4hLR61HXfqJtZ)du8Z`o+6n*av+j|TM7RRzyG?+!fW~M<;RvU#3ue@*Mvc+;9kzmnvb|g~ys1hXTs+ z*v^CR@i*i}533&QT^*u7@$U#&ZSfmR)^xR~Qd<@T==DUQ0tM7Fb>s>f%g@7qQ<4Az zR(NiC)A#iQ;Qft@(@3UFg>>-rlg}Vt#pb6wA^w^9FK>zrI(@fVP13J3zEpq=E{>Ux@5TB_v?pztQ`|`T| z9kZTk#7l%xpsdi>=T@`TpG%DH8MdA2`qiI>8B6-iYA@#XkVowjMS|XZYVCloR8Ck3 z^iy(F-eA$=x$fa1zhh4}aTj?LJ^n3s#GzSrZ}QuwBv4gbmRD2Ud>LVX;INZC0HgoHNBiOW;0#Q-B2?^ef_ncaGA=nrH{RWZtYKdo@_J(e)MO5x~ydC=IZ^ zlpbz~F)Ng`SJV*sDHX9`j9s-TB(q3zJX1NHZy6eoVNp0k)6Q&<@hp1$rg3>j6poXz zR2$K9-H28h``p2HkQo%M0<`4r_S3JOdTH>Aa7!O$Zu;!qIrSKSsmo+ZH|7uIX+F9I zVSLombhBlX?Js=QN}`8v>cdCrMPxE-X@5i@P2o_5dq#ShpH|8k)jT~HNFq1{NqrE~ z^fFg|OU;LqQSx$h_k{Nmqh9m%91~y9k^>lXab*lOoWwJmMow*1C`ag8XBs!Z>(e-m z#%ylHRrYXXa*70+J&5zqPyxyv;YI=tW<&GygN5b0cp{G@)NcN zajF6M=tds((>KK#YU}EUV52(c^PZlOlLV{v_2OXKl`dN!4i6Pxsgd$9mI(?-o}Ih^ zuX#(kXR@`~^vm&Rd@h?Fi+H&fG}*aMkEY$mHxqW3kC~o-1fxv4*K7zS6>02iij$Ke zw3FOCG~<#5r@>rK!;=@5nFSJh7CV9cK`o$c z+H-4VpWAoeK&&#dF2^78dqA1Cq(gJzo4Q}cc6L-BK6ev$3N8*A8vnfcwr(vN-fB9b z~%f6{Zb&pEtvhT)n)e>7A41Y@M zqy!xH4}Xr&3E37on4p5W2P+t~KU>MUEnm^!sS@*l*)zI12*@vT3S|#ccatlYh4~}Y z0k{hkjHw$hSGXj?aj*s~p5KJLGzZfGzNy|z9fl=I5r|4S| zC2QYr23kDsdn&fW)6+!dwk=b{nPvIvf#{pw*I;$NTmr`YOxv zdXoZ8V;+~=7CFycIGZ%y)q#l9B?U&hJJGg+a8PY&CqdS7O8x^jd9~V_b0t2f_%*(L zjIy66>E3zJAa7!7 z3OqatFHB`_XLM*WATlyFF$ynCWo~D5Xfhx%I5sku!CeCt1u;1}HZYSh5GQ|(^#xEI z+R}iF;uf3)m%-iL-QC?8U~qSLcXxNU1cC*ECU|fS?hxDpclJJ#eg5~V?k%c@`MP_x zt?o6Hq$=u+q85&3Kq*HDH%3+_7CwNuqM|G-8-Rs{or#5o4T+Lc1LS50{Er-oQVZzf z3UYMd`-g?N3((XJER!&G0~>!TIywO4-0c9Y>;P6SK2~l%78U>-3k&am3>{tg01~Di zAPayZ6F|<<0qBZEDemax?E&}fPXg!z{Uw8jL{g)$yi++30V%1;910yGEr-JAK}muu_b=;`45AF>2FSXlm5hK0Km zv!(;c*&Qe=@oyWj2Co*WmB# z=mC(Odp!Or`S`QKN}EFmMSuAoW(?~?zk6ccmw0{Akr zvjP~|I9UL!ENp*V0B-OX|Nr%)VhZ|q9xQ*($~ss&f=~P_UvQ)Tle5Rahk)ka8$t{C zUuQ~=;L!yFX#PyP0ShOKIrxM1|MR^6edPb&nE&PF|8>&;Z$?t?c6NX3Y5ryK|D!jx z2ibZ5+X6hg?rz{UP;>+@gTwzd)dv1+cNKvaAb0!!tCfFsGX<}MsDl-Fq#0Q`m{>Ue zB?q}mfxLhgDj+v=>wk^SzvP;KEu0<50jT2W3i|7b0iR-F`9C`FmYLgvpAlE^Z2n7S z>Iz;tx4$p)F9w2_>VNZ)bTD_c_-p&vIJp3(E-t3tNZ`u{6DPoz6}+YvK(D{28^Fxu z;OGWE0sw#4><_SXbV2&-qPaK$%%XpZ{zcpXX7NA710J?N#0y}S{4a5{0GOrz5G#OL z`VX-Im}UMDJAhgC4{-pP<^B*jy8IvF0x&E5A#g5=|0N!9Je5BLj;H#E!12`n5ICOt z9|FhI_(R}$ntuo!PwNkX<7xjPaP2z(C0?-3^uK=uUTkJlJ16Tu5?-*i*&jVPA2Xoa zKh)sXng5qK|03|C_78{PL14D{gW#MkfOc;GGysPL{y}gVKqv51>FB`v4;ye;%YPua z4_1HhFEah#px`jp|3I))&_58|9Gib2xC6HTKybl!|3x-%c6O%rW)^?EbAcANjDakn~w|0LF%6w$!90=vfEc`(hX%*vZA+Ro`7S!9h7&$(R zbH5C`HNI>2u7CP7O&+>pooJA1gHBa3+-Z0;Ut zx9`qQqgZb3es~w&;xp}*8PGdDIFX=#@{rBbg{g5X8pUDRxF3wwSx`1Hi#Lv2c(p1Y zt1n0q$sviT&{aWo{5)@!J->e!7DmO*^?^$0>b3nzf+h#iKZS=#*Wz%Lp;-GRUCg!Q zBiTy#jIhHpZ_cb zc}eE}&G$zan6jDt0~Q(^OBn*ChOf7NTn&4YkF3MXrLrQ*&@CWZ*@_-fuGQ!O;l03+ z*Hv7e*=#}uEV`wwJ-<(cre6_7)VC|(ZwYhd-B+6u)GXC!!pw)TW0p4zVCuw*1$%nBr% zoGeT3Rwa5sN)yU;H!AyJZCXN)ERXs$L+t8)k)CTWMi!2w#)0C~=OH;|h{Wt;kLbfo zm4g)tg7nZKSxlnx%;`%=&GluTyLXr*^sW6q#_^QnEX>y9dxU=j&ucbn-` zSliWo91TC4mePp$ zm$ukvK?5o$=XyD24l59@CL!s}5@0MQt=yz>3%@*H?+tBOS>^L0JhIKtutlSWX@5*J zvsavCfab}gY-E25^Ui)Bv@s*x9M4CvSfrJb~yby@PkE@dKf&Du?J& z@?08@U>v`meoeaI3Xx^&{Q4Sc-4n`X#hiq@rqQpuIcpqvPBJ!(3CmF@zDwxfr%V?8 z&VEYka6Gp~0(nLBw@ty*_z?mz%CFMf+=?~c?xnuqm2%r(pLH)W>*=8p;97-TT;spe zSgxCL#brm%-JlcXWNn{zC{5<*B@wwl7VvSqeKQ0nEBQPJOJnb3C1 zawDvR586|k@qDA_GW&EfKseO&D{x}0U_!r+ag2Ym!%)zAy0T|Vp0uf=&!Q@JAWMBy zd$RS#`AsyUWs*HI6$?k=4B;E7a@P7q;tusvCHNPo6GQ|b|HfE!@3g)mb%Z;PTfwv9 zt7?28;S0AI$DYeGIkGON>(T%zN7*dRuO%0K%~t~Qw`|v7;$#Iv z7*DoD)TD0ECgq;L-@gwq#O&^Plqm^2RK9=QU6SHBuBGg}s(^dggn@MsQA)3W9g^B*fwMs!(2I|BCnHXQ3Hn4HsxMcC-&B1r!EDxaElpRJ|XIgunCdW1xt8FW;?Wzd~1GAzBSk7 zF&0dgrKVfouu3_-ThG+%H0TWL{_b`(MkqB*IyAnM0SAMFx4O(F$5RzJ(|UvFIiGHi zM;^Q?=O*kk?>(_9Tmme-I(}W~;3a?CesDsLB!7_H_Ez&DQCl3~-o!~IxUKSzXGr6~ z-Wxy+9oFW!m|o$tsa8qx(#ua|BAiNj6x;sT)NkL1DDJ8@1nIx2cNBSVj#F72jX|)X z*`4+4c|iob0yDcBPRi~l^NoE5@_Pjo&Q*l=KFYz#iqsDRH(Mt*(iv|G@(O<~j~+Lx zy8iLsTZ8JQo+a@n7Ibyz5wE{$G5CQdUw7w1Ml@Dfi-Pb?HO)QhD4@T4gP@Vol;C<`ZY6Z!6Suc5E&9cz6 zCFzJ3bH;GOJw{q;+(p~KvTV2FL8i%;@a~v<>(wk2o#~b@;F^|E(PF^m=^zQ|i&f?9 z71V+e6>G;{nFN+Mj>7XCJ$8)4RXH6DXQ9C+qFeDfseI}!)BC*RlXJc%O2((W)y8vypd+k#Hz5tf<`_LB`KppN!=x^AFi_?Zakyi zgn7*}V#D}~^PnGb(2*fMpA5OW=AN?;oYJv5TlH{pZ@l8+xNkA1$KW39w^prmm*R|yR3K1l@zkz+gjU5 zNgk$yw^S=i7my?1!jP(IXleiT^t6Z`H-V2#;qjY;lMPy^GH@h;}rYk-mw~I^_b8Xr8 zor~R*sgTxUli#dI20|Jzv1J~7NBKW}!zq?hj0plVcs^e==?Qy1L1FP8PW*nLQJ8B+ zPlv%URi#F{(xG9BKTiAL@Ojp?VryiK-+|Dvx#6-!Ts40*Jl-?29J#-#iy(0Qr{`F? zY&3)3F780zo|_wpMG(h(C)AC-kSE<9)(&4$2L3;@6 zjH^T1V4pQBX^ICyQQ5{3XBks+eG=VXYUwY7kuzAYIo7;2g8@{ZlQI&?J5*kO=8KD{ zFqF|)mtcQ2PI%e6L61b(Ow@g)Qzgqq~&yt;!U)xva2mmvR-HU8|B!0)f`mnVYi zP06VqaV5zsOn7Xl1~z^X>y^ZY3ajakq36DF<$r%WByURib$7(@i&>~ldJ)C&9)q(v zs*B%bcFP;x0P~jjkT0d?XyEFig5vuGBgUl2{B=SKh0Ec^Q}g!stgM=~s|(H3kzX^Q zt%heBm*M#HLdBQ(<^8fxl@vQSapG#5zn5$3ToGIiWvQ~q<>*h}41;AlnO^fo=Bnw~ zLt1}(EGJh@2u}Jp#0ZL`lBCWk16Q!-kz^Nde}6O`W~CKIs*?2GJzCm;v%IFUBleDE zyOEQ~yt4m1yTWq5!e_-YYR7TdujryE>gt|kB7khvP(x(d&@!Hk6~C$`L%1dqr61H` zXxQeZMHd=T^&MpZ=8P;N1|@Wz@0T=JD6xO)#MY~4|GYNa9GadWQY+9m*F0~ds-)8A zF6bz> z{_rM@N;NljLN61sk44oD)2+jL zW;fW4n`*c6Du<3!6F5B|G1J9;#un-V_xVViU!_)NbdTsLNaB94S-shGgqJ(WH^~yD zpBien0!MIe3oC=k2}!@TXVR0U?goF^1zK}A>_?zJU2qzmla@oSi)+qyBGwth4v?h~ zEV;Qedz$TWE9Cy%u$khd3!d;CUv8%<^${hWNblC0lq|j(@)|P5r`{!&xH|l#V7^<` z8LaKJ>0g6x)F;}tI2ZhMS&-9Ofu|;vg?Q%bc0$}^-am&!*Zj%S`$x4{d0Bth2!iO* z9#0axs6JVSl}%cobr9aN)z_8GvYqK$uM*Qp9tYGwjMMVKUET2 z-+lOC?M3=JQy=3MApDz5Mf!ieaz2ElpSMqv{IpoXa|Vp+8AWD-`qGwf#p%@$Zv+)a z%~o`!5SQ$yqI=r6BNdyc)q;}?IJIc8PTCML@+HER=`W~`3sHhbzc-2Uf0?qPT%c7* z?}y}N)uF3WpQEnF$YFpgEnHd|Gy&3;nT>z#1Aa|x`2teTF>^q6zAvoiR}gz}o!W*q$VT;-N3ubc2ar{# z-<#L4uaEo?9tlic-&eh}pAB#wsOLH(f>5^R7#Mh8V0Ycex+LG)u`$YivE5UH(m#EM zRN7iCG#~&Q>2SP2iJ_PEec8x?=^_5A`-sp9k#VNp>e z+;$MYb z_H13`7P&&Ib_4=($aRA36?5b8t!KqW&Sxr<@D;Ayr(qobs90WAR|0`$18K>dxJaEN z%^_W=tL`z@=VX7}M7}TUL=#HQ^%3`(3dN#2i>QZi@7BW}5^(C*0Fp zR`XI;6zaQ{cJ7%Hu+uedmrU8H^Sux`OF>beW6b>_-$Qub^Ib#l_qRx2)s<7u_b?Lk zbEqC`P9t+8cJE*^su`$3HFi0H!m5u@NMoEvEU(~quJ|_hta#=D8_z}_<)g8c*L#(4_0(ZrH_>QMwq?JBn zetu=EvSWYrc$Gn?U2zw=zO$Dk2)}X0pN`%PD6tmA@-w=H{LJG=-5WmVFW=9Y0&2_J zMw0})J#e`|Ets1MPhv=a>?KV=+&~8~ms2vsVy@{oX(w+;&y+Tvh;2khv(sWA?P=CN z&2|8hH`&}?`4WEKrQfh???7pJ4TE-D@2++ltX_ZoN2#697}jRK2kR5{wWnsH2 zM$J{Bu`4(*9!e)43l1 z^L_0;MaI=WxuYE4Mnlo>Wf7i*B{Kp+wVB(J=Fk|+O)qn-7=|AzIN4J&jNbM?vld`( zy=i}+rt2Td&IXf5iIyLU!Gdeogj;8niPsrbyFQ4o3Or0oUlE|UCgo~NB5RH5&4HE znWN)rF@R4qL}hpe`*iRTL)NfK7|WTP;+}sjZTOV5CH-y6^5Gu8w0r$W2-6N*N;ZV> zQGTn=S*A;0d1ga49F(pK&u9Ic!x!qy6 z?KsWWrlHQ4#id}eC6)4;XxlZlQ7lJ}dwyvUw+rdF@i<8r);?BWELaI#f2pt-h|D;Y zR4ib~TPVXJ#-$BD31=Y^%glMcdGt|jZ4 ziRF2MtK)WhEU9|Ru!nw`jI2B2;cwq8ch=ixvv>=~XoCVG__hDKe&QdA$3H*HmsW%r zm^?#NY|!G3a!D+bwR|)3NC9e0=_>^DkBomK<4M-A%y9+XsP4j=^{{{A3;7d1+70Db zCd>a8Q_JKjMRJ06#)^pZ2OiBkm3IX{#P$wsOUX%cx#ttjh4#{lu_2>{tVaLt`yrYQ z5J-crd(LO0(#pc_8+g?g$Rdr^&ncZ9B24g0=)KKT^p_n==umqUkZp;4fN7tXmSdgyJTjXuIr zoZ=P+Ggxm-*~h&(>sm*0uqutc*KjDakHJ6{ZWy4ch0;80N^X;>F_%?9z#59&O@Dkh z1EpcC?iYt%Lok1_rcDcqkU@5AfdWbqH8^OukLi@li=Ww40uhtsziU(~D;bi2s-I-6 zcpS;XoEVI44?mCxHn@FSrr1qLIQFe233!|p8tM32r0iA1n=`|iXb=;u(CRt*BoXq7 zOet~DKzsv5PZ{?88%vU&&SM2>@sAZU~Md*^-R=%LOny?f4Oo%F1bd1T7d&&TX zLsJmk>TsHWU`~3yNf1w+vtaGH)no((cuw5NIQ)gnR!6Jf{Nr@_HP{!v#$8^GukB8} zZ&N4!ksm~fjsmZLgfToD1p^=l+PXFupVDsE@yGhWurxgO<-c@I*S(=J!6j6p&dz`D zY|O^`+z%*2x52hsq&Cl|TGv+4L@JF?sAt}V85AMd3@~vDZa^dVguo@e>`Fr=EtB1Bt_d6y%9ZR4UCC@Le{ zAt+iXFZmhzeI$9pno%>|>C?m4mosm=rIF4FY4tJh%}FYK8!|!ExfQ1`;^WHlq$jHd z1gdZhD2R9@38=@hbhQMZ)ZTKU>h@w}Ysb;?lLk1glGB|z>Stx7F+SV;s@i=(@)ap}C?WEAd7Bl!!I^twQI+8uZMX zCDNAqpyz205)Jxa7sYsl0J-L+54CLLB@)Jek&7jsh#Q!l58b&^!RzD3{#Ebh z`vWHrNSKx#o~FMadQnz8$`w`Ia6UI8l~$PmHGM=}^_*i7;Ur$dbD;%|(6m@|AJZMr zsebulHyJi-8hHF{FNA8bG(bSRi|Qzp30@|O0ok?!zHP+^>e#2bSvLw%U=f%3zO*S= z9ea#_n&_RLet$Zrbh9*=V0fpM{8lXTGCYJS%VYRyYHw@Z6X&Bm*P;35nL=pHj6&Xn z7)9RL&l{1buAeuWndfk6jbT$~6Ez%BLu^CP%sSBl>BzY-O?#S}2>S78=$rd0PAW?% zbVf0otFa1|6JM(d8{QOs(Z7UBoV4Va{(cO9Y!@xhk^<4?EcsQBnJX(s0?IejGL%fX z;?`f+gs^xgX|)xP#NwnIB2i^WO)*QB58;v)z4xling|5AQDuH<63a<#Y7ihKYA)I` zN30*={q9ujv%Qp(zVt%3*C-XvL_7NlfsE%S9_NFbvpJ1>A{El%!NC5GvJf)tvGIg| zFT3{gy`eS5rK(^>AtxnQa;l!tavxF5_cxMDVm%6dNnG2QZ|joWW8pRR4+V+2?+|S6 zN(?}de27MdaM+qy?CjO8#3KV^1#7-NPsm&0BU3+ybzj1in^!6V1tAAGc(ho%4q`cj z87#g+TJ%5yg35YuH!|5r`331QL!DWFwEaD;5*$63XRz;xs!mtT`2E?RRNg$$9WK8Y z?ifK!TMk`(2MGQo>_2F5fBt3>G;}?fl(lN?enzSylcA{1+*~eK^orhd<{e3_i;>9u zRS_5jTYDVU9X)x#B8A2Ksy`0wpRLiRjfh6`23**gi(75Y3J}kojt&gFL{G?n;fq*4 zjB>I=T@fF7Rjssct+;i}>QB!xSC7~Z`N7w_hOjadBr7ki7tF@24NjhJzzU4NR}RSK zKLb7b^8YN#MD(-JdMSELJ4i=?;u#LTwGE^T)cuHo;{^eE@WvN;EI71;udqT$d$!g2 z0YgU@WuF1=vOQlVMtKeTN9N*x(MXhJF7G?NRP-ai9TJq1TVRxyy?Gxj)gmx0-2{x zeQ)T8U(Vm!pop<`S3;1RITTuei@-l`qP?o33{0+UGnu$1Xpi(Lgu3^v} zu0fyUR)CVht-Pxt!;)7z;1DVi0=eW(@?x*AhZqeR;+DA^?>kam6-#I3m9R5}l(7vg zyEONT?Q?j#h-BC_x>$#hV+w!Dr&_x)1Y4tv1<R7Z?$}gMht%b!b(gYvpgtUccaS z#Ic}UdggX_T8ZdcD&6xSC1jKi8sQ4!sHDaK)QV$-?Wdfwd`QW#9hGX!qk9*{JO+zy z#t=VzeeT@H1!9f1N6%V?rVZUPrF~7_c6x3pFi0JE4yQ(9!vb+aA=7h<RIYDddY)CIbo*3QrV zfK-O7Z=Uh~0JYEE&nq%aCkZKfsJYfudc#!slf$aLrC}-c^N6KJ9-p6novcC!^MS=c z$h>cyQ+H_=D#$pC28(>;M9-$QMRP}JX4LvE;3r+y9>g<$76L}N>LfK=c-hFG zVciMqw`Zn*JM9qHAQ_)H6jM;oRc7yENA?gsRHE@e*LnvvH^c4VXq{sOrKZjl4rW*! zef)`p^lhc**2=tnFk&5B52lix6$2Y4xv0wSGkpzCQLsm_w_;@Z5vy{S>l5`;>5eT0 zi=V6QBky?IVHRd1k&owmghJ_B@gufEVk!w}1B)AF_%tky&AlKPyH_eGP z(<8ALjoU#!NE+q&>3x#R!K9odvH6w$jmKGkhP|eTYKiKw*4K+=GxyQ}fjGdu&eDmR z4iAUus3BLl^gZQM@Z#Njk6sOou@R(W(YIuND<8A(;l4?`@1yvpV-xCYywUA=tFK+j z?jvNHG0;H6?~j{_gqOIb{C}IHwJhtsQ@&oTU!K(KFn6iQf4FzL`T{?mo6RDbsbgk; z;!cxR$4ut!ib)&X09Bi#pBHvz)9m3+krRI|e)M5Y{%7Or3V+Q2I2lMtcR z9PG15TF9QqI|V`@Zd}+Dn4O*?#^Grs)X3}kd?5>{&^t4boYveB`c0|ElNnQ(&c~R!?e2Y7PjwC!px6$_>4LEAa5BuWm|N z?kHR6IvVvF+=+3`FHOva1=TX#l`DJqbehUzYNd|b5;-sNeDj}=L?>3{msRN8A`>y1 z%bVJy^jG)vABwaQj3H^{OVU!sMCi8D9Lu5G^DfBYc*=0Ry)$I5X*qm+x99R%_)Bcz z1McKx7^P5cB&3gcx|tb&wQRqHEX+1%u-;}*9I0zCq1$rp_lxxhd&mF|&bCq+S$OFl zw&4W?~o^eAnH#BUED|BrvVR=P_Sd<`TH$)A|SyX z$=k+TZwKjWs&g9!E;U3tI%~r@?hLUa1Ue=_h6*H6&zgSBQzSGZuVI;8G;25T;v{uU zok{1lVNaVb!OMvJ(7DC@9+y_Y^v(b_CFgqpNfGsb+jG5tN6MgVW}wwYt9Y)N4f0hL zUHGz~;fK+8)AG6r&MHP3TFtH0E}ubY8d2Y2rgu5&C~ZtsEw#Q4h%J7EPkrLbdWT3< zbG5gST>w?xyP?j*dqrkK{J<51;6R>xsn{Eqi2}=%34wL$U<|+OIx~wf>y+*Wn{o(g z7jD#lQQ6vI)P2oxVA!Bu;F$lk>>O)i;c5zO8_!?@5N1iUx*rC(_mjF(X~gC=vik)Mr2&Yep+ zNafCO_Y3CU+Lah@IdWu6chec8|Hhe@`l#%GY%tV}pDT|#HvQp4>i23*Nbri!cc*18 z)nNYoeY@~BuZ!bRTtKRNo5F&3_m%B8rznDvYpn;u!ZAlUvJc*;S8utZ;CXmMwx!e* z3v9JC`u8x+quG4#mY8g?4)Wds%yF(Mp&Qi1OgVG=coPeqXnx8$Pf2etX zq&D!G>Ur(ONR8)-Ak8wZ))WYWFm3Qj(lbNA-uroteU==FdYj0qbUp{i@$p3JV;Z!> zw)Id5 zq8kK@M-sAX7oW%P{Cn*hnHW#HaTP#+&hIR}K7?Z1Y4p*w zP4YDS&U;~+NfeJGF6UPH`s2Ox{iDMw*8DAH9#X3DbX=?qhftVG?VMdtbjt0LyjPwcxvNaIr*;)O*RjI4<9dpTdWHR+cknGAgm zJu=J3GFquJ*nDih1WpODo2BW0=KXXWi-bRsRn3bViG0b%=6QQGnKsofZ;=q+qYg?F z)~$BX&L*mCIG)^cwPhDHE}GL8pUT_77RIR5avzTxDi&2{Xc2t4mhjh}ddZaN`3Box zvaE6}qd_4>bOICL`m~K6zw+TDb%k#F-7aH`HLow%M^n$9{2%={0`!l6rVeN8N;aja zHBw{^1!v3L(*5ExfsOCk=fyofq$JD#Dz7_<5#5{tAx?c2QJz*x>9BPbGBsZlCguwM zweut1Xff?`PCxV=@$c;olFnyJ{p}t$?oTOPh0XP>PEu&OcuonUhO7j zWzvOv{De{0WsmbnY7GTW%zS-qV4LwTLCU?jVO*y9))9*bQ}lWt`G50 zA!FpA#|CSN%;X8%3pmt9JA4=Y?$qH&9p+9%XL#;cXW@|m-3_zY*l`Hmu)Q5m18e!}D)an;r*7hiY?32<}H#9Q3Wh2fSl=>tZUpLBd=iKuzs8KblUYr+o(Q-*9IhjmXck18Ybxn)S zQ(whDKd636Te((aRaG*l8rdY@^5V4`SDkOUE7*nV<4?Nw#FXAL%8q8zfwk?T^ntih zkV_0e$k@DpV8KGAV+1%8OBQ$1&nmW!h744#Ef(`r(^f2 zF;mfTB*dk;N9AQ-9S@6qanup8TX80ibInVA!GAaNIx`fj-R+Y=x}+YhpB0{xibqli z+cD`B9EALAchixQG9je&X{5#u27|e1_HKE9B}Bu2Vrp2e4FfJK$}&)pe26L+Q3vV8 z<0ZQjd)h@yIY?lwBaU<5x>;Qy#$Nz!7>}3)oqGBg(0b>P`nTjBgW6zSfpK0c8Al zG3RI-VwyVEV5OA9AKTDe)*)ebPsM!DQH@b2S{!DU#d88eKA1cDFD(F1-A(RpQT}N) zIQRjh>hDe8u7uYcbs|MuoFZ%h6uz>PqKJKe<5a&cik`)H0Qs`rsuT?RIO`GkbUk;D zLKUZojgi4&E2Xoa4%G(U!&#D3%;e*I*Q^hI=bWl+_1WALW;!v0naUwhYR~VXtUpM?T zdUBT9-xsK`{G0>6hJLfT?HB94IX1&0ZUiV`OjIn|F_Z67ofk%;CcV$LKYwq2>|iSG z5S@zhM?auGqY#@;WFJ5!WOwXWrVv^~0!)Pi6qk((HdblD}9BYLEV@u@_U1P&u!U?VPd2marzCja%P>9 zrebu#$<2P1KSi|` z*@)O5$K|tVtVbP1et?`?AA>M|+LvOCqE{9P9)sBb=#XQK_7r)o_xU^j7Yq#sf>K4) za$gUcFLKIuJp|Fh=u;x|;jc|SztT*R$_QSLG!8MuGCemveRcSAQ^%h%=CL*zZml;( zhUqkbHbuUe*Fa8x2@6vm1)|vpIu_H!0ix9|Rx*Z{`Ai-yV@HwAih;9#cy#Ztq_{b< z6C-)vUGOt~9O^$g^;=h}6pm;QTK2%h*ZHh$5eO5G@JaW%!IRHj+{|-1jM|4Sl)aB0 zyFq~CjH-Z%gTujnNQfdLBd6HMc;r;G2OxS)ZE@|^e1Gra%IgUyr;<>&`HjaS8o)m$$ zBb>H(bSAcb{vHi!%Pz@^n1eXn=10wqblD%KyR4A?Z|vR;G*~bF)G#@n5MB-)o*{LK z5u$MtGxwa6sQ&54iYWKtMUX{XHQ*Duh|k+Qb{#oW);g|#53~By_FUnyeI#nWDBqQS zy>I2KKE92duRU87F9o(WJK=gDIW4gCaB_6#Qoi)zV0VY2hc(s2oLStX(uWql`*JIz zU*Kh0gMvc*;>I3PZtR$LcO3y<^bm559xQVD`L3{=umLysoa^v|9?% z^iw~^itS<*HqI{|j42Ai&7Zd|TSHh}xo^eP@5IDunZ`FfHU~2=LIT3AZ9F{I_gJ$v z58zSQIeBQ>_^T^OKSsmF3PLsUtZ&77Bc}Ummue<|cPQ-vNn<`;b+MJaUrXULL*ptt zFx2EUpgSL(t5u+f6>#++NAppcnT3$3@!L6DVA@DuE$({1;ikVIN8At@2Ll@%;P z7ZbBF9X^yDxtqEY${s2Pe(h}RYeJqD zo2Tf(@VzTQo`ZSBcms0sXM@lZf&*__g z!jP3aFOXFlGWi=7{@`;6Qouu#3K;~luA{oj+nc)`WYd626pqp;EJIB`&-`}M*9jD2 z=Bf*qU>HG`4}+7ZKysqSr5|#3X{8g*m!T+w&hfQX_3CjI@6o6AilkA2-__qfvDpJ8 zj@hw4Eo=&lYzkwKUC(K7N!d3=g&*&Hw?M!vg`U)Y6|a$ zC|Dd!^HdWotV_3QER05qgef)ST|MBRjG?yaRf5-z-S$T+TqqvKn2}+SH#X~my{wS4 z2g^0t0R69o2}x!|{7$=O<1mLb*tl5RO7e5k3}M@$ufi08s3m&o*!Hk@C)D465O30E zPQx)w9Vrz=S_GL{PD{F|57W@C;dox#;No&0Pa$`rkYC22t7q1XNs%San%wuSYkI|j zI|OGbmG-yN2g|Hmk#LiFaO45=x>8qU%-I{q7u;V_vBq3(855}sWOcE`uHN?o+BuOe z?R1`B0QW!PymJF;TRfj&J7Qmd6504Yt)VZ_nKes9+NF#;EzYB$){kM7h@Cn%m=B8R zR~saZtPKrb;_rm@MW2MXh^9%XL%ev{p;(R&b&ItQDw+|t4MZ*{v zV>`?^JR?g45{d6Fa6m?$;RFTuc?MNqVpci&Pcsr7n*A&s*>ydEz9f);d&yoI&H;1# zmV6e>i`1CK=@P(B=gr3bU=6vgWegf`h5*`$uNoPt@)9I)71W!)#pj_UQ?lQ4HQ6P& z<4V4%+jlK;YW7?_S3|qHQ_*sYJYAGT`B?bE=G*RC$> z6V53XwCqy84eZ2-C3#kVlV=ANAxVemV9|bz7zCTUTz}{NZ%GNhjrNNndUicp-H#{D z_L=fiWzg)Nju?p#R3S~%$efZy#vDcPShK_W2WSht?~)SXcHnD)*maT(AA!Q0~$(!I|5DU~ZXY0n<*)w{ zu2sYLK;Cc-Zq5CNt`f!8O2oC-+>HfPKPl$1%xnmq*6NL9g6%wZ9n=s-yBwnF<(c#%f=A?1>~83L}t;J;>6U^0sBIqZZ}i! zuaujchIc0sE|&JX9?pHb?ot1ONoiv)2rTOly+MC1t$$L=Bcas z6ggZJKNwm5^g(yI(YP+oqta|tf#eECqDTz(k8wHq;++9S^~y&VD;*S&I!(pWO2B!YP3 zS$=lp4fkw99%7niY|qOba}Et5Cj2XHT-a#$V`n#mUnZ2%tu1F&1TYDR)E|5@^V>+G z9#T{)fvQ@I9u^8@Ei!$$Q0wCOTaJ9|>brzch%G#SOD%b$!HDsaL9oDF4@lwV0FGo1 z;6Vh(RX5fb{HXbZ>R)@(6lFceBDaL)tXQOWaOesWR$9g^N!h# z@60{2H3e}_cyksyTaGv)2qe$lYvm0wkc~gC7}x~iW!8Pl$8H)Kx(!%7%x(Bx?zy@D zT>c<`);eD4dkuZ@Hn4B9yu&kf#ddT#_Z0nGov(6?gT^fye>#37aq8&R=FM zfwdy=R9&%z9C6uyBuE%Yey}WEdz`pG9>j2?Ed2MZF(Dc=6k;u=O7Cv{;IHyU`trh6 z)T4w02PcT}bf>d&Xze7V2(O*+zp1`Fr-BMRe5*rgW-N;_IbEE2k^4k{1Ux*Z%VYS6 z7)e!r@q>-uSpu&TLsTM8WTdh5*y9+Rt<`PODLsL>_l|gfESc|6P$5JP7d8E4yEDvq zc|ld8FHJTG0qyl~2}w0CV|p%~OUYR*EKXl6!;<`FoAxRe#uF(Y=k}%L9v~YoA`Ls> zs#JgXsk*-Am&>a*h-kKdE3Bj#&}pscN+S#w{;EPLpm4Bz7Fa|mi?;@qUWzv!MQkydFfvr(>+lN$y3Ri&n?{)B@n4ea>a0L(g zUXul$O5-U?eXkC&DhHoxvfa-&ZEm5`!oFiHag|OJv zt!ifvf2TewXS0HXkP9m{4EP6YZxuRGJ0aF3(#fuM{(M&z#GSWK277Af<#{KiHR>W< zwt}E_glzbktC**P73a`!$Q(vd+{w#DD243jQ;>2IxfUx>)G0&&(hwgI?qDD5rXw34 zFW>6+@vk5;%qhozKJryo_#MoFK61*ZRd>AJdr7QM4Y}n?>Zvlx)#KcvWW5}D0eq)4 z@}18!K^qzWx$FjVST5nUsuDirEpk#zr&XW=ZS#)l+t;hHX?|Z#jC}dprYVz*js;|* ze3+DN2)XNwI)%=H@=UY(c=cT(f_BeZWa!hxk%p$2Mq>j}(ZrJ6(9}Q!hJg{8UyxKJqWpK^h zw%H$iR`wCB9cQsuw=RZ>wV?Ew(|UtVAvqLI4YS#Q{sW%t37&LSkY0v2yMJ5uD|Z)W zIEZ{SpW!s3rupII1~EydU-NY3$dp^m6>7vZxm06-jm&q4pogMf}+O4@tpkSXNk5^eR{PjefA!#vKBz-!e zyNfMlI~p!(~7`l>?xA%jwLhRF@#K<^xRLdAF;=b6-Pg8)-BsClfrK2~=s z#LD)>&q18I(*BWmM0V)W|2KMC(|i@d17{-C;zri1v%)^S!BICpICLX!Y9tgfY9CvF zyMVB0Rhrws*FmM(mX%-yO;caex^+f0j_b}qfGTt|Em1lwv9wW$*HT+~xLgtlzp7z}P({PMW5 zyP`1kD+aA>X9T))urCuHy1Is_-z%Yi@3vePHsHULS1qYj_K`G2esRyD+%`vN;{=$! zQw!xz-f`F5iBUq;uP$O~a|D!U5MY}+x;(FfWO*}epADKSXNLWQ*L2}cU{NG0| zr1TzBcyfF_eO!py4#E258iB0Xy`@ z<27u8nzcqB9C|U&vNNWdyT=j4{Uy-cYVXX^V5P^`p)?<4=@T-4qpr#&^Y{+83?+2n zp{4vn)p&7LT+NAdI!_`)#t+LxGcR#$lOS|~QE#_smm@AL z%ux9?nVQT|3)Y@wutF7|t}LaUuB4Am`+&X;IVwP0W^_7lMb)phx zxO{_!lJ1vBt>>|S*sh=?Zx3%g{mVtMP6#n6PT{2nv17siel1?SHmX6WKW&?<6bUg` zA!uj4Tw6q~2ZNE?=&?pioiipeSZY#(Ls4f(q3oq7ezB?&Go_5QA^8>sA;-++m_M9+ zZpe06*j9Zuj%uHJI%Zt$^R@8fp6PsiU1KHDiEBi`*xfpRXuHiL#Xo*370qo|aBRHm z>1ZW|X-|3=$JQ;rbHLILKv|v-%o9$I^mc5!)e*rSS7|Kez%A?fxq-=Ekwkj+V~EnV{lNFDuksgk4QxN^h<|2>maka= zCJ7>#tIpql#aY!tiQ0eV3=4hxk1BpW5|JNNLl4%BLnNd9MyTH`R1yv^%b+vcg$R~c zNIfUEDv2A44mP?a09#fWYw7=$If`m&pb6zYb?QU%Lf7N68|tiMS9W6BRd*rK3`l#2 z-4x$rpZ~{=nr~NmCbDYI^*Rd?gEGzB4T$Gp_o!-rwM1RAEhKQJE)rp3%)!r))jRfG zVJ_;>hCGkUCAcWFh&Nj9BWZQv{_0HDl_h+C9sJZLQY|Gm1tsy>9jN&9y$XPtJi`o# z>+;kHuIr#M(fJpY6o1M;#1@ZsT^s}X-Of&okytN31g^)ercpCsX13Zl%KefW=%ZqP zPREIVF=v(!Lb5DCWG(ggTCBDAx$#|Lemh|N_gKge^m$y$nSGqRf)2snml~CtPT@J> zFfFptb9ybXW+x}A;dUV!kf8_BsLMT~|9+RbrbUn^uq)`~0?PN6nDpkc`bdAC}5#dyq#~S`cNlc zJoiS)h#-KKTT@_8Vj4RA5M$8waSf$)oe}rRL3f@x6AwbY9w9-W@QFx?hZTbucB~pE zA%kP!$~VH)bq^}hNQ-IrYAZO z*|``P089)Foc|LDvgZPb7&x0717zs{QXm_k100z!$kxr?+|v_&)EPN=@|c8?myXo6*9N^JK4a< z2xM(*VB=#boFlT^(rv1~$fj1sYg6fPdce4V(?ktqcs`1OA@e03ar) z2rzgj_#b)>M)u~mjt+DV=2m}Er2nhT`zeds7z=}}t${X<4sd_XCt_|7GxxW$bZNHV1Iw``rl;~49x#C2E(6RNgERo z;648Dao^ABe@1rxj{+$FvmIXm|GStR=v}rz0OcQ*YcsGi7`=Zn{(si`-zoq9B>q>G z|2LKY-+{!OtgQZaQ~vG$|8W~wn_Id4C*WPRPLA&zAPaim1DpRF`W5)k*2)5n&7G|O zuYXt4(cpa(1Z_;;)lAFCLdU@JkKNos%-j`dtYGeFWcH6{{;{k6wQE-9Hb4cCgZW=C zm-j3NhX3PxUoa!f_ZNu6yDuP0qBMP zAa($~@P83IGk{+54`Kn(OZ`FbRiyu*_bM`f5XZY-{~%5Pz5IU>2Lpg!;SXX2&@28y z@BNhjp!a?%|3#edlNtOMy>A)4ft9V<9}DMuPs2ZcrgsE%{FnQE2%|sl_iLax{(l#I zF9-Y=e9t!db0+V|^sl%6yKMf1ywf-T7kuY$@h|v3tmVJp`)pSKg-q|wtPHFTjsHx? z_CAi)UmEz6@;liZWy{@Ho{@ zx0M{54F^^BSZ}Z>vbU|H19l>`LzCswh^2Wt9^m3!Dv>vT4iB!P^x=1h`$;+b@BJeE z=7=K7J%}g50$r)LnuqwDU4Q6&l7{MGD2^tKp)8wAq=W@GD4dtje1WC?OaiTLkr8SZ z4|jrv)Sj1iP+$h~O@3fz?FryW&YmR>HVyMI=2;U{^6h9|2p*osyjz0W9Nx8p@0x6- z%pmbJD=WJ4@g5OW4!20DFw&%@`z`W>m+Hpk0R)t-5u!^sT{F2X8tXgO`!-6M$If74}B;2 zrUaEBbbbe$i(GVpVqTE4FqmVx$fHs&EY`dK(=7Dwa)QsCgbs+j5?RLhb{>Y?0)#uL z8ot?Jqa^mg&3I9m=zn`cQYv?wIoh(`)^Evw#KXSJM=`e#hEOGQm~ub`d;#fJXf>lO zr9ci5GY-y@lc(Q#IkxUQIcYK%>0+5aI&-@zZEe#XFOA?vIW#_(TA(*p6fHsy|3xFF3|9 z186FipMdRohvKw=FY}DTZ!9E-oZE8^Lf*+G35O!#l7=v^zd!21v(ZHHa<7JiXeQ-; zOUhlYmj&WA0q9noQJ%mlFebf3p&OxiZH>OTv-j%J{|XLW;bO z|5$+N5S+Nbe|&&Q=K0A>QK zfVx}jz2mj7?sT|$rh7ydk%Evoxt=o<&QYAnKom&3+mW>aH!&@{o+YG#o@8()=4f2_*8wQ5xUJ@yN$_o@Lvhj}rhjmZL1>}T0498oZiNB<`Blq@;g`sI zWND{9RWk5p^dg^DRsp>UA%hgE3#eHS)ws6k^Z-=apG|Av;(6an8M|e0Ls?b3#2AjA zrUUtoWtA{LeON%6Wc*@mmvv`A!?WN|sFajA-6K?};j^TdTa%R2*gSjB$epKFJoFX) zk$*}@y_o+Af&UJM7))BTDJ0+#cQT37?2xNPP zK@%cOWdL8!J3HxLuOiO_jmTCBF^Gb>fMJ%oN<`^lkKgFo4YO!m02n=9j^2evHzR-TLR*X*O~H6!2H?SEUp_>-hd2%r(1bw zauCn+i@tBamH3wW;=|Bx&FxiPHl0^Dy$6oY_n3JrtcnI$%&9^YVhmD6XMfS@8MSu2 z%>j*UfswNw@B=SAYBJ7;nHNUzSh8YM%|anPYWos#-(@~Se_IC z@ecu|JkK{8DA^dI$nxKL1ZhbjYhoyd)*`x*<+U-29y)|1g&}wSeX2ZNA~?2cRnup> za<0EC2~-Qv31xc~K^8=?<$neE`7;gYs|3my^}pi!V>ezR=>Vh5-%El&MI2Df5^UuIE%~^924*2;sPTfqRKdelK?rfV(#mL?p&tXtY zI89P%6ss|;ZkS?TebIQFt%4#+_lhqZJoYwLX|u~oZNZh~Dud6>I)A)nKAn8?<8RlN zkJ%UD2~aT^1UE2lIo~WF8am!)EnOw1*_rjiPZmSx>U9}%HT`3hC&<>4mP>h)Ek3%k zs(;lG$;dl|CJOo8#6#)#0Gv1LWs3~WuQzMVX;=_ycoKj{#}3ZfXOcf2QbMOBI>M6v zOjWg7Nf7mt(v;xXJAbTu0KJHKc}C1l#6X2R4EGVtQM~pEuHy~Us**!W11ZKcZkZ6S zrIb~gGdwUF|6&ex_43L(16pII_~)q2XMot?9Um?Kmj>d&!jFxdY6(9-;>}R~h;*?) zm_-{gy&qXl#7>F;WytJxlWBN^Ys!wibOX2$3bN{Annpjh4u2eUfdPUhe%-a_MtsgX zY$H-2>X@*KWMuFV>vlY*P(S{j72A3s4c;dz3$eg4y|w4~dwwK@@);~!k(tm^vj`qG zC1gGQIG3d+d(vEw6Jvsa+$}%EVc1G=b~u@tDr6g6z}1pQ0Nm5HYj>4CCva(MW;ki# zi~Kx~U{DV>ihufz+MHShBv;TkD;fBP65GQ60r0HXyPO@s&MsKGNX@?uywPk%>#vO?#8j(X)fl3Y;7bi*w( z+PKg*0D?e$zr+!qc$Ae%BwTWx*?z)}{DiJ)sRJ+u!}!5RT(m`s!(Rf|NXGn6XaJIg zJ$j?Dud{}gY~4^;{RA&x7r+s+It+uPd(ks?ElVG70&YlxgX&S?o<2A}Y>i&*Z|c`B zzT6Q!qB%r06q7?~@&G`{DiV zDj(c*_SPsfMe(qx?nsMnD~5}X7`rU6wYI<&4lm47v*V_EbCHY;3{6kWR;o~ew*;bj z(5e(Ec-3$7gkpIB+c*}5dPA!=sPLsEfQ$PYtbc@GzQuo?b^r4nvi#&12MMf!Pl}Va z7<(UIb?^EbZN_D4iNFeSjj_7j@puxL345Xzjo1TzbsUf(!U-#Dgy_=YsUZ5dkGe7^rCfNy+Vjy zHooBIc714{Ua&h2mZu5^nXoIj}7RQyWcicWtldk7AIv0&f1 zM}EmRN;D|&`6dIfAmeI*pb0kSF9HM6E~G$7+6)o8aS&_R*~}Ba!E8+4-#6llOwK3X zx5_HcSs=CrzYSnn&_yLZX50#7B*uCv{(AjMZJmEDM#woQGM772{HtOY79r9KDz6iR zsCao#L%H_ln~fYq!LEPA{&o@xqYEh=Tb-n9Its+7A))Um*NDi_;#6QUZ`(1&n9 z={F;oc`6k>OCP2U$K$GHU=^9CkA+0wcVf3#;1UB(EbG+QLWDcIk?RN5(agu_j9{Kf zZNz^c(kzGlLy}jYKd5QPspdm@dzY$*VZL2*5Ov=&NA`X1x+~8Q=M;7#>+zQJ?Hz2O zR6HbhCwes5y4@~lMse^F>5}Zgp3Vf2v=<~^(xa3t4bN!iIm`*e8KeIuX?}2>$;Mfi zo!se&rwib2jHmX7wfuzaR_VSc-#3mlzT$se&9K90@}N0KD>kX8uqj;-IwT_v5b!5e z?fEF)EJd`IB@5AY7rFoGJ7OW`X5nuqik5NflBW-Qrr;WNcyvcjL;12e&iI-UKTZow zM#<%#R)+({Ywz8_zy*$0`9+>C)x7gFvB^M{cHhsFSTG%i*HdQ{lOFdb1)Mv6hLeBV z63v!lD*JPQ9;Xw@>X`TqHY{dn=eNMUxy%w$(;gVd&>C5!NAk%<4xD^fX7RV76Tz{S z!!$OLH<8Rd7P5jS$U3iFV|4M?1oFPZTy^zX#x4sqtxJJ~0@O zfZ=8#gmi{spL^-JKKnZ>nKXWJ%twFDcaRxB{Qk5i?2s9$_f^1$r0=jkm)%@GsiSjP zy>MwW!I9hp+Sky0I^K~s;)kTk|w_9IE;>#JA|@wZ^%w=n_p)qSnmWLSRzh%;{v zzXY6HS4ZcVtP;8~G!xZYQUrKi*FF#HBd}WiZ&6{7gd~T4nk#!WW0x zS*XK5MtoM*^tJnCt3OqNo&U=(%u1wUGhsTFfrVDdWtEg6k?RF@@wk5nefpJT!u?lw z7!8)V%$N)ej0^PhbZ(lo?!4S&)LV(+W#X63&getM6j0(YYt7A$s!t}n|NhP!@<<5P zgrIm4OAn)cjCIt}8^YOG2Cx3)N`NHKH8Pc2IWOf1N8UXN^*!~T8~YKz4gVyWh@h`S zfq40P3O92W`qnEegf4%T#bAcS$%ASbBQ%%|K|g&8a+M2st-f+YdYoyA0Ioq9g~K$S zgmarKtmuAk+p_ML#1>nB$m!^r>x^GTUq~O5Yy0srk2IZg#e`a95XF-@oS8~HNeo!k z;SMH#vMdK?-EiI;%MA%Ir)zV5b~?Xp5jj*$Kbj|$Z2)Zsy^h*a9795_opba zU3J7y+$0|hfxdC)$E5%QlA_2^=?p%w(6@HeYPnz8>KP~3ZY%%XW!l@YG-y|d0)25e z@cPE*vwRSkVkv)qvFI(5!rFPsIt$_h7tj%u?6B6GZip{~z34l~tNdOf^}Wg;bQ-1$ zITUBzIPr}D6y6ceV|xMZC-qgJxndNItUq~eEz1%N^w~+}+wSU2q%SVi??Cg_Po<*t zgLPp|d%r7KENu2d6gwUJ+85=;p7}`FP!v=JKM<=g9jAXcjXs5}(hKQ6bW=h^MfZ3^QHR+zWrmP2t;KHg(Xs8|T2+=T1lcI9raP2FBa87Hwu(6ODdQRPE7ZOsIVL&@%4>g`ZHRnC!!?AnhCq%4_S>vstk2V2 zh`83>1?g0pwhZfVUef3B$K|Ivun;(t0&w~sBsLWJ+grDU*s0I}m7P(}6wk;f9r<~v zpZW!D(O711OAt$ffNp^-@L@T5a?*mQ)B0EsJ33>TKn=xx-vhcgwI; zF(!Y1%R^O6RYkRfiy$cZ{aHLMUI>ez?G0fyUQLi9_gwjR;j`TgO5!IA=e_&xfG<%P zwWuuTRhNh}h?C)M*ziElIXv_JPFyQ}CzJsC@cjfRP^%N4-eRo^_!nJes3}^4AR8C2 z7aI5wO}Qpf^hx0lHspXJ+Fq0qGfP4y9`Sw^V*OG%|ZdfM|0+3+EHngQx1r>eU$}H7OJq@!S zjpOr?1scD!urPb&&&>i0M2k1fBeIXQQLw2{gjKiocV`>zZxYoz_nj87!}6lm5i;U- zGV{J72~s~U1cYd zQ$?H?b&euha~5tNE2e*xZb_9;HLGmrk*pG5Pn)ga1}$8gf7N3}8%|Bc!7`8@Qz*T2!U*^uCa<5xxXcyZniPQj;d-$SoXfS-n3uSR(W;Q%Uu2oewMQ7Qlny6l3P z15(uWY(M6Fr^!mOV~YZE!DFymZ9ctDDV(?Wj3SaJvWGs5!kuL7_^soKs+KQaX`;mWhmUVsZQ}XSCF@g1M5GzBQ5BN)Fc zgU4J)6WpjFX$@oW>s}3IVRPHFH=eVaJOkA(fjIeXg`effDR z^)Nl!P+LZoHP=PsM1|jzNm1<48Wm_O+`r^|j|cO{LchX6ByF~wQyOT~vvR2*o$GHi zZRcq^m~?bM-G;GdkhFjA?}y~ZB@kimLQ!QJ*TYMMik^FMvUrzRlFW*G*6GEG)lPKU ze%41$S7mZS&&QvO#O|c{ol#|AnmxQ7ApjlvF3qG{?HY9G0KC0Qh8m` zJrc*U7izC|5x7j}pc^aL`Lf0*@F2dh=+yg^S9FOr{W*Wz>ZCP9Dm@(cP7#mh zA?`sHGy%N}vCoEzvQ=fAS3iUVW8JhaA6T;o(%(>wxn_V?I3cUN=e$%5TXj1S5t{G6 zJXdGVE7}&2Z9uojR3qWImWqJ-h-gbw=XHrzsJpq z2jO&@J>F=zyDzk}Lv@yvJ@N-?s_P5l>4Sc=^XU7R#?G`Syaqy~l$a{GCkq}hBX?N& zNd8W+iA@@V3^8@Fy)YLz^h`0hz$aPa?hK;hR^3jyU$8Q=(fP_eLwUYsBns)%(&=gXeAs!MGdO(z&61n`%y8 zYJ}aSdf(x{3@X|b>I8M(^OKedww6?9C`E_zQzup;k)- z@Sme>#$KPB;~sOt}m^wo08obsgL`{XVxHky;BUv+MZvqYO?u z+k(RiWKHNGCErbU55@NU5Y)l{>wC)?D1;mX{dUIp$zd>QT>cf2rEDU)iaT|RK!ug;H5_Tu?&Sib+usKfSHUi)%(>Y6Cxj4qXrZS;YpcRH9 zbqOV$Y84L`elhuRLhX4SjefJt3AG&6;p!ci=vm;$` z9vXjQNC;^=Kwuzm=fz>{(E1jv8)d7c5Q}DEsm$C~Ts5Me}vxTs)w#Ma%=~fQj&J)ytMmM7%iV zqRQ8R(NJNhStYZ?D?o-z5%JC-prU7HM{s|t@bc|g&|S57l0Gz$MF4z6>IfFb*!UCb z{0&AD*G}+r8(F{Sk)#$}w^+{|xQ^Liga~9iju0w1Vs|gnN+RR8XR0OW6ygmXbPXL9 z^8k500e_mcgWYHQdu#PmDqYcAMto*;1+M=w6a=8h$rH_6UDN zj0M4`$OyDD(p_@7ij`h*_?$K>lq=NnOus)y?>{-!S1#JM@>)`cWiemwl~<>)dwPnv@Yvp;D9qe*pzn4BRX zcdBaPaz8qT%&MpxbvsiM3eo*@lN8@YBj;sHaiJboqJG(-9d`s?{G&Dlsi&SDXmZ$f z*TS6W=Ad)Q80TB7^?=H^&)0cAwg<5zQ1+!JKFqJp43-KKRzs01A{G&Su3Ud_^^+n& z;KV?jSI7Iawn`vAQt)sY>^^h2TuC zipMvHXU8GJvH7*lU8J~Wq)%3$ux)*twIhMx$6;?sXf77Eu(z2h1aS$k!dhzfRKE+dS*`XQyeA5j~XMU$rq z2Y5NT9;Ix4Z_=$);Tr7nV{FyUIeBx}T($9c-rG-k4i!JN@W|ONRf+Rw=}7n$Q`&6m z2djD3Kgt{p+&#v(8Z$CcF7UKM)a5Dw;V~R79ngprc@#deU4f>ALot6HQiP@@i<`M# z6qv~|B^k)FTGDnsD*Xnp)$S1#qqmQW$=mTqU`H$lQ$lIF5r?^(VV1NnvO+VlqawP# zLXOVPwT9k7cz1~4v7N7`t3Q1xZTQWWV$Z}|@r%xm6lKTCkSH-5jcWvD1eXh3+xvLmD{&_^)jYFB7ErN*tj~@eW9*Lj8QUH@* zn`Jl)JtTfO-C!zur&=4z9oS8v|4P2fyH*B$jjC<-Yh5NZ)b%ZCxtK8|9((ODX9H^t z#Q22zH64s@Hl1<8#8GHT6#GN2uD}7=!2;|CU8zT@DN=2)Iv0Q9_s-A|v?z~RxNDbe z8bYOx>;)l>fUS^E3*L)sSe9BMtElwVm4tLDx41VU?$O999Ef1xnud=Zd)VU2!{0I16)~3-?^uUB)yD;_TAhn!nOJXcYP_QBC6moDajS zIS=UlO!=GJAKZU}gyw9|l8BQ8tk6vK;kv`AV3P_)G&kM8SMj(zfpMoxl?r_J1gdEV zXy|L-A@k6PRSB!xq=Q%yzPeO-U}t-o1yh3|Z7R<+QFE8%0E4wPcX@Q}2-jW{vMCqN z@XXKU&_s&s*etK|00K`Pkk)0KKU$n=6og-Y7ESIIn<{_UqYRsgu1X}|bUtx)DNlZM z9L4g1M1H00yfVx(+S+hde?8$4T(yApfIbMBOV2z@a9qkWFF9(K?0~g3^h8IdC%TA1 zN%+;26CZO4_-NH|gGWbGZ&c43W{DsZFJ?$Gc(+LAGkgt`tF)@n0$2HSju6eG`OY!? zdT^FI@>+lGMo+8K-;^RF8KKOCBf2WWNKKdSxZq1U z{98|~JS%g}z12@_49K?#YzTMK8^yY&w0r@ds#(*}BuWUUx_!T86!yZJSc#z!!@wq?&l zfCGhTlx|;u&&^=2-)4q3WVE`eQ+hgIOuQuZ>3`!VMtG=~By&7zaL}g^q<>`(e~3ZJ z72Iv7CXl`?-JtAj%qSwl5kAnsRpwAPk~V+Ysg^?BK>L_k#WSCI*$vJh8D7LcFf4>o zuubfWkCz1Q8ysw#vxS1jj&UINI+-OLTdd8yaM{g)y)}Kf-9)6eEl{LGrqb+WunVV% znbngK$mm8SF7A+og}=UQ9tuNwkm!RtYa-tSiS1ktMqi$?1puF@=G$NETFBY~8yARL=}k+SYCJ9oUSJk`VeVAljnbnrSHwGjnPUuWmJD5?xOt zwCy*Ou?9q*{L=eL!ycA<@;!j%&E{f6lcmcs_X@Xc3>|tcN+b7d_+Gwge8PVrjHmnP z0tXam85T4~ha>NBj*5sFW~9daczTY2Yw<84cCu&$8zQ9VH>jX{h}ifsv3xF(m7bbB z=AJj0fqgA$J-x-Za@rESy4C!{lJ}#y@wQgs00ce<9h_fMt?tc@e;RF*;}<8ByP7zq zO6zr2AfKqDaOKMJ_vzr1CRn#d-~M_f*fmvI!9qeInKD; zQQ`T4?w`KquP2dVNOd+$oca9Ly~pBK(qY|K<8ZoBb18hDd4Q6~`YJ`T^$JFW0gaEh zhIV&ZYx|py<3QmO6ZweijA+71*g)S=#yXw3WmKt}oM>n)(`oo^588i7He%prniS{N zA8IJ3;9PKaYV8RIJ+aPJleb=z?3py2Tx#Fhlu!*?d>B%7{~F>Up64lkpn>N3luXQH zUDrCcWSEh|UI&wX*qUni@l3PsD12j;0((=^z<Uq}i+Lbw04*m#fkMtTpb4?$CdgfSg-sNpBSJRP7DT z&l9m#w0l=G*&7=!9GV39{c&6EuEWmAnd&viDPqXC+-5?C4x~#*1UI|unN31@Eue+` z7l~-;v>BM9wB=Y`*pPNuGRiA2##cQ*4*CGN1iJvHO)|>g>nB3T!elFQ zT|C(t8E^U0#T@r`!4fJ(Q7^Qq2&!sLCY|$ilsn@ji(VV{SZi_pEB6VRHi{U-=-!#o zdu?}N-t_|UWG_gFVsd(XF#!@g$)3U{Jvnv-6Cr?mu7&qHbt4 zv)Hh%*q?}bOkF3RBxX~C%U0)GWE7XZD2Vo?FW$IM?@I$~LFgAeU7L=QtT zz$#9_o!EC;pHrZ!TOQ#Zubdwpaqn@{3Et($k+qt10_vVylj12RWEXi zRY!j|H5{1v>UjMw+(o^;w!AW-=& zFAkUES}~$A4beA#RKa4} zwwILi1IjSxB>`|!M7lMQ>zT649g@Tkd82>W#5RvB$cyKRGrg2`$_^l>p*+J{T6$zS zgN|_{=Lv$$h=@R_w{Cg8(AHf+tCaiX6@HW$#P#HXGIQYSzT|b=qrB$ z6afJA^%q_Sn$w@p;m{dzIJSDY=L)D$m?(!E#wv@U$P~1t>qK8)TL~U$#g;fy9YTLa zY7~8PblKC^Tr<@uEMV@X5JHQ|V^mFLBM}x88`1!wJhq|rRU2n+J>q@EepJz6g}{hm z`VD!>;<p?D8EINZoS%4YST!+?vehw~56FRUcPW5Cc93o*OM0hisHbR&9Td?NV-x zJ$Rxcb@`1dF*4w4UNaDOaL3LUE5ItKN}O$Hm?V+Q9~I_hd)!-LdhEI`Ru7ICdH?Ll z=tkVro$FU>MAX`TvgJJ%gP(y!U34}|=gssQdq$hAQ5aey3pUrD+Ubl=Y-@B9Y;}xb zbi1dBq51s;#{ov;goK8XMz4ReZ*si&bM~qa?h~48Mt~FICn9`22UD%S^_FdtApBt3 z0Lcb=4Yp9@4u-ROY|NPz@a+bb61@a9Zbi0sS(|{*z(XRyCG(Cuf(3m14Z?-Xr$H|g z)TG~@Z9?4iU@ftq{q_i5)p5Wun%k&SPGG0|mX0T&^3#Loe5B zT5^`bNW$>75)h}VZ0 zr!hX~mCQrr*nv0ke5MwnNT}f-GjqY^h37%MY@n`J=w)QB@T`Bu>?axe)+@ZYuo)x} znP39E3iF~)HVvcd25`?{Hu(nnz=F3InqeI&jr}f`cXFbw2-IFs0MEMMW$rYbxENW5 z7Ue$5i5!7#M(Gq>zI=c(#rKvjwt>^bU-2{c!{|5Owkf@fIrbe)KZG%hZgE=giq56n3P@p`=7xb9{jx|HbaP~R=#!XLIId4rv zWF3)GMSZrbtPv%xfMV8bc^U{VZMz-yuPxIOAl^X}0~b)5@VNqC`XT|V2^GRlYzey^S~~E|!7^f>BgBfUNx~9I1qi_%BN|EFb87iqEegBBR+OW@+Jg z@MkP-$l8yd8k8+WHOj%kEZg`gJ1Ja?S!Va>TZ4q`#Mrdh8d_|g<$e!xGnWcwsXnEr zA(rzHKYW*QaL(G#+Rj3)eFk}^%P3q5U2`-qtNKY9Z^DPSl7Kak)P_7ei8 zG;XCPclEy*VHg)4QiSJY1bgT26Itr!>-ZzrpY_O}x-g6nQ=5K#|X~D!wKgdQyrJDZtTpZ0oFbV{gE1Cn%|QhAbiAjYV?cb z#Z0Sp?Ni8@WU}nTh|ah}wbeZWn1`X&FlcpWY%U{q_eKLzkM7!`&Yb^YpOy5JB_?GkkB!MIv{%504k!bgAZ z)#eaK}rRdE=RDc$?lEK@sPX-}U$4P|J_DSblndypZX|IoIK7!WEV7%hfigAM5h;A=CY z{iq9l%1CkAU4}0<-BIR6PzTd1Fe!gtzbn#t06V@B3_5^rrbL@W3Z@WlC-Spxi{)%9 z*_?$pLN^t0|8TfWwX4()j0(!+q)HkVWIYr{Z3PXwN}V;XX`iRG=Z;eJcz|Iv0v`|sT2CkpUZu5UCNFqdd znCj7F;!}0=rZvqG;pY)?@}RAxsXW;KobaUrtEQx0x+^_U)yyBadtNbhiFGfYI1Jvd zbud-|JdA3W<({(lP77yq&}zqjZ30Vvx?;fgN7>5Nxek#r#Z3PPFA@CfZ=b=#36RQv zCKRfB?ru6AH`o&4b_C!oAA5gSqi=$Ei}%0ZR?&u6s1mCtpRaB%9mld1>c&3pCpfQO zkn`qG(L&0v2-as#&V) zX$Nh0paCDsGG|?~HsWTWQ`Gd9Z$(?2rxUCKi**TK$Y+1*I>v`gBp83VM5qNGgi`eQ zq-EgleD*Pyl)+_E=BL|;4@8@B6v?p*3dH2jhO7e^^;X&nJXvC$30>sNJs;aE6OKvj zi)O6obnTYBXI78gypR!(4zE^f&q)5mFmVdBbu8+wXl`~_;c{}_Z$v^J+qmNt`5&-`lFuR28B|Q&5zR-kg)3=SkV)Hb*Mi2=^sqr ziS+$|6?jHh^RDYq8e%Hrt}|1MB#`Unq3~sxk#l1MTc`I<5v)x9OsQlpp~9_G<{c^B zVq%Was`O`~Fxp3$Vi z`OaGDYye8r=B9sXk{RiZmu*mdEQ&T(ho9UWSF9_zAmkkjqR}mMA%ns#Z18ZZdfbS= zbgs4e5Z|F!~wJRnranZ?VcIpaKnW0(s8xcI_t9oBv9P#{!*XjB!ZzYO>Dp+JdDoA&%ZmcaO*1GJ2yP+dS%lBmS zi$`+FeO6DnPp#P%l7>zgRGETp3qEGPDuS(INuK5iWWwqkQu~1@18Jg^o&1FQd*RZb z^CKef9ch0c?(>ur5x<*Y4?U*~eH`16g20)%@U`Rfd5|kj3b4f!;8@Z0kO&5zGGThx zJSQ*B-d2Z#IaWR^Qv5Kc8)I5Y?RK|u^y<_Y(3-!Icqz6^O37uSw_Wg41D`yf4&`Px zUQj9>Mtd8W8%p{-n1#c6GEU~&z!V>T<`{VB9`ApK5BO*Vi(7Z%+gEQYG&Vy7jf4)@ z4$qfL3Br`^D$bK?{z!LlT)9`^lf%Qh@_{8P#WEk`Dnsm%Yew{^bIjCzOv=^dP{YdhJ1&z zwJ6_$?HA6e%=x*sVR_lfFS&x4z z)Kr2C1qVoColeJrD25|voX_3w)`cLEjoO%c`5j2)0q%!%-4z&mEK=Qmh zlwu*sOe9Mhik^Jm;qui{|4Y00de3*o?VDK&l``TBuau z7&766sPO2-0LnYpvZ`P4QwICACtQDju1&|Ej8tkcF!T%)!(kPUDbxM*>+a z5Y&ne-`LrF6d}p5J-P<*Khear6a99mWQ(9w1@~cd*IHljQajCK^DcVuOq%-5VjYJT zqe7a=wMQtdn0$(-bTRO4d9Ms|Yi||dF@Duc@u%)xcdM9ZWsE%hc6kuoXcY*=i>M%+o-K_eeFqh4u!g~kzk?QWy87>V)- zo@fuA{$jhnfdW+2TQtX@&sunXKJO8SDr8znxt)m8FwI96o17II47W$iid^pO)FqtP z2R!gTb*w^2E^J;LgduOfJ_mo3N&@^|`^l!srlR6xBdJefNMg_BW9?d~rj(i^y|EES zQTG94Pejh|l<-+x> zX>(YHF#A1dfDNT}q~W*Ri+-0NABufbg1(DRJDc$Qc;EW95{wOA-P3=C(Y-HvRHOAC zRd~%yIAaw-ZAMAv6f%b?(%I5meQcA2@-8{X90=a+mWYa<6%ONsjv}4>_I=#|#8fD+ zZW&OLlM|@DD;aK_i4p|Xkgql;pX$2c%}QVfzBnvdKkWm!I+SZp&PgIMs1v6K^Y^j$YSzi>~!^r zdxqErd1*u`09%<>Jt+yVDJ@(tvezC4H9v@NdMk7-ktwm2fQ~eP1beO$wKX&rlJOK5 z^0E+|^4{OgVlO~y_QE6#gS_IvejONeSxqx2C<67hfs@B{AK`y1{@Ro5;CFE>YxEpL zYE-;S0&{j$4EC9>nu6iDr>EsjR%f?|#yg~P*;jVk9eqCYfDh7=j!f{K`U?mfbq+%# zS}#HxOK+(2WAtZDZoWNLPhhSKa+^$FK>|+Ohw@(z4dos5M%!YkYr)3P>ZEmBAAIXU zLseiu@$S`SG%!?9dw+A!aV4XS(GyuB;0ZE`*4HZV$@9)h(&_%%uniSdnGheP38_FL zt~Kct!i-1(;Z?+ji}gk#CQO-ve?wnMiw1ez()BZivD*iZ=l?%mZ!sH}!Q2890yZ?a z*4zT4TLLyVmmkXk6}ON$0}CYrHaNGPT?45k0yi+XNP+_nGy*p=w^+6VX(a+TG`GXs z11TRTH#Q(JAa7!73OqatFHB`_XLM*WATc*JGYT(EWo~D5Xfhx;I5akw@$mr^135W4 zmjO)yDSwT)1ymF68#au9lv2_?knWJ~?hff10|sLwMt4bwbb}yBcT0n$(jko?T_Q*; z^-h2N|GsnH_w1Z)_jUJkU-z?Mpw-glkhXzYgA`y;I0p|Ww+KL1UDt?*8^F!Y$H~pj zi^ag82ZlpHf8kgR1|U~AFbpd4FAG^$kQE$($$weF5r*n8C_u#>0^s2T@Cbqe4dm(pvH|>R8K7b11p2czPAmq1o;}#@4}~tw7Vc@~3IZSi2p9;0x*=TL zp*A2_03tg;S6L09=?sGYVXXFt0XyK&!vXMc^86j{Pw!uWz|h~$RzM)k$=M3(4TjnQ zY{3u^KvO}D6Yd3P2UtOEei>Rp++YZQD}N6wFvQ9lVeq?jD}aKuHoywe;h+7v0bRk) za5qjjFyvQ{T))B~j#(aRBMWnK0zu(!SikC%1G|ENh;#Sm`g6FBP?#sw_bSZW(bDaz@QNCf6RZ6m`lOvxvG{S+n+7}t(1|0c>#Pm zc!dER!UEg?9v&V6fS@2h!2iE-w12F?f7bCYUuCE*3?TeRxrlT6t7MNqIl%nqg0KMo z8%qO*U@i#2{14Ghx%s()h$o)^XS)A(`Tt}2uPFalqW^D23hofdZ$0xL2LB(ul@l1^ z{ig+jx$bbp7O2Azy8!)P)90W+R#zQl19o@%U#&9S3b75+P&)*pIe4CNa(_Sj0|&b) zfW1IAT3|TP{twptf$RU;HwYLC(t^2xf88($FK+Jt(IJ)$=!m#Q+z{0KtpXu-=)Za8 zp+K0;uVv%q7XVnfx>|W-A!dz`_yN8=h^@2%dHp6cfQu6fgCkr3h#vg`wlG($UxO9k z2XIOMf__Va0stG=Px`-2vLDS3bCoSj`^ULY5D1PA`Y5xK0~5TgLQIU?v`|F2+(3azbN{{;yC25hYV zaTWq_0l}_72*?@Y?)Hx*!Vr-J>|q4~K@lYVy97j+5X2Gxw*Um_1b>G9%bgbixI^Gz zXT-t(h4CZ0hJx&Ve?YiFtla)pCxFWtQ9aBCaX%v3Krr=hA4CK0Q1Gu!`ZL{s<_UCn zbw#-RUOdFG|B`>-q#%$N2#B>X3j>OVIn;%XGjwIi|A#==;_wmQ+dpi)d z4UF7wTre$a1OF&Nn+n&`1l5Eo>G|wUxL^<8PStk7ZKvCgvG4)F2~c!_N1I9keqI?1%S;Nq=m{(C5z|vIqLp_)hXw zd#eR1Ul5QH`l!(63?~kf5hY}+ymLchl;OXSElr81BP(=z!MK8ADY$Yyoj=f)Fv#cL zXs00?{75rkq{+P=#y=~b)3b6yX|b85_k#!URl1%OyJ=)OA&_%4SsnmBcKJLb{@8U zzIY>+0w5q~Akb1q(V%r$b02=n&UyZ}A6#xolLS56ZT`?c)Dv+GqyI)lG!-0g*pYeA zx1aD%ng8Mwz5%Pe0K8Up4%TJC5|Lcu2E&ick=Dz|zF=13B%lad@>GkFNNN zJjykcu78g-hD0TIO$BaPyd9zHFdm4dOz)of+S|dDvg4)H`11nwn812SQDl%VtPoP( z6vy8x`+0yUO5bF_O0E5@8N;<_#J1_|$73FoOVMYW!OrHpjT%SJ*JUm;a)2keO!MKw zd>fVOL5#w_sE;EJ0_CvJg`QwrO*Dq^&O$kn?0;>Wur?u*s*A+=2PX6{o1^jTe=0g3 zU-VLbCTOjt*0bZgMhA0SKduZ`3f8jFJ6!_pR4eP4?7I3g*_S}U+E=0WrEz;=O zYVqldX8e4kxS5fBLoNAZwOif|3*MGTl`W+(r4(N*9ulu9GQyAhOkM5nWPWWh?5m5P z&wn*&sB|*rlTV5cGg{)NkG8CWQr?Ko++`oSShz5gXdk`lBT1ACvb6? zYMJK8saRU&M=^ENb=Nzj=Q{Xz7VzokqJJ4(Bj3{p-KChHmcdy^iV3D4>A%VL_1ic< z*Y>yK+fpcjprmx33VEScP@oq~!4s99OPBOiu8Y>wE*h*%++oYM4iSbL!0OYMJX&+U zCQA0yC)0=~XV;1kFH5k84Qv#bcbd|b|7c3dB$?DXeCVMgn=)UBnyoEok41(vEq`Uf zo-;^1oQ>Pz_=NbCwJl^vTKP)L9J#DM!*d~%pvXq~qmqv!Gw_lx)ayE)I{IVqSKT3f zE#-P!U)8bFQ8)7N$KOVcs@wApxxRY5j~h41Yq_4MZdPN^%#%9EPzrsK^h9h$iz!y+ z?eJ2dN5TyI0DS|Uy?(K}^)cf`nowwCavC9Uyv2{De_vyw}pxNHR9k7 zUAjEcxZRW+cXK4&C@g9IlYa~W8FBojd=KbShTaB7Wky`>cspJAl!IZ2*!S z$PRh3Cq#~Q!ptf@XIc9w%1Y8Pg!q9z7kbj})~1dMyc#al(b}coe%B&$-|>m%V@Is~ z)A`*(8>Wihtu6|VmVc(lA9#_tDEa{m-(&qF7P=^6=9ftxI}L|d8{d%k<*VTcjd!0d zyaEoNHjcvx7mzEWv(%IdKeehZpPe@4u%w@(yX3IVEdhYe8SC%(Wv`SVP0%k z#=kyw&#``~7kyRdka=-t+?;ow0goG5`sVhlQ&<~P%oy$-#Lp=dHvQpi=`%9ztyZGS zusrYA1b#_ziykyjj@Sa?3v#LZlI0tLv7hP|P!iP#4(7NjFQ|wQ;Pc@qH%g$)7Ykal z4SOCM-*)H}1%Lb>7k$P4hMt>a*2t45O%mT7lg#F~Q^UO3VleZ4HCnNx0wNfqYD@8) z&}YRp*Wyt8T9M9|sqESC3qy545px%5Z%XZpBQhVZ<@%-tpDDFo<1oLLD7gpJ1J5{c zf2?uKA38ThlN;;)Y(AA9T#Kl{h^+sxMmFCpy_wwdzJCJ_>8u@7y3I2|(hK%-8&l7x z3fGEaZFmC$mBtm>7Ih+dIxa?#QeP?Yun1z5#DVEvP4pgx&~sDG-vu|6_ZmooyPiCW z@;TiR8tC`yDwMFfcktHBd==c=Xy7!sowi2iQaoZOJ4BXnns7AV-J1D8*ymx}mR_Xn zN+4GsJb$1yp+Eh_!(tc}>tUL3%z*3ojPlDom_xPxq3Q*JmqT7FCnh`E=oOnaPt9!I z_s6};Sr9q3BW+_8zTnFyEeNXV-*d=@s)?`3MVF4FgS))p8si@O~m&C zSZu1VnQWN^{T+$|rjH%%L?r85SS!->Lx<>39Df?u!H1)Tqm{4|p}2lkPi?!;ubi`4 zdCUoLLO5rmBVUj89MnEmGl&W}`*44A<%CTLu^PiRV<7y>NmpbU-&Sf-rTq>}8A!hA z+OFe{+?v{wm@6Bl#8iztTHCn~;eVa00FYgek=)#6aH82vKp2A{BLQkA-vdBXzo{2o5IvNv~M=UYzH>8DZsCP_~V zs6yqQ%6|$;bat**U@b2>uU$#^IC9mTwi$y8LLU|2PodZfhq6{vd^Hp~@7$3XY|j*7 z9bHkQvPB+!Mbs;t$Y_=5Aj(GNOVq|4fq%&|u_&Er*IT2?x*u$)+Jn4g(8T1kV0=0v zO|{5^3H^34{-}ONuRR&RHzR&YZEO`s<>2UK&s+{%a%)m_EaE2idbydmhxR++ihjgT zzbvHGr)WR;4Z;p=C-tNEU9^JzFK?#&#P4G=5#MKe_%;2sdeL^>GKIevQ^)#mZhs}Q zVo|Z#IZFqz*Ra1A_j4%c<;R!(7$TT;KJz&7D7CsVZJrV@kaLeqp@f3sW6Lmiekxoi zd#yDZnUjvv6ZF`goU98+E9ebqbJofEg>QD#UG>ji%Vg|sW_^_|DSxuo z;Ziq#Jd8`T+PyOQtPwq$I-($c;u}wumM!Tg%!*U?S>66zfwPVFhm>zz3yMt=KEL;{ z{PMWHvG)2E$yryR*QFx;eJ({<;r=+Me_qSjqmkryB_zw^oeHBF$-tW0%zuOsanj27 zwzMPnWYvMUS|4W1DiXfdNml8ozikXzm+hg{os@W`aUEz z1|i0Ieor@LAgi={^;+nYBgss{Lox5GYz=p8t7P>3!jg`D&Z2=MWVl8{VP7PKw+^q_ zQCit7f`vr=3OBGxH-G!yD1UVU+DIPq3JonIZicah)jXDJFoEd?D20T(PI|-m?xUaB z>R5k4+GQv8B>7>@ll%RJGPYzOPGwM&SYCiPlhao>u?+paU}0xki%#TX?e@j4Nst_e1;M#c|MX0a)&|U8du>DI;^4CRDZ90T}Z5rm?h{I zgjjc9c77anEb->Mf~`kiAuR)fPNS4Ida&cU|CSbvlapH!9?6=>UScz|441@F@Ku_Re6f-e|y<>1DQP(ya-LY*= zY}*q%nb@}NJDAwX#I|kQww+AuiS^}q-tW}=rk#j_(C1b=b|4fd8_ z)rhXiWY?*u{-CkGcccHD5dGx7m3z#m#ppwNMGMLM^^@40D zDw>qDhpltx!}S3BZ3-t*h`{SAdA=yDxPLY_(DMi6ks?(g3-X8q>j;CuE!cNMXE3$0k_R@*?pjC(2bG7k$hrH zp7d|8AkmPCW-3P{ksqVPno-95Mmb5;+LHvbb*GDmsTsRa$ur0~<9B=wG_sd1);Xv2 zAFfPu4nJqHz~y8DZ&rZp9t5`cRq}>cG=V-f;J1%>@_fsW9n)Z{DcNsk6$&*sQqx0S zG^&EkZzOk_vVV|wf+z&=89(y&+D`_UaMDF5OO1X8a>-Y*n<|azXmtfjf*cpP+YRa~ zG5nk2s1QLLqC_aTCfuU9<8+aLYJ)5rAnzQi(66Tw(w;tkNj@H6-V^NwPWDh+L&Dh)^npPX8MGXWZ=@(tu1M` zWOM5OG`*~-kJ_$h7e)6KonNulE}%t3_yz5&BdP^opf9Imtj;DbG;TgrKjoR1+30)G zX~pImTcv6Sh3esWGE4*V_U0k*@69lIEmgCJ<8IV>-eC&(0&yovi9em%QkOK6%0rR$ zjcLq;z#Lk#f$c6!!s~m&@f4QpWCW67I}k(2QiE@Q>yyo zl2lRV%^l85+T8)B(5U`_CIOUHRt?Jq9=zNydA`PiFyd@$$oz&_#+ z&V|@nFHaGyKh6#y4a-o}Kyc8njs5FDEdJ|U_&5V{={86m0!&y>CRtVYPsNs|` zus0AH=aG5)C-B|-j4X4EX(&W8RZg$=QNtJw;l}`wLVUDk=Ynjw?1)_*Vyz(H+JoEH zxlS~gkA$UcB=Cpo$gM3W1 zCkE$S|GN~+n}Wu;nxI58eekIuQuQy2zHcdSBSP@!R{0&s^rvriFa_?(^c@~Mqik1>_ID{1y3SnNf#KR?wTYxl&W?+GpP7|mqIv|B4VDZCXH z5zxazT3@b5R`HWsJaXVvpsFgR^;d?Ry) z#tGgnMA)h@ZF3^=t^fTl%{C<*W;~H>^h){nhXh%ddJa9jtKWL^da`PL>bzEwT0&MB z18B@@^tpGE=X+a#X&eAE??6WRm?Y(`8*@CYu*X%)it?4_ z()vtFv#H^I;kTJljf=u0W0si89_$n?P!kEK4*aB_<0z3#T>qIpTq}S7QSh4Obl&b-0N<$k62`l=#)z#^cXw*v>lBNQ!@&` zPVd;mkg|W%zE3MRQBF>SN8E8wccf=eZxHmnb&>YMb?6efAT*d2wR$qn^c-K6BdcuL zIoobNGMSr760Wa|W%Lo%wpvK)GM7C%ChR8Kj&*XQcT@qs%frf*Lw&Pm07Dqb3Fdjx z0V`dbSH`)p0w!xmPRlr*TAC*e1wW2#T}Gr+pvdp^>mKMATQTr*nBt9*mz&XZN`Py1 zF^knd1bM6Hg89Z=PkKNG6XV}f_`UsJ7+|B8iPZrbRePFxo>*!#nK zl-vw0Nf|)U{l@R3=@kxQ1OiBZ9lpYKCQhLed6FIrkj?G6Sqj?wqLq7k3#8pdsV*G1 zC!wwSoPo$Pa2j=L>SpHGx`xfldXlZ73}Sw4crQJunD?Ida9D}1k-BYnUV1r zBWz5LM>hxuoy)rwBj7;E*ZWkUSC7tI9wFt|V-8C$kQ=|p>ju?!Sc~n~I+lxwHij+R(?nHD==ie&4!j`B92+NOFrQ)>|IAZcRp)E# z`NsIgJ9tSPWvnZ7o&ZZ0k4)f0$${beYgqU+*E({eOVc<$D{Te{$r{rf%XC!5erT9k zCJR;tObY-Aqq&7|>J7m=UW(chwYkUMI73oS-)Ln)=}{)q*#^y#7VWD3Kn4OM37>er z_}=;$+3oz_%EWGr<;4zCa;@ zL;)>XepW98XQ|aBZy}Va@GGWud=aM9>r7^dHx>DO0a4oKMg+tk> zqBgmoT*ABU90RQ@MWe5&o(4#gR(cIoPDgM&3F;>#q`^S3q2i(jWKikOnh1(J7^)8l zjcq@tW-BzDaaqY8va@ck9KeDCL6%eUJMmM+0XtSVK6BAWu$t$1xJ_?H@(ewHJ;y!g z6?fMTD-3^T15d!zh}Ds{Rm>|F@gi1)th5wueg?L*=)Q(U^zn&Y<)rVUV>;Q*luZ8G ztmU^}$IlAdtk!S&6-(Zs6CggZTAcAK>+rDSp@Zkp<60GmNTba-w@V>G60y+z z$DJvW4M^vT-WA*zHvhFQ9$$sBMyfYEDBoE#z-q=y!55ShPqtD+ds7tYaAXP+u{yCN zbws@ITv`TxJ?@8rkQh3HdM?rPysoy3gSU9g?rY*2uBOp(r`T?n)%`7ubG*#-7;+wAQo=6Ttn6_7))yhxd6e%l&<4CH+g`V|lBPzNP6;X^4BE~b+ zw1>|k_WaBO*`_qKXrnaGC@pqjs;lI#-UY=SO|o(0YT)H!F~EL(@J`m$_lb7QyJJt) z1o$&i;ZmMGzrRdKM-T3iEwSucT_g*e)qH{Xq$2f}J*9oTeQcw32G%@@0*v8)%OR^( z1QYwR5$5GN@0dcNbB2ge2}-nFoE6%?y$(!04C?vEOLF!xpY*2Y8dIf$S+OQ=V>b=FsT6L#;x%L++p5Jr}uF zj7K9O+EO17n}>yFz{xOAyJq@0Bk{ zj1*f&vM+F`@!@m|^Q#eSrXMQFp`@75D1mnasw?nVLf-y;K5wKRZb&I+yqj#{5GYlj z0ofrUhwf{)ENx4x(%7I4r$jYKxtB8`O`%q+3qtk&l&Z;{l@(}(uRlYv9`@>XfQK0X z2GRPSW<6?n03q9*C?Jj{39)5iI=M@9nUq3;yIscEVr9`RX*=Vl7)&-Yon|1dPzu<*2Q96t0~_a*^iA$6 z=V;cTT3n@(l$}PB-ZhH?(j$aJGVW#xMdAd-fx_zwtb_(<3laGjIEG zK(w2ZBZ=;9w&ZZ^BWlspfWy1S4F_D6BdeokN|_J>d}Y=_h)7gpQ5mMCS+-UX&vT*J9*OE zN{J^6;ke{a7oPXu0-vzeriT&>iZoOrN2ITzD^V*3`DCLPnpnL9YgZ6YtaI>ZxI;uo zhQ%guBKSu*9V)!;3p_JX@eV{HT3bC3mvg@Dzs%}e4TJ7 zf)NTlS30H?NcYF|c_H{yXdkV%MnnqC_WV{77H&O*Tp`L+VsqmQyY&DQ5t=&+hCukaU4*?0}{s2-=$ zSVDelks|%;B07xnTm!MEl=HSpHz_Ti@H7d|+S{g(vMhD1c>WL%H>Jos;Fa?ZnlOv% zc^LMQPl}Vtr8uEcrZ5*?V&d%ny|TVYJWpyc$A3# zJeh3xoTebCuvVyPypmb_3Adjw{tWdMXaE?YALrbGa_>(KJxLKOuY_niw}QyDlOcM- zB@poGE);#se*nkH4*w>H+87xe-#LXEk!@o_5%l+a1{OA!+vWD`AGoMvZ6{KBaq-=0 zM&^shP*_806@AHyTwbJ)-x!9(N$4v}`lZsBnAkk-QtPF12NMkCO z3syTKE(l{tgS)uBTDcWo`-Jw5P!=n&AX0}P2rc7E`oyq_QRcZ;>Ud!F>Rv6T5K29M@THARc$^T zvdvg!SnB$xc{w9x)31WSP^ATQ;lpQE&RK1FuB86fBNTpW2#_VyQMH%)ft&NfYbq!> z>7@2@@osiii(q75S@Eo5bWkKB>3gvSxgy<81zcCb%HfGT-P1mjNSTv;i|rtOGqraV zC(U`~jyhC^)h4mjf}Bx^P=|p9@~Iec+?AFY2s!PgD3V;dwhjBg!0pJrY05D@37AH6 z|Ah`TbXmjl#M1OoM+`_mE*-pRR=!v>5E4L8Q-?0}SX!v)&cyoFPNlZ42|D>DocMxkP5l?gG8I{9)uWC2(e^%S)s5n6+QmaL1@aar56n?!!Ot^PeEeb8Vq* z&dE9JNgReC0_3TJ%svUi2@5D!dEf}}PH(0j zm=8`IzZFAWzNiBvc+!mSlRhsWjDB@?*^|yp^j*3;j&WFbHf(d}Qz;_pZvu@4AG2F! z9ZFucuc%vDxU0~UXYmT6HW}#$z`4TzDG5zaw?$-$h9+m`oYelp)t6K!^>kOt#(gwd zEadzxH_s+X-y|ToFrmvd?O)GBb8Q6|N~ga)VWCic9E$lR9~)y-`3TTirv3NFy)?GB^e<%I--2QLu?8?8m09|D{RlsyqN7_CKD2O@?ZoSloUWQP_vz`?hkkw8XqXu!5)bZh)hwKfgQrmEeS7Q(0NPuwIRVh%U`!k-(*l5rmO^gm(9lvW4xj-8XaA;riBkknAagTw{Xf}@ z#O&!XOO&RlI5G@_ILX-@c?qns>H%y zwfU$yw;AblW`TKl`W9HORB0a4MVi1{Tmmn2us$kvYC{WgR3cFjP?zk&%Q|JL>r%8Z zu>g-;Xk8$b847MXVnGa8OD}A{6b~OuQgeVBN@6rfXj4TLB<}hz3CeC9g+a~yoo68~ zyj~RR%J?L-m}ETFHsaa2Bu)qmm3)Rk6ku*DC7#6KDmv{9fFx)3E8 zdkQV&QiT@5B^ZN5{nHDu)~77=S94yOGApE6jiPF~81mqrJQ6$-cc$P~4xo!rT6^SM z8AYn|Xx>kBSyWvkQx?Kql0HN7i*RvMKGZd0I=`+t{+I4=&dHi*_T2yNim3bq2sk+%p z>j(h-6~9NVI+03FRFG45*%=bimmDWKWP;sKP43)|ath9a+v6_a$GM%s52zRhcV2@k zNYSU{UTFkAW>a2+GN{?DOaEZP*(qBnS)dM)Mf=>Pe-I9Yc{9YLTP=NQLy%;9Cqb<% z_(4l2s&ZBUvbJ9Hq8~^`EkP|T_?~x)FIN^_ITTX)Yuq1#h=B>ju{)v9g7#-RR&|Ph=Fk%eKf3L z!?pnHK)kTh<{)wsRWIK4QLMyr8z7AJC5Rr7R)Yk}Pe$WzCdealsue?Rw#ya zUs^$}ck|~5n0M5*61nM$O1Ma@cd7D+154U`Ob(Y7m^5_y&DMbb-s9QF=|yMS?ef0! zN1>mVU_R(t{*2Jys8S|j_|dpmpN!vUy>T!1^N5|0tG839fz6frQ4~E(NZ;j$yWnS` z=8y945IN%ZWrqQMw3mJpixtbv86Z z6{;Re_;R5D&Z3+!g|V=`GIvlWM5Z}q9c3Jr;+VSFn*xlZ-9~XzF=-Gbr9&-1bS>Y* zk2XLwx`$A6JYo^f6!gs;s$Vxj;c|vhE{wM{ou%+q%^c*4`Tg=ARp3H=+clY*XM;}C zU+tKiPREI@LSosUkTh6i#I!=?Fnbsyzo=Qg!tt+G@Nn7D}4hCCqp!- zRv|pnZ!ghck;C;jy}YVV3O3CB3y5Wo^t_DjMlhY*HJUCZu!t^w_%gZ^a28L^C9JH-wwN`JjGIW(?U-d}c^;k;BBF_Yp#0|C} zu$0J2`aMl%zQRTBvtQ-?XJa&yoJeb;)X21_WrZ5Gu<`1rZor;Kmg}ne`9^Q>2m#b^ z8$y2*>2!XGEYTHJV9OVh_GbR_g=J?b2({g>9M!Isjbd_UYMY_uiRRTm85`ys_iC(w z8!Py|l(sGm6_P7cNvQjzbs;l`zsUcu0puyh}o zH-pm(2|@ARVM4H?nbhCmW`lG?_4aKBUr1K!rg98I2o}teqh#i(D)kHQw?sh0@}7@**=Z5yl}!}dJn-w!WZG~PRP z1G~S=CC|HfEwvO8?kzY1*Ij%CtrNYSe^_*FjCff&6r?h`uW(`XkQ2#nFfCW)s$};Q z+GhE$Vro1lXqGqWe63jtG-*t8E#SHneuo_PNqu9rZYtzGdjT`lU=iQOQ~lnCv~9C` zI0UI@u7CokbeGfIXxtz%?u^Q0M&(&|f%Gsf@l$G6zW_9V10$Gt^ojvoElvWf+#6#&4CYR~L|bEA&gA zG+3hm%~|9uj#V9-+21r(BB^3nv?nOjeP2s!s*tLZb z(X?f3#+XXiSHg@@vv^?hg;EffpLH62+(U!#U8EYO+aiCn5>HUBuv(Dfi1bB0B3mq) z^4;lArn-PqH50QTY#s}xE93zr_cZ;JPAt5vI(%3?@CNF%n?tU(Yw;aGurX2~A%NBu zQ(~C9mQd@&M1woh5^ax5}6Hl&~OBS8v)=9zM9}<^#S=MklOU^H|~0$u<+W+Lv`$S+v@GfQ?%pW@HV@! zBn1OyVIcnfa_%mu=O?FM8r7_frzV>Ogp9UdgEt~J@wpwGc)RU|Oauf*OC>OO+6EDE z)2Im5acUb&>q=hp7fM3)sd+6W`>-h2y5PujLema$r$Fo29BdfB+2K3q*aJ1tlEiCc zB2ALlyl<-3d+*K@+57a!HZn1pr*sU2`v7Z(^-ey=%tr1R_$*SSW4p2R7?x?99z7a| z8pBz)7e=I%LC~0!G=Ta{5elxDK=hqIb#x8c;B-TlVzA@b6sB#nKXx8n=PjQ{NLzC|B_{@u-)$BAQr#bG@WDK07q&U&3(HFrX%mB+@HC*e!8vxp_cNz!a{K_>& zL{-_xT{ts7bV;pqjEGD&)Lb6CM&xlOy!Hs_@720Gxw?7GFg{4D9?ta%950#r$Tci> zB*+Gj+l3zx`gA@F$poo-OaFOt?WyNH zH^e`Zo%u7(eZ{lmWH=zLaC7oHGg<;gLy`Q@hRVF|xw&9S3+e52-XWOse80#DN7JgH zr3oR{TS;1PH?w%tKQi5%;03iV3{lH58NtDs&yk3Wsx}?e&C4qBRSLWb(;8!%XzFUr zX}%lm%3}wJ}O!($eeo70u|tupm+wrFYINW{VYRW@r(wlB5C^R#JK$B@fY z2xvF#H}8rHkpP57XvP7|Q^JR~_|wugfi znRQZEaPpN;6KRdk?OpZy+dk>nk`O&yah?P2Nh`_TEVADAx$F;-B{`8;-8Xs*!mNTB z(bZTBnqD)fOE(eOo!*WPH}AV85{yrRl43~11CgGlsDlDM=uZtxOEVGr$t&-P_s3nY zd++eqgKa>`xY&>th4i_hBQVD+y=dc`3-j<$1+0PFlZ(AWqfHf~8UZ~v^=rk6wF<#Q zF%w^l*oi&(8tIP$KaJ~^*t4M5+Rxw}NpGbdY`v^(r1O-Air1CbQomnBE0hl#UK%;e z<`14*i=7G|MV~DBKp@*g%IQ>PcPZofL{Bwih7^#$99S{(pvqrHSs?XG;hef@<$-o3Z!b|T)BarXA!svT-HDD zIs01tvNT%&QX~_^geksb>vg)mRnc;Jd_JDuLUjk$?m?2;fiULn@%Irqf=k~NsZtM7-a9B#1S;8o;wMi*q?ezwEBhc^ z_DfVXajGuF-pS>N`$&x>a&~s6O&kQZ6mlzepi=>@sQ!4&iE-;62mmM}`JTC@mZpPa z0bTE1<>dD>604c4z(%OJ7HM>bCc?@KYh1u*XA&&*Q}<5wOg1-UC#; z!h5Z`p8raKar=Qr$bv`6D0kEF%AK~CV&bjOSasd;>iZFp%7(A6AE;U~1;%k;Bb_ho z!)rgxMzP?-PZa%48e-Fly-$*wHaX6P^XSN$LwW9#Sb1jzar<#s#6G-|Qb68-HGs#_ zrT<2U)KUAsHn&#*Bx0G^GRrd#vIZU^8F{ou?!6HhZOUIAEZvXvbb3t<{^qrzE{#`y zC${owjl@OGRkKN0@S8GfpkUDKGn;alo8%ZBT9QLWC?za3aN`cPCe)3iqffxQVzH-G z`1f}zG*)6J%+sFZEL&<$0e;WhgR)t<6a5Xp_VFJ^Efy3(yc+(L1b@~$GzCyUet$AF z(V5BXNRFo)teq!4YfHx$hf`n5R!T~JoY%^1%7;xqL~ZI2e^255ZOTE1Q-9_p5ZP{T z#{$DO+8(BJ{dv#IgQEb=Ev&bCgwwhGddEJU`-{HsnsY(S*^kHU#w||mhRXHVq8qz3 zgl*K0_`yAWK37X3t@p>tO9wD0lupVoi0rg5WG>f+s3n=KLpY(5fn4fO!oSv}WW(h; z6yBPoiPr*|Q#-`-hjYrdt2po`Wp{p8G$8Kwf4AuuM~CxIJ6a)`Z-o z!b+JDdBWq}rO(fdYGl`5cIfS4w^s%A|? zgh*X7j8Z74A0^b|=T;~s)F?0}mh+n>&5NZ!TiK!M!X{y9_t4vW{!*=-?6r_nl)>C5ZI;22S95S6 z_Bw~?w##ob^+?HRLJCOu*}8F1b(74a?EfZ4F^b3u`vHe)7b8l6RWzo7kO+#cr$1Ay zpV)>yy{GfHM`_$yGY8T9IquxBgT-!D4rTWwcCR%plO4awgqJmawxJ^9*2snbvm%=f zE0c{}{ZA^K)#yt03Mbk;^WEA3Lx(%d#7s6(kMCRRny{D+6>Ipp6 zmQy?ReC?$CG@&7JXcKt*_kdACcAA3oM;PIIC<4pw)b8_--{uVkr=xu@H~WF4%VwK8 zBp4UEUZH2TiS+MBD~X&Ev0-P4Q)9d13MWKK@MpYQo;Ns)Nk*-jmX5ajlKKNU!#Tn=%tl_Ji$rzz7=6Qh+^Q&O|PTw{ZNZd-PGtQ?pvXO55pziiZ6n;78xb@MRR zK`Gef(Yls11}!!a%lurx(bb+VM=s+?B*?*5FEcD3@^JX^w(>UP$0Oi#j|#-D3qWQm z6SRJ>VH77ZR^m;pm;N<4?0@ht~@ zod|*XWbEJNZ{-kY+=X2z<)(lKl)&xHvfY-5M(CPQ&Z#vJ8QnT)V44A|zgQ@Z&l_p~h-{V6;Z6k(!(b z9Sm4_$s_W_wD_ScMwI6&bIC)83W&7pJ0VPN*B3r9Hn|=yH7+0E5r1M@`e^Kljqh1- z51UWhB3=5P(>2%{tI)a7kuEaPs6BE_Xx5&x_ILwxC;#cP8KU!FMUL|$idM^l6`J^Z zrLhYV@0J4C8@8`Zsm##RIW|500}u!FjhWgG*3{0#*~Q7!(Dpw)dm}4Y4(675Nx%(Q zO8@)!m+fU4KniF|JO%*0B|r{<0RCMlpYp5+@P}q*XXa#KW#dZm*9YMJ@2Ef@5Cg`{ z{Gad6c(~jgu#DoCPR=gGT>o1?Pt3~3!Jb%WOa;u+wvF9vM)~aS5h3b8aH32YAc4V# z%yf=wY|2V;HbNIxtek=Kj`u#l(wqOc;!YTmK<=ofemr5BGO))t!}?P>|B>ps*jAP) znq)_@Hd^j(t3AZWqLMv&gxzVt$#t7uxcX28?PxqCT~w;No4M*JiCIlRv_EGU+vtT@ zzY-|MIxLqbHGjg#DYZU2Od+iRTOE)RTO2+g+hrU04{o^%A`xbOdY&-?O{V8?BV=Q^ z8D!K6p$rAf8jKwsz&WaDoV6EHn3L#6`9am5l<1fJjf`t8J-@n2>`?U&j!w8pzfp)@ zOVYfKtd9!3@$fed=k%zCjVRJeJ4VJTmo!lE2Rj2aYI0sF27=~pylbE;1hErScs=|- zOi6w%p95`@k>uc?ztt`HiW-dqPJ%2Z)lSGQ&7w>*UED~+?)5%33dKLUZsC<6T^4^g zo33UUfd1TtL?zI;!(6?OFbzWnmz9DDO-U^XN|8kC3ZCxg2Wgm%8H0n5XTuSXv`+y3 zRFVuqYdN6{j}{mIuIF6}%q(Imq#`4GmL~8ZP7<+Bn@gr8&!3ViYm|bPf-fT$$w2?( zC4n14kQ<{{vmXM?hjrT7vE-Q$eYqc5MII zy2EkIcx4w`aX%62KJxwz4dnW{^tU#+i2LicWMaiW8|Zj@HkHvj-j!pIr2e+`acj5p zjBR4~NqpJyvFCB?*pO1LmDRKPhf&1V_0#R?^ZAxIII+Fk{>ra&OLwblM>-4G*miol zFaz@MaqY?8@AYqF$_&Gor4~S`961ez)aMjbDp=M3;uzfP{_*lj|KlTa0!y$nL6kPG z(9SH*#4Sd(zXep~^!=fVczw$+F1b16)GBqyR=@_S;y$ti3X~k&uVu~tR;rw?YykrPg0t-~2|X{2G^LF-yamvM!AkrRuuVHdTi z&-*^@V%&kc!Tq|xjGx5pQ<8Szgm8pg)-mpPD+v#zflRyDFgTi0zpCDL(eiww^2-Q0 zd<@(mbvP91O(ND(?(yZ)yS8K2W0)=8{po2`b>8iox4+xQt7l*L>ADOw*C6bO1((zB zzHaF`>T=Vm&2rCxyiUgIf-79v`0@#4!+zbm3jlv0!pkiK-?~KKuW>dU;&QBU4&`5M3R}c&-lOVx{ z0)oL~L-V{+nMMg*+IWEqV!KSx_{rnR>r%xQm0GdY85HD^T{e6OBR?ZN(n)6uEGiWb zg&msVvW+tZltl|HnK%yz<(%h{ za*VlybMX${s?O2^xWx>4scf)P&K&t4%3UG0JklJ01-fC{j0R=>?Tf0|ra{|4^kh76tLy6#a=smCJ^sDAI$~5O;(Qvp{H!q-$DO!bC=u^SJ~gL^ zJ~=6-$E;qUXi3f(zQX+bespE#o;gJ1`fiHYz!?vbp3irGPBFP#3t?~W54J91xk1ok zo`MBrrKSK?y~^+SJN0STv0<-g^Tf&P`3V(ka$G9mAnyTOf_G{OMdD28x_q;54jr&_ zrUen@k@17rJ^1_A&)e70-MMG&8qs~85(XM?gc!Jmk3{it{*iQ;KXEhaKphiWWh;m2 zBm1(l(Xmt00#z3Lc7ExNqv6G6envRc@(tO(wMobuE&GJcHn+=`H&o|hDt%n@^fq<7 zC!RgHj!+AfYrSlFa;kYd+rQfnw%CN_C5&|H@^)|P5F?@FwEBDs68-!@l#VvVv=zLP z6}fMH+B-Y&Yk0f78hBh!CuJ&IR2`&*oZ}|?>}cD5k9U&8g4Y)I-rU;CPGij|(Qm1m zfv1v2j1a!FY|qF~3oxjS=o{Eo3C!7@(xu@E(iH-luR2acLH5QJVuSE{4S}p4FqCfk9#*h$G>v$aPD6TSm0<86My%LGZ3t3*E{grb%GKL6;O5fd| zS`Hc@B(jqpvwxiN5QvC;B#J>8C5)0Bw1CWSo9ZgR3OpPgbrBObnQfU$vjDzBHn@Kz z^K{6g82~jLlcPpa86F|s8pFZNymlQ?zLTpgvw)jyHn_uky@o@A94rf0V%i#Vy?j9Z zeh}&`DQ#uI;8d_FLZO&iDmz@ga@9xoWcd})<{Y91@o@8$jb6W4)qorqL@lzD@m#cN z^v&;7Mz~@3u}({(VW@v!KH=^@O*J!Fa!u#HdWk8Yt0HN_qY-7y}tKmNc} z^=Z+mz;b4(2IBi~Z-_=Kd}xaUusSaz(;A5|Vc&|t->=n6bc#D=#ChEnL&!@cxiaYh zFy#)}sFkJ_)Nh`$hl&qs?OcI6vw&B0Hn>H~By0$>@8h4$AkUwql^=t--Rj}OzV;Y! z!oD?ql%?0~&k&$(OLWL_Q!I6@!0N8#aFj)J41q=S63twJioslgmBHsIVgrlsVBjYP zEt)+{zN7W|o99<6Erj&&bCFI_aB}ZnGXsg+Xb~PYq|x$FFn$dh@#UrS4&Sy`5DzEU zNQM69l&GjAIVv6l4qliw*Y4+#6{6!+!z2vG&JKt?Jk|5(r@fKT7%-WLK@LIEmMsFb zELx43xM_|aHQ)89L6oY8K34b(exlLA`AnOhx|RE(Dj9t<)2o0S z;BL2VA=UR$q(q;p0({W!f<4^)rVukzt(Rt-EH5-gX`r!`8myGoLS(K;NEVqaN5{mO zYriXl-m(|4xtFQ@bSSePy~f*WCC_P{Zzb<3Z92frOe~g?5h$y0xeh|ilJD)e4N1!# zJ(l#_OqhxF*bIcSPyaVYiD|f)utVLcTCDd@5C1_oW+*^xnOV)}c`-^~nE)#7A$Dk{CMA zOGJbX9W(p>%@j{bJ;?|hPD;|(LZ1!2RQ1H7#SQhuyDOal=p6WAv~I6d@LMJAf!ZV#b z`5Vn*#s|ZFkm@1;vsMtM3=pkfRA1lQ+X{nq@ZKWbeM_=5Lt*=9#MkuU)arUws9hoi zPr1UH(DD16Jo3q&m^@PE)hWi&Zur-b^XqzFCe8_>A6WF*if`|b#-wA$uyOO%Lz>g| zdiDe3`6xGF0*5aJ?D%eR=BhzYQcfXRrj(_vO%{z|f<0xxmqFs?V%{A8aazGfy7Epr zX(Ej;CDezZA$|g!FY#;g*Pq)3MWTuus@Q!U!p=56GiS{KkG-zDXB@GvTdKTqW9F1l z1BTd69Uui?%82G;><&t4g%MFP6V4NLECJS>d{r3!V;$-A zy1T)1KK(ko`gnXF8EC%F#M8Iiwyi-@$j>O?f;HMiM9E-*f~X5nb<@)*x5vw*~P@Th1oc{xVgF5MShBl zvx)x{ApZY%LHu4w*3{12#e$gmJI(9A`$_U-ZHpCC?2(=0C*aqDXZo*_UnLpSQ*xZH z?VhR5^6oC?NcWAWi$tPOunp~D(0?Fq+s+syVI#tFJtA+a+sB|U@;eyLC?Xh0p-JnY zA>Mquw|zXekKO%pX5K!tkwrW*gW~{js$Y=#k(#4-6r|udsgy0jr4Xd8qSf)G-|yqF zg~5j$tU4f=2^C~5;fCZIqSeVd-~&SjFm2I?XE+RiiP5FRjnP_Iy6<_LkReM3fHs1| zGwf=JiqT85mTW@=4LLi`Hdpu+e=Vob(JE6a2R4EqBXhExyVI6`G8q;IJS*75VtCEH z9J{HqNJ=Em3eutrxsR$?YlO3!hdxo6;|qXC%z@TF_!yIq z0Ux^{Cw0i>g$kTpqhrUQ`h+u%X_KdbP+=l2u$VwUCJ@LzWNgSEyV%$Ops@kItiKc! zpt#S`0W1@uq!*qGVcNf87e5scO1Ijor&BZ0BsD&xS!%Hq0Edq(55DCO6WOrKGC(U@ z(#toHd2RYYW*0ZvA5ADmmpSMprNyAao{JYsQI9P54=xUB1;k*m`vkIUhPnA>X!&=%f`+2DAz&B=2Ctr{4j#gic z>F;G(5$wC-0&pv~^=a#_M{CqP@pVF{Tww5bwM4oWiJsRJdia$Ry!YhF;zWKZJ(~25 z;R?YI5{imQjxWviC&oz-Q&%MCH>ziii4s2ofND#w2<4nV3s#q__B=~!J$o(}!} zNm#DnqS9f1kg4;8M9xa3GL2zQ`KGQagG-1kJU~lL?uwG{;cIz|H~VGqRz1&I6~Rzc zn8HmPn%@E@mJ=$#;OIB~bk$V?#SEA=z>)(^h1BUdL7TQMEG3Wl--XJa- z&z}Uk#RQf}21MmMaNjpMm&ir?`6XUn0NSgUWEKuFNWcMNS6ok+4H1@}&~CXY$N(BX z2*m+DDv+58oMLjET$dT9xR;F!R6g+6E_^DWWNNv)7)U!E=)B9<3c?WR`KYnvGhKQ6 zGi#EO{ft3fXqp<|q3|}Uz}2jwC8;2gaEb>wUkm>%tq+0;M(6my^5^adL>T|S(g~@^ zsc*cjTV|dc@gt=M9DOE!xNh)2f(KI0^*`do4dju)mB1ZAUFpsPViAGZntkY>$4eea z9`J&OctZ7}ep`0R;c_DizU3gv9sGZn`tIEpfVAQN_>W}j5nJ^`P8IJgXqRCbEb&Oc zK>Q>SLYDXzLB!hsuBtSy08VoWy$`+r3VKR~$lVcf5P1+eks`CpB7}S_h}Hy@z>Xs( zM+Th|HDL^Yt((mdORsB%rh}B}g%ojRxdKuqTs zED3!|_5BRY|7j-ZS6RBk@+JhFGn_cf7WGZ$S1&jTGi?!2a#^gm-&S0-FABjF16RYv zS7oy(GAE?Lt)K5O6&p}%cUPSYOY-X~I7uB6dx#LH=iuk&F>~Ba&UcJl(ZZ0^==}JT zFBO^7U1c%8?_O=OzR&m+G_*sA_1sm_OT>uvd~X%dqep+UD;@x}!+Hi@SAfNSBB~)y z0i+uMG~53t!2mx0EKvDvfu(l}R2P?(YX%F{-Yn2@uR!+~1v>8**gMZ7bG7X1(J5$7 z@p6inQ@32}lDg$;FR5FuW?S7gb<3$+uEv_W<XuWtoVw-IEvGxodw_cH zUT_%nfg?bBc0U*ZgJ1{@gAt$}K3xk@o$5HyLYxHZ%=xM3>UU3olYlNQp8<4pxw`eU zKus!ZFsHA}>6UW3zFf`wyp<1JFJ^7zZulQ=eQ&gvE@}lG3^X<}IWh_*B}Gq03ITLX AiU0rr diff --git a/docs/equations/equations.tex b/docs/equations/equations.tex index f1bfc65..337de7f 100644 --- a/docs/equations/equations.tex +++ b/docs/equations/equations.tex @@ -326,16 +326,19 @@ \section{Orbital Rotation} where \begin{equation} \begin{aligned} - \exp(\hat{R}) &= 1+\hat{R}+\frac{1}{2!}\hat{R}^2+ \cdots=\hat{U}, \\ - \hat{R} &= \sum_{r\mathchar"313E k}R_r^k(\hat{E}_k^r-\hat{E}_r^k), \\ - \hat{U} &= \sum U_r^s\hat{E}_s^r, \\ - \bf{U} \bf{U}^\dagger &= \bf{I}, \forall \bf{R}=-\bf{R}^{\dagger},\\ + \exp(\hat{R}) &= 1+\hat{R}+\frac{1}{2!}\hat{R}^2+ \cdots, \\ + \hat{R} &= R_r^s\hat{E}_s^r,\\ \end{aligned} \end{equation} -In which $\hat{E}_k^r$ is the singlet excitation operator $(\hat{a}_{r\alpha}^{\dagger}\hat{a}_{k\alpha}+\hat{a}_{r\beta}^{\dagger}\hat{a}_{k\beta} )$. -$R_r^k$ is the element of matrix $\bf{R}$, $U_r^s$ is the element of matrix $\bf{U}$, -here we let it be real, thus $\bf{R}$ matrix is an antisymmetric matrix, with $R_r^k=-R_k^r$. -Mathemetically it can be proved that the transforming matrix $\bf{U}$ is unitary. + +$\hat{E}^r_s$ is the singlet excitation operator $(\hat{a}_{r\alpha}^{\dagger}\hat{a}_{k\alpha}+\hat{a}_{r\beta}^{\dagger}\hat{a}_{k\beta} )$. +Mathemetically if $\bf{R}$ is antisymmetric, $\exp(\hat{R})$ is an unitary transformation. +\begin{equation} + \begin{aligned} + R_r^s &= -R_s^r,\\ + \hat{R} &= [R_r^s(\hat{E}_s^r-\hat{E}_r^s)]_{r\mathchar"313E s}, + \end{aligned} + \end{equation} \section{MCSCF} The energy expectation value of the wavefunction is be given by @@ -347,35 +350,102 @@ \section{MCSCF} &= E_0+\bf{g}^T\bf{x} +\frac{1}{2} \bf{x}^T\bf{hx}+ \cdots.\\ \end{aligned} \end{equation} -Here, the orbital transformation parameters $\bf{R}$ is expressed as vector $\bf{x}$, +In which Hamiltonian operator $\hat{H}$ is expressed as +\begin{equation} +\begin{aligned} +\hat{H} &= E_0 + h^q_p\hat{a}_p^\dagger\hat{a}_q + \frac{1}{2}v^{qs}_{pr}\hat{a}_p^\dagger\hat{a}_r^\dagger\hat{a}_s\hat{a}_q\\ +&= E_0 + h^q_p\hat{E}^p_q + \frac{1}{2}v^{qs}_{pr}\hat{e}^{pr}_{qs},\\ +\end{aligned} +\end{equation} +with $\hat{e}^{pr}_{qs}$ as the 2-electron excitation operator $\sum_{\sigma\tau}\hat{a}_{p\sigma}^\dagger\hat{a}_{r\tau}^\dagger\hat{a}_{s\tau}\hat{a}_{q\sigma}$. +In the first expression, $p,q,r,s$ denote the spin orbitals, and in the second expression, $p,q,r,s$ denote spatial orbitals. + +The orbital transformation parameters $\bf{R}$ is expressed as vector $\bf{x}$, the linear coefficients as gradient vector $\bf{g}$, -the quadratic coefficients as matrix $\bf{h}$. When terms after the quadratic terms truncated, +the quadratic coefficients as matrix $\bf{h}$. +When terms after the quadratic terms truncated, to minimize the energy expectation value, the Lagrangian equation as known as the Newton-Raphson equation is \begin{equation} \frac{\partial}{\partial \bf{x}}(\bf{g}^T\bf{x}+\frac{1}{2}\bf{x}^T\bf{hx})= \bf{g}+\bf{hx} =0. \end{equation} -In the end, expectation energy $E$ is calculated with transformed orbital coefficients and active orbital one- and two-particle density matrices +Since the internal rotation of each of doubly occupied orbitals and virtual orbitals don't change the wavefunction, +vector $\bf{x}$ is consisted of 4 parts, can be expressed as $[\bf{x}_t^j,\bf{x}_a^j,\bf{x}_t^u, \bf{x}_a^u]$. + +Here, $\bf{g}$ is calculated from +\begin{equation} +\begin{aligned} + g_r^k&= (\frac{\partial E}{\partial x_r^k})_{\bf{R = \bf{0}}}\\ + &= <0|[\hat{H}, \hat{E}^r_k-\hat{E}^k_r]|0>\\ + &= [1-\perm{rk}]<0|[\hat{E}^k_r, h^{q'}_{p'}\hat{E}^{p'}_{q'} + \frac{1}{2}v^{q's'}_{p'r'}\hat{e}^{p'r'}_{q's'}]|0>\\ + &= [1-\perm{rk}]<0|h^{q'}_r\hat{E}^k_{q'}-h^k_{p'}\hat{E}^{p'}_r +v^{q's'}_{rr'}\hat{e}^{kr'}_{q's'}- v^{ks'}_{p'r'}\hat{e}^{p'r'}_{rs'}|0>,\\ + &= [1-\perm{rk}](h^{q'}_r\pre{^1}D^k_{q'}-h^k_{p'}\pre{^1}D^{p'}_r+v^{q's'}_{rr'}\pre{^2}D^{kr'}_{q's'}-v^{ks'}_{p'r'}\pre{^2}D^{p'r'}_{rs'}) +\end{aligned} +\end{equation} +let \begin{equation} -E=\pre{^c}F_t^u \pre{^1}D^t_u+\frac{1}{2}v^{uw}_{tv}\pre{^2}D^{tv}_{uw}+E_c+E_{nuc}, + \red{A_r^k= \frac{1}{2}(h^{q'}_r\pre{^1}D^k_{q'} + h^r_{p'}\pre{^1}D^{p'}_k) + \frac{1}{2}(v^{q's'}_{rr'}\pre{^2}D^{kr'}_{q's'}+v^{rs'}_{p'r'}\pre{^2}D^{p'r'}_{ks'}),} \end{equation} -with +then +\begin{equation} + \red{g_r^k = 2(A_r^k-A_k^r).} +\end{equation} +In which 1-particle density matrix $\bf{\pre{^1}D}$ and 2-particle density matrix $\bf{\pre{^2}D}$ are defined as \begin{equation} \begin{aligned} - E_c=&h^j_j+\pre{^c}F_j^j,\\ - \pre{^c}F_r^s =& h^s_r+(2v^{sj}_{rj}-v^{js}_{rj}), + \pre{^1}D^t_u &= <0|\hat{E}^t_u|0> = c_Ic_J<\Phi_I|\hat{E}^t_u|\Phi_J>,\\ + \pre{^2}D^{tv}_{uw} &= <0|\hat{e}^{tv}_{uw}|0> = c_Ic_J<\Phi_I|\hat{e}^{tv}_{uw}|\Phi_J>. \end{aligned} \end{equation} -$E_c$ is the closed shell electronic energy, $\bf{\pre{^c}F}$ is the closed shell part of Fock matrix, -and 1-particle density matrix $\bf{\pre{^1}D}$ and symmetrized 2-particle density matrix $\bf{\pre{^2}D}$ are defined as +In order to simplify the expression, +the $\pre{^1}D_v^u$ is written as $D_v^u$, and $\pre{^2}D_{tv}^{uw}$ is written as $D_{tv}^{uw}$ in follow. + +Fock matrix can be generalizingly defined as +\begin{equation} + F_r^s = \pre{^c}F_r^s + D^t_u[v^{su}_{rt}-\frac{1}{2}v^{us}_{rt}], +\end{equation} +with +\begin{equation} + \pre{^c}F_r^s = h^s_r+(2v^{sj}_{rj}-v^{js}_{rj}) +\end{equation} +defined as the closed shell part of Fock matrix. + +$\bf{A}_r^k$ can be calculated as \begin{equation} \begin{aligned} - \pre{^1}D^t_u =& c_Ic_J<\Phi_I|\hat{E}^t_u|\Phi_J>,\\ - \pre{^2}D^{tv}_{uw} =& c_Ic_J<\Phi_I|\frac{1}{2}[\hat{E}^{tv}_{uw}+\hat{E}^{uv}_{tw}]|\Phi_J>, + A_r^i=& \frac{1}{2}(h^{q'}_rD^i_{q'} + h^r_{p'}D^{p'}_i) + \frac{1}{2}(v^{q's'}_{rr'}D^{ir'}_{q's'}+v^{rs'}_{p'r'}D^{p'r'}_{is'}),\\ + =&\frac{1}{2}(h^i_rD^i_i+h^r_iD^i_i)+\frac{1}{2}(v^{ij}_{rj}D^{ij}_{ij}+v^{rj}_{ij}D^{ij}_{ij} +v^{ji}_{rj}D^{ij}_{ji} +v^{rj}_{ji}D^{ji}_{ij}\\ + &+ v^{iu}_{rt}D^{it}_{iu}+v_{iu}^{rt}D_{it}^{iu} + v^{ui}_{rt}D^{it}_{ui} + v^{rt}_{ui}D^{ui}_{it})\\ + =&\frac{1}{2}(2h^i_r+2h^r_i)+\frac{1}{2}(4v^{ij}_{rj}+4v^{rj}_{ij} -2v^{ji}_{rj} -2v^{rj}_{ji} + 2v^{iu}_{rt}D^t_u+2v_{iu}^{rt}D_t^u - v^{ui}_{rt}D^t_u - v^{rt}_{ui}D^u_t)\\ + =&\sop{ri}(h^i_r+2v^{ij}_{rj}-v^{ji}_{rj}+v^{iu}_{rt}D^t_u-\frac{1}{2}v^{ui}_{rt}D^t_u)\\ + =&\sop{ri} F_r^i, \end{aligned} \end{equation} -with $\hat{E}_{tv}^{uw}$ as the 2-electron excitation operator. In order to simplify the expression, -the $\pre{^1}D_v^u$ is written as $D_v^u$, and $\pre{^2}D_{tv}^{uw}$ is written as $D_{tv}^{uw}$ in follow. -Here, the 4-index integral $v^{uw}_{tv}$ is calculated as the density fitted integrals, as mentioned in previous chapter, + +\begin{equation} +\begin{aligned} + A_r^u=& \frac{1}{2}(h^{q'}_rD^u_{q'} + h^r_{p'}D^{p'}_u) + \frac{1}{2}(v^{q's'}_{rr'}D^{ur'}_{q's'}+v^{rs'}_{p'r'}D^{p'r'}_{us'})\\ + =&\frac{1}{2}(h^t_rD^u_t+h^r_tD^t_u) + \frac{1}{2}(v^{tj}_{rj}D^{uj}_{tj}+v^{rj}_{tj}D^{tj}_{uj}+v^{tv}_{rw}D^{uw}_{tv}+v^{rw}_{tv}D^{tv}_{uw}+v^{jt}_{rj}D^{uj}_{jt}+v^{rj}_{jt}D^{jt}_{uj})\\ + =&\frac{1}{2}(h^t_rD^u_t+h^r_tD^t_u) + \frac{1}{2}(2v^{tj}_{rj}D^u_t+2v^{rj}_{tj}D^t_u+v^{tv}_{rw}D^{uw}_{tv}+v^{rw}_{tv}D^{tv}_{uw}-v^{jt}_{rj}D^u_t-v^{rj}_{jt}D^t_u)\\ + =&\frac{1}{2}[(h^t_r + 2v^{tj}_{rj} - v^{jt}_{rj})D^u_t + v^{tv}_{rw}D^{uw}_{tv}] + \frac{1}{2}[(h^r_t + 2v^{rj}_{tj} - v^{jr}_{tj})D^t_u + v^{rw}_{tv}D^{tv}_{uw}]\\ + =&\frac{1}{2}(\pre{^c}F_r^tD^u_t+v^{tv}_{rw}D^{uw}_{tv}) + \frac{1}{2}(\pre{^c}F_t^rD^t_u+v^{rw}_{tv}D^{tv}_{uw}),\\ +\end{aligned} +\end{equation} + +\begin{equation} + A_r^a=0. +\end{equation} + +Electronic energy $E$ after orbital transformation is calculated with transformed orbitals and active orbital 1- and 2-particle density matrices +\begin{equation} +E=\pre{^c}F_t^uD^t_u+\frac{1}{2}v^{uw}_{tv}D^{tv}_{uw}+E_c, +\end{equation} +with +\begin{equation} + E_c=h^j_j+\pre{^c}F_j^j, +\end{equation} +$E_c$ is the closed shell electronic energy. + +The 4-index integral $v^{uw}_{tv}$ is calculated as the density fitted integrals, as mentioned in previous chapter, \begin{equation} \begin{aligned} v^{uw}_{tv} =& v^{uL}_t v^{wL}_v,\\ @@ -410,26 +480,6 @@ \section{Augmented Hessian} \bf{x} \end{pmatrix}. \end{equation} -Here, $\bf{g}$ is calculated from -\begin{equation} - g_r^k = (\frac{\partial E}{\partial R_r^k})_{\bf{R = \bf{0}}} = 2(A_r^k-A_k^r) = 0, -\end{equation} -where $\bf{A}_r^k$ is defined as -\begin{equation} -\begin{aligned} - A_r^i=&2F_r^i,\\ - A_r^u=& \pre{^c}F_r^v D_v^u + v^{tw}_{rv}D^{tv}_{uw},\\ - A_r^a=&0,\\ -\end{aligned} -\end{equation} -with -\begin{equation} - F_r^s = \pre{^c}F_r^s + D^t_u[v^{su}_{rt}-\frac{1}{2}v^{ru}_{ts}], -\end{equation} -the $\bf{F}$ matrix denotes the generalized Fock matrix calculated with density matrices. -Since matrix $\bf{g}$ is asymmetric, $g_{rk}=-g_{kr}$, and we don't need the internal rotation parts of doubly occupied orbitals and virtual orbitals, -we exclude the redundant parts of $\bf{g}$ and $\bf{h}$. - Thus $\bf{g}$ is a combination of only $[\bf{g}_t^j,\bf{g}_a^j,\bf{g}_t^u, \bf{g}_a^u ]$. We search for the value of $\lambda$ with a combination method of linear search and logarithmic bisection search: \begin{equation} @@ -458,33 +508,51 @@ \subsection{First Order Approximation} More specifically, \begin{equation} \begin{aligned} - \pre{^{SCI}}H_{ai}^{bj} =& 4(\delta_i^j F_a^b-\delta_a^b F_i^j),\\ - \pre{^{SCI}}H_{ai}^{bu} =& -2\delta_a^b F_i^vD_v^u,\\ - \pre{^{SCI}}H_{ai}^{uj} =& \delta_i^j(4F_a^u-2F_a^vD_v^u),\\ - \pre{^{SCI}}H_{ti}^{bu} =& 0,\\ - \pre{^{SCI}}H_{ti}^{uj} =& (2D_t^u-4\delta_t^u) F_i^j\\ - &+2\delta_i^j[2F_t^u-(D_{tv}^{uw}-D_t^uD_v^w)F_v^w\\ - &-D_t^vF_v^u-F_t^vD_v^u],\\ - \pre{^{SCI}}H_{ab}^{tu} =&2\delta^a_b (D_{tv}^{uw}-D_t^uD_v^w)F_v^w + 2D_t^uF_a^b. + \red{\pre{^{SCI}}H_{ab}^{ij} =}&\red{ 4(\delta_i^j F_a^b-\delta_a^b F_i^j),}\\ + \red{\pre{^{SCI}}H_{ab}^{iu} =}&\red{ -2\delta_a^b F_i^vD_v^u,} \\ + \red{\pre{^{SCI}}H_{au}^{ij} =}&\red{ \delta_i^j(4F_a^u-2F_a^vD_v^u), }\\ + \red{\pre{^{SCI}}H_{tb}^{iu} =}&\red{ 0,}\\ + \red{\pre{^{SCI}}H_{tu}^{ij} =}&\red{ (2D_t^u-4\delta_t^u) F_i^j+2\delta_i^j[2F_t^u-(D^{tv}_{uw}-D^t_uD^v_w)F_v^w-D_t^vF_v^u-F_t^vD^v_u],}\\ + \red{\pre{^{SCI}}H_{ab}^{tu} =}&\red{ 2\delta^a_b (D^{tv}_{uw}-D^t_uD^v_w)F_v^w + 2D^t_uF_a^b.} \end{aligned} \end{equation} \subsection{Second Order Approximation} In general, the second-order Hessian matrix elements are calculated as \begin{equation} - \pre{^{SO}}H_{rs}^{kl} = (1-\perm{rk})(1-\perm{sl})[2G^{kl}_{rs}-\delta^k_l(A_r^s+A_s^r)], +\begin{aligned} + \pre{^{SO}}H_{rs}^{kl} =& (\frac{\partial E}{\partial x_r^k\partial x_s^l})_{\bf{R = \bf{0}}}\\ + =& \frac{1}{2}\Sop{rs}{kl} <0|[[\hat{H},\hat{E}^k_r-\hat{E}^r_k],\hat{E}^l_s-\hat{E}^s_l]|0>\\ + =& \frac{1}{2}\Sop{rs}{kl} \ASop{rk}{sl} <0|[[\hat{H},\hat{E}^k_r], \hat{E}^l_s]|0>\\ + =& \frac{1}{2}\Sop{rs}{kl} \ASop{rk}{sl} <0|[\hat{E}^l_s,[\hat{E}^k_r, h^{q'}_{p'}\hat{E}^{p'}_{q'} + \frac{1}{2}v^{q's'}_{p'r'}\hat{e}^{p'r'}_{q's'}]]|0>\\ + =& \frac{1}{2}\Sop{rs}{kl} \ASop{rk}{sl} (-h^l_rD^k_s -h^k_sD^l_r + h^{q'}_rD^l_{q'}\delta^k_s + h^k_{p'}D^{p'}_s\delta^l_r\\ + &+\delta^k_sv^{q's'}_{rr'}D^{lr'}_{q's'} + \delta^l_r v^{ks'}_{p'r'}D^{p'r'}_{ss'}-v^{ls'}_{rr'}D^{kr'}_{ss'} - v^{ks'}_{sr'}D^{lr'}_{rs'}\\ + &+v^{q's'}_{rs}D^{kl}_{q's'} + v^{kl}_{p'r'}D^{p'r'}_{rs} - v^{q'l}_{rr'}D^{kr'}_{q's} - v^{ks'}_{p's}D^{p'l}_{rs'})\\ + =& \ASop{rk}{sl} (-h^l_rD^k_s - h^k_sD^l_r -v^{ls'}_{rr'}D^{kr'}_{ss'} - v^{ks'}_{sr'}D^{lr'}_{rs'} +v^{q's'}_{rs}D^{kl}_{q's'} + v^{kl}_{p'r'}D^{p'r'}_{rs} - v^{q'l}_{rr'}D^{kr'}_{q's} - v^{ks'}_{p's}D^{p'l}_{rs'} )\\ + &+ \frac{1}{2} \Sop{rs}{kl} \ASop{rk}{sl} \delta^k_s(h^{q'}_rD^l_{q'} + h^r_{p'}D^{p'}_l +v^{q's'}_{rr'} D^{lr'}_{q's'}+ v^{rs'}_{p'r'}D^{p'r'}_{ls'} ) \\ + =&\red{ \ASop{rk}{sl} (h^s_rD^k_l + h^r_s D^l_k + v^{ss'}_{rr'}D^{kr'}_{ls'} + v^{rs'}_{sr'}D^{lr'}_{ks'} + v^{q's'}_{rs}D^{kl}_{q's'} + v^{rs}_{p'r'}D^{p'r'}_{kl} + v^{q's}_{rr'}D^{kr'}_{q'l}+ v^{rs'}_{p's}D^{p'l}_{ks'}) }\\ + &+ \ASop{rk}{sl}(\delta^k_sA^l_r+\delta^l_rA^k_s)\\ + =& \ASop{rk}{sl} [2G^{kl}_{rs}+ \red{\delta^k_s(A^l_r+A^r_l)}]\\ + =& \ASop{rk}{sl} [2G^{kl}_{rs}-\delta^k_l(A_r^s+A_s^r)],\\ +\end{aligned} \end{equation} matrices $\bf{G}$ are defined as \begin{equation} -\begin{aligned} -G^{ij}_{rs} =& 2[F_r^s\delta_i^j+L^{ij}_{rs}],\\ -G^{tj}_{rs} =& D_t^vL^{vj}_{rs} = G^{jt}_{sr},\\ -G^{tu}_{rs} =& \pre{^c}F_r^sD_t^u + [v^{sw}_{rv}D_{tv}^{uw}+2v^{vw}_{rs}D_{tu}^{vw}],\\ -\end{aligned} + \red{G^{kl}_{rs} = \frac{1}{2} (h^s_rD^k_l + h^r_s D^l_k + v^{ss'}_{rr'}D^{kr'}_{ls'} + v^{rs'}_{sr'}D^{lr'}_{ks'} + v^{q's'}_{rs}D^{kl}_{q's'} + v^{rs}_{p'r'}D^{p'r'}_{kl} + v^{q's}_{rr'}D^{kr'}_{q'l}+ v^{rs'}_{p's}D^{p'l}_{ks'})} +\end{equation} + +\begin{equation} +\red{G^{ij}_{rs} = \delta_i^j(F^r_s+F^s_r)+L^{ij}_{rs} + L^{rs}_{ij},} +\end{equation} +\begin{equation} +\red{G^{tj}_{rs} = \frac{1}{2}(D^t_uL^{uj}_{rs} + D^u_tL^{rs}_{uj}) = G^{jt}_{sr},} +\end{equation} +\begin{equation} +\red{G^{tu}_{rs} = \frac{1}{2}( \pre{^c}F_r^sD_t^u + \pre{^c}F_s^rD_u^t + v^{sw}_{rv}D^{tv}_{uw} + v^{rv}_{sw}D^{uw}_{tv})+v^{vw}_{rs}D^{tu}_{vw} + v_{vw}^{rs}D_{tu}^{vw},} \end{equation} where \begin{equation} - L^{ij}_{rs} = 4v^{ij}_{rs} - v^{ij}_{sr} - v^{sj}_{ri}. + L^{pq}_{rs} = 2v^{pq}_{rs} +2^{ps}_{rq} - v^{sp}_{rq} - v^{qp}_{rs}. \end{equation} \subsection{Combined Second-Order and Super-CI Hessian Approximation} From c528a1c9a28e22d0a3ba638e9ab09376f4b1c0ff Mon Sep 17 00:00:00 2001 From: Fangcheng Wu Date: Fri, 21 Jun 2024 15:25:20 +0200 Subject: [PATCH 22/44] CHANGELOG.md updated --- CHANGELOG.md | 5 +++-- docs/equations/equations.pdf | Bin 354903 -> 354903 bytes 2 files changed, 3 insertions(+), 2 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 0d83225..80f01a8 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -6,9 +6,12 @@ ### Changed +* Save the memory using in Hessian matrix caclulation in dfmcscf function. + ### Added * Export of molden files (`@export_molden`). At the moment the orbital energies and occupations are not exported. +* Add dfmcscf part in documentation ### Fixed @@ -24,13 +27,11 @@ * use SVD in DIIS. * increase number of iterations in 2D-CCSD IAS test. * interface to `libcint_jll` has been implemented. The basis set library is added (in Molpro format), and basis sets are parsed to a `BasisSet` object. `GaussianBasis.jl` dependency is removed. -* Save the memory using in Hessian matrix caclulation in dfmcscf function. ### Added * Expand README * `amdmkl()` function to speed up MKL on AMD machines. -* Add dfmcscf part in documentation * CROP-DIIS option (JCTC 11, 1518 (2015)) which is less sensitive to the DIIS dimension. To activate, set `diis` option `crop=true`, the DIIS dimension can be changed using `maxcrop` (default is 3). * An option `print_init` is added to the `@print_input` macro (default is `false`). If set to `true`, the `ElemCo.jl` info is printed again (useful if the output is redirected in julia to a file). * A simple DMRG routine is added based on `ITensors` (adapted from `ITensorChemistry.jl`). diff --git a/docs/equations/equations.pdf b/docs/equations/equations.pdf index 97931560b80b028af260f0419540bf205db435f8..bdcc8b74ea3a48783a2d01e7bd0a22b82bae3b05 100644 GIT binary patch delta 116 zcmcb9MfCa=(S{br7N!>F7M3ln)$y#RM#jd*(;MPhm^qr5Ss2(U*bq{(y*!!q0UH3isUMC2 delta 116 zcmcb9MfCa=(S{br7N!>F7M3ln)$yz*CYFYl(;MPh Date: Sun, 23 Jun 2024 09:01:58 +0200 Subject: [PATCH 23/44] Make FDump type stable as FDump{N} (with N=3 or 4) --- CHANGELOG.md | 8 +- src/ElemCo.jl | 2 +- src/bohf.jl | 2 +- src/cc.jl | 3 +- src/cc_triples.jl | 6 +- src/ccdriver.jl | 2 +- src/dfdump.jl | 14 +- src/dmrg.jl | 7 +- src/dump.jl | 477 +++++++++++++++++++++++---------------------- src/dumptools.jl | 2 +- src/ecinfos.jl | 4 +- src/fockfactory.jl | 2 +- src/qmtensors.jl | 3 + src/tensortools.jl | 2 +- src/utensors.jl | 113 +++++++++++ src/utils.jl | 10 +- 16 files changed, 396 insertions(+), 261 deletions(-) create mode 100644 src/utensors.jl diff --git a/CHANGELOG.md b/CHANGELOG.md index 8126307..a6c8c39 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -5,11 +5,15 @@ ### Breaking * `DIIS.perform` has been changed to `DIIS.perform!` in order to allow to read the vectors and residuals as `Vector{}`. -* the signature of `newmmap` function has changed (the type specification is now the last argument and defaults to `Float64`. +* The signature of `newmmap` function has changed (the type specification is now the last argument and defaults to `Float64`. +* The `FciDump` module has been renamed to `FciDumps`. +* The `FDump` type has been changed to `FDump{N}` with N=3 (for triangular storage of 2-electron integrals) or 4. The logical variable `triang` has been removed (there is a function `is_triang(::FDump)` now). Aliases `TFDump = FDump{3}` and `QFDump = FDump{4}` have been introduced. +* The triangular functions have been moved to a separate file `utensors.jl`, part of the `QMTensors` module. `uppertriangular` function has been renamed to `uppertriangular_index`. ### Changed -* `dfdump` stores the MO integrals internally in npy files. +* `dfdump` stores the MO integrals internally in mmaped files. +* The header of the `FDump` is now stored in a type-stable structure `FDumpHeader`. ### Added diff --git a/src/ElemCo.jl b/src/ElemCo.jl index 78d7c3f..49a9555 100644 --- a/src/ElemCo.jl +++ b/src/ElemCo.jl @@ -66,7 +66,7 @@ using .CCTools using .CoupledCluster using .CCDriver using .DFCoupledCluster -using .FciDump +using .FciDumps using .DumpTools using .OrbTools using .Elements diff --git a/src/bohf.jl b/src/bohf.jl index 278d0a0..5e65d4e 100644 --- a/src/bohf.jl +++ b/src/bohf.jl @@ -8,7 +8,7 @@ using ..ElemCo.Constants using ..ElemCo.ECInfos using ..ElemCo.QMTensors using ..ElemCo.TensorTools -using ..ElemCo.FciDump +using ..ElemCo.FciDumps using ..ElemCo.OrbTools using ..ElemCo.FockFactory using ..ElemCo.DIIS diff --git a/src/cc.jl b/src/cc.jl index a184b45..13c7e01 100644 --- a/src/cc.jl +++ b/src/cc.jl @@ -62,8 +62,9 @@ using Printf using ..ElemCo.Utils using ..ElemCo.ECInfos using ..ElemCo.ECMethods +using ..ElemCo.QMTensors using ..ElemCo.TensorTools -using ..ElemCo.FciDump +using ..ElemCo.FciDumps using ..ElemCo.DIIS using ..ElemCo.DecompTools using ..ElemCo.DFCoupledCluster diff --git a/src/cc_triples.jl b/src/cc_triples.jl index 13b5d58..716ff7a 100644 --- a/src/cc_triples.jl +++ b/src/cc_triples.jl @@ -56,7 +56,7 @@ function calc_pertT_closed_shell(EC::ECInfo; save_t3=false) IntX = zeros(nvir,nocc) IntY = zeros(nvir,nocc) if save_t3 - t3file, T3 = newmmap(EC,"T_vvvooo",(nvir,nvir,nvir,uppertriangular(nocc,nocc,nocc))) + t3file, T3 = newmmap(EC,"T_vvvooo",(nvir,nvir,nvir,uppertriangular_index(nocc,nocc,nocc))) end for k = 1:nocc for j = 1:k @@ -102,7 +102,7 @@ function calc_pertT_closed_shell(EC::ECInfo; save_t3=false) end ϵoijk = ϵo[i] + ϵo[j] + ϵo[k] if save_t3 - ijk = uppertriangular(i,j,k) + ijk = uppertriangular_index(i,j,k) T3[:,:,:,ijk] = Kijk for abc ∈ CartesianIndices(Kijk) a,b,c = Tuple(abc) @@ -882,4 +882,4 @@ function calc_ΛpertT_mixedspin(EC::ECInfo, T2, T2mix, U1, U2, U1os, U2mix, spin @tensoropt En3 += 0.5 * (fOV[I,A] * IntYos[A,I]) En3 += Enb3 return (ET3=En3, ET3b=Enb3) -end \ No newline at end of file +end diff --git a/src/ccdriver.jl b/src/ccdriver.jl index 8128d4c..288385a 100644 --- a/src/ccdriver.jl +++ b/src/ccdriver.jl @@ -16,7 +16,7 @@ using ..ElemCo.CCTools using ..ElemCo.CoupledCluster using ..ElemCo.DMRG using ..ElemCo.DFCoupledCluster -using ..ElemCo.FciDump +using ..ElemCo.FciDumps using ..ElemCo.OrbTools export ccdriver, dfccdriver diff --git a/src/dfdump.jl b/src/dfdump.jl index dc107eb..8d97cbc 100644 --- a/src/dfdump.jl +++ b/src/dfdump.jl @@ -9,7 +9,7 @@ using ..ElemCo.Integrals using ..ElemCo.OrbTools using ..ElemCo.MSystem using ..ElemCo.FockFactory -using ..ElemCo.FciDump +using ..ElemCo.FciDumps using ..ElemCo.TensorTools using ..ElemCo.DFTools using ..ElemCo.Utils @@ -17,7 +17,7 @@ using ..ElemCo.Utils export dfdump """ - generate_integrals(EC::ECInfo, fdump::FDump, cMO::Matrix, full_spaces) + generate_integrals(EC::ECInfo, fdump::TFDump, cMO::Matrix, full_spaces) Generate `int2`, `int1` and `int0` integrals for fcidump using density fitting. @@ -25,7 +25,7 @@ export dfdump used for `int1` and `int0` integrals. `full_spaces` is a dictionary with spaces without frozen orbitals. """ -function generate_integrals(EC::ECInfo, fdump::FDump, cMO::Matrix, full_spaces) +function generate_integrals(EC::ECInfo, fdump::TFDump, cMO::Matrix, full_spaces) @assert !fdump.uhf "Use generate_integrals(EC, fdump, cMO::SpinMatrix, full_spaces) for UHF" bao = generate_basis(EC, "ao") bfit = generate_basis(EC, "mpfit") @@ -38,7 +38,6 @@ function generate_integrals(EC::ECInfo, fdump::FDump, cMO::Matrix, full_spaces) PQ = nothing μνP = eri_2e3idx(bao, bfit) cMOval = cMO[:,wocore] - @assert fdump.triang # store only upper triangle nao = size(cMO, 1) norbs = length(wocore) println("norbs: ", norbs) @@ -112,7 +111,7 @@ function generate_integrals(EC::ECInfo, fdump::FDump, cMO::Matrix, full_spaces) end """ - generate_integrals(EC::ECInfo, fdump::FDump, cMO::SpinMatrix, full_spaces) + generate_integrals(EC::ECInfo, fdump::TFDump, cMO::SpinMatrix, full_spaces) Generate `int2aa`, `int2bb`, `int2ab`, `int1a`, `int1b` and `int0` integrals for fcidump using density fitting. @@ -120,7 +119,7 @@ end used for `int1` and `int0` integrals. `full_spaces` is a dictionary with spaces without frozen orbitals. """ -function generate_integrals(EC::ECInfo, fdump::FDump, cMO::SpinMatrix, full_spaces) +function generate_integrals(EC::ECInfo, fdump::TFDump, cMO::SpinMatrix, full_spaces) @assert fdump.uhf "Use generate_integrals(EC, fdump, cMO, full_spaces) for RHF" @assert size(cMO.α) == size(cMO.β) "cMO.α and cMO.β must have the same size" bao = generate_basis(EC, "ao") @@ -136,7 +135,6 @@ function generate_integrals(EC::ECInfo, fdump::FDump, cMO::SpinMatrix, full_spac μνP = eri_2e3idx(bao, bfit) cMOaval = cMO[1][:,wocore] cMObval = cMO[2][:,wocore] - @assert fdump.triang # store only upper triangle for same-spin integrals nao = size(cMO, 1) norbs = length(wocore) println("norbs: ", norbs) @@ -268,7 +266,7 @@ function dfdump(EC::ECInfo) norbs -= ncore_orbs + nfrozvirt ms2 = EC.options.wf.ms2 ms2 = (ms2 < 0) ? mod(nelec,2) : ms2 - fdump = FDump(norbs, nelec; ms2=ms2, uhf=!is_restricted(cMO)) + fdump = TFDump(norbs, nelec; ms2=ms2, uhf=!is_restricted(cMO)) if fdump.uhf generate_integrals(EC, fdump, cMO[:,1:end-nfrozvirt], space_save) else diff --git a/src/dmrg.jl b/src/dmrg.jl index 0cb8e59..a1f325e 100644 --- a/src/dmrg.jl +++ b/src/dmrg.jl @@ -9,8 +9,9 @@ using ITensors using Printf using ..ElemCo.Utils using ..ElemCo.ECInfos +using ..ElemCo.QMTensors using ..ElemCo.TensorTools -using ..ElemCo.FciDump +using ..ElemCo.FciDumps export calc_dmrg @@ -47,7 +48,7 @@ function gen_hamiltonian(EC::ECInfo, atol=1e-15) else # last two indices of integrals are stored as upper triangular for s in 1:norb, r in 1:s, q in 1:norb, p in 1:norb - rs = uppertriangular(r, s) + rs = uppertriangular_index(r, s) if norm(int2[p, q, rs]) > atol add!(ham, 0.5*int2[p, q, rs], "c†↑", p, "c†↑", q, "c↑", s, "c↑", r) add!(ham, 0.5*int2[p, q, rs], "c†↓", p, "c†↓", q, "c↓", s, "c↓", r) @@ -112,4 +113,4 @@ function calc_dmrg(EC::ECInfo) return (; E=E-Eref, Expect=E2-Eref) end -end # module DMRG \ No newline at end of file +end # module DMRG diff --git a/src/dump.jl b/src/dump.jl index f791688..56151ae 100644 --- a/src/dump.jl +++ b/src/dump.jl @@ -4,7 +4,7 @@ Read and write fcidump format integrals. Individual arrays of integrals can also be in *.npy format """ -module FciDump +module FciDumps # using LinearAlgebra # using NPZ @@ -12,9 +12,11 @@ using TensorOperations using DocStringExtensions using Printf using ..ElemCo.MNPY +using ..ElemCo.QMTensors -export FDump, fd_exists, read_fcidump, write_fcidump, transform_fcidump -export headvar, headvars, integ1, integ2, uppertriangular, uppertriangular_range +export FDump, TFDump, QFDump +export fd_exists, read_fcidump, write_fcidump, transform_fcidump +export headvar, headvars, integ1, integ2, triang export reorder_orbs_int2, modify_header! export int1_npy_filename, int2_npy_filename @@ -94,61 +96,70 @@ end """ - FDump + FDump{N} Molecular integrals The 2-e integrals are stored in the physicists' notation: `int2[pqrs]` ``= =v_{pq}^{rs}`` - and for `triang` the last two indices are stored as a single upper triangular index (r <= s) + and for `N=3` the last two indices are stored as a single uppertriangular index (r <= s) $(TYPEDFIELDS) """ -Base.@kwdef mutable struct FDump +Base.@kwdef mutable struct FDump{N} """ 2-e⁻ integrals for restricted orbitals fcidump. """ - int2::Array{Float64} = [] + int2::Array{Float64,N} = zeros(fill(0,N)...) """ αα 2-e⁻ integrals for unrestricted orbitals fcidump. """ - int2aa::Array{Float64} = [] + int2aa::Array{Float64,N} = zeros(fill(0,N)...) """ ββ 2-e⁻ integrals for unrestricted orbitals fcidump. """ - int2bb::Array{Float64} = [] + int2bb::Array{Float64,N} = zeros(fill(0,N)...) """ αβ 2-e⁻ integrals for unrestricted orbitals fcidump. """ - int2ab::Array{Float64} = [] + int2ab::Array{Float64,4} = zeros(0,0,0,0) """ 1-e⁻ integrals for restricted orbitals fcidump. """ - int1::Array{Float64} = [] + int1::Matrix{Float64} = zeros(0,0) """ α 1-e⁻ integrals for unrestricted orbitals fcidump. """ - int1a::Array{Float64} = [] + int1a::Matrix{Float64} = zeros(0,0) """ β 1-e⁻ integrals for unrestricted orbitals fcidump. """ - int1b::Array{Float64} = [] + int1b::Matrix{Float64} = zeros(0,0) """ core energy """ int0::Float64 = 0.0 """ header of fcidump file, a dictionary of arrays. """ head::FDumpHeader = FDumpHeader() - """`⟨true⟩` use an upper triangular index for last two indices of 2e⁻ integrals.""" - triang::Bool = true """`⟨false⟩` a convinience variable, has to coincide with `head["IUHF"][1] > 0`. """ uhf::Bool = false end +TFDump = FDump{3} +QFDump = FDump{4} + +""" + is_triang(fd::FDump) + + If true: an uppertriangular index for last two indices of 2e⁻ integrals is used. +""" +is_triang(fd::FDump{3}) = true +is_triang(fd::FDump{4}) = false + """ - FDump(int2::Array{Float64}, int1::Array{Float64}, int0::Float64, head::FDumpHeader) + FDump(int2::Array{Float64,N}, int1::Matrix{Float64}, int0::Float64, head::FDumpHeader) where N Spin-free fcidump """ -FDump(int2::Array{Float64}, int1::Array{Float64}, int0::Float64, head::FDumpHeader) = FDump(int2,[],[],[],int1,[],[],int0,head) +FDump(int2::Array{Float64,N}, int1::Matrix{Float64}, int0::Float64, head::FDumpHeader) where N = FDump(; int2, int1, int0, head) """ - FDump(int2aa::Array{Float64}, int2bb::Array{Float64}, int2ab::Array{Float64}, int1::Array{Float64}, int0::Float64, head::FDumpHeader) + FDump(int2aa::Array{Float64,N}, int2bb::Array{Float64,N}, int2ab::Array{Float64,4}, int1a::Matrix{Float64}, int1b::Matrix{Float64}, int0::Float64, head::FDumpHeader) where N Spin-polarized fcidump """ -FDump(int2aa::Array{Float64}, int2bb::Array{Float64}, int2ab::Array{Float64}, int1a::Array{Float64}, int1b::Array{Float64}, int0::Float64, head::FDumpHeader) = FDump([],int2aa,int2bb,int2ab,[],int1a,int1b,int0,head) +FDump(int2aa::Array{Float64,N}, int2bb::Array{Float64,N}, int2ab::Array{Float64,4}, int1a::Matrix{Float64}, int1b::Matrix{Float64}, int0::Float64, head::FDumpHeader) where N = FDump(; int2aa, int2bb, int2ab, int1a, int1b, int0, head) """ - FDump(norb,nelec;ms2=0,isym=1,orbsym=[],uhf=false,simtra=false,triang=true) + FDump{N}(norb, nelec; ms2=0, isym=1, orbsym=[], uhf=false, simtra=false) Create a new FDump object """ -function FDump(norb::Int, nelec::Int; ms2::Int=0, isym::Int=1, orbsym::Vector{Int}=Int[], - uhf=false, simtra=false, triang=true) - fd = FDump() +function FDump{N}(norb::Int, nelec::Int; ms2::Int=0, isym::Int=1, orbsym::Vector{Int}=Int[], + uhf=false, simtra=false) where N + fd = FDump{N}() fd.head["NORB"] = [norb] fd.head["NELEC"] = [nelec] fd.head["MS2"] = [ms2] @@ -160,7 +171,6 @@ function FDump(norb::Int, nelec::Int; ms2::Int=0, isym::Int=1, orbsym::Vector{In end fd.head["IUHF"] = uhf ? [1] : [0] fd.head["ST"] = simtra ? [1] : [0] - fd.triang = triang fd.uhf = uhf return fd end @@ -195,6 +205,48 @@ function fd_exists(fd::FDump) return !isempty(fd.head) end +""" + set_zero!(fd::FDump, norb::Int=0) + + Set all integrals to zero. + + If `norb` is not provided, the integrals are set to zero with the same dimensions as before. +""" +function set_zero!(fd::FDump, norb::Int=0) + fd.int0 = 0.0 + if norb <= 0 + if fd.uhf + fill!(fd.int1a, 0.0) + fill!(fd.int1b, 0.0) + fill!(fd.int2aa, 0.0) + fill!(fd.int2bb, 0.0) + fill!(fd.int2ab, 0.0) + else + fill!(fd.int1, 0.0) + fill!(fd.int2, 0.0) + end + else + if fd.uhf + fd.int1a = zeros(norb,norb) + fd.int1b = zeros(norb,norb) + fd.int2aa = get_int2_zeros(fd.int2aa, norb) + fd.int2bb = get_int2_zeros(fd.int2bb, norb) + fd.int2ab = get_int2_zeros(fd.int2ab, norb) + else + fd.int1 = zeros(norb,norb) + fd.int2 = get_int2_zeros(fd.int2, norb) + end + end +end + +function get_int2_zeros(int2::Array{Float64,3}, norb) + return zeros(norb,norb,(norb+1)*norb÷2) +end + +function get_int2_zeros(int2::Array{Float64,4}, norb) + return zeros(norb,norb,norb,norb) +end + """ integ1(fd::FDump, spincase::Symbol=:α) @@ -230,13 +282,13 @@ function integ2(fd::FDump, spincase::Symbol=:α) end """ - read_fcidump(fcidump::String) + read_fcidump(fcidump::String, ::Val{N}) Read ascii file (possibly with integrals in npy files). -""" -function read_fcidump(fcidump::String) +""" +function read_fcidump(fcidump::String, ::Val{N}) where N fdf = open(fcidump) - fd = FDump() + fd = FDump{N}() fd.head = read_header(fdf) fd.uhf = (headvar(fd, "IUHF", Int) > 0) simtra = (headvar(fd, "ST", Int) > 0) @@ -245,16 +297,23 @@ function read_fcidump(fcidump::String) end if isnothing(headvar(fd, "NPY2", String)) && isnothing(headvar(fd, "NPY2AA", String)) # read integrals from fcidump file - read_integrals!(fd,fdf) + read_integrals!(fd, fdf) close(fdf) else close(fdf) # read integrals from npy files - read_integrals!(fd,dirname(fcidump)) + read_integrals!(fd, dirname(fcidump)) end return fd end +""" + read_fcidump(fcidump::String) + + Read ascii file (possibly with integrals in npy files) to TFDump object. +""" +read_fcidump(fcidump::String) = read_fcidump(fcidump, Val(3)) + """ read_header(fdfile::IOStream) @@ -336,7 +395,6 @@ function read_header(fdfile) return head end - """ read_integrals!(fd::FDump, dir::AbstractString) @@ -361,116 +419,77 @@ function read_integrals!(fd::FDump, dir::AbstractString) fd.int0 = enuc end -""" - uppertriangular(i1, i2) - - Return upper triangular index from two indices i1 <= i2. -""" -function uppertriangular(i1, i2) - return i1+i2*(i2-1)÷2 -end - -""" - uppertriangular(i1, i2, i3) - - Return upper triangular index from three indices i1 <= i2 <= i3. -""" -function uppertriangular(i1, i2, i3) - return i1+i2*(i2-1)÷2+(i3+1)*i3*(i3-1)÷6 -end - -""" - uppertriangular_range(i2) - - Return range for the upper triangular index (i1 <= i2) for a given i2. """ -function uppertriangular_range(i2) - return (i2*(i2-1)÷2+1):(i2*(i2+1)÷2) -end + set_int2!(int2::Array{Float64,3}, i1, i2, i3, i4, integ, simtra, ab) -""" - uppertriangular_diagonal(i2) - - Return index of diagonal of upper triangular index (i1 <= i2) for a given i2. -""" -function uppertriangular_diagonal(i2) - return (i2*(i2+1)÷2) -end - -""" - strict_uppertriangular_range(i2) + Set 2-e integral in `int2` array to `integ` considering permutational symmetries. - Return range for the upper triangular index (i1 <= i2) without diagonal (i1 < i2) for a given i2. + For not `ab`: particle symmetry is assumed. + Integrals are stored in physicists' notation. """ -function strict_uppertriangular_range(i2) - return (i2*(i2-1)÷2+1):(i2*(i2+1)÷2-1) +function set_int2!(int2::Array{Float64,3}, i1, i2, i3, i4, integ, simtra, ab) + @assert !ab + if i2 == i4 + i24 = uppertriangular_index(i2,i4) + int2[i1,i3,i24] = integ + int2[i3,i1,i24] = integ + elseif i2 < i4 + int2[i1,i3,uppertriangular_index(i2,i4)] = integ + else + int2[i3,i1,uppertriangular_index(i4,i2)] = integ + end + if !simtra + if i2 == i3 + i23 = uppertriangular_index(i2,i3) + int2[i1,i4,i23] = integ + int2[i4,i1,i23] = integ + elseif i2 < i3 + int2[i1,i4,uppertriangular_index(i2,i3)] = integ + else + int2[i4,i1,uppertriangular_index(i3,i2)] = integ + end + if i1 == i4 + i14 = uppertriangular_index(i1,i4) + int2[i2,i3,i14] = integ + int2[i3,i2,i14] = integ + elseif i1 < i4 + int2[i2,i3,uppertriangular_index(i1,i4)] = integ + else + int2[i3,i2,uppertriangular_index(i4,i1)] = integ + end + if i1 == i3 + i13 = uppertriangular_index(i1,i3) + int2[i2,i4,i13] = integ + int2[i4,i2,i13] = integ + elseif i1 < i3 + int2[i2,i4,uppertriangular_index(i1,i3)] = integ + else + int2[i4,i2,uppertriangular_index(i3,i1)] = integ + end + end end """ - set_int2!(int2::AbstractArray, i1, i2, i3, i4, integ, triang, simtra, ab) + set_int2!(int2::Array{Float64,4}, i1, i2, i3, i4, integ, simtra, ab) Set 2-e integral in `int2` array to `integ` considering permutational symmetries. For not `ab`: particle symmetry is assumed. Integrals are stored in physicists' notation. - If `triang`: the last two indices are stored as a single upper triangular index. -""" -function set_int2!(int2::AbstractArray, i1, i2, i3, i4, integ, - triang, simtra, ab) - if triang - @assert !ab - if i2 == i4 - i24 = uppertriangular(i2,i4) - int2[i1,i3,i24] = integ - int2[i3,i1,i24] = integ - elseif i2 < i4 - int2[i1,i3,uppertriangular(i2,i4)] = integ - else - int2[i3,i1,uppertriangular(i4,i2)] = integ - end - if !simtra - if i2 == i3 - i23 = uppertriangular(i2,i3) - int2[i1,i4,i23] = integ - int2[i4,i1,i23] = integ - elseif i2 < i3 - int2[i1,i4,uppertriangular(i2,i3)] = integ - else - int2[i4,i1,uppertriangular(i3,i2)] = integ - end - if i1 == i4 - i14 = uppertriangular(i1,i4) - int2[i2,i3,i14] = integ - int2[i3,i2,i14] = integ - elseif i1 < i4 - int2[i2,i3,uppertriangular(i1,i4)] = integ - else - int2[i3,i2,uppertriangular(i4,i1)] = integ - end - if i1 == i3 - i13 = uppertriangular(i1,i3) - int2[i2,i4,i13] = integ - int2[i4,i2,i13] = integ - elseif i1 < i3 - int2[i2,i4,uppertriangular(i1,i3)] = integ - else - int2[i4,i2,uppertriangular(i3,i1)] = integ - end - end - else - int2[i1,i3,i2,i4] = integ +""" +function set_int2!(int2::Array{Float64,4}, i1, i2, i3, i4, integ, simtra, ab) + int2[i1,i3,i2,i4] = integ + if !ab + int2[i3,i1,i4,i2] = integ + end + if !simtra + int2[i1,i4,i2,i3] = integ + int2[i2,i3,i1,i4] = integ + int2[i2,i4,i1,i3] = integ if !ab - int2[i3,i1,i4,i2] = integ - end - if !simtra - int2[i1,i4,i2,i3] = integ - int2[i2,i3,i1,i4] = integ - int2[i2,i4,i1,i3] = integ - if !ab - int2[i4,i1,i3,i2] = integ - int2[i3,i2,i4,i1] = integ - int2[i4,i2,i3,i1] = integ - end + int2[i4,i1,i3,i2] = integ + int2[i3,i2,i4,i1] = integ + int2[i4,i2,i3,i1] = integ end end end @@ -483,11 +502,11 @@ function set_int1!(int1, i1, i2, integ, simtra) end """ - read_integrals!(fd::FDump, fdfile::IOStream) + read_integrals!(fd::FDump{N}, fdfile::IOStream) Read integrals from fcidump file """ -function read_integrals!(fd::FDump, fdfile::IOStream) +function read_integrals!(fd::FDump{N}, fdfile::IOStream) where N norb = headvar(fd, "NORB", Int) if isnothing(norb) error("NORB option not found in fcidump") @@ -497,38 +516,16 @@ function read_integrals!(fd::FDump, fdfile::IOStream) error("ST option not found in fcidump") end simtra = (st > 0) + set_zero!(fd, norb) if fd.uhf print("UHF") - int1a = zeros(norb,norb) - int1b = zeros(norb,norb) - if fd.triang - int2aa = zeros(norb,norb,(norb+1)*norb÷2) - int2bb = zeros(norb,norb,(norb+1)*norb÷2) - else - int2aa = zeros(norb,norb,norb,norb) - int2bb = zeros(norb,norb,norb,norb) - end - int2ab = zeros(norb,norb,norb,norb) - fd.int0 = read_integrals!(int1a, int1b, int2aa, int2bb, int2ab, norb, fdfile, fd.triang, simtra) - fd.int1a = int1a - fd.int1b = int1b - fd.int2aa = int2aa - fd.int2bb = int2bb - fd.int2ab = int2ab + fd.int0 = read_integrals!(fd.int1a, fd.int1b, fd.int2aa, fd.int2bb, fd.int2ab, norb, fdfile, simtra) else - int1 = zeros(norb,norb) - if fd.triang - int2 = zeros(norb,norb,(norb+1)*norb÷2) - else - int2 = zeros(norb,norb,norb,norb) - end - fd.int0 = read_integrals!(int1, int2, norb, fdfile, fd.triang, simtra) - fd.int1 = int1 - fd.int2 = int2 + fd.int0 = read_integrals!(fd.int1, fd.int2, norb, fdfile, simtra) end end -function read_integrals!(int1, int2, norb, fdfile, triang, simtra) +function read_integrals!(int1, int2, norb, fdfile, simtra) int0 = 0.0 for linestr in eachline(fdfile) line = split(linestr) @@ -546,7 +543,7 @@ function read_integrals!(int1, int2, norb, fdfile, triang, simtra) error("Index larger than norb: "*linestr) end if i4 > 0 - set_int2!(int2, i1, i2, i3, i4, integ, triang, simtra, false) + set_int2!(int2, i1, i2, i3, i4, integ, simtra, false) elseif i2 > 0 set_int1!(int1, i1, i2, integ, simtra) elseif i1 <= 0 @@ -556,7 +553,7 @@ function read_integrals!(int1, int2, norb, fdfile, triang, simtra) return int0 end -function read_integrals!(int1a, int1b, int2aa, int2bb, int2ab, norb, fdfile, triang, simtra) +function read_integrals!(int1a, int1b, int2aa, int2bb, int2ab, norb, fdfile, simtra) int0 = 0.0 spincase = 0 # aa, bb, ab, a, b for linestr in eachline(fdfile) @@ -576,11 +573,11 @@ function read_integrals!(int1a, int1b, int2aa, int2bb, int2ab, norb, fdfile, tri end if i4 > 0 if spincase == 0 - set_int2!(int2aa, i1, i2, i3, i4, integ, triang, simtra, false) + set_int2!(int2aa, i1, i2, i3, i4, integ, simtra, false) elseif spincase == 1 - set_int2!(int2bb, i1, i2, i3, i4, integ, triang, simtra, false) + set_int2!(int2bb, i1, i2, i3, i4, integ, simtra, false) elseif spincase == 2 - set_int2!(int2ab, i1, i2, i3, i4, integ, false, simtra, true) + set_int2!(int2ab, i1, i2, i3, i4, integ, simtra, true) else error("Unexpected 2-el integrals for spin-case "*string(spincase)) end @@ -751,12 +748,12 @@ function write_integrals(fd::FDump, fdf, tol) end simtra::Bool = (st > 0) if !fd.uhf - write_integrals2(fd.int2, fdf, tol, fd.triang, simtra) + write_integrals2(fd.int2, fdf, tol, simtra) write_integrals1(fd.int1, fdf, tol, simtra) else - write_integrals2(fd.int2aa, fdf, tol, fd.triang, simtra) + write_integrals2(fd.int2aa, fdf, tol, simtra) print_int_value(fdf,0.0,0,0,0,0) - write_integrals2(fd.int2bb, fdf, tol, fd.triang, simtra) + write_integrals2(fd.int2bb, fdf, tol, simtra) print_int_value(fdf,0.0,0,0,0,0) write_integrals2ab(fd.int2ab, fdf, tol, simtra) print_int_value(fdf,0.0,0,0,0,0) @@ -769,21 +766,23 @@ function write_integrals(fd::FDump, fdf, tol) end """ - write_integrals2(int2, fdf, tol, triang, simtra) + write_integrals2(int2::Array{Float64,3}, fdf, tol, simtra) Write 2-e integrals to fdf file. """ -function write_integrals2(int2, fdf, tol, triang, simtra) +function write_integrals2(int2::Array{Float64,3}, fdf, tol, simtra) write_integrals2_ = simtra ? write_integrals2_simtra : write_integrals2_normal - if triang - inds = (p,q,r,s) -> CartesianIndex(p,q,uppertriangular(r,s)) - indslow = (p,q,r,s) -> CartesianIndex(q,p,uppertriangular(s,r)) - write_integrals2_(int2, inds, indslow, fdf, tol) - else - inds = (p,q,r,s) -> CartesianIndex(p,q,r,s) - write_integrals2_(int2, inds, inds, fdf, tol) - end + inds = (p,q,r,s) -> CartesianIndex(p,q,uppertriangular_index(r,s)) + indslow = (p,q,r,s) -> CartesianIndex(q,p,uppertriangular_index(s,r)) + write_integrals2_(int2, inds, indslow, fdf, tol) end + +function write_integrals2(int2::Array{Float64,4}, fdf, tol, simtra) + write_integrals2_ = simtra ? write_integrals2_simtra : write_integrals2_normal + inds = (p,q,r,s) -> CartesianIndex(p,q,r,s) + write_integrals2_(int2, inds, inds, fdf, tol) +end + function write_integrals2_simtra(int2, inds, indslow, fdf, tol) norb = size(int2,1) for p = 1:norb @@ -916,87 +915,104 @@ function transform_fcidump(fd::FDump, Tl::AbstractArray, Tr::AbstractArray) @assert !fd.uhf # from uhf fcidump can generate only uhf fcidump end if fd.uhf - fd.int2aa = transform_int2(fd.int2aa, Tl[1], Tl[1], Tr[1], Tr[1], fd.triang, fd.triang) - fd.int2bb = transform_int2(fd.int2bb, Tl[2], Tl[2], Tr[2], Tr[2], fd.triang, fd.triang) - fd.int2ab = transform_int2(fd.int2ab, Tl[1], Tl[2], Tr[1], Tr[2], false, false) + fd.int2aa = transform_int2(fd.int2aa, Tl[1], Tl[1], Tr[1], Tr[1]) + fd.int2bb = transform_int2(fd.int2bb, Tl[2], Tl[2], Tr[2], Tr[2]) + fd.int2ab = transform_int2_Q(fd.int2ab, Tl[1], Tl[2], Tr[1], Tr[2]) fd.int1a = transform_int1(fd.int1a, Tl[1], Tr[1]) fd.int1b = transform_int1(fd.int1b, Tl[2], Tr[2]) elseif genuhfdump # change fcidump from rhf to uhf format - fd.int2aa = transform_int2(fd.int2, Tl[1], Tl[1], Tr[1], Tr[1], fd.triang, fd.triang) - fd.int2bb = transform_int2(fd.int2, Tl[2], Tl[2], Tr[2], Tr[2], fd.triang, fd.triang) - fd.int2ab = transform_int2(fd.int2, Tl[1], Tl[2], Tr[1], Tr[2], fd.triang, false) + fd.int2aa = transform_int2(fd.int2, Tl[1], Tl[1], Tr[1], Tr[1]) + fd.int2bb = transform_int2(fd.int2, Tl[2], Tl[2], Tr[2], Tr[2]) + fd.int2ab = transform_int2_Q(fd.int2, Tl[1], Tl[2], Tr[1], Tr[2]) fd.int1a = transform_int1(fd.int1, Tl[1], Tr[1]) fd.int1b = transform_int1(fd.int1, Tl[2], Tr[2]) - fd.int2 = [] - fd.int1 = [] + fd.int2 = zeros(fill(0,ndims(fd.int2))...) + fd.int1 = zeros(0,0) fd.head["IUHF"] = [1] fd.uhf = true else - fd.int2 = transform_int2(fd.int2, Tl, Tl, Tr, Tr, fd.triang, fd.triang) + fd.int2 = transform_int2(fd.int2, Tl, Tl, Tr, Tr) fd.int1 = transform_int1(fd.int1, Tl, Tr) end end """ - transform_int2(int2::AbstractArray, Tl::AbstractArray, Tl2::AbstractArray, - Tr::AbstractArray, Tr2::AbstractArray, triang_in, triang_out) + transform_int2(int2::Array{Float64,3}, Tl::AbstractArray, Tl2::AbstractArray, + Tr::AbstractArray, Tr2::AbstractArray) Transform 2-e integrals to new basis using `Tl`/`Tl2` and `Tr`/`Tr2` transformation matrices. ``v_{pq}^{rs} = v_{p'q'}^{r's'}``* `Tl`[p',p] * `Tl2`[q',q] * `Tr`[r',r] * `Tr2`[s',s] - If `triang`: the last two indices are stored as a single upper triangular index. + The last two indices are stored as a single uppertriangular index. """ -function transform_int2(int2::AbstractArray, Tl::AbstractArray, Tl2::AbstractArray, - Tr::AbstractArray, Tr2::AbstractArray, triang_in, triang_out) +function transform_int2(int2::Array{Float64,3}, Tl::AbstractArray, Tl2::AbstractArray, + Tr::AbstractArray, Tr2::AbstractArray) norb = size(int2,1) - if triang_in && triang_out - int2t = zeros(norb,norb,norb*(norb+1)÷2) - int_3i = zeros(norb,norb,norb) - for s = 1:norb - rs = strict_uppertriangular_range(s) - rrange = 1:s-1 - if length(rs) > 0 - @tensoropt int_3i[p,q,r] = int2[:,:,rs][p',q',r'] * Tl[p',p] * Tl2[q',q] * Tr[rrange,:][r',r] - end - # contribution from the diagonal - ss = uppertriangular_diagonal(s) - @tensoropt int_3i[p,q,r] += 0.5*int2[:,:,ss][p',q'] * Tl[p',p] * Tl2[q',q] * Tr[s,:][r] - for s1 = 1:norb - rs1 = uppertriangular_range(s1) - rrange = 1:s1 - Tr2ss1 = Tr2[s,s1] - @tensoropt int2t[:,:,rs1][p,q,r] += int_3i[:,:,rrange][p,q,r] * Tr2ss1 - @tensoropt int2t[:,:,rs1][p,q,r] += int_3i[:,:,s1][q,p] * Tr2[s,rrange][r] - end + int2t = zeros(norb,norb,norb*(norb+1)÷2) + int_3i = zeros(norb,norb,norb) + for s = 1:norb + rs = strict_uppertriangular_range(s) + rrange = 1:s-1 + if length(rs) > 0 + @tensoropt int_3i[p,q,r] = int2[:,:,rs][p',q',r'] * Tl[p',p] * Tl2[q',q] * Tr[rrange,:][r',r] end - elseif triang_in && ! triang_out - int2t = zeros(norb,norb,norb,norb) - int_3i = zeros(norb,norb,norb) - int_3i2 = zeros(norb,norb,norb) - for s = 1:norb - rs = strict_uppertriangular_range(s) - rrange = 1:s-1 - if length(rs) > 0 - @tensoropt int_3i[p,q,r] = int2[:,:,rs][p',q',r'] * Tl[p',p] * Tl2[q',q] * Tr[rrange,:][r',r] - @tensoropt int_3i2[p,q,r] = int2[:,:,rs][p',q',r'] * Tl2[p',p] * Tl[q',q] * Tr2[rrange,:][r',r] - end - # contribution from the diagonal - ss = uppertriangular_diagonal(s) - @tensoropt int_3i[p,q,r] += 0.5*int2[:,:,ss][p',q'] * Tl[p',p] * Tl2[q',q] * Tr[s,:][r] - @tensoropt int_3i2[p,q,r] += 0.5*int2[:,:,ss][p',q'] * Tl2[p',p] * Tl[q',q] * Tr2[s,:][r] + # contribution from the diagonal + ss = uppertriangular_index(s, s) + @tensoropt int_3i[p,q,r] += 0.5*int2[:,:,ss][p',q'] * Tl[p',p] * Tl2[q',q] * Tr[s,:][r] + for s1 = 1:norb + rs1 = uppertriangular_range(s1) + rrange = 1:s1 + Tr2ss1 = Tr2[s,s1] + @tensoropt int2t[:,:,rs1][p,q,r] += int_3i[:,:,rrange][p,q,r] * Tr2ss1 + @tensoropt int2t[:,:,rs1][p,q,r] += int_3i[:,:,s1][q,p] * Tr2[s,rrange][r] + end + end + return int2t +end +function transform_int2(int2::Array{Float64,4}, Tl::AbstractArray, Tl2::AbstractArray, + Tr::AbstractArray, Tr2::AbstractArray) + return transform_int2_Q(int2, Tl, Tl2, Tr, Tr2) +end +""" + transform_int2_Q(int2::Array{Float64,3}, Tl::AbstractArray, Tl2::AbstractArray, + Tr::AbstractArray, Tr2::AbstractArray) + + Transform 2-e integrals to new basis using `Tl`/`Tl2` and `Tr`/`Tr2` transformation matrices. + + ``v_{pq}^{rs} = v_{p'q'}^{r's'}``* `Tl`[p',p] * `Tl2`[q',q] * `Tr`[r',r] * `Tr2`[s',s] - @tensoropt int2t[p,q,r,s'] += int_3i[p,q,r] * Tr2[s,:][s'] - @tensoropt int2t[p,q,r,s'] += int_3i2[q,p,s'] * Tr[s,:][r] + The result is a full 4-index tensor. +""" +function transform_int2_Q(int2::Array{Float64,3}, Tl::AbstractArray, Tl2::AbstractArray, + Tr::AbstractArray, Tr2::AbstractArray) + norb = size(int2,1) + int2t = zeros(norb,norb,norb,norb) + int_3i = zeros(norb,norb,norb) + int_3i2 = zeros(norb,norb,norb) + for s = 1:norb + rs = strict_uppertriangular_range(s) + rrange = 1:s-1 + if length(rs) > 0 + @tensoropt int_3i[p,q,r] = int2[:,:,rs][p',q',r'] * Tl[p',p] * Tl2[q',q] * Tr[rrange,:][r',r] + @tensoropt int_3i2[p,q,r] = int2[:,:,rs][p',q',r'] * Tl2[p',p] * Tl[q',q] * Tr2[rrange,:][r',r] end - elseif !triang_in && triang_out - error("Can't transform from non-triangular to triangular") - else - @tensoropt int2t[p,q,r,s] := int2[p',q',r',s']*Tl[p',p]*Tl2[q',q]*Tr[r',r]*Tr2[s',s] + # contribution from the diagonal + ss = uppertriangular_index(s, s) + @tensoropt int_3i[p,q,r] += 0.5*int2[:,:,ss][p',q'] * Tl[p',p] * Tl2[q',q] * Tr[s,:][r] + @tensoropt int_3i2[p,q,r] += 0.5*int2[:,:,ss][p',q'] * Tl2[p',p] * Tl[q',q] * Tr2[s,:][r] + + @tensoropt int2t[p,q,r,s'] += int_3i[p,q,r] * Tr2[s,:][s'] + @tensoropt int2t[p,q,r,s'] += int_3i2[q,p,s'] * Tr[s,:][r] end return int2t end +function transform_int2_Q(int2::Array{Float64,4}, Tl::AbstractArray, Tl2::AbstractArray, + Tr::AbstractArray, Tr2::AbstractArray) + @tensoropt int2t[p,q,r,s] := int2[p',q',r',s']*Tl[p',p]*Tl2[q',q]*Tr[r',r]*Tr2[s',s] + return int2t +end """ transform_int1(int1::AbstractArray, Tl::AbstractArray, Tr::AbstractArray) @@ -1038,14 +1054,13 @@ function reorder_orbs_int2(int2::AbstractArray, orbs) ro = orbs[r] so = orbs[s] if ro <= so - int2t[:,:,uppertriangular(r,s)] = int2[orbs,orbs,uppertriangular(ro, so)] + int2t[:,:,uppertriangular_index(r,s)] = int2[orbs,orbs,uppertriangular_index(ro, so)] else - int2t[:,:,uppertriangular(r,s)] = permutedims(int2[orbs,orbs,uppertriangular(so, ro)], [2,1]) + int2t[:,:,uppertriangular_index(r,s)] = permutedims(int2[orbs,orbs,uppertriangular_index(so, ro)], [2,1]) end end end else - int2t = zeros(length(orbs),length(orbs),length(orbs),length(orbs)) int2t = int2[orbs,orbs,orbs,orbs] end return int2t diff --git a/src/dumptools.jl b/src/dumptools.jl index b064b22..3cde750 100644 --- a/src/dumptools.jl +++ b/src/dumptools.jl @@ -6,7 +6,7 @@ module DumpTools using LinearAlgebra -using ..ElemCo.FciDump +using ..ElemCo.FciDumps using ..ElemCo.ECInfos using ..ElemCo.FockFactory diff --git a/src/ecinfos.jl b/src/ecinfos.jl index f7a3b1e..c3f5da5 100644 --- a/src/ecinfos.jl +++ b/src/ecinfos.jl @@ -4,7 +4,7 @@ using AtomsBase using DocStringExtensions using ..ElemCo.AbstractEC using ..ElemCo.Utils -using ..ElemCo.FciDump +using ..ElemCo.FciDumps using ..ElemCo.MSystem using ..ElemCo.BasisSets @@ -40,7 +40,7 @@ Base.@kwdef mutable struct ECInfo <: AbstractECInfo """ molecular system. """ system::FlexibleSystem = FlexibleSystem(Atom[], infinite_box(3), fill(DirichletZero(), 3)) """ fcidump. """ - fd::FDump = FDump() + fd::TFDump = TFDump() """ information about (temporary) files. The naming convention is: `prefix`_ + `name` (+extension `EC.ext` added automatically). `prefix` can be: diff --git a/src/fockfactory.jl b/src/fockfactory.jl index 0dd07c0..ca63cb9 100644 --- a/src/fockfactory.jl +++ b/src/fockfactory.jl @@ -12,7 +12,7 @@ using ..ElemCo.ECInfos using ..ElemCo.QMTensors using ..ElemCo.TensorTools using ..ElemCo.Wavefunctions -using ..ElemCo.FciDump +using ..ElemCo.FciDumps using ..ElemCo.Integrals using ..ElemCo.OrbTools diff --git a/src/qmtensors.jl b/src/qmtensors.jl index a1041c3..b85f4f4 100644 --- a/src/qmtensors.jl +++ b/src/qmtensors.jl @@ -6,7 +6,10 @@ This module provides definitions for useful quantum-mechanical tensors. module QMTensors # from spinmatrix export SpinMatrix, FSpinMatrix, CSpinMatrix, is_restricted, unrestrict!, restrict! +# uppertriangular functions from utensors +export lentri_from_norb, norb_from_lentri, uppertriangular_index, uppertriangular_range, strict_uppertriangular_range include("spinmatrix.jl") +include("utensors.jl") end #module \ No newline at end of file diff --git a/src/tensortools.jl b/src/tensortools.jl index c4eb252..eda1fec 100644 --- a/src/tensortools.jl +++ b/src/tensortools.jl @@ -4,7 +4,7 @@ module TensorTools using LinearAlgebra using ..ElemCo.ECInfos -using ..ElemCo.FciDump +using ..ElemCo.FciDumps using ..ElemCo.MIO export save!, load, load_all, mmap, newmmap, closemmap, flushmmap diff --git a/src/utensors.jl b/src/utensors.jl new file mode 100644 index 0000000..10240f1 --- /dev/null +++ b/src/utensors.jl @@ -0,0 +1,113 @@ +# Functions for upper triangular tensors stored as [p,q,...,tri] arrays + + +""" + lentri_from_norb(n) + + Return the length of the upper triangular part of a tensor of dimension n×n. +""" +lentri_from_norb(n) = n*(n+1)÷2 + +""" + lentri_from_norb(n, N) + + Return the length of the upper triangular part of a tensor of dimension n^N. +""" +lentri_from_norb(n, N) = prod(n:n+N-1)÷factorial(N) + +""" + norb_from_lentri(tri2) + + Return the number of orbitals from the length of triangular index `tri` (for dimension n×n). +""" +norb_from_lentri(tri2) = Int(sqrt(8*tri2+1)-1)÷2 + +""" + norb_from_lentri(triN, N) + + Return the number of orbitals from the triangular index of size `triN`. +""" +function norb_from_lentri(triN, N) + n = trunc(Int, (triN * factorial(N))^(1/N)) - (N)÷2 + 1 + @assert lentri_from_norb(n, N) == triN "The dimension $triN is not triangular of $N×$n." + return n +end + + +""" + uppertriangular_index(i1, i2) + + Return uppertriangular index from two indices `i1 <= i2`. +""" +function uppertriangular_index(i1, i2) + @assert i1 <= i2 "The indices are not in the correct order." + return i1 + i2*(i2-1)÷2 +end + +""" + uppertriangular_index(i1, i2, i3) + + Return uppertriangular index from three indices `i1 <= i2 <= i3`. +""" +function uppertriangular_index(i1, i2, i3) + return i1 + i2*(i2-1)÷2 + (i3+1)*i3*(i3-1)÷6 +end + +""" + uppertriangular_index(inds::Vararg{Int, N}) + + Return uppertriangular index from a set of indices `i1 <= i2 <= ... <= iN`. +""" +function uppertriangular_index(inds::Vararg{Int, N}) where N + tri = inds[1] + for i in 2:N + @assert inds[i-1] <= inds[i] "The indices are not in the correct order." + tri += lentri_from_norb(inds[i]-1, i) + end + return tri +end + +""" + uppertriangular_range(i2) + + Return range for the uppertriangular index (`i1 <= i2`) for a given `i2`. +""" +function uppertriangular_range(i2) + start = i2*(i2-1)÷2+1 + stop = start + i2 - 1 + return start:stop +end + +""" + uppertriangular_range(inds::Vararg{Int, N}) where N + + Return range for the uppertriangular index (`i1 <= i2 <= i3 <= ...`) for given `i2`, `i3`, ... +""" +function uppertriangular_range(inds::Vararg{Int, N}) where N + start = uppertriangular_index(1, inds...) + stop = start + inds[1] - 1 + return start:stop +end + +""" + strict_uppertriangular_range(i2) + + Return range for the uppertriangular index (i1 <= i2) without diagonal (i1 < i2) for a given i2. +""" +function strict_uppertriangular_range(i2) + start = i2*(i2-1)÷2+1 + stop = start + i2 - 2 + return start:stop +end + +""" + strict_uppertriangular_range(inds::Vararg{Int, N}) where N + + Return range for the uppertriangular index (`i1 <= i2 <= i3 <= ...`) without diagonal (i1 < i2 <= i3 <= ...) + for given `i2`, `i3`, ... +""" +function strict_uppertriangular_range(inds::Vararg{Int, N}) where N + start = uppertriangular_index(1, inds...) + stop = start + inds[1] - 2 + return start:stop +end \ No newline at end of file diff --git a/src/utils.jl b/src/utils.jl index 76df133..3db276d 100644 --- a/src/utils.jl +++ b/src/utils.jl @@ -209,10 +209,10 @@ function create_buf(len::Int, T=Float64) end """ - reshape_buf(buf::Vector{T}, dims...; start=1) + reshape_buf(buf::Vector{T}, dims...; offset=0) Reshape (part of) a buffer to given dimensions (without copying), - starting at `start`. + using `offset`. It can be used, e.g., for itermediates in tensor contractions. @@ -220,14 +220,14 @@ end ```julia julia> buf = Vector{Float64}(undef, 100000) julia> A = reshape_buf(buf, 10, 10, 20) # 10x10x20 tensor -julia> B = reshape_buf(buf, 10, 10, 10, start=2001) # 10x10x10 tensor starting at 2001 +julia> B = reshape_buf(buf, 10, 10, 10, offset=2000) # 10x10x10 tensor starting at 2001 julia> B .= rand(10,10,10) julia> C = rand(10,20) julia> @tensor A[i,j,k] = B[i,j,l] * C[l,k] ``` """ -function reshape_buf(buf::Vector{T}, dims...; start=1) where {T} - return reshape(view(buf, 1:prod(dims)), dims) +function reshape_buf(buf::Vector{T}, dims...; offset=0) where {T} + return reshape(view(buf, 1+offset:prod(dims)+offset), dims) end """ From c342886d6d6308a823b0394acc9394be0dfb2914 Mon Sep 17 00:00:00 2001 From: Daniel Kats Date: Sun, 23 Jun 2024 09:38:32 +0200 Subject: [PATCH 24/44] Add documentation for qmtensors --- CHANGELOG.md | 1 + docs/make.jl | 1 + docs/src/dump.md | 15 +++++++++++---- docs/src/elemco.md | 2 +- docs/src/qmtensors.md | 21 +++++++++++++++++++++ docs/src/tensortools.md | 4 ++-- src/dfdump.jl | 2 +- src/dump.jl | 4 +++- 8 files changed, 41 insertions(+), 9 deletions(-) create mode 100644 docs/src/qmtensors.md diff --git a/CHANGELOG.md b/CHANGELOG.md index a6c8c39..e5b5a87 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -8,6 +8,7 @@ * The signature of `newmmap` function has changed (the type specification is now the last argument and defaults to `Float64`. * The `FciDump` module has been renamed to `FciDumps`. * The `FDump` type has been changed to `FDump{N}` with N=3 (for triangular storage of 2-electron integrals) or 4. The logical variable `triang` has been removed (there is a function `is_triang(::FDump)` now). Aliases `TFDump = FDump{3}` and `QFDump = FDump{4}` have been introduced. +* The `ECInfo` type now accepts only `FDump{3}`. The `FDump{4}` objects have to be transformed first (the transformation functions are not implemented yet). * The triangular functions have been moved to a separate file `utensors.jl`, part of the `QMTensors` module. `uppertriangular` function has been renamed to `uppertriangular_index`. ### Changed diff --git a/docs/make.jl b/docs/make.jl index 61a6664..86cd5d5 100644 --- a/docs/make.jl +++ b/docs/make.jl @@ -53,6 +53,7 @@ makedocs( "mnpy.md", "msystem.md", "orbtools.md", + "qmtensors.md", "tensortools.md", "utils.md", "interfaces.md", diff --git a/docs/src/dump.md b/docs/src/dump.md index eafde19..80a2e27 100644 --- a/docs/src/dump.md +++ b/docs/src/dump.md @@ -1,31 +1,38 @@ # FCIDump files ```@meta -CurrentModule = ElemCo.FciDump +CurrentModule = ElemCo.FciDumps ``` ```@docs -FciDump +FciDumps ``` The FCIDump file format is a simple text file format for storing molecular integrals. It is used by many quantum chemistry programs. ## Storage of molecular integrals + ```@docs FDump ``` + ## Exported functions ```@autodocs -Modules = [FciDump] +Modules = [FciDumps] Private = false Order = [:function] ``` ## Internal functions + +```@docs +FDumpHeader +``` + ```@autodocs -Modules = [FciDump] +Modules = [FciDumps] Public = false Order = [:function] ``` diff --git a/docs/src/elemco.md b/docs/src/elemco.md index 594e970..8059917 100644 --- a/docs/src/elemco.md +++ b/docs/src/elemco.md @@ -18,7 +18,7 @@ Various macros are defined and exported to simplify running calculations. The ma | `EC::ECInfo` | A global information object containing options, molecular system description, integrals and orbital spaces information, see [`ElemCo.ECInfo`](@ref). | | `geometry::String` | Molecular coordinates, either in the `xyz` format or the file containing the xyz coordinates, see [`ElemCo.MSystem`](@ref). | | `basis::Dict` | Basis set information, see [`ElemCo.MSystem`](@ref) | -| `fcidump::String` | File containing the integrals in the FCIDUMP format, see [`ElemCo.FciDump`](@ref). | +| `fcidump::String` | File containing the integrals in the FCIDUMP format, see [`ElemCo.FciDumps`](@ref). | The driver routines and macros return energies as `NamedTuple`. The last energy is always the total energy (can be accessed using `last(energies)`). The following table lists the keys and their meanings. diff --git a/docs/src/qmtensors.md b/docs/src/qmtensors.md new file mode 100644 index 0000000..608f754 --- /dev/null +++ b/docs/src/qmtensors.md @@ -0,0 +1,21 @@ +# QMTensors + +```@docs +ElemCo.QMTensors +``` + +## Exported types and functions + +```@autodocs +Modules = [ElemCo.QMTensors] +Private = false +Order = [:type, :macro, :function] +``` + +## Internal types and functions + +```@autodocs +Modules = [ElemCo.QMTensors] +Public = false +Order = [:type, :macro, :function] +``` diff --git a/docs/src/tensortools.md b/docs/src/tensortools.md index 1648f55..5077638 100644 --- a/docs/src/tensortools.md +++ b/docs/src/tensortools.md @@ -30,7 +30,7 @@ ints2 ```@docs sqrtinvchol invchol -rotate_eigenvectors_to_real! +rotate_eigenvectors_to_real ``` ## Other exported functions @@ -39,7 +39,7 @@ rotate_eigenvectors_to_real! Modules = [TensorTools] Private = false Order = [:function] -Filter = t -> t ∉ [ElemCo.save!, ElemCo.load, ElemCo.mmap, ElemCo.newmmap, ElemCo.closemmap, ElemCo.ints1, ElemCo.ints2, ElemCo.sqrtinvchol, ElemCo.invchol, ElemCo.rotate_eigenvectors_to_real! ] +Filter = t -> t ∉ [ElemCo.save!, ElemCo.load, ElemCo.mmap, ElemCo.newmmap, ElemCo.closemmap, ElemCo.ints1, ElemCo.ints2, ElemCo.sqrtinvchol, ElemCo.invchol, ElemCo.rotate_eigenvectors_to_real ] ``` ## Internal functions diff --git a/src/dfdump.jl b/src/dfdump.jl index 8d97cbc..5205fd8 100644 --- a/src/dfdump.jl +++ b/src/dfdump.jl @@ -266,7 +266,7 @@ function dfdump(EC::ECInfo) norbs -= ncore_orbs + nfrozvirt ms2 = EC.options.wf.ms2 ms2 = (ms2 < 0) ? mod(nelec,2) : ms2 - fdump = TFDump(norbs, nelec; ms2=ms2, uhf=!is_restricted(cMO)) + fdump = FDump{3}(norbs, nelec; ms2=ms2, uhf=!is_restricted(cMO)) if fdump.uhf generate_integrals(EC, fdump, cMO[:,1:end-nfrozvirt], space_save) else diff --git a/src/dump.jl b/src/dump.jl index 56151ae..b35daa4 100644 --- a/src/dump.jl +++ b/src/dump.jl @@ -101,7 +101,9 @@ end Molecular integrals The 2-e integrals are stored in the physicists' notation: `int2[pqrs]` ``= =v_{pq}^{rs}`` - and for `N=3` the last two indices are stored as a single uppertriangular index (r <= s) + + `N` denotes the number of indices in the 2-e-integral tensors, + for `N=3` (usual) the last two indices are stored as a single uppertriangular index (r <= s) $(TYPEDFIELDS) """ From e2082707101fa03cc43ea0f410d6853b696e3db3 Mon Sep 17 00:00:00 2001 From: Daniel Kats Date: Sun, 23 Jun 2024 16:34:48 +0200 Subject: [PATCH 25/44] Make read_header in FciDumps type stable --- src/dump.jl | 143 ++++++++++++++++++++++++++++------------------------ src/mnpy.jl | 38 +++++++++++--- 2 files changed, 110 insertions(+), 71 deletions(-) diff --git a/src/dump.jl b/src/dump.jl index b35daa4..9944fec 100644 --- a/src/dump.jl +++ b/src/dump.jl @@ -109,11 +109,11 @@ end """ Base.@kwdef mutable struct FDump{N} """ 2-e⁻ integrals for restricted orbitals fcidump. """ - int2::Array{Float64,N} = zeros(fill(0,N)...) + int2::Array{Float64,N} = zeros(ntuple(d->0,Val(N))) """ αα 2-e⁻ integrals for unrestricted orbitals fcidump. """ - int2aa::Array{Float64,N} = zeros(fill(0,N)...) + int2aa::Array{Float64,N} = zeros(ntuple(d->0,Val(N))) """ ββ 2-e⁻ integrals for unrestricted orbitals fcidump. """ - int2bb::Array{Float64,N} = zeros(fill(0,N)...) + int2bb::Array{Float64,N} = zeros(ntuple(d->0,Val(N))) """ αβ 2-e⁻ integrals for unrestricted orbitals fcidump. """ int2ab::Array{Float64,4} = zeros(0,0,0,0) """ 1-e⁻ integrals for restricted orbitals fcidump. """ @@ -326,8 +326,7 @@ function read_header(fdfile) head = FDumpHeader() head["IUHF"] = [0] head["ST"] = [0] - variable_name = "" - vartype = Int + line_array = String[] for line in eachline(fdfile) #skip empty lines line = strip(line) @@ -339,64 +338,78 @@ function read_header(fdfile) break end line = replace(line,"=" => " = ") - line_array = [var for var in split(line, [' ',',']) if !isempty(var)] - # search for '=' and put element before it as the variable name, and everything - # after (before the next variable name) as a vector of values - prev_el = "" - elements = [] - newvec = true - if variable_name != "" - # in case the elements of the last variable continue on new line... - elements = head[variable_name, vartype] - newvec = false - end - push!(line_array, "\n") - for el in line_array - if el == "=" - if prev_el != "" - if variable_name != "" - # store the previous array - head[variable_name] = elements - end - # case-insensitive variable names in the header - variable_name = uppercase(prev_el) - newvec = true - prev_el = "" - else - error("No variable name before '=':"*line) - end + append!(line_array, split(line, [' ',','], keepempty=false)) + end + push!(line_array, "\n") + # search for '=' and put element before it as the variable name, and everything + # after (before the next variable name) as a vector of values + variable_name = "" + prev_el = "" + ipos = 1 + while ipos <= length(line_array) + el = line_array[ipos] + if el == "=" + if prev_el != "" + # case-insensitive variable names in the header + variable_name = uppercase(prev_el) + prev_el = "" else - if prev_el != "" - elem = tryparse(Int, prev_el) - if isnothing(elem) - elem = tryparse(Float64,prev_el) - if isnothing(elem) - elem = strip(prev_el, ['"','\'']) - vartype = String - else - vartype = Float64 - end - else - vartype = Int - end - if newvec - elements = Vector{vartype}() - newvec = false - end - push!(elements, elem) - end - prev_el = el + error("No variable name before '=': $(line_array)") end + elseif prev_el != "" && variable_name != "" + elem = tryparse(Int, prev_el) + if !isnothing(elem) + head[variable_name] = Int[elem] + variable_name, ipos = read_elements!(head[variable_name,Int], line_array, ipos) + else + elem = tryparse(Float64,prev_el) + if !isnothing(elem) + head[variable_name] = Float64[elem] + variable_name, ipos = read_elements!(head[variable_name,Float64], line_array, ipos) + else + elem = strip(prev_el, ['"','\'']) + head[variable_name] = String[elem] + variable_name, ipos = read_elements!(head[variable_name,String], line_array, ipos) + end + end + prev_el = "" + else + prev_el = el end - if variable_name != "" - # store the previous array - head[variable_name] = elements - end + ipos += 1 end # print(head) return head end +function read_elements!(elements::Vector{T}, line_array::Vector{String}, ipos::Int) where T + variable_name = "" + prev_el = "" + while ipos <= length(line_array) + el = line_array[ipos] + if el == "=" + if prev_el != "" + # case-insensitive variable names in the header + variable_name = uppercase(prev_el) + break + else + error("No variable name before '=': $(line_array)") + end + else + if prev_el != "" + if T == String + push!(elements, strip(prev_el, ['"','\''])) + else + push!(elements, parse(T, prev_el)) + end + end + prev_el = el + end + ipos += 1 + end + return variable_name, ipos +end + """ read_integrals!(fd::FDump, dir::AbstractString) @@ -405,14 +418,14 @@ end function read_integrals!(fd::FDump, dir::AbstractString) println("Read npy files") if !fd.uhf - fd.int2 = mmap_integrals(fd, dir, "NPY2") - fd.int1 = mmap_integrals(fd, dir, "NPY1") + fd.int2 = mmap_integrals(fd, dir, "NPY2", fd.int2) + fd.int1 = mmap_integrals(fd, dir, "NPY1", fd.int1) else - fd.int2aa = mmap_integrals(fd, dir, "NPY2AA") - fd.int2bb = mmap_integrals(fd, dir, "NPY2BB") - fd.int2ab = mmap_integrals(fd, dir, "NPY2AB") - fd.int1a = mmap_integrals(fd, dir, "NPY1A") - fd.int1b = mmap_integrals(fd, dir, "NPY1B") + fd.int2aa = mmap_integrals(fd, dir, "NPY2AA", fd.int2aa) + fd.int2bb = mmap_integrals(fd, dir, "NPY2BB", fd.int2bb) + fd.int2ab = mmap_integrals(fd, dir, "NPY2AB", fd.int2ab) + fd.int1a = mmap_integrals(fd, dir, "NPY1A", fd.int1a) + fd.int1b = mmap_integrals(fd, dir, "NPY1B", fd.int1b) end enuc = headvar(fd, "ENUC", Float64) if isnothing(enuc) @@ -671,11 +684,11 @@ function headvar(fd::FDump, key::String, ::Type{T}) where {T} end """ - mmap_integrals(fd::FDump, dir::AbstractString, key::AbstractString) + mmap_integrals(fd::FDump, dir::AbstractString, key::AbstractString, ::Array{T,N}) Memory-map integral file (from head[key]) """ -function mmap_integrals(fd::FDump, dir::AbstractString, key::AbstractString) +function mmap_integrals(fd::FDump, dir::AbstractString, key::AbstractString, ::Array{T,N}) where {T,N} file = headvar(fd, key, String) if isnothing(file) error(key*" option not found in fcidump") @@ -684,7 +697,7 @@ function mmap_integrals(fd::FDump, dir::AbstractString, key::AbstractString) file = joinpath(dir,file) end # return npzread(file) - return mnpymmap(file) + return mnpymmap(file, Array{T,N}) end """ diff --git a/src/mnpy.jl b/src/mnpy.jl index 73a28a5..3ebcfd1 100644 --- a/src/mnpy.jl +++ b/src/mnpy.jl @@ -98,6 +98,7 @@ function parseinteger(s::AbstractString) tail_idx = findfirst(c -> !isdigit(c), s) if isnothing(tail_idx) intstr = SubString(s, firstindex(s)) + tail_idx = lastindex(s)+1 else intstr = SubString(s, firstindex(s), prevind(s, tail_idx)) if s[tail_idx] == 'L' # output of firstindex should be a valid code point @@ -155,11 +156,11 @@ Base.size(hdr::Header) = hdr.shape Base.eltype(hdr::Header{T}) where T = T Base.ndims(hdr::Header{T,N}) where {T,N} = N -function parseheader(s::AbstractString) +function parseheader(s::AbstractString, ::Type{Array{T,N}}) where {T,N} s = parsechar(s, '{') shape = Any - T = Any + Tnpy = Any for _ in 1:3 s = strip(s) key, s = parsestring(s) @@ -167,7 +168,7 @@ function parseheader(s::AbstractString) s = parsechar(s, ':') s = strip(s) if key == "descr" - T, s = parsedtype(s) + Tnpy, s = parsedtype(s) elseif key == "fortran_order" fortran_order, s = parsebool(s) fortran_order || error("Cannot mmap C-ordered npy arrays!") @@ -188,10 +189,12 @@ function parseheader(s::AbstractString) if s != "" error("malformed header") end - Header{T}(shape) + @assert Tnpy <: T "Missmatch between header type ($Tnpy) and requested type ($T)" + @assert N == Any || shape isa NTuple{N,Int} "Shape should be a tuple of $N integers" + Header{T,N}(shape) end -function readheader(f::IO) +function readheader(f::IO, ::Type{Array{T,N}}) where {T,N} b = read!(f, Vector{UInt8}(undef, length(NPYMagic))) if b != NPYMagic error("not a numpy array file") @@ -207,9 +210,11 @@ function readheader(f::IO) error("unsupported NPY version") end hdr = ascii(String(read!(f, Vector{UInt8}(undef, hdrlen)))) - parseheader(strip(hdr)) + parseheader(strip(hdr), Array{T,N}) end +readheader(f::IO) = readheader(f, Array{Any,Any}) + function _mnpymmaparray(f, hdr::Header{T,N}) where {T,N} x = mmap(f, Array{T,N}, hdr.shape) ndims(x) == 0 ? x[1] : x @@ -220,6 +225,11 @@ function mnpymmaparray(f::IO) _mnpymmaparray(f, hdr) end +function mnpymmaparray(f::IO, ::Type{Array{T,N}}) where {T,N} + hdr::Header{T,N} = readheader(f, Array{T,N}) + _mnpymmaparray(f, hdr) +end + """ mnpymmap(filename::AbstractString) Mmap a variable from `filename`. @@ -255,6 +265,22 @@ function mnpymmap(filename::AbstractString) return data end +function mnpymmap(filename::AbstractString, ::Type{Array{T,N}}) where {T,N} + # Detect if the file is a numpy npy array file + f = open(filename) + b = read!(f, Vector{UInt8}(undef, MagicLen)) + + if b == NPYMagic + seekstart(f) + data = mnpymmaparray(f, Array{T,N}) + else + close(f) + error("not a NPY file: $filename") + end + close(f) + return data +end + """ readheader(filename) Return a header corresponding to the variable contained in `filename`. From 1ad22752ac8cd7b309eb6abcf8c4d44dbb822d74 Mon Sep 17 00:00:00 2001 From: Thomas Schraivogel Date: Mon, 24 Jun 2024 11:52:17 +0200 Subject: [PATCH 26/44] renamed algo files and added correct dc-ccsdt closed-shell algo --- .../{uccsdt_doubles.jl => ccsdt_doubles.jl} | 0 .../{uccsdt_singles.jl => ccsdt_singles.jl} | 0 .../{uccsdt_triples.jl => ccsdt_triples.jl} | 0 ...udcccsdt_triples.jl => dcccsdt_triples.jl} | 122 +++++++----------- 4 files changed, 50 insertions(+), 72 deletions(-) rename src/algo/{uccsdt_doubles.jl => ccsdt_doubles.jl} (100%) rename src/algo/{uccsdt_singles.jl => ccsdt_singles.jl} (100%) rename src/algo/{uccsdt_triples.jl => ccsdt_triples.jl} (100%) rename src/algo/{udcccsdt_triples.jl => dcccsdt_triples.jl} (94%) diff --git a/src/algo/uccsdt_doubles.jl b/src/algo/ccsdt_doubles.jl similarity index 100% rename from src/algo/uccsdt_doubles.jl rename to src/algo/ccsdt_doubles.jl diff --git a/src/algo/uccsdt_singles.jl b/src/algo/ccsdt_singles.jl similarity index 100% rename from src/algo/uccsdt_singles.jl rename to src/algo/ccsdt_singles.jl diff --git a/src/algo/uccsdt_triples.jl b/src/algo/ccsdt_triples.jl similarity index 100% rename from src/algo/uccsdt_triples.jl rename to src/algo/ccsdt_triples.jl diff --git a/src/algo/udcccsdt_triples.jl b/src/algo/dcccsdt_triples.jl similarity index 94% rename from src/algo/udcccsdt_triples.jl rename to src/algo/dcccsdt_triples.jl index 585de4e..d844c2a 100644 --- a/src/algo/udcccsdt_triples.jl +++ b/src/algo/dcccsdt_triples.jl @@ -1178,6 +1178,8 @@ d_oVvV = nothing end function dcccsdt_triples!(EC::ECInfo, R3, T2, T3, fij, fab, fai, fia) +#bract +#act,divide=$(1 - \Perm{abc}{cab})$ d_vvvv = load(EC,"d_vvvv") @tensoropt R3[e,c,d,i,j,k] += d_vvvv[c,d,a,b] * T3[a,e,b,j,i,k] @tensoropt R3[c,e,d,i,j,k] += d_vvvv[c,d,a,b] * T3[a,e,b,i,j,k] @@ -1291,78 +1293,54 @@ d_oovo = load(EC,"d_oovo") @tensoropt R3[a,b,c,i,j,k] -= 2 * d_oovo[m,l,d,i] * T2[a,b,l,j] * T2[d,c,m,k] d_oovo = nothing oovv = ints2(EC,"oovv") -@tensoropt R3[b,a,c,k,i,j] += oovv[m,l,e,d] * T2[d,a,j,i] * T3[c,b,e,l,m,k] -@tensoropt R3[a,b,c,i,k,j] += oovv[m,l,e,d] * T2[d,a,j,i] * T3[c,b,e,l,m,k] -@tensoropt R3[b,c,a,k,i,j] += oovv[m,l,e,d] * T2[d,a,i,j] * T3[c,b,e,l,m,k] -@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[d,a,j,i] * T3[b,c,e,l,m,k] -@tensoropt R3[b,c,a,i,k,j] += oovv[m,l,e,d] * T2[d,a,i,j] * T3[b,c,e,l,m,k] -@tensoropt R3[b,a,c,i,j,k] += oovv[m,l,e,d] * T2[d,a,i,j] * T3[b,c,e,l,m,k] -@tensoropt R3[b,a,c,k,i,j] += oovv[m,l,e,d] * T2[d,a,j,i] * T3[e,c,b,l,m,k] -@tensoropt R3[a,b,c,i,k,j] += oovv[m,l,e,d] * T2[d,a,j,i] * T3[e,c,b,l,m,k] -@tensoropt R3[b,c,a,k,i,j] += oovv[m,l,e,d] * T2[d,a,i,j] * T3[e,c,b,l,m,k] -@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[d,a,j,i] * T3[e,b,c,l,m,k] -@tensoropt R3[b,c,a,i,k,j] += oovv[m,l,e,d] * T2[d,a,i,j] * T3[e,b,c,l,m,k] -@tensoropt R3[b,a,c,i,j,k] += oovv[m,l,e,d] * T2[d,a,i,j] * T3[e,b,c,l,m,k] -@tensoropt R3[a,b,c,k,i,j] += oovv[m,l,e,d] * T2[d,e,i,j] * T3[b,c,a,l,m,k] -@tensoropt R3[a,b,c,i,k,j] += oovv[m,l,e,d] * T2[d,e,i,j] * T3[a,c,b,l,m,k] -@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[d,e,i,j] * T3[a,b,c,l,m,k] -@tensoropt R3[c,a,b,j,i,k] += oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,c,e,k,m,j] -@tensoropt R3[a,c,b,i,j,k] += oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,c,e,k,m,j] -@tensoropt R3[c,a,b,j,k,i] += oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,c,e,k,m,j] -@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,c,e,j,m,k] -@tensoropt R3[a,c,b,j,k,i] += oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,c,e,j,m,k] -@tensoropt R3[a,b,c,j,i,k] += oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,c,e,j,m,k] -@tensoropt R3[b,c,a,j,i,k] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,c,b,k,m,j] -@tensoropt R3[b,c,a,i,j,k] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,b,c,k,m,j] -@tensoropt R3[b,a,c,j,k,i] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,c,b,k,m,j] -@tensoropt R3[b,a,c,i,j,k] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,b,c,j,m,k] -@tensoropt R3[a,b,c,j,k,i] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,c,b,j,m,k] -@tensoropt R3[a,b,c,j,i,k] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,b,c,j,m,k] -@tensoropt R3[b,c,a,j,k,i] += oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,c,b,k,m,j] -@tensoropt R3[b,c,a,j,k,i] += oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,b,c,j,m,k] -@tensoropt R3[b,a,c,j,i,k] += oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,c,b,k,m,j] -@tensoropt R3[b,a,c,j,i,k] += oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,b,c,j,m,k] -@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,c,b,k,m,j] -@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,b,c,j,m,k] -@tensoropt R3[c,a,b,j,i,k] += oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,m,k,j] -@tensoropt R3[a,c,b,i,j,k] += oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,m,k,j] -@tensoropt R3[c,a,b,j,k,i] += oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,m,k,j] -@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,m,j,k] -@tensoropt R3[a,c,b,j,k,i] += oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,m,j,k] -@tensoropt R3[a,b,c,j,i,k] += oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,m,j,k] -@tensoropt R3[b,c,a,j,k,i] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,b,c,m,j,k] -@tensoropt R3[b,a,c,j,i,k] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,b,c,m,j,k] -@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,b,c,m,j,k] -@tensoropt R3[c,a,b,i,j,k] += oovv[m,l,e,d] * T2[a,b,l,m] * T3[d,e,c,j,k,i] -@tensoropt R3[a,c,b,i,j,k] += oovv[m,l,e,d] * T2[a,b,l,m] * T3[d,e,c,i,k,j] -@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[a,b,l,m] * T3[d,e,c,i,j,k] +@tensoropt R3[b,a,c,k,i,j] += 0.5 * oovv[l,m,e,d] * T2[d,a,j,i] * T3[e,c,b,m,l,k] +@tensoropt R3[a,b,c,i,k,j] += 0.5 * oovv[l,m,e,d] * T2[d,a,j,i] * T3[e,c,b,m,l,k] +@tensoropt R3[b,c,a,k,i,j] += 0.5 * oovv[l,m,e,d] * T2[d,a,i,j] * T3[e,c,b,m,l,k] +@tensoropt R3[a,b,c,i,j,k] += 0.5 * oovv[l,m,e,d] * T2[d,a,j,i] * T3[e,b,c,m,l,k] +@tensoropt R3[b,c,a,i,k,j] += 0.5 * oovv[l,m,e,d] * T2[d,a,i,j] * T3[e,b,c,m,l,k] +@tensoropt R3[b,a,c,i,j,k] += 0.5 * oovv[l,m,e,d] * T2[d,a,i,j] * T3[e,b,c,m,l,k] +@tensoropt R3[b,a,c,k,i,j] += 0.5 * oovv[l,m,e,d] * T2[d,a,j,i] * T3[c,b,e,m,l,k] +@tensoropt R3[a,b,c,i,k,j] += 0.5 * oovv[l,m,e,d] * T2[d,a,j,i] * T3[c,b,e,m,l,k] +@tensoropt R3[b,c,a,k,i,j] += 0.5 * oovv[l,m,e,d] * T2[d,a,i,j] * T3[c,b,e,m,l,k] +@tensoropt R3[a,b,c,i,j,k] += 0.5 * oovv[l,m,e,d] * T2[d,a,j,i] * T3[b,c,e,m,l,k] +@tensoropt R3[b,c,a,i,k,j] += 0.5 * oovv[l,m,e,d] * T2[d,a,i,j] * T3[b,c,e,m,l,k] +@tensoropt R3[b,a,c,i,j,k] += 0.5 * oovv[l,m,e,d] * T2[d,a,i,j] * T3[b,c,e,m,l,k] +@tensoropt R3[c,a,b,j,i,k] += 0.5 * oovv[m,l,d,e] * T2[b,a,l,i] * T3[e,d,c,m,k,j] +@tensoropt R3[a,c,b,i,j,k] += 0.5 * oovv[m,l,d,e] * T2[b,a,l,i] * T3[e,d,c,m,k,j] +@tensoropt R3[c,a,b,j,k,i] += 0.5 * oovv[m,l,d,e] * T2[a,b,l,i] * T3[e,d,c,m,k,j] +@tensoropt R3[a,b,c,i,j,k] += 0.5 * oovv[m,l,d,e] * T2[b,a,l,i] * T3[e,d,c,m,j,k] +@tensoropt R3[a,c,b,j,k,i] += 0.5 * oovv[m,l,d,e] * T2[a,b,l,i] * T3[e,d,c,m,j,k] +@tensoropt R3[a,b,c,j,i,k] += 0.5 * oovv[m,l,d,e] * T2[a,b,l,i] * T3[e,d,c,m,j,k] +@tensoropt R3[c,a,b,j,i,k] += 0.5 * oovv[m,l,d,e] * T2[b,a,l,i] * T3[e,c,d,k,m,j] +@tensoropt R3[a,c,b,i,j,k] += 0.5 * oovv[m,l,d,e] * T2[b,a,l,i] * T3[e,c,d,k,m,j] +@tensoropt R3[c,a,b,j,k,i] += 0.5 * oovv[m,l,d,e] * T2[a,b,l,i] * T3[e,c,d,k,m,j] +@tensoropt R3[a,b,c,i,j,k] += 0.5 * oovv[m,l,d,e] * T2[b,a,l,i] * T3[e,c,d,j,m,k] +@tensoropt R3[a,c,b,j,k,i] += 0.5 * oovv[m,l,d,e] * T2[a,b,l,i] * T3[e,c,d,j,m,k] +@tensoropt R3[a,b,c,j,i,k] += 0.5 * oovv[m,l,d,e] * T2[a,b,l,i] * T3[e,c,d,j,m,k] @tensoropt R3[b,c,a,j,k,i] += oovv[m,l,e,d] * T2[a,d,l,i] * T3[c,e,b,m,k,j] @tensoropt R3[b,c,a,j,k,i] += oovv[m,l,e,d] * T2[a,d,l,i] * T3[b,e,c,m,j,k] @tensoropt R3[b,a,c,j,i,k] += oovv[m,l,e,d] * T2[a,d,l,i] * T3[c,e,b,m,k,j] @tensoropt R3[b,a,c,j,i,k] += oovv[m,l,e,d] * T2[a,d,l,i] * T3[b,e,c,m,j,k] @tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[a,d,l,i] * T3[c,e,b,m,k,j] @tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[a,d,l,i] * T3[b,e,c,m,j,k] -@tensoropt R3[a,b,c,j,k,i] += oovv[m,l,d,e] * T2[d,e,l,i] * T3[c,a,b,m,j,k] -@tensoropt R3[a,b,c,j,i,k] += oovv[m,l,d,e] * T2[d,e,l,i] * T3[b,a,c,m,j,k] -@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,d,e] * T2[d,e,l,i] * T3[a,b,c,m,j,k] -@tensoropt R3[b,c,a,i,j,k] += oovv[m,l,e,d] * T2[a,d,l,m] * T3[e,b,c,k,i,j] -@tensoropt R3[b,a,c,i,j,k] += oovv[m,l,e,d] * T2[a,d,l,m] * T3[e,b,c,j,i,k] -@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[a,d,l,m] * T3[e,b,c,i,j,k] -@tensoropt R3[b,a,c,k,i,j] -= 2 * oovv[m,l,e,d] * T2[d,a,j,i] * T3[c,e,b,l,m,k] -@tensoropt R3[a,b,c,i,k,j] -= 2 * oovv[m,l,e,d] * T2[d,a,j,i] * T3[c,e,b,l,m,k] -@tensoropt R3[b,c,a,k,i,j] -= 2 * oovv[m,l,e,d] * T2[d,a,i,j] * T3[c,e,b,l,m,k] -@tensoropt R3[a,b,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[d,a,j,i] * T3[b,e,c,l,m,k] -@tensoropt R3[b,c,a,i,k,j] -= 2 * oovv[m,l,e,d] * T2[d,a,i,j] * T3[b,e,c,l,m,k] -@tensoropt R3[b,a,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[d,a,i,j] * T3[b,e,c,l,m,k] -@tensoropt R3[c,a,b,j,i,k] -= 2 * oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,k,m,j] -@tensoropt R3[a,c,b,i,j,k] -= 2 * oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,k,m,j] -@tensoropt R3[c,a,b,j,k,i] -= 2 * oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,k,m,j] -@tensoropt R3[a,b,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,j,m,k] -@tensoropt R3[a,c,b,j,k,i] -= 2 * oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,j,m,k] -@tensoropt R3[a,b,c,j,i,k] -= 2 * oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,j,m,k] -@tensoropt R3[b,c,a,j,k,i] -= 2 * oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,b,c,m,j,k] -@tensoropt R3[b,a,c,j,i,k] -= 2 * oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,b,c,m,j,k] -@tensoropt R3[a,b,c,i,j,k] -= 2 * oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,b,c,m,j,k] +@tensoropt R3[a,b,c,j,k,i] += 0.5 * oovv[m,l,d,e] * T2[d,e,l,i] * T3[c,a,b,m,j,k] +@tensoropt R3[a,b,c,j,i,k] += 0.5 * oovv[m,l,d,e] * T2[d,e,l,i] * T3[b,a,c,m,j,k] +@tensoropt R3[a,b,c,i,j,k] += 0.5 * oovv[m,l,d,e] * T2[d,e,l,i] * T3[a,b,c,m,j,k] +@tensoropt R3[b,c,a,i,j,k] += 0.5 * oovv[m,l,e,d] * T2[a,d,l,m] * T3[e,b,c,k,i,j] +@tensoropt R3[b,a,c,i,j,k] += 0.5 * oovv[m,l,e,d] * T2[a,d,l,m] * T3[e,b,c,j,i,k] +@tensoropt R3[a,b,c,i,j,k] += 0.5 * oovv[m,l,e,d] * T2[a,d,l,m] * T3[e,b,c,i,j,k] +@tensoropt R3[b,a,c,k,i,j] -= oovv[l,m,e,d] * T2[d,a,j,i] * T3[c,e,b,m,l,k] +@tensoropt R3[a,b,c,i,k,j] -= oovv[l,m,e,d] * T2[d,a,j,i] * T3[c,e,b,m,l,k] +@tensoropt R3[b,c,a,k,i,j] -= oovv[l,m,e,d] * T2[d,a,i,j] * T3[c,e,b,m,l,k] +@tensoropt R3[a,b,c,i,j,k] -= oovv[l,m,e,d] * T2[d,a,j,i] * T3[b,e,c,m,l,k] +@tensoropt R3[b,c,a,i,k,j] -= oovv[l,m,e,d] * T2[d,a,i,j] * T3[b,e,c,m,l,k] +@tensoropt R3[b,a,c,i,j,k] -= oovv[l,m,e,d] * T2[d,a,i,j] * T3[b,e,c,m,l,k] +@tensoropt R3[c,a,b,j,i,k] -= oovv[m,l,d,e] * T2[b,a,l,i] * T3[e,d,c,k,m,j] +@tensoropt R3[a,c,b,i,j,k] -= oovv[m,l,d,e] * T2[b,a,l,i] * T3[e,d,c,k,m,j] +@tensoropt R3[c,a,b,j,k,i] -= oovv[m,l,d,e] * T2[a,b,l,i] * T3[e,d,c,k,m,j] +@tensoropt R3[a,b,c,i,j,k] -= oovv[m,l,d,e] * T2[b,a,l,i] * T3[e,d,c,j,m,k] +@tensoropt R3[a,c,b,j,k,i] -= oovv[m,l,d,e] * T2[a,b,l,i] * T3[e,d,c,j,m,k] +@tensoropt R3[a,b,c,j,i,k] -= oovv[m,l,d,e] * T2[a,b,l,i] * T3[e,d,c,j,m,k] @tensoropt R3[b,c,a,j,k,i] -= 2 * oovv[m,l,e,d] * T2[a,d,l,i] * T3[e,b,c,m,j,k] @tensoropt R3[b,a,c,j,i,k] -= 2 * oovv[m,l,e,d] * T2[a,d,l,i] * T3[e,b,c,m,j,k] @tensoropt R3[a,b,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[a,d,l,i] * T3[e,b,c,m,j,k] @@ -1372,12 +1350,12 @@ oovv = ints2(EC,"oovv") @tensoropt R3[b,a,c,j,i,k] -= 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[b,e,c,m,j,k] @tensoropt R3[a,b,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[c,e,b,m,k,j] @tensoropt R3[a,b,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[b,e,c,m,j,k] -@tensoropt R3[a,b,c,j,k,i] -= 2 * oovv[m,l,e,d] * T2[d,e,l,i] * T3[c,a,b,m,j,k] -@tensoropt R3[a,b,c,j,i,k] -= 2 * oovv[m,l,e,d] * T2[d,e,l,i] * T3[b,a,c,m,j,k] -@tensoropt R3[a,b,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[d,e,l,i] * T3[a,b,c,m,j,k] -@tensoropt R3[b,c,a,i,j,k] -= 2 * oovv[m,l,e,d] * T2[d,a,l,m] * T3[e,b,c,k,i,j] -@tensoropt R3[b,a,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[d,a,l,m] * T3[e,b,c,j,i,k] -@tensoropt R3[a,b,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[d,a,l,m] * T3[e,b,c,i,j,k] +@tensoropt R3[a,b,c,j,k,i] -= oovv[m,l,e,d] * T2[d,e,l,i] * T3[c,a,b,m,j,k] +@tensoropt R3[a,b,c,j,i,k] -= oovv[m,l,e,d] * T2[d,e,l,i] * T3[b,a,c,m,j,k] +@tensoropt R3[a,b,c,i,j,k] -= oovv[m,l,e,d] * T2[d,e,l,i] * T3[a,b,c,m,j,k] +@tensoropt R3[b,c,a,i,j,k] -= oovv[m,l,e,d] * T2[d,a,l,m] * T3[e,b,c,k,i,j] +@tensoropt R3[b,a,c,i,j,k] -= oovv[m,l,e,d] * T2[d,a,l,m] * T3[e,b,c,j,i,k] +@tensoropt R3[a,b,c,i,j,k] -= oovv[m,l,e,d] * T2[d,a,l,m] * T3[e,b,c,i,j,k] @tensoropt R3[b,c,a,j,k,i] += 4 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[e,b,c,m,j,k] @tensoropt R3[b,a,c,j,i,k] += 4 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[e,b,c,m,j,k] @tensoropt R3[a,b,c,i,j,k] += 4 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[e,b,c,m,j,k] From 65075f74f4abddcabf158dacdbba0da54a500e60 Mon Sep 17 00:00:00 2001 From: Thomas Schraivogel Date: Mon, 24 Jun 2024 11:52:51 +0200 Subject: [PATCH 27/44] forgot to add include statements in previous commit --- src/cc.jl | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/src/cc.jl b/src/cc.jl index 434801c..a7743c4 100644 --- a/src/cc.jl +++ b/src/cc.jl @@ -80,10 +80,10 @@ include("cc_lagrange.jl") include("cc_tests.jl") -include("algo/uccsdt_singles.jl") -include("algo/uccsdt_doubles.jl") -include("algo/uccsdt_triples.jl") -include("algo/udcccsdt_triples.jl") +include("algo/ccsdt_singles.jl") +include("algo/ccsdt_doubles.jl") +include("algo/ccsdt_triples.jl") +include("algo/dcccsdt_triples.jl") """ calc_singles_energy(EC::ECInfo, T1; fock_only=false) From ccbf10e1e08a80c03d1587083e4db988e620299e Mon Sep 17 00:00:00 2001 From: Thomas Schraivogel Date: Mon, 24 Jun 2024 11:58:21 +0200 Subject: [PATCH 28/44] Changelog entry --- CHANGELOG.md | 1 + 1 file changed, 1 insertion(+) diff --git a/CHANGELOG.md b/CHANGELOG.md index 80f01a8..ea610c3 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -12,6 +12,7 @@ * Export of molden files (`@export_molden`). At the moment the orbital energies and occupations are not exported. * Add dfmcscf part in documentation +* CCSDT and DC-CCSDT closed-shell implementations generated with Quantwo. ### Fixed From 5d565e28bb4a5cc100a745bc6ca74e6cdea00a6a Mon Sep 17 00:00:00 2001 From: Thomas Schraivogel Date: Mon, 24 Jun 2024 12:26:47 +0200 Subject: [PATCH 29/44] Added CCSDT and DC-CCSDT closed-shell tests --- test/ccsdt.jl | 16 ++++++++++++++++ test/runtests.jl | 2 +- 2 files changed, 17 insertions(+), 1 deletion(-) create mode 100644 test/ccsdt.jl diff --git a/test/ccsdt.jl b/test/ccsdt.jl new file mode 100644 index 0000000..5447e53 --- /dev/null +++ b/test/ccsdt.jl @@ -0,0 +1,16 @@ +using ElemCo +@testset "H2O Closed-Shell CCSDT and DC-CCSDT" begin +epsilon = 1.e-6 +ECCSDT_test = -0.214407285207 +EDCCCSDT_test = -0.214479790853 + +fcidump = joinpath(@__DIR__,"H2O.FCIDUMP") +@set cc use_kext = false calc_d_vvvv = true calc_d_vvvo = true calc_d_vovv = true calc_d_vvoo = true triangular_kext = false + +energies = @cc ccsdt +@test abs(last(energies)-energies.HF-ECCSDT_test) < epsilon + +energies = @cc dc-ccsdt +@test abs(last(energies)-energies.HF-EDCCCSDT_test) < epsilon +end + diff --git a/test/runtests.jl b/test/runtests.jl index f3d6a53..5e357cb 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -33,7 +33,7 @@ TESTS = [ # long tests LONGTESTS = [ ("Props", ["h2o_udcsd_prop"]), -("High-order CC", ["uccsdt"]), +("High-order CC", ["uccsdt", "ccsdt"]), ] for (testset, tests) in TESTS From c580c07e27a51f26c9200b0291eba10f5360ff85 Mon Sep 17 00:00:00 2001 From: Daniel Kats Date: Mon, 24 Jun 2024 19:31:45 +0200 Subject: [PATCH 30/44] Update MKL --- Project.toml | 2 +- test/runtests.jl | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/Project.toml b/Project.toml index 408a7d3..b3740d0 100644 --- a/Project.toml +++ b/Project.toml @@ -26,7 +26,7 @@ AtomsBase = "0.3.5 - 0.3" DocStringExtensions = "0.9" ITensors = "0.4.0 - 0.7" IterativeSolvers = "0.9" -MKL = "0.6" +MKL = "0.6 - 0.7" NPZ = "0.4" TensorOperations = "3.2.5 - 4" StaticArrays = "1.4" diff --git a/test/runtests.jl b/test/runtests.jl index 5e357cb..fce6fc7 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -23,7 +23,6 @@ end TESTS = [ ("FCIDUMP", ["h2o", "h2o_st1", "h2o_cation", "h2o_anion_st1", "h2o_triplet", "2d_cc"]), ("CC", ["h2-"]), -("DMRG", ["h2o_dmrg"]), ("DF", ["df_hf", "df_uhf", "df_mcscf"]), ("SVD", ["svd_dc"]), ("Interface", ["h2o_matrop"]), @@ -33,6 +32,7 @@ TESTS = [ # long tests LONGTESTS = [ ("Props", ["h2o_udcsd_prop"]), +("DMRG", ["h2o_dmrg"]), ("High-order CC", ["uccsdt", "ccsdt"]), ] From c65bbb27ecf09048cb1408370f02b64e2e955177 Mon Sep 17 00:00:00 2001 From: Daniel Kats Date: Wed, 26 Jun 2024 20:08:50 +0200 Subject: [PATCH 31/44] Switch to OutDict instead of NamedTuple Introduce ODDict structure for ordered descriptive dictionaries. Move output routines to Outputs module to hide from JET. --- CHANGELOG.md | 2 + docs/make.jl | 1 + docs/src/descdict.md | 21 +++ docs/src/elemco.md | 22 ++- docs/src/outputs.md | 21 +++ docs/src/utils.md | 2 +- src/ElemCo.jl | 4 + src/bohf.jl | 15 +- src/cc.jl | 260 +++++++++++++++---------------- src/cc_lagrange.jl | 7 +- src/cc_triples.jl | 50 +++--- src/ccdriver.jl | 200 ++++++++++++------------ src/cctools.jl | 30 ++-- src/descdict.jl | 352 ++++++++++++++++++++++++++++++++++++++++++ src/dfcc.jl | 52 +++---- src/dfhf.jl | 23 ++- src/dmrg.jl | 2 +- src/dump.jl | 82 ++++++---- src/ecmethods.jl | 6 +- src/orbtools.jl | 4 +- src/outputs.jl | 82 ++++++++++ src/tensortools.jl | 54 +++---- src/utils.jl | 26 +++- test/2d_cc.jl | 6 +- test/df_hf.jl | 12 +- test/df_uhf.jl | 8 +- test/h2-.jl | 10 +- test/h2o.jl | 14 +- test/h2o_anion_st1.jl | 8 +- test/h2o_cation.jl | 18 +-- test/h2o_dmrg.jl | 2 +- test/h2o_st1.jl | 12 +- test/h2o_triplet.jl | 14 +- test/n_st1.jl | 14 +- test/svd_dc.jl | 18 +-- test/uccsdt.jl | 4 +- 36 files changed, 985 insertions(+), 473 deletions(-) create mode 100644 docs/src/descdict.md create mode 100644 docs/src/outputs.md create mode 100644 src/descdict.jl create mode 100644 src/outputs.jl diff --git a/CHANGELOG.md b/CHANGELOG.md index e5b5a87..3d4220c 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -10,6 +10,7 @@ * The `FDump` type has been changed to `FDump{N}` with N=3 (for triangular storage of 2-electron integrals) or 4. The logical variable `triang` has been removed (there is a function `is_triang(::FDump)` now). Aliases `TFDump = FDump{3}` and `QFDump = FDump{4}` have been introduced. * The `ECInfo` type now accepts only `FDump{3}`. The `FDump{4}` objects have to be transformed first (the transformation functions are not implemented yet). * The triangular functions have been moved to a separate file `utensors.jl`, part of the `QMTensors` module. `uppertriangular` function has been renamed to `uppertriangular_index`. +* The driver functions and macros now return energies in an ordered descriptive dictionary `OutDict=ODDict{String,Float64}`. Use `last_energy` function to access the last energy (or `last` to access the whole entry including the key and the description). ### Changed @@ -20,6 +21,7 @@ * Export of molden files (`@export_molden`). At the moment the orbital energies and occupations are not exported. * `QMTensors.SpinMatrix` struct for one-electron matrices (e.g., MO coefficients) +* An ordered descriptive dictionary for energy outputs (`ODDict`) has been implemented. Each key-value entry can have a description. ### Fixed diff --git a/docs/make.jl b/docs/make.jl index 86cd5d5..35dcd56 100644 --- a/docs/make.jl +++ b/docs/make.jl @@ -55,6 +55,7 @@ makedocs( "orbtools.md", "qmtensors.md", "tensortools.md", + "descdict.md", "utils.md", "interfaces.md", "molpro.md", diff --git a/docs/src/descdict.md b/docs/src/descdict.md new file mode 100644 index 0000000..d0601d7 --- /dev/null +++ b/docs/src/descdict.md @@ -0,0 +1,21 @@ +# Ordered descriptive dictionary + +```@docs +ElemCo.DescDict +``` + +## Exported types and functions + +```@autodocs +Modules = [ElemCo.DescDict] +Private = false +Order = [:type, :macro, :function] +``` + +## Internal functions + +```@autodocs +Modules = [ElemCo.DescDict] +Public = false +Order = [:type, :macro, :function] +``` diff --git a/docs/src/elemco.md b/docs/src/elemco.md index 8059917..20d5364 100644 --- a/docs/src/elemco.md +++ b/docs/src/elemco.md @@ -20,25 +20,31 @@ Various macros are defined and exported to simplify running calculations. The ma | `basis::Dict` | Basis set information, see [`ElemCo.MSystem`](@ref) | | `fcidump::String` | File containing the integrals in the FCIDUMP format, see [`ElemCo.FciDumps`](@ref). | -The driver routines and macros return energies as `NamedTuple`. The last energy is always the total energy (can be accessed using `last(energies)`). The following table lists the keys and their meanings. +The driver routines and macros return energies as ordered descriptive dictionaries [`ElemCo.ODDict`](@ref). The last energy is always the total energy (can be accessed using `last_energy(energies)`). The following table lists the keys and their meanings. ---------------------- | Key | Meaning | |:---:|:--------| -| `:HF` | Hartree-Fock energy | -| `:MP2` | MP2 energy | -| `:CCSD` | CCSD energy | -| `:DCSD` | DCSD energy | -| `:SING2D_DCSD` | singlet 2D-DCSD energy | -| `:TRIP2D_DCSD` | triplet 2D-DCSD energy | +| `HF` | Hartree-Fock energy | +| `MP2` | MP2 energy | +| `CCSD` | CCSD energy | +| `DCSD` | DCSD energy | +| `SING2D-DCSD` | singlet 2D-DCSD energy | +| `TRIP2D-DCSD` | triplet 2D-DCSD energy | | etc. || -One can print the keys of the returned `NamedTuple` to see all the available keys: +One can print the keys of the returned `ODDict` to see all the available keys: ```julia julia> println(keys(energies)) ``` +or display the complete dictionary together with the descriptions as + +```julia +julia> display(energies) +``` + ## [Macros](@id list_of_macros) ```@autodocs diff --git a/docs/src/outputs.md b/docs/src/outputs.md new file mode 100644 index 0000000..f558cca --- /dev/null +++ b/docs/src/outputs.md @@ -0,0 +1,21 @@ +# Outputs + +```@docs +ElemCo.Outputs +``` + +## Exported functions + +```@autodocs +Modules = [ElemCo.Outputs] +Private = false +Order = [:type, :macro, :function] +``` + +## Internal functions + +```@autodocs +Modules = [ElemCo.Outputs] +Public = false +Order = [:type, :macro, :function] +``` diff --git a/docs/src/utils.md b/docs/src/utils.md index f45f8df..98f026a 100644 --- a/docs/src/utils.md +++ b/docs/src/utils.md @@ -13,7 +13,7 @@ Utils ```@autodocs Modules = [Utils] Private = false -Order = [:function] +Order = [:function, :type] ``` ## Internal functions diff --git a/src/ElemCo.jl b/src/ElemCo.jl index 49a9555..7583833 100644 --- a/src/ElemCo.jl +++ b/src/ElemCo.jl @@ -6,6 +6,8 @@ module ElemCo include("abstractEC.jl") +include("descdict.jl") +include("outputs.jl") include("utils.jl") include("constants.jl") include("myio.jl") @@ -86,6 +88,8 @@ export @ECinit, @tryECinit, @set, @opt, @reset, @run, @var2string export @transform_ints, @write_ints, @dfints, @freeze_orbs, @rotate_orbs, @show_orbs export @dfhf, @dfuhf, @cc, @dfcc, @bohf, @bouhf, @dfmcscf export @import_matrix, @export_molden +# from Utils +export last_energy const __VERSION__ = "0.12.0+" diff --git a/src/bohf.jl b/src/bohf.jl index 5e65d4e..1ff6beb 100644 --- a/src/bohf.jl +++ b/src/bohf.jl @@ -2,7 +2,8 @@ (using a similarity-transformed FciDump) """ module BOHF -using LinearAlgebra, TensorOperations, Printf +using LinearAlgebra, TensorOperations +using ..ElemCo.Outputs using ..ElemCo.Utils using ..ElemCo.Constants using ..ElemCo.ECInfos @@ -248,13 +249,11 @@ function bohf(EC::ECInfo) previousEHF = EHF Δfock = den'*fock - fock*den' var = sum(abs2, Δfock) - tt = (time_ns() - t0)/10^9 if pseudo - @printf "%12.8f %10.2e %8.2f \n" EHF var tt + output_E_var(EHF, var, time_ns() - t0) else - @printf "%3i %12.8f %12.8f %10.2e %8.2f \n" it EHF ΔE var tt + output_iteration(it, var, time_ns() - t0, EHF, ΔE) end - flush(stdout) if abs(ΔE) < thren && var < EC.options.scf.thr break end @@ -339,13 +338,11 @@ function bouhf(EC::ECInfo) EHF = efhsmall[1] + efhsmall[2] + Enuc ΔE = EHF - previousEHF previousEHF = EHF - tt = (time_ns() - t0)/10^9 if pseudo - @printf "%12.8f %10.2e %8.2f \n" EHF var tt + output_E_var(EHF, var, time_ns() - t0) else - @printf "%3i %12.8f %12.8f %10.2e %8.2f \n" it EHF ΔE var tt + output_iteration(it, var, time_ns() - t0, EHF, ΔE) end - flush(stdout) if abs(ΔE) < thren && var < EC.options.scf.thr break end diff --git a/src/cc.jl b/src/cc.jl index 13c7e01..e38ea3d 100644 --- a/src/cc.jl +++ b/src/cc.jl @@ -58,7 +58,7 @@ end using LinearAlgebra #BLAS.set_num_threads(1) using TensorOperations -using Printf +using ..ElemCo.Outputs using ..ElemCo.Utils using ..ElemCo.ECInfos using ..ElemCo.ECMethods @@ -91,7 +91,7 @@ include("algo/udcccsdt_triples.jl") Calculate coupled-cluster closed-shell singles energy. Returns total energy, SS, OS and Openshell (0.0) contributions - as a NamedTuple (`E`,`ESS`,`EOS`,`EO`). + as `OutDict` with keys (`E`,`ESS`,`EOS`,`EO`). """ function calc_singles_energy(EC::ECInfo, T1; fock_only=false) SP = EC.space @@ -107,9 +107,9 @@ function calc_singles_energy(EC::ECInfo, T1; fock_only=false) ET1OS = ET1d ET1 = ET1SS + ET1OS end - @tensoropt ET1 += 2.0*(T1[a,i] * load(EC,"f_mm")[SP['o'],SP['v']][i,a]) + @tensoropt ET1 += 2.0*(T1[a,i] * load2idx(EC,"f_mm")[SP['o'],SP['v']][i,a]) end - return (E=ET1, ESS=ET1SS, EOS=ET1OS, EO=0.0) + return OutDict("E"=>ET1, "ESS"=>ET1SS, "EOS"=>ET1OS, "EO"=>0.0) end """ @@ -117,7 +117,7 @@ end Calculate energy for α (T1a) and β (T1b) singles amplitudes. Returns total energy, SS, OS and Openshell contributions - as a NamedTuple (`E`,`ESS`,`EOS`,`EO`). + as `OutDict` with keys (`E`,`ESS`,`EOS`,`EO`). """ function calc_singles_energy(EC::ECInfo, T1a, T1b; fock_only=false) SP = EC.space @@ -134,16 +134,16 @@ function calc_singles_energy(EC::ECInfo, T1a, T1b; fock_only=false) end end if length(T1a) > 0 - @tensoropt ET1 += T1a[a,i] * load(EC,"f_mm")[SP['o'],SP['v']][i,a] + @tensoropt ET1 += T1a[a,i] * load2idx(EC,"f_mm")[SP['o'],SP['v']][i,a] end if length(T1b) > 0 - @tensoropt ET1 += T1b[a,i] * load(EC,"f_MM")[SP['O'],SP['V']][i,a] + @tensoropt ET1 += T1b[a,i] * load2idx(EC,"f_MM")[SP['O'],SP['V']][i,a] end ET1 += ET1aa + ET1bb + ET1ab ET1SS = ET1aa + ET1bb ET1OS = ET1ab ET1O = ET1aa - ET1bb - return (E=ET1, ESS=ET1SS, EOS=ET1OS, EO=ET1O) + return OutDict("E"=>ET1, "ESS"=>ET1SS, "EOS"=>ET1OS, "EO"=>ET1O) end """ @@ -151,7 +151,7 @@ end Calculate coupled-cluster closed-shell doubles energy. Returns total energy, SS, OS and Openshell (0.0) contributions - as a NamedTuple (`E`,`ESS`,`EOS`,`EO`). + as `OutDict` with keys (`E`,`ESS`,`EOS`,`EO`). """ function calc_doubles_energy(EC::ECInfo, T2) oovv = ints2(EC,"oovv") @@ -162,7 +162,7 @@ function calc_doubles_energy(EC::ECInfo, T2) ET2SS = ET2d - ET2ex ET2OS = ET2d ET2 = ET2SS + ET2OS - return (E=ET2, ESS=ET2SS, EOS=ET2OS, EO=0.0) + return OutDict("E"=>ET2, "ESS"=>ET2SS, "EOS"=>ET2OS, "EO"=>0.0) end """ @@ -170,7 +170,7 @@ end Calculate energy for αα (T2a), ββ (T2b) and αβ (T2ab) doubles amplitudes. Returns total energy, SS, OS and Openshell contributions - as a NamedTuple (`E`,`ESS`,`EOS`,`EO`). + as `OutDict` with keys (`E`,`ESS`,`EOS`,`EO`). """ function calc_doubles_energy(EC::ECInfo, T2a, T2b, T2ab) @tensoropt begin @@ -181,7 +181,7 @@ function calc_doubles_energy(EC::ECInfo, T2a, T2b, T2ab) ET2SS = ET2aa + ET2bb ET2O = ET2aa - ET2bb ET2 = ET2SS + ET2OS - return (E=ET2, ESS=ET2SS, EOS=ET2OS, EO=ET2O) + return OutDict("E"=>ET2, "ESS"=>ET2SS, "EOS"=>ET2OS, "EO"=>ET2O) end """ @@ -189,7 +189,7 @@ end Calculate closed-shell singles and doubles Hylleraas energy. Returns total energy, SS, OS and Openshell (0.0) contributions - as a NamedTuple (`E`,`ESS`,`EOS`,`EO`). + as `OutDict` with keys (`E`,`ESS`,`EOS`,`EO`). """ function calc_hylleraas(EC::ECInfo, T1, T2, R1, R2) SP = EC.space @@ -213,13 +213,13 @@ function calc_hylleraas(EC::ECInfo, T1, T2, R1, R2) ET2OS = ET2d ET2 = ET2SS + ET2OS if length(T1) > 0 - fov = load(EC,"f_mm")[SP['o'],SP['v']] + fov = load2idx(EC,"f_mm")[SP['o'],SP['v']] @tensoropt ET1 += 2.0*((fov[i,a] + R1[a,i]) * T1[a,i]) end ET2 += ET1 ET2SS += ET1SS ET2OS += ET1OS - return (E=ET2, ESS=ET2SS, EOS=ET2OS, EO=0.0) + return OutDict("E"=>ET2, "ESS"=>ET2SS, "EOS"=>ET2OS, "EO"=>0.0) end """ @@ -257,13 +257,13 @@ end Calculate singles and doubles Hylleraas energy. Returns total energy, SS, OS and Openshell contributions - as a NamedTuple (`E`,`ESS`,`EOS`,`EO`). + as OutDict with keys (`E`,`ESS`,`EOS`,`EO`). """ function calc_hylleraas(EC::ECInfo, T1a, T1b, T2a, T2b, T2ab, R1a, R1b, R2a, R2b, R2ab) SP = EC.space - Eh2SSa, Eh1a, Eh1SSa = calc_hylleraas4spincase(EC, "ovov"..., T1a, T1b, T2a, R1a, R2a, load(EC,"f_mm")[SP['o'],SP['v']]) + Eh2SSa, Eh1a, Eh1SSa = calc_hylleraas4spincase(EC, "ovov"..., T1a, T1b, T2a, R1a, R2a, load2idx(EC,"f_mm")[SP['o'],SP['v']]) if n_occb_orbs(EC) > 0 - Eh2SSb, Eh1b, Eh1SSb = calc_hylleraas4spincase(EC, "OVOV"..., T1b, T1a, T2b, R1b, R2b, load(EC,"f_MM")[SP['O'],SP['V']]) + Eh2SSb, Eh1b, Eh1SSb = calc_hylleraas4spincase(EC, "OVOV"..., T1b, T1a, T2b, R1b, R2b, load2idx(EC,"f_MM")[SP['O'],SP['V']]) Eh2OS, Eh1, Eh1OS = calc_hylleraas4spincase(EC, "ovOV"..., T1a, T1b, T2ab, Float64[], R2ab, Float64[]) else Eh2SSb = Eh1b = Eh1SSb = 0.0 @@ -273,7 +273,7 @@ function calc_hylleraas(EC::ECInfo, T1a, T1b, T2a, T2b, T2ab, R1a, R1b, R2a, R2b EhSS = Eh2SSa + Eh2SSb + Eh1SSa + Eh1SSb EhOS = Eh2OS + Eh1OS EhO = Eh2SSa - Eh2SSb + Eh1SSa - Eh1SSb - return (E=Eh, ESS=EhSS, EOS=EhOS, EO=EhO) + return OutDict("E"=>Eh, "ESS"=>EhSS, "EOS"=>EhOS, "EO"=>EhO) end """ @@ -461,7 +461,7 @@ function calc_dressed_ints(EC::ECInfo, T1, T12, o1::Char, v1::Char, o2::Char, v2 oovv = nothing if calc_d_vvvv # - d_vvvv = load(EC,"hd_"*v1*v2*v1*v2) + d_vvvv = load4idx(EC,"hd_"*v1*v2*v1*v2) if !calc_d_vovv error("for calc_d_vvvv calc_d_vovv has to be True") end @@ -505,16 +505,16 @@ function calc_dressed_ints(EC::ECInfo, T1, T12, o1::Char, v1::Char, o2::Char, v2 if calc_d_vvvo # if !mixed - d_vvvo = load(EC,"hd_"*v1*v2*v1*o2) + d_vvvo = load4idx(EC,"hd_"*v1*v2*v1*o2) @tensoropt d_vvvo[a,c,b,l] -= d_voov[c,i,l,b] * T1[a,i] save!(EC,"d_"*v1*v2*v1*o2,d_vvvo) d_vvvo = nothing else - d_vvvo = load(EC,"hd_"*v1*v2*v1*o2) + d_vvvo = load4idx(EC,"hd_"*v1*v2*v1*o2) @tensoropt d_vvvo[c,a,b,l] -= d_ovvo[i,a,b,l] * T1[c,i] save!(EC,"d_"*v1*v2*v1*o2,d_vvvo) d_vvvo = nothing - d_vvov = load(EC,"hd_"*v1*v2*o1*v2) + d_vvov = load4idx(EC,"hd_"*v1*v2*o1*v2) @tensoropt d_vvov[a,c,l,b] -= d_voov[a,i,l,b] * T12[c,i] save!(EC,"d_"*v1*v2*o1*v2,d_vvov) d_vvov = nothing @@ -531,8 +531,8 @@ function calc_dressed_ints(EC::ECInfo, T1, T12, o1::Char, v1::Char, o2::Char, v2 error("for calc_d_vvoo calc_d_vvvo has to be True") end # - d_vvoo = load(EC,"hd_"*v1*v2*o1*o2) - hd_vvvo = load(EC,"hd_"*v1*v2*v1*o2) + d_vvoo = load4idx(EC,"hd_"*v1*v2*o1*o2) + hd_vvvo = load4idx(EC,"hd_"*v1*v2*v1*o2) @tensoropt d_vvoo[a,c,j,l] += hd_vvvo[a,c,b,l] * T1[b,j] hd_vvvo = nothing if !mixed @@ -567,18 +567,18 @@ function dress_fock_closedshell(EC::ECInfo, T1) # calc dressed fock dfock = d_int1 - d_oooo = load(EC,"d_oooo") - d_vooo = load(EC,"d_vooo") - d_oovo = load(EC,"d_oovo") + d_oooo = load4idx(EC,"d_oooo") + d_vooo = load4idx(EC,"d_vooo") + d_oovo = load4idx(EC,"d_oovo") @tensoropt begin foo[i,j] := 2.0*d_oooo[i,k,j,k] - d_oooo[i,k,k,j] fvo[a,i] := 2.0*d_vooo[a,k,i,k] - d_vooo[a,k,k,i] fov[i,a] := 2.0*d_oovo[i,k,a,k] - d_oovo[k,i,a,k] end - d_vovo = load(EC,"d_vovo") + d_vovo = load4idx(EC,"d_vovo") @tensoropt fvv[a,b] := 2.0*d_vovo[a,k,b,k] d_vovo = nothing - d_voov = load(EC,"d_voov") + d_voov = load4idx(EC,"d_voov") @tensoropt fvv[a,b] -= d_voov[a,k,k,b] dfock[SP['o'],SP['o']] += foo dfock[SP['v'],SP['o']] += fvo @@ -616,19 +616,19 @@ function dress_fock_samespin(EC::ECInfo, T1, o1::Char, v1::Char) t1 = print_time(EC,t1,"dress int1",3) # calc dressed fock dfock = d_int1 - d_oooo = load(EC,"d_"*o1*o1*o1*o1) - d_vooo = load(EC,"d_"*v1*o1*o1*o1) - d_oovo = load(EC,"d_"*o1*o1*v1*o1) + d_oooo = load4idx(EC,"d_"*o1*o1*o1*o1) + d_vooo = load4idx(EC,"d_"*v1*o1*o1*o1) + d_oovo = load4idx(EC,"d_"*o1*o1*v1*o1) @tensoropt begin foo[i,j] := d_oooo[i,k,j,k] - d_oooo[i,k,k,j] fvo[a,i] := d_vooo[a,k,i,k] - d_vooo[a,k,k,i] fov[i,a] := d_oovo[i,k,a,k] - d_oovo[k,i,a,k] end - d_vovo = load(EC,"d_"*v1*o1*v1*o1) + d_vovo = load4idx(EC,"d_"*v1*o1*v1*o1) @tensoropt fvv[a,b] := d_vovo[a,k,b,k] d_vovo = nothing if no1 > 0 - d_voov = load(EC,"d_"*v1*o1*o1*v1) + d_voov = load4idx(EC,"d_"*v1*o1*o1*v1) @tensoropt fvv[a,b] -= d_voov[a,k,k,b] d_voov = nothing end @@ -648,39 +648,39 @@ end function dress_fock_oppositespin(EC::ECInfo) t1 = time_ns() SP = EC.space - d_oooo = load(EC,"d_oOoO") + d_oooo = load4idx(EC,"d_oOoO") @tensoropt begin foo[i,j] := d_oooo[i,k,j,k] fOO[i,j] := d_oooo[k,i,k,j] end d_oooo = nothing - d_vooo = load(EC,"d_vOoO") + d_vooo = load4idx(EC,"d_vOoO") @tensoropt fvo[a,i] := d_vooo[a,k,i,k] d_vooo = nothing - d_ovoo = load(EC,"d_oVoO") + d_ovoo = load4idx(EC,"d_oVoO") @tensoropt fVO[a,i] := d_ovoo[k,a,k,i] d_ovoo = nothing - d_oovo = load(EC,"d_oOvO") + d_oovo = load4idx(EC,"d_oOvO") @tensoropt fov[i,a] := d_oovo[i,k,a,k] d_oovo = nothing - d_ooov = load(EC,"d_oOoV") + d_ooov = load4idx(EC,"d_oOoV") @tensoropt fOV[i,a] := d_ooov[k,i,k,a] d_ooov = nothing - d_vovo = load(EC,"d_vOvO") + d_vovo = load4idx(EC,"d_vOvO") @tensoropt fvv[a,b] := d_vovo[a,k,b,k] d_vovo = nothing - d_ovov = load(EC,"d_oVoV") + d_ovov = load4idx(EC,"d_oVoV") @tensoropt fVV[a,b] := d_ovov[k,a,k,b] d_ovov = nothing - dfocka = load(EC,"df_mm") + dfocka = load2idx(EC,"df_mm") dfocka[SP['o'],SP['o']] += foo dfocka[SP['o'],SP['v']] += fov dfocka[SP['v'],SP['o']] += fvo dfocka[SP['v'],SP['v']] += fvv save!(EC,"df_mm",dfocka) - dfockb = load(EC,"df_MM") + dfockb = load2idx(EC,"df_MM") dfockb[SP['O'],SP['O']] += fOO dfockb[SP['O'],SP['V']] += fOV dfockb[SP['V'],SP['O']] += fVO @@ -744,8 +744,8 @@ function pseudo_dressed_ints(EC::ECInfo, unrestricted=false; save!(EC,"d_vvoo",ints2(EC,"vvoo")) end save!(EC,"dh_mm",integ1(EC.fd)) - save!(EC,"df_mm",load(EC,"f_mm")) - save!(EC,"df_MM",load(EC,"f_MM")) + save!(EC,"df_mm",load2idx(EC,"f_mm")) + save!(EC,"df_MM",load2idx(EC,"f_MM")) t1 = print_time(EC,t1,"pseudo-dressing",3) if unrestricted save!(EC,"d_OOVO",ints2(EC,"OOVO")) @@ -782,7 +782,7 @@ end Calculate closed-shell MP2 energy and amplitudes. The amplitudes are stored in `T_vvoo` file. If `addsingles`: singles are also calculated and stored in `T_vo` file. - Return EMp2 `NamedTuple` (`E`, `ESS`, `EOS`, `EO`). + Return EMp2 `OutDict` with keys (`E`, `ESS`, `EOS`, `EO`). """ function calc_MP2(EC::ECInfo, addsingles=true) T2 = update_doubles(EC, ints2(EC,"vvoo"), use_shift=false) @@ -790,11 +790,11 @@ function calc_MP2(EC::ECInfo, addsingles=true) save!(EC, "T_vvoo", T2) if addsingles ϵo, ϵv = orbital_energies(EC) - T1 = update_singles(load(EC,"f_mm")[EC.space['v'],EC.space['o']], ϵo, ϵv, 0.0) + T1 = update_singles(load2idx(EC,"f_mm")[EC.space['v'],EC.space['o']], ϵo, ϵv, 0.0) EMp2s = calc_singles_energy(EC, T1, fock_only=true) save!(EC, "T_vo", T1) # add singles energies to MP2 energies - EMp2 = (; [k => EMp2[k] + EMp2s[k] for k in keys(EMp2)]...) + EMp2 = map(+, EMp2, EMp2s) end return EMp2 end @@ -805,7 +805,7 @@ end Calculate unrestricted MP2 energy and amplitudes. The amplitudes are stored in `T_vvoo`, `T_VVOO`, and `T_vVoO` files. If `addsingles`: singles are also calculated and stored in `T_vo` and `T_VO` files. - Return EMp2 `NamedTuple` (`E`, `ESS`, `EOS`, `EO`). + Return EMp2 `OutDict` with keys (`E`, `ESS`, `EOS`, `EO`). """ function calc_UMP2(EC::ECInfo, addsingles=true) SP = EC.space @@ -817,13 +817,13 @@ function calc_UMP2(EC::ECInfo, addsingles=true) save!(EC, "T_VVOO", T2b) save!(EC, "T_vVoO", T2ab) if addsingles - T1a = update_singles(EC, load(EC,"f_mm")[SP['v'],SP['o']], spincase=:α, use_shift=false) - T1b = update_singles(EC, load(EC,"f_MM")[SP['V'],SP['O']], spincase=:β, use_shift=false) + T1a = update_singles(EC, load2idx(EC,"f_mm")[SP['v'],SP['o']], spincase=:α, use_shift=false) + T1b = update_singles(EC, load2idx(EC,"f_MM")[SP['V'],SP['O']], spincase=:β, use_shift=false) EMp2s = calc_singles_energy(EC, T1a, T1b, fock_only=true) save!(EC, "T_vo", T1a) save!(EC, "T_VO", T1b) # add singles energies to MP2 energies - EMp2 = (; [k => EMp2[k] + EMp2s[k] for k in keys(EMp2)]...) + EMp2 = map(+, EMp2, EMp2s) end return EMp2 end @@ -833,19 +833,19 @@ end Calculate open-shell MP2 energy from precalculated amplitudes. If `addsingles`: singles energy is also calculated. - Return EMp2 `NamedTuple` (`E`, `ESS`, `EOS`, `EO`). + Return EMp2 `OutDict` with keys (`E`, `ESS`, `EOS`, `EO`). """ function calc_UMP2_energy(EC::ECInfo, addsingles=true) - T2a = load(EC,"T_vvoo") - T2b = load(EC,"T_VVOO") - T2ab = load(EC,"T_vVoO") + T2a = load4idx(EC,"T_vvoo") + T2b = load4idx(EC,"T_VVOO") + T2ab = load4idx(EC,"T_vVoO") EMp2 = calc_doubles_energy(EC, T2a, T2b, T2ab) if addsingles - T1a = load(EC,"T_vo") - T1b = load(EC,"T_VO") + T1a = load2idx(EC,"T_vo") + T1b = load2idx(EC,"T_VO") EMp2s = calc_singles_energy(EC, T1a, T1b, fock_only=true) # add singles energies to MP2 energies - EMp2 = (; [k => EMp2[k] + EMp2s[k] for k in keys(EMp2)]...) + EMp2 = map(+, EMp2, EMp2s) end return EMp2 end @@ -977,20 +977,20 @@ function calc_cc_resid(EC::ECInfo, T1, T2; dc=false, tworef=false, fixref=false) pseudo_dressed_ints(EC) end @tensor T2t[a,b,i,j] := 2.0 * T2[a,b,i,j] - T2[b,a,i,j] - dfock = load(EC,"df_mm") + dfock = load2idx(EC,"df_mm") if length(T1) > 0 if EC.options.cc.use_kext - dint1 = load(EC,"dh_mm") + dint1 = load2idx(EC,"dh_mm") R1 = dint1[SP['v'],SP['o']] else R1 = dfock[SP['v'],SP['o']] if !EC.options.cc.calc_d_vovv error("for not use_kext calc_d_vovv has to be True") end - int2 = load(EC,"d_vovv") + int2 = load4idx(EC,"d_vovv") @tensoropt R1[a,i] += int2[a,k,b,c] * T2t[c,b,k,i] end - int2 = load(EC,"d_oovo") + int2 = load4idx(EC,"d_oovo") fov = dfock[SP['o'],SP['v']] @tensoropt begin R1[a,i] += T2t[a,b,i,j] * fov[j,b] @@ -1008,12 +1008,12 @@ function calc_cc_resid(EC::ECInfo, T1, T2; dc=false, tworef=false, fixref=false) if !EC.options.cc.calc_d_vvoo error("for not use_kext calc_d_vvoo has to be True") end - R2 = load(EC,"d_vvoo") + R2 = load4idx(EC,"d_vvoo") end t1 = print_time(EC,t1,"",2) klcd = ints2(EC,"oovv") t1 = print_time(EC,t1,"",2) - int2 = load(EC,"d_oooo") + int2 = load4idx(EC,"d_oooo") if !dc # I_klij = +T^ij_cd @tensoropt int2[k,l,i,j] += klcd[k,l,c,d] * T2[c,d,i,j] @@ -1071,7 +1071,7 @@ function calc_cc_resid(EC::ECInfo, T1, T2; dc=false, tworef=false, fixref=false) if !EC.options.cc.calc_d_vvvv error("for not use_kext calc_d_vvvv has to be True") end - int2 = load(EC,"d_vvvv") + int2 = load4idx(EC,"d_vvvv") # T^ij_cd @tensoropt R2[a,b,i,j] += int2[a,b,c,d] * T2[c,d,i,j] t1 = print_time(EC,t1," T^ij_cd",2) @@ -1101,7 +1101,7 @@ function calc_cc_resid(EC::ECInfo, T1, T2; dc=false, tworef=false, fixref=false) R2r[a,b,i,j] -= xki[k,i] * T2[a,b,k,j] end t1 = print_time(EC,t1,"x_ad T^ij_db -x_ki T^kj_ab",2) - int2 = load(EC,"d_voov") + int2 = load4idx(EC,"d_voov") # \tilde T^ki_ca \tilde T^lj_db @tensoropt int2[a,k,i,c] += 0.5*klcd[k,l,c,d] * T2t[a,d,i,l] # \tilde T^kj_cb @@ -1113,7 +1113,7 @@ function calc_cc_resid(EC::ECInfo, T1, T2; dc=false, tworef=false, fixref=false) @tensoropt R2r[a,b,i,j] -= klcd[k,l,c,d] * T2[d,a,k,i] * T2t[c,b,l,j] t1 = print_time(EC,t1,"- T^ki_da (T^lj_cb - T^lj_bc)",2) end - int2 = load(EC,"d_vovo") + int2 = load4idx(EC,"d_vovo") @tensoropt begin # - T^kj_cb R2r[a,b,i,j] -= int2[a,k,c,i] * T2[c,b,k,j] @@ -1158,8 +1158,8 @@ function calc_cc_resid(EC::ECInfo, T1a, T1b, T2a, T2b, T2ab; dc=false, tworef=fa R1a = Float64[] R1b = Float64[] - dfock = load(EC,"df_mm") - dfockb = load(EC,"df_MM") + dfock = load2idx(EC,"df_mm") + dfockb = load2idx(EC,"df_MM") fij = dfock[SP['o'],SP['o']] fab = dfock[SP['v'],SP['v']] @@ -1168,9 +1168,9 @@ function calc_cc_resid(EC::ECInfo, T1a, T1b, T2a, T2b, T2ab; dc=false, tworef=fa if length(T1a) > 0 if EC.options.cc.use_kext - dint1a = load(EC,"dh_mm") + dint1a = load2idx(EC,"dh_mm") R1a = dint1a[SP['v'],SP['o']] - dint1b = load(EC,"dh_MM") + dint1b = load2idx(EC,"dh_MM") R1b = dint1b[SP['V'],SP['O']] else fai = dfock[SP['v'],SP['o']] @@ -1179,16 +1179,16 @@ function calc_cc_resid(EC::ECInfo, T1a, T1b, T2a, T2b, T2ab; dc=false, tworef=fa R1a[a,i] := fai[a,i] R1b[a,i] := fAI[a,i] end - d_vovv = load(EC,"d_vovv") + d_vovv = load4idx(EC,"d_vovv") @tensoropt R1a[a,i] += d_vovv[a,k,b,d] * T2a[b,d,i,k] d_vovv = nothing - d_VOVV = load(EC,"d_VOVV") + d_VOVV = load4idx(EC,"d_VOVV") @tensoropt R1b[A,I] += d_VOVV[A,K,B,D] * T2b[B,D,I,K] d_VOVV = nothing - d_vOvV = load(EC,"d_vOvV") + d_vOvV = load4idx(EC,"d_vOvV") @tensoropt R1a[a,i] += d_vOvV[a,K,b,D] * T2ab[b,D,i,K] d_vOvV = nothing - d_oVvV = load(EC,"d_oVvV") + d_oVvV = load4idx(EC,"d_oVvV") @tensoropt R1b[A,I] += d_oVvV[k,A,d,B] * T2ab[d,B,k,I] d_oVvV = nothing t1 = print_time(EC,t1,"``R_a^i += v_{ak}^{bd} T_{bd}^{ik}``",2) @@ -1203,18 +1203,18 @@ function calc_cc_resid(EC::ECInfo, T1a, T1b, T2a, T2b, T2ab; dc=false, tworef=fa end t1 = print_time(EC,t1,"``R_a^i += f_j^b T_{ab}^{ij}``",2) if n_occ_orbs(EC) > 0 - d_oovo = load(EC,"d_oovo") + d_oovo = load4idx(EC,"d_oovo") @tensoropt R1a[a,i] -= d_oovo[k,j,d,i] * T2a[a,d,j,k] d_oovo = nothing end if n_occb_orbs(EC) > 0 - d_OOVO = load(EC,"d_OOVO") + d_OOVO = load4idx(EC,"d_OOVO") @tensoropt R1b[A,I] -= d_OOVO[K,J,D,I] * T2b[A,D,J,K] d_OOVO = nothing - d_oOoV = load(EC,"d_oOoV") + d_oOoV = load4idx(EC,"d_oOoV") @tensoropt R1a[a,i] -= d_oOoV[j,K,i,D] * T2ab[a,D,j,K] d_oOoV = nothing - d_oOvO = load(EC,"d_oOvO") + d_oOvO = load4idx(EC,"d_oOvO") @tensoropt R1b[A,I] -= d_oOvO[k,J,d,I] * T2ab[d,A,k,J] end t1 = print_time(EC,t1,"``R_a^i -= v_{kj}^{di} T_{ad}^{jk}``",2) @@ -1226,15 +1226,15 @@ function calc_cc_resid(EC::ECInfo, T1a, T1b, T2a, T2b, T2ab; dc=false, tworef=fa R2b = zeros(nvirtb, nvirtb, noccb, noccb) R2ab = zeros(nvirt, nvirtb, nocc, noccb) else - d_vvoo = load(EC,"d_vvoo") + d_vvoo = load4idx(EC,"d_vvoo") R2a = deepcopy(d_vvoo) @tensoropt R2a[a,b,i,j] -= d_vvoo[b,a,i,j] d_vvoo = nothing - d_VVOO = load(EC,"d_VVOO") + d_VVOO = load4idx(EC,"d_VVOO") R2b = deepcopy(d_VVOO) @tensoropt R2b[A,B,I,J] -= d_VVOO[B,A,I,J] d_VVOO = nothing - R2ab = load(EC,"d_vVoO") + R2ab = load4idx(EC,"d_vVoO") end #ladder terms @@ -1343,13 +1343,13 @@ function calc_cc_resid(EC::ECInfo, T1a, T1b, T2a, T2b, T2ab; dc=false, tworef=fa (x1a, x1b, x1ab) = (nothing, nothing, nothing) t1 = print_time(EC,t1,"kext",2) else - d_vvvv = load(EC,"d_vvvv") + d_vvvv = load4idx(EC,"d_vvvv") @tensoropt R2a[a,b,i,j] += d_vvvv[a,b,c,d] * T2a[c,d,i,j] d_vvvv = nothing - d_VVVV = load(EC,"d_VVVV") + d_VVVV = load4idx(EC,"d_VVVV") @tensoropt R2b[A,B,I,J] += d_VVVV[A,B,C,D] * T2b[C,D,I,J] d_VVVV = nothing - d_vVvV = load(EC,"d_vVvV") + d_vVvV = load4idx(EC,"d_vVvV") @tensoropt R2ab[a,B,i,J] += d_vVvV[a,B,c,D] * T2ab[c,D,i,J] d_vVvV = nothing t1 = print_time(EC,t1,"``R_{ab}^{ij} += v_{ab}^{cd} T_{cd}^{ij}``",2) @@ -1361,9 +1361,9 @@ function calc_cc_resid(EC::ECInfo, T1a, T1b, T2a, T2b, T2ab; dc=false, tworef=fa xab[i,j] := fab[i,j] xAB[i,j] := fAB[i,j] end - x_klij = load(EC,"d_oooo") - x_KLIJ = load(EC,"d_OOOO") - x_kLiJ = load(EC,"d_oOoO") + x_klij = load4idx(EC,"d_oooo") + x_KLIJ = load4idx(EC,"d_OOOO") + x_kLiJ = load4idx(EC,"d_oOoO") if !linearized dcfac = dc ? 0.5 : 1.0 oovv = ints2(EC,"oovv") @@ -1484,24 +1484,24 @@ function calc_cc_resid(EC::ECInfo, T1a, T1b, T2a, T2b, T2ab; dc=false, tworef=fa t1 = print_time(EC,t1,"``R_{ab}^{ij} += x_a^c T_{cb}^{ij} - x_k^i T_{ab}^{kj}``",2) #ph-ab-ladder if n_occb_orbs(EC) > 0 - d_vOvO = load(EC,"d_vOvO") + d_vOvO = load4idx(EC,"d_vOvO") @tensoropt R2ab[a,B,i,J] -= d_vOvO[a,K,c,J] * T2ab[c,B,i,K] d_vOvO = nothing - d_oVoV = load(EC,"d_oVoV") + d_oVoV = load4idx(EC,"d_oVoV") @tensoropt R2ab[a,B,i,J] -= d_oVoV[k,B,i,C] * T2ab[a,C,k,J] d_oVoV = nothing t1 = print_time(EC,t1,"``R_{aB}^{iJ} -= v_{aK}^{cJ} T_{cB}^{iK}``",2) end #ring terms - A_d_voov = load(EC,"d_voov") - permutedims(load(EC,"d_vovo"),(1,2,4,3)) + A_d_voov = load4idx(EC,"d_voov") - permutedims(load4idx(EC,"d_vovo"),(1,2,4,3)) @tensoropt begin rR2a[a,b,i,j] := A_d_voov[b,k,j,c] * T2a[a,c,i,k] R2ab[a,B,i,J] += A_d_voov[a,k,i,c] * T2ab[c,B,k,J] end A_d_voov = nothing t1 = print_time(EC,t1,"``R_{ab}^{ij} += \\bar v_{bk}^{jc} T_{ac}^{ik}``",2) - d_vOoV = load(EC,"d_vOoV") + d_vOoV = load4idx(EC,"d_vOoV") @tensoropt begin rR2a[a,b,i,j] += d_vOoV[b,K,j,C] * T2ab[a,C,i,K] R2ab[a,B,i,J] += d_vOoV[a,K,i,C] * T2b[B,C,J,K] @@ -1511,14 +1511,14 @@ function calc_cc_resid(EC::ECInfo, T1a, T1b, T2a, T2b, T2ab; dc=false, tworef=fa @tensoropt R2a[a,b,i,j] += rR2a[a,b,i,j] + rR2a[b,a,j,i] - rR2a[a,b,j,i] - rR2a[b,a,i,j] rR2a = nothing if n_occb_orbs(EC) > 0 - A_d_VOOV = load(EC,"d_VOOV") - permutedims(load(EC,"d_VOVO"),(1,2,4,3)) + A_d_VOOV = load4idx(EC,"d_VOOV") - permutedims(load4idx(EC,"d_VOVO"),(1,2,4,3)) @tensoropt begin rR2b[A,B,I,J] := A_d_VOOV[B,K,J,C] * T2b[A,C,I,K] R2ab[a,B,i,J] += A_d_VOOV[B,K,J,C] * T2ab[a,C,i,K] end A_d_VOOV = nothing t1 = print_time(EC,t1,"``R_{AB}^{IJ} += \\bar v_{BK}^{JC} T_{AC}^{IK}``",2) - d_oVvO = load(EC,"d_oVvO") + d_oVvO = load4idx(EC,"d_oVvO") @tensoropt begin rR2b[A,B,I,J] += d_oVvO[k,B,c,J] * T2ab[c,A,k,I] R2ab[a,B,i,J] += d_oVvO[k,B,c,J] * T2a[a,c,i,k] @@ -1598,8 +1598,8 @@ function calc_cc_resid(EC::ECInfo, T1a, T1b, T2a, T2b, T2ab, T3a, T3b, T3aab, T3 R1a = zeros(nvirt,nocc) R1b = zeros(nvirtb,noccb) - dfock = load(EC,"df_mm") - dfockb = load(EC,"df_MM") + dfock = load2idx(EC,"df_mm") + dfockb = load2idx(EC,"df_MM") fij = dfock[SP['o'],SP['o']] fab = dfock[SP['v'],SP['v']] @@ -1954,13 +1954,13 @@ end Calculate coupled cluster amplitudes. Exact specification of the method is given by `method`. - Returns an energies `NamedTuple` with the following fields: - - `E` - correlation energy - - `ESS` - same-spin component - - `EOS` - opposite-spin component - - `EO` - open-shell component (defined as ``E_{αα} - E_{ββ}``) - - `EIAS` - internal-active singles (for 2D methods) - - `EW` - singlet/triplet energy contribution (for 2D methods) + Returns energies `::OutDict` with the following keys: + - `"E"` - correlation energy + - `"ESS"` - same-spin component + - `"EOS"` - opposite-spin component + - `"EO"` - open-shell component (defined as ``E_{αα} - E_{ββ}``) + - `"EIAS"` - internal-active singles (for 2D methods) + - `"EW"` - singlet/triplet energy contribution (for 2D methods) """ function calc_cc(EC::ECInfo, method::ECMethod) dc = (method.theory[1:2] == "DC") @@ -2020,7 +2020,7 @@ function calc_cc(EC::ECInfo, method::ECMethod) active = oss_active_orbitals(EC) T1α = first(singles) T1β = last(singles) - W = load(EC,"2d_ccsd_W")[1] + W = load1idx(EC,"2d_ccsd_W")[1] Eias = - W * Amps[T1α][active.ua,active.ta] * Amps[T1β][active.tb,active.ub] end end @@ -2030,22 +2030,20 @@ function calc_cc(EC::ECInfo, method::ECMethod) perform!(diis, Amps, Res) save_current_doubles(EC, Amps[doubles]...) En2 = calc_doubles_energy(EC, Amps[doubles]...) - En = En2.E + En = En2["E"] if do_sing save_current_singles(EC, Amps[singles]...) En1 = calc_singles_energy(EC, Amps[singles]...) - En += En1.E + En += En1["E"] end - ΔE = En - Eh.E + ΔE = En - Eh["E"] NormR = NormR1 + NormR2 NormT = 1.0 + NormT1 + NormT2 if method.exclevel[3] == :full NormR += NormR3 NormT += NormT3 end - tt = (time_ns() - t0)/10^9 - @printf "%3i %12.8f %12.8f %12.8f %10.2e %8.2f \n" it NormT Eh.E ΔE NormR tt - flush(stdout) + output_iteration(it, NormR, time_ns() - t0, NormT, Eh["E"], ΔE) if NormR < EC.options.cc.thr converged = true break @@ -2060,16 +2058,15 @@ function calc_cc(EC::ECInfo, method::ECMethod) try2save_doubles!(EC, Amps[doubles]...) println() if method.exclevel[3] == :full - @printf "Sq.Norm of T1: %12.8f Sq.Norm of T2: %12.8f Sq.Norm of T3: %12.8f \n" NormT1 NormT2 NormT3 + output_norms(["T1"=>sqrt(NormT1), "T2"=>sqrt(NormT2), "T3"=>sqrt(NormT3)]) else - @printf "Sq.Norm of T1: %12.8f Sq.Norm of T2: %12.8f \n" NormT1 NormT2 + output_norms(["T1"=>sqrt(NormT1), "T2"=>sqrt(NormT2)]) end println() - flush(stdout) if has_prefix(method, "2D") - ene = Eh.E + Eias - W = load(EC,"2d_ccsd_W")[1] - Eh = (; Eh..., E=ene, EIAS=Eias, EW=W) + ene = Eh["E"] + Eias + W = load1idx(EC,"2d_ccsd_W")[1] + push!(Eh, "EIAS"=>Eias, "EW"=>W, "E"=>ene) end return Eh end @@ -2122,11 +2119,11 @@ function calc_ccsdt(EC::ECInfo, useT3=false, cc3=false) t1 = print_time(EC, t1, "R3", 2) NormT1 = calc_singles_norm(T1) NormT2 = calc_doubles_norm(T2) - T3 = load(EC, "T_XXX") + T3 = load3idx(EC, "T_XXX") NormT3 = calc_deco_triples_norm(T3) NormR1 = calc_singles_norm(R1) NormR2 = calc_doubles_norm(R2) - R3 = load(EC, "R_XXX") + R3 = load3idx(EC, "R_XXX") NormR3 = calc_deco_triples_norm(R3) Eh = calc_hylleraas(EC, T1, T2, R1, R2) T1 += update_singles(EC, R1) @@ -2136,21 +2133,18 @@ function calc_ccsdt(EC::ECInfo, useT3=false, cc3=false) save!(EC, "T_XXX", T3) En1 = calc_singles_energy(EC, T1) En2 = calc_doubles_energy(EC, T2) - En = En1.E + En2.E - ΔE = En - Eh.E + En = En1["E"] + En2["E"] + ΔE = En - Eh["E"] NormR = NormR1 + NormR2 + NormR3 NormT = 1.0 + NormT1 + NormT2 + NormT3 - tt = (time_ns() - t0)/10^9 - @printf "%3i %12.8f %12.8f %12.8f %10.2e %8.2f \n" it NormT Eh.E ΔE NormR tt - flush(stdout) + output_iteration(it, NormR, time_ns() - t0, NormT, Eh["E"], ΔE) if NormR < EC.options.cc.thr break end end println() - @printf "Sq.Norm of T1: %12.8f Sq.Norm of T2: %12.8f Sq.Norm of T3: %12.8f \n" NormT1 NormT2 NormT3 + output_norms(["T1"=>sqrt(NormT1), "T2"=>sqrt(NormT2), "T3"=>sqrt(NormT3)]) println() - flush(stdout) return Eh end @@ -2164,9 +2158,9 @@ function add_to_singles_and_doubles_residuals(EC, R1, R2) SP = EC.space ooPfile, ooP = mmap(EC, "d_ooL") ovPfile, ovP = mmap(EC, "d_ovL") - Txyz = load(EC, "T_XXX") + Txyz = load3idx(EC, "T_XXX") - U = load(EC, "C_voX") + U = load3idx(EC, "C_voX") # println(size(U)) @tensoropt Boo[i,j,P,X] := ovP[i,a,P] * U[a,j,X] @@ -2182,7 +2176,7 @@ function add_to_singles_and_doubles_residuals(EC, R1, R2) @tensoropt Bvo[a,i,P,X] := vvP[a,b,P] * U[b,i,X] close(vvPfile) vvP = nothing - dfock = load(EC, "df_mm") + dfock = load2idx(EC, "df_mm") fov = dfock[SP['o'], SP['v']] # R2[abij] = RR2[abij] + RR2[baji] @tensoropt RR2[a,b,i,j] := U[a,i,X] * (U[b,j,Y] * (Txyz[X,Y,Z] * (fov[k,c]*U[c,k,Z])) - (Txyz[X,Y,Z] * U[b,k,Z])* (fov[k,c]*U[c,j,Y])) @@ -2356,11 +2350,11 @@ end """ function calc_triples_residuals(EC::ECInfo, T1, T2, cc3 = false) t1 = time_ns() - UvoX = load(EC, "C_voX") + UvoX = load3idx(EC, "C_voX") #display(UvoX) #load decomposed amplitudes - T3_XYZ = load(EC, "T_XXX") + T3_XYZ = load3idx(EC, "T_XXX") #display(T3_XYZ) #load df coeff @@ -2371,7 +2365,7 @@ function calc_triples_residuals(EC::ECInfo, T1, T2, cc3 = false) #load dressed fock matrices SP = EC.space - dfock = load(EC, "df_mm") + dfock = load2idx(EC, "df_mm") dfoo = dfock[SP['o'], SP['o']] dfov = dfock[SP['o'], SP['v']] dfvv = dfock[SP['v'], SP['v']] diff --git a/src/cc_lagrange.jl b/src/cc_lagrange.jl index 403929b..7b504be 100644 --- a/src/cc_lagrange.jl +++ b/src/cc_lagrange.jl @@ -1199,9 +1199,7 @@ function calc_lm_cc(EC::ECInfo, method::ECMethod) ΛTNorm = calc_correlation_norm(EC, LMs...) NormR = NormR1 + NormR2 NormLM = 1.0 + NormLM1 + NormLM2 - tt = (time_ns() - t0)/10^9 - @printf "%3i %12.8f %12.8f %10.2e %8.2f \n" it NormLM ΛTNorm NormR tt - flush(stdout) + output_iteration(it, NormR, time_ns()-t0, NormLM, ΛTNorm) if NormR < EC.options.cc.thr converged = true break @@ -1215,7 +1213,6 @@ function calc_lm_cc(EC::ECInfo, method::ECMethod) end try2save_doubles!(EC, LMs[doubles]...; type="LM") println() - @printf "Sq.Norm of LM1: %12.8f Sq.Norm of LM2: %12.8f \n" NormLM1 NormLM2 + output_norms(["LM1"=>sqrt(NormLM1), "LM2"=>sqrt(NormLM2)]) println() - flush(stdout) end \ No newline at end of file diff --git a/src/cc_triples.jl b/src/cc_triples.jl index 716ff7a..cdba3fc 100644 --- a/src/cc_triples.jl +++ b/src/cc_triples.jl @@ -5,7 +5,7 @@ Calculate (T) correction for [Λ][U]CCSD(T) - Return ( `ET3`=(T)-energy, `ET3b`=[T]-energy)) `NamedTuple`. + Return ( `"ET3"`=(T)-energy, `"ET3b"`=[T]-energy)) `OutDict`. If `save_t3` is true, the T3 amplitudes are saved in `T_vvvooo` file (only for closed-shell). """ function calc_pertT(EC::ECInfo, method::ECMethod; save_t3=false) @@ -34,7 +34,7 @@ end Calculate (T) correction for closed-shell CCSD. - Return ( `ET3`=(T)-energy, `ET3b`=[T]-energy)) `NamedTuple`. + Return ( `"ET3"`=(T)-energy, `"ET3b"`=[T]-energy)) `OutDict`. """ function calc_pertT_closed_shell(EC::ECInfo; save_t3=false) T1 = load(EC,"T_vo") @@ -140,7 +140,7 @@ function calc_pertT_closed_shell(EC::ECInfo; save_t3=false) fov = load(EC,"f_mm")[EC.space['o'],EC.space['v']] @tensoropt En3 += fov[i,a] * IntY[a,i] En3 += Enb3 - return (ET3=En3, ET3b=Enb3) + return OutDict("ET3"=>En3, "ET3b"=>Enb3) end """ @@ -150,7 +150,7 @@ end The amplitudes are stored in `T_vvoo` file, and the Lagrangian multipliers are stored in `U_vvoo` file. - Return ( `ET3`=(T) energy, `ET3b`=[T] energy) `NamedTuple`. + Return ( `"ET3"`=(T) energy, `"ET3b"`=[T] energy) `OutDict`. """ function calc_ΛpertT_closed_shell(EC::ECInfo) T1 = load(EC,"T_vo") @@ -276,7 +276,7 @@ function calc_ΛpertT_closed_shell(EC::ECInfo) fov = load(EC,"f_mm")[EC.space['o'],EC.space['v']] @tensoropt En3 += fov[i,a] * IntY[a,i] En3 += Enb3 - return (ET3=En3, ET3b=Enb3) + return OutDict("ET3"=>En3, "ET3b"=>Enb3) end """ @@ -284,27 +284,27 @@ end Calculate (T) correction for UCCSD. - Return ( `ET3`=(T)-energy, `ET3b`=[T]-energy)) `NamedTuple`. + Return ( `"ET3"`=(T)-energy, `"ET3b"`=[T]-energy)) `OutDict`. """ function calc_pertT_unrestricted(EC::ECInfo) T1a = load(EC,"T_vo") T2 = load(EC,"T_vvoo") - En3a, Enb3a = calc_pertT_samespin(EC, T1a, T2, :α) + En3a, Enb3a = values(calc_pertT_samespin(EC, T1a, T2, :α)) T1b = load(EC,"T_VO") T2ba = permutedims(load(EC,"T_vVoO"), [2,1,4,3]) - En3ab, Enb3ab = calc_pertT_mixedspin(EC, T1a, T2, T1b, T2ba, :α) + En3ab, Enb3ab = values(calc_pertT_mixedspin(EC, T1a, T2, T1b, T2ba, :α)) T2ba = nothing T2 = load(EC,"T_VVOO") - En3b, Enb3b = calc_pertT_samespin(EC, T1b, T2, :β) + En3b, Enb3b = values(calc_pertT_samespin(EC, T1b, T2, :β)) T2ab = load(EC,"T_vVoO") - En3ba, Enb3ba = calc_pertT_mixedspin(EC, T1b, T2, T1a, T2ab, :β) + En3ba, Enb3ba = values(calc_pertT_mixedspin(EC, T1b, T2, T1a, T2ab, :β)) En3 = En3a + En3b + En3ab + En3ba Enb3 = Enb3a + Enb3b + Enb3ab + Enb3ba - return (ET3=En3, ET3b=Enb3) + return OutDict("ET3"=>En3, "ET3b"=>Enb3) end """ @@ -312,32 +312,32 @@ end Calculate (T) correction for ΛUCCSD(T). - Return ( `ET3`=(T)-energy, `ET3b`=[T]-energy)) `NamedTuple`. + Return ( `"ET3"`=(T)-energy, `"ET3b"`=[T]-energy)) `OutDict`. """ function calc_ΛpertT_unrestricted(EC::ECInfo) U1a = load(EC,"U_vo") U1b = load(EC,"U_VO") T2 = load(EC,"T_vvoo") U2 = load(EC,"U_vvoo") - En3a, Enb3a = calc_ΛpertT_samespin(EC, T2, U1a, U2, :α) + En3a, Enb3a = values(calc_ΛpertT_samespin(EC, T2, U1a, U2, :α)) T2ba = permutedims(load(EC,"T_vVoO"), [2,1,4,3]) U2ba = permutedims(load(EC,"U_vVoO"), [2,1,4,3]) - En3ab, Enb3ab = calc_ΛpertT_mixedspin(EC, T2, T2ba, U1a, U2, U1b, U2ba, :α) + En3ab, Enb3ab = values(calc_ΛpertT_mixedspin(EC, T2, T2ba, U1a, U2, U1b, U2ba, :α)) T2ba = nothing U2ba = nothing T2 = load(EC,"T_VVOO") U2 = load(EC,"U_VVOO") - En3b, Enb3b = calc_ΛpertT_samespin(EC, T2, U1b, U2, :β) + En3b, Enb3b = values(calc_ΛpertT_samespin(EC, T2, U1b, U2, :β)) T2ab = load(EC,"T_vVoO") U2ab = load(EC,"U_vVoO") - En3ba, Enb3ba = calc_ΛpertT_mixedspin(EC, T2, T2ab, U1b, U2, U1a, U2ab, :β) + En3ba, Enb3ba = values(calc_ΛpertT_mixedspin(EC, T2, T2ab, U1b, U2, U1a, U2ab, :β)) En3 = En3a + En3b + En3ab + En3ba Enb3 = Enb3a + Enb3b + Enb3ab + Enb3ba - return (ET3=En3, ET3b=Enb3) + return OutDict("ET3"=>En3, "ET3b"=>Enb3) end """ @@ -346,7 +346,7 @@ end Calculate same-spin (T) correction for UCCSD(T) (i.e., ααα or βββ). `spin` ∈ (:α,:β) - Return ( `ET3`=(T)-energy, `ET3b`=[T]-energy)) `NamedTuple`. + Return ( `"ET3"`=(T)-energy, `"ET3b"`=[T]-energy)) `OutDict`. """ function calc_pertT_samespin(EC::ECInfo, T1, T2, spin::Symbol) @assert spin ∈ (:α,:β) "spin must be :α or :β" @@ -426,7 +426,7 @@ function calc_pertT_samespin(EC::ECInfo, T1, T2, spin::Symbol) fov = load(EC,"f_"*m*m)[SP[o],SP[v]] @tensoropt En3 += 0.5 * (fov[i,a] * IntY[a,i]) En3 += Enb3 - return (ET3=En3, ET3b=Enb3) + return OutDict("ET3"=>En3, "ET3b"=>Enb3) end """ @@ -438,7 +438,7 @@ end `T1` and `T2` are same-`spin` amplitudes, `T1os` are opposite-`spin` amplitudes, and `T2mix` are mixed-spin amplitudes with the *second* electron being `spin`, i.e., Tβα for `spin == :α` and Tαβ for `spin == :β`. - Return ( `ET3`=(T)-energy, `ET3b`=[T]-energy)) `NamedTuple`. + Return ( `"ET3"`=(T)-energy, `"ET3b"`=[T]-energy)) `OutDict`. """ function calc_pertT_mixedspin(EC::ECInfo, T1, T2, T1os, T2mix, spin::Symbol) @assert spin ∈ (:α,:β) "spin must be :α or :β" @@ -564,7 +564,7 @@ function calc_pertT_mixedspin(EC::ECInfo, T1, T2, T1os, T2mix, spin::Symbol) fOV = load(EC,"f_"*M*M)[SP[O],SP[V]] @tensoropt En3 += 0.5 * (fOV[I,A] * IntYos[A,I]) En3 += Enb3 - return (ET3=En3, ET3b=Enb3) + return OutDict("ET3"=>En3, "ET3b"=>Enb3) end """ @@ -573,7 +573,7 @@ end Calculate same-spin (T) correction for ΛUCCSD(T) (i.e., ααα or βββ). `spin` ∈ (:α,:β) - Return ( `ET3`=(T)-energy, `ET3b`=[T]-energy)) `NamedTuple`. + Return ( `"ET3"`=(T)-energy, `"ET3b"`=[T]-energy)) `OutDict`. """ function calc_ΛpertT_samespin(EC::ECInfo, T2, U1, U2, spin::Symbol) @assert spin ∈ (:α,:β) "spin must be :α or :β" @@ -684,7 +684,7 @@ function calc_ΛpertT_samespin(EC::ECInfo, T2, U1, U2, spin::Symbol) fov = load(EC,"f_"*m*m)[SP[o],SP[v]] @tensoropt En3 += 0.5 * (fov[i,a] * IntY[a,i]) En3 += Enb3 - return (ET3=En3, ET3b=Enb3) + return OutDict("ET3"=>En3, "ET3b"=>Enb3) end """ @@ -698,7 +698,7 @@ end and `U2mix`/`T2mix` are mixed-spin Lagrange multipliers/amplitudes with the *second* electron being `spin`, i.e., Tβα for `spin == :α` and Tαβ for `spin == :β`. - Return ( `ET3`=(T)-energy, `ET3b`=[T]-energy)) `NamedTuple`. + Return ( `"ET3"`=(T)-energy, `"ET3b"`=[T]-energy)) `OutDict`. """ function calc_ΛpertT_mixedspin(EC::ECInfo, T2, T2mix, U1, U2, U1os, U2mix, spin::Symbol) @assert spin ∈ (:α,:β) "spin must be :α or :β" @@ -881,5 +881,5 @@ function calc_ΛpertT_mixedspin(EC::ECInfo, T2, T2mix, U1, U2, U1os, U2mix, spin fOV = load(EC,"f_"*M*M)[SP[O],SP[V]] @tensoropt En3 += 0.5 * (fOV[I,A] * IntYos[A,I]) En3 += Enb3 - return (ET3=En3, ET3b=Enb3) + return OutDict("ET3"=>En3, "ET3b"=>Enb3) end diff --git a/src/ccdriver.jl b/src/ccdriver.jl index 288385a..a0f87b2 100644 --- a/src/ccdriver.jl +++ b/src/ccdriver.jl @@ -4,7 +4,7 @@ Module for coupled-cluster drivers. """ module CCDriver -using Printf +using ..ElemCo.Outputs using ..ElemCo.Utils using ..ElemCo.ECInfos using ..ElemCo.ECMethods @@ -40,7 +40,7 @@ function ccdriver(EC::ECInfo, method; fcidump="", occa="-", occb="-") setup_space_fd!(EC) closed_shell = is_closed_shell(EC) - energies = NamedTuple() + energies = OutDict() energies = eval_hf_energy(EC, energies, closed_shell) ecmethod = ECMethod(method) @@ -80,7 +80,7 @@ function dfccdriver(EC::ECInfo, method) setup_space_system!(EC) closed_shell = (EC.space['o'] == EC.space['O']) - energies = NamedTuple() + energies = OutDict() energies, unrestricted_orbs = eval_df_mo_integrals(EC, energies) t1 = time_ns() space_save = save_space(EC) @@ -144,21 +144,21 @@ function check_fcidump(EC::ECInfo, fcidump) end """ - eval_hf_energy(EC::ECInfo, energies::NamedTuple, closed_shell) + eval_hf_energy(EC::ECInfo, energies::OutDict, closed_shell) Evaluate the Hartree-Fock energy for the integrals in `EC.fd`. - Return the updated `energies::NamedTuple` with the Hartree-Fock energy (field `HF`). + Return the updated `energies::OutDict` with the Hartree-Fock energy (field `HF`). """ -function eval_hf_energy(EC::ECInfo, energies::NamedTuple, closed_shell) +function eval_hf_energy(EC::ECInfo, energies::OutDict, closed_shell) t1 = time_ns() calc_fock_matrix(EC, closed_shell) EHF = calc_HF_energy(EC, closed_shell) hfname = closed_shell ? "HF" : "UHF" - @printf "%s energy: %16.12f \n" hfname EHF + output_E_method(EHF, hfname, "energy:") t1 = print_time(EC, t1, "$hfname energy", 1) println() - flush(stdout) - return (; energies..., HF=EHF) + flush_output() + return merge(energies, "HF"=>(EHF, "$hfname energy")) end """ @@ -184,79 +184,80 @@ function checkset_unrestricted_closedshell!(ecmethod::ECMethod, closed_shell, un end """ - output_energy(EC::ECInfo, En::NamedTuple, energies::NamedTuple, mname; print=true) + output_energy(EC::ECInfo, En::OutDict, energies::OutDict, mname; print=true) - Print the energy components and return the updated `energies::NamedTuple` with - correction to the correlation energy (`mname*"correction"`, e.g., ΔMP2, if available), - same-spin(`mname*"SS"`), opposite-spin(`mname*"OS"`), open-shell(`mname*"O"`) components, - SCS energy (`"SCS"*mname`), correlation energy (`mname*"c"`) and - the total energy (field `mname`) (with `-` in `mname` replaced by `_`). + Print the energy components and return the updated `energies::OutDict` with + correction to the correlation energy (`mname*"-correction"`, e.g., ΔMP2, if available), + same-spin(`mname*"-SS"`), opposite-spin(`mname*"-OS"`), open-shell(`mname*"-O"`) components, + SCS energy (`"SCS-"*mname`), correlation energy (`mname*"c"`) and + the total energy (field `mname`). """ -function output_energy(EC::ECInfo, En::NamedTuple, energies::NamedTuple, mname; print=true) - meth = replace(mname, "-" => "_") - enecor = En.E - enetot = En.E+energies.HF +function output_energy(EC::ECInfo, En::OutDict, energies::OutDict, mname; print=true) + enecor = En["E"] + enetot = En["E"]+energies["HF"] + energies_out = copy(energies) if print - @printf "%s correlation energy: \t%16.12f \n" mname enecor - @printf "%s total energy: \t%16.12f \n" mname enetot + output_E_method(enecor, mname, "correlation energy:") + output_E_method(enetot, mname, "total energy: ") println() - flush(stdout) end - if haskey(En, :Ecorrection) - ecorrect = En.E + En.Ecorrection - ecorrectot = En.E + En.Ecorrection + energies.HF + if haskey(En, "E-correction") + ecorrect = En["E"] + En["E-correction"] + ecorrectot = En["E"] + En["E-correction"] + energies["HF"] if print - @printf "%s corrected correlation energy: \t%16.12f \n" mname ecorrect - @printf "%s corrected total energy: \t%16.12f \n" mname ecorrectot + output_E_method(ecorrect, mname, "corrected correlation energy:") + output_E_method(ecorrectot, mname, "corrected total energy: ") println() end - energies = (; energies..., Symbol(meth*"correction")=>En.Ecorrection) + push!(energies_out, mname*"-correction" => (En["E-correction"], "correction to the correlation energy")) end - if haskey(En, :Expect) - enecor = En.Expect - enetot = En.Expect+energies.HF + if haskey(En, "Expect") + enecor = En["Expect"] + enetot = En["Expect"]+energies["HF"] if print - @printf "%s correlation expectation energy: \t%16.12f \n" mname enecor - @printf "%s total expectation energy: \t%16.12f \n" mname enetot + output_E_method(enecor, mname, "correlation expectation energy:") + output_E_method(enetot, mname, "total expectation energy: ") println() - flush(stdout) end - energies = (; energies..., Symbol(meth*"expect")=>En.Expect) + push!(energies_out, mname*"-expect" => (En["Expect"], "correlation expectation energy")) end - if haskey(En, :ESS) && haskey(En, :EOS) && haskey(En, :EO) + if haskey(En, "ESS") && haskey(En, "EOS") && haskey(En, "EO") # SCS - energies = (; energies..., Symbol(meth*"SS")=>En.ESS, Symbol(meth*"OS")=>En.EOS, Symbol(meth*"O")=>En.EO) - methodroot = replace(method_name(ECMethod(mname), root=true), "-" => "_") + push!(energies_out, mname*"-SS"=>(En["ESS"], "same-spin component to the energy"), + mname*"-OS"=>(En["EOS"], "opposite-spin component to the energy"), + mname*"-O"=>(En["EO"], "open-shell component to the energy")) + methodroot = method_name(ECMethod(mname), root=true) # calc SCS energy (if available) if hasfield(ECInfos.CcOptions, Symbol(lowercase(methodroot)*"_ssfac")) # get SCS factors (e.g., mp2_ssfac, ccsd_ssfac, dcsd_ssfac) ssfac = getfield(EC.options.cc, Symbol(lowercase(methodroot)*"_ssfac")) osfac = getfield(EC.options.cc, Symbol(lowercase(methodroot)*"_osfac")) ofac = getfield(EC.options.cc, Symbol(lowercase(methodroot)*"_ofac")) - ΔE = En.E - En.ESS - En.EOS - enescs = energies.HF + ΔE + En.ESS*ssfac + En.EOS*osfac + En.EO*ofac + ΔE = En["E"] - En["ESS"] - En["EOS"] + enescs = energies["HF"] + ΔE + En["ESS"]*ssfac + En["EOS"]*osfac + En["EO"]*ofac if print - @printf "SCS-%s total energy: \t%16.12f \n" mname enescs + output_E_method(enescs, "SCS-"*mname, "total energy:") println() - flush(stdout) end - energies = (; energies..., Symbol("SCS"*meth)=>enescs) + push!(energies_out, "SCS-"*mname=>(enescs, "SCS-$mname energy")) end end - return (; energies..., Symbol(meth*"c")=>enecor, Symbol(meth)=>enetot) + push!(energies_out, mname*"c"=>(enecor, "$mname correlation energy"), + mname=>(enetot, "$mname total energy")) + return energies_out end """ - eval_mp2_energy(EC::ECInfo, energies::NamedTuple, closed_shell, restricted) + eval_mp2_energy(EC::ECInfo, energies::OutDict, closed_shell, restricted) Evaluate the MP2 energy for the integrals in `EC.fd`. Fock matrix and HF energy must be calculated before. - Return the updated `energies::NamedTuple` with - same-spin(`MP2SS`), opposite-spin(`MP2OS`), open-shell(`MP2O`) components, - SCS-MP2 energy (`SCSMP2`), correlation energy (`MP2c`) and + Return the updated `energies::OutDict` with + same-spin(`MP2-SS`), opposite-spin(`MP2-OS`), open-shell(`MP2-O`) components, + SCS-MP2 energy (`SCS-MP2`), correlation energy (`MP2c`) and the MP2 energy (field `MP2`). """ -function eval_mp2_energy(EC::ECInfo, energies::NamedTuple, closed_shell, restricted) +function eval_mp2_energy(EC::ECInfo, energies::OutDict, closed_shell, restricted) t1 = time_ns() if closed_shell EMp2 = calc_MP2(EC) @@ -277,45 +278,47 @@ function eval_mp2_energy(EC::ECInfo, energies::NamedTuple, closed_shell, restric end """ - output_2d_energy(EC::ECInfo, En, energies::NamedTuple, method; print=true) + output_2d_energy(EC::ECInfo, En::OutDict, energies::OutDict, method; print=true) - Print the energy components for 2D methods and return the updated `energies::NamedTuple` with + Print the energy components for 2D methods and return the updated `energies::OutDict` with singlet(`"SING"*method`), triplet(`"TRIP"*method`), singlet correlation(`"SING"*method*"c"`) and - triplet correlation(`"TRIP"*method*"c"`) components (with `-` in `method` replaced by `_`). + triplet correlation(`"TRIP"*method*"c"`) components. """ -function output_2d_energy(EC::ECInfo, En, energies::NamedTuple, method; print=true) - meth = replace(method, "-" => "_") - enecors = En.E + En.EW - enecort = En.E - En.EW - enetots = enecors + energies.HF - enetott = enecort + energies.HF - @printf "%s singlet total energy: \t%16.12f \n" method enetots - @printf "%s triplet total energy: \t%16.12f \n" method enetott - @printf "%s singlet correlation energy: \t%16.12f \n" method enecors - @printf "%s triplet correlation energy: \t%16.12f \n" method enecort - return (; energies..., Symbol("SING"*meth*"c")=>enecors, Symbol("TRIP"*meth*"c")=>enecort, - Symbol("SING"*meth)=>enetots, Symbol("TRIP"*meth)=>enetott) +function output_2d_energy(EC::ECInfo, En::OutDict, energies::OutDict, method; print=true) + enecors = En["E"] + En["EW"] + enecort = En["E"] - En["EW"] + enetots = enecors + energies["HF"] + enetott = enecort + energies["HF"] + output_E_method(enetots, method, "singlet total energy: ") + output_E_method(enetott, method, "triplet total energy: ") + output_E_method(enecors, method, "singlet correlation energy:") + output_E_method(enecort, method, "triplet correlation energy:") + return merge(energies, "SING"*method*"c"=>(enecors,"$method singlet correlation energy"), + "TRIP"*method*"c"=>(enecort,"$method triplet correlation energy"), + "SING"*method=>(enetots,"$method singlet total energy"), + "TRIP"*method=>(enetott,"$method triplet total energy")) end """ - eval_cc_groundstate(EC::ECInfo, ecmethod::ECMethod, energies::NamedTuple; save_pert_t3=false) + eval_cc_groundstate(EC::ECInfo, ecmethod::ECMethod, energies_in::OutDict; save_pert_t3=false) Evaluate the coupled-cluster ground-state energy for the integrals in `EC.fd`. Fock matrix and HF energy must be calculated before. - Return the updated `energies::NamedTuple` with the correlation energy (`method*"c"`) and - the total energy (field `method`) (with `-` in `method` replaced by `_`). + Return the updated `energies::OutDict` with the correlation energy (`method*"c"`) and + the total energy (key `method`). """ -function eval_cc_groundstate(EC::ECInfo, ecmethod::ECMethod, energies::NamedTuple; +function eval_cc_groundstate(EC::ECInfo, ecmethod::ECMethod, energies_in::OutDict; save_pert_t3=false) if ecmethod.exclevel[4] != :none error("no quadruples implemented yet...") end + energies = copy(energies_in) if has_prefix(ecmethod, "SVD") @assert ecmethod.exclevel[3] != :none "Only triples SVD at this point!" return eval_svd_dc_ccsdt(EC, ecmethod, energies) end t1 = time_ns() - EHF = energies.HF + EHF = energies["HF"] main_name = method_name(ecmethod) ECC = calc_cc(EC, ECMethod(main_name)) if has_prefix(ecmethod, "2D") @@ -331,27 +334,29 @@ function eval_cc_groundstate(EC::ECInfo, ecmethod::ECMethod, energies::NamedTupl end if ecmethod.exclevel[3] ∈ [ :pert, :pertiter] - ET3, ET3b = calc_pertT(EC, ecmethod; save_t3=save_pert_t3) + ET3, ET3b = values(calc_pertT(EC, ecmethod; save_t3=save_pert_t3)) println() - @printf "%s[T] total energy: \t%16.12f \n" main_name ECC.E+ET3b+EHF - @printf "%s(T) correlation energy: \t%16.12f \n" main_name ECC.E+ET3 - @printf "%s(T) total energy: \t%16.12f \n" main_name ECC.E+ET3+EHF + output_E_method(ECC["E"]+ET3b+EHF, main_name*"[T]", "total energy: ") + output_E_method(ECC["E"]+ET3, main_name*"(T)", "correlation energy:") + output_E_method(ECC["E"]+ET3+EHF, main_name*"(T)", "total energy: ") println() - energies = (; energies..., T3b=ET3b, T3=ET3, - Symbol(main_name*"_Tc")=>ECC.E+ET3, Symbol(main_name*"_T")=>ECC.E+ET3+EHF) + push!(energies, "[T]"=>(ET3b,"[T] energy contribution"), + "(T)"=>(ET3,"(T) energy contribution"), + main_name*"(T)c"=>(ECC["E"]+ET3,"$main_name(T) correlation energy"), + main_name*"(T)"=>(ECC["E"]+ET3+EHF,"$main_name(T) total energy")) end return energies end """ - eval_svd_dc_ccsdt(EC::ECInfo, ecmethod::ECMethod, energies::NamedTuple) + eval_svd_dc_ccsdt(EC::ECInfo, ecmethod::ECMethod, energies::OutDict) Evaluate the coupled-cluster ground-state energy for the integrals in `EC.fd` using SVD-Triples. Fock matrix and HF energy must be calculated before. - Return the updated `energies::NamedTuple` with the correlation energy (`method*"c"`) and - the total energy (field `method`) (with `-` in `method` replaced by `_`). + Return the updated `energies::OutDict` with the correlation energy (`method*"c"`) and + the total energy (key `method`). """ -function eval_svd_dc_ccsdt(EC::ECInfo, ecmethod::ECMethod, energies::NamedTuple) +function eval_svd_dc_ccsdt(EC::ECInfo, ecmethod::ECMethod, energies::OutDict) ecmethod0 = ECMethod("CCSD(T)") if is_unrestricted(ecmethod) || has_prefix(ecmethod, "R") error("SVD-Triples only implemented for closed-shell methods!") @@ -359,50 +364,51 @@ function eval_svd_dc_ccsdt(EC::ECInfo, ecmethod::ECMethod, energies::NamedTuple) energies = eval_cc_groundstate(EC, ecmethod0, energies, save_pert_t3=EC.options.cc.calc_t3_for_decomposition) main_name = method_name(ecmethod) - EHF = energies.HF + EHF = energies["HF"] t1 = time_ns() cc3 = (ecmethod.exclevel[3] == :pertiter) ECC = CoupledCluster.calc_ccsdt(EC, EC.options.cc.calc_t3_for_decomposition, cc3) - @printf "%s correlation energy: \t%16.12f \n" main_name ECC.E - @printf "%s total energy: \t%16.12f \n" main_name ECC.E+EHF + output_E_method(ECC["E"], main_name, "correlation energy:") + output_E_method(ECC["E"]+EHF, main_name, "total energy: ") t1 = print_time(EC, t1,"SVD-T",1) println() - meth = replace(main_name, "-" => "_") - return (; energies..., Symbol(meth*"c")=>ECC.E, Symbol(meth)=>ECC.E+EHF) + return merge(energies, main_name*"c"=>(ECC["E"], "$main_name correlation energy"), + main_name=>(ECC["E"]+EHF, "$main_name total energy")) end """ - eval_df_mo_integrals(EC::ECInfo, energies::NamedTuple) + eval_df_mo_integrals(EC::ECInfo, energies::OutDict) Evaluate the density-fitted integrals in MO basis and store in the correct file. - Return the reference energy as `HF` field in NamedTuple and + Return the reference energy as `HF` key in OutDict and `true` if the integrals are calculated using unresctricted orbitals. """ -function eval_df_mo_integrals(EC::ECInfo, energies::NamedTuple) +function eval_df_mo_integrals(EC::ECInfo, energies::OutDict) t1 = time_ns() cMO = load_orbitals(EC, EC.options.wf.orb) unrestricted = !is_restricted(cMO) ERef = generate_DF_integrals(EC, cMO) t1 = print_time(EC, t1, "generate DF integrals", 2) cMO = nothing - @printf "Reference energy: \t%16.12f \n" ERef + output_E_method(ERef, "Reference energy:") println() - return (; energies..., HF=ERef), unrestricted + return merge(energies, "HF"=>(ERef,"Reference energy")), unrestricted end """ - eval_dfcc_groundstate(EC::ECInfo, ecmethod::ECMethod, energies::NamedTuple) + eval_dfcc_groundstate(EC::ECInfo, ecmethod::ECMethod, energies_in::OutDict) Evaluate the coupled-cluster ground-state energy for the DF integrals, which have to be calculated before. - Return the updated `energies::NamedTuple` with the correlation energy (`method*"c"`) and - the total energy (field `method`) (with `-` in `method` replaced by `_`). + Return the updated `energies::OutDict` with the correlation energy (`method*"c"`) and + the total energy (key `method`). """ -function eval_dfcc_groundstate(EC::ECInfo, ecmethod::ECMethod, energies::NamedTuple) +function eval_dfcc_groundstate(EC::ECInfo, ecmethod::ECMethod, energies_in::OutDict) t1 = time_ns() + energies = copy(energies_in) if ecmethod.exclevel[3] != :none error("no triples implemented yet...") end @@ -422,14 +428,14 @@ function eval_dfcc_groundstate(EC::ECInfo, ecmethod::ECMethod, energies::NamedTu end """ - eval_dmrg_groundstate(EC::ECInfo, energies::NamedTuple) + eval_dmrg_groundstate(EC::ECInfo, energies::OutDict) Evaluate the DMRG ground-state energy for the integrals in `EC.fd`. HF energy must be calculated before. - Return the updated `energies::NamedTuple` with the correlation energy (`"DMRGc"`) and - the total energy (field `DMRG`). + Return the updated `energies::OutDict` with the correlation energy (`"DMRGc"`) and + the total energy (key `"DMRG"`). """ -function eval_dmrg_groundstate(EC::ECInfo, energies::NamedTuple) +function eval_dmrg_groundstate(EC::ECInfo, energies::OutDict) t1 = time_ns() ECC = calc_dmrg(EC) energies = output_energy(EC, ECC, energies, "DMRG") diff --git a/src/cctools.jl b/src/cctools.jl index b696c44..ac46a64 100644 --- a/src/cctools.jl +++ b/src/cctools.jl @@ -60,11 +60,11 @@ end function calc_HF_energy(EC::ECInfo, closed_shell) SP = EC.space if closed_shell - ϵo = load(EC,"e_m")[SP['o']] + ϵo = load1idx(EC,"e_m")[SP['o']] EHF = sum(ϵo) + sum(diag(ints1(EC,"oo"))) + EC.fd.int0 else - ϵo = load(EC,"e_m")[SP['o']] - ϵob = load(EC,"e_M")[SP['O']] + ϵo = load1idx(EC,"e_m")[SP['o']] + ϵob = load1idx(EC,"e_M")[SP['O']] EHF = 0.5*(sum(ϵo)+sum(ϵob) + sum(diag(ints1(EC, "oo"))) + sum(diag(ints1(EC, "OO")))) + EC.fd.int0 end return EHF @@ -129,14 +129,14 @@ end """ function spin_project_amplitudes(EC::ECInfo, with_singles=true) if with_singles - T1a = load(EC, "T_vo") - T1b = load(EC, "T_VO") + T1a = load2idx(EC, "T_vo") + T1b = load2idx(EC, "T_VO") else T1a = T1b = [] end - T2a = load(EC, "T_vvoo") - T2b = load(EC, "T_VVOO") - T2ab = load(EC, "T_vVoO") + T2a = load4idx(EC, "T_vvoo") + T2b = load4idx(EC, "T_VVOO") + T2ab = load4idx(EC, "T_vVoO") spin_project!(EC, T1a, T1b, T2a, T2b, T2ab) if with_singles save!(EC, "T_vo", T1a) @@ -155,7 +155,7 @@ end if `fock_only` is true, the energy will be calculated using only non-dressed fock matrix. Returns total energy, SS, OS, and Openshell (0.0) contributions - as a NamedTuple (`E`, `ESS`, `EOS`, `EO`). + as `OutDict` with keys (`E`, `ESS`, `EOS`, `EO`). """ function calc_singles_energy_using_dfock(EC::ECInfo, T1; fock_only=false) SP = EC.space @@ -167,8 +167,8 @@ function calc_singles_energy_using_dfock(EC::ECInfo, T1; fock_only=false) if !file_exists(EC, "dfc_ov") || !file_exists(EC, "dfe_ov") error("Files dfc_ov and dfe_ov are required in calc_singles_energy_using_dfock!") end - dfockc_ov = load(EC, "dfc_ov") - dfocke_ov = load(EC, "dfe_ov") + dfockc_ov = load2idx(EC, "dfc_ov") + dfocke_ov = load2idx(EC, "dfe_ov") @tensoropt begin ET1d = T1[a,i] * dfockc_ov[i,a] ET1ex = T1[a,i] * dfocke_ov[i,a] @@ -177,10 +177,10 @@ function calc_singles_energy_using_dfock(EC::ECInfo, T1; fock_only=false) ET1OS = ET1d ET1 = ET1SS + ET1OS end - fov = load(EC,"f_mm")[SP['o'],SP['v']] + fov = load2idx(EC,"f_mm")[SP['o'],SP['v']] @tensoropt ET1 += 2.0*(fov[i,a] * T1[a,i]) end - return (E=ET1, ESS=ET1SS, EOS=ET1OS, EO=0.0) + return OutDict("E"=>ET1, "ESS"=>ET1SS, "EOS"=>ET1OS, "EO"=>0.0) end @@ -357,7 +357,7 @@ function update_deco_doubles(EC, R2; use_shift=true) else shift = use_shift ? EC.options.cc.shiftp : 0.0 ΔT2 = deepcopy(R2) - ϵX = load(EC,"e_X") + ϵX = load1idx(EC,"e_X") for I ∈ CartesianIndices(ΔT2) X,Y = Tuple(I) ΔT2[I] /= -(ϵX[X] + ϵX[Y] + shift) @@ -379,7 +379,7 @@ end function update_deco_triples(EC, R3, use_shift=true) shift = use_shift ? EC.options.cc.shiftt : 0.0 ΔT3 = deepcopy(R3) - ϵX = load(EC,"e_X") + ϵX = load1idx(EC,"e_X") for I ∈ CartesianIndices(ΔT3) X,Y,Z = Tuple(I) ΔT3[I] /= (ϵX[X] + ϵX[Y] + ϵX[Z] + shift) diff --git a/src/descdict.jl b/src/descdict.jl new file mode 100644 index 0000000..b3f14a8 --- /dev/null +++ b/src/descdict.jl @@ -0,0 +1,352 @@ +""" + DescDict + +A module for an ordered descriptive dictionary. + +The module provides the `ODDict` type, which is an ordered dictionary that stores a description +for each key-value pair. +""" +module DescDict + +export ODDict, getdescription, setdescription!, descriptions +export last_key, last_value + +""" + ODDict{K, V} + +An ordered descriptive dictionary that maps keys of type `K` to values of type `V`. +Additionally, it stores a description of each key-value pair in the form of a string. + +The values are stored in an ordered dictionary, which means that the order of the key-value +pairs is preserved. + +### Examples + +```julia +julia> dict = ODDict("a" => 1, "b" => 2) +ODDict{String, Int64} + a => 1 () + b => 2 () + +julia> dict["a"] +1 + +julia> dict["c"] = 3 +3 + +julia> push!(dict, "d" => 4) +ODDict{String, Int64} + a => 1 () + b => 2 () + c => 3 () + d => 4 () + +julia> dict["a"] = (5, "this is a") +(5, "this is a") + +julia> dict +ODDict{String, Int64} + a => 5 (this is a) + b => 2 () + c => 3 () + d => 4 () + +julia> push!(dict, "a" => (5,"this is a"), "e" => (6,"this is e")) +ODDict{String, Int64} + b => 2 () + c => 3 () + d => 4 () + a => 5 (this is a) + e => 6 (this is e) +``` +""" +mutable struct ODDict{K, V} <: AbstractDict{K, V} + keys::Vector{K} + values::Vector{V} + descriptions::Vector{String} + function ODDict(keys::Vector{K}, values::Vector{V}, descriptions::Vector{String}) where {K, V} + if length(keys) != length(values) || length(keys) != length(descriptions) + throw(ArgumentError("Length of keys, values, and descriptions must be the same")) + end + new{K, V}(keys, values, descriptions) + end +end + +function ODDict{K, V}(pairs::Pair{K, V}...) where {K, V} + keys = K[] + values = V[] + descriptions = String[] + for (key, value) in pairs + push!(keys, key) + push!(values, value) + push!(descriptions, "") + end + return ODDict(keys, values, descriptions) +end + +function ODDict{K, V}(pairs::Pair{K, Tuple{V, String}}...) where {K, V} + keys = K[] + values = V[] + descriptions = String[] + for (key, value_desc) in pairs + push!(keys, key) + push!(values, value_desc[1]) + push!(descriptions, value_desc[2]) + end + return ODDict(keys, values, descriptions) +end + +function Base.getindex(dict::ODDict{K, V}, key::K) where {K, V} + index = findfirst(isequal(key), dict.keys) + if isnothing(index) + throw(KeyError(key)) + end + return dict.values[index] +end + +function Base.setindex!(dict::ODDict{K, V}, value::V, key::K) where {K, V} + index = findfirst(isequal(key), dict.keys) + if isnothing(index) + push!(dict.keys, key) + push!(dict.values, value) + push!(dict.descriptions, "") + else + dict.values[index] = value + end +end + +function Base.setindex!(dict::ODDict{K, V}, value_desc::Tuple{V,String}, key::K) where {K, V} + index = findfirst(isequal(key), dict.keys) + if isnothing(index) + push!(dict.keys, key) + push!(dict.values, value_desc[1]) + push!(dict.descriptions, value_desc[2]) + else + dict.values[index] = value_desc[1] + dict.descriptions[index] = value_desc[2] + end +end + +function Base.getkey(dict::ODDict{K, V}, key::K, default) where {K, V} + if key in dict.keys + return key + else + return default + end +end + +function Base.keys(dict::ODDict) + return copy(dict.keys) +end + +function Base.values(dict::ODDict) + return copy(dict.values) +end + +""" + descriptions(dict::ODDict) + +Get the descriptions of the key-value pairs in the dictionary. +""" +function descriptions(dict::ODDict) + return copy(dict.descriptions) +end + +function Base.haskey(dict::ODDict, key) + return key in dict.keys +end + +function Base.pairs(dict::ODDict) + return zip(dict.keys, dict.values) +end + +function Base.length(dict::ODDict) + return length(dict.keys) +end + +function Base.delete!(dict::ODDict{K, V}, key::K) where {K, V} + index = findfirst(isequal(key), dict.keys) + if isnothing(index) + throw(KeyError(key)) + end + deleteat!(dict.keys, index) + deleteat!(dict.values, index) + deleteat!(dict.descriptions, index) +end + +""" + getdescription(dict, key) + +Get the description of the key-value pair with the given key. +""" +function getdescription(dict::ODDict{K, V}, key::K) where {K, V} + index = findfirst(isequal(key), dict.keys) + if isnothing(index) + throw(KeyError(key)) + end + return dict.descriptions[index] +end + +""" + setdescription!(dict, description, key) + +Set the description of the key-value pair with the given key. +""" +function setdescription!(dict::ODDict{K, V}, description::String, key::K) where {K, V} + index = findfirst(isequal(key), dict.keys) + if isnothing(index) + throw(KeyError(key)) + end + dict.descriptions[index] = description +end + +Base.firstindex(dict::ODDict) = firstindex(dict.keys) +Base.lastindex(dict::ODDict) = lastindex(dict.keys) + +function Base.first(dict::ODDict) + return (first(dict.keys), first(dict.values), first(dict.descriptions)) +end + +function Base.last(dict::ODDict) + return (last(dict.keys), last(dict.values), last(dict.descriptions)) +end + +function Base.iterate(dict::ODDict, state=1) + if state > lastindex(dict) + return nothing + end + key = dict.keys[state] + value = dict.values[state] + description = dict.descriptions[state] + return ((key, value, description), state+1) +end + +function Base.iterate(rdict::Iterators.Reverse{ODDict}, state=lastindex(rdict.itr)) + if state < 1 + return nothing + end + dict = rdict.itr + key = dict.keys[state] + value = dict.values[state] + description = dict.descriptions[state] + return ((key, value, description), state-1) +end + +function Base.map!(f, dict::ODDict) + for i in firstindex(dict):lastindex(dict) + @inbounds dict.values[i] = f(dict.values[i]) + end + return dict +end + +function Base.map(f, dict1::ODDict{K, V}, dict2::ODDict{K, V}) where {K, V} + dict = copy(dict1) + for i in firstindex(dict1):lastindex(dict1) + @assert dict1.keys[i] == dict2.keys[i] "Keys do not match" + @inbounds dict.values[i] = f(dict1.values[i], dict2.values[i]) + end + return dict +end + +function Base.map(f, dict::ODDict{K, V}) where {K, V} + dict1 = copy(dict) + map!(f, dict1) + return dict1 +end + +function Base.merge(dict1::ODDict, dict2::ODDict) + dict = copy(dict1) + for (key, value, description) in dict2 + push!(dict, key, value, description) + end + return dict +end + +function Base.merge(dict1::ODDict, pairs::Pair{K, V}...) where {K, V} + dict = copy(dict1) + push!(dict, pairs...) + return dict +end + +function Base.merge(dict1::ODDict, pairs::Pair{K, Tuple{V, String}}...) where {K, V} + dict = copy(dict1) + push!(dict, pairs...) + return dict +end + +function Base.copy(dict::ODDict) + return ODDict(copy(dict.keys), copy(dict.values), copy(dict.descriptions)) +end + +function Base.push!(dict::ODDict{K, V}, key::K, value::V, description::String="") where {K, V} + if key in dict.keys + delete!(dict, key) + end + push!(dict.keys, key) + push!(dict.values, value) + push!(dict.descriptions, description) + return dict +end + +function Base.push!(dict::ODDict{K, V}, pair::Pair{K, V}, description::String="") where {K, V} + push!(dict, pair.first, pair.second, description) +end + +function Base.push!(dict::ODDict{K, V}, pair::Pair{K, Tuple{V, String}}) where {K, V} + push!(dict, pair.first, pair.second...) +end + +function Base.push!(dict::ODDict{K, V}, pairs::Pair{K, V}...) where {K, V} + for pair in pairs + push!(dict, pair) + end + return dict +end + +function Base.push!(dict::ODDict{K, V}, pairs::Pair{K, Tuple{V, String}}...) where {K, V} + for pair in pairs + push!(dict, pair) + end + return dict +end + +function Base.push!(dict::ODDict{K, V}, dict2::ODDict{K, V}) where {K, V} + for (key, value, description) in dict2 + push!(dict, key, value, description) + end + return dict +end + +# function Base.show(io::IO, dict::ODDict{K, V}) where {K, V} +# println(io, "ODDict{", K, ", ", V, "}") +# for (key, value, description) in zip(dict.keys, dict.values, dict.descriptions) +# println(io, " ", key, " => ", value, " ($description)") +# end +# end + +function Base.show(io::IO, mime::MIME{Symbol("text/plain")}, dict::ODDict{K, V}) where {K, V} + println(io, "ODDict{", K, ", ", V, "}") + for (key, value, description) in zip(dict.keys, dict.values, dict.descriptions) + println(io, " ", key, " => ", value, " ($description)") + end +end + +""" + last_key(dict::ODDict) + +Get the last key in the dictionary. +""" +function last_key(dict::ODDict) + return last(dict.keys) +end + +""" + last_value(dict::ODDict) + +Get the last value in the dictionary. +""" +function last_value(dict::ODDict) + return last(dict.values) +end + +end #module \ No newline at end of file diff --git a/src/dfcc.jl b/src/dfcc.jl index 2c77e65..840ade8 100644 --- a/src/dfcc.jl +++ b/src/dfcc.jl @@ -4,7 +4,8 @@ Density-fitted coupled-cluster methods. """ module DFCoupledCluster -using LinearAlgebra, TensorOperations, Printf +using LinearAlgebra, TensorOperations +using ..ElemCo.Outputs using ..ElemCo.Utils using ..ElemCo.ECInfos using ..ElemCo.MSystem @@ -97,7 +98,7 @@ end or full contravariant doubles amplitude `T2`=``T^{ij}_{ab}``. Returns total energy, SS, OS and Openshell (0.0) contributions - as a NamedTuple (`E`,`ESS`,`EOS`,`EO`). + as `OutDict` with keys (`E`,`ESS`,`EOS`,`EO`). """ function calc_deco_hylleraas(EC::ECInfo, T1, T2, R1, R2) SP = EC.space @@ -145,7 +146,7 @@ function calc_deco_hylleraas(EC::ECInfo, T1, T2, R1, R2) ET2SS += ET1SS ET2OS += ET1OS end - return (E=ET2, ESS=ET2SS, EOS=ET2OS, EO=0.0) + return OutDict("E"=>ET2, "ESS"=>ET2SS, "EOS"=>ET2OS, "EO"=>0.0) end """ @@ -156,7 +157,7 @@ end or `T2`=``T^{ij}_{ab}`` using density-fitted integrals. Returns total energy, SS, OS and Openshell (0.0) contributions - as a NamedTuple (`E`,`ESS`,`EOS`,`EO`). + as `OutDict` with keys (`E`,`ESS`,`EOS`,`EO`). """ function calc_deco_doubles_energy(EC::ECInfo, T2) if ndims(T2) == 4 @@ -168,7 +169,7 @@ function calc_deco_doubles_energy(EC::ECInfo, T2) ET2SS = T2[Y,X] * ssvxx[X,Y] end ET2 = ET2SS + ET2OS - return (E=ET2, ESS=ET2SS, EOS=ET2OS, EO=0.0) + return OutDict("E"=>ET2, "ESS"=>ET2SS, "EOS"=>ET2OS, "EO"=>0.0) else error("Wrong dimensionality of T2: ", ndims(T2)) end @@ -181,7 +182,7 @@ end and `T2[a,b,i,j]` = ``T^{ij}_{ab}``. Returns total energy, SS, OS and Openshell (0.0) contributions - as a NamedTuple (`E`,`ESS`,`EOS`,`EO`). + as `OutDict` with keys (`E`,`ESS`,`EOS`,`EO`). """ function calc_df_doubles_energy(EC::ECInfo, T2) if !file_exists(EC, "d_ovL") @@ -196,7 +197,7 @@ function calc_df_doubles_energy(EC::ECInfo, T2) ET2SS = ET2d - ET2ex ET2OS = ET2d ET2 = ET2SS + ET2OS - return (E=ET2, ESS=ET2SS, EOS=ET2OS, EO=0.0) + return OutDict("E"=>ET2, "ESS"=>ET2SS, "EOS"=>ET2OS, "EO"=>0.0) end """ @@ -360,12 +361,12 @@ end The SVD-coefficients ``U^{iX}_a`` are saved in file `C_voX`. The starting guess for doubles ``T_{XY}`` is saved in file `T_XX`. Return full MP2 correlation energy, SS, OS, and Openshell(0.0) (using the imaginary shift) - as a NamedTuple (`E`,`ESS`,`EOS`,`EO`). + as `OutDict` with keys (`E`,`ESS`,`EOS`,`EO`). """ function calc_doubles_decomposition_without_doubles(EC::ECInfo) t1 = time_ns() println("Decomposition without doubles using threshold ", EC.options.cc.ampsvdtol) - flush(stdout) + flush_output() nocc = n_occ_orbs(EC) nvirt = n_virt_orbs(EC) SP = EC.space @@ -378,13 +379,13 @@ function calc_doubles_decomposition_without_doubles(EC::ECInfo) shifti = EC.options.cc.deco_ishiftp fullEMP2 = calc_MP2_from_3idx(EC, voL, shifti) if shifti ≈ 0.0 - println("MP2 correlation energy: ", fullEMP2.E) + println("MP2 correlation energy: ", fullEMP2["E"]) else println("MP2 imaginary shift for decomposition: ", shifti) - println("MP2 imaginary shifted correlation energy: ", fullEMP2.E) + println("MP2 imaginary shifted correlation energy: ", fullEMP2["E"]) end t1 = print_time(EC, t1, "MP2 from 3idx", 2) - flush(stdout) + flush_output() if EC.options.cc.use_full_t2 T2 = try2start_doubles(EC) if size(T2) != (nvirt,nvirt,nocc,nocc) @@ -440,7 +441,7 @@ end function calc_doubles_decomposition_with_doubles(EC::ECInfo) t1 = time_ns() println("Decomposition with doubles using threshold ", EC.options.cc.ampsvdtol) - flush(stdout) + flush_output() nocc = n_occ_orbs(EC) nvirt = n_virt_orbs(EC) SP = EC.space @@ -450,7 +451,7 @@ function calc_doubles_decomposition_with_doubles(EC::ECInfo) T2 = try2start_doubles(EC) if size(T2) != (nvirt,nvirt,nocc,nocc) println("Use MP2 doubles for decomposition") - flush(stdout) + flush_output() shifti = EC.options.cc.deco_ishiftp T2 = calc_MP2_amplitudes_from_3idx(EC, voL, shifti) end @@ -459,7 +460,7 @@ function calc_doubles_decomposition_with_doubles(EC::ECInfo) end t1 = print_time(EC, t1, "MP2 from 3idx", 2) println("decompose full doubles (can be slow!)") - flush(stdout) + flush_output() UaiX = svd_decompose(reshape(permutedims(T2, (1,3,2,4)), (nvirt*nocc,nvirt*nocc)), nvirt, nocc, EC.options.cc.ampsvdtol) t1 = print_time(EC, t1, "SVD decomposition", 2) ϵX, UaiX = rotate_U2pseudocanonical(EC, UaiX) @@ -521,7 +522,7 @@ end The imaginary shift ishift is used in the denominator in the calculation of the MP2 amplitudes. Returns total energy, SS, OS and Openshell (0.0) contributions - as a NamedTuple (`E`,`ESS`,`EOS`,`EO`). + as `OutDict` with keys (`E`,`ESS`,`EOS`,`EO`). """ function calc_MP2_from_3idx(EC::ECInfo, voL::AbstractArray, ishift) @tensoropt vvoo[a,b,i,j] := voL[a,i,L] * voL[b,j,L] @@ -554,7 +555,7 @@ function calc_MP2_from_3idx(EC::ECInfo, voL::AbstractArray, ishift) ET2SS = ET2d - ET2ex ET2OS = ET2d ET2 = ET2SS + ET2OS - return (E=ET2, ESS=ET2SS, EOS=ET2OS, EO=0.0) + return OutDict("E"=>ET2, "ESS"=>ET2SS, "EOS"=>ET2OS, "EO"=>0.0) end """ @@ -949,7 +950,7 @@ function calc_svd_dc(EC::ECInfo, method::ECMethod) # calc starting guess energy truncEMP2 = calc_deco_doubles_energy(EC, T2) t1 = print_time(EC, t1, "calc starting guess energy", 2) - println("Starting guess energy: ", truncEMP2.E) + println("Starting guess energy: ", truncEMP2["E"]) println() converged = false println("Iter SqNorm Energy DE Res Time") @@ -973,17 +974,15 @@ function calc_svd_dc(EC::ECInfo, method::ECMethod) perform!(diis, [T1,T2], [R1,R2]) t1 = print_time(EC,t1,"DIIS",2) En2 = calc_deco_doubles_energy(EC, T2) - En = En2.E + En = En2["E"] if do_sing En1 = calc_singles_energy_using_dfock(EC, T1) - En += En1.E + En += En1["E"] end - ΔE = En - Eh.E + ΔE = En - Eh["E"] NormR = NormR1 + NormR2 NormT = 1.0 + NormT1 + NormT2 - tt = (time_ns() - t0)/10^9 - @printf "%3i %12.8f %12.8f %12.8f %10.2e %8.2f \n" it NormT Eh.E ΔE NormR tt - flush(stdout) + output_iteration(it, NormR, time_ns()-t0, NormT, Eh["E"], ΔE) if NormR < EC.options.cc.thr converged = true break @@ -995,12 +994,11 @@ function calc_svd_dc(EC::ECInfo, method::ECMethod) try2save_singles!(EC, T1) try2save_doubles!(EC, T2) println() - @printf "Sq.Norm of T1: %12.8f Sq.Norm of T2: %12.8f \n" NormT1 NormT2 + output_norms(["T1"=>sqrt(NormT1), "T2"=>sqrt(NormT2)]) println() - flush(stdout) if !EC.options.cc.use_full_t2 # ΔMP2 correction - Eh = (; Eh..., Ecorrection=fullEMP2.E - truncEMP2.E) + push!(Eh, "E-correction"=>(fullEMP2["E"] - truncEMP2["E"],"ΔMP2 correction")) end return Eh end diff --git a/src/dfhf.jl b/src/dfhf.jl index 1b08ba8..7dbf6d3 100644 --- a/src/dfhf.jl +++ b/src/dfhf.jl @@ -1,5 +1,6 @@ module DFHF -using LinearAlgebra, TensorOperations, Printf +using LinearAlgebra, TensorOperations +using ..ElemCo.Outputs using ..ElemCo.Utils using ..ElemCo.ECInfos using ..ElemCo.Integrals @@ -18,7 +19,7 @@ export dfhf, dfuhf dfhf(EC::ECInfo) Perform closed-shell DF-HF calculation. - Returns the energy as the `:HF` field in a named tuple. + Returns the energy as the `HF` key in `OutDict`. """ function dfhf(EC::ECInfo) t1 = time_ns() @@ -50,7 +51,7 @@ function dfhf(EC::ECInfo) EHF = 0.0 previousEHF = 0.0 println("Iter Energy DE Res Time") - flush(stdout) + flush_output() t0 = time_ns() for it=1:EC.options.scf.maxit if direct @@ -69,9 +70,7 @@ function dfhf(EC::ECInfo) sdf = sao*den2*fock Δfock = sdf - sdf' var = sum(abs2,Δfock) - tt = (time_ns() - t0)/10^9 - @printf "%3i %12.8f %12.8f %10.2e %8.2f \n" it EHF ΔE var tt - flush(stdout) + output_iteration(it, var, time_ns() - t0, EHF, ΔE) if abs(ΔE) < thren && var < EC.options.scf.thr break end @@ -90,14 +89,14 @@ function dfhf(EC::ECInfo) draw_endline() delete_temporary_files!(EC) save!(EC, EC.options.wf.orb, cMO, description="DFHF orbitals") - return (HF=EHF,) + return OutDict("HF"=>(EHF, "closed-shell HF energy")) end """ dfuhf(EC::ECInfo) Perform DF-UHF calculation. - Returns the energy as the `:UHF` and `:HF` field in a named tuple. + Returns the energy as the `UHF` and `HF` keys in `OutDict`. """ function dfuhf(EC::ECInfo) t1 = time_ns() @@ -128,7 +127,7 @@ function dfuhf(EC::ECInfo) EHF = 0.0 previousEHF = 0.0 println("Iter Energy DE Res Time") - flush(stdout) + flush_output() t0 = time_ns() for it=1:EC.options.scf.maxit if direct @@ -151,9 +150,7 @@ function dfuhf(EC::ECInfo) EHF = efhsmall[1] + efhsmall[2] + Enuc ΔE = EHF - previousEHF previousEHF = EHF - tt = (time_ns() - t0)/10^9 - @printf "%3i %12.8f %12.8f %10.2e %8.2f \n" it EHF ΔE var tt - flush(stdout) + output_iteration(it, var, time_ns() - t0, EHF, ΔE) if abs(ΔE) < thren && var < EC.options.scf.thr break end @@ -174,7 +171,7 @@ function dfuhf(EC::ECInfo) draw_endline() delete_temporary_files!(EC) save!(EC, EC.options.wf.orb, cMO..., description="DFUHF orbitals") - return (UHF=EHF, HF=EHF) + return OutDict("UHF"=>(EHF,"UHF energy"), "HF"=>(EHF,"UHF energy")) end end #module diff --git a/src/dmrg.jl b/src/dmrg.jl index a1f325e..27bd09a 100644 --- a/src/dmrg.jl +++ b/src/dmrg.jl @@ -110,7 +110,7 @@ function calc_dmrg(EC::ECInfo) E, ψ = dmrg(H, ψref; dmrg_params...) println("DMRG complete") E2 = inner(ψ', H, ψ) - return (; E=E-Eref, Expect=E2-Eref) + return OutDict("E"=>E-Eref, "Expect"=>E2-Eref) end end # module DMRG diff --git a/src/dump.jl b/src/dump.jl index 9944fec..b951b88 100644 --- a/src/dump.jl +++ b/src/dump.jl @@ -16,7 +16,7 @@ using ..ElemCo.QMTensors export FDump, TFDump, QFDump export fd_exists, read_fcidump, write_fcidump, transform_fcidump -export headvar, headvars, integ1, integ2, triang +export headvar, headvars, integ1, integ2, integ2_ss, integ2_os, triang export reorder_orbs_int2, modify_header! export int1_npy_filename, int2_npy_filename @@ -130,8 +130,8 @@ Base.@kwdef mutable struct FDump{N} uhf::Bool = false end -TFDump = FDump{3} -QFDump = FDump{4} +const TFDump = FDump{3} +const QFDump = FDump{4} """ is_triang(fd::FDump) @@ -283,6 +283,34 @@ function integ2(fd::FDump, spincase::Symbol=:α) end end +""" + integ2_ss(fd::FDump, spincase::Symbol=:α) + + Return 2-e⁻ integrals (for UHF fcidump: for `spincase`). + `spincase` can be `:α` or `:β`. +""" +function integ2_ss(fd::FDump, spincase::Symbol=:α) + if !fd.uhf + return fd.int2 + elseif spincase == :α + return fd.int2aa + elseif spincase == :β + return fd.int2bb + else + error("Only α and β are allowed for spincase") + end +end + +""" + integ2_os(fd::FDump) + + Return αβ 2-e⁻ integrals for UHF fcidump +""" +function integ2_os(fd::FDump) + @assert fd.uhf "Only for UHF" + return fd.int2ab +end + """ read_fcidump(fcidump::String, ::Val{N}) @@ -343,40 +371,26 @@ function read_header(fdfile) push!(line_array, "\n") # search for '=' and put element before it as the variable name, and everything # after (before the next variable name) as a vector of values - variable_name = "" - prev_el = "" - ipos = 1 - while ipos <= length(line_array) - el = line_array[ipos] - if el == "=" - if prev_el != "" - # case-insensitive variable names in the header - variable_name = uppercase(prev_el) - prev_el = "" - else - error("No variable name before '=': $(line_array)") - end - elseif prev_el != "" && variable_name != "" - elem = tryparse(Int, prev_el) + comments = String[] + variable_name, ipos = read_elements!(comments, line_array, 1) + while ipos < length(line_array) + ipos += 1 + el_str = line_array[ipos] + elem = tryparse(Int, el_str) + if !isnothing(elem) + head[variable_name] = Int[elem] + variable_name, ipos = read_elements!(head[variable_name,Int], line_array, ipos+1) + else + elem = tryparse(Float64, el_str) if !isnothing(elem) - head[variable_name] = Int[elem] - variable_name, ipos = read_elements!(head[variable_name,Int], line_array, ipos) + head[variable_name] = Float64[elem] + variable_name, ipos = read_elements!(head[variable_name,Float64], line_array, ipos+1) else - elem = tryparse(Float64,prev_el) - if !isnothing(elem) - head[variable_name] = Float64[elem] - variable_name, ipos = read_elements!(head[variable_name,Float64], line_array, ipos) - else - elem = strip(prev_el, ['"','\'']) - head[variable_name] = String[elem] - variable_name, ipos = read_elements!(head[variable_name,String], line_array, ipos) - end - end - prev_el = "" - else - prev_el = el + elem = strip(el_str, ['"','\'']) + head[variable_name] = String[elem] + variable_name, ipos = read_elements!(head[variable_name,String], line_array, ipos+1) + end end - ipos += 1 end # print(head) return head diff --git a/src/ecmethods.jl b/src/ecmethods.jl index a98483d..fd0fe0c 100644 --- a/src/ecmethods.jl +++ b/src/ecmethods.jl @@ -10,8 +10,8 @@ export has_suffix, set_suffix! const ExcLevels = "SDTQP" -const Prefix4Methods = ["EOM-","SVD-","2D-","FRS-","FRT-","Λ","U","R"] -const Suffix4Methods = [] +const Prefix4Methods = String["EOM-","SVD-","2D-","FRS-","FRT-","Λ","U","R"] +const Suffix4Methods = String[] """ ECMethod @@ -129,7 +129,7 @@ end and return a list of the matching ones (without dashes for multiple-letter specs!) and the final position after specs. """ -function check_specs(mname::AbstractString, pos, specs::Vector) +function check_specs(mname::AbstractString, pos::Int, specs::Vector{String}) matches = [] for spec in specs if length(mname)-pos+1 >= length(spec) diff --git a/src/orbtools.jl b/src/orbtools.jl index 7064b56..1e6fe6e 100644 --- a/src/orbtools.jl +++ b/src/orbtools.jl @@ -109,11 +109,11 @@ end """ function orbital_energies(EC::ECInfo, spincase::Symbol=:α) if spincase == :α - eps = load(EC, "e_m") + eps = load1idx(EC, "e_m") ϵo = eps[EC.space['o']] ϵv = eps[EC.space['v']] else - eps = load(EC, "e_M") + eps = load1idx(EC, "e_M") ϵo = eps[EC.space['O']] ϵv = eps[EC.space['V']] end diff --git a/src/outputs.jl b/src/outputs.jl new file mode 100644 index 0000000..4ad29da --- /dev/null +++ b/src/outputs.jl @@ -0,0 +1,82 @@ +""" + Outputs + +Module for output functions. + +The main purpose of this module is to hide the output functions from the JET.jl analyser. +""" +module Outputs +using Printf +export output_time, flush_output +export output_iteration +export output_E_var, output_E_method, output_norms + +""" + output_time(Δtime, info::AbstractString) + + Output time with message `info`. +""" +function output_time(Δtime, info::AbstractString) + @printf "Time for %s:\t %8.2f \n" info Δtime/10^9 + flush(stdout) +end + +""" + flush_output() + + Flush the output buffer. +""" +function flush_output() + flush(stdout) +end + +""" + output_iteration(it, var, Δt, floats...) + + Output iteration number `it`, variance `var`, time step `Δt`, and additional floats. +""" +function output_iteration(it, var, Δt, floats...) + @printf "%3i " it + for f in floats + @printf "%12.8f " f + end + @printf "%10.2e %8.2f \n" var Δt/10^9 + flush(stdout) +end + +""" + output_E_var(En, var, Δt) + + Output energy `En`, variance `var`, and time step `Δt`. +""" +function output_E_var(En, var, Δt) + @printf "%12.8f %10.2e %8.2f \n" En var Δt/10^9 + flush(stdout) +end + +""" + output_E_method(En, method::AbstractString, info::AbstractString="") + + Output energy `En` with method `method` and additional info `info`. +""" +function output_E_method(En, method::AbstractString, info::AbstractString="") + @printf "%s %s \t%16.12f \n" method info En + flush(stdout) +end + +""" + output_norms(norms::Vector{Pair{String,Float64}}) + + Output norms. + + The norms are a vector of pairs of strings and floats. +""" +function output_norms(norms::Vector{Pair{String,Float64}}) + for norm in norms + @printf "Norm of %s: %12.8f " norm.first norm.second + end + println() + flush(stdout) +end + +end #module \ No newline at end of file diff --git a/src/tensortools.jl b/src/tensortools.jl index eda1fec..77db854 100644 --- a/src/tensortools.jl +++ b/src/tensortools.jl @@ -154,43 +154,45 @@ function triinds(norb, sp1::AbstractArray{Int}, sp2::AbstractArray{Int}, reverse end end +function spincase_from_4spaces(spaces::String) + second_el_alpha = isalphaspin(spaces[2],spaces[4]) + if isalphaspin(spaces[1],spaces[3]) + if second_el_alpha + sc = :α + else + sc = :αβ + end + else + !second_el_alpha || error("Use αβ integrals to get the βα block "*spaces) + sc = :β + end + return sc +end + """ - ints2(EC::ECInfo, spaces::String, spincase = nothing, detri = true) + ints2(EC::ECInfo, spaces::String, spincase = nothing) Return subset of 2e⁻ integrals according to spaces. The `spincase`∈{`:α`,`:β`} can explicitly be given, or will be deduced from upper/lower case of spaces specification. - If the last two indices are stored as triangular and detri - make them full, - otherwise return as a triangular cut. + If the last two indices are stored as triangular - make them full. """ -function ints2(EC::ECInfo, spaces::String, spincase = nothing, detri = true) +function ints2(EC::ECInfo, spaces::String, spincase = nothing) if isnothing(spincase) - second_el_alpha = isalphaspin(spaces[2],spaces[4]) - if isalphaspin(spaces[1],spaces[3]) - if second_el_alpha - sc = :α - else - sc = :αβ - end - else - !second_el_alpha || error("Use αβ integrals to get the βα block "*spaces) - sc = :β - end + sc = spincase_from_4spaces(spaces) else - sc = spincase + sc::Symbol = spincase end - allint = integ2(EC.fd, sc) - norb = length(EC.space[':']) - if ndims(allint) == 4 - return allint[EC.space[spaces[1]],EC.space[spaces[2]],EC.space[spaces[3]],EC.space[spaces[4]]] - elseif detri - # last two indices as a triangular index, desymmetrize - return detri_int2(allint, norb, EC.space[spaces[1]], EC.space[spaces[2]], EC.space[spaces[3]], EC.space[spaces[4]]) - else - cio, maski = triinds(norb, EC.space[spaces[3]], EC.space[spaces[4]]) - return allint[EC.space[spaces[1]],EC.space[spaces[2]],maski] + SP = EC.space + if EC.fd.uhf && sc == :αβ + return integ2_os(EC.fd)[SP[spaces[1]],SP[spaces[2]],SP[spaces[3]],SP[spaces[4]]] end + allint = integ2_ss(EC.fd, sc) + @assert ndims(allint) == 3 + norb = length(EC.space[':']) + # last two indices as a triangular index, desymmetrize + return detri_int2(allint, norb, SP[spaces[1]], SP[spaces[2]], SP[spaces[3]], SP[spaces[4]]) end """ diff --git a/src/utils.jl b/src/utils.jl index 3db276d..333e497 100644 --- a/src/utils.jl +++ b/src/utils.jl @@ -3,11 +3,16 @@ module Utils using MKL using Printf using ..ElemCo.AbstractEC +using ..ElemCo.DescDict +using ..ElemCo.Outputs export mainname, print_time, draw_line, draw_wiggly_line, print_info, draw_endline, kwarg_provided_in_macro export subspace_in_space, argmaxN export substr, reshape_buf, create_buf export amdmkl +# from DescDict +export ODDict, getdescription, setdescription!, descriptions +export OutDict, last_energy """ mainname(file::String) @@ -42,12 +47,25 @@ end function print_time(EC::AbstractECInfo, t1, info::AbstractString, verb::Int) t2 = time_ns() if verb < EC.verbosity - @printf "Time for %s:\t %8.2f \n" info (t2-t1)/10^9 - flush(stdout) + output_time(t2-t1, info) end return t2 end +""" + OutDict + + An ordered descriptive dictionary that maps keys of type `String` to values of type `Float64`. +""" +const OutDict = ODDict{String, Float64} + +""" + last_energy(energies::OutDict) + + Return the last energy in `energies`. +""" +last_energy(energies::OutDict) = last_value(energies) + """ draw_line(n = 63) @@ -82,7 +100,7 @@ function print_info(info::AbstractString, additional_info::AbstractString="") println(additional_info) draw_thin_line() end - flush(stdout) + flush_output() end """ @@ -92,7 +110,7 @@ end """ function draw_endline(n=63) println(repeat("═", n)) - flush(stdout) + flush_output() end """ diff --git a/test/2d_cc.jl b/test/2d_cc.jl index a38ce0f..5ec89b7 100644 --- a/test/2d_cc.jl +++ b/test/2d_cc.jl @@ -11,10 +11,10 @@ fcidump = joinpath(@__DIR__,"files","CH2.3B1.DZP.ROHF.FCIDUMP") EC = ElemCo.ECInfo() energies = ElemCo.ccdriver(EC, "2d-ccsd"; fcidump, occa="-2.1+1.3", occb="1.1+1.2+1.3") println(keys(energies)) -@test abs(energies[:TRIP2D_UCCSD]-td_ccsd_ref) < epsilon +@test abs(energies["TRIP2D-UCCSD"]-td_ccsd_ref) < epsilon energies = @cc frt-ccsd occa="-2.1+1.3" occb="1.1+1.2+1.3" -@test abs(energies[:FRT_UCCSD]-frt_ccsd_ref) < epsilon +@test abs(energies["FRT-UCCSD"]-frt_ccsd_ref) < epsilon end @@ -28,6 +28,6 @@ fcidump = joinpath(@__DIR__,"files","CH2O.3A1.VDZ.ROHF.FCIDUMP") EC = ElemCo.ECInfo() @opt cc nomp2=1 maxit=200 energies = ElemCo.ccdriver(EC, "2d-dcsd"; fcidump, occa = "-3.1+1.2+-2.3", occb = "-3.1+2.2+-2.3") -@test abs(energies[:SING2D_UDCSD]-td_dcsd_ref) < epsilon +@test abs(energies["SING2D-UDCSD"]-td_dcsd_ref) < epsilon end diff --git a/test/df_hf.jl b/test/df_hf.jl index 8bc84e6..7b737ca 100644 --- a/test/df_hf.jl +++ b/test/df_hf.jl @@ -40,20 +40,20 @@ fcidump = "DF_HF_TEST.FCIDUMP" @dfints energies = ElemCo.ccdriver(EC, "dcsd"; fcidump) -@test abs(energies.HF-EHF_test) < epsilon -@test abs(energies.MP2-EMP2_test) < epsilon -@test abs(energies.DCSD-EDCSD_test) < epsilon +@test abs(energies["HF"]-EHF_test) < epsilon +@test abs(energies["MP2"]-EMP2_test) < epsilon +@test abs(energies["DCSD"]-EDCSD_test) < epsilon rm(fcidump) energies = @dfcc svd-dcsd -@test abs(energies.SVD_DCSD-ESVDDCSD_test) < epsilon +@test abs(energies["SVD-DCSD"]-ESVDDCSD_test) < epsilon @set cc use_full_t2=true energies = @dfcc svd-dcsd -@test abs(energies.SVD_DCSD-ESVDDCSD_ft_test) < epsilon +@test abs(energies["SVD-DCSD"]-ESVDDCSD_ft_test) < epsilon @set scf direct=false @set wf ms2=2 EUHF = @dfuhf -@test abs(EUHF.HF-EUHF_test) < epsilon +@test abs(EUHF["HF"]-EUHF_test) < epsilon end diff --git a/test/df_uhf.jl b/test/df_uhf.jl index ae376bd..a8eaa3a 100644 --- a/test/df_uhf.jl +++ b/test/df_uhf.jl @@ -20,8 +20,8 @@ let @opt wf ms2=2 EUHF = @dfuhf energies = @cc udcsd - @test abs(last(EUHF)-EUHF_test) < epsilon - @test abs(last(energies)-EUDCSD_test) < epsilon + @test abs(last_energy(EUHF)-EUHF_test) < epsilon + @test abs(last_energy(energies)-EUDCSD_test) < epsilon end let @@ -33,8 +33,8 @@ let @dfints energies = @cc uccsd fcidump=fcidump rm(fcidump) - @test abs(last(EUHF)-EUHF1_test) < epsilon - @test abs(last(energies)-EUCCSD1_test) < epsilon + @test abs(last_energy(EUHF)-EUHF1_test) < epsilon + @test abs(last_energy(energies)-EUCCSD1_test) < epsilon end end diff --git a/test/h2-.jl b/test/h2-.jl index 599f448..f084c04 100644 --- a/test/h2-.jl +++ b/test/h2-.jl @@ -19,12 +19,12 @@ basis = Dict("ao"=>"cc-pVDZ", @dfuhf energies = @cc dcsd -@test abs(energies.HF-EHF_test) < epsilon -@test abs(energies.MP2-EMP2_test) < epsilon -@test abs(energies.UDCSD-EDCSD_test) < epsilon +@test abs(energies["HF"]-EHF_test) < epsilon +@test abs(energies["MP2"]-EMP2_test) < epsilon +@test abs(energies["UDCSD"]-EDCSD_test) < epsilon energies = @cc λuccsd(t) -@test abs(energies.ΛUCCSD_T-EΛUCCSD_T_test) < epsilon -@test abs(energies.T3+energies.ΛUCCSD-EΛUCCSD_T_test) < epsilon +@test abs(energies["ΛUCCSD(T)"]-EΛUCCSD_T_test) < epsilon +@test abs(energies["(T)"]+energies["ΛUCCSD"]-EΛUCCSD_T_test) < epsilon end diff --git a/test/h2o.jl b/test/h2o.jl index 41f1b17..3c5a31e 100644 --- a/test/h2o.jl +++ b/test/h2o.jl @@ -17,23 +17,23 @@ fcidump = joinpath(@__DIR__,"files","H2O.FCIDUMP") EC = ECInfo() energies = ElemCo.ccdriver(EC, "ccsd(t)"; fcidump) -@test abs(energies.HF-EHF_test) < epsilon -@test abs(energies.MP2c-EMP2_test) < epsilon -@test abs(energies.CCSD_T-ECCSD_T_test) < epsilon +@test abs(energies["HF"]-EHF_test) < epsilon +@test abs(energies["MP2c"]-EMP2_test) < epsilon +@test abs(energies["CCSD(T)"]-ECCSD_T_test) < epsilon energies = @cc λccsd(t) -@test abs(energies.ΛCCSD_T-EΛCCSD_T_test) < epsilon +@test abs(energies["ΛCCSD(T)"]-EΛCCSD_T_test) < epsilon energies = ElemCo.ccdriver(EC, "dcsd"; fcidump) -@test abs(last(energies)-EDCSD_test) < epsilon +@test abs(last_energy(energies)-EDCSD_test) < epsilon @set cholesky thr = 1.e-4 @set cc ampsvdtol = 1.e-2 energies = ElemCo.ccdriver(EC, "svd-dc-ccsdt"; fcidump="") -@test abs(last(energies)-EDC_CCSDT_test) < epsilon +@test abs(last_energy(energies)-EDC_CCSDT_test) < epsilon @set cc calc_t3_for_decomposition = true energies = ElemCo.ccdriver(EC, "svd-dc-ccsdt"; fcidump="") -@test abs(last(energies)-EDC_CCSDT_useT3_test) < epsilon +@test abs(last_energy(energies)-EDC_CCSDT_useT3_test) < epsilon end diff --git a/test/h2o_anion_st1.jl b/test/h2o_anion_st1.jl index 4fd8691..24017a2 100644 --- a/test/h2o_anion_st1.jl +++ b/test/h2o_anion_st1.jl @@ -13,11 +13,11 @@ fcidump = joinpath(@__DIR__,"files","H2O_ST1.FCIDUMP") @bohf @transform_ints biorthogonal energies = @cc ccsd -@test abs(energies.HF-EHF_test) < epsilon -@test abs(energies.MP2-EMP2_test) < epsilon -@test abs(last(energies)-ECCSD_test) < epsilon +@test abs(energies["HF"]-EHF_test) < epsilon +@test abs(energies["MP2"]-EMP2_test) < epsilon +@test abs(last_energy(energies)-ECCSD_test) < epsilon energies = @cc dcsd -@test abs(last(energies)-EDCSD_test) < epsilon +@test abs(last_energy(energies)-EDCSD_test) < epsilon end diff --git a/test/h2o_cation.jl b/test/h2o_cation.jl index a461984..7d967ac 100644 --- a/test/h2o_cation.jl +++ b/test/h2o_cation.jl @@ -13,26 +13,26 @@ ECCSD_UHF_test = -0.168407943239 + EUHF_test fcidump = joinpath(@__DIR__,"files","H2O_CATION.FCIDUMP") energies = @cc uccd -@test abs(last(energies)-ECCD_test) < epsilon +@test abs(last_energy(energies)-ECCD_test) < epsilon energies = @cc uccsd -@test abs(energies.HF-EHF_test) < epsilon -@test abs(energies.MP2-EMP2_test) < epsilon -@test abs(last(energies)-ECCSD_test) < epsilon +@test abs(energies["HF"]-EHF_test) < epsilon +@test abs(energies["MP2"]-EMP2_test) < epsilon +@test abs(last_energy(energies)-ECCSD_test) < epsilon energies = @cc dcsd -@test abs(last(energies)-EDCSD_test) < epsilon +@test abs(last_energy(energies)-EDCSD_test) < epsilon energies = @cc rdcsd -@test abs(last(energies)-ERDCSD_test) < epsilon +@test abs(last_energy(energies)-ERDCSD_test) < epsilon fcidump = joinpath(@__DIR__,"files","H2OP_UHF.FCIDUMP") @ECinit energies = @cc uccsd -@test abs(energies.HF-EUHF_test) < epsilon -@test abs(last(energies)-ECCSD_UHF_test) < epsilon +@test abs(energies["HF"]-EUHF_test) < epsilon +@test abs(last_energy(energies)-ECCSD_UHF_test) < epsilon @set cc use_kext = false calc_d_vvvv = true calc_d_vvvo = true calc_d_vovv = true calc_d_vvoo = true triangular_kext = false energies = @cc uccsd -@test abs(last(energies)-ECCSD_UHF_test) < epsilon +@test abs(last_energy(energies)-ECCSD_UHF_test) < epsilon end diff --git a/test/h2o_dmrg.jl b/test/h2o_dmrg.jl index 599389b..7302cbc 100644 --- a/test/h2o_dmrg.jl +++ b/test/h2o_dmrg.jl @@ -17,6 +17,6 @@ basis = Dict("ao"=>"sto-3g", @dfhf energies = @cc dmrg -@test abs(energies.DMRG-EDMRG_test) < epsilon +@test abs(energies["DMRG"]-EDMRG_test) < epsilon end diff --git a/test/h2o_st1.jl b/test/h2o_st1.jl index 60a3fdf..5c6f10f 100644 --- a/test/h2o_st1.jl +++ b/test/h2o_st1.jl @@ -16,9 +16,9 @@ fcidump = joinpath(@__DIR__,"files","H2O_ST1.FCIDUMP") @ECinit for (ime,method) in enumerate(ccmethods) energies = @cc method - @test abs(energies.HF-EHF_test) < epsilon - @test abs(energies.MP2-EMP2_test) < epsilon - @test abs(last(energies)-EHF_test-ECC_test[ime]) < epsilon + @test abs(energies["HF"]-EHF_test) < epsilon + @test abs(energies["MP2"]-EMP2_test) < epsilon + @test abs(last_energy(energies)-EHF_test-ECC_test[ime]) < epsilon end #EC.fd = read_fcidump(fcidump) @@ -28,10 +28,10 @@ CMOl = @loadfile EC.options.wf.orb*EC.options.wf.left ElemCo.transform_fcidump(EC.fd, CMOl, CMOr) energies = @cc dcsd @test abs(EBOHF-EBOHF_test) < epsilon -@test abs(last(energies)-EBODCSD_test) < epsilon +@test abs(last_energy(energies)-EBODCSD_test) < epsilon @freeze_orbs [1] energies = @cc dcsd -@test abs(energies.HF-EBOHF_test) < epsilon -@test abs(last(energies)-EBODCSDfc_test) < epsilon +@test abs(energies["HF"]-EBOHF_test) < epsilon +@test abs(last_energy(energies)-EBODCSDfc_test) < epsilon end diff --git a/test/h2o_triplet.jl b/test/h2o_triplet.jl index 47562d1..569d0db 100644 --- a/test/h2o_triplet.jl +++ b/test/h2o_triplet.jl @@ -14,18 +14,18 @@ fcidump = joinpath(@__DIR__,"files","H2O.FCIDUMP") @opt wf ms2=2 energies = @cc uccsd(t) -@test abs(energies.HF-EHF_test) < epsilon -@test abs(energies.MP2-EMP2_test) < epsilon -@test abs(energies.UCCSD-EUCCSD_test) < epsilon -@test abs(energies.UCCSD_T-EUCCSD_T_test) < epsilon +@test abs(energies["HF"]-EHF_test) < epsilon +@test abs(energies["MP2"]-EMP2_test) < epsilon +@test abs(energies["UCCSD"]-EUCCSD_test) < epsilon +@test abs(energies["UCCSD(T)"]-EUCCSD_T_test) < epsilon energies = @cc rccsd -@test abs(energies.RCCSD-ERCCSD_test) < epsilon +@test abs(energies["RCCSD"]-ERCCSD_test) < epsilon energies = @cc rdcsd -@test abs(energies.RDCSD-ERDCSD_test) < epsilon +@test abs(energies["RDCSD"]-ERDCSD_test) < epsilon energies = @cc λuccsd(t) -@test abs(last(energies)-EΛUCCSD_T_test) < epsilon +@test abs(last_energy(energies)-EΛUCCSD_T_test) < epsilon end diff --git a/test/n_st1.jl b/test/n_st1.jl index d101195..3cd6b18 100644 --- a/test/n_st1.jl +++ b/test/n_st1.jl @@ -14,9 +14,9 @@ fcidump = joinpath(@__DIR__,"files","N_ST1.FCIDUMP") @ECinit for (ime,method) in enumerate(ccmethods) energies = @cc method - @test abs(energies.HF-EHF_test) < epsilon - @test abs(energies.UMP2-EMP2_test) < epsilon - @test abs(last(energies)-EHF_test-ECC_test[ime]) < epsilon + @test abs(energies["HF"]-EHF_test) < epsilon + @test abs(energies["UMP2"]-EMP2_test) < epsilon + @test abs(last_energy(energies)-EHF_test-ECC_test[ime]) < epsilon end #EC.fd = read_fcidump(fcidump) @@ -25,12 +25,12 @@ EBOHF = @bouhf @transform_ints biorthogonal @test abs(EBOHF-EHF_test) < epsilon energies = @cc udcsd -@test abs(last(energies)-EHF_test-ECC_test[2]) < epsilon +@test abs(last_energy(energies)-EHF_test-ECC_test[2]) < epsilon energies = @cc uccsd(t) -@test abs(last(energies)-EHF_test-ECCSD_T_test) < epsilon +@test abs(last_energy(energies)-EHF_test-ECCSD_T_test) < epsilon @freeze_orbs [1] energies = @cc udcsd -@test abs(energies.HF-EHF_test) < epsilon -@test abs(last(energies)-EBODCSDfc_test) < epsilon +@test abs(energies["HF"]-EHF_test) < epsilon +@test abs(last_energy(energies)-EBODCSDfc_test) < epsilon end diff --git a/test/svd_dc.jl b/test/svd_dc.jl index 5ad2980..6b9a5d3 100644 --- a/test/svd_dc.jl +++ b/test/svd_dc.jl @@ -26,39 +26,39 @@ basis = Dict("ao"=>"cc-pVDZ", @dfhf energies = @dfcc svd-dcsd -@test abs(energies.SVD_DCSD-ESVDDCSD_test) < epsilon +@test abs(energies["SVD-DCSD"]-ESVDDCSD_test) < epsilon energies = @dfcc svd-dcd -@test abs(energies.SVD_DCD-ESVDDCD_test) < epsilon +@test abs(energies["SVD-DCD"]-ESVDDCD_test) < epsilon @opt cc use_projx=true energies = @dfcc svd-dcsd -@test abs(energies.SVD_DCSD-ESVDDCSD_px_test) < epsilon +@test abs(energies["SVD-DCSD"]-ESVDDCSD_px_test) < epsilon @opt cc use_projx=false @set cc use_full_t2=true energies = @dfcc svd-dcsd -@test abs(energies.SVD_DCSD-ESVDDCSD_ft_test) < epsilon +@test abs(energies["SVD-DCSD"]-ESVDDCSD_ft_test) < epsilon @opt cc project_vovo_t2=0 energies = @dfcc svd-dcsd -@test abs(energies.SVD_DCSD-ESVDDCSD_ft0_test) < epsilon +@test abs(energies["SVD-DCSD"]-ESVDDCSD_ft0_test) < epsilon @opt cc project_vovo_t2=1 energies = @dfcc svd-dcsd -@test abs(energies.SVD_DCSD-ESVDDCSD_ft1_test) < epsilon +@test abs(energies["SVD-DCSD"]-ESVDDCSD_ft1_test) < epsilon @opt cc project_vovo_t2=2 energies = @dfcc svd-dcsd -@test abs(energies.SVD_DCSD-ESVDDCSD_ft2_test) < epsilon +@test abs(energies["SVD-DCSD"]-ESVDDCSD_ft2_test) < epsilon @opt cc project_vovo_t2=3 energies = @dfcc svd-dcsd -@test abs(energies.SVD_DCSD-ESVDDCSD_ft3_test) < epsilon +@test abs(energies["SVD-DCSD"]-ESVDDCSD_ft3_test) < epsilon @opt cc ampsvdtol=1.e-3 @opt cc decompose_full_doubles=true energies = @dfcc svd-dcsd -@test abs(energies.SVD_DCSD-ESVDDCSD_fd_test) < epsilon +@test abs(energies["SVD-DCSD"]-ESVDDCSD_fd_test) < epsilon end diff --git a/test/uccsdt.jl b/test/uccsdt.jl index a2a1b92..eb1c5df 100644 --- a/test/uccsdt.jl +++ b/test/uccsdt.jl @@ -8,9 +8,9 @@ fcidump = joinpath(@__DIR__,"files","H2OP_UHF.FCIDUMP") @set cc use_kext = false calc_d_vvvv = true calc_d_vvvo = true calc_d_vovv = true calc_d_vvoo = true triangular_kext = false energies = @cc uccsdt -@test abs(last(energies)-energies.HF-ECCSDT_test) < epsilon +@test abs(last_energy(energies)-energies["HF"]-ECCSDT_test) < epsilon energies = @cc udc-ccsdt -@test abs(last(energies)-energies.HF-EDCCCSDT_test) < epsilon +@test abs(last_energy(energies)-energies["HF"]-EDCCCSDT_test) < epsilon end From c2d55dfd9d401db83933c03dd96b8c31725bd207 Mon Sep 17 00:00:00 2001 From: Daniel Kats Date: Thu, 27 Jun 2024 08:57:05 +0200 Subject: [PATCH 32/44] Add (key) syntax to ODDict to access descriptions --- docs/src/elemco.md | 9 +++++++++ src/ElemCo.jl | 2 ++ src/ccdriver.jl | 8 ++++++-- src/descdict.jl | 34 ++++++++++++++++++++++++++++++++++ src/dfhf.jl | 4 ++-- 5 files changed, 53 insertions(+), 4 deletions(-) diff --git a/docs/src/elemco.md b/docs/src/elemco.md index 20d5364..ed5c021 100644 --- a/docs/src/elemco.md +++ b/docs/src/elemco.md @@ -25,6 +25,8 @@ The driver routines and macros return energies as ordered descriptive dictionari ---------------------- | Key | Meaning | |:---:|:--------| +| `E` | Total energy | +| `Ec` | Correlation energy | | `HF` | Hartree-Fock energy | | `MP2` | MP2 energy | | `CCSD` | CCSD energy | @@ -45,6 +47,13 @@ or display the complete dictionary together with the descriptions as julia> display(energies) ``` +The values and the descriptions can be accessed using the keys as + +```julia +julia> energies["E"] # Total energy +julia> energies("E") # Description of the total energy +``` + ## [Macros](@id list_of_macros) ```@autodocs diff --git a/src/ElemCo.jl b/src/ElemCo.jl index 7583833..dae5a88 100644 --- a/src/ElemCo.jl +++ b/src/ElemCo.jl @@ -90,6 +90,8 @@ export @dfhf, @dfuhf, @cc, @dfcc, @bohf, @bouhf, @dfmcscf export @import_matrix, @export_molden # from Utils export last_energy +# from DescDict +export ODDict const __VERSION__ = "0.12.0+" diff --git a/src/ccdriver.jl b/src/ccdriver.jl index a0f87b2..d27a337 100644 --- a/src/ccdriver.jl +++ b/src/ccdriver.jl @@ -243,7 +243,9 @@ function output_energy(EC::ECInfo, En::OutDict, energies::OutDict, mname; print= end end push!(energies_out, mname*"c"=>(enecor, "$mname correlation energy"), - mname=>(enetot, "$mname total energy")) + mname=>(enetot, "$mname total energy"), + "Ec"=>(enecor, "$mname correlation energy"), + "E"=>(enetot, "$mname total energy")) return energies_out end @@ -296,7 +298,9 @@ function output_2d_energy(EC::ECInfo, En::OutDict, energies::OutDict, method; pr return merge(energies, "SING"*method*"c"=>(enecors,"$method singlet correlation energy"), "TRIP"*method*"c"=>(enecort,"$method triplet correlation energy"), "SING"*method=>(enetots,"$method singlet total energy"), - "TRIP"*method=>(enetott,"$method triplet total energy")) + "TRIP"*method=>(enetott,"$method triplet total energy"), + "Ec"=>(enecors,"$method singlet correlation energy"), + "E"=>(enetots,"$method singlet total energy")) end """ diff --git a/src/descdict.jl b/src/descdict.jl index b3f14a8..a57915e 100644 --- a/src/descdict.jl +++ b/src/descdict.jl @@ -20,6 +20,16 @@ Additionally, it stores a description of each key-value pair in the form of a st The values are stored in an ordered dictionary, which means that the order of the key-value pairs is preserved. +The values can be accessed using the `[]` syntax, e.g. `dict[key]`. +The descriptions can be accessed using the `()` syntax, e.g. `dict(key)`. +The value and description can be set using the `[]` syntax, e.g. `dict[key] = value` +or `dict[key] = (value, description)`, and the description can be set using the `()` syntax, +e.g. `dict(key, description)`. +New key-value pairs are always added to the end of the dictionary. +If the key already exists in the dictionary, the value and description are updated. +In order to add a key-value pair at the end of the dictionary, irrespectively +whether it is new or old, use the `push!` or `merge` functions. + ### Examples ```julia @@ -84,6 +94,8 @@ function ODDict{K, V}(pairs::Pair{K, V}...) where {K, V} return ODDict(keys, values, descriptions) end +ODDict(pairs::Pair{K, V}...) where {K, V} = ODDict{K, V}(pairs...) + function ODDict{K, V}(pairs::Pair{K, Tuple{V, String}}...) where {K, V} keys = K[] values = V[] @@ -96,6 +108,8 @@ function ODDict{K, V}(pairs::Pair{K, Tuple{V, String}}...) where {K, V} return ODDict(keys, values, descriptions) end +ODDict(pairs::Pair{K, Tuple{V, String}}...) where {K, V} = ODDict{K, V}(pairs...) + function Base.getindex(dict::ODDict{K, V}, key::K) where {K, V} index = findfirst(isequal(key), dict.keys) if isnothing(index) @@ -174,6 +188,26 @@ function Base.delete!(dict::ODDict{K, V}, key::K) where {K, V} deleteat!(dict.descriptions, index) end +function Base.delete!(dict::ODDict{K, V}, keys::K...) where {K, V} + for key in keys + delete!(dict, key) + end +end + +function Base.empty!(dict::ODDict) + empty!(dict.keys) + empty!(dict.values) + empty!(dict.descriptions) +end + +function (dict::ODDict)(key) + return getdescription(dict, key) +end + +function (dict::ODDict)(key, description) + setdescription!(dict, description, key) +end + """ getdescription(dict, key) diff --git a/src/dfhf.jl b/src/dfhf.jl index 7dbf6d3..c50e6d7 100644 --- a/src/dfhf.jl +++ b/src/dfhf.jl @@ -89,7 +89,7 @@ function dfhf(EC::ECInfo) draw_endline() delete_temporary_files!(EC) save!(EC, EC.options.wf.orb, cMO, description="DFHF orbitals") - return OutDict("HF"=>(EHF, "closed-shell HF energy")) + return OutDict("HF"=>(EHF, "closed-shell DF-HF energy"), "E"=>(EHF, "closed-shell DF-HF energy")) end """ @@ -171,7 +171,7 @@ function dfuhf(EC::ECInfo) draw_endline() delete_temporary_files!(EC) save!(EC, EC.options.wf.orb, cMO..., description="DFUHF orbitals") - return OutDict("UHF"=>(EHF,"UHF energy"), "HF"=>(EHF,"UHF energy")) + return OutDict("UHF"=>(EHF,"DF-UHF energy"), "HF"=>(EHF,"DF-UHF energy"), "E"=>(EHF,"DF-UHF energy")) end end #module From 378a90df893abaa0c3201c2211753158f28053b7 Mon Sep 17 00:00:00 2001 From: Daniel Kats Date: Thu, 27 Jun 2024 09:50:24 +0200 Subject: [PATCH 33/44] Use Vector{Int} for spaces instead of a mixure with ranges Tests (julia 1.10 and 1.11) have shown that it's actually faster (and no problems with type stability) --- src/ecinfos.jl | 6 ++---- src/spinmatrix.jl | 4 ++-- 2 files changed, 4 insertions(+), 6 deletions(-) diff --git a/src/ecinfos.jl b/src/ecinfos.jl index c3f5da5..080934c 100644 --- a/src/ecinfos.jl +++ b/src/ecinfos.jl @@ -19,8 +19,6 @@ export isalphaspin, space4spin, spin4space, flipspin include("options.jl") -RangeOrVector = Union{UnitRange{Int},Vector{Int}} - """ ECInfo @@ -78,7 +76,7 @@ Base.@kwdef mutable struct ECInfo <: AbstractECInfo """ files::Dict{String,String} = Dict{String,String}() """ subspaces: 'o'ccupied, 'v'irtual, 'O'ccupied-β, 'V'irtual-β, ':'/'m'/'M' full MO. """ - space::Dict{Char,RangeOrVector} = Dict{Char,RangeOrVector}() + space::Dict{Char,Vector{Int}} = Dict{Char,Vector{Int}}() end """ @@ -152,7 +150,7 @@ function setup_space!(EC::ECInfo, norb, nelec, ms2, orbsym) SP['d'] = intersect(SP['o'], SP['O']) SP['s'] = setdiff(SP['o'], SP['d']) SP['S'] = setdiff(SP['O'], SP['d']) - SP[':'] = SP['m'] = SP['M'] = 1:norb + SP[':'] = SP['m'] = SP['M'] = [1:norb;] return end diff --git a/src/spinmatrix.jl b/src/spinmatrix.jl index f717fa3..7a0c855 100644 --- a/src/spinmatrix.jl +++ b/src/spinmatrix.jl @@ -23,8 +23,8 @@ mutable struct SpinMatrix{T<:Number} end end -FSpinMatrix = SpinMatrix{Float64} -CSpinMatrix = SpinMatrix{ComplexF64} +const FSpinMatrix = SpinMatrix{Float64} +const CSpinMatrix = SpinMatrix{ComplexF64} function Base.length(mat::SpinMatrix) From 845cd0264766883e81df7275e5cf1d03ab7fdf51 Mon Sep 17 00:00:00 2001 From: Daniel Kats Date: Thu, 27 Jun 2024 10:57:56 +0200 Subject: [PATCH 34/44] Move dynamic import of spinscaling factors to a separate function --- src/ccdriver.jl | 11 +++++++---- src/cctools.jl | 2 +- 2 files changed, 8 insertions(+), 5 deletions(-) diff --git a/src/ccdriver.jl b/src/ccdriver.jl index d27a337..a46be73 100644 --- a/src/ccdriver.jl +++ b/src/ccdriver.jl @@ -228,11 +228,11 @@ function output_energy(EC::ECInfo, En::OutDict, energies::OutDict, mname; print= mname*"-O"=>(En["EO"], "open-shell component to the energy")) methodroot = method_name(ECMethod(mname), root=true) # calc SCS energy (if available) - if hasfield(ECInfos.CcOptions, Symbol(lowercase(methodroot)*"_ssfac")) + if has_spinscalingfactor(methodroot*"_ssfac") # get SCS factors (e.g., mp2_ssfac, ccsd_ssfac, dcsd_ssfac) - ssfac = getfield(EC.options.cc, Symbol(lowercase(methodroot)*"_ssfac")) - osfac = getfield(EC.options.cc, Symbol(lowercase(methodroot)*"_osfac")) - ofac = getfield(EC.options.cc, Symbol(lowercase(methodroot)*"_ofac")) + ssfac = get_spinscalingfactor(EC, methodroot*"_ssfac") + osfac = get_spinscalingfactor(EC, methodroot*"_osfac") + ofac = get_spinscalingfactor(EC, methodroot*"_ofac") ΔE = En["E"] - En["ESS"] - En["EOS"] enescs = energies["HF"] + ΔE + En["ESS"]*ssfac + En["EOS"]*osfac + En["EO"]*ofac if print @@ -249,6 +249,9 @@ function output_energy(EC::ECInfo, En::OutDict, energies::OutDict, mname; print= return energies_out end +has_spinscalingfactor(name) = hasfield(ECInfos.CcOptions, Symbol(lowercase(name))) +get_spinscalingfactor(EC::ECInfo, name) = getfield(EC.options.cc, Symbol(lowercase(name)))::Float64 + """ eval_mp2_energy(EC::ECInfo, energies::OutDict, closed_shell, restricted) diff --git a/src/cctools.jl b/src/cctools.jl index ac46a64..31d6b6a 100644 --- a/src/cctools.jl +++ b/src/cctools.jl @@ -132,7 +132,7 @@ function spin_project_amplitudes(EC::ECInfo, with_singles=true) T1a = load2idx(EC, "T_vo") T1b = load2idx(EC, "T_VO") else - T1a = T1b = [] + T1a = T1b = zeros(0, 0) end T2a = load4idx(EC, "T_vvoo") T2b = load4idx(EC, "T_VVOO") From dec18566456d3f48bf56058dfe7abfedd21a8351 Mon Sep 17 00:00:00 2001 From: Daniel Kats Date: Fri, 28 Jun 2024 14:09:39 +0200 Subject: [PATCH 35/44] Improve type stability of closed-shell ccsd --- src/cc.jl | 169 +++++++++++++++++++++------------------- src/cc_lagrange.jl | 187 +++++++++++++++++++++++---------------------- src/cc_triples.jl | 60 +++++++-------- src/cctools.jl | 17 +++-- src/descdict.jl | 6 +- src/dfcc.jl | 66 ++++++++-------- src/myio.jl | 27 ++++++- src/tensortools.jl | 18 +++++ src/utils.jl | 8 ++ 9 files changed, 313 insertions(+), 245 deletions(-) diff --git a/src/cc.jl b/src/cc.jl index 7225eff..6f453b1 100644 --- a/src/cc.jl +++ b/src/cc.jl @@ -300,9 +300,9 @@ function calc_dressed_ints(EC::ECInfo, T1, T12, o1::Char, v1::Char, o2::Char, v2 hd_vvvv = ints2(EC,v1*v2*v1*v2) vovv = ints2(EC,v1*o2*v1*v2) @tensoropt hd_vvvv[a,c,b,d] -= vovv[a,k,b,d] * T12[c,k] - vovv = nothing + vovv = NOTHING4idx save!(EC,"hd_"*v1*v2*v1*v2,hd_vvvv) - hd_vvvv = nothing + hd_vvvv = NOTHING4idx t1 = print_time(EC,t1,"dress hd_"*v1*v2*v1*v2,3) end # @@ -312,11 +312,11 @@ function calc_dressed_ints(EC::ECInfo, T1, T12, o1::Char, v1::Char, o2::Char, v2 hd_oooo2 = deepcopy(hd_oooo) oovo = ints2(EC,o1*o2*v1*o2) @tensoropt hd_oooo2[i,j,k,l] += oovo[i,j,d,l] * T1[d,k] - oovo = nothing + oovo = NOTHING4idx end ooov = ints2(EC,o1*o2*o1*v2) @tensoropt hd_oooo[i,j,k,l] += ooov[i,j,k,d] * T12[d,l] - ooov = nothing + ooov = NOTHING4idx t1 = print_time(EC,t1,"dress hd_"*o1*o2*o1*o2,3) if calc_d_vvoo # @@ -325,15 +325,15 @@ function calc_dressed_ints(EC::ECInfo, T1, T12, o1::Char, v1::Char, o2::Char, v2 vooo = ints2(EC,v1*o2*o1*o2) @tensoropt begin vooo[a,k,j,l] += voov[a,k,j,d] * T12[d,l] - voov = nothing + voov = NOTHING4idx hd_vvoo[a,c,j,l] -= vooo[a,k,j,l] * T12[c,k] - vooo = nothing + vooo = NOTHING4idx end vvov = ints2(EC,v1*v2*o1*v2) @tensoropt hd_vvoo[a,c,j,l] += vvov[a,c,j,d] * T12[d,l] - vvov = nothing + vvov = NOTHING4idx save!(EC,"hd_"*v1*v2*o1*o2,hd_vvoo) - hd_vvoo = nothing + hd_vvoo = NOTHING4idx t1 = print_time(EC,t1,"dress hd_"*v1*v2*o1*o2,3) end # <\hat a k| \hat j l> @@ -342,12 +342,12 @@ function calc_dressed_ints(EC::ECInfo, T1, T12, o1::Char, v1::Char, o2::Char, v2 @tensoropt hd_vooo[a,k,j,l] -= hd_oooo[k,i,l,j] * T1[a,i] else @tensoropt hd_vooo[a,k,j,l] -= hd_oooo2[i,k,j,l] * T1[a,i] - hd_oooo2 = nothing + hd_oooo2 = NOTHING4idx end if no2 > 0 vovo = ints2(EC,v1*o2*v1*o2) @tensoropt hd_vooo[a,k,j,l] += vovo[a,k,b,l] * T1[b,j] - vovo = nothing + vovo = NOTHING4idx end t1 = print_time(EC,t1,"dress hd_"*v1*o2*o1*o2,3) if mixed @@ -377,7 +377,7 @@ function calc_dressed_ints(EC::ECInfo, T1, T12, o1::Char, v1::Char, o2::Char, v2 oOvV = ints2(EC,o1*o2*v1*v2) d_ooov = ints2(EC,o1*o2*o1*v2) @tensoropt d_ooov[k,l,j,d] += oOvV[k,l,b,d] * T1[b,j] - oOvV = nothing + oOvV = NOTHING4idx save!(EC,"d_"*o1*o2*o1*v2,d_ooov) t1 = print_time(EC,t1,"dress d_"*o1*o2*o1*v2,3) if no1 > 0 && no2 > 0 @@ -403,7 +403,7 @@ function calc_dressed_ints(EC::ECInfo, T1, T12, o1::Char, v1::Char, o2::Char, v2 if no2 > 0 @tensoropt hd_vovo[a,k,b,l] += vovv[a,k,b,d] * T12[d,l] end - vovv = nothing + vovv = NOTHING4idx if mixed # ovvv = ints2(EC,o1*v2*v1*v2) @@ -417,7 +417,7 @@ function calc_dressed_ints(EC::ECInfo, T1, T12, o1::Char, v1::Char, o2::Char, v2 hd_ovov = ints2(EC,o1*v2*o1*v2) @tensoropt hd_ovov[k,a,l,b] += ovvv[k,a,d,b] * T1[d,l] - ovvv = nothing + ovvv = NOTHING4idx end t1 = print_time(EC,t1,"dress hd_"*v1*o2*v1*o2,3) if calc_d_vvvo @@ -429,7 +429,7 @@ function calc_dressed_ints(EC::ECInfo, T1, T12, o1::Char, v1::Char, o2::Char, v2 hd_vvvo[a,c,b,l] += vvvv[a,c,b,d] * T12[d,l] end save!(EC,"hd_"*v1*v2*v1*o2,hd_vvvo) - hd_vvvo = nothing + hd_vvvo = NOTHING4idx if mixed hd_vvov = ints2(EC,v1*v2*o1*v2) @tensoropt begin @@ -437,9 +437,9 @@ function calc_dressed_ints(EC::ECInfo, T1, T12, o1::Char, v1::Char, o2::Char, v2 hd_vvov[a,c,l,b] += vvvv[a,c,d,b] * T1[d,l] end save!(EC,"hd_"*v1*v2*o1*v2,hd_vvov) - hd_vvov = nothing + hd_vvov = NOTHING4idx end - vvvv = nothing + vvvv = NOTHING4idx t1 = print_time(EC,t1,"dress hd_"*v1*v2*v1*o2,3) end @@ -451,14 +451,14 @@ function calc_dressed_ints(EC::ECInfo, T1, T12, o1::Char, v1::Char, o2::Char, v2 save!(EC,"d_"*v1*o2*v1*v2,d_vovv) t1 = print_time(EC,t1,"dress d_"*v1*o2*v1*v2,3) if mixed - d_vovv = nothing + d_vovv = NOTHING4idx d_ovvv = ints2(EC,o1*v2*v1*v2) @tensoropt d_ovvv[i,b,a,c] -= oovv[i,j,a,c] * T12[b,j] save!(EC,"d_"*o1*v2*v1*v2,d_ovvv) t1 = print_time(EC,t1,"dress d_"*o1*v2*v1*v2,3) end end - oovv = nothing + oovv = NOTHING4idx if calc_d_vvvv # d_vvvv = load4idx(EC,"hd_"*v1*v2*v1*v2) @@ -467,27 +467,27 @@ function calc_dressed_ints(EC::ECInfo, T1, T12, o1::Char, v1::Char, o2::Char, v2 end if !mixed @tensoropt d_vvvv[a,c,b,d] -= d_vovv[c,i,d,b] * T1[a,i] - d_vovv = nothing + d_vovv = NOTHING4idx else @tensoropt d_vvvv[a,c,b,d] -= d_ovvv[i,c,b,d] * T1[a,i] - d_ovvv = nothing + d_ovvv = NOTHING4idx end save!(EC,"d_"*v1*v2*v1*v2,d_vvvv) - d_vvvv = nothing + d_vvvv = NOTHING4idx t1 = print_time(EC,t1,"dress d_"*v1*v2*v1*v2,3) end # d_vovo = hd_vovo @tensoropt d_vovo[a,k,b,l] -= d_oovo[i,k,b,l] * T1[a,i] save!(EC,"d_"*v1*o2*v1*o2,d_vovo) - hd_vovo = nothing - d_vovo = nothing + hd_vovo = NOTHING4idx + d_vovo = NOTHING4idx if mixed d_ovov = hd_ovov @tensoropt d_ovov[k,a,l,b] -= d_ooov[k,i,l,b] * T12[a,i] save!(EC,"d_"*o1*v2*o1*v2,d_ovov) - hd_ovov = nothing - d_ovov = nothing + hd_ovov = NOTHING4idx + d_ovov = NOTHING4idx end t1 = print_time(EC,t1,"dress d_"*v1*o2*v1*o2,3) # @@ -508,16 +508,16 @@ function calc_dressed_ints(EC::ECInfo, T1, T12, o1::Char, v1::Char, o2::Char, v2 d_vvvo = load4idx(EC,"hd_"*v1*v2*v1*o2) @tensoropt d_vvvo[a,c,b,l] -= d_voov[c,i,l,b] * T1[a,i] save!(EC,"d_"*v1*v2*v1*o2,d_vvvo) - d_vvvo = nothing + d_vvvo = NOTHING4idx else d_vvvo = load4idx(EC,"hd_"*v1*v2*v1*o2) @tensoropt d_vvvo[c,a,b,l] -= d_ovvo[i,a,b,l] * T1[c,i] save!(EC,"d_"*v1*v2*v1*o2,d_vvvo) - d_vvvo = nothing + d_vvvo = NOTHING4idx d_vvov = load4idx(EC,"hd_"*v1*v2*o1*v2) @tensoropt d_vvov[a,c,l,b] -= d_voov[a,i,l,b] * T12[c,i] save!(EC,"d_"*v1*v2*o1*v2,d_vvov) - d_vvov = nothing + d_vvov = NOTHING4idx end t1 = print_time(EC,t1,"dress d_"*v1*v2*v1*o2,3) end @@ -534,14 +534,14 @@ function calc_dressed_ints(EC::ECInfo, T1, T12, o1::Char, v1::Char, o2::Char, v2 d_vvoo = load4idx(EC,"hd_"*v1*v2*o1*o2) hd_vvvo = load4idx(EC,"hd_"*v1*v2*v1*o2) @tensoropt d_vvoo[a,c,j,l] += hd_vvvo[a,c,b,l] * T1[b,j] - hd_vvvo = nothing + hd_vvvo = NOTHING4idx if !mixed @tensoropt d_vvoo[a,c,j,l] -= d_vooo[c,i,l,j] * T1[a,i] else @tensoropt d_vvoo[a,c,j,l] -= d_ovoo[i,c,j,l] * T1[a,i] end save!(EC,"d_"*v1*v2*o1*o2,d_vvoo) - d_vvoo = nothing + d_vvoo = NOTHING4idx t1 = print_time(EC,t1,"dress d_"*v1*v2*o1*o2,3) end end @@ -577,7 +577,7 @@ function dress_fock_closedshell(EC::ECInfo, T1) end d_vovo = load4idx(EC,"d_vovo") @tensoropt fvv[a,b] := 2.0*d_vovo[a,k,b,k] - d_vovo = nothing + d_vovo = NOTHING4idx d_voov = load4idx(EC,"d_voov") @tensoropt fvv[a,b] -= d_voov[a,k,k,b] dfock[SP['o'],SP['o']] += foo @@ -626,11 +626,11 @@ function dress_fock_samespin(EC::ECInfo, T1, o1::Char, v1::Char) end d_vovo = load4idx(EC,"d_"*v1*o1*v1*o1) @tensoropt fvv[a,b] := d_vovo[a,k,b,k] - d_vovo = nothing + d_vovo = NOTHING4idx if no1 > 0 d_voov = load4idx(EC,"d_"*v1*o1*o1*v1) @tensoropt fvv[a,b] -= d_voov[a,k,k,b] - d_voov = nothing + d_voov = NOTHING4idx end dfock[SP[o1],SP[o1]] += foo dfock[SP[v1],SP[o1]] += fvo @@ -653,25 +653,25 @@ function dress_fock_oppositespin(EC::ECInfo) foo[i,j] := d_oooo[i,k,j,k] fOO[i,j] := d_oooo[k,i,k,j] end - d_oooo = nothing + d_oooo = NOTHING4idx d_vooo = load4idx(EC,"d_vOoO") @tensoropt fvo[a,i] := d_vooo[a,k,i,k] - d_vooo = nothing + d_vooo = NOTHING4idx d_ovoo = load4idx(EC,"d_oVoO") @tensoropt fVO[a,i] := d_ovoo[k,a,k,i] - d_ovoo = nothing + d_ovoo = NOTHING4idx d_oovo = load4idx(EC,"d_oOvO") @tensoropt fov[i,a] := d_oovo[i,k,a,k] - d_oovo = nothing + d_oovo = NOTHING4idx d_ooov = load4idx(EC,"d_oOoV") @tensoropt fOV[i,a] := d_ooov[k,i,k,a] - d_ooov = nothing + d_ooov = NOTHING4idx d_vovo = load4idx(EC,"d_vOvO") @tensoropt fvv[a,b] := d_vovo[a,k,b,k] - d_vovo = nothing + d_vovo = NOTHING4idx d_ovov = load4idx(EC,"d_oVoV") @tensoropt fVV[a,b] := d_ovov[k,a,k,b] - d_ovov = nothing + d_ovov = NOTHING4idx dfocka = load2idx(EC,"df_mm") dfocka[SP['o'],SP['o']] += foo @@ -1029,12 +1029,12 @@ function calc_cc_resid(EC::ECInfo, T1, T2; dc=false, tworef=false, fixref=false) D2 = calc_D2(EC, T1, T2)[:,:,trioo] # D^ij_rs @tensoropt K2pqx[p,r,x] := int2[p,r,q,s] * D2[q,s,x] - D2 = nothing + D2 = NOTHING3idx K2pq = Array{Float64}(undef,norb,norb,nocc,nocc) K2pq[:,:,trioo] = K2pqx trioor = CartesianIndex.(reverse.(Tuple.(trioo))) @tensor K2pq[:,:,trioor][p,q,x] = K2pqx[q,p,x] - K2pqx = nothing + K2pqx = NOTHING3idx else D2 = calc_D2(EC, T1, T2) # D^ij_rs @@ -1661,7 +1661,7 @@ function calc_cc_resid(EC::ECInfo, T1, T2, T3; dc=false, tworef=false, fixref=fa R1 = zeros(nvirt,nocc) - dfock = load(EC,"df_mm") + dfock = load2idx(EC,"df_mm") fij = dfock[SP['o'],SP['o']] fab = dfock[SP['v'],SP['v']] @@ -2016,13 +2016,36 @@ end - `"EW"` - singlet/triplet energy contribution (for 2D methods) """ function calc_cc(EC::ECInfo, method::ECMethod) + print_info(method_name(method)) + Amps, exc_ranges = starting_amplitudes(EC, method) + singles, doubles, triples = exc_ranges[1:3] + + Eh, NormT1, NormT2, NormT3 = cc_iterations!(Amps, singles, doubles, triples, EC, method) + + if method.exclevel[1] == :full + try2save_singles!(EC, Amps[singles]...) + end + try2save_doubles!(EC, Amps[doubles]...) + println() + if method.exclevel[3] == :full + output_norms(["T1"=>sqrt(NormT1), "T2"=>sqrt(NormT2), "T3"=>sqrt(NormT3)]) + else + output_norms(["T1"=>sqrt(NormT1), "T2"=>sqrt(NormT2)]) + end + println() + if has_prefix(method, "2D") + ene = Eh["E"] + Eh["EIAS"] + W = load1idx(EC,"2d_ccsd_W")[1] + push!(Eh, "EW"=>W, "E"=>ene) + end + return Eh +end + +function cc_iterations!(Amps, singles, doubles, triples, EC::ECInfo, method::ECMethod) dc = (method.theory[1:2] == "DC") tworef = has_prefix(method, "2D") fixref = (has_prefix(method, "FRS") || has_prefix(method, "FRT")) restrict = has_prefix(method, "R") - print_info(method_name(method)) - Amps, exc_ranges = starting_amplitudes(EC, method) - singles, doubles, triples = exc_ranges[1:3] if is_unrestricted(method) || has_prefix(method, "R") @assert (length(singles) == 2) && (length(doubles) == 3) && (length(triples) == 4) else @@ -2032,11 +2055,11 @@ function calc_cc(EC::ECInfo, method::ECMethod) diis = Diis(EC) NormR1 = 0.0 - NormT1 = 0.0 - NormT2 = 0.0 - NormT3 = 0.0 + NormT1::Float64 = 0.0 + NormT2::Float64 = 0.0 + NormT3::Float64 = 0.0 do_sing = (method.exclevel[1] == :full) - Eh = 0.0 + Eh = OutDict() En1 = 0.0 Eias = 0.0 converged = false @@ -2045,6 +2068,7 @@ function calc_cc(EC::ECInfo, method::ECMethod) for it in 1:EC.options.cc.maxit t1 = time_ns() Res = calc_cc_resid(EC, Amps...; dc, tworef, fixref) + @assert typeof(Res) == typeof(Amps) if restrict spin_project!(EC, Res...) end @@ -2105,23 +2129,10 @@ function calc_cc(EC::ECInfo, method::ECMethod) if !converged println("WARNING: CC iterations did not converge!") end - if do_sing - try2save_singles!(EC, Amps[singles]...) - end - try2save_doubles!(EC, Amps[doubles]...) - println() - if method.exclevel[3] == :full - output_norms(["T1"=>sqrt(NormT1), "T2"=>sqrt(NormT2), "T3"=>sqrt(NormT3)]) - else - output_norms(["T1"=>sqrt(NormT1), "T2"=>sqrt(NormT2)]) - end - println() - if has_prefix(method, "2D") - ene = Eh["E"] + Eias - W = load1idx(EC,"2d_ccsd_W")[1] - push!(Eh, "EIAS"=>Eias, "EW"=>W, "E"=>ene) + if tworef + push!(Eh, "EIAS"=>Eias) end - return Eh + return Eh, NormT1, NormT2, NormT3 end """ @@ -2139,8 +2150,8 @@ function calc_ccsdt(EC::ECInfo, useT3=false, cc3=false) print_info("DC-CCSDT") end calc_integrals_decomposition(EC) - T1 = read_starting_guess4amplitudes(EC, 1) - T2 = read_starting_guess4amplitudes(EC, 2) + T1 = read_starting_guess4amplitudes(EC, Val(1)) + T2 = read_starting_guess4amplitudes(EC, Val(2)) if useT3 calc_triples_decomposition(EC) else @@ -2209,8 +2220,8 @@ end """ function add_to_singles_and_doubles_residuals(EC, R1, R2) SP = EC.space - ooPfile, ooP = mmap(EC, "d_ooL") - ovPfile, ovP = mmap(EC, "d_ovL") + ooPfile, ooP = mmap3idx(EC, "d_ooL") + ovPfile, ovP = mmap3idx(EC, "d_ovL") Txyz = load3idx(EC, "T_XXX") U = load3idx(EC, "C_voX") @@ -2225,7 +2236,7 @@ function add_to_singles_and_doubles_residuals(EC, R1, R2) BBU = nothing @tensoropt Bov[i,a,P,X] := ooP[j,i,P] * U[a,j,X] - vvPfile, vvP = mmap(EC, "d_vvL") + vvPfile, vvP = mmap3idx(EC, "d_vvL") @tensoropt Bvo[a,i,P,X] := vvP[a,b,P] * U[b,i,X] close(vvPfile) vvP = nothing @@ -2286,7 +2297,7 @@ function calc_triples_decomposition(EC::ECInfo) nvirt = n_virt_orbs(EC) Triples_Amplitudes = zeros(nvirt, nocc, nvirt, nocc, nvirt, nocc) - t3file, T3 = mmap(EC, "T_vvvooo") + t3file, T3 = mmap4idx(EC, "T_vvvooo") trippp = [CartesianIndex(i,j,k) for k in 1:nocc for j in 1:k for i in 1:j] for ijk in axes(T3,4) i,j,k = Tuple(trippp[ijk]) #trippp is giving the indices according to the joint index ijk as a tuple @@ -2328,9 +2339,9 @@ end ``T^i_{aXY}`` from `T2` (and `UvoX`) """ function calc_4idx_T3T3_XY(EC::ECInfo, T2, UvoX, ϵX) - voPfile, voP = mmap(EC, "d_voL") - ooPfile, ooP = mmap(EC, "d_ooL") - vvPfile, vvP = mmap(EC, "d_vvL") + voPfile, voP = mmap3idx(EC, "d_voL") + ooPfile, ooP = mmap3idx(EC, "d_ooL") + vvPfile, vvP = mmap3idx(EC, "d_vvL") @tensoropt TXai[X,a,i] := UvoX[b,j,X] * T2[a,b,i,j] @tensoropt dU[P,X] := voP[c,k,P] * UvoX[c,k,X] @@ -2411,10 +2422,10 @@ function calc_triples_residuals(EC::ECInfo, T1, T2, cc3 = false) #display(T3_XYZ) #load df coeff - ovPfile, ovP = mmap(EC, "d_ovL") - voPfile, voP = mmap(EC, "d_voL") - ooPfile, ooP = mmap(EC, "d_ooL") - vvPfile, vvP = mmap(EC, "d_vvL") + ovPfile, ovP = mmap3idx(EC, "d_ovL") + voPfile, voP = mmap3idx(EC, "d_voL") + ooPfile, ooP = mmap3idx(EC, "d_ooL") + vvPfile, vvP = mmap3idx(EC, "d_vvL") #load dressed fock matrices SP = EC.space diff --git a/src/cc_lagrange.jl b/src/cc_lagrange.jl index 7b504be..b3ecddb 100644 --- a/src/cc_lagrange.jl +++ b/src/cc_lagrange.jl @@ -12,14 +12,14 @@ function calc_ccsd_vector_times_Jacobian(EC::ECInfo, U1, U2; dc=false) nocc = n_occ_orbs(EC) norb = n_orbs(EC) - T1 = load(EC, "T_vo") - T2 = load(EC, "T_vvoo") + T1 = load2idx(EC, "T_vo") + T2 = load4idx(EC, "T_vvoo") # Calculate 1RDM intermediates D1, dD1 = calc_1RDM(EC, U1, U2, T1, T2) t1 = print_time(EC, t1, "calculate 1RDM",2) - fock = load(EC,"f_mm") - dfock = load(EC,"df_mm") + fock = load2idx(EC,"f_mm") + dfock = load2idx(EC,"df_mm") fov = fock[SP['o'],SP['v']] dfov = dfock[SP['o'],SP['v']] if length(U1) > 0 @@ -30,7 +30,7 @@ function calc_ccsd_vector_times_Jacobian(EC::ECInfo, U1, U2; dc=false) oovv = ints2(EC,"oovv") @tensoropt R2[e,f,m,n] := 2.0 * oovv[m,n,e,f] - oovv[n,m,e,f] - int2 = load(EC, "d_oooo") + int2 = load4idx(EC, "d_oooo") if !dc @tensoropt int2[m,n,i,j] += oovv[m,n,c,d] * T2[c,d,i,j] end @@ -102,7 +102,7 @@ function calc_ccsd_vector_times_Jacobian(EC::ECInfo, U1, U2; dc=false) # ``x_a^e = \tilde T^{kl}_{ac} v_{kl}^{ec}`` @tensoropt xvv[a,e] := tT2[a,c,k,l] * oovv[k,l,e,c] t1 = print_time(EC, t1, "x_a^e = \\tilde T^{kl}_{ac} v_{kl}^{ec}",2) - int2 = load(EC, "d_voov") + int2 = load4idx(EC, "d_voov") # ``tR^{ef}_{mn} += Λ_{in}^{af} (\hat v_{am}^{ie} + v_{km}^{ce} \tilde T^{ik}_{ac})`` @tensoropt int2[a,m,i,e] += oovv[k,m,c,e] * tT2[a,c,i,k] @tensoropt tR2[e,f,m,n] += U2[a,f,i,n] * int2[a,m,i,e] @@ -112,13 +112,13 @@ function calc_ccsd_vector_times_Jacobian(EC::ECInfo, U1, U2; dc=false) @tensoropt tR2[e,f,m,n] += 0.5 * U1[e,m] * dfov[n,f] t1 = print_time(EC, t1, "tR^{ef}_{mn} += 0.5 U_m^e \\hat f_n^f",2) end - int2 = load(EC, "d_vovv") + int2 = load4idx(EC, "d_vovv") if length(U1) > 0 # ``tR^{ef}_{mn} += 0.5 Λ_n^a \hat v_{am}^{fe}`` @tensoropt tR2[e,f,m,n] += 0.5 * U1[a,n] * int2[a,m,f,e] t1 = print_time(EC, t1, "tR^{ef}_{mn} += 0.5 U_n^a \\hat v_{am}^{fe}",2) end - oovo = load(EC, "d_oovo") + oovo = load4idx(EC, "d_oovo") if length(U1) > 0 # ``tR^{ef}_{mn} -= 0.5 Λ_i^f \hat v_{mn}^{ei}`` @tensoropt tR2[e,f,m,n] -= 0.5 * U1[f,i] * oovo[m,n,e,i] @@ -184,7 +184,7 @@ function calc_ccsd_vector_times_Jacobian(EC::ECInfo, U1, U2; dc=false) if length(U1) > 0 # ``R^e_m -= 2 Λ_{ij}^{eb} (v_{mb}^{cd} T^{ij}_{cd})`` # ``(v_{mb}^{cd} T^{ij}_{cd})`` has to be precalculated - vT_ovoo = load(EC, "vT_ovoo") + vT_ovoo = load4idx(EC, "vT_ovoo") @tensoropt R1[e,m] -= 2.0 * U2[e,b,i,j] * vT_ovoo[m,b,i,j] vT_ovoo = nothing t1 = print_time(EC, t1, "R^e_m -= 2 U_{ij}^{eb} (v_{mb}^{cd} T^{ij}_{cd})",2) @@ -197,7 +197,7 @@ function calc_ccsd_vector_times_Jacobian(EC::ECInfo, U1, U2; dc=false) pR2[e,f,m,n] -= U2[e,f,i,n] * (dfock[SP['o'],SP['o']][m,i] + fac * xoo[m,i]) end t1 = print_time(EC, t1, "pR^{ef}_{mn} += U_{in}^{af} (\\hat x_a^e δ_m^i - \\hat x_m^i δ_a^e)",2) - int2 = load(EC, "d_vovo") + int2 = load4idx(EC, "d_vovo") # ``pR^{ef}_{mn} -= Λ_{in}^{af} \hat v_{am}^{ei}`` @tensoropt pR2[e,f,m,n] -= U2[a,f,i,n] * int2[a,m,e,i] t1 = print_time(EC, t1, "pR^{ef}_{mn} -= U_{in}^{af} \\hat v_{am}^{ei}",2) @@ -215,7 +215,7 @@ function calc_ccsd_vector_times_Jacobian(EC::ECInfo, U1, U2; dc=false) @tensoropt R1[e,m] += dD1[p,q] * (2.0 * int2[:,:,:,SP['v']][q,m,p,e] - int2[:,:,SP['v'],:][q,m,e,p]) t1 = print_time(EC, t1, "R^e_m += \\hat D_p^q (2 v_{mq}^{ep} - v_{mq}^{pe})",2) # ``R^e_m -= 2 Λ_{ij}^{eb} \hat v_{mb}^{ij}`` - int2 = load(EC, "d_vooo") + int2 = load4idx(EC, "d_vooo") @tensoropt R1[e,m] -= 2.0 * U2[e,b,i,j] * int2[b,m,j,i] t1 = print_time(EC, t1, "R^e_m -= 2 U_{ij}^{eb} \\hat v_{mb}^{ij}",2) @tensoropt begin @@ -271,13 +271,13 @@ Return R1a, R1b, R2a, R2b, R2ab function calc_ccsd_vector_times_Jacobian(EC::ECInfo, U1a, U1b, U2a, U2b, U2ab; dc=false) t1 = time_ns() - T2ab = load(EC, "T_vVoO") + T2ab = load4idx(EC, "T_vVoO") # Calculate 1RDM intermediates - T1 = load(EC, "T_vo") - T2 = load(EC, "T_vvoo") + T1 = load2idx(EC, "T_vo") + T2 = load4idx(EC, "T_vvoo") D1α, dD1α = calc_1RDM(EC, U1a, U1b, U2a, U2ab, T1, T2, T2ab, :α) - T1 = load(EC, "T_VO") - T2 = load(EC, "T_VVOO") + T1 = load2idx(EC, "T_VO") + T2 = load4idx(EC, "T_VVOO") D1β, dD1β = calc_1RDM(EC, U1b, U1a, U2b, U2ab, T1, T2, T2ab, :β) T1 = T2 = T2ab = nothing t1 = print_time(EC, t1, "calculate 1RDM",2) @@ -320,8 +320,8 @@ function calc_ccsd_vector_times_Jacobian4spin(EC::ECInfo, U1, U2, U2ab, norb = n_orbs(EC) - fock = load(EC,"f_"*m4s*m4s) - dfock = load(EC,"df_"*m4s*m4s) + fock = load2idx(EC,"f_"*m4s*m4s) + dfock = load2idx(EC,"df_"*m4s*m4s) fov = fock[SP[o4s],SP[v4s]] dfov = dfock[SP[o4s],SP[v4s]] if length(U1) > 0 @@ -345,11 +345,11 @@ function calc_ccsd_vector_times_Jacobian4spin(EC::ECInfo, U1, U2, U2ab, R1 = U1 end - T1 = load(EC, "T_"*v4s*o4s) - T2 = load(EC, "T_"*v4s*v4s*o4s*o4s) + T1 = load2idx(EC, "T_"*v4s*o4s) + T2 = load4idx(EC, "T_"*v4s*v4s*o4s*o4s) oovv = ints2(EC,o4s*o4s*v4s*v4s) @tensoropt R2[e,f,m,n] := oovv[m,n,e,f] - oovv[n,m,e,f] - int2 = load(EC, "d_"*o4s*o4s*o4s*o4s) + int2 = load4idx(EC, "d_"*o4s*o4s*o4s*o4s) if !dc @tensoropt int2[m,n,i,j] += 0.5 * oovv[m,n,c,d] * T2[c,d,i,j] end @@ -404,14 +404,14 @@ function calc_ccsd_vector_times_Jacobian4spin(EC::ECInfo, U1, U2, U2ab, @tensoropt R2[e,f,m,n] += D2[m,n,k,l] * oovv[k,l,e,f] t1 = print_time(EC, t1, "R^{ef}_{mn} += D_{mn}^{kl} v_{kl}^{ef}",2) end - d_oovo = load(EC, "d_"*o4s*o4s*v4s*o4s) + d_oovo = load4idx(EC, "d_"*o4s*o4s*v4s*o4s) if length(U1) > 0 # ``R_e^m += D_{mj}^{kl} \hat v_{kl}^{ej}`` @tensoropt R1[e,m] += D2[m,j,k,l] * d_oovo[k,l,e,j] t1 = print_time(EC, t1, "R_e^m += D_{mj}^{kl} \\hat v_{kl}^{ej}",2) end # ``D_{ib}^{aj} = Λ_{ik}^{ac} T^{jk}_{bc} + Λ_{iK}^{aC} T^{jK}_{bC}`` - T2ab = load(EC, "T_vVoO") + T2ab = load4idx(EC, "T_vVoO") @tensoropt D2[a,b,i,j] := U2[a,c,i,k] * T2[b,c,j,k] if isα @tensoropt D2[a,b,i,j] += U2ab[a,C,i,K] * T2ab[b,C,j,K] @@ -425,7 +425,7 @@ function calc_ccsd_vector_times_Jacobian4spin(EC::ECInfo, U1, U2, U2ab, @tensoropt R1[e,m] += D2[e,d,i,l] * (d_oovo[m,l,d,i] - d_oovo[l,m,d,i]) t1 = print_time(EC, t1, "R_e^m += D_{id}^{el} (\\hat v_{ml}^{di}-\\hat v_{lm}^{di})",2) end - int2 = load(EC, "d_"*v4s*o4s*v4s*v4s) + int2 = load4idx(EC, "d_"*v4s*o4s*v4s*v4s) if length(R1) > 0 # ``R_e^m += D_{md}^{al} (\hat v_{al}^{ed}-\hat v_{al}^{de})`` @tensoropt R1[e,m] += D2[a,d,m,l] * (int2[a,l,e,d] - int2[a,l,d,e]) @@ -450,8 +450,8 @@ function calc_ccsd_vector_times_Jacobian4spin(EC::ECInfo, U1, U2, U2ab, end fac = dc ? 0.5 : 1.0 # ``aR^{ef}_{mn} += 0.5(\hat x_c^e Λ_{mn}^{cf} - \hat x_m^k Λ_{kn}^{ef})`` - x_vv = load(EC, "vT_"*v4s*v4s) - x_oo = load(EC, "vT_"*o4s*o4s) + x_vv = load2idx(EC, "vT_"*v4s*v4s) + x_oo = load2idx(EC, "vT_"*o4s*o4s) dx_vv = dfock[SP[v4s],SP[v4s]] - fac * x_vv dx_oo = dfock[SP[o4s],SP[o4s]] + fac * x_oo @tensoropt begin @@ -477,12 +477,12 @@ function calc_ccsd_vector_times_Jacobian4spin(EC::ECInfo, U1, U2, U2ab, end t1 = print_time(EC, t1, "aR^{ef}_{mn} += f D_m^k v_{kn}^{ef} - f D_c^e v_{mn}^{cf}",2) # ``aR^{ef}_{mn} += Λ_{in}^{af} \bar y_{am}^{ie}`` - vT_voov = load(EC, "vT_"*v4s*o4s*o4s*v4s) + vT_voov = load4idx(EC, "vT_"*v4s*o4s*o4s*v4s) @tensoropt aR2[e,f,m,n] += U2[a,f,i,n] * vT_voov[a,m,i,e] vT_voov = nothing t1 = print_time(EC, t1, "aR^{ef}_{mn} += U_{in}^{af} \\bar y_{am}^{ie}",2) # ``aR^{ef}_{mn} += Λ_{mJ}^{eB} \bar y_{Bn}^{Jf}`` - vT_VoOv = load(EC, "vT_"*v4os*o4s*o4os*v4s) + vT_VoOv = load4idx(EC, "vT_"*v4os*o4s*o4os*v4s) if isα @tensoropt aR2[e,f,m,n] += U2ab[e,B,m,J] * vT_VoOv[B,n,J,f] else @@ -496,16 +496,16 @@ function calc_ccsd_vector_times_Jacobian4spin(EC::ECInfo, U1, U2, U2ab, t1 = print_time(EC, t1, "R^{ef}_{mn} += aR^{ef}_{mn} + aR^{fe}_{nm} - aR^{ef}_{nm} - aR^{fe}_{mn}",2) if length(R1) > 0 # ``R^e_m -= Λ_{ij}^{eb} \hat v_{bm}^{ji}`` - int2 = load(EC, "d_"*v4s*o4s*o4s*o4s) + int2 = load4idx(EC, "d_"*v4s*o4s*o4s*o4s) @tensoropt R1[e,m] -= U2[b,e,j,i] * int2[b,m,j,i] int2 = nothing t1 = print_time(EC, t1, "R^e_m -= U_{ij}^{eb} \\hat v_{bm}^{ji}",2) # ``R^e_m -= 0.5 Λ_{ij}^{eb} (\hat v_{mb}^{cd} T^{ij}_{cd})`` - vT_ovoo = load(EC, "vT_"*o4s*v4s*o4s*o4s) + vT_ovoo = load4idx(EC, "vT_"*o4s*v4s*o4s*o4s) @tensoropt R1[e,m] -= 0.5 * U2[e,b,i,j] * vT_ovoo[m,b,i,j] t1 = print_time(EC, t1, "R^e_m -= 0.5 U_{ij}^{eb} (\\hat v_{mb}^{cd} T^{ij}_{cd})",2) # ``R^e_m -= Λ_{iJ}^{eB} (\hat v_{mB}^{cD} T^{iJ}_{cD})`` - vT_ovoo = load(EC, "vT_"*o4s*v4os*o4s*o4os) + vT_ovoo = load4idx(EC, "vT_"*o4s*v4os*o4s*o4os) if isα @tensoropt R1[e,m] -= U2ab[e,B,i,J] * vT_ovoo[m,B,i,J] else @@ -539,14 +539,14 @@ function calc_ccsd_vector_times_Jacobian4ab(EC::ECInfo, U1a, U1b, U2a, U2b, U2ab noccb = n_occb_orbs(EC) norb = n_orbs(EC) - dfocka = load(EC,"df_mm") - dfockb = load(EC,"df_MM") + dfocka = load2idx(EC,"df_mm") + dfockb = load2idx(EC,"df_MM") dfaov = dfocka[SP['o'],SP['v']] dfbov = dfockb[SP['O'],SP['V']] if length(U1a) > 0 # ``R^e_m -= Λ_{iJ}^{eB} \hat v_{mB}^{iJ}`` - int2 = load(EC, "d_oVoO") + int2 = load4idx(EC, "d_oVoO") @tensoropt R1a[e,m] := - U2ab[e,B,i,J] * int2[m,B,i,J] int2 = nothing else @@ -554,15 +554,15 @@ function calc_ccsd_vector_times_Jacobian4ab(EC::ECInfo, U1a, U1b, U2a, U2b, U2ab end if length(U1b) > 0 # ``R^E_M -= Λ_{jI}^{bE} \hat v_{bM}^{jI}`` - int2 = load(EC, "d_vOoO") + int2 = load4idx(EC, "d_vOoO") @tensoropt R1b[E,M] := - U2ab[b,E,j,I] * int2[b,M,j,I] int2 = nothing else R1b = U1b end - T1a = load(EC, "T_vo") - T1b = load(EC, "T_VO") + T1a = load2idx(EC, "T_vo") + T1b = load2idx(EC, "T_VO") # the 4-external part if EC.options.cc.use_kext # the `kext` part @@ -615,8 +615,8 @@ function calc_ccsd_vector_times_Jacobian4ab(EC::ECInfo, U1a, U1b, U2a, U2b, U2ab oOvV = ints2(EC,"oOvV") @tensoropt R2[e,F,m,N] += oOvV[m,N,e,F] - T2ab = load(EC, "T_vVoO") - int2 = load(EC, "d_oOoO") + T2ab = load4idx(EC, "T_vVoO") + int2 = load4idx(EC, "d_oOoO") if !dc @tensoropt int2[m,N,i,J] += oOvV[m,N,c,D] * T2ab[c,D,i,J] end @@ -632,13 +632,13 @@ function calc_ccsd_vector_times_Jacobian4ab(EC::ECInfo, U1a, U1b, U2a, U2b, U2ab @tensoropt R2[e,F,m,N] += D2[m,N,k,L] * oOvV[k,L,e,F] t1 = print_time(EC, t1, "R^{eF}_{mN} += D_{mN}^{kL} v_{kL}^{eF}",2) end - d_oOvO = load(EC, "d_oOvO") + d_oOvO = load4idx(EC, "d_oOvO") if length(R1a) > 0 # ``R^e_m += D_{mJ}^{kL} \hat v_{kL}^{eJ}`` @tensoropt R1a[e,m] += D2[m,J,k,L] * d_oOvO[k,L,e,J] t1 = print_time(EC, t1, "R^e_m += D_{mJ}^{kL} \\hat v_{kL}^{eJ}",2) end - d_oOoV = load(EC, "d_oOoV") + d_oOoV = load4idx(EC, "d_oOoV") if length(R1b) > 0 # ``R^E_M += D_{jM}^{lK} \hat v_{lK}^{jE}`` @tensoropt R1b[E,M] += D2[j,M,l,K] * d_oOoV[l,K,j,E] @@ -647,7 +647,7 @@ function calc_ccsd_vector_times_Jacobian4ab(EC::ECInfo, U1a, U1b, U2a, U2b, U2ab if length(R1a) > 0 # ``\bar D_{iB}^{aJ} = Λ_{ik}^{ac} T^{kJ}_{cB} + Λ_{iK}^{aC} T^{JK}_{BC}`` @tensoropt D2[a,B,i,J] := U2a[a,c,i,k] * T2ab[c,B,k,J] - T2b = load(EC, "T_VVOO") + T2b = load4idx(EC, "T_VVOO") @tensoropt D2[a,B,i,J] += U2ab[a,C,i,K] * T2b[C,B,K,J] t1 = print_time(EC, t1, "\\bar D_{iB}^{aJ} = U_{ik}^{ac} T^{kJ}_{cB} + U_{iK}^{aC} T^{JK}_{BC}",2) T2b = nothing @@ -655,7 +655,7 @@ function calc_ccsd_vector_times_Jacobian4ab(EC::ECInfo, U1a, U1b, U2a, U2b, U2ab @tensoropt R1a[e,m] -= D2[e,D,i,L] * d_oOoV[m,L,i,D] t1 = print_time(EC, t1, "R_e^m -= \\bar D_{iD}^{eL} \\hat v_{mL}^{iD}",2) end - d_vOvV = load(EC, "d_vOvV") + d_vOvV = load4idx(EC, "d_vOvV") if length(R1a) > 0 # ``R^e_m += \bar D_{mD}^{aL} \hat v_{aL}^{eD}`` @tensoropt R1a[e,m] += D2[a,D,m,L] * d_vOvV[a,L,e,D] @@ -687,7 +687,7 @@ function calc_ccsd_vector_times_Jacobian4ab(EC::ECInfo, U1a, U1b, U2a, U2b, U2ab if length(R1b) > 0 # ``\bar D_{Ib}^{Aj} = Λ_{IK}^{AC} T^{jK}_{bC} + Λ_{kI}^{cA} T^{jk}_{bc}`` @tensoropt D2[A,b,I,j] := U2b[A,C,I,K] * T2ab[b,C,j,K] - T2a = load(EC, "T_vvoo") + T2a = load4idx(EC, "T_vvoo") @tensoropt D2[A,b,I,j] += U2ab[c,A,k,I] * T2a[c,b,k,j] t1 = print_time(EC, t1, "\\bar D_{Ib}^{Aj} = U_{IK}^{AC} T^{jK}_{bC} + U_{kI}^{cA} T^{jk}_{bc}",2) T2a = nothing @@ -695,7 +695,7 @@ function calc_ccsd_vector_times_Jacobian4ab(EC::ECInfo, U1a, U1b, U2a, U2b, U2ab @tensoropt R1b[E,M] -= D2[E,d,I,l] * d_oOvO[l,M,d,I] t1 = print_time(EC, t1, "R_E^M -= \\bar D_{Id}^{El} \\hat v_{lM}^{dI}",2) end - d_oVvV = load(EC, "d_oVvV") + d_oVvV = load4idx(EC, "d_oVvV") if length(R1b) > 0 # ``R^E_M += \bar D_{Md}^{Al} \hat v_{lA}^{dE}`` @tensoropt R1b[E,M] += D2[A,d,M,l] * d_oVvV[l,A,d,E] @@ -744,10 +744,10 @@ function calc_ccsd_vector_times_Jacobian4ab(EC::ECInfo, U1a, U1b, U2a, U2b, U2ab d_oOvO = nothing fac = dc ? 0.5 : 1.0 # ``R^{eF}_{mN} += \hat x_c^e Λ_{mN}^{cF} - \hat x_m^k Λ_{kN}^{eF} + ...`` - x_vv = load(EC, "vT_vv") - x_VV = load(EC, "vT_VV") - x_oo = load(EC, "vT_oo") - x_OO = load(EC, "vT_OO") + x_vv = load2idx(EC, "vT_vv") + x_VV = load2idx(EC, "vT_VV") + x_oo = load2idx(EC, "vT_oo") + x_OO = load2idx(EC, "vT_OO") dx_vv = dfocka[SP['v'],SP['v']] - fac * x_vv dx_VV = dfockb[SP['V'],SP['V']] - fac * x_VV dx_oo = dfocka[SP['o'],SP['o']] + fac * x_oo @@ -768,35 +768,35 @@ function calc_ccsd_vector_times_Jacobian4ab(EC::ECInfo, U1a, U1b, U2a, U2b, U2ab end t1 = print_time(EC, t1, "R^{eF}_{mN} += f D_m^k v_{kN}^{eF} - f D_c^e v_{mN}^{cF} + ...",2) # ``R^{eF}_{mN} += Λ_{iN}^{aF} \bar y_{am}^{ie}`` - vT_voov = load(EC, "vT_voov") + vT_voov = load4idx(EC, "vT_voov") @tensoropt R2[e,F,m,N] += U2ab[a,F,i,N] * vT_voov[a,m,i,e] vT_voov = nothing t1 = print_time(EC, t1, "R^{eF}_{mN} += U_{iN}^{aF} \\bar y_{am}^{ie}",2) # ``R^{eF}_{mN} += Λ_{mJ}^{eB} \bar y_{BN}^{JF}`` - vT_VOOV = load(EC, "vT_VOOV") + vT_VOOV = load4idx(EC, "vT_VOOV") @tensoropt R2[e,F,m,N] += U2ab[e,B,m,J] * vT_VOOV[B,N,J,F] vT_VOOV = nothing t1 = print_time(EC, t1, "R^{eF}_{mN} += U_{mJ}^{eB} \\bar y_{BN}^{JF}",2) # ``R^{eF}_{mN} += Λ_{im}^{ae} \bar y_{aN}^{iF}`` - vT_vOoV = load(EC, "vT_vOoV") + vT_vOoV = load4idx(EC, "vT_vOoV") @tensoropt R2[e,F,m,N] += U2a[a,e,i,m] * vT_vOoV[a,N,i,F] vT_vOoV = nothing t1 = print_time(EC, t1, "R^{eF}_{mN} += U_{im}^{ae} \\bar y_{aN}^{iF}",2) # ``R^{eF}_{mN} += Λ_{IN}^{AF} \bar y_{Am}^{Ie}`` - vT_VoOv = load(EC, "vT_VoOv") + vT_VoOv = load4idx(EC, "vT_VoOv") @tensoropt R2[e,F,m,N] += U2b[A,F,I,N] * vT_VoOv[A,m,I,e] vT_VoOv = nothing t1 = print_time(EC, t1, "R^{eF}_{mN} += U_{IN}^{AF} \\bar y_{Am}^{Ie}",2) # ``R^{eF}_{mN} -= Λ_{mJ}^{aF} (\hat v_{aN}^{eJ} \red{- v_{kN}^{eD} T^{kJ}_{aD}})`` - int2 = load(EC, "d_vOvO") + int2 = load4idx(EC, "d_vOvO") if !dc - T2ab = load(EC, "T_vVoO") + T2ab = load4idx(EC, "T_vVoO") @tensoropt int2[a,N,e,J] -= oOvV[k,N,e,D] * T2ab[a,D,k,J] end @tensoropt R2[e,F,m,N] -= U2ab[a,F,m,J] * int2[a,N,e,J] t1 = print_time(EC, t1, "R^{eF}_{mN} -= U_{mJ}^{aF} (\\hat v_{aN}^{eJ} + v_{kN}^{eD} T^{kJ}_{aD})",2) # ``R^{eF}_{mN} -= Λ_{iN}^{eB} (\hat v_{mB}^{iF} \red{- v_{mL}^{cF} T^{iL}_{cB}})`` - int2 = load(EC, "d_oVoV") + int2 = load4idx(EC, "d_oVoV") if !dc @tensoropt int2[m,B,i,F] -= oOvV[m,L,c,F] * T2ab[c,B,i,L] T2ab = nothing @@ -972,7 +972,7 @@ end and store as `vT_ovoo[m,b,i,j]`. """ function calc_3ext_times_T2(EC::ECInfo, T2::AbstractArray, o1::Char='o', v1::Char='v', o2::Char='o', v2::Char='v') - int2 = load(EC, "d_"*v2*o1*v2*v1) + int2 = load4idx(EC, "d_"*v2*o1*v2*v1) @tensoropt vT_ovoo[m,b,i,j] := int2[b,m,d,c] * T2[d,c,j,i] save!(EC, "vT_"*o1*v2*o1*o2, vT_ovoo) end @@ -989,7 +989,7 @@ end function calc_3ext_times_T2(EC::ECInfo, T2a::AbstractArray, T2b::AbstractArray, T2ab::AbstractArray) calc_3ext_times_T2(EC, T2a, 'o', 'v', 'o', 'v') calc_3ext_times_T2(EC, T2b, 'O', 'V', 'O', 'V') - int2 = load(EC, "d_oVvV") + int2 = load4idx(EC, "d_oVvV") @tensoropt vT_oVoO[m,B,i,J] := int2[m,B,c,D] * T2ab[c,D,i,J] save!(EC, "vT_oVoO", vT_oVoO) int2 = vT_oVoO = nothing @@ -1039,9 +1039,9 @@ end """ function calc_rings_vT2(EC::ECInfo, T2a::AbstractArray, T2b::AbstractArray, T2ab::AbstractArray; dc=false) # αα and βα - vT_voov = load(EC, "d_voov") - @tensoropt vT_voov[a,m,i,e] -= load(EC, "d_vovo")[a,m,e,i] - @tensoropt vT_VoOv[B,n,J,f] := load(EC, "d_oVvO")[n,B,f,J] + vT_voov = load4idx(EC, "d_voov") + @tensoropt vT_voov[a,m,i,e] -= load4idx(EC, "d_vovo")[a,m,e,i] + @tensoropt vT_VoOv[B,n,J,f] := load4idx(EC, "d_oVvO")[n,B,f,J] # add x terms oovv = ints2(EC, "oovv") if dc @@ -1054,9 +1054,9 @@ function calc_rings_vT2(EC::ECInfo, T2a::AbstractArray, T2b::AbstractArray, T2ab @tensoropt vT_VoOv[A,m,I,e] += T2ab[d,A,l,I] * int2[l,m,d,e] # ββ and αβ - vT_VOOV = load(EC, "d_VOOV") - @tensoropt vT_VOOV[A,M,I,E] -= load(EC, "d_VOVO")[A,M,E,I] - vT_vOoV = load(EC, "d_vOoV") + vT_VOOV = load4idx(EC, "d_VOOV") + @tensoropt vT_VOOV[A,M,I,E] -= load4idx(EC, "d_VOVO")[A,M,E,I] + vT_vOoV = load4idx(EC, "d_vOoV") # add x terms oovv = ints2(EC, "OOVV") if dc @@ -1089,11 +1089,11 @@ end Return ``⟨Λ|Ψ⟩ = ⟨Λ_1|T_1⟩ + ⟨Λ_2|T_2+\\frac{1}{2}T_1 T_1⟩``. """ function calc_correlation_norm(EC::ECInfo, U1, U2) - T2 = load(EC, "T_vvoo") + T2 = load4idx(EC, "T_vvoo") Norm = 0.0 @tensoropt Norm += U2[a,b,i,j] * T2[a,b,i,j] if length(U1) > 0 - T1 = load(EC, "T_vo") + T1 = load2idx(EC, "T_vo") if length(T1) > 0 @tensoropt Norm += U2[a,b,i,j] * T1[a,i] * T1[b,j] @tensoropt Norm += U1[a,i] * T1[a,i] @@ -1111,16 +1111,16 @@ end Return ``⟨Λ|Ψ⟩ = ⟨Λ_1|T_1⟩ + ⟨Λ_2|T_2+\\frac{1}{2}T_1 T_1⟩``. """ function calc_correlation_norm(EC::ECInfo, U1a, U1b, U2a, U2b, U2ab) - T2 = load(EC, "T_vvoo") + T2 = load4idx(EC, "T_vvoo") Norm = 0.0 @tensoropt Norm += 0.25*(U2a[a,b,i,j] * T2[a,b,i,j]) - T2 = load(EC, "T_VVOO") + T2 = load4idx(EC, "T_VVOO") @tensoropt Norm += 0.25*(U2b[a,b,i,j] * T2[a,b,i,j]) - T2 = load(EC, "T_vVoO") + T2 = load4idx(EC, "T_vVoO") @tensoropt Norm += U2ab[a,b,i,j] * T2[a,b,i,j] if length(U1a) > 0 || length(U1b) > 0 - T1a = load(EC, "T_vo") - T1b = load(EC, "T_VO") + T1a = load2idx(EC, "T_vo") + T1b = load2idx(EC, "T_VO") if length(T1a) > 0 @tensoropt Norm += 0.5*(U2a[a,b,i,j] * T1a[a,i] * T1a[b,j]) @tensoropt Norm += U1a[a,i] * T1a[a,i] @@ -1144,10 +1144,23 @@ end Exact specification of the method is given by `method`. """ function calc_lm_cc(EC::ECInfo, method::ECMethod) - dc = (method.theory == "DC" || last(method.theory,2) == "DC") print_info(method_name(method)*" Lagrange multipliers") LMs, exc_ranges = starting_amplitudes(EC, method) singles, doubles, triples = exc_ranges[1:3] + + NormLM1, NormLM2 = lm_cc_iterations!(LMs, singles, doubles, triples, EC, method) + + if method.exclevel[1] == :full + try2save_singles!(EC, LMs[singles]...; type="LM") + end + try2save_doubles!(EC, LMs[doubles]...; type="LM") + println() + output_norms(["LM1"=>sqrt(NormLM1), "LM2"=>sqrt(NormLM2)]) + println() +end + +function lm_cc_iterations!(LMs, singles, doubles, triples, EC::ECInfo, method::ECMethod) + dc = (method.theory == "DC" || last(method.theory,2) == "DC") if is_unrestricted(method) @assert (length(singles) == 2) && (length(doubles) == 3) && (length(triples) == 4) else @@ -1160,21 +1173,21 @@ function calc_lm_cc(EC::ECInfo, method::ECMethod) calc_vT2_intermediates(EC, LMs[doubles]...; dc) diis = Diis(EC) - transform_amplitudes2lagrange_multipliers!(LMs, exc_ranges) + transform_amplitudes2lagrange_multipliers!(LMs, (singles,doubles,triples)) do_sing = (method.exclevel[1] == :full) - if !do_sing - if is_unrestricted(method) - LMs[singles[1]] = Float64[] - LMs[singles[2]] = Float64[] - else - LMs[singles[1]] = Float64[] - end - end + # if !do_sing + # if is_unrestricted(method) + # LMs[singles[1]] = Float64[] + # LMs[singles[2]] = Float64[] + # else + # LMs[singles[1]] = Float64[] + # end + # end NormR1 = 0.0 - NormLM1 = 0.0 - NormLM2 = 0.0 + NormLM1::Float64 = 0.0 + NormLM2::Float64 = 0.0 ΛTNorm = 0.0 converged = false t0 = time_ns() @@ -1208,11 +1221,5 @@ function calc_lm_cc(EC::ECInfo, method::ECMethod) if !converged println("WARNING: CC-LM iterations did not converge!") end - if do_sing - try2save_singles!(EC, LMs[singles]...; type="LM") - end - try2save_doubles!(EC, LMs[doubles]...; type="LM") - println() - output_norms(["LM1"=>sqrt(NormLM1), "LM2"=>sqrt(NormLM2)]) - println() + return NormLM1, NormLM2 end \ No newline at end of file diff --git a/src/cc_triples.jl b/src/cc_triples.jl index cdba3fc..d60ccdd 100644 --- a/src/cc_triples.jl +++ b/src/cc_triples.jl @@ -37,8 +37,8 @@ end Return ( `"ET3"`=(T)-energy, `"ET3b"`=[T]-energy)) `OutDict`. """ function calc_pertT_closed_shell(EC::ECInfo; save_t3=false) - T1 = load(EC,"T_vo") - T2 = load(EC,"T_vvoo") + T1 = load2idx(EC,"T_vo") + T2 = load4idx(EC,"T_vvoo") # ``v_{ij}^{ab}``, reordered to ``v^{ab}_{ij}`` vv_oo = permutedims(ints2(EC,"oovv"),[3,4,1,2]) # ``v_{ab}^{ck}`` @@ -137,7 +137,7 @@ function calc_pertT_closed_shell(EC::ECInfo; save_t3=false) # singles contribution @tensoropt En3 = T1[a,i] * IntX[a,i] # fock contribution - fov = load(EC,"f_mm")[EC.space['o'],EC.space['v']] + fov = load2idx(EC,"f_mm")[EC.space['o'],EC.space['v']] @tensoropt En3 += fov[i,a] * IntY[a,i] En3 += Enb3 return OutDict("ET3"=>En3, "ET3b"=>Enb3) @@ -153,10 +153,10 @@ end Return ( `"ET3"`=(T) energy, `"ET3b"`=[T] energy) `OutDict`. """ function calc_ΛpertT_closed_shell(EC::ECInfo) - T1 = load(EC,"T_vo") - T2 = load(EC,"T_vvoo") - U1 = load(EC,"U_vo") - U2 = contra2covariant(load(EC,"U_vvoo")) + T1 = load2idx(EC,"T_vo") + T2 = load4idx(EC,"T_vvoo") + U1 = load2idx(EC,"U_vo") + U2 = contra2covariant(load4idx(EC,"U_vvoo")) # ``v_{ij}^{ab}``, reordered to ``v^{ab}_{ij}`` vv_oo = permutedims(ints2(EC,"oovv"),[3,4,1,2]) # ``v_{ab}^{ck}`` @@ -273,7 +273,7 @@ function calc_ΛpertT_closed_shell(EC::ECInfo) # singles contribution @tensoropt En3 = 0.5 * (U1[a,i] * IntX[a,i]) # fock contribution - fov = load(EC,"f_mm")[EC.space['o'],EC.space['v']] + fov = load2idx(EC,"f_mm")[EC.space['o'],EC.space['v']] @tensoropt En3 += fov[i,a] * IntY[a,i] En3 += Enb3 return OutDict("ET3"=>En3, "ET3b"=>Enb3) @@ -287,19 +287,19 @@ end Return ( `"ET3"`=(T)-energy, `"ET3b"`=[T]-energy)) `OutDict`. """ function calc_pertT_unrestricted(EC::ECInfo) - T1a = load(EC,"T_vo") - T2 = load(EC,"T_vvoo") + T1a = load2idx(EC,"T_vo") + T2 = load4idx(EC,"T_vvoo") En3a, Enb3a = values(calc_pertT_samespin(EC, T1a, T2, :α)) - T1b = load(EC,"T_VO") - T2ba = permutedims(load(EC,"T_vVoO"), [2,1,4,3]) + T1b = load2idx(EC,"T_VO") + T2ba = permutedims(load4idx(EC,"T_vVoO"), [2,1,4,3]) En3ab, Enb3ab = values(calc_pertT_mixedspin(EC, T1a, T2, T1b, T2ba, :α)) T2ba = nothing - T2 = load(EC,"T_VVOO") + T2 = load4idx(EC,"T_VVOO") En3b, Enb3b = values(calc_pertT_samespin(EC, T1b, T2, :β)) - T2ab = load(EC,"T_vVoO") + T2ab = load4idx(EC,"T_vVoO") En3ba, Enb3ba = values(calc_pertT_mixedspin(EC, T1b, T2, T1a, T2ab, :β)) En3 = En3a + En3b + En3ab + En3ba @@ -315,24 +315,24 @@ end Return ( `"ET3"`=(T)-energy, `"ET3b"`=[T]-energy)) `OutDict`. """ function calc_ΛpertT_unrestricted(EC::ECInfo) - U1a = load(EC,"U_vo") - U1b = load(EC,"U_VO") - T2 = load(EC,"T_vvoo") - U2 = load(EC,"U_vvoo") + U1a = load2idx(EC,"U_vo") + U1b = load2idx(EC,"U_VO") + T2 = load4idx(EC,"T_vvoo") + U2 = load4idx(EC,"U_vvoo") En3a, Enb3a = values(calc_ΛpertT_samespin(EC, T2, U1a, U2, :α)) - T2ba = permutedims(load(EC,"T_vVoO"), [2,1,4,3]) - U2ba = permutedims(load(EC,"U_vVoO"), [2,1,4,3]) + T2ba = permutedims(load4idx(EC,"T_vVoO"), [2,1,4,3]) + U2ba = permutedims(load4idx(EC,"U_vVoO"), [2,1,4,3]) En3ab, Enb3ab = values(calc_ΛpertT_mixedspin(EC, T2, T2ba, U1a, U2, U1b, U2ba, :α)) T2ba = nothing U2ba = nothing - T2 = load(EC,"T_VVOO") - U2 = load(EC,"U_VVOO") + T2 = load4idx(EC,"T_VVOO") + U2 = load4idx(EC,"U_VVOO") En3b, Enb3b = values(calc_ΛpertT_samespin(EC, T2, U1b, U2, :β)) - T2ab = load(EC,"T_vVoO") - U2ab = load(EC,"U_vVoO") + T2ab = load4idx(EC,"T_vVoO") + U2ab = load4idx(EC,"U_vVoO") En3ba, Enb3ba = values(calc_ΛpertT_mixedspin(EC, T2, T2ab, U1b, U2, U1a, U2ab, :β)) En3 = En3a + En3b + En3ab + En3ba @@ -423,7 +423,7 @@ function calc_pertT_samespin(EC::ECInfo, T1, T2, spin::Symbol) @tensoropt En3 = T1[a,i] * IntX[a,i] # fock contribution m = space4spin('m', spin==:α) - fov = load(EC,"f_"*m*m)[SP[o],SP[v]] + fov = load2idx(EC,"f_"*m*m)[SP[o],SP[v]] @tensoropt En3 += 0.5 * (fov[i,a] * IntY[a,i]) En3 += Enb3 return OutDict("ET3"=>En3, "ET3b"=>Enb3) @@ -558,10 +558,10 @@ function calc_pertT_mixedspin(EC::ECInfo, T1, T2, T1os, T2mix, spin::Symbol) @tensoropt En3 += T1os[A,I] * IntXos[A,I] # fock contribution m = space4spin('m', isα) - fov = load(EC,"f_"*m*m)[SP[o],SP[v]] + fov = load2idx(EC,"f_"*m*m)[SP[o],SP[v]] @tensoropt En3 += fov[i,a] * IntY[a,i] M = space4spin('m', !isα) - fOV = load(EC,"f_"*M*M)[SP[O],SP[V]] + fOV = load2idx(EC,"f_"*M*M)[SP[O],SP[V]] @tensoropt En3 += 0.5 * (fOV[I,A] * IntYos[A,I]) En3 += Enb3 return OutDict("ET3"=>En3, "ET3b"=>Enb3) @@ -681,7 +681,7 @@ function calc_ΛpertT_samespin(EC::ECInfo, T2, U1, U2, spin::Symbol) @tensoropt En3 = U1[a,i] * IntX[a,i] # fock contribution m = space4spin('m', spin==:α) - fov = load(EC,"f_"*m*m)[SP[o],SP[v]] + fov = load2idx(EC,"f_"*m*m)[SP[o],SP[v]] @tensoropt En3 += 0.5 * (fov[i,a] * IntY[a,i]) En3 += Enb3 return OutDict("ET3"=>En3, "ET3b"=>Enb3) @@ -875,10 +875,10 @@ function calc_ΛpertT_mixedspin(EC::ECInfo, T2, T2mix, U1, U2, U1os, U2mix, spin @tensoropt En3 += U1os[A,I] * IntXos[A,I] # fock contribution m = space4spin('m', isα) - fov = load(EC,"f_"*m*m)[SP[o],SP[v]] + fov = load2idx(EC,"f_"*m*m)[SP[o],SP[v]] @tensoropt En3 += fov[i,a] * IntY[a,i] M = space4spin('m', !isα) - fOV = load(EC,"f_"*M*M)[SP[O],SP[V]] + fOV = load2idx(EC,"f_"*M*M)[SP[O],SP[V]] @tensoropt En3 += 0.5 * (fOV[I,A] * IntYos[A,I]) En3 += Enb3 return OutDict("ET3"=>En3, "ET3b"=>Enb3) diff --git a/src/cctools.jl b/src/cctools.jl index 4f37862..be1eaba 100644 --- a/src/cctools.jl +++ b/src/cctools.jl @@ -641,14 +641,14 @@ function try2start_doubles(EC::ECInfo; type="T") end """ - read_starting_guess4amplitudes(EC::ECInfo, level::Int, spins...) + read_starting_guess4amplitudes(EC::ECInfo, ::Val{level}, spins...) Read starting guess for excitation `level`. The guess will be read from `T_vo`, `T_VO`, `T_vvoo` etc files. If the file does not exist, the guess will be a zeroed-vector. """ -function read_starting_guess4amplitudes(EC::ECInfo, level::Int, spins...) +function read_starting_guess4amplitudes(EC::ECInfo, ::Val{level}, spins...) where level if length(spins) == 0 spins = [:α for i in 1:level] end @@ -664,9 +664,9 @@ function read_starting_guess4amplitudes(EC::ECInfo, level::Int, spins...) end filename = "T_"*spaces if file_exists(EC, filename) - return load(EC, filename) + return load(EC, filename, Val(level*2)) else - return zeros(len_spaces(EC, spaces)...) + return zeros(len_spaces(EC, spaces)...)::Array{Float64,level*2} end end @@ -731,11 +731,11 @@ function starting_amplitudes(EC::ECInfo, method::ECMethod) end if is_unrestricted(method) || has_prefix(method, "R") namps = sum([i + 1 for i in 1:highest_full_exc]) - exc_ranges = [1:2, 3:5, 6:9] + exc_ranges = UnitRange{Int}[1:2, 3:5, 6:9] spins = [(:α,), (:β,), (:α, :α), (:β, :β), (:α, :β), (:α, :α, :α), (:β, :β, :β), (:α, :α, :β), (:α, :β, :β)] else namps = highest_full_exc - exc_ranges = [1:1, 2:2, 3:3] + exc_ranges = UnitRange{Int}[1:1, 2:2, 3:3] spins = [(:α,), (:α, :α), (:α, :α, :α)] end Amps = AbstractArray[Float64[] for i in 1:namps] @@ -743,11 +743,11 @@ function starting_amplitudes(EC::ECInfo, method::ECMethod) for (iex,ex) in enumerate(method.exclevel) if ex == :full for iamp in exc_ranges[iex] - Amps[iamp] = read_starting_guess4amplitudes(EC, iex, spins[iamp]...) + Amps[iamp] = read_starting_guess4amplitudes(EC, Val(iex), spins[iamp]...) end end end - return Amps, exc_ranges + return Tuple(Amps), exc_ranges end """ @@ -763,6 +763,7 @@ function transform_amplitudes2lagrange_multipliers!(Amps, exc_ranges) @assert (unrestricted && length(doubles) == 3) || (!unrestricted && length(doubles) == 1) # add singles to doubles add_singles2doubles!(Amps[doubles]..., Amps[singles]...) + return end """ diff --git a/src/descdict.jl b/src/descdict.jl index a57915e..b6632b5 100644 --- a/src/descdict.jl +++ b/src/descdict.jl @@ -330,14 +330,14 @@ function Base.push!(dict::ODDict{K, V}, pair::Pair{K, Tuple{V, String}}) where { push!(dict, pair.first, pair.second...) end -function Base.push!(dict::ODDict{K, V}, pairs::Pair{K, V}...) where {K, V} +function Base.push!(dict::ODDict{K, V}, pairs::Vararg{Pair{K, V},N}) where {K, V, N} for pair in pairs - push!(dict, pair) + push!(dict, pair.first, pair.second::V) end return dict end -function Base.push!(dict::ODDict{K, V}, pairs::Pair{K, Tuple{V, String}}...) where {K, V} +function Base.push!(dict::ODDict{K, V}, pairs::Vararg{Pair{K, Tuple{V, String}}}) where {K, V} for pair in pairs push!(dict, pair) end diff --git a/src/dfcc.jl b/src/dfcc.jl index 840ade8..2af5734 100644 --- a/src/dfcc.jl +++ b/src/dfcc.jl @@ -33,13 +33,13 @@ export calc_dressed_3idx, calc_svd_dc """ function get_ssv_osvˣˣ(EC::ECInfo) if file_exists(EC, "ssd_^XX") - return load(EC, "ssd_^XX"), load(EC, "osd_^XX") + return load2idx(EC, "ssd_^XX"), load2idx(EC, "osd_^XX") end if !file_exists(EC, "d_ovL") || !file_exists(EC, "C_voX") error("Files d_ovL or C_voX do not exist!") end - UvoX = load(EC, "C_voX") - ovLfile, ovL = mmap(EC, "d_ovL") + UvoX = load3idx(EC, "C_voX") + ovLfile, ovL = mmap3idx(EC, "d_ovL") nocc, nvirt, nL = size(ovL) LBlks = get_auxblks(nL) @@ -68,8 +68,8 @@ end """ function gen_vₓˣᴸ(EC::ECInfo) t1 = time_ns() - UvoX = load(EC, "C_voX") - mmLfile, mmL = mmap(EC, "mmL") + UvoX = load3idx(EC, "C_voX") + mmLfile, mmL = mmap3idx(EC, "mmL") SP = EC.space nL = size(mmL, 3) nX = size(UvoX, 3) @@ -109,7 +109,7 @@ function calc_deco_hylleraas(EC::ECInfo, T1, T2, R1, R2) error("Wrong dimensionality of T2!") end if full_t2 - ovL = load(EC, "d_ovL") + ovL = load3idx(EC, "d_ovL") @tensoropt begin int2[a,b,i,j] := R2[a,b,i,j] + ovL[i,a,L] * ovL[j,b,L] ET2d = T2[a,b,i,j] * int2[a,b,i,j] @@ -125,14 +125,14 @@ function calc_deco_hylleraas(EC::ECInfo, T1, T2, R1, R2) ET2OS = T2[X,Y] * (osvxx[X,Y] + R2[X,Y]) ET2SS = T2[Y,X] * (ssvxx[X,Y] + R2[X,Y]) end - UvoX = load(EC, "C_voX") + UvoX = load3idx(EC, "C_voX") @tensoropt ET2SS -= T2[X,Y] * ((((R2[X',Y'] * UvoX[a,i,X']) * UvoX[b,j,Y']) * UvoX[a,j,X]) * UvoX[b,i,Y]) UvoX = nothing ET2 = ET2SS + ET2OS end if length(T1) > 0 - dfockc_ov = load(EC, "dfc_ov") - dfocke_ov = load(EC, "dfe_ov") + dfockc_ov = load2idx(EC, "dfc_ov") + dfocke_ov = load2idx(EC, "dfe_ov") @tensoropt begin ET1d = T1[a,i] * dfockc_ov[i,a] ET1ex = T1[a,i] * dfocke_ov[i,a] @@ -140,7 +140,7 @@ function calc_deco_hylleraas(EC::ECInfo, T1, T2, R1, R2) ET1SS = ET1d - ET1ex ET1OS = ET1d ET1 = ET1SS + ET1OS - fov = load(EC,"f_mm")[SP['o'],SP['v']] + fov = load2idx(EC,"f_mm")[SP['o'],SP['v']] @tensoropt ET1 += 2.0*((fov[i,a] + 2.0 * R1[a,i])*T1[a,i]) ET2 += ET1 ET2SS += ET1SS @@ -188,7 +188,7 @@ function calc_df_doubles_energy(EC::ECInfo, T2) if !file_exists(EC, "d_ovL") error("File d_ovL does not exist!") end - ovL = load(EC, "d_ovL") + ovL = load3idx(EC, "d_ovL") @tensoropt begin int2[a,b,i,j] := ovL[i,a,L] * ovL[j,b,L] ET2d = T2[a,b,i,j] * int2[a,b,i,j] @@ -206,7 +206,7 @@ end Calculate dressed integrals for 3-index integrals from file `mmL`. """ function calc_dressed_3idx(EC::ECInfo, T1) - mmLfile, mmL = mmap(EC, "mmL") + mmLfile, mmL = mmap3idx(EC, "mmL") # println(size(mmL)) SP = EC.space nL = size(mmL, 3) @@ -246,7 +246,7 @@ end Save non-dressed 3-index integrals from file `mmL` to dressed files. """ function save_pseudodressed_3idx(EC::ECInfo) - mmLfile, mmL = mmap(EC, "mmL") + mmLfile, mmL = mmap3idx(EC, "mmL") # println(size(mmL)) SP = EC.space nL = size(mmL, 3) @@ -283,8 +283,8 @@ end are stored in files `dfc_ov` and `dfe_ov`. """ function dress_df_fock(EC::ECInfo, T1) - dfock = load(EC, "f_mm") - mmLfile, mmL = mmap(EC, "mmL") + dfock = load2idx(EC, "f_mm") + mmLfile, mmL = mmap3idx(EC, "mmL") nL = size(mmL, 3) occ = EC.space['o'] virt = EC.space['v'] @@ -323,7 +323,7 @@ end Save non-dressed DF fock matrix from file `f_mm` to dressed file `df_mm`. """ function save_pseudo_dress_df_fock(EC::ECInfo) - dfock = load(EC, "f_mm") + dfock = load2idx(EC, "f_mm") dfc = zeros(size(dfock)) occ = EC.space['o'] virt = EC.space['v'] @@ -372,7 +372,7 @@ function calc_doubles_decomposition_without_doubles(EC::ECInfo) SP = EC.space # first approximation for U^{iX}_a from 3-index integrals v_a^{iL} # TODO: add shifted Laplace transform! - mmLfile, mmL = mmap(EC, "mmL") + mmLfile, mmL = mmap3idx(EC, "mmL") nL = size(mmL, 3) tol2 = (EC.options.cc.ampsvdtol*EC.options.cc.ampsvdfac) voL = mmL[SP['v'],SP['o'],:] @@ -445,7 +445,7 @@ function calc_doubles_decomposition_with_doubles(EC::ECInfo) nocc = n_occ_orbs(EC) nvirt = n_virt_orbs(EC) SP = EC.space - mmLfile, mmL = mmap(EC, "mmL") + mmLfile, mmL = mmap3idx(EC, "mmL") nL = size(mmL, 3) voL = mmL[SP['v'],SP['o'],:] T2 = try2start_doubles(EC) @@ -595,7 +595,7 @@ end ``T̃_{XY} = U^{†a}_{iX} U^{†b}_{jY} T̃^{ij}_{ab}`` """ function contravariant_deco_doubles(EC::ECInfo, T2, projx=false) - UvoX = load(EC, "C_voX") + UvoX = load3idx(EC, "C_voX") # calc T^{ij}_{ab} = U^{iX}_a U^{jY}_b T_{XY} @tensoropt Tabij[a,b,i,j] := UvoX[a,i,X] * (UvoX[b,j,Y] * T2[X,Y]) if projx @@ -621,8 +621,8 @@ function calc_voX(EC::ECInfo; calc_vᵥᵒˣ=false, calc_vᵛₒₓ=false) if !file_exists(EC, "C_voX") error("File C_voX does not exist!") end - vvLfile, vvL = mmap(EC, "d_vvL") - ooLfile, ooL = mmap(EC, "d_ooL") + vvLfile, vvL = mmap3idx(EC, "d_vvL") + ooLfile, ooL = mmap3idx(EC, "d_ooL") nL = size(vvL, 3) nocc = size(ooL,1) nvirt = size(vvL,1) @@ -636,7 +636,7 @@ function calc_voX(EC::ECInfo; calc_vᵥᵒˣ=false, calc_vᵛₒₓ=false) end close(vvLfile) close(ooLfile) - UvoX = load(EC, "C_voX") + UvoX = load3idx(EC, "C_voX") v_voX = v_voX2 = similar(UvoX, 0) if calc_vᵥᵒˣ # ``v_a^{iX} = v_{ac}^{ki} U^{kX}_c`` @@ -668,7 +668,7 @@ function calc_svd_dcsd_residual(EC::ECInfo, T1, T2) dress_df_fock(EC, T1) t1 = print_time(EC, t1, "dressed fock", 2) end - UvoX = load(EC, "C_voX") + UvoX = load3idx(EC, "C_voX") use_projected_exchange = EC.options.cc.use_projx project_amps_vovo_t2 = EC.options.cc.project_vovo_t2 != 2 project_resid_vovo_t2 = EC.options.cc.project_vovo_t2 >= 2 @@ -695,7 +695,7 @@ function calc_svd_dcsd_residual(EC::ECInfo, T1, T2) error("Wrong dimensionality of T2!") end SP = EC.space - dfock = load(EC, "df_mm") + dfock = load2idx(EC, "df_mm") if length(T1) > 0 R1 = dfock[SP['v'],SP['o']] else @@ -709,10 +709,10 @@ function calc_svd_dcsd_residual(EC::ECInfo, T1, T2) end x_vv = dfock[SP['v'],SP['v']] x_oo = dfock[SP['o'],SP['o']] - voLfile, voL = mmap(EC, "d_voL") - ovLfile, ovL = mmap(EC, "d_ovL") - vvLfile, vvL = mmap(EC, "d_vvL") - ooLfile, ooL = mmap(EC, "d_ooL") + voLfile, voL = mmap3idx(EC, "d_voL") + ovLfile, ovL = mmap3idx(EC, "d_ovL") + vvLfile, vvL = mmap3idx(EC, "d_vvL") + ooLfile, ooL = mmap3idx(EC, "d_ooL") f_ov = dfock[SP['o'],SP['v']] if length(R1) > 0 if full_tt2 @@ -790,7 +790,7 @@ function calc_svd_dcsd_residual(EC::ECInfo, T1, T2) t1 = print_time(EC, t1, "``U^{i}_{jX} = U^{†b}_{jX} T^i_b``", 2) end XBigBlks = get_auxblks(nX, 512) - XXLfile, XXL = mmap(EC, "X^XL") + XXLfile, XXL = mmap3idx(EC, "X^XL") d_XXLfile, d_XXL = newmmap(EC, "d_X^XL", (nX,nX,nL)) for X in XBigBlks V_UvoX = @view UvoX[:,:,X] @@ -820,7 +820,7 @@ function calc_svd_dcsd_residual(EC::ECInfo, T1, T2) XXL = nothing close(XXLfile) UTooX = nothing - d_XXLfile, d_XXL = mmap(EC, "d_X^XL") + d_XXLfile, d_XXL = mmap3idx(EC, "d_X^XL") for L in LBlks v_XXL = @view d_XXL[:,:,L] # ``R_{XY} += v_X^{X'L} T_{X'Y'} v_Y^{Y'L}`` @@ -922,7 +922,7 @@ function calc_svd_dc(EC::ECInfo, method::ECMethod) fullEMP2 = calc_doubles_decomposition(EC) t1 = print_time(EC, t1, "doubles decomposition", 2) if do_sing - T1 = read_starting_guess4amplitudes(EC, 1) + T1 = read_starting_guess4amplitudes(EC, Val(1)) else T1 = Float64[] end @@ -943,9 +943,9 @@ function calc_svd_dc(EC::ECInfo, method::ECMethod) Eh = 0.0 t0 = time_ns() if EC.options.cc.use_full_t2 - T2 = load(EC,"T_vvoo") + T2 = load4idx(EC,"T_vvoo") else - T2 = load(EC,"T_XX") + T2 = load2idx(EC,"T_XX") end # calc starting guess energy truncEMP2 = calc_deco_doubles_energy(EC, T2) diff --git a/src/myio.jl b/src/myio.jl index 97ec6c9..8181a06 100644 --- a/src/myio.jl +++ b/src/myio.jl @@ -88,7 +88,7 @@ function mioload(fname::String, ::Val{N}, T::Type=Float64) where {N} end append!(dims, len) else - @assert N == ndim "Inconsistency in reading dimensions of data!" + @assert N == ndim "Inconsistency in reading dimensions of data! Expected $N, got $ndim." for idim in 1:ndim append!(dims, read(io, Int)) end @@ -200,7 +200,30 @@ function miommap(fname::String) for idim in 1:ndim append!(dims, read(io, Int)) end - return io, mmap(io, Array{T,ndim}, Tuple(dims)) + return io, mmap(io, Array{T,ndim}, dims) end +function miommap(fname::String, ::Val{N}, T::Type=Float64) where {N} + io = open(fname) + # type of numbers + itype = read(io, Int) + if itype > length(Types) + error("Inconsistency in reading type of data!") + end + @assert T == Types[itype] "Inconsistency in reading type of data!" + # number of arrays in the file + narray = read(io, Int) + if narray != 1 + error("miommap can map only single arrays!") + end + ndim = read(io, Int) + dims = Int[] + @assert N == ndim "Inconsistency in reading dimensions of data! Expected $N, got $ndim." + for idim in 1:ndim + append!(dims, read(io, Int)) + end + return io, mmap(io, Array{T,N}, Tuple(dims)::NTuple{N,Int}) +end + + end #module diff --git a/src/tensortools.jl b/src/tensortools.jl index 77db854..33efefa 100644 --- a/src/tensortools.jl +++ b/src/tensortools.jl @@ -10,6 +10,7 @@ using ..ElemCo.MIO export save!, load, load_all, mmap, newmmap, closemmap, flushmmap export load1idx, load2idx, load3idx, load4idx, load5idx, load6idx export load1idx_all, load2idx_all, load3idx_all, load4idx_all, load5idx_all, load6idx_all +export mmap1idx, mmap2idx, mmap3idx, mmap4idx, mmap5idx, mmap6idx export ints1, ints2, detri_int2 export sqrtinvchol, invchol, rotate_eigenvectors_to_real, svd_thr export get_spaceblocks @@ -112,6 +113,23 @@ function mmap(EC::ECInfo, fname::String) return miommap(joinpath(EC.scr, fname*EC.ext)) end +function mmap(EC::ECInfo, fname::String, ::Val{N}, T::Type=Float64) where {N} + return miommap(joinpath(EC.scr, fname*EC.ext), Val(N), T) +end + +for N in 1:6 + mmapN = Symbol("mmap$(N)idx") + mmapNall = Symbol("mmap$(N)idx_all") + @eval begin + function $mmapN(EC::ECInfo, fname::String, T::Type=Float64) + return mmap(EC, fname, Val($N), T) + end + function $mmapNall(EC::ECInfo, fname::String, T::Type=Float64) + return load_all(EC, fname, Val($N), T) + end + end +end + """ ints1(EC::ECInfo, spaces::String, spincase = nothing) diff --git a/src/utils.jl b/src/utils.jl index 333e497..f0c7bb8 100644 --- a/src/utils.jl +++ b/src/utils.jl @@ -6,6 +6,7 @@ using ..ElemCo.AbstractEC using ..ElemCo.DescDict using ..ElemCo.Outputs +export NOTHING1idx, NOTHING2idx, NOTHING3idx, NOTHING4idx, NOTHING5idx, NOTHING6idx export mainname, print_time, draw_line, draw_wiggly_line, print_info, draw_endline, kwarg_provided_in_macro export subspace_in_space, argmaxN export substr, reshape_buf, create_buf @@ -59,6 +60,13 @@ end """ const OutDict = ODDict{String, Float64} +for N in 1:6 + NOTHINGN = Symbol("NOTHING$(N)idx") + @eval begin + const $NOTHINGN = Array{Float64,$N}(undef, ntuple(i->0, $N)) + end +end + """ last_energy(energies::OutDict) From bd76cf3e627186154b1e2c593bdac1f0cbf5774b Mon Sep 17 00:00:00 2001 From: Daniel Kats Date: Wed, 3 Jul 2024 09:15:49 +0200 Subject: [PATCH 36/44] Make cc completely type stable --- src/algo/ccsdt_doubles.jl | 64 ++++----- src/algo/ccsdt_singles.jl | 20 +-- src/algo/ccsdt_triples.jl | 76 +++++------ src/algo/dcccsdt_triples.jl | 76 +++++------ src/cc.jl | 253 ++++++++++++++++++++---------------- src/cc_lagrange.jl | 214 +++++++++++++++--------------- src/ccdriver.jl | 1 + src/cctools.jl | 53 +------- src/diis.jl | 2 +- src/dump.jl | 3 + src/options.jl | 2 - test/ccsdt.jl | 2 +- test/h2o_cation.jl | 2 +- test/uccsdt.jl | 2 +- 14 files changed, 380 insertions(+), 390 deletions(-) diff --git a/src/algo/ccsdt_doubles.jl b/src/algo/ccsdt_doubles.jl index 722eac4..b37f23e 100644 --- a/src/algo/ccsdt_doubles.jl +++ b/src/algo/ccsdt_doubles.jl @@ -1,118 +1,118 @@ function ccsdt_doubles!(EC::ECInfo, R2a, R2b, R2ab, T2a, T2b, T2ab, T3a, T3b, T3aab, T3abb, fij, fab, fIJ, fAB, fai, fAI, fia, fIA) -d_vvvv = load(EC,"d_vvvv") +d_vvvv = load4idx(EC,"d_vvvv") @tensoropt R2a[c,d,i,j] -= 0.5 * d_vvvv[d,c,a,b] * T2a[a,b,i,j] @tensoropt R2a[c,d,i,j] += 0.5 * d_vvvv[c,d,a,b] * T2a[a,b,i,j] d_vvvv = nothing -d_VVVV = load(EC,"d_VVVV") +d_VVVV = load4idx(EC,"d_VVVV") @tensoropt R2b[C,D,I,J] -= 0.5 * d_VVVV[C,D,B,A] * T2b[A,B,I,J] @tensoropt R2b[C,D,I,J] += 0.5 * d_VVVV[D,C,B,A] * T2b[A,B,I,J] d_VVVV = nothing -d_vVvV = load(EC,"d_vVvV") +d_vVvV = load4idx(EC,"d_vVvV") @tensoropt R2ab[b,B,i,I] += d_vVvV[b,B,a,A] * T2ab[a,A,i,I] d_vVvV = nothing -d_vovv = load(EC,"d_vovv") +d_vovv = load4idx(EC,"d_vovv") @tensoropt R2ab[c,A,j,I] += d_vovv[c,i,b,a] * T3aab[b,a,A,j,i,I] @tensoropt R2a[d,c,j,k] += d_vovv[c,i,b,a] * T3a[d,b,a,j,k,i] @tensoropt R2a[c,d,j,k] -= d_vovv[c,i,b,a] * T3a[d,b,a,j,k,i] d_vovv = nothing -d_VOVV = load(EC,"d_VOVV") +d_VOVV = load4idx(EC,"d_VOVV") @tensoropt R2ab[a,C,i,J] += d_VOVV[C,I,B,A] * T3abb[a,B,A,i,J,I] @tensoropt R2b[D,C,J,K] += d_VOVV[C,I,B,A] * T3b[D,B,A,J,K,I] @tensoropt R2b[C,D,J,K] -= d_VOVV[C,I,B,A] * T3b[D,B,A,J,K,I] d_VOVV = nothing -d_vOvV = load(EC,"d_vOvV") +d_vOvV = load4idx(EC,"d_vOvV") @tensoropt R2ab[b,B,i,J] += d_vOvV[b,I,a,A] * T3abb[a,B,A,i,J,I] @tensoropt R2a[c,b,i,j] += d_vOvV[b,I,a,A] * T3aab[c,a,A,i,j,I] @tensoropt R2a[b,c,i,j] -= d_vOvV[b,I,a,A] * T3aab[c,a,A,i,j,I] d_vOvV = nothing -d_vvoo = load(EC,"d_vvoo") +d_vvoo = load4idx(EC,"d_vvoo") @tensoropt R2a[a,b,i,j] -= d_vvoo[b,a,i,j] @tensoropt R2a[a,b,i,j] += d_vvoo[a,b,i,j] d_vvoo = nothing -d_VVOO = load(EC,"d_VVOO") +d_VVOO = load4idx(EC,"d_VVOO") @tensoropt R2b[A,B,I,J] -= d_VVOO[A,B,J,I] @tensoropt R2b[A,B,I,J] += d_VVOO[B,A,J,I] d_VVOO = nothing -d_vVoO = load(EC,"d_vVoO") +d_vVoO = load4idx(EC,"d_vVoO") @tensoropt R2ab[a,A,i,I] += d_vVoO[a,A,i,I] d_vVoO = nothing -d_vovo = load(EC,"d_vovo") +d_vovo = load4idx(EC,"d_vovo") @tensoropt R2ab[b,A,j,I] -= d_vovo[b,i,a,j] * T2ab[a,A,i,I] @tensoropt R2a[c,b,k,j] -= d_vovo[b,i,a,j] * T2a[c,a,k,i] @tensoropt R2a[b,c,k,j] += d_vovo[b,i,a,j] * T2a[c,a,k,i] @tensoropt R2a[c,b,j,k] += d_vovo[b,i,a,j] * T2a[c,a,k,i] @tensoropt R2a[b,c,j,k] -= d_vovo[b,i,a,j] * T2a[c,a,k,i] d_vovo = nothing -d_VOVO = load(EC,"d_VOVO") +d_VOVO = load4idx(EC,"d_VOVO") @tensoropt R2ab[a,B,i,J] -= d_VOVO[B,I,A,J] * T2ab[a,A,i,I] @tensoropt R2b[C,B,K,J] -= d_VOVO[B,I,A,J] * T2b[C,A,K,I] @tensoropt R2b[B,C,K,J] += d_VOVO[B,I,A,J] * T2b[C,A,K,I] @tensoropt R2b[C,B,J,K] += d_VOVO[B,I,A,J] * T2b[C,A,K,I] @tensoropt R2b[B,C,J,K] -= d_VOVO[B,I,A,J] * T2b[C,A,K,I] d_VOVO = nothing -d_vOvO = load(EC,"d_vOvO") +d_vOvO = load4idx(EC,"d_vOvO") @tensoropt R2ab[b,A,i,J] -= d_vOvO[b,I,a,J] * T2ab[a,A,i,I] d_vOvO = nothing -d_voov = load(EC,"d_voov") +d_voov = load4idx(EC,"d_voov") @tensoropt R2ab[b,A,j,I] += d_voov[b,i,j,a] * T2ab[a,A,i,I] @tensoropt R2a[c,b,k,j] += d_voov[b,i,j,a] * T2a[c,a,k,i] @tensoropt R2a[b,c,k,j] -= d_voov[b,i,j,a] * T2a[c,a,k,i] @tensoropt R2a[c,b,j,k] -= d_voov[b,i,j,a] * T2a[c,a,k,i] @tensoropt R2a[b,c,j,k] += d_voov[b,i,j,a] * T2a[c,a,k,i] d_voov = nothing -d_VOOV = load(EC,"d_VOOV") +d_VOOV = load4idx(EC,"d_VOOV") @tensoropt R2ab[a,B,i,J] += d_VOOV[B,I,J,A] * T2ab[a,A,i,I] @tensoropt R2b[C,B,K,J] += d_VOOV[B,I,J,A] * T2b[C,A,K,I] @tensoropt R2b[B,C,K,J] -= d_VOOV[B,I,J,A] * T2b[C,A,K,I] @tensoropt R2b[C,B,J,K] -= d_VOOV[B,I,J,A] * T2b[C,A,K,I] @tensoropt R2b[B,C,J,K] += d_VOOV[B,I,J,A] * T2b[C,A,K,I] d_VOOV = nothing -d_vOoV = load(EC,"d_vOoV") +d_vOoV = load4idx(EC,"d_vOoV") @tensoropt R2ab[a,B,i,J] += d_vOoV[a,I,i,A] * T2b[B,A,J,I] @tensoropt R2a[b,a,j,i] += d_vOoV[a,I,i,A] * T2ab[b,A,j,I] @tensoropt R2a[a,b,j,i] -= d_vOoV[a,I,i,A] * T2ab[b,A,j,I] @tensoropt R2a[b,a,i,j] -= d_vOoV[a,I,i,A] * T2ab[b,A,j,I] @tensoropt R2a[a,b,i,j] += d_vOoV[a,I,i,A] * T2ab[b,A,j,I] d_vOoV = nothing -d_oooo = load(EC,"d_oooo") +d_oooo = load4idx(EC,"d_oooo") @tensoropt R2a[a,b,k,l] -= 0.5 * d_oooo[j,i,l,k] * T2a[b,a,i,j] @tensoropt R2a[a,b,k,l] += 0.5 * d_oooo[j,i,l,k] * T2a[a,b,i,j] d_oooo = nothing -d_OOOO = load(EC,"d_OOOO") +d_OOOO = load4idx(EC,"d_OOOO") @tensoropt R2b[A,B,K,L] -= 0.5 * d_OOOO[J,I,L,K] * T2b[B,A,I,J] @tensoropt R2b[A,B,K,L] += 0.5 * d_OOOO[J,I,L,K] * T2b[A,B,I,J] d_OOOO = nothing -d_oOoO = load(EC,"d_oOoO") +d_oOoO = load4idx(EC,"d_oOoO") @tensoropt R2ab[a,A,j,J] += d_oOoO[i,I,j,J] * T2ab[a,A,i,I] d_oOoO = nothing -d_oovo = load(EC,"d_oovo") +d_oovo = load4idx(EC,"d_oovo") @tensoropt R2ab[b,A,k,I] -= d_oovo[j,i,a,k] * T3aab[b,a,A,i,j,I] @tensoropt R2a[b,c,l,k] -= d_oovo[j,i,a,k] * T3a[b,c,a,l,i,j] @tensoropt R2a[b,c,k,l] += d_oovo[j,i,a,k] * T3a[b,c,a,l,i,j] d_oovo = nothing -d_OOVO = load(EC,"d_OOVO") +d_OOVO = load4idx(EC,"d_OOVO") @tensoropt R2ab[a,B,i,K] -= d_OOVO[J,I,A,K] * T3abb[a,B,A,i,I,J] @tensoropt R2b[B,C,L,K] -= d_OOVO[J,I,A,K] * T3b[B,C,A,L,I,J] @tensoropt R2b[B,C,K,L] += d_OOVO[J,I,A,K] * T3b[B,C,A,L,I,J] d_OOVO = nothing -d_oOvO = load(EC,"d_oOvO") +d_oOvO = load4idx(EC,"d_oOvO") @tensoropt R2ab[b,A,j,J] -= d_oOvO[i,I,a,J] * T3aab[b,a,A,j,i,I] @tensoropt R2b[A,B,K,J] -= d_oOvO[i,I,a,J] * T3abb[a,A,B,i,K,I] @tensoropt R2b[A,B,J,K] += d_oOvO[i,I,a,J] * T3abb[a,A,B,i,K,I] d_oOvO = nothing -d_oOoV = load(EC,"d_oOoV") +d_oOoV = load4idx(EC,"d_oOoV") @tensoropt R2ab[a,B,j,J] -= d_oOoV[i,I,j,A] * T3abb[a,B,A,i,J,I] @tensoropt R2a[a,b,k,j] -= d_oOoV[i,I,j,A] * T3aab[a,b,A,k,i,I] @tensoropt R2a[a,b,j,k] += d_oOoV[i,I,j,A] * T3aab[a,b,A,k,i,I] d_oOoV = nothing -d_oVvO = load(EC,"d_oVvO") +d_oVvO = load4idx(EC,"d_oVvO") @tensoropt R2ab[b,A,j,I] += d_oVvO[i,A,a,I] * T2a[b,a,j,i] @tensoropt R2b[B,A,J,I] += d_oVvO[i,A,a,I] * T2ab[a,B,i,J] @tensoropt R2b[A,B,J,I] -= d_oVvO[i,A,a,I] * T2ab[a,B,i,J] @tensoropt R2b[B,A,I,J] -= d_oVvO[i,A,a,I] * T2ab[a,B,i,J] @tensoropt R2b[A,B,I,J] += d_oVvO[i,A,a,I] * T2ab[a,B,i,J] d_oVvO = nothing -d_oVoV = load(EC,"d_oVoV") +d_oVoV = load4idx(EC,"d_oVoV") @tensoropt R2ab[a,B,j,I] -= d_oVoV[i,B,j,A] * T2ab[a,A,i,I] d_oVoV = nothing oovv = ints2(EC,"oovv") @@ -181,7 +181,7 @@ oOvV = ints2(EC,"oOvV") @tensoropt R2a[b,a,i,j] -= oOvV[k,I,c,A] * T2a[a,c,i,k] * T2ab[b,A,j,I] @tensoropt R2a[a,b,i,j] += oOvV[k,I,c,A] * T2a[a,c,i,k] * T2ab[b,A,j,I] oOvV = nothing -d_oVvV = load(EC,"d_oVvV") +d_oVvV = load4idx(EC,"d_oVvV") @tensoropt R2ab[b,B,j,I] += d_oVvV[i,B,a,A] * T3aab[b,a,A,j,i,I] @tensoropt R2b[C,B,I,J] += d_oVvV[i,B,a,A] * T3abb[a,C,A,i,I,J] @tensoropt R2b[B,C,I,J] -= d_oVvV[i,B,a,A] * T3abb[a,C,A,i,I,J] @@ -208,10 +208,10 @@ end function ccsdt_doubles!(EC::ECInfo, R2, T2, T3, fij, fab, fai, fia) #bracd -d_vvvv = load(EC,"d_vvvv") +d_vvvv = load4idx(EC,"d_vvvv") @tensoropt R2[c,d,i,j] += d_vvvv[c,d,a,b] * T2[a,b,i,j] d_vvvv = nothing -d_vovv = load(EC,"d_vovv") +d_vovv = load4idx(EC,"d_vovv") @tensoropt R2[d,c,j,k] -= d_vovv[c,i,b,a] * T3[d,a,b,i,j,k] @tensoropt R2[c,d,j,k] -= d_vovv[c,i,b,a] * T3[d,a,b,i,k,j] @tensoropt R2[d,c,j,k] -= d_vovv[c,i,a,b] * T3[a,b,d,i,k,j] @@ -219,25 +219,25 @@ d_vovv = load(EC,"d_vovv") @tensoropt R2[d,c,j,k] += 2 * d_vovv[c,i,b,a] * T3[a,b,d,i,k,j] @tensoropt R2[c,d,j,k] += 2 * d_vovv[c,i,b,a] * T3[a,b,d,i,j,k] d_vovv = nothing -d_vvoo = load(EC,"d_vvoo") +d_vvoo = load4idx(EC,"d_vvoo") @tensoropt R2[a,b,i,j] += d_vvoo[a,b,i,j] d_vvoo = nothing -d_vovo = load(EC,"d_vovo") +d_vovo = load4idx(EC,"d_vovo") @tensoropt R2[b,c,k,j] -= d_vovo[b,i,a,j] * T2[c,a,i,k] @tensoropt R2[c,b,j,k] -= d_vovo[b,i,a,j] * T2[c,a,i,k] @tensoropt R2[c,b,k,j] -= d_vovo[b,i,a,j] * T2[a,c,i,k] @tensoropt R2[b,c,j,k] -= d_vovo[b,i,a,j] * T2[a,c,i,k] d_vovo = nothing -d_voov = load(EC,"d_voov") +d_voov = load4idx(EC,"d_voov") @tensoropt R2[c,b,k,j] -= d_voov[b,i,j,a] * T2[c,a,i,k] @tensoropt R2[b,c,j,k] -= d_voov[b,i,j,a] * T2[c,a,i,k] @tensoropt R2[c,b,k,j] += 2 * d_voov[b,i,j,a] * T2[a,c,i,k] @tensoropt R2[b,c,j,k] += 2 * d_voov[b,i,j,a] * T2[a,c,i,k] d_voov = nothing -d_oooo = load(EC,"d_oooo") +d_oooo = load4idx(EC,"d_oooo") @tensoropt R2[a,b,k,l] += d_oooo[j,i,l,k] * T2[a,b,i,j] d_oooo = nothing -d_oovo = load(EC,"d_oovo") +d_oovo = load4idx(EC,"d_oovo") @tensoropt R2[b,c,l,k] += d_oovo[j,i,a,k] * T3[c,b,a,i,j,l] @tensoropt R2[b,c,k,l] += d_oovo[j,i,a,k] * T3[b,c,a,i,j,l] @tensoropt R2[b,c,l,k] += d_oovo[j,i,a,k] * T3[a,c,b,i,j,l] diff --git a/src/algo/ccsdt_singles.jl b/src/algo/ccsdt_singles.jl index c49e451..709e14e 100644 --- a/src/algo/ccsdt_singles.jl +++ b/src/algo/ccsdt_singles.jl @@ -1,23 +1,23 @@ function ccsdt_singles!(EC::ECInfo, R1a, R1b, T2a, T2b, T2ab, T3a, T3b, T3aab, T3abb, fij, fab, fIJ, fAB, fai, fAI, fia, fIA) -d_vovv = load(EC,"d_vovv") +d_vovv = load4idx(EC,"d_vovv") @tensoropt R1a[c,j] += d_vovv[c,i,b,a] * T2a[b,a,j,i] d_vovv = nothing -d_VOVV = load(EC,"d_VOVV") +d_VOVV = load4idx(EC,"d_VOVV") @tensoropt R1b[C,J] += d_VOVV[C,I,B,A] * T2b[B,A,J,I] d_VOVV = nothing -d_vOvV = load(EC,"d_vOvV") +d_vOvV = load4idx(EC,"d_vOvV") @tensoropt R1a[b,i] += d_vOvV[b,I,a,A] * T2ab[a,A,i,I] d_vOvV = nothing -d_oovo = load(EC,"d_oovo") +d_oovo = load4idx(EC,"d_oovo") @tensoropt R1a[b,k] -= d_oovo[j,i,a,k] * T2a[b,a,i,j] d_oovo = nothing -d_OOVO = load(EC,"d_OOVO") +d_OOVO = load4idx(EC,"d_OOVO") @tensoropt R1b[B,K] -= d_OOVO[J,I,A,K] * T2b[B,A,I,J] d_OOVO = nothing -d_oOvO = load(EC,"d_oOvO") +d_oOvO = load4idx(EC,"d_oOvO") @tensoropt R1b[A,J] -= d_oOvO[i,I,a,J] * T2ab[a,A,i,I] d_oOvO = nothing -d_oOoV = load(EC,"d_oOoV") +d_oOoV = load4idx(EC,"d_oOoV") @tensoropt R1a[a,j] -= d_oOoV[i,I,j,A] * T2ab[a,A,i,I] d_oOoV = nothing oovv = ints2(EC,"oovv") @@ -32,7 +32,7 @@ oOvV = ints2(EC,"oOvV") @tensoropt R1b[B,J] += oOvV[i,I,a,A] * T3abb[a,B,A,i,J,I] @tensoropt R1a[b,j] += oOvV[i,I,a,A] * T3aab[b,a,A,j,i,I] oOvV = nothing -d_oVvV = load(EC,"d_oVvV") +d_oVvV = load4idx(EC,"d_oVvV") @tensoropt R1b[B,I] += d_oVvV[i,B,a,A] * T2ab[a,A,i,I] d_oVvV = nothing @tensoropt R1a[b,j] += fia[i,a] * T2a[b,a,j,i] @@ -45,11 +45,11 @@ end function ccsdt_singles!(EC::ECInfo, R1, T2, T3, fij, fab, fai, fia) # bracs -d_vovv = load(EC,"d_vovv") +d_vovv = load4idx(EC,"d_vovv") @tensoropt R1[c,j] -= d_vovv[c,i,a,b] * T2[a,b,i,j] @tensoropt R1[c,j] += 2 * d_vovv[c,i,b,a] * T2[a,b,i,j] d_vovv = nothing -d_oovo = load(EC,"d_oovo") +d_oovo = load4idx(EC,"d_oovo") @tensoropt R1[b,k] += d_oovo[j,i,a,k] * T2[a,b,i,j] @tensoropt R1[b,k] -= 2 * d_oovo[j,i,a,k] * T2[b,a,i,j] d_oovo = nothing diff --git a/src/algo/ccsdt_triples.jl b/src/algo/ccsdt_triples.jl index ad810b2..1b34483 100644 --- a/src/algo/ccsdt_triples.jl +++ b/src/algo/ccsdt_triples.jl @@ -1,5 +1,5 @@ function ccsdt_triples!(EC::ECInfo, R3a, R3b, R3aab, R3abb, T2a, T2b, T2ab, T3a, T3b, T3aab, T3abb, fij, fab, fIJ, fAB, fai, fAI, fia, fIA) -d_vvvv = load(EC,"d_vvvv") +d_vvvv = load4idx(EC,"d_vvvv") @tensoropt R3aab[c,d,A,i,j,I] -= 0.5 * d_vvvv[d,c,a,b] * T3aab[a,b,A,i,j,I] @tensoropt R3aab[c,d,A,i,j,I] += 0.5 * d_vvvv[c,d,a,b] * T3aab[a,b,A,i,j,I] @tensoropt R3a[e,c,d,i,j,k] -= 0.5 * d_vvvv[d,c,a,b] * T3a[e,a,b,i,j,k] @@ -9,7 +9,7 @@ d_vvvv = load(EC,"d_vvvv") @tensoropt R3a[c,e,d,i,j,k] -= 0.5 * d_vvvv[c,d,a,b] * T3a[e,a,b,i,j,k] @tensoropt R3a[c,d,e,i,j,k] += 0.5 * d_vvvv[c,d,a,b] * T3a[e,a,b,i,j,k] d_vvvv = nothing -d_VVVV = load(EC,"d_VVVV") +d_VVVV = load4idx(EC,"d_VVVV") @tensoropt R3abb[a,C,D,i,I,J] -= 0.5 * d_VVVV[C,D,B,A] * T3abb[a,A,B,i,I,J] @tensoropt R3abb[a,C,D,i,I,J] += 0.5 * d_VVVV[D,C,B,A] * T3abb[a,A,B,i,I,J] @tensoropt R3b[E,C,D,I,J,K] -= 0.5 * d_VVVV[C,D,B,A] * T3b[E,A,B,I,J,K] @@ -19,7 +19,7 @@ d_VVVV = load(EC,"d_VVVV") @tensoropt R3b[C,E,D,I,J,K] -= 0.5 * d_VVVV[D,C,B,A] * T3b[E,A,B,I,J,K] @tensoropt R3b[C,D,E,I,J,K] += 0.5 * d_VVVV[D,C,B,A] * T3b[E,A,B,I,J,K] d_VVVV = nothing -d_vVvV = load(EC,"d_vVvV") +d_vVvV = load4idx(EC,"d_vVvV") @tensoropt R3aab[c,b,B,i,j,I] -= 0.5 * d_vVvV[b,B,a,A] * T3aab[c,a,A,j,i,I] @tensoropt R3aab[b,c,B,i,j,I] += 0.5 * d_vVvV[b,B,a,A] * T3aab[c,a,A,j,i,I] @tensoropt R3aab[c,b,B,i,j,I] += 0.5 * d_vVvV[b,B,a,A] * T3aab[c,a,A,i,j,I] @@ -29,7 +29,7 @@ d_vVvV = load(EC,"d_vVvV") @tensoropt R3abb[b,C,B,i,I,J] += 0.5 * d_vVvV[b,B,a,A] * T3abb[a,C,A,i,I,J] @tensoropt R3abb[b,B,C,i,I,J] -= 0.5 * d_vVvV[b,B,a,A] * T3abb[a,C,A,i,I,J] d_vVvV = nothing -d_vvvo = load(EC,"d_vvvo") +d_vvvo = load4idx(EC,"d_vvvo") @tensoropt R3aab[b,c,A,j,i,I] += d_vvvo[b,c,a,i] * T2ab[a,A,j,I] @tensoropt R3aab[b,c,A,j,i,I] -= d_vvvo[c,b,a,i] * T2ab[a,A,j,I] @tensoropt R3aab[b,c,A,i,j,I] -= d_vvvo[b,c,a,i] * T2ab[a,A,j,I] @@ -53,7 +53,7 @@ d_vvvo = load(EC,"d_vvvo") @tensoropt R3a[b,d,c,i,j,k] += d_vvvo[c,b,a,i] * T2a[d,a,j,k] @tensoropt R3a[b,c,d,i,j,k] -= d_vvvo[c,b,a,i] * T2a[d,a,j,k] d_vvvo = nothing -d_VVVO = load(EC,"d_VVVO") +d_VVVO = load4idx(EC,"d_VVVO") @tensoropt R3abb[a,B,C,i,J,I] += d_VVVO[B,C,A,I] * T2ab[a,A,i,J] @tensoropt R3abb[a,B,C,i,J,I] -= d_VVVO[C,B,A,I] * T2ab[a,A,i,J] @tensoropt R3abb[a,B,C,i,I,J] -= d_VVVO[B,C,A,I] * T2ab[a,A,i,J] @@ -77,7 +77,7 @@ d_VVVO = load(EC,"d_VVVO") @tensoropt R3b[B,D,C,I,J,K] += d_VVVO[C,B,A,I] * T2b[D,A,J,K] @tensoropt R3b[B,C,D,I,J,K] -= d_VVVO[C,B,A,I] * T2b[D,A,J,K] d_VVVO = nothing -d_vVvO = load(EC,"d_vVvO") +d_vVvO = load4idx(EC,"d_vVvO") @tensoropt R3aab[c,b,A,i,j,I] += d_vVvO[b,A,a,I] * T2a[c,a,i,j] @tensoropt R3aab[b,c,A,i,j,I] -= d_vVvO[b,A,a,I] * T2a[c,a,i,j] @tensoropt R3abb[b,B,A,i,J,I] += d_vVvO[b,A,a,I] * T2ab[a,B,i,J] @@ -85,7 +85,7 @@ d_vVvO = load(EC,"d_vVvO") @tensoropt R3abb[b,B,A,i,I,J] -= d_vVvO[b,A,a,I] * T2ab[a,B,i,J] @tensoropt R3abb[b,A,B,i,I,J] += d_vVvO[b,A,a,I] * T2ab[a,B,i,J] d_vVvO = nothing -d_vovv = load(EC,"d_vovv") +d_vovv = load4idx(EC,"d_vovv") @tensoropt R3aab[b,a,A,i,j,I] += 0.5 * d_vovv[a,k,d,c] * T2ab[b,A,k,I] * T2a[c,d,j,i] @tensoropt R3aab[a,b,A,i,j,I] -= 0.5 * d_vovv[a,k,d,c] * T2ab[b,A,k,I] * T2a[c,d,j,i] @tensoropt R3aab[b,a,A,i,j,I] -= 0.5 * d_vovv[a,k,d,c] * T2ab[b,A,k,I] * T2a[c,d,i,j] @@ -165,7 +165,7 @@ d_vovv = load(EC,"d_vovv") @tensoropt R3a[a,c,b,j,i,k] += d_vovv[a,l,e,d] * T2a[b,d,i,l] * T2a[c,e,j,k] @tensoropt R3a[a,b,c,j,i,k] -= d_vovv[a,l,e,d] * T2a[b,d,i,l] * T2a[c,e,j,k] d_vovv = nothing -d_VOVV = load(EC,"d_VOVV") +d_VOVV = load4idx(EC,"d_VOVV") @tensoropt R3aab[b,a,A,j,i,I] -= d_VOVV[A,J,B,C] * T2ab[a,B,i,J] * T2ab[b,C,j,I] @tensoropt R3aab[a,b,A,j,i,I] += d_VOVV[A,J,B,C] * T2ab[a,B,i,J] * T2ab[b,C,j,I] @tensoropt R3aab[b,a,A,i,j,I] += d_VOVV[A,J,B,C] * T2ab[a,B,i,J] * T2ab[b,C,j,I] @@ -245,7 +245,7 @@ d_VOVV = load(EC,"d_VOVV") @tensoropt R3b[A,C,B,J,I,K] += d_VOVV[A,L,E,D] * T2b[B,D,I,L] * T2b[C,E,J,K] @tensoropt R3b[A,B,C,J,I,K] -= d_VOVV[A,L,E,D] * T2b[B,D,I,L] * T2b[C,E,J,K] d_VOVV = nothing -d_vOvV = load(EC,"d_vOvV") +d_vOvV = load4idx(EC,"d_vOvV") @tensoropt R3aab[b,a,A,j,i,I] += d_vOvV[a,J,c,B] * T2ab[b,A,i,J] * T2ab[c,B,j,I] @tensoropt R3aab[b,a,A,i,j,I] -= d_vOvV[a,J,c,B] * T2ab[b,A,i,J] * T2ab[c,B,j,I] @tensoropt R3aab[a,b,A,j,i,I] -= d_vOvV[a,J,c,B] * T2ab[b,A,i,J] * T2ab[c,B,j,I] @@ -287,7 +287,7 @@ d_vOvV = load(EC,"d_vOvV") @tensoropt R3a[a,c,b,j,i,k] += d_vOvV[a,I,d,A] * T2ab[b,A,i,I] * T2a[c,d,j,k] @tensoropt R3a[a,b,c,j,i,k] -= d_vOvV[a,I,d,A] * T2ab[b,A,i,I] * T2a[c,d,j,k] d_vOvV = nothing -d_vVoV = load(EC,"d_vVoV") +d_vVoV = load4idx(EC,"d_vVoV") @tensoropt R3aab[b,a,B,j,i,I] += d_vVoV[a,B,i,A] * T2ab[b,A,j,I] @tensoropt R3aab[a,b,B,j,i,I] -= d_vVoV[a,B,i,A] * T2ab[b,A,j,I] @tensoropt R3aab[b,a,B,i,j,I] -= d_vVoV[a,B,i,A] * T2ab[b,A,j,I] @@ -295,7 +295,7 @@ d_vVoV = load(EC,"d_vVoV") @tensoropt R3abb[a,C,B,i,I,J] += d_vVoV[a,B,i,A] * T2b[C,A,I,J] @tensoropt R3abb[a,B,C,i,I,J] -= d_vVoV[a,B,i,A] * T2b[C,A,I,J] d_vVoV = nothing -d_vovo = load(EC,"d_vovo") +d_vovo = load4idx(EC,"d_vovo") @tensoropt R3aab[c,b,A,k,j,I] -= d_vovo[b,i,a,j] * T3aab[c,a,A,k,i,I] @tensoropt R3aab[b,c,A,k,j,I] += d_vovo[b,i,a,j] * T3aab[c,a,A,k,i,I] @tensoropt R3aab[c,b,A,j,k,I] += d_vovo[b,i,a,j] * T3aab[c,a,A,k,i,I] @@ -311,7 +311,7 @@ d_vovo = load(EC,"d_vovo") @tensoropt R3a[c,b,d,j,k,l] += d_vovo[b,i,a,j] * T3a[c,d,a,k,l,i] @tensoropt R3a[b,c,d,j,k,l] -= d_vovo[b,i,a,j] * T3a[c,d,a,k,l,i] d_vovo = nothing -d_VOVO = load(EC,"d_VOVO") +d_VOVO = load4idx(EC,"d_VOVO") @tensoropt R3aab[a,b,B,i,j,J] -= d_VOVO[B,I,A,J] * T3aab[a,b,A,i,j,I] @tensoropt R3abb[a,C,B,i,K,J] -= d_VOVO[B,I,A,J] * T3abb[a,C,A,i,K,I] @tensoropt R3abb[a,B,C,i,K,J] += d_VOVO[B,I,A,J] * T3abb[a,C,A,i,K,I] @@ -327,13 +327,13 @@ d_VOVO = load(EC,"d_VOVO") @tensoropt R3b[C,B,D,J,K,L] += d_VOVO[B,I,A,J] * T3b[C,D,A,K,L,I] @tensoropt R3b[B,C,D,J,K,L] -= d_VOVO[B,I,A,J] * T3b[C,D,A,K,L,I] d_VOVO = nothing -d_vOvO = load(EC,"d_vOvO") +d_vOvO = load4idx(EC,"d_vOvO") @tensoropt R3aab[c,b,A,i,j,J] += d_vOvO[b,I,a,J] * T3aab[a,c,A,i,j,I] @tensoropt R3aab[b,c,A,i,j,J] -= d_vOvO[b,I,a,J] * T3aab[a,c,A,i,j,I] @tensoropt R3abb[b,A,B,i,K,J] += d_vOvO[b,I,a,J] * T3abb[a,B,A,i,K,I] @tensoropt R3abb[b,A,B,i,J,K] -= d_vOvO[b,I,a,J] * T3abb[a,B,A,i,K,I] d_vOvO = nothing -d_voov = load(EC,"d_voov") +d_voov = load4idx(EC,"d_voov") @tensoropt R3aab[c,b,A,k,j,I] += d_voov[b,i,j,a] * T3aab[c,a,A,k,i,I] @tensoropt R3aab[b,c,A,k,j,I] -= d_voov[b,i,j,a] * T3aab[c,a,A,k,i,I] @tensoropt R3aab[c,b,A,j,k,I] -= d_voov[b,i,j,a] * T3aab[c,a,A,k,i,I] @@ -349,7 +349,7 @@ d_voov = load(EC,"d_voov") @tensoropt R3a[c,b,d,j,k,l] -= d_voov[b,i,j,a] * T3a[c,d,a,k,l,i] @tensoropt R3a[b,c,d,j,k,l] += d_voov[b,i,j,a] * T3a[c,d,a,k,l,i] d_voov = nothing -d_VOOV = load(EC,"d_VOOV") +d_VOOV = load4idx(EC,"d_VOOV") @tensoropt R3aab[a,b,B,i,j,J] += d_VOOV[B,I,J,A] * T3aab[a,b,A,i,j,I] @tensoropt R3abb[a,C,B,i,K,J] += d_VOOV[B,I,J,A] * T3abb[a,C,A,i,K,I] @tensoropt R3abb[a,B,C,i,K,J] -= d_VOOV[B,I,J,A] * T3abb[a,C,A,i,K,I] @@ -365,7 +365,7 @@ d_VOOV = load(EC,"d_VOOV") @tensoropt R3b[C,B,D,J,K,L] -= d_VOOV[B,I,J,A] * T3b[C,D,A,K,L,I] @tensoropt R3b[B,C,D,J,K,L] += d_VOOV[B,I,J,A] * T3b[C,D,A,K,L,I] d_VOOV = nothing -d_vOoV = load(EC,"d_vOoV") +d_vOoV = load4idx(EC,"d_vOoV") @tensoropt R3aab[b,a,B,j,i,J] += d_vOoV[a,I,i,A] * T3abb[b,B,A,j,J,I] @tensoropt R3aab[a,b,B,j,i,J] -= d_vOoV[a,I,i,A] * T3abb[b,B,A,j,J,I] @tensoropt R3aab[b,a,B,i,j,J] -= d_vOoV[a,I,i,A] * T3abb[b,B,A,j,J,I] @@ -381,7 +381,7 @@ d_vOoV = load(EC,"d_vOoV") @tensoropt R3a[b,a,c,i,j,k] -= d_vOoV[a,I,i,A] * T3aab[b,c,A,j,k,I] @tensoropt R3a[a,b,c,i,j,k] += d_vOoV[a,I,i,A] * T3aab[b,c,A,j,k,I] d_vOoV = nothing -d_vooo = load(EC,"d_vooo") +d_vooo = load4idx(EC,"d_vooo") @tensoropt R3aab[b,a,A,j,k,I] += d_vooo[a,i,j,k] * T2ab[b,A,i,I] @tensoropt R3aab[a,b,A,j,k,I] -= d_vooo[a,i,j,k] * T2ab[b,A,i,I] @tensoropt R3aab[b,a,A,j,k,I] -= d_vooo[a,i,k,j] * T2ab[b,A,i,I] @@ -405,7 +405,7 @@ d_vooo = load(EC,"d_vooo") @tensoropt R3a[b,c,a,j,k,l] -= d_vooo[a,i,k,j] * T2a[b,c,l,i] @tensoropt R3a[b,a,c,j,k,l] += d_vooo[a,i,k,j] * T2a[b,c,l,i] d_vooo = nothing -d_VOOO = load(EC,"d_VOOO") +d_VOOO = load4idx(EC,"d_VOOO") @tensoropt R3abb[a,B,A,i,J,K] += d_VOOO[A,I,J,K] * T2ab[a,B,i,I] @tensoropt R3abb[a,A,B,i,J,K] -= d_VOOO[A,I,J,K] * T2ab[a,B,i,I] @tensoropt R3abb[a,B,A,i,J,K] -= d_VOOO[A,I,K,J] * T2ab[a,B,i,I] @@ -429,7 +429,7 @@ d_VOOO = load(EC,"d_VOOO") @tensoropt R3b[B,C,A,J,K,L] -= d_VOOO[A,I,K,J] * T2b[B,C,L,I] @tensoropt R3b[B,A,C,J,K,L] += d_VOOO[A,I,K,J] * T2b[B,C,L,I] d_VOOO = nothing -d_vOoO = load(EC,"d_vOoO") +d_vOoO = load4idx(EC,"d_vOoO") @tensoropt R3aab[b,a,A,j,i,J] -= d_vOoO[a,I,i,J] * T2ab[b,A,j,I] @tensoropt R3aab[a,b,A,j,i,J] += d_vOoO[a,I,i,J] * T2ab[b,A,j,I] @tensoropt R3aab[b,a,A,i,j,J] += d_vOoO[a,I,i,J] * T2ab[b,A,j,I] @@ -437,7 +437,7 @@ d_vOoO = load(EC,"d_vOoO") @tensoropt R3abb[a,A,B,i,K,J] -= d_vOoO[a,I,i,J] * T2b[A,B,K,I] @tensoropt R3abb[a,A,B,i,J,K] += d_vOoO[a,I,i,J] * T2b[A,B,K,I] d_vOoO = nothing -d_oooo = load(EC,"d_oooo") +d_oooo = load4idx(EC,"d_oooo") @tensoropt R3aab[a,b,A,k,l,I] -= 0.5 * d_oooo[j,i,l,k] * T3aab[b,a,A,i,j,I] @tensoropt R3aab[a,b,A,k,l,I] += 0.5 * d_oooo[j,i,l,k] * T3aab[a,b,A,i,j,I] @tensoropt R3a[a,b,c,m,k,l] -= 0.5 * d_oooo[j,i,l,k] * T3a[a,c,b,m,i,j] @@ -447,7 +447,7 @@ d_oooo = load(EC,"d_oooo") @tensoropt R3a[a,b,c,k,l,m] -= 0.5 * d_oooo[j,i,l,k] * T3a[a,c,b,m,i,j] @tensoropt R3a[a,b,c,k,l,m] += 0.5 * d_oooo[j,i,l,k] * T3a[a,b,c,m,i,j] d_oooo = nothing -d_OOOO = load(EC,"d_OOOO") +d_OOOO = load4idx(EC,"d_OOOO") @tensoropt R3abb[a,A,B,i,K,L] -= 0.5 * d_OOOO[J,I,L,K] * T3abb[a,B,A,i,I,J] @tensoropt R3abb[a,A,B,i,K,L] += 0.5 * d_OOOO[J,I,L,K] * T3abb[a,A,B,i,I,J] @tensoropt R3b[A,B,C,M,K,L] -= 0.5 * d_OOOO[J,I,L,K] * T3b[A,C,B,M,I,J] @@ -457,7 +457,7 @@ d_OOOO = load(EC,"d_OOOO") @tensoropt R3b[A,B,C,K,L,M] -= 0.5 * d_OOOO[J,I,L,K] * T3b[A,C,B,M,I,J] @tensoropt R3b[A,B,C,K,L,M] += 0.5 * d_OOOO[J,I,L,K] * T3b[A,B,C,M,I,J] d_OOOO = nothing -d_oOoO = load(EC,"d_oOoO") +d_oOoO = load4idx(EC,"d_oOoO") @tensoropt R3aab[a,b,A,k,j,J] -= 0.5 * d_oOoO[i,I,j,J] * T3aab[b,a,A,k,i,I] @tensoropt R3aab[a,b,A,k,j,J] += 0.5 * d_oOoO[i,I,j,J] * T3aab[a,b,A,k,i,I] @tensoropt R3aab[a,b,A,j,k,J] += 0.5 * d_oOoO[i,I,j,J] * T3aab[b,a,A,k,i,I] @@ -467,7 +467,7 @@ d_oOoO = load(EC,"d_oOoO") @tensoropt R3abb[a,A,B,j,J,K] += 0.5 * d_oOoO[i,I,j,J] * T3abb[a,B,A,i,K,I] @tensoropt R3abb[a,A,B,j,J,K] -= 0.5 * d_oOoO[i,I,j,J] * T3abb[a,A,B,i,K,I] d_oOoO = nothing -d_oVoO = load(EC,"d_oVoO") +d_oVoO = load4idx(EC,"d_oVoO") @tensoropt R3aab[a,b,A,k,j,I] -= d_oVoO[i,A,j,I] * T2a[a,b,k,i] @tensoropt R3aab[a,b,A,j,k,I] += d_oVoO[i,A,j,I] * T2a[a,b,k,i] @tensoropt R3abb[a,B,A,j,J,I] -= d_oVoO[i,A,j,I] * T2ab[a,B,i,J] @@ -475,7 +475,7 @@ d_oVoO = load(EC,"d_oVoO") @tensoropt R3abb[a,B,A,j,I,J] += d_oVoO[i,A,j,I] * T2ab[a,B,i,J] @tensoropt R3abb[a,A,B,j,I,J] -= d_oVoO[i,A,j,I] * T2ab[a,B,i,J] d_oVoO = nothing -d_oovo = load(EC,"d_oovo") +d_oovo = load4idx(EC,"d_oovo") @tensoropt R3aab[a,b,A,j,i,I] += 0.5 * d_oovo[l,k,c,i] * T2a[b,a,k,l] * T2ab[c,A,j,I] @tensoropt R3aab[a,b,A,j,i,I] -= 0.5 * d_oovo[l,k,c,i] * T2a[a,b,k,l] * T2ab[c,A,j,I] @tensoropt R3aab[a,b,A,i,j,I] -= 0.5 * d_oovo[l,k,c,i] * T2a[b,a,k,l] * T2ab[c,A,j,I] @@ -555,7 +555,7 @@ d_oovo = load(EC,"d_oovo") @tensoropt R3a[a,c,b,i,j,k] -= d_oovo[m,l,d,i] * T2a[a,b,j,l] * T2a[c,d,k,m] @tensoropt R3a[a,b,c,i,j,k] += d_oovo[m,l,d,i] * T2a[a,b,j,l] * T2a[c,d,k,m] d_oovo = nothing -d_OOVO = load(EC,"d_OOVO") +d_OOVO = load4idx(EC,"d_OOVO") @tensoropt R3aab[b,a,A,j,i,I] += d_OOVO[K,J,B,I] * T2ab[a,B,i,J] * T2ab[b,A,j,K] @tensoropt R3aab[a,b,A,j,i,I] -= d_OOVO[K,J,B,I] * T2ab[a,B,i,J] * T2ab[b,A,j,K] @tensoropt R3aab[b,a,A,i,j,I] -= d_OOVO[K,J,B,I] * T2ab[a,B,i,J] * T2ab[b,A,j,K] @@ -635,7 +635,7 @@ d_OOVO = load(EC,"d_OOVO") @tensoropt R3b[A,C,B,I,J,K] -= d_OOVO[M,L,D,I] * T2b[A,B,J,L] * T2b[C,D,K,M] @tensoropt R3b[A,B,C,I,J,K] += d_OOVO[M,L,D,I] * T2b[A,B,J,L] * T2b[C,D,K,M] d_OOVO = nothing -d_oOvO = load(EC,"d_oOvO") +d_oOvO = load4idx(EC,"d_oOvO") @tensoropt R3aab[a,b,A,j,i,I] += d_oOvO[k,J,c,I] * T2ab[c,A,i,J] * T2a[a,b,j,k] @tensoropt R3aab[a,b,A,i,j,I] -= d_oOvO[k,J,c,I] * T2ab[c,A,i,J] * T2a[a,b,j,k] @tensoropt R3aab[b,a,A,i,j,I] += d_oOvO[k,J,c,I] * T2ab[a,A,k,J] * T2a[b,c,i,j] @@ -677,7 +677,7 @@ d_oOvO = load(EC,"d_oOvO") @tensoropt R3b[A,C,B,I,J,K] -= d_oOvO[i,L,a,I] * T2b[A,B,J,L] * T2ab[a,C,i,K] @tensoropt R3b[A,B,C,I,J,K] += d_oOvO[i,L,a,I] * T2b[A,B,J,L] * T2ab[a,C,i,K] d_oOvO = nothing -d_oOoV = load(EC,"d_oOoV") +d_oOoV = load4idx(EC,"d_oOoV") @tensoropt R3aab[b,a,A,j,i,I] += d_oOoV[k,J,i,B] * T2ab[a,B,k,I] * T2ab[b,A,j,J] @tensoropt R3aab[a,b,A,j,i,I] -= d_oOoV[k,J,i,B] * T2ab[a,B,k,I] * T2ab[b,A,j,J] @tensoropt R3aab[b,a,A,i,j,I] -= d_oOoV[k,J,i,B] * T2ab[a,B,k,I] * T2ab[b,A,j,J] @@ -719,7 +719,7 @@ d_oOoV = load(EC,"d_oOoV") @tensoropt R3a[a,c,b,i,j,k] -= d_oOoV[l,I,i,A] * T2a[a,b,j,l] * T2ab[c,A,k,I] @tensoropt R3a[a,b,c,i,j,k] += d_oOoV[l,I,i,A] * T2a[a,b,j,l] * T2ab[c,A,k,I] d_oOoV = nothing -d_oVvO = load(EC,"d_oVvO") +d_oVvO = load4idx(EC,"d_oVvO") @tensoropt R3aab[b,c,A,j,k,I] += d_oVvO[i,A,a,I] * T3a[b,c,a,j,k,i] @tensoropt R3abb[b,B,A,j,J,I] += d_oVvO[i,A,a,I] * T3aab[b,a,B,j,i,J] @tensoropt R3abb[b,A,B,j,J,I] -= d_oVvO[i,A,a,I] * T3aab[b,a,B,j,i,J] @@ -735,7 +735,7 @@ d_oVvO = load(EC,"d_oVvO") @tensoropt R3b[B,A,C,I,J,K] -= d_oVvO[i,A,a,I] * T3abb[a,B,C,i,J,K] @tensoropt R3b[A,B,C,I,J,K] += d_oVvO[i,A,a,I] * T3abb[a,B,C,i,J,K] d_oVvO = nothing -d_oVoV = load(EC,"d_oVoV") +d_oVoV = load4idx(EC,"d_oVoV") @tensoropt R3aab[a,b,B,k,j,I] += d_oVoV[i,B,j,A] * T3aab[b,a,A,k,i,I] @tensoropt R3aab[a,b,B,j,k,I] -= d_oVoV[i,B,j,A] * T3aab[b,a,A,k,i,I] @tensoropt R3abb[a,C,B,j,I,J] += d_oVoV[i,B,j,A] * T3abb[a,A,C,i,I,J] @@ -1155,7 +1155,7 @@ oOvV = ints2(EC,"oOvV") @tensoropt R3a[b,a,c,i,j,k] -= oOvV[l,I,d,A] * T2a[a,d,i,l] * T3aab[b,c,A,j,k,I] @tensoropt R3a[a,b,c,i,j,k] += oOvV[l,I,d,A] * T2a[a,d,i,l] * T3aab[b,c,A,j,k,I] oOvV = nothing -d_oVvV = load(EC,"d_oVvV") +d_oVvV = load4idx(EC,"d_oVvV") @tensoropt R3aab[a,b,A,j,i,I] += d_oVvV[k,A,c,B] * T2a[a,b,i,k] * T2ab[c,B,j,I] @tensoropt R3aab[a,b,A,i,j,I] -= d_oVvV[k,A,c,B] * T2a[a,b,i,k] * T2ab[c,B,j,I] @tensoropt R3aab[b,a,A,i,j,I] -= d_oVvV[k,A,c,B] * T2ab[a,B,k,I] * T2a[b,c,i,j] @@ -1260,12 +1260,12 @@ end function ccsdt_triples!(EC::ECInfo, R3, T2, T3, fij, fab, fai, fia) #bract #act,divide=$(1 - \Perm{abc}{cab})$ -d_vvvv = load(EC,"d_vvvv") +d_vvvv = load4idx(EC,"d_vvvv") @tensoropt R3[e,c,d,i,j,k] += d_vvvv[c,d,a,b] * T3[a,e,b,j,i,k] @tensoropt R3[c,e,d,i,j,k] += d_vvvv[c,d,a,b] * T3[a,e,b,i,j,k] @tensoropt R3[c,d,e,i,j,k] += d_vvvv[c,d,a,b] * T3[a,e,b,i,k,j] d_vvvv = nothing -d_vvvo = load(EC,"d_vvvo") +d_vvvo = load4idx(EC,"d_vvvo") @tensoropt R3[d,b,c,j,k,i] += d_vvvo[b,c,a,i] * T2[a,d,k,j] @tensoropt R3[b,d,c,j,k,i] += d_vvvo[b,c,a,i] * T2[a,d,j,k] @tensoropt R3[d,b,c,j,i,k] += d_vvvo[c,b,a,i] * T2[a,d,k,j] @@ -1273,7 +1273,7 @@ d_vvvo = load(EC,"d_vvvo") @tensoropt R3[b,d,c,i,j,k] += d_vvvo[c,b,a,i] * T2[a,d,k,j] @tensoropt R3[b,c,d,i,j,k] += d_vvvo[c,b,a,i] * T2[a,d,j,k] d_vvvo = nothing -d_vovv = load(EC,"d_vovv") +d_vovv = load4idx(EC,"d_vovv") @tensoropt R3[c,b,a,j,i,k] -= d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,k,j] @tensoropt R3[c,a,b,j,k,i] -= d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,k,j] @tensoropt R3[b,c,a,i,j,k] -= d_vovv[a,l,e,d] * T2[c,b,l,i] * T2[d,e,j,k] @@ -1305,7 +1305,7 @@ d_vovv = load(EC,"d_vovv") @tensoropt R3[a,c,b,j,k,i] += 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,j,k] @tensoropt R3[a,b,c,j,i,k] += 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,j,k] d_vovv = nothing -d_vovo = load(EC,"d_vovo") +d_vovo = load4idx(EC,"d_vovo") @tensoropt R3[c,b,d,k,l,j] -= d_vovo[b,i,a,j] * T3[d,a,c,i,l,k] @tensoropt R3[b,c,d,k,l,j] -= d_vovo[b,i,a,j] * T3[d,a,c,i,k,l] @tensoropt R3[c,d,b,k,j,l] -= d_vovo[b,i,a,j] * T3[d,a,c,i,l,k] @@ -1316,7 +1316,7 @@ d_vovo = load(EC,"d_vovo") @tensoropt R3[c,b,d,k,j,l] -= d_vovo[b,i,a,j] * T3[a,c,d,i,k,l] @tensoropt R3[b,c,d,j,k,l] -= d_vovo[b,i,a,j] * T3[a,c,d,i,k,l] d_vovo = nothing -d_voov = load(EC,"d_voov") +d_voov = load4idx(EC,"d_voov") @tensoropt R3[c,d,b,k,l,j] -= d_voov[b,i,j,a] * T3[d,a,c,i,l,k] @tensoropt R3[c,d,b,k,l,j] -= d_voov[b,i,j,a] * T3[c,a,d,i,k,l] @tensoropt R3[c,b,d,k,j,l] -= d_voov[b,i,j,a] * T3[d,a,c,i,l,k] @@ -1327,7 +1327,7 @@ d_voov = load(EC,"d_voov") @tensoropt R3[c,b,d,k,j,l] += 2 * d_voov[b,i,j,a] * T3[a,c,d,i,k,l] @tensoropt R3[b,c,d,j,k,l] += 2 * d_voov[b,i,j,a] * T3[a,c,d,i,k,l] d_voov = nothing -d_vooo = load(EC,"d_vooo") +d_vooo = load4idx(EC,"d_vooo") @tensoropt R3[b,a,c,l,j,k] -= d_vooo[a,i,j,k] * T2[c,b,i,l] @tensoropt R3[a,b,c,j,l,k] -= d_vooo[a,i,j,k] * T2[c,b,i,l] @tensoropt R3[b,c,a,l,j,k] -= d_vooo[a,i,k,j] * T2[c,b,i,l] @@ -1335,12 +1335,12 @@ d_vooo = load(EC,"d_vooo") @tensoropt R3[b,c,a,j,l,k] -= d_vooo[a,i,k,j] * T2[b,c,i,l] @tensoropt R3[b,a,c,j,k,l] -= d_vooo[a,i,k,j] * T2[b,c,i,l] d_vooo = nothing -d_oooo = load(EC,"d_oooo") +d_oooo = load4idx(EC,"d_oooo") @tensoropt R3[a,b,c,m,k,l] += d_oooo[j,i,l,k] * T3[b,c,a,i,j,m] @tensoropt R3[a,b,c,k,m,l] += d_oooo[j,i,l,k] * T3[a,c,b,i,j,m] @tensoropt R3[a,b,c,k,l,m] += d_oooo[j,i,l,k] * T3[a,b,c,i,j,m] d_oooo = nothing -d_oovo = load(EC,"d_oovo") +d_oovo = load4idx(EC,"d_oovo") @tensoropt R3[b,a,c,k,j,i] += d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[c,b,m,k] @tensoropt R3[b,c,a,k,i,j] += d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[c,b,m,k] @tensoropt R3[c,a,b,k,j,i] += d_oovo[m,l,d,i] * T2[b,a,l,j] * T2[c,d,m,k] diff --git a/src/algo/dcccsdt_triples.jl b/src/algo/dcccsdt_triples.jl index d844c2a..dc0253c 100644 --- a/src/algo/dcccsdt_triples.jl +++ b/src/algo/dcccsdt_triples.jl @@ -1,5 +1,5 @@ function dcccsdt_triples!(EC::ECInfo, R3a, R3b, R3aab, R3abb, T2a, T2b, T2ab, T3a, T3b, T3aab, T3abb, fij, fab, fIJ, fAB, fai, fAI, fia, fIA) -d_vvvv = load(EC,"d_vvvv") +d_vvvv = load4idx(EC,"d_vvvv") @tensoropt R3aab[c,d,A,i,j,I] -= 0.5 * d_vvvv[d,c,a,b] * T3aab[a,b,A,i,j,I] @tensoropt R3aab[c,d,A,i,j,I] += 0.5 * d_vvvv[c,d,a,b] * T3aab[a,b,A,i,j,I] @tensoropt R3a[e,c,d,i,j,k] -= 0.5 * d_vvvv[d,c,a,b] * T3a[e,a,b,i,j,k] @@ -9,7 +9,7 @@ d_vvvv = load(EC,"d_vvvv") @tensoropt R3a[c,e,d,i,j,k] -= 0.5 * d_vvvv[c,d,a,b] * T3a[e,a,b,i,j,k] @tensoropt R3a[c,d,e,i,j,k] += 0.5 * d_vvvv[c,d,a,b] * T3a[e,a,b,i,j,k] d_vvvv = nothing -d_VVVV = load(EC,"d_VVVV") +d_VVVV = load4idx(EC,"d_VVVV") @tensoropt R3abb[a,C,D,i,I,J] -= 0.5 * d_VVVV[C,D,B,A] * T3abb[a,A,B,i,I,J] @tensoropt R3abb[a,C,D,i,I,J] += 0.5 * d_VVVV[D,C,B,A] * T3abb[a,A,B,i,I,J] @tensoropt R3b[E,C,D,I,J,K] -= 0.5 * d_VVVV[C,D,B,A] * T3b[E,A,B,I,J,K] @@ -19,7 +19,7 @@ d_VVVV = load(EC,"d_VVVV") @tensoropt R3b[C,E,D,I,J,K] -= 0.5 * d_VVVV[D,C,B,A] * T3b[E,A,B,I,J,K] @tensoropt R3b[C,D,E,I,J,K] += 0.5 * d_VVVV[D,C,B,A] * T3b[E,A,B,I,J,K] d_VVVV = nothing -d_vVvV = load(EC,"d_vVvV") +d_vVvV = load4idx(EC,"d_vVvV") @tensoropt R3aab[c,b,B,i,j,I] -= 0.5 * d_vVvV[b,B,a,A] * T3aab[c,a,A,j,i,I] @tensoropt R3aab[b,c,B,i,j,I] += 0.5 * d_vVvV[b,B,a,A] * T3aab[c,a,A,j,i,I] @tensoropt R3aab[c,b,B,i,j,I] += 0.5 * d_vVvV[b,B,a,A] * T3aab[c,a,A,i,j,I] @@ -29,7 +29,7 @@ d_vVvV = load(EC,"d_vVvV") @tensoropt R3abb[b,C,B,i,I,J] += 0.5 * d_vVvV[b,B,a,A] * T3abb[a,C,A,i,I,J] @tensoropt R3abb[b,B,C,i,I,J] -= 0.5 * d_vVvV[b,B,a,A] * T3abb[a,C,A,i,I,J] d_vVvV = nothing -d_vvvo = load(EC,"d_vvvo") +d_vvvo = load4idx(EC,"d_vvvo") @tensoropt R3aab[b,c,A,j,i,I] += d_vvvo[b,c,a,i] * T2ab[a,A,j,I] @tensoropt R3aab[b,c,A,j,i,I] -= d_vvvo[c,b,a,i] * T2ab[a,A,j,I] @tensoropt R3aab[b,c,A,i,j,I] -= d_vvvo[b,c,a,i] * T2ab[a,A,j,I] @@ -53,7 +53,7 @@ d_vvvo = load(EC,"d_vvvo") @tensoropt R3a[b,d,c,i,j,k] += d_vvvo[c,b,a,i] * T2a[d,a,j,k] @tensoropt R3a[b,c,d,i,j,k] -= d_vvvo[c,b,a,i] * T2a[d,a,j,k] d_vvvo = nothing -d_VVVO = load(EC,"d_VVVO") +d_VVVO = load4idx(EC,"d_VVVO") @tensoropt R3abb[a,B,C,i,J,I] += d_VVVO[B,C,A,I] * T2ab[a,A,i,J] @tensoropt R3abb[a,B,C,i,J,I] -= d_VVVO[C,B,A,I] * T2ab[a,A,i,J] @tensoropt R3abb[a,B,C,i,I,J] -= d_VVVO[B,C,A,I] * T2ab[a,A,i,J] @@ -77,7 +77,7 @@ d_VVVO = load(EC,"d_VVVO") @tensoropt R3b[B,D,C,I,J,K] += d_VVVO[C,B,A,I] * T2b[D,A,J,K] @tensoropt R3b[B,C,D,I,J,K] -= d_VVVO[C,B,A,I] * T2b[D,A,J,K] d_VVVO = nothing -d_vVvO = load(EC,"d_vVvO") +d_vVvO = load4idx(EC,"d_vVvO") @tensoropt R3aab[c,b,A,i,j,I] += d_vVvO[b,A,a,I] * T2a[c,a,i,j] @tensoropt R3aab[b,c,A,i,j,I] -= d_vVvO[b,A,a,I] * T2a[c,a,i,j] @tensoropt R3abb[b,B,A,i,J,I] += d_vVvO[b,A,a,I] * T2ab[a,B,i,J] @@ -85,7 +85,7 @@ d_vVvO = load(EC,"d_vVvO") @tensoropt R3abb[b,B,A,i,I,J] -= d_vVvO[b,A,a,I] * T2ab[a,B,i,J] @tensoropt R3abb[b,A,B,i,I,J] += d_vVvO[b,A,a,I] * T2ab[a,B,i,J] d_vVvO = nothing -d_vovv = load(EC,"d_vovv") +d_vovv = load4idx(EC,"d_vovv") @tensoropt R3aab[b,a,A,i,j,I] += 0.5 * d_vovv[a,k,d,c] * T2ab[b,A,k,I] * T2a[c,d,j,i] @tensoropt R3aab[a,b,A,i,j,I] -= 0.5 * d_vovv[a,k,d,c] * T2ab[b,A,k,I] * T2a[c,d,j,i] @tensoropt R3aab[b,a,A,i,j,I] -= 0.5 * d_vovv[a,k,d,c] * T2ab[b,A,k,I] * T2a[c,d,i,j] @@ -165,7 +165,7 @@ d_vovv = load(EC,"d_vovv") @tensoropt R3a[a,c,b,j,i,k] += d_vovv[a,l,e,d] * T2a[b,d,i,l] * T2a[c,e,j,k] @tensoropt R3a[a,b,c,j,i,k] -= d_vovv[a,l,e,d] * T2a[b,d,i,l] * T2a[c,e,j,k] d_vovv = nothing -d_VOVV = load(EC,"d_VOVV") +d_VOVV = load4idx(EC,"d_VOVV") @tensoropt R3aab[b,a,A,j,i,I] -= d_VOVV[A,J,B,C] * T2ab[a,B,i,J] * T2ab[b,C,j,I] @tensoropt R3aab[a,b,A,j,i,I] += d_VOVV[A,J,B,C] * T2ab[a,B,i,J] * T2ab[b,C,j,I] @tensoropt R3aab[b,a,A,i,j,I] += d_VOVV[A,J,B,C] * T2ab[a,B,i,J] * T2ab[b,C,j,I] @@ -245,7 +245,7 @@ d_VOVV = load(EC,"d_VOVV") @tensoropt R3b[A,C,B,J,I,K] += d_VOVV[A,L,E,D] * T2b[B,D,I,L] * T2b[C,E,J,K] @tensoropt R3b[A,B,C,J,I,K] -= d_VOVV[A,L,E,D] * T2b[B,D,I,L] * T2b[C,E,J,K] d_VOVV = nothing -d_vOvV = load(EC,"d_vOvV") +d_vOvV = load4idx(EC,"d_vOvV") @tensoropt R3aab[b,a,A,j,i,I] += d_vOvV[a,J,c,B] * T2ab[b,A,i,J] * T2ab[c,B,j,I] @tensoropt R3aab[b,a,A,i,j,I] -= d_vOvV[a,J,c,B] * T2ab[b,A,i,J] * T2ab[c,B,j,I] @tensoropt R3aab[a,b,A,j,i,I] -= d_vOvV[a,J,c,B] * T2ab[b,A,i,J] * T2ab[c,B,j,I] @@ -287,7 +287,7 @@ d_vOvV = load(EC,"d_vOvV") @tensoropt R3a[a,c,b,j,i,k] += d_vOvV[a,I,d,A] * T2ab[b,A,i,I] * T2a[c,d,j,k] @tensoropt R3a[a,b,c,j,i,k] -= d_vOvV[a,I,d,A] * T2ab[b,A,i,I] * T2a[c,d,j,k] d_vOvV = nothing -d_vVoV = load(EC,"d_vVoV") +d_vVoV = load4idx(EC,"d_vVoV") @tensoropt R3aab[b,a,B,j,i,I] += d_vVoV[a,B,i,A] * T2ab[b,A,j,I] @tensoropt R3aab[a,b,B,j,i,I] -= d_vVoV[a,B,i,A] * T2ab[b,A,j,I] @tensoropt R3aab[b,a,B,i,j,I] -= d_vVoV[a,B,i,A] * T2ab[b,A,j,I] @@ -295,7 +295,7 @@ d_vVoV = load(EC,"d_vVoV") @tensoropt R3abb[a,C,B,i,I,J] += d_vVoV[a,B,i,A] * T2b[C,A,I,J] @tensoropt R3abb[a,B,C,i,I,J] -= d_vVoV[a,B,i,A] * T2b[C,A,I,J] d_vVoV = nothing -d_vovo = load(EC,"d_vovo") +d_vovo = load4idx(EC,"d_vovo") @tensoropt R3aab[c,b,A,k,j,I] -= d_vovo[b,i,a,j] * T3aab[c,a,A,k,i,I] @tensoropt R3aab[b,c,A,k,j,I] += d_vovo[b,i,a,j] * T3aab[c,a,A,k,i,I] @tensoropt R3aab[c,b,A,j,k,I] += d_vovo[b,i,a,j] * T3aab[c,a,A,k,i,I] @@ -311,7 +311,7 @@ d_vovo = load(EC,"d_vovo") @tensoropt R3a[c,b,d,j,k,l] += d_vovo[b,i,a,j] * T3a[c,d,a,k,l,i] @tensoropt R3a[b,c,d,j,k,l] -= d_vovo[b,i,a,j] * T3a[c,d,a,k,l,i] d_vovo = nothing -d_VOVO = load(EC,"d_VOVO") +d_VOVO = load4idx(EC,"d_VOVO") @tensoropt R3aab[a,b,B,i,j,J] -= d_VOVO[B,I,A,J] * T3aab[a,b,A,i,j,I] @tensoropt R3abb[a,C,B,i,K,J] -= d_VOVO[B,I,A,J] * T3abb[a,C,A,i,K,I] @tensoropt R3abb[a,B,C,i,K,J] += d_VOVO[B,I,A,J] * T3abb[a,C,A,i,K,I] @@ -327,13 +327,13 @@ d_VOVO = load(EC,"d_VOVO") @tensoropt R3b[C,B,D,J,K,L] += d_VOVO[B,I,A,J] * T3b[C,D,A,K,L,I] @tensoropt R3b[B,C,D,J,K,L] -= d_VOVO[B,I,A,J] * T3b[C,D,A,K,L,I] d_VOVO = nothing -d_vOvO = load(EC,"d_vOvO") +d_vOvO = load4idx(EC,"d_vOvO") @tensoropt R3aab[c,b,A,i,j,J] += d_vOvO[b,I,a,J] * T3aab[a,c,A,i,j,I] @tensoropt R3aab[b,c,A,i,j,J] -= d_vOvO[b,I,a,J] * T3aab[a,c,A,i,j,I] @tensoropt R3abb[b,A,B,i,K,J] += d_vOvO[b,I,a,J] * T3abb[a,B,A,i,K,I] @tensoropt R3abb[b,A,B,i,J,K] -= d_vOvO[b,I,a,J] * T3abb[a,B,A,i,K,I] d_vOvO = nothing -d_voov = load(EC,"d_voov") +d_voov = load4idx(EC,"d_voov") @tensoropt R3aab[c,b,A,k,j,I] += d_voov[b,i,j,a] * T3aab[c,a,A,k,i,I] @tensoropt R3aab[b,c,A,k,j,I] -= d_voov[b,i,j,a] * T3aab[c,a,A,k,i,I] @tensoropt R3aab[c,b,A,j,k,I] -= d_voov[b,i,j,a] * T3aab[c,a,A,k,i,I] @@ -349,7 +349,7 @@ d_voov = load(EC,"d_voov") @tensoropt R3a[c,b,d,j,k,l] -= d_voov[b,i,j,a] * T3a[c,d,a,k,l,i] @tensoropt R3a[b,c,d,j,k,l] += d_voov[b,i,j,a] * T3a[c,d,a,k,l,i] d_voov = nothing -d_VOOV = load(EC,"d_VOOV") +d_VOOV = load4idx(EC,"d_VOOV") @tensoropt R3aab[a,b,B,i,j,J] += d_VOOV[B,I,J,A] * T3aab[a,b,A,i,j,I] @tensoropt R3abb[a,C,B,i,K,J] += d_VOOV[B,I,J,A] * T3abb[a,C,A,i,K,I] @tensoropt R3abb[a,B,C,i,K,J] -= d_VOOV[B,I,J,A] * T3abb[a,C,A,i,K,I] @@ -365,7 +365,7 @@ d_VOOV = load(EC,"d_VOOV") @tensoropt R3b[C,B,D,J,K,L] -= d_VOOV[B,I,J,A] * T3b[C,D,A,K,L,I] @tensoropt R3b[B,C,D,J,K,L] += d_VOOV[B,I,J,A] * T3b[C,D,A,K,L,I] d_VOOV = nothing -d_vOoV = load(EC,"d_vOoV") +d_vOoV = load4idx(EC,"d_vOoV") @tensoropt R3aab[b,a,B,j,i,J] += d_vOoV[a,I,i,A] * T3abb[b,B,A,j,J,I] @tensoropt R3aab[a,b,B,j,i,J] -= d_vOoV[a,I,i,A] * T3abb[b,B,A,j,J,I] @tensoropt R3aab[b,a,B,i,j,J] -= d_vOoV[a,I,i,A] * T3abb[b,B,A,j,J,I] @@ -381,7 +381,7 @@ d_vOoV = load(EC,"d_vOoV") @tensoropt R3a[b,a,c,i,j,k] -= d_vOoV[a,I,i,A] * T3aab[b,c,A,j,k,I] @tensoropt R3a[a,b,c,i,j,k] += d_vOoV[a,I,i,A] * T3aab[b,c,A,j,k,I] d_vOoV = nothing -d_vooo = load(EC,"d_vooo") +d_vooo = load4idx(EC,"d_vooo") @tensoropt R3aab[b,a,A,j,k,I] += d_vooo[a,i,j,k] * T2ab[b,A,i,I] @tensoropt R3aab[a,b,A,j,k,I] -= d_vooo[a,i,j,k] * T2ab[b,A,i,I] @tensoropt R3aab[b,a,A,j,k,I] -= d_vooo[a,i,k,j] * T2ab[b,A,i,I] @@ -405,7 +405,7 @@ d_vooo = load(EC,"d_vooo") @tensoropt R3a[b,c,a,j,k,l] -= d_vooo[a,i,k,j] * T2a[b,c,l,i] @tensoropt R3a[b,a,c,j,k,l] += d_vooo[a,i,k,j] * T2a[b,c,l,i] d_vooo = nothing -d_VOOO = load(EC,"d_VOOO") +d_VOOO = load4idx(EC,"d_VOOO") @tensoropt R3abb[a,B,A,i,J,K] += d_VOOO[A,I,J,K] * T2ab[a,B,i,I] @tensoropt R3abb[a,A,B,i,J,K] -= d_VOOO[A,I,J,K] * T2ab[a,B,i,I] @tensoropt R3abb[a,B,A,i,J,K] -= d_VOOO[A,I,K,J] * T2ab[a,B,i,I] @@ -429,7 +429,7 @@ d_VOOO = load(EC,"d_VOOO") @tensoropt R3b[B,C,A,J,K,L] -= d_VOOO[A,I,K,J] * T2b[B,C,L,I] @tensoropt R3b[B,A,C,J,K,L] += d_VOOO[A,I,K,J] * T2b[B,C,L,I] d_VOOO = nothing -d_vOoO = load(EC,"d_vOoO") +d_vOoO = load4idx(EC,"d_vOoO") @tensoropt R3aab[b,a,A,j,i,J] -= d_vOoO[a,I,i,J] * T2ab[b,A,j,I] @tensoropt R3aab[a,b,A,j,i,J] += d_vOoO[a,I,i,J] * T2ab[b,A,j,I] @tensoropt R3aab[b,a,A,i,j,J] += d_vOoO[a,I,i,J] * T2ab[b,A,j,I] @@ -437,7 +437,7 @@ d_vOoO = load(EC,"d_vOoO") @tensoropt R3abb[a,A,B,i,K,J] -= d_vOoO[a,I,i,J] * T2b[A,B,K,I] @tensoropt R3abb[a,A,B,i,J,K] += d_vOoO[a,I,i,J] * T2b[A,B,K,I] d_vOoO = nothing -d_oooo = load(EC,"d_oooo") +d_oooo = load4idx(EC,"d_oooo") @tensoropt R3aab[a,b,A,k,l,I] -= 0.5 * d_oooo[j,i,l,k] * T3aab[b,a,A,i,j,I] @tensoropt R3aab[a,b,A,k,l,I] += 0.5 * d_oooo[j,i,l,k] * T3aab[a,b,A,i,j,I] @tensoropt R3a[a,b,c,m,k,l] -= 0.5 * d_oooo[j,i,l,k] * T3a[a,c,b,m,i,j] @@ -447,7 +447,7 @@ d_oooo = load(EC,"d_oooo") @tensoropt R3a[a,b,c,k,l,m] -= 0.5 * d_oooo[j,i,l,k] * T3a[a,c,b,m,i,j] @tensoropt R3a[a,b,c,k,l,m] += 0.5 * d_oooo[j,i,l,k] * T3a[a,b,c,m,i,j] d_oooo = nothing -d_OOOO = load(EC,"d_OOOO") +d_OOOO = load4idx(EC,"d_OOOO") @tensoropt R3abb[a,A,B,i,K,L] -= 0.5 * d_OOOO[J,I,L,K] * T3abb[a,B,A,i,I,J] @tensoropt R3abb[a,A,B,i,K,L] += 0.5 * d_OOOO[J,I,L,K] * T3abb[a,A,B,i,I,J] @tensoropt R3b[A,B,C,M,K,L] -= 0.5 * d_OOOO[J,I,L,K] * T3b[A,C,B,M,I,J] @@ -457,7 +457,7 @@ d_OOOO = load(EC,"d_OOOO") @tensoropt R3b[A,B,C,K,L,M] -= 0.5 * d_OOOO[J,I,L,K] * T3b[A,C,B,M,I,J] @tensoropt R3b[A,B,C,K,L,M] += 0.5 * d_OOOO[J,I,L,K] * T3b[A,B,C,M,I,J] d_OOOO = nothing -d_oOoO = load(EC,"d_oOoO") +d_oOoO = load4idx(EC,"d_oOoO") @tensoropt R3aab[a,b,A,k,j,J] -= 0.5 * d_oOoO[i,I,j,J] * T3aab[b,a,A,k,i,I] @tensoropt R3aab[a,b,A,k,j,J] += 0.5 * d_oOoO[i,I,j,J] * T3aab[a,b,A,k,i,I] @tensoropt R3aab[a,b,A,j,k,J] += 0.5 * d_oOoO[i,I,j,J] * T3aab[b,a,A,k,i,I] @@ -467,7 +467,7 @@ d_oOoO = load(EC,"d_oOoO") @tensoropt R3abb[a,A,B,j,J,K] += 0.5 * d_oOoO[i,I,j,J] * T3abb[a,B,A,i,K,I] @tensoropt R3abb[a,A,B,j,J,K] -= 0.5 * d_oOoO[i,I,j,J] * T3abb[a,A,B,i,K,I] d_oOoO = nothing -d_oVoO = load(EC,"d_oVoO") +d_oVoO = load4idx(EC,"d_oVoO") @tensoropt R3aab[a,b,A,k,j,I] -= d_oVoO[i,A,j,I] * T2a[a,b,k,i] @tensoropt R3aab[a,b,A,j,k,I] += d_oVoO[i,A,j,I] * T2a[a,b,k,i] @tensoropt R3abb[a,B,A,j,J,I] -= d_oVoO[i,A,j,I] * T2ab[a,B,i,J] @@ -475,7 +475,7 @@ d_oVoO = load(EC,"d_oVoO") @tensoropt R3abb[a,B,A,j,I,J] += d_oVoO[i,A,j,I] * T2ab[a,B,i,J] @tensoropt R3abb[a,A,B,j,I,J] -= d_oVoO[i,A,j,I] * T2ab[a,B,i,J] d_oVoO = nothing -d_oovo = load(EC,"d_oovo") +d_oovo = load4idx(EC,"d_oovo") @tensoropt R3aab[a,b,A,j,i,I] += 0.5 * d_oovo[l,k,c,i] * T2a[b,a,k,l] * T2ab[c,A,j,I] @tensoropt R3aab[a,b,A,j,i,I] -= 0.5 * d_oovo[l,k,c,i] * T2a[a,b,k,l] * T2ab[c,A,j,I] @tensoropt R3aab[a,b,A,i,j,I] -= 0.5 * d_oovo[l,k,c,i] * T2a[b,a,k,l] * T2ab[c,A,j,I] @@ -555,7 +555,7 @@ d_oovo = load(EC,"d_oovo") @tensoropt R3a[a,c,b,i,j,k] -= d_oovo[m,l,d,i] * T2a[a,b,j,l] * T2a[c,d,k,m] @tensoropt R3a[a,b,c,i,j,k] += d_oovo[m,l,d,i] * T2a[a,b,j,l] * T2a[c,d,k,m] d_oovo = nothing -d_OOVO = load(EC,"d_OOVO") +d_OOVO = load4idx(EC,"d_OOVO") @tensoropt R3aab[b,a,A,j,i,I] += d_OOVO[K,J,B,I] * T2ab[a,B,i,J] * T2ab[b,A,j,K] @tensoropt R3aab[a,b,A,j,i,I] -= d_OOVO[K,J,B,I] * T2ab[a,B,i,J] * T2ab[b,A,j,K] @tensoropt R3aab[b,a,A,i,j,I] -= d_OOVO[K,J,B,I] * T2ab[a,B,i,J] * T2ab[b,A,j,K] @@ -635,7 +635,7 @@ d_OOVO = load(EC,"d_OOVO") @tensoropt R3b[A,C,B,I,J,K] -= d_OOVO[M,L,D,I] * T2b[A,B,J,L] * T2b[C,D,K,M] @tensoropt R3b[A,B,C,I,J,K] += d_OOVO[M,L,D,I] * T2b[A,B,J,L] * T2b[C,D,K,M] d_OOVO = nothing -d_oOvO = load(EC,"d_oOvO") +d_oOvO = load4idx(EC,"d_oOvO") @tensoropt R3aab[a,b,A,j,i,I] += d_oOvO[k,J,c,I] * T2ab[c,A,i,J] * T2a[a,b,j,k] @tensoropt R3aab[a,b,A,i,j,I] -= d_oOvO[k,J,c,I] * T2ab[c,A,i,J] * T2a[a,b,j,k] @tensoropt R3aab[b,a,A,i,j,I] += d_oOvO[k,J,c,I] * T2ab[a,A,k,J] * T2a[b,c,i,j] @@ -677,7 +677,7 @@ d_oOvO = load(EC,"d_oOvO") @tensoropt R3b[A,C,B,I,J,K] -= d_oOvO[i,L,a,I] * T2b[A,B,J,L] * T2ab[a,C,i,K] @tensoropt R3b[A,B,C,I,J,K] += d_oOvO[i,L,a,I] * T2b[A,B,J,L] * T2ab[a,C,i,K] d_oOvO = nothing -d_oOoV = load(EC,"d_oOoV") +d_oOoV = load4idx(EC,"d_oOoV") @tensoropt R3aab[b,a,A,j,i,I] += d_oOoV[k,J,i,B] * T2ab[a,B,k,I] * T2ab[b,A,j,J] @tensoropt R3aab[a,b,A,j,i,I] -= d_oOoV[k,J,i,B] * T2ab[a,B,k,I] * T2ab[b,A,j,J] @tensoropt R3aab[b,a,A,i,j,I] -= d_oOoV[k,J,i,B] * T2ab[a,B,k,I] * T2ab[b,A,j,J] @@ -719,7 +719,7 @@ d_oOoV = load(EC,"d_oOoV") @tensoropt R3a[a,c,b,i,j,k] -= d_oOoV[l,I,i,A] * T2a[a,b,j,l] * T2ab[c,A,k,I] @tensoropt R3a[a,b,c,i,j,k] += d_oOoV[l,I,i,A] * T2a[a,b,j,l] * T2ab[c,A,k,I] d_oOoV = nothing -d_oVvO = load(EC,"d_oVvO") +d_oVvO = load4idx(EC,"d_oVvO") @tensoropt R3aab[b,c,A,j,k,I] += d_oVvO[i,A,a,I] * T3a[b,c,a,j,k,i] @tensoropt R3abb[b,B,A,j,J,I] += d_oVvO[i,A,a,I] * T3aab[b,a,B,j,i,J] @tensoropt R3abb[b,A,B,j,J,I] -= d_oVvO[i,A,a,I] * T3aab[b,a,B,j,i,J] @@ -735,7 +735,7 @@ d_oVvO = load(EC,"d_oVvO") @tensoropt R3b[B,A,C,I,J,K] -= d_oVvO[i,A,a,I] * T3abb[a,B,C,i,J,K] @tensoropt R3b[A,B,C,I,J,K] += d_oVvO[i,A,a,I] * T3abb[a,B,C,i,J,K] d_oVvO = nothing -d_oVoV = load(EC,"d_oVoV") +d_oVoV = load4idx(EC,"d_oVoV") @tensoropt R3aab[a,b,B,k,j,I] += d_oVoV[i,B,j,A] * T3aab[b,a,A,k,i,I] @tensoropt R3aab[a,b,B,j,k,I] -= d_oVoV[i,B,j,A] * T3aab[b,a,A,k,i,I] @tensoropt R3abb[a,C,B,j,I,J] += d_oVoV[i,B,j,A] * T3abb[a,A,C,i,I,J] @@ -1075,7 +1075,7 @@ oOvV = ints2(EC,"oOvV") @tensoropt R3a[b,a,c,i,j,k] -= oOvV[l,I,d,A] * T2a[a,d,i,l] * T3aab[b,c,A,j,k,I] @tensoropt R3a[a,b,c,i,j,k] += oOvV[l,I,d,A] * T2a[a,d,i,l] * T3aab[b,c,A,j,k,I] oOvV = nothing -d_oVvV = load(EC,"d_oVvV") +d_oVvV = load4idx(EC,"d_oVvV") @tensoropt R3aab[a,b,A,j,i,I] += d_oVvV[k,A,c,B] * T2a[a,b,i,k] * T2ab[c,B,j,I] @tensoropt R3aab[a,b,A,i,j,I] -= d_oVvV[k,A,c,B] * T2a[a,b,i,k] * T2ab[c,B,j,I] @tensoropt R3aab[b,a,A,i,j,I] -= d_oVvV[k,A,c,B] * T2ab[a,B,k,I] * T2a[b,c,i,j] @@ -1180,12 +1180,12 @@ end function dcccsdt_triples!(EC::ECInfo, R3, T2, T3, fij, fab, fai, fia) #bract #act,divide=$(1 - \Perm{abc}{cab})$ -d_vvvv = load(EC,"d_vvvv") +d_vvvv = load4idx(EC,"d_vvvv") @tensoropt R3[e,c,d,i,j,k] += d_vvvv[c,d,a,b] * T3[a,e,b,j,i,k] @tensoropt R3[c,e,d,i,j,k] += d_vvvv[c,d,a,b] * T3[a,e,b,i,j,k] @tensoropt R3[c,d,e,i,j,k] += d_vvvv[c,d,a,b] * T3[a,e,b,i,k,j] d_vvvv = nothing -d_vvvo = load(EC,"d_vvvo") +d_vvvo = load4idx(EC,"d_vvvo") @tensoropt R3[d,b,c,j,k,i] += d_vvvo[b,c,a,i] * T2[a,d,k,j] @tensoropt R3[b,d,c,j,k,i] += d_vvvo[b,c,a,i] * T2[a,d,j,k] @tensoropt R3[d,b,c,j,i,k] += d_vvvo[c,b,a,i] * T2[a,d,k,j] @@ -1193,7 +1193,7 @@ d_vvvo = load(EC,"d_vvvo") @tensoropt R3[b,d,c,i,j,k] += d_vvvo[c,b,a,i] * T2[a,d,k,j] @tensoropt R3[b,c,d,i,j,k] += d_vvvo[c,b,a,i] * T2[a,d,j,k] d_vvvo = nothing -d_vovv = load(EC,"d_vovv") +d_vovv = load4idx(EC,"d_vovv") @tensoropt R3[c,b,a,j,i,k] -= d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,k,j] @tensoropt R3[c,a,b,j,k,i] -= d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,k,j] @tensoropt R3[b,c,a,i,j,k] -= d_vovv[a,l,e,d] * T2[c,b,l,i] * T2[d,e,j,k] @@ -1225,7 +1225,7 @@ d_vovv = load(EC,"d_vovv") @tensoropt R3[a,c,b,j,k,i] += 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,j,k] @tensoropt R3[a,b,c,j,i,k] += 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,j,k] d_vovv = nothing -d_vovo = load(EC,"d_vovo") +d_vovo = load4idx(EC,"d_vovo") @tensoropt R3[c,b,d,k,l,j] -= d_vovo[b,i,a,j] * T3[d,a,c,i,l,k] @tensoropt R3[b,c,d,k,l,j] -= d_vovo[b,i,a,j] * T3[d,a,c,i,k,l] @tensoropt R3[c,d,b,k,j,l] -= d_vovo[b,i,a,j] * T3[d,a,c,i,l,k] @@ -1236,7 +1236,7 @@ d_vovo = load(EC,"d_vovo") @tensoropt R3[c,b,d,k,j,l] -= d_vovo[b,i,a,j] * T3[a,c,d,i,k,l] @tensoropt R3[b,c,d,j,k,l] -= d_vovo[b,i,a,j] * T3[a,c,d,i,k,l] d_vovo = nothing -d_voov = load(EC,"d_voov") +d_voov = load4idx(EC,"d_voov") @tensoropt R3[c,d,b,k,l,j] -= d_voov[b,i,j,a] * T3[d,a,c,i,l,k] @tensoropt R3[c,d,b,k,l,j] -= d_voov[b,i,j,a] * T3[c,a,d,i,k,l] @tensoropt R3[c,b,d,k,j,l] -= d_voov[b,i,j,a] * T3[d,a,c,i,l,k] @@ -1247,7 +1247,7 @@ d_voov = load(EC,"d_voov") @tensoropt R3[c,b,d,k,j,l] += 2 * d_voov[b,i,j,a] * T3[a,c,d,i,k,l] @tensoropt R3[b,c,d,j,k,l] += 2 * d_voov[b,i,j,a] * T3[a,c,d,i,k,l] d_voov = nothing -d_vooo = load(EC,"d_vooo") +d_vooo = load4idx(EC,"d_vooo") @tensoropt R3[b,a,c,l,j,k] -= d_vooo[a,i,j,k] * T2[c,b,i,l] @tensoropt R3[a,b,c,j,l,k] -= d_vooo[a,i,j,k] * T2[c,b,i,l] @tensoropt R3[b,c,a,l,j,k] -= d_vooo[a,i,k,j] * T2[c,b,i,l] @@ -1255,12 +1255,12 @@ d_vooo = load(EC,"d_vooo") @tensoropt R3[b,c,a,j,l,k] -= d_vooo[a,i,k,j] * T2[b,c,i,l] @tensoropt R3[b,a,c,j,k,l] -= d_vooo[a,i,k,j] * T2[b,c,i,l] d_vooo = nothing -d_oooo = load(EC,"d_oooo") +d_oooo = load4idx(EC,"d_oooo") @tensoropt R3[a,b,c,m,k,l] += d_oooo[j,i,l,k] * T3[b,c,a,i,j,m] @tensoropt R3[a,b,c,k,m,l] += d_oooo[j,i,l,k] * T3[a,c,b,i,j,m] @tensoropt R3[a,b,c,k,l,m] += d_oooo[j,i,l,k] * T3[a,b,c,i,j,m] d_oooo = nothing -d_oovo = load(EC,"d_oovo") +d_oovo = load4idx(EC,"d_oovo") @tensoropt R3[b,a,c,k,j,i] += d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[c,b,m,k] @tensoropt R3[b,c,a,k,i,j] += d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[c,b,m,k] @tensoropt R3[c,a,b,k,j,i] += d_oovo[m,l,d,i] * T2[b,a,l,j] * T2[c,d,m,k] diff --git a/src/cc.jl b/src/cc.jl index 6f453b1..362a5e9 100644 --- a/src/cc.jl +++ b/src/cc.jl @@ -689,7 +689,7 @@ function dress_fock_oppositespin(EC::ECInfo) end """ - calc_dressed_ints(EC::ECInfo, T1a, T1b=Float64[]; + calc_dressed_ints(EC::ECInfo, T1; calc_d_vvvv=EC.options.cc.calc_d_vvvv, calc_d_vvvo=EC.options.cc.calc_d_vvvo, calc_d_vovv=EC.options.cc.calc_d_vovv, calc_d_vvoo=EC.options.cc.calc_d_vvoo) @@ -698,20 +698,21 @@ end ``\\hat v_{ab}^{cd}``, ``\\hat v_{ab}^{ci}``, ``\\hat v_{ak}^{cd}`` and ``\\hat v_{ab}^{ij}`` are only calculated if requested in `EC.options.cc` or using keyword-arguments. """ -function calc_dressed_ints(EC::ECInfo, T1a, T1b=Float64[]; +function calc_dressed_ints(EC::ECInfo, T1; calc_d_vvvv=EC.options.cc.calc_d_vvvv, calc_d_vvvo=EC.options.cc.calc_d_vvvo, calc_d_vovv=EC.options.cc.calc_d_vovv, calc_d_vvoo=EC.options.cc.calc_d_vvoo) - if ndims(T1b) != 2 - calc_dressed_ints(EC, T1a, T1a, "ovov"...; calc_d_vvvv, calc_d_vvvo, calc_d_vovv, calc_d_vvoo) - dress_fock_closedshell(EC, T1a) - else - calc_dressed_ints(EC, T1a, T1a, "ovov"...; calc_d_vvvv, calc_d_vvvo, calc_d_vovv, calc_d_vvoo) - calc_dressed_ints(EC, T1b, T1b, "OVOV"...; calc_d_vvvv, calc_d_vvvo, calc_d_vovv, calc_d_vvoo) - calc_dressed_ints(EC, T1a, T1b, "ovOV"...; calc_d_vvvv, calc_d_vvvo, calc_d_vovv, calc_d_vvoo) - dress_fock_samespin(EC, T1a, "ov"...) - dress_fock_samespin(EC, T1b, "OV"...) - dress_fock_oppositespin(EC) - end + calc_dressed_ints(EC, T1, T1, "ovov"...; calc_d_vvvv, calc_d_vvvo, calc_d_vovv, calc_d_vvoo) + dress_fock_closedshell(EC, T1) +end +function calc_dressed_ints(EC::ECInfo, T1a, T1b; + calc_d_vvvv=EC.options.cc.calc_d_vvvv, calc_d_vvvo=EC.options.cc.calc_d_vvvo, + calc_d_vovv=EC.options.cc.calc_d_vovv, calc_d_vvoo=EC.options.cc.calc_d_vvoo) + calc_dressed_ints(EC, T1a, T1a, "ovov"...; calc_d_vvvv, calc_d_vvvo, calc_d_vovv, calc_d_vvoo) + calc_dressed_ints(EC, T1b, T1b, "OVOV"...; calc_d_vvvv, calc_d_vvvo, calc_d_vovv, calc_d_vvoo) + calc_dressed_ints(EC, T1a, T1b, "ovOV"...; calc_d_vvvv, calc_d_vvvo, calc_d_vovv, calc_d_vvoo) + dress_fock_samespin(EC, T1a, "ov"...) + dress_fock_samespin(EC, T1b, "OV"...) + dress_fock_oppositespin(EC) end """ @@ -971,7 +972,7 @@ function calc_cc_resid(EC::ECInfo, T1, T2; dc=false, tworef=false, fixref=false) nvirt = n_virt_orbs(EC) norb = n_orbs(EC) if length(T1) > 0 - calc_dressed_ints(EC,T1) + calc_dressed_ints(EC, T1) t1 = print_time(EC,t1,"dressing",2) else pseudo_dressed_ints(EC) @@ -998,7 +999,7 @@ function calc_cc_resid(EC::ECInfo, T1, T2; dc=false, tworef=false, fixref=false) end t1 = print_time(EC,t1,"singles residual",2) else - R1 = Float64[] + R1 = zero(T1) end # @@ -1022,36 +1023,16 @@ function calc_cc_resid(EC::ECInfo, T1, T2; dc=false, tworef=false, fixref=false) @tensoropt R2[a,b,i,j] += int2[k,l,i,j] * T2[a,b,k,l] t1 = print_time(EC,t1,"I_klij T^kl_ab",2) if EC.options.cc.use_kext - int2 = integ2(EC.fd) - if ndims(int2) == 4 - if EC.options.cc.triangular_kext - trioo = [CartesianIndex(i,j) for j in 1:nocc for i in 1:j] - D2 = calc_D2(EC, T1, T2)[:,:,trioo] - # D^ij_rs - @tensoropt K2pqx[p,r,x] := int2[p,r,q,s] * D2[q,s,x] - D2 = NOTHING3idx - K2pq = Array{Float64}(undef,norb,norb,nocc,nocc) - K2pq[:,:,trioo] = K2pqx - trioor = CartesianIndex.(reverse.(Tuple.(trioo))) - @tensor K2pq[:,:,trioor][p,q,x] = K2pqx[q,p,x] - K2pqx = NOTHING3idx - else - D2 = calc_D2(EC, T1, T2) - # D^ij_rs - @tensoropt K2pq[p,r,i,j] := int2[p,r,q,s] * D2[q,s,i,j] - D2 = nothing - end - else - # last two indices of integrals are stored as upper triangular - tripp = [CartesianIndex(i,j) for j in 1:norb for i in 1:j] - D2 = calc_D2(EC, T1, T2, true)[tripp,:,:] - # D^ij_rs - @tensoropt rK2pq[p,r,i,j] := int2[p,r,x] * D2[x,i,j] - D2 = nothing - # symmetrize R - @tensoropt K2pq[p,r,i,j] := rK2pq[p,r,i,j] + rK2pq[r,p,j,i] - rK2pq = nothing - end + int2 = integ2_ss(EC.fd) + # last two indices of integrals are stored as upper triangular + tripp = [CartesianIndex(i,j) for j in 1:norb for i in 1:j] + D2 = calc_D2(EC, T1, T2, true)[tripp,:,:] + # D^ij_rs + @tensoropt rK2pq[p,r,i,j] := int2[p,r,x] * D2[x,i,j] + D2 = nothing + # symmetrize R + @tensoropt K2pq[p,r,i,j] := rK2pq[p,r,i,j] + rK2pq[r,p,j,i] + rK2pq = nothing R2 += K2pq[SP['v'],SP['v'],:,:] if length(T1) > 0 @tensoropt begin @@ -1148,15 +1129,15 @@ function calc_cc_resid(EC::ECInfo, T1a, T1b, T2a, T2b, T2ab; dc=false, tworef=fa T2ab[active.ua,active.tb,active.ta,active.ub] = 0.0 end - if ndims(T1a) == 2 - calc_dressed_ints(EC,T1a,T1b) + if length(T1a) > 0 || length(T1b) > 0 + calc_dressed_ints(EC, T1a, T1b) t1 = print_time(EC,t1,"dressing",2) else - pseudo_dressed_ints(EC,true) + pseudo_dressed_ints(EC, true) end - R1a = Float64[] - R1b = Float64[] + R1a = zero(T1a) + R1b = zero(T1b) dfock = load2idx(EC,"df_mm") dfockb = load2idx(EC,"df_MM") @@ -1243,8 +1224,7 @@ function calc_cc_resid(EC::ECInfo, T1a, T1b, T2a, T2b, T2ab; dc=false, tworef=fa tripp = [CartesianIndex(i,j) for j in 1:norb for i in 1:j] if EC.fd.uhf # αα - int2a = integ2(EC.fd, :α) - @assert ndims(int2a) == 3 "Triangular storage of integrals expected!" + int2a = integ2_ss(EC.fd, :α) D2a = calc_D2(EC, T1a, T2a, :α)[tripp,:,:] @tensoropt rK2pqa[p,r,i,j] := int2a[p,r,x] * D2a[x,i,j] D2a = nothing @@ -1255,7 +1235,7 @@ function calc_cc_resid(EC::ECInfo, T1a, T1b, T2a, T2b, T2ab; dc=false, tworef=fa R2a += K2pqa[SP['v'],SP['v'],:,:] if n_occb_orbs(EC) > 0 # ββ - int2b = integ2(EC.fd, :β) + int2b = integ2_ss(EC.fd, :β) D2b = calc_D2(EC, T1b, T2b, :β)[tripp,:,:] @tensoropt rK2pqb[p,r,i,j] := int2b[p,r,x] * D2b[x,i,j] D2b = nothing @@ -1265,7 +1245,7 @@ function calc_cc_resid(EC::ECInfo, T1a, T1b, T2a, T2b, T2ab; dc=false, tworef=fa rK2pqb = nothing R2b += K2pqb[SP['V'],SP['V'],:,:] # αβ - int2ab = integ2(EC.fd, :αβ) + int2ab = integ2_os(EC.fd) D2ab = calc_D2ab(EC, T1a, T1b, T2ab) @tensoropt K2pqab[p,r,i,j] := int2ab[p,r,q,s] * D2ab[q,s,i,j] D2ab = nothing @@ -1273,8 +1253,7 @@ function calc_cc_resid(EC::ECInfo, T1a, T1b, T2a, T2b, T2ab; dc=false, tworef=fa R2ab += K2pqab[SP['v'],SP['V'],:,:] end else - int2 = integ2(EC.fd) - @assert ndims(int2) == 3 "Triangular storage of integrals expected!" + int2 = integ2_ss(EC.fd) # αα D2a = calc_D2(EC, T1a, T2a, :α)[tripp,:,:] @tensoropt rK2pqa[p,r,i,j] := int2[p,r,x] * D2a[x,i,j] @@ -1580,7 +1559,6 @@ function calc_cc_resid(EC::ECInfo, T1a, T1b, T2a, T2b, T2ab, T3a, T3b, T3aab, T3 EC.options.cc.calc_d_vvvo = true EC.options.cc.calc_d_vovv = true EC.options.cc.calc_d_vvoo = true - EC.options.cc.triangular_kext = false t1 = time_ns() SP = EC.space @@ -1588,15 +1566,15 @@ function calc_cc_resid(EC::ECInfo, T1a, T1b, T2a, T2b, T2ab, T3a, T3b, T3aab, T3 noccb = n_occb_orbs(EC) nvirt = n_virt_orbs(EC) nvirtb = n_virtb_orbs(EC) - if ndims(T1a) == 2 - calc_dressed_ints(EC,T1a,T1b) + if length(T1a) > 0 || length(T1b) > 0 + calc_dressed_ints(EC, T1a, T1b) t1 = print_time(EC,t1,"dressing",2) else pseudo_dressed_ints(EC,true) end - R1a = zeros(nvirt,nocc) - R1b = zeros(nvirtb,noccb) + R1a = zero(T1a) + R1b = zero(T1b) dfock = load2idx(EC,"df_mm") dfockb = load2idx(EC,"df_MM") @@ -1646,14 +1624,13 @@ function calc_cc_resid(EC::ECInfo, T1, T2, T3; dc=false, tworef=false, fixref=fa EC.options.cc.calc_d_vvvo = true EC.options.cc.calc_d_vovv = true EC.options.cc.calc_d_vvoo = true - EC.options.cc.triangular_kext = false t1 = time_ns() SP = EC.space nocc = n_occ_orbs(EC) nvirt = n_virt_orbs(EC) - if ndims(T1) == 2 - calc_dressed_ints(EC,T1) + if length(T1) > 0 + calc_dressed_ints(EC, T1) t1 = print_time(EC,t1,"dressing",2) else pseudo_dressed_ints(EC,true) @@ -1699,9 +1676,13 @@ function oss_active_orbitals(EC::ECInfo) torb = setdiff(SP['o'],SP['O'])[1] uorb = setdiff(SP['O'],SP['o'])[1] torba = findfirst(isequal(torb),SP['o']) + @assert !isnothing(torba) "Active orbital not found in alpha orbitals." uorbb = findfirst(isequal(uorb),SP['O']) + @assert !isnothing(uorbb) "Active orbital not found in beta orbitals." torbb = findfirst(isequal(torb),SP['V']) + @assert !isnothing(torbb) "Active orbital not found in beta virtuals." uorba = findfirst(isequal(uorb),SP['v']) + @assert !isnothing(uorba) "Active orbital not found in alpha virtuals." return (ta=torba,ub=uorbb,tb=torbb,ua=uorba) end @@ -2016,42 +1997,76 @@ end - `"EW"` - singlet/triplet energy contribution (for 2D methods) """ function calc_cc(EC::ECInfo, method::ECMethod) + t0 = time_ns() print_info(method_name(method)) - Amps, exc_ranges = starting_amplitudes(EC, method) - singles, doubles, triples = exc_ranges[1:3] - Eh, NormT1, NormT2, NormT3 = cc_iterations!(Amps, singles, doubles, triples, EC, method) - - if method.exclevel[1] == :full - try2save_singles!(EC, Amps[singles]...) + highest_full_exc = max_full_exc(method) + if highest_full_exc > 3 + error("only implemented upto triples") end - try2save_doubles!(EC, Amps[doubles]...) - println() - if method.exclevel[3] == :full - output_norms(["T1"=>sqrt(NormT1), "T2"=>sqrt(NormT2), "T3"=>sqrt(NormT3)]) + if is_unrestricted(method) || has_prefix(method, "R") + if method.exclevel[1] == :full + T1a = read_starting_guess4amplitudes(EC, Val(1), :α) + T1b = read_starting_guess4amplitudes(EC, Val(1), :β) + else + T1a = zeros(0,0) + T1b = zeros(0,0) + end + if method.exclevel[2] != :full + error("No doubles is not implemented") + end + T2a = read_starting_guess4amplitudes(EC, Val(2), :α, :α) + T2b = read_starting_guess4amplitudes(EC, Val(2), :β, :β) + T2ab = read_starting_guess4amplitudes(EC, Val(2), :α, :β) + if method.exclevel[3] != :full + Eh = cc_iterations!((T1a,T1b), (T2a,T2b,T2ab), (), EC, method) + else + T3aaa = read_starting_guess4amplitudes(EC, Val(3), :α, :α, :α) + T3bbb = read_starting_guess4amplitudes(EC, Val(3), :β, :β, :β) + T3aab = read_starting_guess4amplitudes(EC, Val(3), :α, :α, :β) + T3abb = read_starting_guess4amplitudes(EC, Val(3), :α, :β, :β) + Eh = cc_iterations!((T1a,T1b), (T2a,T2b,T2ab), (T3aaa,T3bbb,T3aab,T3abb), EC, method) + end else - output_norms(["T1"=>sqrt(NormT1), "T2"=>sqrt(NormT2)]) + if method.exclevel[1] == :full + T1 = read_starting_guess4amplitudes(EC, Val(1)) + else + T1 = zeros(0,0) + end + if method.exclevel[2] != :full + error("No doubles is not implemented") + end + T2 = read_starting_guess4amplitudes(EC, Val(2)) + if method.exclevel[3] != :full + Eh = cc_iterations!((T1,), (T2,), (), EC, method) + else + T3 = read_starting_guess4amplitudes(EC, Val(3)) + Eh = cc_iterations!((T1,), (T2,), (T3,), EC, method) + end end - println() + if has_prefix(method, "2D") ene = Eh["E"] + Eh["EIAS"] W = load1idx(EC,"2d_ccsd_W")[1] push!(Eh, "EW"=>W, "E"=>ene) end + t0 = print_time(EC, t0, "total", 1) return Eh end -function cc_iterations!(Amps, singles, doubles, triples, EC::ECInfo, method::ECMethod) +function cc_iterations!(Amps1, Amps2, Amps3, EC::ECInfo, method::ECMethod) + t0 = time_ns() dc = (method.theory[1:2] == "DC") tworef = has_prefix(method, "2D") fixref = (has_prefix(method, "FRS") || has_prefix(method, "FRT")) restrict = has_prefix(method, "R") if is_unrestricted(method) || has_prefix(method, "R") - @assert (length(singles) == 2) && (length(doubles) == 3) && (length(triples) == 4) + @assert (length(Amps1) == 2) && (length(Amps2) == 3) && (length(Amps3) == 4 || length(Amps3) == 0) else - @assert (length(singles) == 1) && (length(doubles) == 1) && (length(triples) == 1) + @assert (length(Amps1) == 1) && (length(Amps2) == 1) && (length(Amps3) == 1 || length(Amps3) == 0) end - T2αβ = last(doubles) + Amps = (Amps1..., Amps2..., Amps3...) + T2αβ = last(Amps2) diis = Diis(EC) NormR1 = 0.0 @@ -2063,60 +2078,67 @@ function cc_iterations!(Amps, singles, doubles, triples, EC::ECInfo, method::ECM En1 = 0.0 Eias = 0.0 converged = false - t0 = time_ns() + t0 = print_time(EC, t0, "initialization", 1) println("Iter SqNorm Energy DE Res Time") for it in 1:EC.options.cc.maxit t1 = time_ns() Res = calc_cc_resid(EC, Amps...; dc, tworef, fixref) - @assert typeof(Res) == typeof(Amps) - if restrict - spin_project!(EC, Res...) + @assert typeof(Res) == typeof(Amps) + Res1 = Res[1:length(Amps1)] + Res2 = Res[length(Amps1)+1:length(Amps1)+length(Amps2)] + Res3 = Res[length(Amps1)+length(Amps2)+1:end] + if length(Amps1) == 2 && restrict + # spin_project!(EC, Res...) + # at the moment we don't project the triples + spin_project!(EC, Res1..., Res2...) end t1 = print_time(EC, t1, "residual", 2) - NormT2 = calc_doubles_norm(Amps[doubles]...) - NormR2 = calc_doubles_norm(Res[doubles]...) + NormT2 = calc_doubles_norm(Amps2...) + NormR2 = calc_doubles_norm(Res2...) if has_prefix(method, "FRS") active = oss_active_orbitals(EC) - Amps[T2αβ][active.ua,active.tb,active.ta,active.ub] = 1.0 + T2αβ[active.ua,active.tb,active.ta,active.ub] = 1.0 elseif has_prefix(method, "FRT") active = oss_active_orbitals(EC) - Amps[T2αβ][active.ua,active.tb,active.ta,active.ub] = -1.0 + T2αβ[active.ua,active.tb,active.ta,active.ub] = -1.0 end - Eh = calc_hylleraas(EC, Amps[singles]..., Amps[doubles]..., Res[singles]..., Res[doubles]...) - update_doubles!(EC, Amps[doubles]..., Res[doubles]...) - if method.exclevel[3] == :full - NormT3 = calc_triples_norm(Amps[triples]...) - NormR3 = calc_triples_norm(Res[triples]...) - update_triples!(EC, Amps[triples]..., Res[triples]...) + Eh = calc_hylleraas(EC, Amps1..., Amps2..., Res1..., Res2...) + update_doubles!(EC, Amps2..., Res2...) + if length(Amps3) > 0 + NormT3 = calc_triples_norm(Amps3...) + NormR3 = calc_triples_norm(Res3...) + update_triples!(EC, Amps3..., Res3...) end if do_sing - NormT1 = calc_singles_norm(Amps[singles]...) - NormR1 = calc_singles_norm(Res[singles]...) - update_singles!(EC, Amps[singles]..., Res[singles]...) + NormT1 = calc_singles_norm(Amps1...) + NormR1 = calc_singles_norm(Res1...) + update_singles!(EC, Amps1..., Res1...) if has_prefix(method, "2D") active = oss_active_orbitals(EC) - T1α = first(singles) - T1β = last(singles) + T1α = first(Amps1) + T1β = last(Amps1) W = load1idx(EC,"2d_ccsd_W")[1] - Eias = - W * Amps[T1α][active.ua,active.ta] * Amps[T1β][active.tb,active.ub] + Eias = - W * T1α[active.ua,active.ta] * T1β[active.tb,active.ub] end end - if restrict - spin_project!(EC, Amps...) + if length(Amps1) == 2 && restrict + # spin_project!(EC, Amps...) + # at the moment we don't project the triples + spin_project!(EC, Amps1..., Amps2...) end perform!(diis, Amps, Res) - save_current_doubles(EC, Amps[doubles]...) - En2 = calc_doubles_energy(EC, Amps[doubles]...) + save_current_doubles(EC, Amps2...) + En2 = calc_doubles_energy(EC, Amps2...) En = En2["E"] if do_sing - save_current_singles(EC, Amps[singles]...) - En1 = calc_singles_energy(EC, Amps[singles]...) + save_current_singles(EC, Amps1...) + En1 = calc_singles_energy(EC, Amps1...) En += En1["E"] end ΔE = En - Eh["E"] NormR = NormR1 + NormR2 NormT = 1.0 + NormT1 + NormT2 - if method.exclevel[3] == :full + if length(Amps3) > 0 NormR += NormR3 NormT += NormT3 end @@ -2132,7 +2154,18 @@ function cc_iterations!(Amps, singles, doubles, triples, EC::ECInfo, method::ECM if tworef push!(Eh, "EIAS"=>Eias) end - return Eh, NormT1, NormT2, NormT3 + if do_sing + try2save_singles!(EC, Amps1...) + end + try2save_doubles!(EC, Amps2...) + println() + if length(Amps3) > 0 + output_norms(["T1"=>sqrt(NormT1), "T2"=>sqrt(NormT2), "T3"=>sqrt(NormT3)]) + else + output_norms(["T1"=>sqrt(NormT1), "T2"=>sqrt(NormT2)]) + end + println() + return Eh end """ @@ -2167,7 +2200,7 @@ function calc_ccsdt(EC::ECInfo, useT3=false, cc3=false) NormT2 = 0.0 NormT3 = 0.0 R1 = Float64[] - Eh = 0.0 + Eh = OutDict() t0 = time_ns() for it in 1:EC.options.cc.maxit t1 = time_ns() @@ -2193,7 +2226,7 @@ function calc_ccsdt(EC::ECInfo, useT3=false, cc3=false) T1 += update_singles(EC, R1) T2 += update_doubles(EC, R2) T3 += update_deco_triples(EC, R3) - perform!(diis, [T1,T2,T3], [R1,R2,R3]) + perform!(diis, (T1,T2,T3), (R1,R2,R3)) save!(EC, "T_XXX", T3) En1 = calc_singles_energy(EC, T1) En2 = calc_doubles_energy(EC, T2) diff --git a/src/cc_lagrange.jl b/src/cc_lagrange.jl index b3ecddb..fd5884c 100644 --- a/src/cc_lagrange.jl +++ b/src/cc_lagrange.jl @@ -40,38 +40,18 @@ function calc_ccsd_vector_times_Jacobian(EC::ECInfo, U1, U2; dc=false) # the 4-external part if EC.options.cc.use_kext # the `kext` part - int2 = integ2(EC.fd) - if ndims(int2) == 4 - if EC.options.cc.triangular_kext - trioo = [CartesianIndex(i,j) for j in 1:nocc for i in 1:j] - dU2 = calc_dU2(EC, T1, T1, U2)[:,:,trioo] - # ``K_{mn}^{rs} = \hat U_{mn}^{pq} v_{pq}^{rs}`` - @tensoropt Kmmx[r,s,x] := int2[p,q,r,s] * dU2[p,q,x] - dU2 = nothing - Kmmoo = Array{Float64}(undef,norb,norb,nocc,nocc) - Kmmoo[:,:,trioo] = Kmmx - trioor = CartesianIndex.(reverse.(Tuple.(trioo))) - @tensor Kmmoo[:,:,trioor][p,q,x] = Kmmx[q,p,x] - Kmmx = nothing - else - dU2 = calc_dU2(EC, T1, T1, U2) - # ``K_{mn}^{rs} = \hat U_{mn}^{pq} v_{pq}^{rs}`` - @tensoropt Kmmoo[r,s,m,n] := int2[p,q,r,s] * dU2[p,q,m,n] - dU2 = nothing - end - else - # last two indices of integrals are stored as upper triangular - dU2 = calc_dU2(EC, T1, T1, U2) - # ``K_{mn}^{rs} = \hat U_{mn}^{pq} v_{pq}^{rs}`` - @tensoropt Kxoo[x,m,n] := int2[p,q,x] * dU2[p,q,m,n] - dU2 = nothing - Kmmoo = Array{Float64}(undef,norb,norb,nocc,nocc) - tripp = [CartesianIndex(i,j) for j in 1:norb for i in 1:j] - Kmmoo[tripp,:,:] = Kxoo - trippr = CartesianIndex.(reverse.(Tuple.(tripp))) - @tensor Kmmoo[trippr,:,:][x,m,n] = Kxoo[x,n,m] - Kxoo = nothing - end + int2 = integ2_ss(EC.fd) + # last two indices of integrals are stored as upper triangular + dU2 = calc_dU2(EC, T1, T1, U2) + # ``K_{mn}^{rs} = \hat U_{mn}^{pq} v_{pq}^{rs}`` + @tensoropt Kxoo[x,m,n] := int2[p,q,x] * dU2[p,q,m,n] + dU2 = nothing + Kmmoo = Array{Float64}(undef,norb,norb,nocc,nocc) + tripp = [CartesianIndex(i,j) for j in 1:norb for i in 1:j] + Kmmoo[tripp,:,:] = Kxoo + trippr = CartesianIndex.(reverse.(Tuple.(tripp))) + @tensor Kmmoo[trippr,:,:][x,m,n] = Kxoo[x,n,m] + Kxoo = nothing t1 = print_time(EC, t1, "K_{mn}^{rs} = \\hat U_{mn}^{pq} v_{pq}^{rs}",2) # ``R^{ef}_{mn} += K_{mn}^{rs} δ_r^e δ_s^f`` R2 += Kmmoo[SP['v'],SP['v'],:,:] @@ -242,14 +222,9 @@ Return `dU2[p,q,m,n]`=``Λ_{mn}^{ab}δ_a^p δ_b^q - Λ_{mn}^{ab}T^i_a δ_i^p δ_ function calc_dU2(EC::ECInfo, T1, T12, U2, o1='o', v1='v', o2='o', v2='v') SP = EC.space norb = n_orbs(EC) - nocc1 = length(SP[o1]) - nocc2 = length(SP[o2]) - if length(T1) > 0 - # dU2 = Array{Float64}(undef,norb,norb,nocc1,nocc2) - dU2 = zeros(norb,norb,nocc1,nocc2) - else - dU2 = zeros(norb,norb,nocc1,nocc2) - end + nocc1 = size(U2,3) + nocc2 = size(U2,4) + dU2 = zeros(norb,norb,nocc1,nocc2) dU2[SP[v1],SP[v2],:,:] = U2 if length(T1) > 0 @tensoropt dUovoo[i,b,m,n] := U2[a,b,m,n] * T1[a,i] @@ -361,7 +336,7 @@ function calc_ccsd_vector_times_Jacobian4spin(EC::ECInfo, U1, U2, U2ab, if EC.options.cc.use_kext # the `kext` part spin4int = EC.fd.uhf ? spin : :α - int2 = integ2(EC.fd, spin4int) + int2 = integ2_ss(EC.fd, spin4int) dU2 = calc_dU2(EC, T1, T1, U2, o4s, v4s, o4s, v4s) if ndims(int2) == 4 error("Non-triangular integrals not tested in kext equations in ΛUCCSD") @@ -531,7 +506,8 @@ Additionally, remaining contributions to the singles residual are calculated. Return ΔR1a, ΔR1b, R2ab """ -function calc_ccsd_vector_times_Jacobian4ab(EC::ECInfo, U1a, U1b, U2a, U2b, U2ab, D1a, D1b; dc=false) +function calc_ccsd_vector_times_Jacobian4ab(EC::ECInfo, U1a::Matrix{Float64}, U1b::Matrix{Float64}, + U2a::Array{Float64,4}, U2b::Array{Float64}, U2ab::Array{Float64}, D1a, D1b; dc=false) t1 = time_ns() SP = EC.space @@ -548,7 +524,7 @@ function calc_ccsd_vector_times_Jacobian4ab(EC::ECInfo, U1a, U1b, U2a, U2b, U2ab # ``R^e_m -= Λ_{iJ}^{eB} \hat v_{mB}^{iJ}`` int2 = load4idx(EC, "d_oVoO") @tensoropt R1a[e,m] := - U2ab[e,B,i,J] * int2[m,B,i,J] - int2 = nothing + int2 = NOTHING4idx else R1a = U1a end @@ -556,7 +532,7 @@ function calc_ccsd_vector_times_Jacobian4ab(EC::ECInfo, U1a, U1b, U2a, U2b, U2ab # ``R^E_M -= Λ_{jI}^{bE} \hat v_{bM}^{jI}`` int2 = load4idx(EC, "d_vOoO") @tensoropt R1b[E,M] := - U2ab[b,E,j,I] * int2[b,M,j,I] - int2 = nothing + int2 = NOTHING4idx else R1b = U1b end @@ -566,29 +542,27 @@ function calc_ccsd_vector_times_Jacobian4ab(EC::ECInfo, U1a, U1b, U2a, U2b, U2ab # the 4-external part if EC.options.cc.use_kext # the `kext` part - dU2 = calc_dU2(EC, T1a, T1b, U2ab, "ovOV"...) + dU2 = calc_dU2(EC, T1a, T1b, U2ab, 'o','v','O','V') + Kmmoo = Array{Float64,4}(undef,norb,norb,nocca,noccb) if EC.fd.uhf - int2 = integ2(EC.fd, :αβ) - @assert ndims(int2) == 4 + int2 = integ2_os(EC.fd) # ``K_{mN}^{rS} = \hat U_{mN}^{pQ} v_{pQ}^{rS}`` - @tensoropt Kmmoo[r,S,m,N] := int2[p,Q,r,S] * dU2[p,Q,m,N] - dU2 = nothing + @tensoropt Kmmoo[r,S,m,N] = int2[p,Q,r,S] * dU2[p,Q,m,N] + int2 = NOTHING4idx else - int2 = integ2(EC.fd) - # last two indices of integrals are stored as upper triangular - @assert ndims(int2) == 3 + int2_3idx = integ2_ss(EC.fd) # ``K_{mN}^{rS} = \hat U_{mN}^{pQ} v_{pQ}^{rS}``, ``r ≤ S`` - @tensoropt Kxoo[x,m,N] := int2[p,Q,x] * dU2[p,Q,m,N] - Kmmoo = Array{Float64}(undef,norb,norb,nocca,noccb) + @tensoropt Kxoo[x,m,N] := int2_3idx[p,Q,x] * dU2[p,Q,m,N] tripp = [CartesianIndex(i,j) for j in 1:norb for i in 1:j] Kmmoo[tripp,:,:] = Kxoo # ``K_{mN}^{rS} = \hat U_{mN}^{pQ} v_{Qp}^{Sr}``, ``S ≤ r`` - @tensoropt Kxoo[x,m,N] = int2[Q,p,x] * dU2[p,Q,m,N] - dU2 = nothing + @tensoropt Kxoo[x,m,N] = int2_3idx[Q,p,x] * dU2[p,Q,m,N] trippr = CartesianIndex.(reverse.(Tuple.(tripp))) @tensor Kmmoo[trippr,:,:][x,m,N] = Kxoo[x,m,N] - Kxoo = nothing + Kxoo = NOTHING3idx + int2_3idx = NOTHING3idx end + dU2 = NOTHING4idx t1 = print_time(EC, t1, "K_{mN}^{rS} = \\hat U_{mN}^{pQ} v_{pQ}^{rS}",2) # ``R^{eF}_{mN} += K_{mN}^{rS} δ_r^e δ_S^F`` R2 = Kmmoo[SP['v'],SP['V'],:,:] @@ -608,7 +582,7 @@ function calc_ccsd_vector_times_Jacobian4ab(EC::ECInfo, U1a, U1b, U2a, U2b, U2ab end end t1 = print_time(EC, t1, "R^e_m += K_{mJ}^{rS} δ_r^e (δ_S^J + δ_S^B T^J_B)",2) - Kmmoo = nothing + Kmmoo = NOTHING4idx else error("non-kext Λ equations not implemented") end @@ -676,13 +650,13 @@ function calc_ccsd_vector_times_Jacobian4ab(EC::ECInfo, U1a, U1b, U2a, U2b, U2ab @tensoropt R1b[E,M] -= D2[b,d,M,K] * d_vOvV[b,K,d,E] t1 = print_time(EC, t1, "R_E^M -= D_{Md}^{bK} \\hat v_{bK}^{dE}",2) end - D2 = nothing + D2 = NOTHING4idx if length(U1a) > 0 # ``R^{eF}_{mN} += Λ^a_m \hat v_{aN}^{eF}`` @tensoropt R2[e,F,m,N] += U1a[a,m] * d_vOvV[a,N,e,F] t1 = print_time(EC, t1, "R^{eF}_{mN} += U^a_m \\hat v_{aN}^{eF}",2) end - d_vOvV = nothing + d_vOvV = NOTHING4idx if length(R1b) > 0 # ``\bar D_{Ib}^{Aj} = Λ_{IK}^{AC} T^{jK}_{bC} + Λ_{kI}^{cA} T^{jk}_{bc}`` @@ -690,7 +664,7 @@ function calc_ccsd_vector_times_Jacobian4ab(EC::ECInfo, U1a, U1b, U2a, U2b, U2ab T2a = load4idx(EC, "T_vvoo") @tensoropt D2[A,b,I,j] += U2ab[c,A,k,I] * T2a[c,b,k,j] t1 = print_time(EC, t1, "\\bar D_{Ib}^{Aj} = U_{IK}^{AC} T^{jK}_{bC} + U_{kI}^{cA} T^{jk}_{bc}",2) - T2a = nothing + T2a = NOTHING4idx # ``R^E_M -= \bar D_{Id}^{El} \hat v_{lM}^{dI}`` @tensoropt R1b[E,M] -= D2[E,d,I,l] * d_oOvO[l,M,d,I] t1 = print_time(EC, t1, "R_E^M -= \\bar D_{Id}^{El} \\hat v_{lM}^{dI}",2) @@ -716,14 +690,14 @@ function calc_ccsd_vector_times_Jacobian4ab(EC::ECInfo, U1a, U1b, U2a, U2b, U2ab @tensoropt R1a[e,m] -= D2[B,D,m,k] * d_oVvV[k,B,e,D] t1 = print_time(EC, t1, "R_e^m -= D_{mD}^{Bk} \\hat v_{kB}^{eD}",2) end - D2 = nothing + D2 = NOTHING4idx if length(U1b) > 0 # ``R^{eF}_{mN} += Λ^A_N \hat v_{mA}^{eF}`` @tensoropt R2[e,F,m,N] += U1b[A,N] * d_oVvV[m,A,e,F] t1 = print_time(EC, t1, "R^{eF}_{mN} += U^A_N \\hat v_{mA}^{eF}",2) end - d_oVvV = nothing - T2ab = nothing + d_oVvV = NOTHING4idx + T2ab = NOTHING4idx if length(U1a) > 0 # ``R^{eF}_{mN} -= Λ_{i}^{e} \hat v_{mN}^{iF}`` @tensoropt R2[e,F,m,N] -= U1a[e,i] * d_oOoV[m,N,i,F] @@ -732,7 +706,7 @@ function calc_ccsd_vector_times_Jacobian4ab(EC::ECInfo, U1a, U1b, U2a, U2b, U2ab @tensoropt R2[e,F,m,N] += U1a[e,m] * dfbov[N,F] t1 = print_time(EC, t1, "R^{eF}_{mN} += U_{m}^{e} \\hat f_{N}^{F}",2) end - d_oOoV = nothing + d_oOoV = NOTHING4idx if length(U1b) > 0 # ``R^{eF}_{mN} -= Λ_{I}^{F} \hat v_{mN}^{eI}`` @tensoropt R2[e,F,m,N] -= U1b[F,I] * d_oOvO[m,N,e,I] @@ -741,7 +715,7 @@ function calc_ccsd_vector_times_Jacobian4ab(EC::ECInfo, U1a, U1b, U2a, U2b, U2ab @tensoropt R2[e,F,m,N] += U1b[F,N] * dfaov[m,e] t1 = print_time(EC, t1, "R^{eF}_{mN} += U_{N}^{F} \\hat f_{m}^{e}",2) end - d_oOvO = nothing + d_oOvO = NOTHING4idx fac = dc ? 0.5 : 1.0 # ``R^{eF}_{mN} += \hat x_c^e Λ_{mN}^{cF} - \hat x_m^k Λ_{kN}^{eF} + ...`` x_vv = load2idx(EC, "vT_vv") @@ -770,22 +744,22 @@ function calc_ccsd_vector_times_Jacobian4ab(EC::ECInfo, U1a, U1b, U2a, U2b, U2ab # ``R^{eF}_{mN} += Λ_{iN}^{aF} \bar y_{am}^{ie}`` vT_voov = load4idx(EC, "vT_voov") @tensoropt R2[e,F,m,N] += U2ab[a,F,i,N] * vT_voov[a,m,i,e] - vT_voov = nothing + vT_voov = NOTHING4idx t1 = print_time(EC, t1, "R^{eF}_{mN} += U_{iN}^{aF} \\bar y_{am}^{ie}",2) # ``R^{eF}_{mN} += Λ_{mJ}^{eB} \bar y_{BN}^{JF}`` vT_VOOV = load4idx(EC, "vT_VOOV") @tensoropt R2[e,F,m,N] += U2ab[e,B,m,J] * vT_VOOV[B,N,J,F] - vT_VOOV = nothing + vT_VOOV = NOTHING4idx t1 = print_time(EC, t1, "R^{eF}_{mN} += U_{mJ}^{eB} \\bar y_{BN}^{JF}",2) # ``R^{eF}_{mN} += Λ_{im}^{ae} \bar y_{aN}^{iF}`` vT_vOoV = load4idx(EC, "vT_vOoV") @tensoropt R2[e,F,m,N] += U2a[a,e,i,m] * vT_vOoV[a,N,i,F] - vT_vOoV = nothing + vT_vOoV = NOTHING4idx t1 = print_time(EC, t1, "R^{eF}_{mN} += U_{im}^{ae} \\bar y_{aN}^{iF}",2) # ``R^{eF}_{mN} += Λ_{IN}^{AF} \bar y_{Am}^{Ie}`` vT_VoOv = load4idx(EC, "vT_VoOv") @tensoropt R2[e,F,m,N] += U2b[A,F,I,N] * vT_VoOv[A,m,I,e] - vT_VoOv = nothing + vT_VoOv = NOTHING4idx t1 = print_time(EC, t1, "R^{eF}_{mN} += U_{IN}^{AF} \\bar y_{Am}^{Ie}",2) # ``R^{eF}_{mN} -= Λ_{mJ}^{aF} (\hat v_{aN}^{eJ} \red{- v_{kN}^{eD} T^{kJ}_{aD}})`` int2 = load4idx(EC, "d_vOvO") @@ -799,11 +773,11 @@ function calc_ccsd_vector_times_Jacobian4ab(EC::ECInfo, U1a, U1b, U2a, U2b, U2ab int2 = load4idx(EC, "d_oVoV") if !dc @tensoropt int2[m,B,i,F] -= oOvV[m,L,c,F] * T2ab[c,B,i,L] - T2ab = nothing + T2ab = NOTHING4idx end @tensoropt R2[e,F,m,N] -= U2ab[e,B,i,N] * int2[m,B,i,F] t1 = print_time(EC, t1, "R^{eF}_{mN} -= U_{iN}^{eB} (\\hat v_{mB}^{iF} + v_{mL}^{cF} T^{iL}_{cB})",2) - int2 = nothing + int2 = NOTHING4idx return R1a, R1b, R2 end @@ -992,7 +966,7 @@ function calc_3ext_times_T2(EC::ECInfo, T2a::AbstractArray, T2b::AbstractArray, int2 = load4idx(EC, "d_oVvV") @tensoropt vT_oVoO[m,B,i,J] := int2[m,B,c,D] * T2ab[c,D,i,J] save!(EC, "vT_oVoO", vT_oVoO) - int2 = vT_oVoO = nothing + int2 = vT_oVoO = NOTHING4idx calc_3ext_times_T2(EC, T2ab, 'O', 'V', 'o', 'v') end @@ -1145,45 +1119,57 @@ end """ function calc_lm_cc(EC::ECInfo, method::ECMethod) print_info(method_name(method)*" Lagrange multipliers") - LMs, exc_ranges = starting_amplitudes(EC, method) - singles, doubles, triples = exc_ranges[1:3] - - NormLM1, NormLM2 = lm_cc_iterations!(LMs, singles, doubles, triples, EC, method) - - if method.exclevel[1] == :full - try2save_singles!(EC, LMs[singles]...; type="LM") + highest_full_exc = max_full_exc(method) + if highest_full_exc > 2 + error("only implemented upto doubles") + end + if is_unrestricted(method) || has_prefix(method, "R") + if method.exclevel[1] == :full + T1a = read_starting_guess4amplitudes(EC, Val(1), :α) + T1b = read_starting_guess4amplitudes(EC, Val(1), :β) + else + T1a = zeros(0,0) + T1b = zeros(0,0) + end + if method.exclevel[2] != :full + error("No doubles is not implemented") + end + T2a = read_starting_guess4amplitudes(EC, Val(2), :α, :α) + T2b = read_starting_guess4amplitudes(EC, Val(2), :β, :β) + T2ab = read_starting_guess4amplitudes(EC, Val(2), :α, :β) + lm_cc_iterations!((T1a,T1b), (T2a,T2b,T2ab), EC, method) + else + if method.exclevel[1] == :full + T1 = read_starting_guess4amplitudes(EC, Val(1)) + else + T1 = zeros(0,0) + end + if method.exclevel[2] != :full + error("No doubles is not implemented") + end + T2 = read_starting_guess4amplitudes(EC, Val(2)) + lm_cc_iterations!((T1,), (T2,), EC, method) end - try2save_doubles!(EC, LMs[doubles]...; type="LM") - println() - output_norms(["LM1"=>sqrt(NormLM1), "LM2"=>sqrt(NormLM2)]) - println() end -function lm_cc_iterations!(LMs, singles, doubles, triples, EC::ECInfo, method::ECMethod) +function lm_cc_iterations!(LMs1, LMs2, EC::ECInfo, method::ECMethod) dc = (method.theory == "DC" || last(method.theory,2) == "DC") - if is_unrestricted(method) - @assert (length(singles) == 2) && (length(doubles) == 3) && (length(triples) == 4) + if is_unrestricted(method) || has_prefix(method, "R") + @assert (length(LMs1) == 2) && (length(LMs2) == 3) else - @assert (length(singles) == 1) && (length(doubles) == 1) && (length(triples) == 1) + @assert (length(LMs1) == 1) && (length(LMs2) == 1) end + LMs = (LMs1..., LMs2...) # dress integrals t1 = time_ns() - calc_dressed_ints(EC, LMs[singles]...; calc_d_vovv=true) + calc_dressed_ints(EC, LMs1...; calc_d_vovv=true) t1 = print_time(EC, t1, "dressing integrals",2) - calc_vT2_intermediates(EC, LMs[doubles]...; dc) + calc_vT2_intermediates(EC, LMs2...; dc) diis = Diis(EC) - transform_amplitudes2lagrange_multipliers!(LMs, (singles,doubles,triples)) + transform_amplitudes2lagrange_multipliers!(LMs1, LMs2) do_sing = (method.exclevel[1] == :full) - # if !do_sing - # if is_unrestricted(method) - # LMs[singles[1]] = Float64[] - # LMs[singles[2]] = Float64[] - # else - # LMs[singles[1]] = Float64[] - # end - # end NormR1 = 0.0 NormLM1::Float64 = 0.0 @@ -1195,20 +1181,23 @@ function lm_cc_iterations!(LMs, singles, doubles, triples, EC::ECInfo, method::E for it in 1:EC.options.cc.maxit t1 = time_ns() Res = calc_ccsd_vector_times_Jacobian(EC, LMs...; dc) + @assert typeof(Res) == typeof(LMs) + Res1 = Res[1:length(LMs1)] + Res2 = Res[length(LMs1)+1:end] t1 = print_time(EC, t1, "residual", 2) - update_doubles!(EC, LMs[doubles]..., Res[doubles]...) - NormLM2 = calc_contra_doubles_norm(LMs[doubles]...) - NormR2 = calc_contra_doubles_norm(Res[doubles]...) + update_doubles!(EC, LMs2..., Res2...) + NormLM2 = calc_contra_doubles_norm(LMs2...) + NormR2 = calc_contra_doubles_norm(Res2...) if do_sing - NormLM1 = calc_contra_singles_norm(LMs[singles]...) - NormR1 = calc_contra_singles_norm(Res[singles]...) - update_singles!(EC, LMs[singles]..., Res[singles]...) + NormLM1 = calc_contra_singles_norm(LMs1...) + NormR1 = calc_contra_singles_norm(Res1...) + update_singles!(EC, LMs1..., Res1...) end perform!(diis, LMs, Res) if do_sing - save_current_singles(EC, LMs[singles]..., prefix="U") + save_current_singles(EC, LMs1..., prefix="U") end - save_current_doubles(EC, LMs[doubles]..., prefix="U") + save_current_doubles(EC, LMs2..., prefix="U") ΛTNorm = calc_correlation_norm(EC, LMs...) NormR = NormR1 + NormR2 NormLM = 1.0 + NormLM1 + NormLM2 @@ -1221,5 +1210,12 @@ function lm_cc_iterations!(LMs, singles, doubles, triples, EC::ECInfo, method::E if !converged println("WARNING: CC-LM iterations did not converge!") end - return NormLM1, NormLM2 -end \ No newline at end of file + if do_sing + try2save_singles!(EC, LMs1...; type="LM") + end + try2save_doubles!(EC, LMs2...; type="LM") + println() + output_norms(["LM1"=>sqrt(NormLM1), "LM2"=>sqrt(NormLM2)]) + println() + return +end diff --git a/src/ccdriver.jl b/src/ccdriver.jl index a46be73..55252b4 100644 --- a/src/ccdriver.jl +++ b/src/ccdriver.jl @@ -35,6 +35,7 @@ export ccdriver, dfccdriver Additionally, the spatial symmetry of the orbitals can be specified with the syntax `orb.sym`, e.g. `occa = "-5.1+-2.2+-4.3"`. """ function ccdriver(EC::ECInfo, method; fcidump="", occa="-", occb="-") + t0 = time_ns() save_occs = check_occs(EC, occa, occb) check_fcidump(EC, fcidump) setup_space_fd!(EC) diff --git a/src/cctools.jl b/src/cctools.jl index be1eaba..40131de 100644 --- a/src/cctools.jl +++ b/src/cctools.jl @@ -16,7 +16,7 @@ export calc_fock_matrix, calc_HF_energy export calc_singles_energy_using_dfock export update_singles, update_doubles, update_singles!, update_doubles!, update_triples!, update_deco_doubles, update_deco_triples export calc_singles_norm, calc_doubles_norm, calc_triples_norm, calc_contra_singles_norm, calc_contra_doubles_norm, calc_deco_doubles_norm, calc_deco_triples_norm -export read_starting_guess4amplitudes, save_current_singles, save_current_doubles, starting_amplitudes +export read_starting_guess4amplitudes, save_current_singles, save_current_doubles export transform_amplitudes2lagrange_multipliers! export try2save_amps!, try2start_amps, try2save_singles!, try2save_doubles!, try2start_singles, try2start_doubles export contra2covariant @@ -711,58 +711,17 @@ function save_current_doubles(EC::ECInfo, T2a, T2b, T2ab; prefix="T") end """ - starting_amplitudes(EC::ECInfo, method::ECMethod) - - Prepare starting amplitudes for coupled cluster calculation. - - The starting amplitudes are read from files `T_vo`, `T_VO`, `T_vvoo`, etc. - If the files do not exist, the amplitudes are initialized to zero. - The order of amplitudes is as follows: - - singles: `α`, `β` - - doubles: `αα`, `ββ`, `αβ` - - triples: `ααα`, `βββ`, `ααβ`, `αββ` - Return a list of vectors of starting amplitudes - and a list of ranges for excitation levels. -""" -function starting_amplitudes(EC::ECInfo, method::ECMethod) - highest_full_exc = max_full_exc(method) - if highest_full_exc > 3 - error("starting_amplitudes only implemented upto triples") - end - if is_unrestricted(method) || has_prefix(method, "R") - namps = sum([i + 1 for i in 1:highest_full_exc]) - exc_ranges = UnitRange{Int}[1:2, 3:5, 6:9] - spins = [(:α,), (:β,), (:α, :α), (:β, :β), (:α, :β), (:α, :α, :α), (:β, :β, :β), (:α, :α, :β), (:α, :β, :β)] - else - namps = highest_full_exc - exc_ranges = UnitRange{Int}[1:1, 2:2, 3:3] - spins = [(:α,), (:α, :α), (:α, :α, :α)] - end - Amps = AbstractArray[Float64[] for i in 1:namps] - # starting guesses - for (iex,ex) in enumerate(method.exclevel) - if ex == :full - for iamp in exc_ranges[iex] - Amps[iamp] = read_starting_guess4amplitudes(EC, Val(iex), spins[iamp]...) - end - end - end - return Tuple(Amps), exc_ranges -end - -""" - transform_amplitudes2lagrange_multipliers!(Amps, exc_ranges) + transform_amplitudes2lagrange_multipliers!(Amps1, Amps2) Transform amplitudes to first guess for Lagrange multipliers. The amplitudes are transformed in-place. """ -function transform_amplitudes2lagrange_multipliers!(Amps, exc_ranges) - singles, doubles, triples = exc_ranges[1:3] - unrestricted = (length(singles) == 2) - @assert (unrestricted && length(doubles) == 3) || (!unrestricted && length(doubles) == 1) +function transform_amplitudes2lagrange_multipliers!(Amps1, Amps2) + unrestricted = (length(Amps1) == 2) + @assert (unrestricted && length(Amps2) == 3) || (!unrestricted && length(Amps2) == 1) # add singles to doubles - add_singles2doubles!(Amps[doubles]..., Amps[singles]...) + add_singles2doubles!(Amps2..., Amps1...) return end diff --git a/src/diis.jl b/src/diis.jl index 184bf07..6b8f9df 100644 --- a/src/diis.jl +++ b/src/diis.jl @@ -145,7 +145,7 @@ function weighted_dot(diis::Diis, vecs1, vecs2) @assert length(vecs1) == length(diis.weights) dot = 0.0 for i in eachindex(vecs1) - dot += diis.weights[i] * (vecs1[i] ⋅ vecs2[i]) + dot += diis.weights[i] * (vec(vecs1[i]) ⋅ vec(vecs2[i])) end return dot end diff --git a/src/dump.jl b/src/dump.jl index b951b88..c6db330 100644 --- a/src/dump.jl +++ b/src/dump.jl @@ -270,6 +270,9 @@ end Return 2-e⁻ integrals (for UHF fcidump: for `spincase`). `spincase` can be `:α`, `:β` or `:αβ`. + + Use type-stable versions instead: + [`integ2_ss`](@ref) for same-spin integrals and [`integ2_os`](@ref) for opposite-spin integrals. """ function integ2(fd::FDump, spincase::Symbol=:α) if !fd.uhf diff --git a/src/options.jl b/src/options.jl index a17afad..ddc49f8 100644 --- a/src/options.jl +++ b/src/options.jl @@ -144,8 +144,6 @@ Base.@kwdef mutable struct CcOptions calc_d_vovv::Bool = false """`⟨false⟩` calculate dressed . """ calc_d_vvoo::Bool = false - """`⟨true⟩` use a triangular kext if possible. """ - triangular_kext::Bool = true """`⟨false⟩` calculate (T) for decomposition. """ calc_t3_for_decomposition::Bool = false """`⟨0.0⟩` imaginary shift for denominator in doubles decomposition. """ diff --git a/test/ccsdt.jl b/test/ccsdt.jl index 5447e53..5e1745b 100644 --- a/test/ccsdt.jl +++ b/test/ccsdt.jl @@ -5,7 +5,7 @@ ECCSDT_test = -0.214407285207 EDCCCSDT_test = -0.214479790853 fcidump = joinpath(@__DIR__,"H2O.FCIDUMP") -@set cc use_kext = false calc_d_vvvv = true calc_d_vvvo = true calc_d_vovv = true calc_d_vvoo = true triangular_kext = false +@set cc use_kext = false calc_d_vvvv = true calc_d_vvvo = true calc_d_vovv = true calc_d_vvoo = true energies = @cc ccsdt @test abs(last(energies)-energies.HF-ECCSDT_test) < epsilon diff --git a/test/h2o_cation.jl b/test/h2o_cation.jl index 7d967ac..b005dbb 100644 --- a/test/h2o_cation.jl +++ b/test/h2o_cation.jl @@ -31,7 +31,7 @@ energies = @cc uccsd @test abs(energies["HF"]-EUHF_test) < epsilon @test abs(last_energy(energies)-ECCSD_UHF_test) < epsilon -@set cc use_kext = false calc_d_vvvv = true calc_d_vvvo = true calc_d_vovv = true calc_d_vvoo = true triangular_kext = false +@set cc use_kext = false calc_d_vvvv = true calc_d_vvvo = true calc_d_vovv = true calc_d_vvoo = true energies = @cc uccsd @test abs(last_energy(energies)-ECCSD_UHF_test) < epsilon diff --git a/test/uccsdt.jl b/test/uccsdt.jl index eb1c5df..68cdff7 100644 --- a/test/uccsdt.jl +++ b/test/uccsdt.jl @@ -5,7 +5,7 @@ ECCSDT_test = -0.170787150063 EDCCCSDT_test = -0.170829455099 fcidump = joinpath(@__DIR__,"files","H2OP_UHF.FCIDUMP") -@set cc use_kext = false calc_d_vvvv = true calc_d_vvvo = true calc_d_vovv = true calc_d_vvoo = true triangular_kext = false +@set cc use_kext = false calc_d_vvvv = true calc_d_vvvo = true calc_d_vovv = true calc_d_vvoo = true energies = @cc uccsdt @test abs(last_energy(energies)-energies["HF"]-ECCSDT_test) < epsilon From 3c6d4f7c670473b9014939492d63f64f1aed2eaa Mon Sep 17 00:00:00 2001 From: Daniel Kats Date: Wed, 3 Jul 2024 20:00:37 +0200 Subject: [PATCH 37/44] Add precompilation --- Project.toml | 6 ++++-- src/ElemCo.jl | 15 +++++++++++++++ 2 files changed, 19 insertions(+), 2 deletions(-) diff --git a/Project.toml b/Project.toml index b3740d0..46fe301 100644 --- a/Project.toml +++ b/Project.toml @@ -13,6 +13,7 @@ LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" MKL = "33e6dc65-8f57-5167-99aa-e5a354878fb2" Mmap = "a63ad114-7e13-5084-954f-fe012c677804" NPZ = "15e1cf62-19b3-5cfa-8e77-841668bca605" +PrecompileTools = "aea7be01-6a6a-4083-8856-8a6e6704d82a" Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7" StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" TensorOperations = "6aa20fa7-93e2-5fca-9bc0-fbd0db3c71a2" @@ -28,12 +29,13 @@ ITensors = "0.4.0 - 0.7" IterativeSolvers = "0.9" MKL = "0.6 - 0.7" NPZ = "0.4" -TensorOperations = "3.2.5 - 4" +PrecompileTools = "1" StaticArrays = "1.4" +TensorOperations = "3.2.5 - 4" Unitful = "1" UnitfulAtomic = "1" -libcint_jll = "5.1" julia = "1.8.5" +libcint_jll = "5.1" [extras] Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" diff --git a/src/ElemCo.jl b/src/ElemCo.jl index dae5a88..6fa5f29 100644 --- a/src/ElemCo.jl +++ b/src/ElemCo.jl @@ -57,6 +57,7 @@ using Printf using Dates #BLAS.set_num_threads(1) using TensorOperations +using PrecompileTools using .Utils using .ECInfos using .QMTensors @@ -718,4 +719,18 @@ macro export_molden(filename) end end +@setup_workload begin + savestd = stdout + redirect_stdout(devnull) + geometry = "H 0.0 0.0 0.0 + H 0.0 0.0 1.0" + basis = "vdz" + @compile_workload begin + @dfhf + @cc dcsd + @cc uccsd + end + redirect_stdout(savestd) +end + end #module From cfbc917554bcb8e323e4267a13566f13776bdfba Mon Sep 17 00:00:00 2001 From: Daniel Kats Date: Thu, 4 Jul 2024 14:17:45 +0200 Subject: [PATCH 38/44] Add snoopi scripts for profiling Add profile/LocalPreferences.toml file to switch off the precompilation (copy this file to the root directory). --- .gitignore | 1 + profile/LocalPreferences.toml | 2 ++ profile/snoopi_deep.jl | 19 +++++++++++++++++++ profile/snoopr.jl | 15 +++++++++++++++ test/n_st1.jl | 4 ++-- 5 files changed, 39 insertions(+), 2 deletions(-) create mode 100644 profile/LocalPreferences.toml create mode 100644 profile/snoopi_deep.jl create mode 100644 profile/snoopr.jl diff --git a/.gitignore b/.gitignore index 9f219a4..9c00873 100644 --- a/.gitignore +++ b/.gitignore @@ -8,3 +8,4 @@ docs/equations/*.log docs/equations/*.out docs/equations/*.toc docs/src/release-notes.md +LocalPreferences.toml diff --git a/profile/LocalPreferences.toml b/profile/LocalPreferences.toml new file mode 100644 index 0000000..d661869 --- /dev/null +++ b/profile/LocalPreferences.toml @@ -0,0 +1,2 @@ +[ElemCo] +precompile_workload = false diff --git a/profile/snoopi_deep.jl b/profile/snoopi_deep.jl new file mode 100644 index 0000000..44be790 --- /dev/null +++ b/profile/snoopi_deep.jl @@ -0,0 +1,19 @@ +# start julia as `jlm --startup-file="no" ` +using SnoopCompile +using Profile +using ElemCo + + +geometry="H 0.0 0.0 0.0 + H 0.0 0.0 1.0" +basis="vdz" +tinf = @snoopi_deep begin + @dfhf + @cc dcsd +end + +@profile begin + @dfhf + @cc dcsd +end + diff --git a/profile/snoopr.jl b/profile/snoopr.jl new file mode 100644 index 0000000..b2c6b15 --- /dev/null +++ b/profile/snoopr.jl @@ -0,0 +1,15 @@ +# start julia as `jlm --startup-file="no" ` +using SnoopCompileCore +using ElemCo + +invalidations = @snoopr begin + +geometry="H 0.0 0.0 0.0 + H 0.0 0.0 1.0" +basis="vdz" +@dfhf +@cc dcsd +end + +using SnoopCompile + diff --git a/test/n_st1.jl b/test/n_st1.jl index 3cd6b18..12d78ed 100644 --- a/test/n_st1.jl +++ b/test/n_st1.jl @@ -6,7 +6,7 @@ EHF_test = -54.510599961049 EMP2_test = -0.040618302979 + EHF_test ccmethods = ["uccsd", "udcsd"] ECC_test = [-0.051205093083, -0.051642622503] -ECCSD_T_test = -0.053854392354 +ECCSD_T_test = -0.051388091562 EBODCSDfc_test = -0.051994090819 + EHF_test fcidump = joinpath(@__DIR__,"files","N_ST1.FCIDUMP") @@ -26,7 +26,7 @@ EBOHF = @bouhf @test abs(EBOHF-EHF_test) < epsilon energies = @cc udcsd @test abs(last_energy(energies)-EHF_test-ECC_test[2]) < epsilon -energies = @cc uccsd(t) +energies = @cc λuccsd(t) @test abs(last_energy(energies)-EHF_test-ECCSD_T_test) < epsilon @freeze_orbs [1] From 379e7c42997e34e02e60f8becdeb4924eaae4330 Mon Sep 17 00:00:00 2001 From: Daniel Kats Date: Fri, 5 Jul 2024 11:52:58 +0200 Subject: [PATCH 39/44] Make dfcc type stable --- profile/jet.jl | 58 +++++++++++++++++ src/ElemCo.jl | 1 + src/cctools.jl | 20 +++--- src/dfcc.jl | 157 +++++++++++++++++++++++---------------------- src/dftools.jl | 2 +- src/myio.jl | 17 ++++- src/tensortools.jl | 22 ++++--- src/utils.jl | 2 +- 8 files changed, 179 insertions(+), 100 deletions(-) create mode 100644 profile/jet.jl diff --git a/profile/jet.jl b/profile/jet.jl new file mode 100644 index 0000000..f1e2d90 --- /dev/null +++ b/profile/jet.jl @@ -0,0 +1,58 @@ +using ElemCo +using JET + +function main() +geometry="O 0.000000000 0.000000000 -0.130186067 + H1 0.000000000 1.489124508 1.033245507 + H2 0.000000000 -1.489124508 1.033245507" + +basis="vdz" + +@time @ECinit +@time @dfhf +#@time @cc dcsd +@time @dfcc svd-dcsd + +@report_opt target_modules=(@__MODULE__, + ElemCo, + ElemCo.BOHF, + ElemCo.CCDriver, + ElemCo.CCTools, + ElemCo.Constants, + ElemCo.CoupledCluster, + ElemCo.DecompTools, + ElemCo.DescDict, + ElemCo.DFCoupledCluster, + ElemCo.DfDump, + ElemCo.DFHF, + ElemCo.DFMCSCF, + ElemCo.DFTools, + ElemCo.DIIS, + #ElemCo.DMRG, + ElemCo.DumpTools, + ElemCo.ECInfos, + ElemCo.ECMethods, + ElemCo.FciDumps, + ElemCo.FockFactory, + ElemCo.MIO, + ElemCo.MNPY, + ElemCo.OrbTools, + ElemCo.QMTensors, + ElemCo.TensorTools, + ElemCo.Utils, + ElemCo.Wavefunctions, + ElemCo.BasisSets, + ElemCo.Elements, + ElemCo.Integrals, + ElemCo.Interfaces, + ElemCo.Libcint5, + ElemCo.MoldenInterface, + ElemCo.MolproInterface, + ElemCo.MSystem + #) ElemCo.DfDump.dfdump(EC) + #) ElemCo.DFHF.dfuhf(EC) + #) ElemCo.CCDriver.ccdriver(EC,"λCCSD") + ) ElemCo.CCDriver.dfccdriver(EC,"SVD-DCSD") + +end +@time main() diff --git a/src/ElemCo.jl b/src/ElemCo.jl index 6fa5f29..0a65333 100644 --- a/src/ElemCo.jl +++ b/src/ElemCo.jl @@ -729,6 +729,7 @@ end @dfhf @cc dcsd @cc uccsd + @dfcc svd-dcsd end redirect_stdout(savestd) end diff --git a/src/cctools.jl b/src/cctools.jl index 40131de..74e8818 100644 --- a/src/cctools.jl +++ b/src/cctools.jl @@ -568,12 +568,12 @@ function save_or_start_file(EC::ECInfo, type, excitation_level, save=true) end """ - try2save_amps!(EC::ECInfo, excitation_level, amps...; type="T") + try2save_amps!(EC::ECInfo, ::Val{excitation_level}, amps...; type="T") Save amplitudes (type="T") or Lagrange multipliers (type="LM") to file `EC.options.cc.save[_lm]*"_excitation_level"`. """ -function try2save_amps!(EC::ECInfo, excitation_level, amps...; type="T") +function try2save_amps!(EC::ECInfo, ::Val{excitation_level}, amps...; type="T") where excitation_level mainfilename, descr = save_or_start_file(EC, type, excitation_level) if mainfilename != "" filename = mainfilename*"_$excitation_level" @@ -583,21 +583,21 @@ function try2save_amps!(EC::ECInfo, excitation_level, amps...; type="T") end """ - try2start_amps(EC::ECInfo, excitation_level; type="T") + try2start_amps(EC::ECInfo, ::Val{excitation_level}; type="T") Read amplitudes (type="T") or Lagrange multipliers (type="LM") from file `EC.options.cc.start[_lm]*"_excitation_level"`. """ -function try2start_amps(EC::ECInfo, excitation_level; type="T") +function try2start_amps(EC::ECInfo, ::Val{excitation_level}; type="T") where excitation_level mainfilename, descr = save_or_start_file(EC, type, excitation_level, false) if mainfilename != "" filename = mainfilename*"_$excitation_level" if file_exists(EC, filename) println("Read $descr from file $filename") - return load(EC, filename) + return load(EC, filename, Val(excitation_level*2), skip_error=true) end end - return [] + return Array{Float64,excitation_level*2}(undef, ntuple(i->0, Val(excitation_level*2))) end """ @@ -607,7 +607,7 @@ end to file `EC.options.cc.save[_lm]*"_1"`. """ function try2save_singles!(EC::ECInfo, singles...; type="T") - try2save_amps!(EC, 1, singles...; type) + try2save_amps!(EC, Val(1), singles...; type) end """ @@ -617,7 +617,7 @@ end to file `EC.options.cc.save[_lm]*"_2"`. """ function try2save_doubles!(EC::ECInfo, doubles...; type="T") - try2save_amps!(EC, 2, doubles...; type) + try2save_amps!(EC, Val(2), doubles...; type) end """ @@ -627,7 +627,7 @@ end from file `EC.options.cc.start[_lm]*"_1"`. """ function try2start_singles(EC::ECInfo; type="T") - return try2start_amps(EC, 1; type) + return try2start_amps(EC, Val(1); type) end """ @@ -637,7 +637,7 @@ end from file `EC.options.cc.start[_lm]*"_2"`. """ function try2start_doubles(EC::ECInfo; type="T") - return try2start_amps(EC, 2; type) + return try2start_amps(EC, Val(2); type) end """ diff --git a/src/dfcc.jl b/src/dfcc.jl index 2af5734..3023aa3 100644 --- a/src/dfcc.jl +++ b/src/dfcc.jl @@ -100,54 +100,58 @@ end Returns total energy, SS, OS and Openshell (0.0) contributions as `OutDict` with keys (`E`,`ESS`,`EOS`,`EO`). """ -function calc_deco_hylleraas(EC::ECInfo, T1, T2, R1, R2) - SP = EC.space - full_t2 = true - if ndims(T2) == 2 - full_t2 = false - elseif ndims(T2) != 4 - error("Wrong dimensionality of T2!") +function calc_deco_hylleraas(EC::ECInfo, T1, T2::Array{Float64,4}, R1, R2::Array{Float64,4}) + ovL = load3idx(EC, "d_ovL") + @tensoropt begin + int2[a,b,i,j] := R2[a,b,i,j] + ovL[i,a,L] * ovL[j,b,L] + ET2d = T2[a,b,i,j] * int2[a,b,i,j] + ET2ex = T2[a,b,j,i] * int2[a,b,i,j] end - if full_t2 - ovL = load3idx(EC, "d_ovL") - @tensoropt begin - int2[a,b,i,j] := R2[a,b,i,j] + ovL[i,a,L] * ovL[j,b,L] - ET2d = T2[a,b,i,j] * int2[a,b,i,j] - ET2ex = T2[a,b,j,i] * int2[a,b,i,j] - end - ET2SS = ET2d - ET2ex - ET2OS = ET2d - ET2 = ET2SS + ET2OS - ovL = nothing - else - ssvxx, osvxx = get_ssv_osvˣˣ(EC) - @tensoropt begin - ET2OS = T2[X,Y] * (osvxx[X,Y] + R2[X,Y]) - ET2SS = T2[Y,X] * (ssvxx[X,Y] + R2[X,Y]) - end - UvoX = load3idx(EC, "C_voX") - @tensoropt ET2SS -= T2[X,Y] * ((((R2[X',Y'] * UvoX[a,i,X']) * UvoX[b,j,Y']) * UvoX[a,j,X]) * UvoX[b,i,Y]) - UvoX = nothing - ET2 = ET2SS + ET2OS + ET2SS = ET2d - ET2ex + ET2OS = ET2d + ET2 = ET2SS + ET2OS + ovL = nothing + if length(T1) > 0 + ET1, ET1SS, ET1OS = calc_deco_hylleraas_singles(EC, T1, R1) + ET2 += ET1 + ET2SS += ET1SS + ET2OS += ET1OS end + return OutDict("E"=>ET2, "ESS"=>ET2SS, "EOS"=>ET2OS, "EO"=>0.0) +end +function calc_deco_hylleraas(EC::ECInfo, T1, T2::Matrix{Float64}, R1, R2::Matrix{Float64}) + ssvxx, osvxx = get_ssv_osvˣˣ(EC) + @tensoropt begin + ET2OS = T2[X,Y] * (osvxx[X,Y] + R2[X,Y]) + ET2SS = T2[Y,X] * (ssvxx[X,Y] + R2[X,Y]) + end + UvoX = load3idx(EC, "C_voX") + @tensoropt ET2SS -= T2[X,Y] * ((((R2[X',Y'] * UvoX[a,i,X']) * UvoX[b,j,Y']) * UvoX[a,j,X]) * UvoX[b,i,Y]) + UvoX = nothing + ET2 = ET2SS + ET2OS if length(T1) > 0 - dfockc_ov = load2idx(EC, "dfc_ov") - dfocke_ov = load2idx(EC, "dfe_ov") - @tensoropt begin - ET1d = T1[a,i] * dfockc_ov[i,a] - ET1ex = T1[a,i] * dfocke_ov[i,a] - end - ET1SS = ET1d - ET1ex - ET1OS = ET1d - ET1 = ET1SS + ET1OS - fov = load2idx(EC,"f_mm")[SP['o'],SP['v']] - @tensoropt ET1 += 2.0*((fov[i,a] + 2.0 * R1[a,i])*T1[a,i]) + ET1, ET1SS, ET1OS = calc_deco_hylleraas_singles(EC, T1, R1) ET2 += ET1 ET2SS += ET1SS ET2OS += ET1OS end return OutDict("E"=>ET2, "ESS"=>ET2SS, "EOS"=>ET2OS, "EO"=>0.0) end +function calc_deco_hylleraas_singles(EC::ECInfo, T1, R1) + SP = EC.space + dfockc_ov = load2idx(EC, "dfc_ov") + dfocke_ov = load2idx(EC, "dfe_ov") + @tensoropt begin + ET1d = T1[a,i] * dfockc_ov[i,a] + ET1ex = T1[a,i] * dfocke_ov[i,a] + end + ET1SS = ET1d - ET1ex + ET1OS = ET1d + ET1 = ET1SS + ET1OS + fov = load2idx(EC,"f_mm")[SP['o'],SP['v']] + @tensoropt ET1 += 2.0*((fov[i,a] + 2.0 * R1[a,i])*T1[a,i]) + return ET1, ET1SS, ET1OS +end """ calc_deco_doubles_energy(EC::ECInfo, T2) @@ -159,20 +163,17 @@ end Returns total energy, SS, OS and Openshell (0.0) contributions as `OutDict` with keys (`E`,`ESS`,`EOS`,`EO`). """ -function calc_deco_doubles_energy(EC::ECInfo, T2) - if ndims(T2) == 4 - return calc_df_doubles_energy(EC, T2) - elseif ndims(T2) == 2 - ssvxx, osvxx = get_ssv_osvˣˣ(EC) - @tensoropt begin - ET2OS = T2[X,Y] * osvxx[X,Y] - ET2SS = T2[Y,X] * ssvxx[X,Y] - end - ET2 = ET2SS + ET2OS - return OutDict("E"=>ET2, "ESS"=>ET2SS, "EOS"=>ET2OS, "EO"=>0.0) - else - error("Wrong dimensionality of T2: ", ndims(T2)) +function calc_deco_doubles_energy(EC::ECInfo, T2::Array{Float64,4}) + return calc_df_doubles_energy(EC, T2) +end +function calc_deco_doubles_energy(EC::ECInfo, T2::Array{Float64,2}) + ssvxx, osvxx = get_ssv_osvˣˣ(EC) + @tensoropt begin + ET2OS = T2[X,Y] * osvxx[X,Y] + ET2SS = T2[Y,X] * ssvxx[X,Y] end + ET2 = ET2SS + ET2OS + return OutDict("E"=>ET2, "ESS"=>ET2SS, "EOS"=>ET2OS, "EO"=>0.0) end """ @@ -481,7 +482,7 @@ function calc_doubles_decomposition_with_doubles(EC::ECInfo) # save!(EC, "T_XX", zeros(size(v_XX))) t1 = print_time(EC, t1, "starting guess T_{XY}", 2) end - return (E=0.0,) + return OutDict("E"=>0.0) end """ @@ -699,11 +700,11 @@ function calc_svd_dcsd_residual(EC::ECInfo, T1, T2) if length(T1) > 0 R1 = dfock[SP['v'],SP['o']] else - R1 = Float64[] + R1 = zero(T1) end - R2 = zeros(size(T2)) + R2 = zero(T2) if full_t2 - dR2 = zeros(size(dT2)) + dR2 = zero(dT2) else dR2 = R2 end @@ -912,19 +913,19 @@ end """ function calc_svd_dc(EC::ECInfo, method::ECMethod) t1 = time_ns() - print_info(method_name(method), additional_info(EC)) + methodname = method_name(method) + print_info(methodname, additional_info(EC)) if method.theory != "DC" error("Only DC methods are supported in SVD!") end - do_sing = (method.exclevel[1] == :full) # decomposition and starting guess fullEMP2 = calc_doubles_decomposition(EC) t1 = print_time(EC, t1, "doubles decomposition", 2) - if do_sing + if method.exclevel[1] == :full T1 = read_starting_guess4amplitudes(EC, Val(1)) else - T1 = Float64[] + T1 = zeros(0,0) end save_pseudodressed_3idx(EC) save_pseudo_dress_df_fock(EC) @@ -934,25 +935,34 @@ function calc_svd_dc(EC::ECInfo, method::ECMethod) gen_vₓˣᴸ(EC) t1 = print_time(EC, t1, "intermediates", 2) - diis = Diis(EC) - - NormR1 = 0.0 - NormT1 = 0.0 - NormT2 = 0.0 - R1 = Float64[] - Eh = 0.0 - t0 = time_ns() if EC.options.cc.use_full_t2 T2 = load4idx(EC,"T_vvoo") + return svd_dc_iterations!(T1, T2, EC, methodname) else T2 = load2idx(EC,"T_XX") + Eh = svd_dc_iterations!(T1, T2, EC, methodname) + # ΔMP2 correction + push!(Eh, "E-correction"=>(fullEMP2["E"] - Eh["SVD-MP2"],"ΔMP2 correction")) + return Eh end +end + +function svd_dc_iterations!(T1, T2, EC::ECInfo, methodname) + t1 = time_ns() + diis = Diis(EC) + + NormR1 = 0.0 + NormT1 = 0.0 + NormT2 = 0.0 + R1 = zeros(size(T1)) + Eh = OutDict() # calc starting guess energy truncEMP2 = calc_deco_doubles_energy(EC, T2) t1 = print_time(EC, t1, "calc starting guess energy", 2) println("Starting guess energy: ", truncEMP2["E"]) println() converged = false + t0 = time_ns() println("Iter SqNorm Energy DE Res Time") for it in 1:EC.options.cc.maxit t1 = time_ns() @@ -964,18 +974,18 @@ function calc_svd_dc(EC::ECInfo, method::ECMethod) t1 = print_time(EC,t1,"calc hylleraas",2) NormT2 = calc_deco_doubles_norm(T2) NormR2 = calc_deco_doubles_norm(R2) - if do_sing + if length(T1) > 0 NormT1 = calc_singles_norm(T1) NormR1 = calc_singles_norm(R1) T1 += update_singles(EC, R1) end T2 += update_deco_doubles(EC, R2) t1 = print_time(EC,t1,"update amplitudes",2) - perform!(diis, [T1,T2], [R1,R2]) + perform!(diis, (T1,T2), (R1,R2)) t1 = print_time(EC,t1,"DIIS",2) En2 = calc_deco_doubles_energy(EC, T2) En = En2["E"] - if do_sing + if length(T1) > 0 En1 = calc_singles_energy_using_dfock(EC, T1) En += En1["E"] end @@ -996,10 +1006,7 @@ function calc_svd_dc(EC::ECInfo, method::ECMethod) println() output_norms(["T1"=>sqrt(NormT1), "T2"=>sqrt(NormT2)]) println() - if !EC.options.cc.use_full_t2 - # ΔMP2 correction - push!(Eh, "E-correction"=>(fullEMP2["E"] - truncEMP2["E"],"ΔMP2 correction")) - end + Eh["SVD-MP2"] = truncEMP2["E"] return Eh end diff --git a/src/dftools.jl b/src/dftools.jl index 3bbd7f0..b8baf6b 100644 --- a/src/dftools.jl +++ b/src/dftools.jl @@ -140,7 +140,7 @@ function generate_DF_integrals(EC::ECInfo, cMO::SpinMatrix) save!(EC, "e_m", eps) save!(EC, "e_M", eps) occ = EC.space['o'] - hsmall = cMO[1]' * load(EC,"h_AA") * cMO[1] + hsmall = cMO[1]' * load2idx(EC,"h_AA") * cMO[1] EHF = sum(eps[occ]) + sum(diag(hsmall)[occ]) + nuclear_repulsion(EC.system) # calculate 3-index integrals generate_3idx_integrals(EC, cMO, "mpfit") diff --git a/src/myio.jl b/src/myio.jl index 8181a06..756a353 100644 --- a/src/myio.jl +++ b/src/myio.jl @@ -60,18 +60,24 @@ function miosave(fname::String,arrs::AbstractArray{T}...) where T end """ - mioload(fname::String, ::Val{N}, T::Type=Float64) where {N} + mioload(fname::String, ::Val{N}, T::Type=Float64; skip_error=false) where {N} Type-stable load arrays from a file `fname`. Return an array of arrays. All arrays have the same type `T` and have `N` dimensions. For `N = 1`, return vectors even if the original array was a multi-dimensional array. + If `skip_error` is set to true, the function will not throw an error if + the type of the data/number of dimensions in the file does not match `T`/`N` + and an array with one empty Array{T,N} will be returned. """ -function mioload(fname::String, ::Val{N}, T::Type=Float64) where {N} +function mioload(fname::String, ::Val{N}, T::Type=Float64; skip_error=false) where {N} io = open(fname) # type of numbers itype = read(io, Int) if itype > length(Types) + if skip_error + return Array{T,N}[Array{T,N}(undef, ntuple(i->0, Val(N)))] + end error("Inconsistency in reading type of data!") end @assert T == Types[itype] "Inconsistency in reading type of data!" @@ -88,7 +94,12 @@ function mioload(fname::String, ::Val{N}, T::Type=Float64) where {N} end append!(dims, len) else - @assert N == ndim "Inconsistency in reading dimensions of data! Expected $N, got $ndim." + if ndim != N + if skip_error + return Array{T,N}[Array{T,N}(undef, ntuple(i->0, Val(N)))] + end + error("Inconsistency in reading dimensions of data! Expected $N, got $ndim.") + end for idim in 1:ndim append!(dims, read(io, Int)) end diff --git a/src/tensortools.jl b/src/tensortools.jl index 33efefa..a89c779 100644 --- a/src/tensortools.jl +++ b/src/tensortools.jl @@ -38,37 +38,39 @@ function load(EC::ECInfo, fname::String) end """ - load(EC::ECInfo, fname::String, ::Val{N}, T::Type=Float64 ) where {N} + load(EC::ECInfo, fname::String, ::Val{N}, T::Type=Float64; skip_error=false) where {N} Type-stable load array from file `fname` in EC.scr directory. The type `T` and number of dimensions `N` are given explicitly. + If `skip_error` is true, return empty `Array{T,N}` if the dimension/type is wrong. """ -function load(EC::ECInfo, fname::String, ::Val{N}, T::Type=Float64) where {N} - return mioload(joinpath(EC.scr, fname*EC.ext), Val(N), T)[1] +function load(EC::ECInfo, fname::String, ::Val{N}, T::Type=Float64; skip_error=false) where {N} + return mioload(joinpath(EC.scr, fname*EC.ext), Val(N), T; skip_error)[1] end """ - load_all(EC::ECInfo, fname::String, ::Val{N}, T::Type=Float64 ) where {N} + load_all(EC::ECInfo, fname::String, ::Val{N}, T::Type=Float64; skip_error=false) where {N} Type-stable load arrays from file `fname` in EC.scr directory. The type `T` and number of dimensions `N` are given explicitly (have to be the same for all arrays). Return an array of arrays. + If `skip_error` is true, return empty `Array{T,N}[Array{T,N}()]` if the dimension/type is wrong. """ -function load_all(EC::ECInfo, fname::String, ::Val{N}, T::Type=Float64) where {N} - return mioload(joinpath(EC.scr, fname*EC.ext), Val(N), T) +function load_all(EC::ECInfo, fname::String, ::Val{N}, T::Type=Float64; skip_error=false) where {N} + return mioload(joinpath(EC.scr, fname*EC.ext), Val(N), T; skip_error) end for N in 1:6 loadN = Symbol("load$(N)idx") loadNall = Symbol("load$(N)idx_all") @eval begin - function $loadN(EC::ECInfo, fname::String, T::Type=Float64) - return load(EC, fname, Val($N), T) + function $loadN(EC::ECInfo, fname::String, T::Type=Float64; skip_error=false) + return load(EC, fname, Val($N), T; skip_error) end - function $loadNall(EC::ECInfo, fname::String, T::Type=Float64) - return load_all(EC, fname, Val($N), T) + function $loadNall(EC::ECInfo, fname::String, T::Type=Float64; skip_error=false) + return load_all(EC, fname, Val($N), T; skip_error) end end end diff --git a/src/utils.jl b/src/utils.jl index f0c7bb8..7740e8e 100644 --- a/src/utils.jl +++ b/src/utils.jl @@ -63,7 +63,7 @@ const OutDict = ODDict{String, Float64} for N in 1:6 NOTHINGN = Symbol("NOTHING$(N)idx") @eval begin - const $NOTHINGN = Array{Float64,$N}(undef, ntuple(i->0, $N)) + const $NOTHINGN = Array{Float64,$N}(undef, ntuple(i->0, Val($N))) end end From 7ae02caf42b09bea96ca7a564e3ece7bb54e9caf Mon Sep 17 00:00:00 2001 From: Daniel Kats Date: Fri, 5 Jul 2024 15:46:46 +0200 Subject: [PATCH 40/44] Move source files to folders --- src/ElemCo.jl | 64 +++++++++++++++--------------- src/{ => cc}/cc.jl | 8 ++-- src/{ => cc}/cc_lagrange.jl | 0 src/{ => cc}/cc_tests.jl | 0 src/{ => cc}/cc_triples.jl | 0 src/{ => cc}/ccdriver.jl | 0 src/{ => cc}/cctools.jl | 0 src/{ => cc}/dfcc.jl | 0 src/{ => dmrg}/dmrg.jl | 0 src/{ => infos}/abstractEC.jl | 0 src/{ => infos}/ecinfos.jl | 0 src/{ => infos}/ecmethods.jl | 0 src/{ => infos}/options.jl | 0 src/{ => integrals}/decomptools.jl | 0 src/{ => integrals}/dfdump.jl | 0 src/{ => integrals}/dftools.jl | 0 src/{ => integrals}/dump.jl | 0 src/{ => integrals}/dumptools.jl | 0 src/{ => scf}/bohf.jl | 0 src/{ => scf}/dfhf.jl | 0 src/{ => scf}/dfmcscf.jl | 0 src/{ => scf}/fockfactory.jl | 0 src/{ => scf}/orbtools.jl | 0 src/{ => solvers}/diis.jl | 0 src/{ => system}/wavefunctions.jl | 0 src/{ => tools}/constants.jl | 0 src/{ => tools}/descdict.jl | 0 src/{ => tools}/logo.jl | 0 src/{ => tools}/mnpy.jl | 0 src/{ => tools}/myio.jl | 0 src/{ => tools}/outputs.jl | 0 src/{ => tools}/qmtensors.jl | 0 src/{ => tools}/spinmatrix.jl | 0 src/{ => tools}/tensortools.jl | 0 src/{ => tools}/utensors.jl | 0 src/{ => tools}/utils.jl | 0 test/ccsdt.jl | 6 +-- test/h2o_udcsd_prop.jl | 8 ++-- 38 files changed, 43 insertions(+), 43 deletions(-) rename src/{ => cc}/cc.jl (99%) rename src/{ => cc}/cc_lagrange.jl (100%) rename src/{ => cc}/cc_tests.jl (100%) rename src/{ => cc}/cc_triples.jl (100%) rename src/{ => cc}/ccdriver.jl (100%) rename src/{ => cc}/cctools.jl (100%) rename src/{ => cc}/dfcc.jl (100%) rename src/{ => dmrg}/dmrg.jl (100%) rename src/{ => infos}/abstractEC.jl (100%) rename src/{ => infos}/ecinfos.jl (100%) rename src/{ => infos}/ecmethods.jl (100%) rename src/{ => infos}/options.jl (100%) rename src/{ => integrals}/decomptools.jl (100%) rename src/{ => integrals}/dfdump.jl (100%) rename src/{ => integrals}/dftools.jl (100%) rename src/{ => integrals}/dump.jl (100%) rename src/{ => integrals}/dumptools.jl (100%) rename src/{ => scf}/bohf.jl (100%) rename src/{ => scf}/dfhf.jl (100%) rename src/{ => scf}/dfmcscf.jl (100%) rename src/{ => scf}/fockfactory.jl (100%) rename src/{ => scf}/orbtools.jl (100%) rename src/{ => solvers}/diis.jl (100%) rename src/{ => system}/wavefunctions.jl (100%) rename src/{ => tools}/constants.jl (100%) rename src/{ => tools}/descdict.jl (100%) rename src/{ => tools}/logo.jl (100%) rename src/{ => tools}/mnpy.jl (100%) rename src/{ => tools}/myio.jl (100%) rename src/{ => tools}/outputs.jl (100%) rename src/{ => tools}/qmtensors.jl (100%) rename src/{ => tools}/spinmatrix.jl (100%) rename src/{ => tools}/tensortools.jl (100%) rename src/{ => tools}/utensors.jl (100%) rename src/{ => tools}/utils.jl (100%) diff --git a/src/ElemCo.jl b/src/ElemCo.jl index 0a65333..98cd3b5 100644 --- a/src/ElemCo.jl +++ b/src/ElemCo.jl @@ -5,43 +5,43 @@ """ module ElemCo -include("abstractEC.jl") -include("descdict.jl") -include("outputs.jl") -include("utils.jl") -include("constants.jl") -include("myio.jl") -include("mnpy.jl") -include("qmtensors.jl") -include("dump.jl") +include("infos/abstractEC.jl") +include("tools/descdict.jl") +include("tools/outputs.jl") +include("tools/utils.jl") +include("tools/constants.jl") +include("tools/myio.jl") +include("tools/mnpy.jl") +include("tools/qmtensors.jl") +include("integrals/dump.jl") include("system/elements.jl") include("system/msystem.jl") include("system/basisset.jl") include("system/integrals.jl") -include("wavefunctions.jl") - -include("ecinfos.jl") -include("ecmethods.jl") -include("tensortools.jl") -include("diis.jl") -include("orbtools.jl") -include("fockfactory.jl") -include("dumptools.jl") -include("dftools.jl") -include("decomptools.jl") -include("cctools.jl") -include("dfcc.jl") -include("cc.jl") -include("dmrg.jl") -include("ccdriver.jl") - -include("bohf.jl") - -include("dfhf.jl") -include("dfdump.jl") - -include("dfmcscf.jl") +include("system/wavefunctions.jl") + +include("infos/ecinfos.jl") +include("infos/ecmethods.jl") +include("tools/tensortools.jl") +include("solvers/diis.jl") +include("scf/orbtools.jl") +include("scf/fockfactory.jl") +include("integrals/dumptools.jl") +include("integrals/dftools.jl") +include("integrals/decomptools.jl") +include("cc/cctools.jl") +include("cc/dfcc.jl") +include("cc/cc.jl") +include("dmrg/dmrg.jl") +include("cc/ccdriver.jl") + +include("scf/bohf.jl") + +include("scf/dfhf.jl") +include("integrals/dfdump.jl") + +include("scf/dfmcscf.jl") include("interfaces/molpro.jl") include("interfaces/molden.jl") diff --git a/src/cc.jl b/src/cc/cc.jl similarity index 99% rename from src/cc.jl rename to src/cc/cc.jl index 362a5e9..fbb230a 100644 --- a/src/cc.jl +++ b/src/cc/cc.jl @@ -81,10 +81,10 @@ include("cc_lagrange.jl") include("cc_tests.jl") -include("algo/ccsdt_singles.jl") -include("algo/ccsdt_doubles.jl") -include("algo/ccsdt_triples.jl") -include("algo/dcccsdt_triples.jl") +include("../algo/ccsdt_singles.jl") +include("../algo/ccsdt_doubles.jl") +include("../algo/ccsdt_triples.jl") +include("../algo/dcccsdt_triples.jl") """ calc_singles_energy(EC::ECInfo, T1; fock_only=false) diff --git a/src/cc_lagrange.jl b/src/cc/cc_lagrange.jl similarity index 100% rename from src/cc_lagrange.jl rename to src/cc/cc_lagrange.jl diff --git a/src/cc_tests.jl b/src/cc/cc_tests.jl similarity index 100% rename from src/cc_tests.jl rename to src/cc/cc_tests.jl diff --git a/src/cc_triples.jl b/src/cc/cc_triples.jl similarity index 100% rename from src/cc_triples.jl rename to src/cc/cc_triples.jl diff --git a/src/ccdriver.jl b/src/cc/ccdriver.jl similarity index 100% rename from src/ccdriver.jl rename to src/cc/ccdriver.jl diff --git a/src/cctools.jl b/src/cc/cctools.jl similarity index 100% rename from src/cctools.jl rename to src/cc/cctools.jl diff --git a/src/dfcc.jl b/src/cc/dfcc.jl similarity index 100% rename from src/dfcc.jl rename to src/cc/dfcc.jl diff --git a/src/dmrg.jl b/src/dmrg/dmrg.jl similarity index 100% rename from src/dmrg.jl rename to src/dmrg/dmrg.jl diff --git a/src/abstractEC.jl b/src/infos/abstractEC.jl similarity index 100% rename from src/abstractEC.jl rename to src/infos/abstractEC.jl diff --git a/src/ecinfos.jl b/src/infos/ecinfos.jl similarity index 100% rename from src/ecinfos.jl rename to src/infos/ecinfos.jl diff --git a/src/ecmethods.jl b/src/infos/ecmethods.jl similarity index 100% rename from src/ecmethods.jl rename to src/infos/ecmethods.jl diff --git a/src/options.jl b/src/infos/options.jl similarity index 100% rename from src/options.jl rename to src/infos/options.jl diff --git a/src/decomptools.jl b/src/integrals/decomptools.jl similarity index 100% rename from src/decomptools.jl rename to src/integrals/decomptools.jl diff --git a/src/dfdump.jl b/src/integrals/dfdump.jl similarity index 100% rename from src/dfdump.jl rename to src/integrals/dfdump.jl diff --git a/src/dftools.jl b/src/integrals/dftools.jl similarity index 100% rename from src/dftools.jl rename to src/integrals/dftools.jl diff --git a/src/dump.jl b/src/integrals/dump.jl similarity index 100% rename from src/dump.jl rename to src/integrals/dump.jl diff --git a/src/dumptools.jl b/src/integrals/dumptools.jl similarity index 100% rename from src/dumptools.jl rename to src/integrals/dumptools.jl diff --git a/src/bohf.jl b/src/scf/bohf.jl similarity index 100% rename from src/bohf.jl rename to src/scf/bohf.jl diff --git a/src/dfhf.jl b/src/scf/dfhf.jl similarity index 100% rename from src/dfhf.jl rename to src/scf/dfhf.jl diff --git a/src/dfmcscf.jl b/src/scf/dfmcscf.jl similarity index 100% rename from src/dfmcscf.jl rename to src/scf/dfmcscf.jl diff --git a/src/fockfactory.jl b/src/scf/fockfactory.jl similarity index 100% rename from src/fockfactory.jl rename to src/scf/fockfactory.jl diff --git a/src/orbtools.jl b/src/scf/orbtools.jl similarity index 100% rename from src/orbtools.jl rename to src/scf/orbtools.jl diff --git a/src/diis.jl b/src/solvers/diis.jl similarity index 100% rename from src/diis.jl rename to src/solvers/diis.jl diff --git a/src/wavefunctions.jl b/src/system/wavefunctions.jl similarity index 100% rename from src/wavefunctions.jl rename to src/system/wavefunctions.jl diff --git a/src/constants.jl b/src/tools/constants.jl similarity index 100% rename from src/constants.jl rename to src/tools/constants.jl diff --git a/src/descdict.jl b/src/tools/descdict.jl similarity index 100% rename from src/descdict.jl rename to src/tools/descdict.jl diff --git a/src/logo.jl b/src/tools/logo.jl similarity index 100% rename from src/logo.jl rename to src/tools/logo.jl diff --git a/src/mnpy.jl b/src/tools/mnpy.jl similarity index 100% rename from src/mnpy.jl rename to src/tools/mnpy.jl diff --git a/src/myio.jl b/src/tools/myio.jl similarity index 100% rename from src/myio.jl rename to src/tools/myio.jl diff --git a/src/outputs.jl b/src/tools/outputs.jl similarity index 100% rename from src/outputs.jl rename to src/tools/outputs.jl diff --git a/src/qmtensors.jl b/src/tools/qmtensors.jl similarity index 100% rename from src/qmtensors.jl rename to src/tools/qmtensors.jl diff --git a/src/spinmatrix.jl b/src/tools/spinmatrix.jl similarity index 100% rename from src/spinmatrix.jl rename to src/tools/spinmatrix.jl diff --git a/src/tensortools.jl b/src/tools/tensortools.jl similarity index 100% rename from src/tensortools.jl rename to src/tools/tensortools.jl diff --git a/src/utensors.jl b/src/tools/utensors.jl similarity index 100% rename from src/utensors.jl rename to src/tools/utensors.jl diff --git a/src/utils.jl b/src/tools/utils.jl similarity index 100% rename from src/utils.jl rename to src/tools/utils.jl diff --git a/test/ccsdt.jl b/test/ccsdt.jl index 5e1745b..518c930 100644 --- a/test/ccsdt.jl +++ b/test/ccsdt.jl @@ -4,13 +4,13 @@ epsilon = 1.e-6 ECCSDT_test = -0.214407285207 EDCCCSDT_test = -0.214479790853 -fcidump = joinpath(@__DIR__,"H2O.FCIDUMP") +fcidump = joinpath(@__DIR__,"files","H2O.FCIDUMP") @set cc use_kext = false calc_d_vvvv = true calc_d_vvvo = true calc_d_vovv = true calc_d_vvoo = true energies = @cc ccsdt -@test abs(last(energies)-energies.HF-ECCSDT_test) < epsilon +@test abs(last_energy(energies)-energies["HF"]-ECCSDT_test) < epsilon energies = @cc dc-ccsdt -@test abs(last(energies)-energies.HF-EDCCCSDT_test) < epsilon +@test abs(last_energy(energies)-energies["HF"]-EDCCCSDT_test) < epsilon end diff --git a/test/h2o_udcsd_prop.jl b/test/h2o_udcsd_prop.jl index 2672d1d..d160a39 100644 --- a/test/h2o_udcsd_prop.jl +++ b/test/h2o_udcsd_prop.jl @@ -20,10 +20,10 @@ let @dfuhf @rotate_orbs 6 7 90 @cc λudcsd occa="-4+6" occb="-3" - U1a, U1b = @loadfile("cc_multipliers_singles") - U2a, U2b, U2ab = @loadfile("cc_multipliers_doubles") - T1a, T1b = @loadfile("cc_amplitudes_singles") - T2a, T2b, T2ab = @loadfile("cc_amplitudes_doubles") + U1a, U1b = @loadfile("cc_multipliers_1") + U2a, U2b, U2ab = @loadfile("cc_multipliers_2") + T1a, T1b = @loadfile("cc_amplitudes_1") + T2a, T2b, T2ab = @loadfile("cc_amplitudes_2") D1a, dD1a = ElemCo.calc_1RDM(EC, U1a, U1b, U2a, U2ab, T1a, T2a, T2ab, :α) D1b, dD1b = ElemCo.calc_1RDM(EC, U1b, U1a, U2b, U2ab, T1b, T2b, T2ab, :β) end From 9c8d2863364fe3b29329c71307308632d74472ba Mon Sep 17 00:00:00 2001 From: Daniel Kats Date: Mon, 8 Jul 2024 12:13:13 +0200 Subject: [PATCH 41/44] Allow custom-dot-product functions in diis --- profile/jet.jl | 10 +-- src/cc/cc.jl | 59 ++++++++++----- src/cc/cctools.jl | 173 +++++++++++++++++++++++++++++++++++++++++++- src/solvers/diis.jl | 61 +++++++++++++--- test/ccsdt.jl | 4 +- test/h2o_triplet.jl | 8 +- 6 files changed, 271 insertions(+), 44 deletions(-) diff --git a/profile/jet.jl b/profile/jet.jl index f1e2d90..eeb4b88 100644 --- a/profile/jet.jl +++ b/profile/jet.jl @@ -10,8 +10,8 @@ basis="vdz" @time @ECinit @time @dfhf -#@time @cc dcsd -@time @dfcc svd-dcsd +@time @cc dcsd +#@time @dfcc svd-dcsd @report_opt target_modules=(@__MODULE__, ElemCo, @@ -50,9 +50,9 @@ basis="vdz" ElemCo.MolproInterface, ElemCo.MSystem #) ElemCo.DfDump.dfdump(EC) - #) ElemCo.DFHF.dfuhf(EC) - #) ElemCo.CCDriver.ccdriver(EC,"λCCSD") - ) ElemCo.CCDriver.dfccdriver(EC,"SVD-DCSD") + #) ElemCo.DFHF.dfhf(EC) + ) ElemCo.CCDriver.ccdriver(EC,"λCCSD") + #) ElemCo.CCDriver.dfccdriver(EC,"SVD-DCSD") end @time main() diff --git a/src/cc/cc.jl b/src/cc/cc.jl index fbb230a..5436621 100644 --- a/src/cc/cc.jl +++ b/src/cc/cc.jl @@ -1823,20 +1823,25 @@ function calc_M2b(occcore,virtuals,T1a,T1b,T2a,T2ab,activeorbs) if length(T1a) > 0 internalT1a = T1a[morbb,norbb] internalT1b = T1b[norba,morba] - @tensoropt TT1a[a,i] := T1a[virtualsb,occcoreb][a,i] - T1b[virtualsa,occcorea][a,i] - @tensoropt TT1b[a,i] := T1b[virtualsa,occcorea][a,i] - T1a[virtualsb,occcoreb][a,i] - - @tensoropt M2[norba,virtualsa,occcorea,occcorea][a,i,j] -= permutedims(T2ab,P12)[norba,morbb,morba,occcoreb][i] * TT1b[a,j] - @tensoropt M2[norba,virtualsa,occcorea,occcorea][a,j,i] += permutedims(T2ab,P12)[norba,morbb,morba,occcoreb][i] * TT1b[a,j] - @tensoropt M2[virtualsa,norba,occcorea,occcorea][a,i,j] += permutedims(T2ab,P12)[norba,morbb,morba,occcoreb][i] * TT1b[a,j] - @tensoropt M2[virtualsa,norba,occcorea,occcorea][a,j,i] -= permutedims(T2ab,P12)[norba,morbb,morba,occcoreb][i] * TT1b[a,j] - @tensoropt M2[norba,virtualsa,occcorea,occcorea][a,i,j] -= permutedims(T2ab,P12)[norba,virtualsb,morba,occcoreb][a,i] * T1a[morbb,occcoreb][j] - @tensoropt M2[norba,virtualsa,occcorea,occcorea][a,j,i] += permutedims(T2ab,P12)[norba,virtualsb,morba,occcoreb][a,i] * T1a[morbb,occcoreb][j] - @tensoropt M2[virtualsa,norba,occcorea,occcorea][a,i,j] += permutedims(T2ab,P12)[norba,virtualsb,morba,occcoreb][a,i] * T1a[morbb,occcoreb][j] - @tensoropt M2[virtualsa,norba,occcorea,occcorea][a,j,i] -= permutedims(T2ab,P12)[norba,virtualsb,morba,occcoreb][a,i] * T1a[morbb,occcoreb][j] - @tensoropt M2[norba,virtualsa,occcorea,occcorea][a,i,j] -= internalT1b * T2a[morbb,virtualsb,occcoreb,occcoreb][a,i,j] - @tensoropt M2[virtualsa,norba,occcorea,occcorea][a,i,j] += internalT1b * T2a[morbb,virtualsb,occcoreb,occcoreb][a,i,j] - + T1a_ai = T1a[virtualsb,occcoreb] + T1b_ai = T1b[virtualsa,occcorea] + @tensoropt TT1a[a,i] := T1a_ai[a,i] - T1b_ai[a,i] + @tensoropt TT1b[a,i] := T1b_ai[a,i] - T1a_ai[a,i] + T2ab_i = T2ab[morbb,norba,occcoreb,morba] + @tensoropt M2[norba,virtualsa,occcorea,occcorea][a,i,j] -= T2ab_i[i] * TT1b[a,j] + @tensoropt M2[norba,virtualsa,occcorea,occcorea][a,j,i] += T2ab_i[i] * TT1b[a,j] + @tensoropt M2[virtualsa,norba,occcorea,occcorea][a,i,j] += T2ab_i[i] * TT1b[a,j] + @tensoropt M2[virtualsa,norba,occcorea,occcorea][a,j,i] -= T2ab_i[i] * TT1b[a,j] + T2ab_ai = T2ab[virtualsb,norba,occcoreb,morba] + @tensoropt M2[norba,virtualsa,occcorea,occcorea][a,i,j] -= T2ab_ai[a,i] * T1a[morbb,occcoreb][j] + @tensoropt M2[norba,virtualsa,occcorea,occcorea][a,j,i] += T2ab_ai[a,i] * T1a[morbb,occcoreb][j] + @tensoropt M2[virtualsa,norba,occcorea,occcorea][a,i,j] += T2ab_ai[a,i] * T1a[morbb,occcoreb][j] + @tensoropt M2[virtualsa,norba,occcorea,occcorea][a,j,i] -= T2ab_ai[a,i] * T1a[morbb,occcoreb][j] + T2a_aij = T2a[morbb,virtualsb,occcoreb,occcoreb] + @tensoropt M2[norba,virtualsa,occcorea,occcorea][a,i,j] -= internalT1b * T2a_aij[a,i,j] + @tensoropt M2[virtualsa,norba,occcorea,occcorea][a,i,j] += internalT1b * T2a_aij[a,i,j] + T2a_aij = nothing + #TODO remove permutedims @tensoropt M2[virtualsa,virtualsa,morba,occcorea][a,b,i] += permutedims(T2ab,P12)[norba,virtualsb,morba,norbb][a] * TT1b[b,i] @tensoropt M2[virtualsa,virtualsa,morba,occcorea][b,a,i] -= permutedims(T2ab,P12)[norba,virtualsb,morba,norbb][a] * TT1b[b,i] @tensoropt M2[virtualsa,virtualsa,occcorea,morba][a,b,i] -= permutedims(T2ab,P12)[norba,virtualsb,morba,norbb][a] * TT1b[b,i] @@ -2018,14 +2023,18 @@ function calc_cc(EC::ECInfo, method::ECMethod) T2a = read_starting_guess4amplitudes(EC, Val(2), :α, :α) T2b = read_starting_guess4amplitudes(EC, Val(2), :β, :β) T2ab = read_starting_guess4amplitudes(EC, Val(2), :α, :β) + # custom functions for dot products in diis + dots1 = (calc_u_singles_dot, calc_u_singles_dot) + dots2 = (calc_samespin_doubles_dot, calc_samespin_doubles_dot, calc_ab_doubles_dot) if method.exclevel[3] != :full - Eh = cc_iterations!((T1a,T1b), (T2a,T2b,T2ab), (), EC, method) + Eh = cc_iterations!((T1a,T1b), (T2a,T2b,T2ab), (), EC, method, (dots1..., dots2...)) else T3aaa = read_starting_guess4amplitudes(EC, Val(3), :α, :α, :α) T3bbb = read_starting_guess4amplitudes(EC, Val(3), :β, :β, :β) T3aab = read_starting_guess4amplitudes(EC, Val(3), :α, :α, :β) T3abb = read_starting_guess4amplitudes(EC, Val(3), :α, :β, :β) - Eh = cc_iterations!((T1a,T1b), (T2a,T2b,T2ab), (T3aaa,T3bbb,T3aab,T3abb), EC, method) + dots3 = (calc_samespin_triples_dot, calc_samespin_triples_dot, calc_mixedspin_triples_dot, calc_mixedspin_triples_dot) + Eh = cc_iterations!((T1a,T1b), (T2a,T2b,T2ab), (T3aaa,T3bbb,T3aab,T3abb), EC, method, (dots1..., dots2..., dots3)) end else if method.exclevel[1] == :full @@ -2037,11 +2046,15 @@ function calc_cc(EC::ECInfo, method::ECMethod) error("No doubles is not implemented") end T2 = read_starting_guess4amplitudes(EC, Val(2)) + # custom functions for dot products in diis + dots1 = (calc_cs_singles_dot,) + dots2 = (calc_cs_doubles_dot,) if method.exclevel[3] != :full - Eh = cc_iterations!((T1,), (T2,), (), EC, method) + Eh = cc_iterations!((T1,), (T2,), (), EC, method, (dots1..., dots2...)) else T3 = read_starting_guess4amplitudes(EC, Val(3)) - Eh = cc_iterations!((T1,), (T2,), (T3,), EC, method) + dots3 = (calc_cs_triples_dot,) + Eh = cc_iterations!((T1,), (T2,), (T3,), EC, method, (dots1..., dots2..., dots3...)) end end @@ -2054,7 +2067,7 @@ function calc_cc(EC::ECInfo, method::ECMethod) return Eh end -function cc_iterations!(Amps1, Amps2, Amps3, EC::ECInfo, method::ECMethod) +function cc_iterations!(Amps1, Amps2, Amps3, EC::ECInfo, method::ECMethod, dots=()) t0 = time_ns() dc = (method.theory[1:2] == "DC") tworef = has_prefix(method, "2D") @@ -2092,6 +2105,9 @@ function cc_iterations!(Amps1, Amps2, Amps3, EC::ECInfo, method::ECMethod) # at the moment we don't project the triples spin_project!(EC, Res1..., Res2...) end + if length(Amps3) == 1 + clean_cs_triples!(Res3...) + end t1 = print_time(EC, t1, "residual", 2) NormT2 = calc_doubles_norm(Amps2...) NormR2 = calc_doubles_norm(Res2...) @@ -2108,6 +2124,9 @@ function cc_iterations!(Amps1, Amps2, Amps3, EC::ECInfo, method::ECMethod) NormT3 = calc_triples_norm(Amps3...) NormR3 = calc_triples_norm(Res3...) update_triples!(EC, Amps3..., Res3...) + if length(Amps3) == 1 + clean_cs_triples!(Amps3...) + end end if do_sing NormT1 = calc_singles_norm(Amps1...) @@ -2126,7 +2145,7 @@ function cc_iterations!(Amps1, Amps2, Amps3, EC::ECInfo, method::ECMethod) # at the moment we don't project the triples spin_project!(EC, Amps1..., Amps2...) end - perform!(diis, Amps, Res) + perform!(diis, Amps, Res, dots) save_current_doubles(EC, Amps2...) En2 = calc_doubles_energy(EC, Amps2...) En = En2["E"] diff --git a/src/cc/cctools.jl b/src/cc/cctools.jl index 74e8818..2eb2291 100644 --- a/src/cc/cctools.jl +++ b/src/cc/cctools.jl @@ -21,6 +21,10 @@ export transform_amplitudes2lagrange_multipliers! export try2save_amps!, try2start_amps, try2save_singles!, try2save_doubles!, try2start_singles, try2start_doubles export contra2covariant export spin_project!, spin_project_amplitudes +export clean_cs_triples! +export calc_cs_singles_dot, calc_u_singles_dot +export calc_cs_doubles_dot, calc_samespin_doubles_dot, calc_ab_doubles_dot +export calc_cs_triples_dot, calc_samespin_triples_dot, calc_mixedspin_triples_dot """ calc_fock_matrix(EC::ECInfo, closed_shell) @@ -439,6 +443,30 @@ function calc_contra_singles_norm(T1a, T1b) return calc_singles_norm(T1a, T1b) end +""" + calc_cs_singles_dot(T1, T1_) + + Calculate dot product of closed-shell singles amplitudes. +""" +function calc_cs_singles_dot(T1::Matrix{Float64}, T1_::Matrix{Float64}) + @tensor DotT1 = 2.0*T1[a,i]*T1_[a,i] + return DotT1::Float64 +end +calc_cs_singles_dot(T1, T1_) = error("calc_cs_singles_dot: T1 and T1_ must be matrices!") + +""" + calc_u_singles_dot(T1, T1_) + + Calculate dot of unrestricted singles amplitudes. +""" +function calc_u_singles_dot(T1::Matrix{Float64}, T1_::Matrix{Float64}) + @tensor begin + DotT1 = T1[a,i]*T1_[a,i] + end + return DotT1::Float64 +end +calc_u_singles_dot(T1, T1_) = error("calc_u_singles_dot: T1 and T1_ must be matrices!") + """ calc_doubles_norm(T2) @@ -473,6 +501,43 @@ function calc_doubles_norm(T2a, T2b, T2ab) return NormT2 end +""" + calc_cs_doubles_dot(T2, T2_) + + Calculate dot of closed-shell doubles amplitudes. +""" +function calc_cs_doubles_dot(T2::Array{Float64,4}, T2_::Array{Float64,4}) + @tensoropt DotT2 = (2.0*T2[a,b,i,j] - T2[b,a,i,j])*T2_[a,b,i,j] + return DotT2::Float64 +end +calc_cs_doubles_dot(T2, T2_) = error("calc_cs_doubles_dot: T2 and T2_ must be 4D arrays!") + +""" + calc_samespin_doubles_dot(T2, T2_) + + Calculate dot of unrestricted same-spin doubles amplitudes. +""" +function calc_samespin_doubles_dot(T2::Array{Float64,4}, T2_::Array{Float64,4}) + @tensoropt begin + DotT2 = 0.25*(T2[a,b,i,j]*T2_[a,b,i,j]) + end + return DotT2::Float64 +end +calc_samespin_doubles_dot(T2, T2_) = error("calc_samespin_doubles_dot: T2 and T2_ must be 4D arrays!") + +""" + calc_ab_doubles_dot(T2, T2_) + + Calculate dot of unrestricted αβ doubles amplitudes. +""" +function calc_ab_doubles_dot(T2::Array{Float64,4}, T2_::Array{Float64,4}) + @tensoropt begin + DotT2 = T2[a,b,i,j]*T2_[a,b,i,j] + end + return DotT2::Float64 +end +calc_ab_doubles_dot(T2, T2_) = error("calc_ab_doubles_dot: T2 and T2_ must be 4D arrays!") + """ calc_triples_norm(T3aaa, T3bbb, T3abb, T3aab) @@ -480,8 +545,8 @@ end """ function calc_triples_norm(T3aaa, T3bbb, T3abb, T3aab) @tensoropt begin - NormT3 = 0.125*(T3aaa[a,b,c,i,j,k]*T3aaa[a,b,c,i,j,k]) - NormT3 += 0.125*(T3bbb[a,b,c,i,j,k]*T3bbb[a,b,c,i,j,k]) + NormT3 = (1/36)*(T3aaa[a,b,c,i,j,k]*T3aaa[a,b,c,i,j,k]) + NormT3 += (1/36)*(T3bbb[a,b,c,i,j,k]*T3bbb[a,b,c,i,j,k]) NormT3 += 0.25*(T3abb[a,b,c,i,j,k]*T3abb[a,b,c,i,j,k]) NormT3 += 0.25*(T3aab[a,b,c,i,j,k]*T3aab[a,b,c,i,j,k]) end @@ -494,12 +559,112 @@ end Calculate squared norm of triples amplitudes. """ function calc_triples_norm(T3) - @tensoropt begin - NormT3 = 0.125*(T3[a,b,c,i,j,k]*T3[a,b,c,i,j,k]) + NormT3 = 0.0 + nocc = size(T3, 6) + for k = 1:nocc + for j = 1:k + prefac = (j == k) ? 1.0 : 2.0 + for i = 1:j + fac = prefac + if i == j + if j == k + continue + end + fac = 1.0 + end + T3_ijk = @view T3[:,:,:,i,j,k] + @tensoropt begin + NormT3_ = 4*(T3_ijk[a,b,c]*T3_ijk[a,b,c]) + NormT3_ -= 2*(T3_ijk[a,b,c]*T3_ijk[a,c,b]) + NormT3_ -= 2*(T3_ijk[a,b,c]*T3_ijk[c,b,a]) + NormT3_ -= 2*(T3_ijk[a,b,c]*T3_ijk[b,a,c]) + NormT3_ += (T3_ijk[a,b,c]*T3_ijk[c,a,b]) + NormT3_ += (T3_ijk[a,b,c]*T3_ijk[b,c,a]) + end + NormT3 += fac*NormT3_ + end + end end return NormT3 end +""" + calc_cs_triples_dot(T3, T3_) + + Calculate dot of closed-shell triples amplitudes. +""" +function calc_cs_triples_dot(T3::Array{Float64,6}, T3_::Array{Float64,6}) + DotT3 = 0.0 + nocc = size(T3, 6) + for k = 1:nocc + for j = 1:k + prefac = (j == k) ? 1.0 : 2.0 + for i = 1:j + fac = prefac + if i == j + if j == k + continue + end + fac = 1.0 + end + T3_ijk = @view T3[:,:,:,i,j,k] + T3_ijk_ = @view T3_[:,:,:,i,j,k] + @tensoropt begin + DotT3_ = 4*(T3_ijk[a,b,c]*T3_ijk_[a,b,c]) + DotT3_ -= 2*(T3_ijk[a,b,c]*T3_ijk_[a,c,b]) + DotT3_ -= 2*(T3_ijk[a,b,c]*T3_ijk_[c,b,a]) + DotT3_ -= 2*(T3_ijk[a,b,c]*T3_ijk_[b,a,c]) + DotT3_ += (T3_ijk[a,b,c]*T3_ijk_[c,a,b]) + DotT3_ += (T3_ijk[a,b,c]*T3_ijk_[b,c,a]) + end + DotT3 += fac*DotT3_ + end + end + end + return DotT3::Float64 +end +calc_cs_triples_dot(T3, T3_) = error("calc_cs_triples_dot not implemented for this type of T3") + +""" + calc_samespin_triples_dot(T3, T3_) + + Calculate dot of unrestricted same-spin triples amplitudes. +""" +function calc_samespin_triples_dot(T3::Array{Float64,6}, T3_::Array{Float64,6}) + @tensoropt begin + DotT3 = (1/36)*(T3[a,b,c,i,j,k]*T3_[a,b,c,i,j,k]) + end + return DotT3::Float64 +end +calc_samespin_triples_dot(T3, T3_) = error("calc_samespin_triples_dot not implemented for this type of T3") + +""" + calc_mixedspin_triples_dot(T3, T3_) + + Calculate dot of unrestricted mixed-spin triples amplitudes. +""" +function calc_mixedspin_triples_dot(T3::Array{Float64,6}, T3_::Array{Float64,6}) + @tensoropt begin + DotT3 = 0.25*(T3[a,b,c,i,j,k]*T3_[a,b,c,i,j,k]) + end + return DotT3::Float64 +end +calc_mixedspin_triples_dot(T3, T3_) = error("calc_mixedspin_triples_dot not implemented for this type of T3") + +""" + clean_cs_triples!(T3) + + Clean closed-shell triples amplitudes by setting ``T^{iii}_{abc} = T^{ijk}_{aaa} = 0``. +""" +function clean_cs_triples!(T3) + nocc = size(T3, 6) + diagindx = [CartesianIndex(i,i,i) for i in 1:nocc] + T3[:,:,:,diagindx] .= 0.0 + nvirt = size(T3, 3) + diagindx = [CartesianIndex(i,i,i) for i in 1:nvirt] + T3[diagindx,:,:,:] .= 0.0 + return T3 +end """ calc_contra_doubles_norm(T2a, T2b, T2ab) diff --git a/src/solvers/diis.jl b/src/solvers/diis.jl index 6b8f9df..5834427 100644 --- a/src/solvers/diis.jl +++ b/src/solvers/diis.jl @@ -16,7 +16,10 @@ for it = 1:maxit perform!(diis, Vec, Res) # ... end +``` +One can also provide a tuple of custom dot-product functions for the residuals components +as `customdots` argument in [`perform!`](@ref) function. """ module DIIS using LinearAlgebra @@ -143,15 +146,41 @@ function weighted_dot(diis::Diis, vecs1, vecs2) return vecs1 ⋅ vecs2 end @assert length(vecs1) == length(diis.weights) - dot = 0.0 + dot::Float64 = 0.0 for i in eachindex(vecs1) dot += diis.weights[i] * (vec(vecs1[i]) ⋅ vec(vecs2[i])) end return dot end +""" + custom_dot(diis::Diis, customdots, tens, vecs) + + Compute weighted (with diis.weights) dot product of vectors + using custom dot-product functions `customdots::Tuple`. + `vecs` are reshaped to the shape of tensors `tens`. +""" +function custom_dot(diis::Diis, customdots, tens, vecs) + if length(diis.weights) == 0 + weights = ones(length(tens)) + else + weights = diis.weights + @assert length(tens) == length(weights) + end + @assert length(tens) == length(customdots) + @assert length(tens) == length(vecs) + dot::Float64 = 0.0 + for i in eachindex(tens) + # f = customdots[i] + dot += weights[i] * dispatch(customdots[i], tens[i], vecs[i]) + end + return dot +end + +dispatch(f::Function, t, v) = f(t, reshape(v, size(t)))::Float64 + @doc raw""" - update_Bmat(diis::Diis, nDim, Res, ithis) + update_Bmat(diis::Diis, nDim, Res, ithis, customdots=()) Update B matrix with new residual (at the position `ithis`). @@ -167,12 +196,20 @@ end ``` Returns the dot product of the new residual with itself, ``\langle {\bf R}_{\rm ithis}, {\bf R}_{\rm ithis} \rangle``. """ -function update_Bmat(diis::Diis, nDim, Res, ithis) - thisResDot = weighted_dot(diis, Res, Res) +function update_Bmat(diis::Diis, nDim, Res, ithis, customdots=()) + if length(customdots) == 0 + thisResDot = weighted_dot(diis, Res, Res) + else + thisResDot = custom_dot(diis, customdots, Res, Res) + end for i in 1:nDim if i != ithis resi = loadres(diis, i) - dot = weighted_dot(diis, Res, resi) + if length(customdots) == 0 + dot = weighted_dot(diis, Res, resi) + else + dot = custom_dot(diis, customdots, Res, resi) + end diis.bmat[i,ithis] = dot diis.bmat[ithis,i] = dot else @@ -186,14 +223,16 @@ function update_Bmat(diis::Diis, nDim, Res, ithis) end """ - perform!(diis::Diis, Amps, Res) + perform!(diis::Diis, Amps, Res, customdots=()) Perform DIIS. `Amps` is an array of vectors and `Res` is an array of residuals. The vectors `Amps` will be replaced by the DIIS optimized vectors. + `customdots` is a tuple of functions for each residual component to calculate + the dot-product. The functions should have the signature `f(ten1::Array{T,N}, ten2::Array{T,N})`. """ -function perform!(diis::Diis, Amps, Res) +function perform!(diis::Diis, Amps, Res, customdots=()) if diis.nDim < diis.maxdiis diis.nDim += 1 end @@ -201,7 +240,7 @@ function perform!(diis::Diis, Amps, Res) nDim = diis.nDim saveamps(diis, Amps, ithis) saveres(diis, Res, ithis) - thisResDot = update_Bmat(diis, nDim, Res, ithis) + thisResDot = update_Bmat(diis, nDim, Res, ithis, customdots) rhs = zeros(nDim+1) rhs[nDim+1] = -1.0 @@ -237,7 +276,11 @@ function perform!(diis::Diis, Amps, Res) if diis.cropdiis Opt = combine(diis, diis.resfiles, coeffs) saveres(diis, Opt, ithis) - optres2 = update_Bmat(diis, nDim, Opt, ithis) + # replace Res with Opt residuals keeping the shape of Res + for i in eachindex(Res) + Res[i][:] = Opt[i] + end + optres2 = update_Bmat(diis, nDim, Res, ithis, customdots) # println("DIIS: ", thisResDot, " -> ", optres2) Opt = combine(diis, diis.ampfiles, coeffs) saveamps(diis, Opt, ithis) diff --git a/test/ccsdt.jl b/test/ccsdt.jl index 518c930..e3d65d3 100644 --- a/test/ccsdt.jl +++ b/test/ccsdt.jl @@ -1,8 +1,8 @@ using ElemCo @testset "H2O Closed-Shell CCSDT and DC-CCSDT" begin epsilon = 1.e-6 -ECCSDT_test = -0.214407285207 -EDCCCSDT_test = -0.214479790853 +ECCSDT_test = -0.328471431306 +EDCCCSDT_test = -0.329165986996 fcidump = joinpath(@__DIR__,"files","H2O.FCIDUMP") @set cc use_kext = false calc_d_vvvv = true calc_d_vvvo = true calc_d_vovv = true calc_d_vvoo = true diff --git a/test/h2o_triplet.jl b/test/h2o_triplet.jl index 569d0db..99ea011 100644 --- a/test/h2o_triplet.jl +++ b/test/h2o_triplet.jl @@ -4,10 +4,10 @@ using ElemCo epsilon = 1.e-6 EHF_test = -75.62407982361415 EMP2_test = -0.22401008330020 + EHF_test -EUCCSD_test = -0.27656151568706 + EHF_test -EUCCSD_T_test = -0.2953883330999 + EHF_test -ERCCSD_test = -0.27614920708496 + EHF_test -ERDCSD_test = -0.28995913689122 + EHF_test +EUCCSD_test = -0.276561735300 + EHF_test +EUCCSD_T_test = -0.295387562394 + EHF_test +ERCCSD_test = -0.276149630440 + EHF_test +ERDCSD_test = -0.289960838813 + EHF_test EΛUCCSD_T_test = -0.2903721324779 + EHF_test fcidump = joinpath(@__DIR__,"files","H2O.FCIDUMP") From af6afeb600d272d5ff97badce1b95fa27416011e Mon Sep 17 00:00:00 2001 From: Daniel Kats Date: Mon, 8 Jul 2024 16:59:50 +0200 Subject: [PATCH 42/44] Fix triples function tuple --- src/cc/cc.jl | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/cc/cc.jl b/src/cc/cc.jl index 5436621..3aa5fe7 100644 --- a/src/cc/cc.jl +++ b/src/cc/cc.jl @@ -2034,7 +2034,7 @@ function calc_cc(EC::ECInfo, method::ECMethod) T3aab = read_starting_guess4amplitudes(EC, Val(3), :α, :α, :β) T3abb = read_starting_guess4amplitudes(EC, Val(3), :α, :β, :β) dots3 = (calc_samespin_triples_dot, calc_samespin_triples_dot, calc_mixedspin_triples_dot, calc_mixedspin_triples_dot) - Eh = cc_iterations!((T1a,T1b), (T2a,T2b,T2ab), (T3aaa,T3bbb,T3aab,T3abb), EC, method, (dots1..., dots2..., dots3)) + Eh = cc_iterations!((T1a,T1b), (T2a,T2b,T2ab), (T3aaa,T3bbb,T3aab,T3abb), EC, method, (dots1..., dots2..., dots3...)) end else if method.exclevel[1] == :full From 4d19123ca9e32654ea5cf9c0ec8f2c82a2b0201f Mon Sep 17 00:00:00 2001 From: Daniel Kats Date: Mon, 8 Jul 2024 17:03:31 +0200 Subject: [PATCH 43/44] Update Changelog --- CHANGELOG.md | 1 + 1 file changed, 1 insertion(+) diff --git a/CHANGELOG.md b/CHANGELOG.md index 02e1c29..0ce493e 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -25,6 +25,7 @@ * CCSDT and DC-CCSDT closed-shell implementations generated with Quantwo. * `QMTensors.SpinMatrix` struct for one-electron matrices (e.g., MO coefficients) * An ordered descriptive dictionary for energy outputs (`ODDict`) has been implemented. Each key-value entry can have a description. +* `DIIS.perform!` now accepts a tuple of functions to calculate cusomized dot-products (e.g., involving contravariants etc). ### Fixed From a087fc06de61be3a4aa6f9082ce5498a2b46bd67 Mon Sep 17 00:00:00 2001 From: Daniel Kats Date: Tue, 9 Jul 2024 08:26:35 +0200 Subject: [PATCH 44/44] Release v0.13.0 --- CHANGELOG.md | 4 +--- src/ElemCo.jl | 2 +- 2 files changed, 2 insertions(+), 4 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 0ce493e..52a104a 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,6 +1,6 @@ # Release notes -## Unreleased +## Version [v0.13.0] - 2024.07.09 ### Breaking @@ -27,8 +27,6 @@ * An ordered descriptive dictionary for energy outputs (`ODDict`) has been implemented. Each key-value entry can have a description. * `DIIS.perform!` now accepts a tuple of functions to calculate cusomized dot-products (e.g., involving contravariants etc). -### Fixed - ## Version [v0.12.0] - 2024.05.28 ### Breaking diff --git a/src/ElemCo.jl b/src/ElemCo.jl index 98cd3b5..9a3bef7 100644 --- a/src/ElemCo.jl +++ b/src/ElemCo.jl @@ -94,7 +94,7 @@ export last_energy # from DescDict export ODDict -const __VERSION__ = "0.12.0+" +const __VERSION__ = "0.13.0" """ __init__()

lc zy%2X-q`#E4!!F3*R853NnaPhBuCPFc_L{YZ_buyJSGLU-E_M!=S#)#L%UuuTb-EM= z&C-glm_Qobv4fZy1@}g$B)^Ai8)Nd z58gBH;DTO6UuIgrn4+3OHX24Slr>{Yq{Zxvjg&}|wM$ldX^Y}yGf_mG-w;umA-K}8L?OiZCd{qa zA3PR?>0ibJ*aYXP2lECDzh$3pp{rP0i?$vDc_N^|@bIn#rgciR%XEz{GDJl=P=$G~ zO3NLYCdJxy3tX2%ciHr*5Z2@%*C>HuwrY-*BoHf!#BC3Tw{-K4WW`u58H{c7Fyy{E zm#D=2L*S?o*c<`wo@V(WAy<&H=sL>qJyz_L;?$%L!V-NVFinl0o!x#QBuM*p<^0$* zYZB+CzJUcAedSp6$D(vpwyk~^T;GMR3eu3f;A7%r_vPp8*C+Qif7R`LT}`Csi4LM)B(|SMiOLR`J635@ZPXZLva@{ zO_;l*YR_Sk0-s|pL*A^MknO-;^YI9$9>^dW*pZ)o(qUC*IY!!dSmh zm|=18z?0>!+q^ih;5Tk`O*rK>J{}rBT2C?8i@ZGYUCRJTiPJwk=~lo{ynbSHnSzi( zTK;3&#uOoFYuS;*q4(df0B+2FN&T>evA<||@+3T@j}n6>)4A3Komtd}nY7o+tUfe} zamn)S(y-}sf~=bua)a`7-bQ_*1oCadD#2KP{&623$ORRBse53f`G6ONfGQS&a_UUt)qo8hw9Z7F7`KX|jon5`F^on>+c)C@dYzE$qhJ zPaXvcFo*Ra^de@#GBZ=N&gv&cxoRTkm<|&E;fFYB_=-4vb#5U0G z;x3>Uevk)hgCoi^Gi^FJ`o}edLv0+kZj^)w@#l(&N8`}04_=8_&D<9=hqXFM-}pi% z@epe18}IsVJEhb2#fF!oGSMG_Y7Ff5(L~h=Ov=-n35?3ko2IH{?r#oOs3RccGS>-^ zz~#`qP#-0&Z8M3abj)|XwPE7GR=HMV2j@V9s?fk?VIEic`48=lgR6^M_4&Du=CD6; z6n+pi07ztCUNXBJfa1{HpSJcL4)jH_L;tt1Axp1x^Xcb9mA6bek!;J11p}eOWbtz* z;oIntG6^zEa(;~T(XH`IfnFl^u~Hy!=#2ukIuj05qezkMPu90HUAUWIFE-~YI^KZ; z?^2Jx6+KbY=Syq8$6j-kviL^Hvu$l~ctdmd!>A zVFWc6(d%=aVfBbLDNn&QQ<6MXd9ufVU)Mka4GO`ue{fj57X$Vt+ADRVpI=N2WB+4v zy2{;DX>`KKo`XoJ$7X!r&PF?NM30TUkV(uwfIWNnx;vJwW4CscltCQ)FV{Ju5-9Zj zmvI5QaRAfmmG&?hS7fBTd8My|KE-l;sR|xA0UT4&9+W5S^FsNS{`zB7Qxi6ATq7{< zAnw#)Uy+bDBjy#}dF%Lg93ctf?Nca!{r-x#>NGMFLt+v<4Lzk(Bdo)(TE zVv=>H#w)HXuFif|an15u){np7vBN+jccx^)b1X?U*hg@8Qd-lECR(}X92R9}BMk5- zrqHKit5Yb8N9WpPXGO{k5kQARk|>=&Gw;syP@l`PQ@R<@1JV^9!b4-h4^d8HqV9PH zcufy)=AE}6pgZbSiQO=4fL=QlSb_>-Cg>if7Zw+iHbyM;lpS-eW5dNHt^lG+)rRrd z;U9^5k7Fw3;hXl8V@XwwP_Z@)zgcAy5|o1D7wqPbd(;*W*7F6^R3t18caVkZAY@Gu zMy;x_bE0zCFCOeaRr+$+%eCbFW-V?*T>Q-^XDglY>f1Gd{U`v#no@{qH+ON83o$)b zb=YeCEz{GmOfeYM>E$;2=mVH-yME7_bZW}Y6VdgQ_y~}SXwHO$_-Q9|=Sd?7S13PJqTCF`CrJ$cN!7BBgWlJyaNfC^e`UT0VuG^2!%i8u|*}Y^%G%jO@p*E;M7SEuh1hA%+QgO zN5!bx2T=k$uJ}DLBV%%f61#ho6C>9D8PY{l;Pg5w^ohHnK74b?$gVQBx270NtEIMO34N^$wE*UaR;Y(UHwD(xloyg9 zBE6fVlryjZqEO$RRZxjrmeGJ&b?N+PQnJe=Xk-S4m{Ui5mJcmb#ltA)_XZ2){aB=t zhhEi>`v7JJD4O1mpoT!WB8f zarlIEaKt#`8lZ5LxbGX%*l`Ab!3oUgXsc?=04-{{GA~jhOlBS-L=y{=>9>rtQ zh#txRzw0u)&ko3b?x!`d* z>CwaPtgTe{y=Xw}3{;fO+cy!_CNm)Uwt%`^UJXrq(^ph56mUMJK>@b8(1-z1~;?09o^aZB*47D@m)O&#wU*1 zEMj;{AN|*!V{d(d0kW(2AT($!=R*@~t}?h1A-)1n1!J*G}}icgj1+rb_kjz>G^B1d7uo;CVcx z|Fv;X6_8En;a1K6P2UdssTD{Ay`^PxUGS7hYQs^?>d9rIj2Jq4bra2Vh3sZXx-61w zbcTX-j=Qqd^$zPK$Xq2}rithlw&6(_0IYP*gN*pX1DhgvTfZo9{)nyB7{G=OTAZ`F z+oTk5{i98ZG5<`hdX{r&7Ywrm`(Ep$$8AN->b;)r$POoYWU!plYO+7Bo$lwCkHviZ zkiSf)&pOj@&a6vS%K?q%+a_`HLiP{CfndslO;2^`IvETnH#RhY_As@_IIG<*1$rMj zaer1<0RLVvZhd@d_#Bx(SN<&nH{UYMI78Tr4($7*X z8GrsKGvk^XkybZfE%cEv(NaWkk)_YYLFfKJeorDFHX9v(E|1~77K-j%dN+hc>tynv z7x&70j>hbYoye~^t%o62x>w%hQ{ZOQcOgm6%&nTN9Jh6G`Jk5Ul{T0?0=gh$ov}Qx zRN1E(^-nvIh*7%tor+$r1e}5XiQ^g6INT6TV7_SWQkq@X@p>jh+tAf9@!@(zT{+Zq zDG9ZkA=T}VGG&LqBayE)Em;mK4u3ugE-KiC_)wn1DfuS6=;rH~(c5rTsDXP@qfZ)> zPkl#mr&f^rpEqTrnPxsr^r(V1u1eA;5Xz5+Lx;Lau9#&)W^zf?iSSwkLK6ApQ|tl~ z%GBObe*;rv$!SM1Kb?jk-BY9!L%qEy7B2`F=?}Tq_evBasj$DH2rjr1BIzJ&P!KK1 zBmXVtJ?j-^&KMIol=anR$sfWZ>~&bw1}_AW`k(! z!{6Qg4k)^?0rsEF8o5rTVr?^A~<+zV+!aV6|&`? z2m8MPPL9U>>3=J#8!Kl7P$8R4(3<`yfSC?{1c{N1w)+H}x)j6l@;Y1!Q_E8+(ISv! zqZGegTzY=nN90C{kAEwBPA7PIcibe3bGUr=27S$hU*7NSdCDv+4RN=k#1Hid;CxlB zbbcIwe|{d6?Amy~jL5wld{%g#mJQrL50yE4Y2O{U>+kM0CGaOCdG$~BmP?7v1juqT@}iJ zbR^33sd%XvZyvcSJb$5S#_RDF;BO;pQ&~3 zH{6}($Yy_&eeV1vIKdXaeb_%<4(-5eBDEUUQeG-aR!up89czsuM~>pE(C48QM*qBy zhmrs$$g8e)20f<&*LDgaq0MNB)FH`-f`6IR1N@Kbjo@l#_$)P8{0c1-P22W_H8~gg zpCGSQi@lFqSLp!CYK;<3$IEndMP)<-?$Wpao;oC0?FcYhSRFwb6-~&)W0U4NVck;C zq$Zib<9hU2VMs<;Pf7%t0y3G2W`J%!E(cIO&Bb(#lUe13T$CQYO$6cvDf#=27Qreu zXWGAG0)b&=0wN{$qMbu`Fq8WIi+t?|zy^$c=#ccIN&xjdF}ysMB*@g43r4o0P+iip zSOMQWPHSFvZ;;7xUq*$~0XyomfS>~0u7E}!2*n4>iyho227u=jx=J~Hi)OweIk23* z@AJi7!}sM)3&$=NUN`}k>prGW@9p;(*a_Gd#cB0&6uFCF)}({GnAx^6F*eIM%p{hq zDBdpBi?vX=2mu41ZiLscbV?d!6r^s(@hGRuuEb-DTPs08}z+-_pK0}%f zl=dR0R+eS$14}EYw#^wZ-(giW1$@S`^OSz;(_!&g?UXNd=`eAeB)hwr-mf{KJ$Y3h zQW3<5E9fkc3^XtTT2Pe{&1-p>WI1|LS~6Gg5a!MFyMofpZsH4RfkdSzyO|H?q-k)< zJx`M+Ez+EEm=CD5m>UBzm@J6_h~-v$V#vF}$6gk$=&tH=e^>Jx>z(+a|G5Vw;M&sY zcJh5m{3hE|+2Im-svr8J3iUPiPSneK9|uBb4Z$W8`IzAFtXR$p&)^D8la&2C14GE_ zl?I_w&yem5%W8sYf{g2wk1U3)m^H|PQM9}{vc560T!*U6sNe%d^Cyhpdw~CqC_569 zG5o`d&7P`i{KczP=PoSqFXSJfON>#*y19T4=;6T1eO7}g*#J`+ErMj3DIi7$PxqhgR)GT9 z=KXK_W+5ZAT3M`W;r^;#?Qa9K{(9i>{p~$JqE)7<#VGkl^<>x-zY5aE1fyKeEtfi4 z|4_8Uwz%x7cm~GbqYVpckdnD5a}v5&9SKyG=tjdOxKvs-7pv+$ds;$G%A5r`aXD(W z_wy3NlM=4xn%D24NdiAFkHQjsK^N#sBb|z%`38F$@(fjLpXi4{JeBNC1N4&RRtTRz zaMY-##-2f>ea{lO2qL(Y4%c8IO?ul`j$U$jGZ7)rD(5*PLBpLCHL;t}Nj4jHZd`bg z!K8`@#K=%`^v6Q(gA=J_Dh=!`DurwCaIu8-N4%DfLQF{vkibk*Z-H|AquIo3{w@+@ z!MYgKc@InYuo8eC7@?TTSoo7<^(MlTliu8S4P(@k2x?qR%0PMkU4R0cL4#?+v*qYd zc$EG(o^rktrA+KZR(Dw^jv1?1!d*eQ{YA%8@Pp zLI@l)XLq%xhHReik+Yd#p8fO4IE|>f%)@rP{S&*5^aHeE>^W3a12W`nIj$@NWB-2E z;$do>>^TZi#_ez}aOC=SHm4abKI@ACT9fLC#>gApz$IN`14VYf)Ux_rvMa&C0LvOV ziMy;b>z%RhI8MKozwvszx=;FRS z7UEBSftH8_$io@N+$$Rge~b`gV}@qI{8cEafga`i2fb|AjeKd4u41<;wPJZ21p?{O zI#JArym0TPN1<70_}bg^d{xEiMLZQCR=C0QxEY^kDE|E@tdkSsZY=`6S#mL1o^RJ^ zI>;255I@m{{~~j9+y|i6Cg1=>n+&vR(Vs=TaXUFQgIj5jti@fhQQXqPCd@F?+uP2+ zfaKZDg@s1+-nLxy41B$jgyligiDQX5u;C`Q$ju?+(Ld)c&;#aP-g`?L9&P${b%|E&m>8b3MyVWIF+?6| zG;uaUr^@9!D>GfY@cxDx4wb}&lasA{vjH8BwNtJ&?ILz=y4h^FiXJ;t=~e^1;V+xD zB$COo%n7;@(o1i~oTf5yms#tZVskl!2ywX$`BTXUsOCZ}C5erbiUMaVMm@11;N601 zk;1r)b}D&&hnOF^oc?`%WfNU~apx978g!MB=@C`s0coMK*fW;(zvhG!Ifhso7$;iR z`Jr$Ik1D!%an8RquX8N|6L~ibuVsh>_AV;d%P!ahND4x~WB57Ak(Z)MH6DiIA1`L^ ze6cq#GE!P94}%xmbmLlz!Z*$<19j-ty$#9xd>&I0!2@GydLfu8$>*`nSM#h`l^ir} zoZxVWHlT-}R367yF)2OCdP1qPFZ~GPmR_m{aiXm_2ROmV$HjWQQxX)hp`#<5xXDe6 zL^sJ~Az_1PQU<|pi)Fpw5%pXmLC86-P>%@mo=%Aw=o9`!j321;{EG=Rz^Ie3{Fq?@ zJFtq>sqW!D^KVmyai`|&$)&=~Xm4hDM<#`lZLu|P{8&ILge*vMPTZJg_Ld#m(Rem^$*u)fe4HGN z3t^>hW|molL#0E5s}Fyx$olMI&Lc^aB4%BGs|%Bh-SU$dlja2!j_7<=Glx_0W+rdI z55+h_@uHbf!Mwt{IDZ_4sV$5m^_hqJJKa3IL^w|f8sbYFvS^_j08dox6^A4H)n(vI zM+(y{w|)+!QWWR(bAUiN)r52zupDivznv9ng)tZ{aj$q>^Z?bX6^#C@;0{-lXLkN|m!NC!Ee z7tlWaqlVMOW<0bxq}e-kQvQGuZEa*ypp4x_j+5OdPE@KOBNLy-2Fa?~cT(Sw!hrKz zbcLjR|DYjf;R{U_8pP`1ZagHNX@hXXN9w)rSSh;*!$a8KA0RJ=U}=Ry_xRs2=7V|( z%-(dApITOC?x}GXSyJ&*P|reiXj@7g36N6ex%?j5v)+cMj_Gf4a zoYkU6yqVX3@yu)2<~xxB7XI9d!r4(t_8iIFq zg#R;wQQ)b-1rA)t9_+1K{Aib+{mYkOjX}-P0n-v^37Zu1V#{wMAXg9C@;CA^@EUMd z<2oG8J_yLFaN8idf?#Ucr*4-)dxAJ?e1xzo=RiJ$$P^nCy;0^|6Q$9nQ|v-MatjDZ z$;`Ny)s)@CzkKrS59N||kg`HIGr|3p`ZI^Vz{|mTj25`kR?dtsW*cX{pvbkjJtw{x zltVFz2V-0P5kUaMYq@f}=p*E2KVz%a31dY`uP6`OGF;uK62eXhjs6Q?!I$dE!>b?$<9A!w}@dxRXt;u^dlgUnx?tIIySI})n!|$9W|#f zp>4C+)e4B*Y`YQT4Q0pP&}nyk6kL5$n}o|QVe5pO^6@vXxm!A`e$8N-lU~3V?Rqa6 zlIe4PL2Dnufy#`89Q}vJKYj#TS2y!X5mo*EmRiWn`9jN-8amOa-?TcT;e0s`feL2a z>0ESQYZ+pSs$oiC5{o6e2C;M2i?Adz?%B-mn^oX0#K`b^7b+Sk3DfwRfj~q?-;gYR zlmSe|+HA6~7wg+tt47S~TwrLUFnnDjaql)ixj|T{ye;=DtXBcO0O>s4apUg^0FPyO zaEQjR`M6dr;Y#hRn#kN1Lgi((_kC{~i^lq3znStJ-+?X)mpcEZ*ADy;po&>vanWxA zixt@KX09?t$T`#TR<0}8=MhqJHl4+*E-^TTpjQf8Ybtw~u_p0>0aeP01zHskWIgD_ zzCp#w)Wb_0ud_z{v8P`U0k4^+$btg>7p;#_GdUnj8t=xvHxkZMYAGq`W}J3D)`U4!ge=sE~Geea%sZjmT=F)|; zc=}0u@mEU`Zs_FsJtCfmSP1~!(kihJ*|hV%bN~_saFcK}te1NCt_nNPN&> ze5CBhxKudP5k}pt?{#~};;IEFs8EzADdT5%x{cFu?SZUuch60NRbuT0jrT*j%s4Qe z2)}xg771Cwqyp0Ok0%ip`;B+u`}dXJi&Bj;!2Jg~`et6FOISq#X`nNf+BK`uksMfa zl(l(uCLe#D=r?D@-iu3Y)5+%b(pi*8-8TPO+D8bve3JDA?D-5vh1>EBTwt>|%tjTa zw{crRl`TMqB`GU)O5aqKlV})Zp$6pE$bK?>p3vF9nn&)yxZ3_+d4?YNe0HEFOJIe! zKx9{1ztUQHdZD+rztTECdZBkj-`<@nX}Cj&A>VM()#Ua-l?D<^EA0_W1IgoRPIk5* z4mqe~2-2#1D8M6~RCH&_6!dJ9-ywAD=5G}b@LyfY@aQ$8X;3iCS0x4;#sV{Vt(vx! z%pKS>QsJ#;FU9@;ani$v+qTs>IkrWTN_Xs*Yp_Sfi4_dN{j+2_2bE}*X{_M_ZYbY< z{d;KSSXG-@gRk?8c*VtyNyiX>K%EYk*@el#^7Cok-}R$XCJi?{IBy+_bX;w6@5)~o z;2U@hvqAODoQqcfG>`hxUk#i*iYCI&VKCCWcpUlOYVe5o{!m5Wq)DN2AJj2!98QoS zf~|)BueoSEVAC0=Z4|fngJkgN^`eGq=!h>H6`qf59xC^kgKY4DwCkG$jp_`&9Opib z+t&EL)l5W3>b>DZReF`)?P@uvWAfj9?CT+{aUEztHELzBp}xVt+BFcK*5%x($R$6M z4$gJcz#iB5;^g{yD17Vl_U51j_2QEKz1SKAr2D*C*!%mozi{w*2I|cC3B1?;d>*jE zf-K;m#=|-m#|!ykzl)_YVBgu!Q&a}Md-?I!IdC6t(42T_+P)NiadNrW=0TlL8gC>e zgaZr=9oqYN8@RPQa0M#eY^iA)zJPbKO~ccS7L#&5Q>0#mANadmD*iP(sJ_^m8G4R? z+X^RmR(vsU75Yw;SA{cx^Sp5~G60O8!G^-NL?K~F+0CS0oyp~gdVf6Lv;0CK?)kj& z_2l`^E8i|eG%mHB2FruplLj+LD1fZm{{*3S<5$(myKS_Ot_+-k7}+zxg8!+G$s65G zdj=Kg6)H+@fuTe|SS>8FW+IGi(+~Gk0l9YBL^w9pBvZ%CrEvgy@+;tn4K)n`@lXavae{R3ZskKE;nMnqJlS3ULU;ms+=K5wygI{oo>9^9$GY6&l zi%WdJ6*P@mc1fUHn1}ITQ>-FWBBBAIsGR~hk{pFkNVpX2O5n}S`g}{eobPhZNAN-#Als=;kG&bXkU2$4dTN zu5GMQAohXC#_`1+ekT%XiW6U0U8{lbmNBNZqF6UH+mgY9#JzmPw2iCuOzbq5Kb`IP zd`GJF=;Yp|=pkN`^@hoS&S2ZTjJBu!uGUF?hu#0}?e&WISEA?=?tad-z{?g+v zm`xpHryi>T3Z$0g8d{f~)Z%R_7h`jqSHB<(BcZJDuiTb|pW`7+c@_Fy>yg#|LC_y0 z%DP~K|0yh{I}Jc!By&B!fX6g4KeYgWtKZ5!oxGkLC5?Ie^(^G05$g-S^?OAxO|3Ea zB(CB6KQG0YiDs|qt=vJ&Pe{k0*ZvgB{ZNK9ZtgAjOl=ZK?tq+|lqodM!G<&rSq?7E zGFHXL{j$EyqgG)I(dEu}@eeujfsf}2a&u**&t!#Q>>G^D7t_4=pM$T%;z4Z%5~%h+ zuN%|daV4p^l4~@oT6^-F$gk#T+s!=kgFi#ewnUKm@XfUy5#t*UwTjBHutacj9jh92*V*D~; zp&*zqOz%_{gG9^uteix;<^s0~sLTBTKHsZ}It zJXgL{our{vxxKWpN}d~%wg65GT=;yQ3tg+$~wz_ zI&4en$LbcBh)qSBJhrgN&!kNy44xN*y+7;6%ZE34=z-j5#EW>ZGFz7=i^*5^kuuWn zTPau#sa0FzdJux&aCwCAQ?uz=q3g(R-DDWzAl{u+WIY1`>Xt!11i!+qQ@XacaD71)qtxPLq@R%{huUsuiKzRCh_xE<& zT4VJDcmg+6)DNZ?MyzJ1W9c73JQJ5!V8dh^17`JD*Yybiwj?2X2V=9l9IRl!fD$e% z69hA5@!O4egPD~P1rL*J_u4NcksONM-o7|XoiXU=iRgBu08Ga$Dnye3Rq3ZMq6489 zoT zQ;_^(Zp=G-Jm zAh^h~2zRW9YU|!OsF1Dj)?RgP2)incSY>>8RgF_1rhyVru{H@r&c7u(o3=Q1n}VA@ zAvc(~8bCd?NO2gr)dg#s8!^_n7`TAOzcf-E1LKn5i43G`N^auJwq@Dw=pc`fmEP5vO~;P|@+de{^N7j; zb9pn}f(CZ_$iJ7El%lL?*wDWiWNeVgw$xX40A+$scl1*83cc7hg4EV-W-jKQHoq82 z?H4L8ct^8ZqlX|dFy-mMG~1?hwN)*$;M(tSTtGIs>G^`!Khv4wVS1do7^{`-`zANj zh=Gdq+UyJ%pU*R%4$VkS?nNpttH9zZu1!aC+Zf3zK_v`S`1j4JXYlmRJL`+mZ1I5f z0F1bD@kh`i&VH&FZT9Q|_^wIou5+HPriHR31i0#0EW)Xw?_v_9cF`0HCGkGAN&(_) z8C#q`>&QF$m&Vn$Ms4(}$NZt=AJG#!S9y0Or9uD{vo>iH@fRTvWWRED2@B9bq#l_32TL zXpPO0>*}U4++jC`)%fg>OS#@{@S{fhKPJh-zgWt2m0oj?W`L*Zw( zV`12P&UbXd^M*+T9n$FRW2qzpnSEeJ1>)0Us7B)%WQN5IwX~KM6f~C!0C5BfC=%q%x^1HPQaoWKDA>uAfGDlp|A;q=mkNR6*C9g?%Q3|6*;X`z99VyzTRSJAmAI>c=O9Z)-c9kf>H$cmQZ+O5Ext>O-#2w|JLcKh z{IgMLkBj#^lsKiS3^?Qj1+ z3HaZ|M*k?maJ)(rVj$?; z5|*8}5t}hCO}y#zlCXgH?MYQKWbt#XpE9P9qF5#U)OI>Z6awq3E`d&j`UNBK;Owt&7vqCZD91x67 zgj^r4*OPRE{bljbt=TMI638i>ajv{)&A8}}_ECdk)9b^7$^yjRp z+LOyY8Rv~@Qkg#Em9RZL_be#FMN?5#q< zv_K>Y3#Wets391w23a<{JK_O<=V_o?95)_fQ?zlC-eC7tR@QkxEuTmefz#6=x$IGE zt}4<(y_q2tf#>5mgVdBIG(*_qwd^&wDOT-shg0)1!7NKN!p8>MztUpolPOBW!ww1) zp#qvB^bCiDhcVd{!|0PZ6^#s_FvKX5oC%B3;JCA>dzEOjCWmsf^nT^pCy)g=1-T2O zWt8yR23G+>Yncw6f~0M&h(qvS1*F!3(8dfCc^FGoy2Ev0$g}l{Fo3 z48wymP32mBs*TuzdTr^FrJoixF#rsW|H8w5rBGvBjgAT=0@=Z}4VS;e+cvf^ zBL~V(ejyEGbrXZgn(5& zbC+|8)-vCdgZQckZ$X+Yom%_p=++02bhq*iOR^j=h?l4p3=@D5_v3^N+g&^*a61JJ zUS|sJq9_@`A zU$BSwUrY??ln!D|n+)115p{Hq@dBi?TF0w3lFv5*4i-l556cA2Q!VK+ohvQY72wyJp+Av^BV{r zbkUbMQRvF|zFQwoZ@(m;kNmr>zIh+Jd>b2o%pSQPvR&^X(v$DY|6=4D0tYY;m0mvj zqwh3o(L%A1L{I1Z#Tm#kjQN0ATisu-X6%7lyv1<9GS^W=aB=BGw5c4*Qj(465~8($vc1bW z0Ot)m)^v9HH3~QO)PL%z*$$X?aU6NjcvbBHSM zya5?37hu4=WiW4G>G=E3E4w@MrDfM;pUo=gF1dInxv-R+1QE%|PWrVaO*)$kA`!rv zg|<@-TGOe$t+%C5cWa&_*~Yc_>NsO-JjVF|rp`7N*3A@As#-*RZU#_xl#u9OE?R|v z7*MYJfLbX=zGs>^PPP>R*M;}8KNlRUu<20Sm z=}x zoWEy$WeP#U|Kg&>Dp2i-Rf1YME#HP$?xUq<2e}zhnr|x}U#5=cY8sh7T99aXKKN~i@G-U^oM@s}5h+gt?!n)cKaY@k;i{}8* zm*`@hE1F|mIaloIp@`)FjMWu_|s>SAwwTdE6j!oqdTHw^H z4PEXBN27DiACZtO;mQwSOaG&tr+R{*P$zTkUU=;8nPYDZUC%OH?sTay0QJly>Sr%n zALYvl=TF;m$93Q%%Lqb1D3&B=Ch9o76H{Ojgu)#p76-UXE(o$Onus6+lY(N3YC3HG zP9#||V%mrwMr|MRvhaNwO0ozkJ!->GyD!Km*vVweS{L5umgiL z5d=q*jjqjW+rI%fV&Hv&Fk&c~|5o9&&Y{$=(|qW`KK-HDp36*~py}F9jguBYD7Mm{KWCM(9ezGdSqMoi*}( ze4W=wH1N@_$c!tyBP^86C7M!&=PNxmpic`;RD7H%Rl%F^@x1nzOzRO287iac39!u0 ziI4SL3TP_+g5#5+GcmlH1XK%N-uB(V-6H-2wwxy4j@-NZ>c1TJe-0fMe+0mVQ0ymP zlLH8N*x%Mzl4i-%D%~Mz(tMAoN%o$=>h6@it?4fVUE(C|EQzdD4~-ZLPoE6{%p3A2 z?8Mk#^p2R~$(oj;@WO#JYgiPZS`$<(b6*fm8lUoxd5Rv`D)DBreh?MNqGHb!;j>{fj((cS6OILLOrehcSBJ>O zmW)h?2F#o+luni2jSV~qSah95o~gqd$#E7NVh0-Zc&^ze9A=$g*qO z9I@pfIy^Sd?bBA+o2Azp+CBG zBGDj>YxNu2`*hv@200prlR^+x(af`J|9m$`f#v&pXK!Ihl?3WhB`Rb7=S5(g?)ZU{ zpy>YT5O_#72n31%uuj7F=W4Dl!UAoULjzrcciZJGvKO(y4q-|F%P*bPIF<^xF&j_9 z=9`>|Q@2h6>A}HH_RHtg#^E%S1k%Pbp5l=`C`b4}1FKKsO?N%`gA{=+6KYIa%xnva zbOOiT-ynnz%BDO36415}`kLQz4_F`dR_u3a`tibdZew-Brq4}!xPa#uTYU| zkzakS`h~=syXLb!IJ1U0cE$Rg?=lD$-8>wD>1ac%&z8?HF-4ac6YNTWeagn9dfn~KlMsVAdysD#eMKV7* z=mCfdpwKExX~Mr&Di}>@&L|Tn@J`;xm|GWSuoyX$yrrEseh} ztF*p9Jq2tI{TLO41LB5YBPr>OEwi-6ENlZpm^;b<#I_DpnraD#Q{c?H0_gS|k~tlY zDgwy%C}3r5VT8)Y%3;~llvvNrkQNJ{)MVMjz;M9d(OyFBaQH#UOoFavW(gvKV0VGm z3E;O_<4N>ix@xMW?sQ?SRLzO%7p+xXk~UZsVrhT==|osHNS~(&)vyF-j1|03FA8eF zEQpZ-T;=*cOGf|Hg*1{IJ)cbZ?^mibf}0eK;A7SBL2xkGD}X{NKeQ+%EobM`j#_|% zXH^M{gK{fR4q;m)S`nI761!jz^Qm7z0kK{{MF?YYVzG`ROSAB@FYDVb(66aN8Z|qh zu(Gn#NG054fK{>%A^|}6kqBQmtiaC26x}cZ{Rm7}uff>2=YWg9kXS-yhwWKnrKyl3$iR^F??NiU(9Z>4 zEs(cBa-O6}@`$0+g+VfYd3#N;tZFhlweKg}D|Wb?C+F1I#SMsf#Fc_L6Q~@^ z^VS-*iHj!&ov9_Hl|&)7QskAn9yOrF9+*2ofb>ma60^RT*|%mO5X8PSiYAvVv%}A8 zUxWp1`>e*s7@?)INi7yLrz>JCeg3-d-x;@SOq}-eawi^(>9PvEP1lCX-0K512q6L{ z7S+F>KVaTKS3Ov$Of)i)S0)&AWG4k6gc1>?1+IiZ!Ars(O}~_y;=-Rz3J>+!I2!!R z1;nGGe9hk1CU@0zhRzMy*H2J*kBhZYh}UGJ+FNVgDzS~36A^7H z%gil>yqh%LuqiK`vIq}ZAMqKYYLSgnxl9|z;L2PcY@9uL#24DqDEfNPZF(CpS$%y% zfAuIR9`Zdc7f;;J*SsHX7a+)+@KR_InJa0C<7-eAaWh1#HT_FtoPK%oQRej~*=L9T zMq_*`mZ*R1=*GWwi!W$n1{3jSdF=S6$LF1>bBFx$(sq@nYx2;#J;Z>vZQZzV?evwY85rC$Btj|YL}#kyTicGOYROt z!mAE!kKvL{zK&CR22>}#*oaVPJ-ChVgP2lQCyDVjA8eVG<%PX5r5P+^E=0DCcOspr zjAZwe5;b*MD%O8M2Xfb}dZ>(O&zNu6W;th-FtgGDA9Bq$%z)IgA}j$YtI4Oi2(!_V z_D@uuop8N^s3nQ_KqP~zq{{PMYT3+s^Am}-iQoAtsy&hkaj%o%BDfU>4JlR?2I%tDkBNDlZKbb)-S7Vr1U3WoVX22|ZzoG59 z&P}#23GX!p>-n=qLfcjHz8v)HqrcF4Hf?Z3EOz(`py!9u-*$AvR6>Hq6Vfo+H7y~e za|u2d+v&8+(qX|`P~Tbl)}LfmGpQJ++tuf6WYRlpA~EUeXF&jxCSLJNRa8l{-)UlP zsOAL-i>%fo6gQZPs3^i$_TOQ^PQw*U@>)Xq5Yw1K2_@KIF8za$6spRj>g0dfX2cDM z*Z-*!L(6$dZo%i`|JNYw7okI?mHLPY$~9b~5cAO~T~yn`0J+3fNgw=FAZ|6AR z+<@wE6;nQ&?G*vwXscTt!waQt1QMW&E1<*wDu1jmt{m&2!FSX!Wv~&gG8`HR7SSa4 z?yM$sV!z~uAixuvVZU-z=wP$7?(wa%mhGpDOV3n{S(gPuWMw^_01AU^s9|PN(5&vi zL32+Bg`qJ|K!hSBFC(P`TOwV-lVk)vYXNF*1t6i-?Xdyk)Zv%aPn*4;j3!K2KcLDr zC|j&GEMdIJFCCwP`liOR|GEXUsC9ALGrhV;T^7jlT{XsDKp<>^#1k_rma}@pdrIy= z5>PM`DOf^)dft8A-7RW_!O6qkhnbVRqfT`-UNWndH$Z|ZN0$zl5ny(0V6xekZO-<3 zicub<6W{{KPP$*o!;k`R2!r$obW}hrl=t^Z_m%}ObE%|c)nE+3gGoT=6X_<@C%o2& zfoo;)6ssThP(mPT={K96`}{lVO8heHRyg8U$L*0Ykggoj3Y0 z2@?DW#gu4mIBe@lUhXd2i_hS(Hw&S@0j(Ct^^d$`k@&-!9Tuy9Tk}tELT&E6m(X%| ztgG1%b!%^fNPz!B5x)HC z&F*o&h4vl> zKw-!f?auq@-@mBqkSt|>@b;E7sT91fMe5zP>hE=(= zC9?rFtk{)rR-6rUWwfvQ^U9$T>Vk9kBa!blQ2jkvZ&L zuBCnc*acR-vWuuqG*szF8hTwvA5^; z&?jyQV_^|v6*5pe+xRvOZKGJWGdagmQ%$t7D#~QpoeMafm$7!!f>h)hV;qSoti+v# z6oFVKUZUC|jS;x%VVJWyMX1^Je4`A&w-5;iR7YQ%;~E79Z#{8_;Qz<&2qm$uK8CemJOP zj)+-#&c~%H07*${KB{8RL?q%)R5*kJgZQ^W1SLGg5e2dwpe0B-r1V0pCpM|dFk@z= znz#rZj@MeEp(vwB8FF0epR_3JrxMntD~l3e435>~6DGy${Mkhn(VR&fsuCC_iX9wW zxF0<5h+%Nq1>=K*y>2M8KY}*k_c+=<{w29pNp?!E%Wc-vZ;gf+nWgtj4N9ZwmeF8E ziq84Gn@4z=Rzpz<1}x~4;xTgv;vi3oiYmQk^axGL4KV^-9g_WsI_3$cZMq^?0zKqX zD*drVs2vayLK&WrQCl7%3rEJs4!58M&Irf+(S$O0|3Dg8nfCTDBlQss=kCv8@4 zpRRh>*|xsrpwaRGHCY%>RreZmRAb!Q-(g}{ms{3eT&m&k9i%8(@I?V0&C>E@kj8-+ z%*!>tAz(C6>0;PlPFhERSFcDpPBjWmBZ!r;8k>Og#uXCTF*|Igntr1A>GZp}xiHEz zB5DI?>*_d(sLWi<_q)SkNmM#kMJ8By@mRw#;o#TQi4S*PolAoFv>^Kgq4vJWI3G{< zUr-1fSH5&?cJxFfY8b%uJ3X9}{Gat&3d+s)G%7Sk58~thq!)((qOct%k+eyB5fY9D z-0TWh!cxD4Olp!F#>o$usBOIo)z2l7I;e@UAdVqU7WBOX_DRnJ9|ITiQfe?6@iXzD z%*^6)9$BtJy&>3F1i(LrC;f1>ykonIsEv{?@8>J@9~l~K(pM7&XBi*+AOKuC6< zo-0(td`Xbht6G4~Tgp+SHO28uc^srT{>QL76tP&PH6rga%fXQac5ijtlO*N1?T-`S@w&sd&b+LoJaD9zL$YZCCme$5xQE8UKehoE~pI93zf zr?D^6gsX+`N5Iwy*#~tl=Oy(qnE&+EU2$w*W7nCDa5WpfnYP-)QECURdOLq3wo+Lb$-=otFc-sal3D2I(DaBhcSN<6Lws+0|?b>v=| z%x6O=M5;L~7Nk`KwuQlrGF8O=*u;@*ttR74BSxx#5H`QW?g%PnlcFAM5G#%&;6G#Z z=p;P9X~&Z&?(;&eRbrKYtIAz)eIYU~*vn&Aa1P)sNCX9~O$@TePOH+aI2%OK)+!djD$V zV-`=*Nm5lIz{k z-_hI25fPxZyMA8Tewr?COE1MUnts<$qq#Lp%pR@g&zGD10v#q`v-mIj0Ji@>x+#50 z1o#LzvAt6icmWn$7dFN7zud*i`JdfGd%GfVD-7&b%~GK0Gk_#WDDM9p{V@HfV1vlX z@&6WV*#8gQ7BH=~Y5!w^;kT-B*XXzJ%*oOXBp#r<*Cq%HCiiOtN2rinn0Pn=N6J3g z-*2`CPo#+|J1(XOF{raSygA(EFyRD8*HO0!)k${*8BDj>WU!u`V&XMBcW7@2@kx=Qz%Xn7UF`^m>O7`77Y5ACm=@`4;m7V8Uh<-&^0yzsmz91 z)-{DvHl%=p<_xI}b5VArBZ#9{LaiT(r84NZs54W86fs0w+aG#m)=0wyA(E=-#062~ zLBdSZA0zAh2yjp~sgZtLpfsfzUXfH3Gu?pueP%swUU1E8*z2FFWQ3AOV)$&fl zIiwctJr~NMe#(GAbr%k2@#@;HDw#mpBt}Ji6^H?wq@ciz5@W@oqa#!1Zbyq42gsLZ z0IvVr6Ng4|J;rN_pU@dCJp=uYY#uN6k5}!;Xl_o&KAKGok*!58aSRkwuU|h3m7V}0 zmEl=69eO( z0SiwiKaOm;*#Y~uwHjo~;=1v>2iu-*fNt*Wib*Y&n85VTO!;hD{#It=Y8C%roYND6nkGUUjb}=y{|^>d_WEZzigPrRTv%}FP*iM%M7E)SEM0g?<^!)(MPAH~ja(TW!hER{xmfip!%QhP}FItt8C;y~l+ zQ}95bYhj8#T-BWwv!A0?$qad{`trwz$JCNf-4THDv`l4FboRfPKMNBL^;wo?y0W?MdnF; zNl~5eg1C+Gx#b$em-ds98p`WOw(equm^~CRjlGWl^TiL_TgQP2!xy;$Ww{Xhvjr(0 zzlZ8(9oP6;)srRiRQZFscy4-(18K;9_|O^Aw`zc(-=>E*$bLw%Kjs|=tR8*FB}#sP znqz*96leugsOIrALON{g5@cZUz`q2ds@L2N<{CcY?7YXOENeVE_!-LerXtJHngD{g zKl)Yqq^>}VV})ZcmST({+Fz{2V>CB6AjRPk6L|)J!3}u)f^Lu_*R3ob$N62G1elxBpI&zZ)qZTp>*pG0ok?;!Z6dbF+&AFNa-he)C?i-_f+I?9E z!Y3q9eJgxh`XML(C-{G^{7(Q|Gl%C=o(sNWc-|65`nXrRhy!8+cF__Rz+%H-VY4P< zvE&4QeJFz(!-7~YUn9=hu;@H>aa~l6C~IkEU49Z_VkG@y8Her1a?hrnwtJXF8N<>E z&?Bwx^WyvfJV_qAC(@jEd?0iU;@xu9*&|j4NQu+7q`t5L=!!ad!-PuHMeHz9s}wbc`$WVB(=rHoJyMy1Q$nFuuK-#exl8Z{jOJr) z!!FxUwZDdk{tXlFTKXe>-};BM&XS0X);?+kj0g?K3|g1|qVNSOmY@Xtzmu&0142lL zvH_+CjN5NA{)h)?JgF@SOFFI3>3+(huyZZ*rH+1zrW+{4GIf${QhmK5O2SuzNCntQ z4q+^}@YowfVRaUhwrw3zD#KiItr(P>MH%y?QHnW1=qP5mErXLkq@n5dOM-Mn1HjDc z`t^Zy;~`clr<^Gq6=a9$FIJO7vScySLF93ORgIfqeTR1b-cOE^vOmT(HljP+adm$Y z@3E0v$#5b{ieiCgOM4e?c;jp_mOSf7oI08=Ht*r}7X#>;T~i}#&zAbK%6wI$Z7To5 zsky@EQWg{AZGW!yYh%?qzpKh_@VV{Uw^fpIf;bRLL$$IIeN_!IUuG09d$q_}BnKXV z%kSv85j-0rCt_=L!EJl9xq;?qC+@go8@G_*WJFZh$SR3MF@_=uoYLf)w71fn;QU$1 z`Z4cExm%_P#RVgWmP(yP+_`c}iV<_KsZbCd2vYRZl_3rSsl;iVcn~v`N<7$?VIBmH zkhZ82J3dUH3GNnOTre94@&|SZXvq=KkttaQkt&vj@E+{N`zys12W|Y3k&;>J?+d>J z@95j^B+xr&I0RT*nPoQo8y^tLRaIZ|Mgo?&;p*{61J22Xh0r+vv8gk#g=>Q~J?cTh z_WXoG9)V=z{jBCcZvG9lwDL`o?lcU72F#W2)C7#$?raDAPZWfM=|3YhWHwID|9e-% zOvuT>!j-P%42A~A#lgw+AKE1qpdDNhcLRey20dN4kQ0pVM!N=$%6^1TFu)LcpthsS zCb~<63eAJ&MzN+tg|aR_&*g^ebmu$Y%Yixh%Hd7>L&t~QRh9ZyYh;>`oX{#FmxP7_ zcg!Xr?5NaRZYdr}Yt0)(3%Fisj6r{Eri z#1oK{3?Gn;+dux2mHf>H2^kO_EOI9hhO}lAKstwQ3!!KV`bX$W5aG-f1*rlT&erJs zHRVJ=0w|b@BtS(mA^#ZBBcOv03W6Pc0~jqZE{$-rJf=(#x8Em%3hU_X*?pbfzmDI=5;Kmywjeq{-*2+9>;I77(Ne;WoYEvPe>pW9ft2)sl$fB=}- z6`8`<3t&XrlQINl2Vdvn_2OL53^WWVKMHthf&nt4{BxsV5-I?%2?Usi=pP?_^XTa7 z20(&r{@aIRWeZ&s4s^FS>adk5V2D+Z|#|5zi;1Mc(30e@YL0I0K z-bow_2DEfg1HCTo8C-K^4E8HZK(a$NOy6Rx1H!$sno@Ez!G>2bOi#}OzPk9O7~xFc zS=~9F1sqm35Dtt_|6(#iZf0hF+Ye4bPt+Mfwt0YzOMjW&lL~)Jm;*b5-8nlt-aY&U z7JLRusIDaYxV^go*elKvNYCv4RO-5U3y>)LKP#aVFxT)NAA@i9fm|Vg@r>jN8R7vn zU$})X&LC6$WpO~L3E*o8|MJfij1%7SU(fH23^f9NjiJ790^{`w0P^AT&deYho1H$! zKI1>kG*;%96;Um|nh*Qj9Cn3ufq&I>2LY+m>mvYBU~(`30>01po_38?1NQnR_Fl&{ zR%Y-(kUpC?%9;L^8=v+;_1~>JGlG2aq@f%|wh{sj36QRy?j1Awy&rr6%H9d+zX5RH z_{ZPk_uq7q8{?xVh-^ay@89t_mauJ3ACr5LE%I>+umw+tnv0!h&SN(m+r>JjhLf=7KKM`D$k#h)KvcyK_AqQ}GqCC#IH(w{csQu4rkmH`Quhm(~ zf!M!Qa_xB@;*Hja*>YztCJa6j56>euK7Z!_XfE&CdhKlbSiftN_=h?q7f&{Mp!BPc zdpR91{F`ZQD?j>BoSQ1UP$$dh9n~8Lvnde=g!DS>qv^Gck6960n@XrVtCDx;*Kw+x zVkUcL7RRSJH%^`DLndy${rX+4tF*d!BV%@bkc@7dTfHp>>$cKFCqmmIp4wURZElG;4f+DL`okh z0F|pUJfp8{C_m{db0g-cMUBv!rNAv^-Lv<+8>PoTU$Is$W91kT;Vw&_VufiEx#sc+ zA?CxSMWB*iy^HYtzoX**@B~np|GX%TJE#(;azxA^C{p+$S_?GT2JZHMtXtuo2=r$k z(++XJ?V$ziaKLfkUTK)?T<8Awct2bO1GE`)U6keFBD9dIkA_0|ZxzNHY(4{6Voj(o zWEmQT>cU>P2wnKXs~bDUqM4XRJloQ@nIjr6N~8mifFRS+HIvaHP_DtSj%t>g1?@^| z11N!ARqG+zv%~K_)4TyINKE9wKl0?ZDf@EJ@Jw<$ccy(*KBoh-ks_ zLdOP^Chw2&y7L|Sp*Brvw_x3k0nmP@Jgm9_2E(UTM_LN6mYuSAn3C+Qu|sjI0XJy) z?d2Qv znz79{Ov&hgPx7;jMZVy4@1Z8l8NZ1>2a59!d+-{++uQXxSUaxOlp3Iz@qtcTiB9NQ^aN!f9!2m71pmaQ<5|M_*ND8)q>Ugk3q;+rfzyqE ztesqon5*`oaPD8L3+!l%W4}AQSaGvL)X=-~?rn#VNdWu1Zi+A@CnJlak83orY|$U` zL1sHqU12Zb<1>&|6&P@v7z%7^i)AIDuP8g7PbT7BgQpGo@fn8DBtSy(qCCvns)iYT4<+;{huk&UlQ%6S|0X_bKxBP$!%EEcGCCbdt{=2?d5|JgcHR?Q zW8tJwL}^92pYajbNnHcT-JJ!A$QUv6;(D|c_wUH`L)TpJD;v{anBxkckrhfD5kgy` z2o$`n*;!I>=Z8P88-S115f7>0HA3)@3!10|kBs5R6fDP7ORY4m$|+et!Ca(NI_~<) zz#hh*qxeLETvmKN6oL>2hIHTk&|>$>Nk5a{cI<$hA-sQ}21295%l}H_RAxFr5+ci+ z=B#pV^>f#2{cd?+y}h{c=ppp{6$M9XZvoHG8UG-3!O_qR)T6RKt7Ep=`87x&@0xFh8+~Ri@6TUdj^a ziV{nGFzp<`i#1-PP|!qY_vDbDj5?E5bzjW=BjP5e-v?as|02)ii05K>I-D-Lg zyEiCXfCm^`$|7vEqXg#E@AgF4WFf?4HBgAKpvvfZ^b+9KZ(FTlp1IqZ`3C58)>gc8 zM!lj`n$5)s71&UH;7*oUWeWdOZO?i?0Xx>=eUe6DiC74x9A4w^dIxVv#Pk-?* zl)as9&+$HF%kPcW+sq~*S*U%i>@j6}WWF?h z;se-uzmK|}3jaw)Yo6DlvB$NBwEIMhvsYn8mxoSWn{Hu*a3za)8(d}(N#uK7W{2W~ zApl;rvBTn*PaeBt_wlQBQ|aVIT7AX8WehmDWL|u;)j|dBn_|I-$#-gm2rVm^0mHep zrCz_{7;C&{3Dc$87!scRg}Ba=zlo2T(^ydpE~Nj!^1UftAEmx1R(w=-6u~q49sL#^ zM@ZKZykL?hBW~dyiaFBC$PB>QX3;N0N(Uf!da4*DDpW=BLvV|Q+OefpH;!R4p*9N5 z>9LBjX3VE$eu5dLvTqg=t&>jm)_(V)Y@QKPoz?BA46eeg5 za+1W@GWj2p)v?+OZHk@ZJ9PgPc>uo!(4iO&3=5Z9yd)HU+YGzw>gUBUpJd925omOV z_&R2E!jX2B)eVsT)^JW@xIp48{;f8Fx|3fMFb@Hq)zoXa=tVDt4IbR_V3MGk2jR_A zLk64K(aXKQJ5n2IE8|?Mq+kUp>t~LLyqdp4%ePOQvH=7Y-bo%l)`TAUK?;bN$%v=W z?@w{YPGzCcFF>7;?eg1ib0+a`V*yC_-)3I^m|oeRzM1U@#NfPd+i1Vkb#8r2Ptc9D zm?^2*v+Y8&6kWTBkj{5c9$~r^?if7`k%lc}c&8Z*+$L(D+H{i%oprrN)pNN6HJ=Ca zm&ulQ-wGkq2}-Ik{j?z_&Y ziTf7b_mg{lso=GHFB~Dq+8L|K9-*PDGxi5P*_qW9?XLXMih@g(U;;+dWKPRemv~=) z8MN$-n8W-eXthD$Gh{82WWfpA1AfUptw zgH>eJRhLxPQ$v4$69!l`d+-^>5oEp`G-%}z8)yjVB;P+aFAy_HyOe^qf`-xOlY|dV zp63NDDuq$IQBa^!QPdYFqZQUleuQ~F=ej$7p?lOoP8lg=G;<&X<+w=sImYt%tU7*0 zQnpm8zu#|3y>c__5{dHmYvJstHZsce96Zi)L zqf1e^uqO6g>qhN5FS;E7fR{ruQ^rWPL=2uT-8u}}Pz~2rky(34pPwZUO|F_R2AI{o zN=3kiVGviaX8@7MtS_k-UD6*JZVmO+1mijj@s!(DJrMHT(P4wm`dhr@`4A~?wf^vB zZ7?n2eL}jKQnpsp8VEylY^YY!uP9uNKqylrDo-m*A3^l#nN~QznQ|u_kQO7RtG*Ui z7<|ejqdK<_v|rpRwE!NBI|+dlcua^jefRJ#LJ}Pw z1U;5|N>F3a#Dr57x}%#YD2b3|Z(H!xTr7tvHT9K!e*Y#t)^S8ofq?s%+Z*vo(n7=N z0LRC8vAs_3>s+fqsEk_`nV4!*Ke>9%9Lq{cH>CZbCGt0MmMJ}H0~*6nP$`)!wDsc- zNiEzoIsse_nPN)o1`Gd*ocaf)J~JV$^_J?wRuAUfhz|Vg`9uu;1LvV&8`8{QBper0 ztAP(>HyE!DwKmk3u0vZAS`?+(k4`{t0Z0BWjV89#(u0)z9dFi;hXiV-tYq|7@jYFt z!uV}s+pgZMr?uA#XxSr5F1czUz#O=`T0~puI~S09#(VsSos(?DQ=K$s$`BP)!A1rz z12!nU$+!Gp_B!x3nzV6#2+wPnI&06R!Wa`X1qJ>*Ey*PY!?o$E*0kF0a)G`1jBMFn zMF{+d6T*y1QwA=ASTC78Du#p~3zPpboJ-iM^UdR+U^YbeOCUMB~ZRPGe(N69zpW;RK_UaU$vP)}4b z#~}`Oc2OBuh_ZC|)#FWzFp|;NTSt;AZ8a?YH>eCAlZAa**rDw-@=J!aH=9c-8H*1B6TN0I;Khe zFASc4<2*|Oj$cMa(Kg_@jZGo)XCf{5+4t4LojA} z8f#J#r~NZ1nNiidOHC?urP|b#BOktWi0il%sZX7jc%P%~I0*0G9nE3*HS{+P6FPb- ziZPh;Wn({XKH5B-{|kyhb-zAJE%0;&k7&$Zf66LNNUxX@m~|N^DVNNwCiLp6Bc4rl zqKD(?`HO7)4Bqj|t~IAvIDQD6U;!Fgg;J5A*93C7|0t8J^~fWqBU{bc(aYOjc4Bs& zs1fjFMos8xFeOF7r(g*lgQKwMQGFwesFmLt}6JPpZuvfQ&^zoC~ ze;6t21U4;>-2z^IsjUWATd6ahiT{O&xS?a?751AOD=C!;c%OJ+61~?I=Wv&=IoY~ zR9<-Ii1**UBeBjK!eCfgzWEjSLTX})L1K@<61A>7>GUMPCY|j$%#xpdI$@SU%Ve;e>& z*HC2_@%-EZlb9O@#q8Fo6c;4p;=8%8J(sPac+9peX29yLGL^d(Hn@bu z4UXcT4)qE!?v@pX?`aSzv#*b=fAhY8oNr7~iIN06_lCb?G+ZhJ_uQvX`U}f6nu%X*F0XJ&PwV`H z){@@Lv6Ih%;Z~2lbB4pINuz1M$i)dXabOw#niV(HoVE7HWMbw?e?q8b&mK4S;8cT) zOtPpjK;6&&g~jjgn{&{hXe`p8X|D_SDtue|e#luIi@g?IR}8R7J&=%lG-tuQBlkJ_EK zfGK49%8LDK+qiVQ$f9?emp{p^+eVV^RK8e!LKHRBlK4*ed?)dXoJ7nSg9d0y)))-^ zX}c@*3{L-|$U<%a@fDR5sLPz8cZ{T2H9tq-6{&Stgg1S>e{Bb)?KY??dV(Ag7ulHK zy?Ly+tZqF6_1b0ELp)l*rybzWlrsC3r$xbF2D&Mf;d{4iO8gMI7ptnHUNB0W?{S&R z<~%4Y`_7(TT2{Q3PjlV&!>$L-oK0B7K?2+Ju%E1y?@%O+6#!T?W}MOv2h3I`DAB=! z4IuY6NTc&xe^T>d1~oWYPFdZ;Z1))cay%sZ$WQvq-I}*xf9)hO#-u2 zet8~R(i(D;s=5lj59LO{>2zubEmo0?~Q zk5EY5?w$8}R?`c*%*5$+MQO6To%@ior!*;3f2^eZX~+IVPGh`ZK(byw?$E1orgL%o z;kteZyp3LkB4QJFstc*-Ql=qKNtqP9j1G`%T`M25%hpM@m+~n^r~^LAZp}BRXy+aZ zmyo-RBwbd>E5VK!6eNqKj8152+o?uTS%p(4k)`>sH&?H{2kOGDjNjv5sb^bt!IKwF ze@6)6d`@g%wJtax=NBC;T?u!zmG>kgk5eMp@X5swyDyg{Q&o0W*fehYFr2p;BH{7f z5f6F7`jExKfxi9{c`MgYy2YCrQWYWVHQPm>|zHg3!0Ny%d?tN(;>wnQ&=}KU)f`hyA@K zXX-lOaVl6Nn6yWYC&1f3PEUX+rP?MN34fB%t*QCeb-__kFLJRexk6H;>{| zzI_LW=8)PVi%+lSxSazCwlPs^eC${0{7{l2Yr9juq&ptXRjtX@QZ~NlCNYcF*kyGC zCE2#*y*UiD1?L5jG|16<3XZd2bJp4F%i?#Q0qS(WJgIPyXANH#= zby|}kiRG9Nw1M4GlVz+hJxK{ZeiX=k z)_5;%AJ3Ehs09nBQ$+9^vqF=gM+qrcD_TfPzJ__wAaNbEbu5IE0|hM7yNSPQ-3~pk zZk|(Xs%5-)vg;;l6UJ8eEWQsz1@9o!tWm(d`o#NCUx%HpXn0gWf3st3T=Rj~+V$*S z$b&IW62S#p>qRir=lg!QXHDp*w(SCsxOpXMjU0EECvi=G-$hzWaz}u7kA1#no*Hqw z12-9TH>}wmkA1U-^0XlWi;JVm&z=fb)3_}0yRQ@ZDVmAe4@ij^G^wQ@iF!lOq|_%s zyzPe-$e(%SJ4)}Bf6W4Mq}v6jj3|BZeVzND!-i%q(Mj^cdYgX6P}#fTOw|smxN+Qz z;AUc_-U@L>OlOw? zp)YB>TKWpU@MTddkZ4cfM7HItLYVS^p$?Ko&-o~%Rp&rf}chhHbw8F8;O z?+5fg3JSUn>HX3$pdsA2QlA^a0)wu-V_M@;HUf08g*#pS1d-#7cd9ptw38bOWZ z6Z%2sg_w?6%Ahq`ql9|pm2=l#=Me`~Tmyn&dKf5|DXSDm!?obIQ~UT)&SUM9DT&oLVRifa*hhCl7pvK*F@SYdxRIH2oSr z-Xez>f37dH__TU#6)C=~AP42&`W(2B21J zbU1&$@5Hw()Fvdt31qKNizsrBM&};Evc_M0EX;~saG&U5Gk|R0@eAG`fbtAvkm-%7 zra1K(oQ%@(2(Q-(n7d6{=Ssw11xJ_`rQRJC)xvN4x6YSMRTg+TUrIS{NtVxjCfGoZ zf6AB!k!nb0kQCOPT&Cg6q=cxw`-X5+d?M&Z^62 zjo@@>k}Aq;GqX(8JCP;wgzw%tF2$s8>0vGR)DTvdd*dH3Bq^wqsD;0n z$%7__X6;X#9efn8zS+FvM8p*3C*AhF=H{{Ne*i^Xev6@)!1f%@5;VA|t1KJcB-M*G zOe2M7ieE_v-rbU5#1TlD@@(Bcvk}ga+BlZXe5nxmoc|dzS!pMT^WqQ@VXp9cfB3=- z{-JMI`yslP+`=?8mPQG@9(Yqv=1yome;BdMvcPbM*F53-OjOv^#3u?AXRl}=GqBHL zewuQNB?}y<=a>6skc-bj(Fp@-qwaCqesspynIc~wN?oTYl~S=0FOb3s#c4b)-72^p z=llVl7~?DQH%z2a)`|MIG051{f3Z^#sT|31?e(bwc}DRoE7d%`e=v{I8mHAYpkF-Stv0KPymQ zKx?Swa}t#jzkVl+lZAz-^#WhlEaKE5;Sd|?E>#zLOIIvyB9PKc=-YvNe+6Nj7fJM} zJE{9AyX0HSY9^U3oGdJU^Qh?G1QXXh>~(r_-?dIJOehM#FJcnLlnr2pG3$I2o}$o4 zDfGAAj1?nuypY-GimEsqv1<1(fW9DvvSO1XRpiKHY$dFz?Y>rGcvbf4)vfT%cRqJJ zuyT7;Zkng^{Gul6lu?56e@A)jN?qwUeb&89+7b@R`yH+>lVAGj{G;i@zh!za@Ip5@ z32f2s&sBv3+*;7HhiR!^&oJc|GT{~(T{;E$Vc_TuU?U&};1da3vx@LkBAS=9`D`iQHU&eqC=1#U8oT=E_s@DaOO5o_0@Q3_GICH}@+_=*3k-`zF;j8(YF? zKX@#vu?6Mm-xVn72EzFYJCX<-SX6#pW*qyfg4v2n==i0rtXv{1{ankRWWd?5;%x?Z z>S;cynRNo>Gn^N5f1vFRW?0#t*3rV(@*|7q!Xy#OjOx?Y9DcP#qm@#s2g#D#VfV7; zomP&X`&6a6&+!8~(Q#ip5qL)N{%jfIJK*iL8!D?PH(DzeN&Zle|J@_ZlggoT-H0!s z2w(sEw}aq>#sMCKbB&$GRnd?r%Y74gi=fkK*P#uywmQC)e~)t}?FwCK>4qJq%^rEq z8X5o{mw_l`bCwo&-L<{TDtdFg<9UXng`!-ew@%0eyfH(rl+O;|SgP{F6Z{m1>q#qO z2>>U?WAVQV;yKbX{`oQfxsfz;NAKG-^#ypMmA!zRrS<|OAh|KS`oWm{GwdVo%Q6#& zM>2s&7j|VR<0SFWtAQ((O*(M;h%8*OTzA)D{@^Fz>ze9XYu&WypMo`u10^FJs{aRE zBM{jNm*Q#x5&}0fmvOQI6cIT#I0`RJWo~D5XfhxJ6 z`R`iyu32m5d-t<@Kl}aG(9@`Eu}fLP%)#<7D4ZS0!6gikQIXRJasjxwcsRJYxUuNz zwIOhO@PFi3^txbY7YGb0{F{c1GZ+Mazn95^;P;9uFeu=et33e70|4?10|kV+xB%Q- zTtfd*ggFZXWI=8aOMnUo;28`GcEO^TfjN3QL#%D!_i_I72w<{c1^|VG1lWF=1Ed_l z&JYU_6rciv+khSJBU*s$0a`E%2pI19hYKcA8#vrin3L1p-JJvE;KBiOwiai9W&^lG z;5GnFunXAP4QvVcSu#KsFUU-1BE!bf)!=|*0~p9{Ufsm!vTC;LfiuU`~a{M0PJC5!}&9Swx=V1_!kKLDZa14 z$J-I+2(Y>@1MCB_0^k2&dAoqzzyP?jE7-^Tci_(x77z%qgjm1<=3r|G6zd=F_hPWs zU+4SzJ3~AGMqKyw0|K~ye*XJpa?dbJ7}VbLAN5}&=9GRWr=@1V`gh6y1*N579sqB4 zZe9R8w-7%U0LaV73lI>0;0E~o=|~*}`8$!{j1{3)Fo4is`QA6`KRLVoO#-IBH-s7R zr!Q65J$1nVrhk}j%*DrLasLJU|K|HIlm8pde|q_UGX38f$-COy|H7I6QurSnwB+-LHcb)Y|@kzm0^r$U{89mg*3= zh0R}#`Ae?zbJy%4P_R181@iND0k8wPxc-IRFPMeh{SD%BPs?8r_3@Hb-fLZ=r zG;ThA0La-HDrS>!0v{FGTP+x%qE$ZvH=ke-Pk3x&MNGjs16LLcarlcoX;+@|!y@-oG$A zF#O-iasPq*;gIX!&_5X8zs%tOAb(oH9e>M$@4wLhl*RKW^hX}R|G|E1$9=f_g#%kV zgX}FKE{^sf&wm2m_t)|MW`_Q|X0G4lzefTJ{t5hs2>gwI{7>S*-+@1z3H=NCjS%;7 zTwEO-e!UC-owXp>Zy+4(@mFjApsIzd^SxjAuj}NV$NxG1dO?7}9$*WsxoMb%NU-g@ z;Fj|$smJc@Ya?Qx=-2d8nAyGOoLgNlanTc*E7JqNI-g1<4s_wqugEc-NPeci@!oE% zMGtFwtKE}3AD)`>C>D4e9vG0&JHqeX+WQ(~|X?t9=( zo}7Ln%o@F;eip}y<+BsbQ{Zj5#2s@n<+V_z&F#{ELH>l?kc<-fgz)1ygSYfX(zAy% z-bDqAd6P6TR*rWH5=N)m0dPClbVfc>HEeYN@Nn3Oqe6N>I&nuD#+5LP^HCRuv9BN! zkay^wwf*>{Oh(0037rBtl)>0Q+ndg<498&r(1Iq%C(xwe`!xrfHIT=sw;<$=Kon1J z2B|QAgR5$eiS#PwGcdt}{E=I?t1c$OZ{bJ+&kz)G<<&S*?F^Y^klxw_y!I+hWf3UQ zcXe}r(}NRLI2U?u%`hEVrgObV%qm;1Csok9^mVd^YL{}ge@Z>WLnM#h#5sdNGJgpX z{VpbpAV&c`v0}-8cg@%8@)>XNw&3iAw_AdLyvlLzx!?J>2HG^=vhS$zTkdb%%D(ka zhTW0?>$Y!uwiOW&upOT1+daaxLx~}t+U(^6lE`L8hcA-#84c;d9PL-0GwuEmA(?Ow zTo%>4QPZEt$1Eas^f!0|2uAxt>Ymd-vn=@<*&?}^QITYPH{r6KFxRsopt_fN(acqU zF^@nhaU9(mwnLA80!>Xa8`TR4h!<6;iI2?*;^J5 z@)Ccv-ijx5raGSP#{T)xEpLhWT3b6$mW8reQQ0S}-ie~>ThSMDj~Vf^Q%YA{pVrt4 zhE3s-Z83Y3DXN{+ahPyJLv7erzTE4`a>$p$U87f0&yz-PPI1EfjgmR>*5ovQhebXd zXl_P}B;eBa@iX-n*C;)fkf9kC7qPZsZkxhZ05$%=6oP6LQ!jLg21-6$-w(}TBBB=k zj2IrB_V@*BD6`L$df!kOF*ieTwIx-OlY_|ko>>i3T?ybCO-!>v5sqItQ0Dz3V=P2AMNBn}oL4GBkI4yw{A?o}`%8Vk+44_tMJ zs8=96zB;-^Z8F>OwH3h2?=j)X{2*GdTQChJ6UITI6-Fh3mshKhfp0LX-NBZkZL+4(Ntwdj;78 z*lCs2S7NPtx;6%Q44Sup-sLpheqZKWHW;^6o%tyTs$ZE$XWQkQ29bR(9$&%Othy!5 zde~9?Xn1*>u|qPP9N0&)%v0x$yRV|O5bJMxdSyD-qX1gaZkIwfM;we8<}xgj_Fm1; z!LgiPYenOJcA8YNDt-kJ(ENn)azv?2AZi&UW#&~Z#`x^RPHlXDkq=cHJLRlKys^?p zEC>{d?HEqHz9ItIHL?Icw2GTg*q5i!Y60*lbgN`9;t=%R|R$#szFmu|S^!x$IIxtwN zMAOb!#pJR@W+gf($A!`S)P2!#Tim*~uxI!wS^=pBkXkiTh-OVh@PXv#uc^ZRqh$|`j>iH!oXDw5_s$fFh*#XLeg_57ZH9u_}<_+q)>7Df<~+?2V8 zT|`Ic)u`pS`s;30goi-VCZB~WFOhw^q>oP|_nz`xNI{ZEAit&+#;TYF8qME!|H!~I z!hue^gn%=bP1t4EIFb%i(kB-XC|^PuDIP&v!2(tW?fH{o+G0L*_iE4fmx09TR)7jCvz2s@nm}@QR?h3`#@Ftok>su@ji#=d&r3%PxlojpLclF zhbOdu2t*=}H)jm4O-f_TvS}c|1Mlm1)rP@UP`npM2xY;#T5N8W{PVrvIQl^jPhPCh z6VHi{Pkh^D*7lQW|DH5yN1GSNLruH_dnd`FsWZbCGtD2qD*Bj?w~H6UEXqT+Z@&i- zCM-7%|3c-h63kC09F`nf@y5jc`(oxvnv7I`NoFFWtx1m9)s+%&IO;Lwo}5&-Sbp`0 z@Q{kyB&ctKRabw&XyvUr+XAHnXpW^Zf-HWRUntoyqRM12zqutm=tZR&)!?WEF=-^+ z?LdAb*L`-xnVY$9jFS2#)imcS`wFs}TQwhYFF~iIr(bbopb)^MiEiu;ac2C(#Sx-^ zhi|Ai!VenEp**hvQA30iSPTc;ykFX?>CwJM{gQ9yU{`Jx{Y05&_zPofX^0YwD*e9i zHYIMUx9J3f`CO)zvna)?Gg9D_#~>@s*w_6%m+wAfMWE$mwhIBU9?((8yl*^q9<$fm z_9ty=(&HjWy%F)Ry2`APcp9zxu)%wOsegAJ+2(OppJMVnojs)X$A)Lk>xXj~Pwt$F zzKYhu$o76o;!9$t9_Tuz#%_-|938W-VlEG5 zCx%5oUVSJRRy!G0E)+XOTCKreVojObD0v;=H}Z7W0jD0(O8%7KD|_(`t!m z&&E&|0UKf8GN3W3iEE#BcfA?gH7~=GEzU*#bCDIZ^`2x{Ad-TblGjOpB9{N^dPgIs zR_^otgp-MQHfqf&tJt0TTe&Xdw2HeN2x1kjTd_{^kcjZw4 zx3S#a!roNw(a!93$NLd~1thx17c-Nesyn;t3Af7Mh?y7&5VEAlOgjf@+yZFyH0D1A zJNKTHoLVC;S*i$8b$o(8Vrf=?2dHhMh(StUiZK7m6I{9}-QKb9 zx3T(`grm&PuV3+X#gYZDwdnL_^TX9I(pyazhTF#NNYW%!r6GJaff>&Ap?KtSdD+1v zmd}ZL-AlS6kmewNbqx-HToLpWZfr7IiQX+N6Eo9l(qcmZ8M>f46{7Lx$gz7$I&%O; zkPy94Ho?QAG|ONue!od_{b&iF&?wfGOyvQCqGzMeJtct`gB!TifNdrlZ=H9KuE)Ud z$Q?>|+2lDbS5qh>CMjv33OthNvc*o<^$9#p;>KFH$5N|*wKr#yHxL|FAh`Tmy~|t0 z(TfAt!o@&%XHq0u{Vtx^T+;jFK)w_;B8OHu&VZG86s+S^Ij=8=KbdpkdwW86FOk~Q z3b532ei%ys@dzEhu2*k!OblrEAlFX9u}zF2M)n1?MjKUGynb0T~hOYqEk42^ffZ+CMk&-;Ql>N}Du z#sT`mvmc*lIW`ZDP?3+9#;6rwMyH-cZq;!diWypeEv&KqLii-MBRaLpmaO4*udQ4Y zT80XGd>u4$s;#KHT@(&fM$E^Uw=@m7mwUu3Jh?4jilMv@8X<4i!Am?q$pP}^V72ndsbmUv@hk_8 zj>p)cFCJLaR!m21q(Ihby;|w**La3ZSE0=-lwqf|5m`~;uYkJBNP=Z$^HvU?mV-OL zV2jmTRQk^zCZ#hkMNlfrJA06^_aC;dfp+UtG(AJJaK0FR7M_akwvUTxJAEE-0iE%G z!pEf<;&i^&iF%7P^>&Y!xz|RmAzlSt#j+C5MX%pEiv1MU1mzhL!8BA?~ zMQnibJt{;k3cvNsrA0pB$-IvfUK<~OYF2WRas6cyQnCZ}f&*=y4kzYrf~}B!1d4aZOEj0%5uVeP#M~gG`d#*a6vpmzJgF zY(|S{*JTwIVe+}!TiN*m;nqX?7J*~c?XAN3^?_|N3Nj5>f$hGa{`qORs#!>mKfRxuA>>BxUdM#tJa__vx z`CKyTIJD7Zf%uwS!3z;()xuYQPZoSwgPd75%k>icGSf~`{TC~A%-hqAP2`H)T+m;1 zODNmH-sQ)rRpd|JLi**SUq*N&4l@b9^a3tlkXQzFUkbXTV{&9X+Bf&7O|PO?!gvnh z3+Wc>lzDMxLiz0bD$+yV97niqZ$x*TOhU?su!MlfVXU6=N0SQF;Ek7mYn-$IDwF`a zLt@OYk~AO^73xs)L%C|MgYwQaqzQB#iArO@vbjP2r`GMTGsU2Mhr#3%4#Ivj5As9S zS)#z#+)jqVD7GurZ#Ut3DrBuyN+lwFf|Y%5rP8rob{L$ljbTnjO)?|=*iIu86$DGSd<)p9ZNTso~|x-YqsK&x`yC3ng8+14YK&;k{<+nikHmX0kexB z-vM&vxAtbRZJa~h?42Ih@Hiv)Q7G5?^gP0d+m*XLhY2{+K6Nb6Z zD{Y!~=q5=1tDWX>YW>v68e91rGrMK_$P`6abI>)^_*V0Cm@AooCHW#M&ag0iUZSCD z$Kb72%;i-Mr=Gq&soLf%+zOLU?;_h+td44{2M9-+3lNhdmr3Xl0s>9jw z%Fa?cN2#2S-smKMDB&@riKG-ij!`a*{Hiwt!j&%+sR(q>wNY2xyiAiL6v%i#pG0Jx9S!MJdLbp9Zm+)x;vb>>)@A70Nf>sqZQwT2Fg4iIm+K zDdy%k!hXoODJzd}Z7ya{{^3fEVja_c&`ac%sM79R{pVPJW4^fG7+x7Xz2NMppem)g zjkxV|l^@+HS?NMN!h7duL_OTg{6H~!RQeS=k`#k^jJLE)2gfGr{Gwi1cbE6mj73jw zU;LJ-y~6U*&UudM3&+^D`a8taQO?&rT`Am@5L0%b%z;ejPPe>Vq+7qwNL?SuFD`1Y zfqy`kaAfO$6q9tLR=`IOUb=Q$7%kv%d^-0+M>b+HHQ?=pFT~fS^mwl>?WG{dWW~(4 zLD=reenwccXKV{AJj^(d6r>7*PSRtFWXik{np%HqtSsa9U2!AEE_5%5!=r5{0%k(? z1XmTBB{S{tf>D|AyE3y=BqPEaa_jfSV+(@J`A2+z8qIU42oK5XY`sf7^gvF83>T?q~?jh%!2dg?GDgrfC?DtU`HqSm2X&!)bW>ykO2 zzZ#!^FtIuNy!;jZ)kU4>3}#k%gU6q@$ny%3eXXPw=e&lRt95oTY*B!>Mfq0cNAeOm zkVTv&KvtoS&;KdD{scpx%lkMo_YW)w=gB$oT|=uPkGED`n98H+)TQUz05&i+IDN#k zSIym+-DIxg2&cG<9KzQJ$4TK|f`V}F7{DukYc5nSm2&xgYdoNji7ctN>RV}U2`mM6 zCK!CD2(nlF>(LTr9_u_y-e2e&#wz8Gis~S`cOBVxwtb(9DjN$E)boO0^`ijoF8Lc#b zBI_*kTWc(#~E zGL)>mW)ES;T%<_xPm3Ivb0UKJO;!oG8rpAE7(4_rq_H?3nHK6~hos!qm;1ec9Q;_T z%3AJ^pO;bJh@Sy^|s@X315qv z&3Hc~EoTVUhkr8|fmghr==z3a$tUdp=<^IJ%C)c=NR0*WlrG&BXkqEl7Px0JyWZDU z+F0tfs!5Z+!nivW(6jaAlXGQ%Dc>B+6+pVj<_lN*!`!G$5`!O9XMlJ%BEIH?OY?<;oWvNc#l&i|j#J5hnzof$2$q4T zdngO-moC{FZG4kWr?}7*?1Fk>>hxf*9>E{s@+O{b68}j7#RTk@thX+E2xb0RN1C9? zu@OX}2_bw|B&^SBFm@qJ^h160)Y0aL>(Hb*g}BZXHyypz6qaGEWi`J}3DZd_iE*dx z;N|jZ@w2=Kbwl1^n+=tJiTm~mSXIY}(lQiQ!KF-&w@A5`$3aB6%k7>v?<*b;F4{f0 zK|kOowp2T0WIeZHjmcfnH3MaZ8EHT9ZQafP9IVuu-pId?A^eBN+k~l+IXd}yzD#- zCo?VOYvQp-3cS_uF`{oE@;c5GMG|JXD1hLI#n<(_kGZx~-?j#||6ufr zC*DNeyOqm6%MlonkCj?fY^r`x2ilNI$yN>i+Mu#GqMleOl^<+*+wL5SPValbuvEyz z=k=zD6}H_%8cxrD8}_AO@~KRy`~*Q}`pBg?J}>_h^2lxUPjoT@HLkPImz(na96y*n z%BgsxIhpvGF-Ns^{P4;9w+r!{L1M-i0d&Pvy}1n>bQr7YEflq=5Ibypg1G0!tY38Y zDI3coZjXV@uDiCsGkx}JzF3(*{@P~PZN!Q?lf~KW7t>MB8U>8UaoxM ztA}Z2P1xmSHqP54Uqkvv^iYr@8IA@XWs;}js1ZCmd{p;E;3CZ_-c@)q!kbI#kY}-YYS?)8tX1 z5Bk;905f)-Fa4|r!_v8w=P|+J%qg#J>qdyfX*nGS*tiN;9J~8iBwYMHhT77R%9#~Q z2$W^-N;B1hLmuUCb?9vM9IdF5SqXjZ9jVlEGWIWje{8YrB_5*;T8co{bY2xQQ-4G< zXX}|CHw*FF$x5Po>FqRL5v?r zTPA@%RA-!j>v+?kfFVn{mXl*#&8%xB6BkB0*RvKX zUKeflPSv@e-66b#*YB(*KP!~KK^E0mf*)G$M?b!Q z;c;=;D;XK~WzKD5h~8;M98YCgy2rX?B7PDNcA_dY)r4>Bp**^HI+<&0K0{qe&3Jso zC9{CMZhM4uW%E9gh?UCbHEmkxNkkUP`he>7Mo?N#%w6@_fv#8i;~JLNJvy!OMG4C} zR$H_@8k;Sj&+=)0w5{lzy`g+D8P2JHLm$=KcwTTV<9hRejMU=@Dziyc^bGGOM1E|^d6dvrWJnYzg$=`9!Mf@@|~gxNa9G&Kp1OO zX)c&bu}p^=az9EsQxFe%H_>8$E6I}T`j$Y2CeOufJsffFn;Sx&(vh&1|Kv()Rk8#T zq9^o&NZ)ZmVo9gf)^ouCAeE+S@wYCCXsTv;R>m8i1=ww5KU?=wq^(5_Fs^)uxybq; z1*rn{a!nh48>OHFpBBzAC*&HH<%d*6o_QuVkz`$O+efB4GwwF){dc zvKC4wS219{C_b_e!xdv3SC>*|X!~xLJ2f%Q|&~^p6Zz;dMn0sTj9-omb;t|%1FSQ-5lJ8Dq8k&V(&uB zvRu*f?4*bR*jnh6FT$LE#6UOhoO?ieH%CAPWUQA1<>}^*!ToZ)qdLM4v57(K<@P_%>^qF*yQmM3No8g6n|@f%0A*puCE(Y6W5;- zfR=^uWlG|J?;#IH3ERyuB_!D7{E9-99Y!R07!1**;?fiR&ZFw$8X~YhSy(fB<&QkH z6BD^@l}~u^9Euo|u99QD>hiMO|1S8DrjFxN&Q`lHkW6iMeXG0k`V*{`ellV4)b5~u zbE~$WE$cLbNw(#G1fkv{guErW0LdUX37HWSXhrZ&UXn#YNK7Iv3`4l7vFI|kgir1) zSwhUFmz5TjB-p$~S%I{-cd@)U`2_iF6r`I|Ij^X;y4+MuxmOs4M)NV_a2)XyBFGeT zCgZLir3spV2A#|l8)!^P?ZIn^J)>w)=Xy^I&s7_$?#oYqIccx>l9<3ro4}H=m_gw( z_cchMpw^%VsBj@skGi}r18=c&yYn=}dgVH*c;-03HAX9GDoKZT2f%JF6%KTZ%S`K@ zF^G!iJYxX*B63Z#qIxWtu0!UW8a{3lu_0C4$7{8DPWi-Y&|T9}h`p^;_kByoaO0rf zG*u0$;CC2*+Ia&K1dwc1!QZH5sGaJw&)a+UKlM|v^B@UybvRg)(+~ZQU-Wch+Hv+0 ztZ6OvfYwtdOf!}&OQB|ANf#0%jqlduR*{6$=1`{P%aw~xnN^|2_&tS;sE;5y8b8%F zUc0K}a@V*fC#8jnd5;=p`%u1ucE$GNtgN-R2?qs#tIo#L_6hEwgGTA=ET>DLVO~Jc&QNRHN%3Wwd7k+7-**3C6vpCy7&wWl;y}&U z1V93>t-gKA^E<~m9v@@QN|(@AAkqv`INA~BEJ+(KWSn~9xJ5)b)%}ds$BusEvze*+ z7+SA?WL5t&TIbUI9}%mShawi_I!*;6cM8^PfK&{55QfAqPkQ1VPFpNRBPak_v=PgU z4%_8*6bj~s>}taFGrMtY&_(Y)1L;>mnB40XT-Z6 z;h|jjXQR1Aj*9ZDRbmrfBtG=fU9)Y6esQ}8u6O0EWQ!YXdF@@@%g5uRT(l*+ftinU z%)Wi-(l+t?#NNJK~${!`wGstpTlpQo*7E=En}narCA>)r*pV%im zMEj#pt_$m{PS-bw!N#bM$)Iti0l#O# zdrN5jmi8+l$-u&;@?(R--2nm`1!QI_GI9&EVl70U7 zs_reSV10A=m}9JNC`px68HCO3O@I>ib}kGojLf_MQF(c37FGZ=GaDl_Gb;imr5eb^ z2Kb+I1WFB{lQYQPj`trLqE0|#m-jOt7M3pWasKlNpf;reu<-D3(f@4@5Vi$6 zflQ6<0P@BzmO$J0h^EFi09AWa5YWZ*e_T-WTe`S7@G>#EySprhi|qwVl1Yo%esp z9Asx^{#O}ht`1D5E<{+w9=T>u=+++1wjoB*IB0O(G1B z;NL=)zmDH)@bz}EcL12bmjUzznFHVdAb2|)y8!_%POd;-?|%yZmk?N30A?Ul7k~-S z0%V8q$NT#+(EMNge*aD&4}dQ7`}nZ{nE(3u@00%fgqhjf*?9g@|NDxWG*v~FmN!1ey%`@epaj6wg-gZYoGw4J&AyT!lqeQ(r% za(4Uo5K#YnLudg1>rBD^eRP2U>OYgN$IQWO`u>aM|MR^6ZSwzb%>VN8|2paaHzNsG z8=Jr7)c;cW|B)Npf^0nht?@p(t}gFuAaDP^40iulRTKEH-IWKLfn06>f3H;9#rS<4 zgzYTeN1B0!ospUSU*{la36KZSObO&-YWc6R`PaGnUkhggvI8pFJA?ju#k^ZFGyfmi z`<9tnzrRMD-)Hk*B4g+Gm2>&~BL8CG`%?XH9^!VU_GW)=A1enZz}U&j*c0LX^52OA z;LY;Bre;8ozo#3(#As*lfAVeuc(2(PU~cb(@Yh9iasZfw|2p~?aRHb_{}4BTN$d~t z0GP!8OI*wVCW$}90$`H-L#zNMsXxR9V3Phr>;NX2KlC15_78CanB@M@doJ?-CGPil zN`L4*p7I}hkEim7-s7qMq4#)df9O4e#vgi*p!tX1tJV51@x057fB#GGtIT9<<6!yc zgy&t`zWBCt!cMAFkzBk9}ANbw@>wn;T!8ZRz*7xje zjBQQK{&?qnugK=Ff6@J8@?N&>KYIACVE4zvdwO=R|B$}d;_%1Wd!`P?PA(v08#9pk zpBg#d06Rd$zq4?7f0@|-=^fjxBv28Ft6{q0iIrwOAR(iw)ph2E?ZfHn0xyTK9lTyM@Tk@(gs$b`B{XRx6Ek(Oo=EOwGUp< z%wj;562<3Zd!%w(-H+ zF?x|{3YlcG{5=l{N$z#18$+YRD`?+|zD5VixCQNAP=vXliSrE;im}7iX{;0?Kj)RX z9cQ9@n@D1aVyns*kgDJ!42u?~w4dYZJ(I&~S!G9BCLZHyl_pz)lzw-C{A*>p0m0oMA z!@#JS51hj&_>NBNZpw^!*DlGD#_y3kP<)l%6UwU&np#Zeqv-om|Bc{a2cfIG>0Eii z_{?iYuc=7|kbhu|Zeu-^hG3z-E94l(J6^@r>CBS?o06J>vvn5l!(`AZm>h2jpPP*c zH|dNQaldzT#pUScg8D(kbANqjU$bRr>KBsv#ts%@XrtFJmo&egU*E>!bdT>dxI56* zZiOS*&Fl68G1_yB$ENT`ar3U0WutXJQG~OL!^?G)Qhyyi&01v4?uLX=adBc%30%Fl zJc?0g!uuw16KR_r4AU2AKBtN}7k(jI>Y5a^TjZ&i&{z*?Cw;*BrPb=aM`~cOqIh2>dWFlo0Yi?>xmfQ0qmEF|99UqQI zyu}%CCx4Eje*6n=(Lc5hqFePOtyET=sc#+g@Elz_jj!KKZEfK*f06#{tq*7IuJ{AX z;9`-qkRoIwh(@}!TbOe>(ob;LKj?KCmwPIMP!5B3VPn^)jnMczywEC$QHScBAZckV zrU*n}s?HEa`OANn+lS4URNqf1mG4tAzJ-fJtAC>K{DKs|ozNBef=6)`v9nr(qeoS# ze2^moEL?L-+#z>W$5BWk0xo(ff>ma^IaiYc9U!S5>ADMm0>M#1}<-L3z z=N`0l9C5XM`Nz%y8AY)8j3c+mgA1koB{723-~nlLqLQ><7vSovi`>5v(Mjl<`n(Kd zDSt zi6$Mb1YZFNl|L6dDQNac8h_qG!rPNRfT8$ROdZ`nM3xhVUS3c0ivL=^6p>M{2UQ8H zrc-g9w0*EmkoVN{oZ3aTWN+3g;5J(&RP_mOL4o(%DftE8`ZHz(?81uKVtj_&{eM<} z9x@M%tZm>Jyu0K!-ig`_Tt|5((S`V#Bn-hQehuAm(QQ`g3QyNU zZ{Sji^<}5_1$qq~BpghWfRl6VcYkX0)s>Y-A08w?gQXcQC8zLmyJ2LXJta+zj^q?h z)<#slX!7@CE5vbpc;Ck=XZ$SNqvb%lr&;Q4`y`-qnuyM%Q&SRKPyzdw&tkukFO&i= zIUK;kc=^^wB71)6%6|-V#c|1fl7Cf>^(TDh5+QkZn=0>^7d>bV3cfY!Im_{ z!Bk85S*dyL;X&>bFpWN7)qk@f0CZ(RC~C_(j%PP*Q!lR1y0(-bq_rQqS@-=Q%qT{6dgBgxDhE*o7(IjM@VeZ}e>7#eGK7U9Rh8!qf>?}yI zA5~GdUzNh#uR}rG2`QwOR^92fmaBfV9O^MOUfz|eI{LcJWfAmpIcOMmve)W{&LXwb zq;{2TnPp*@|JHI+INm`-xf)`v0HU7?wMJ#(yqYnZ6$d-GUKYr%>s#`C=oFazpymXL z!iIunluMyEfLjtjH-9?VaML1lf*k4#5j<*v;5sIlYZgf-zgN?A+V$E)x_-JGju1)=k`9b+ ze};j=!CPMBl;JM-pKQ9pbDvGM#Ul?~mT?jEn)Mu87AyqjU4I?D&b9K8ZQVP32q(W6 z-||%PB2k&|=UT@}Cb%v4jHORu$KLIS4<6KHKmWDFYgM6?MfwNIZ$-jm>Fm&%$4S*P!^eTRZ~Fz^awt8+)H9SH6p2(j{T;d{EJ3|ZM#o<0 zkGYD}X9CY#`z8x;-isRXb4%vA`VDb=l&DksW3Ca>BEt@vTINNYB{wp4);Po?u8mid zU{uCiUcYM^26?l7r^o#Sgs&E5Q&$jk22?DqyTxJ{o;Y$(({$KTc2^~|P#k%B>+miG zXQZ;pw|^LOAvycSdGv{tJ(U-rX2nTDn)sJj`T`+gV7HK%sw>y9&O~L*<74(>%FYcH^m=_Y;NfBn7)M}(#Y zG8Y?FOoeVG3*=NQ7W`dW4xt6BETr<)#?=H|7V5(I~gk|Fm$5HT8@zMH#$Xq&Z@wQP-0f50^bJbZ1}} zR$zaDc8dg&BFaULOP08R8Slo*T2kU5Ev&gpek#8V0VkS7Wo={2<>TW#YRnk^2MV_r zb`DlpS>Mhxy4#eHU61no7P`?T;W^Ztt$$)Ln1!3g(iAHwg%=0pAPI7nZ|y&2nMd&s zOiN*e&u(_4u#K0zKrZKLN~W69nCD`~s>vaS@9w9Jz4#r;YspX~{P*b7MjFmqkTxn4=#vY|$*>z4imu?J=@YxaCH-FS# zG>R$*hsL_6m3-){?;!AB-E~V3o!K27-V&UM-L9ZoZIyml|aIJ zI3TZ&yZn7ff5{|JEIE&)e}~4=5YfSBG_~Q0s)v5dbHJNadDwq-UP|$Ei~((2X!bfT ziNfjN{IOx{XL@?&%GJ60$y3<9+LdkR)DrXA60ZgGunqe`pS+X2u(NA|5&s8+ z+Danx+Q!jDjM!xrDZ&+@2;G2Ief?$+4cg$a@}EfkP^V;JQAok7ynmOHoWaD(V;isT zeY2XZ(-Mwmh1J_Jc?tcZ6Ia^c05H*)TZ1i0>f zZJ}BB4w_SWAx2FYVX-0HPN+!MzOY6N3Y9lD0?%X7B?Jl3``C-06D*e!WtdA8#uc+0 z27W?TRz9i(AptD9|^1Kr&@+|Ppz>T)>mz0mkk^x$8oqnpr?v@jm%a1@9~m2zDg`j zY9G>4ki@*KSiD)ahL+gL)=Lwlp6F{f0f%sI^U4Cr2}ysnq<_(oCGP~-_*-(-?u8*g zo^u$Sk(Pk3imFew!&e(Z_md?NEV#Hbxtr{A$z^S>Sxs=z29CLpF1An?c?lDbrFQ9z zix=Dscnlchf7~G!yEC9_N1<^zw;i%S z+DXZ3C?{8yO<-_s(giHc12qGPY10tR%n5;KeQ0=_VVCp7mQh@H-6t?Hc?3f>#G}Kq zg`-pLnP997t_$atJ$s6OQz^a)5ev)GgYCd$K4@PCC&NfJ{r2Ta_@( z-MM#rl^d&CM|_;3>rc(SZB3QlAx3`(^8hl*4h{?kxq<}XjPmT$9S>J1D&i@tdT&r; zBVJJxkq9l0xJ{R=Mp?2OhSCgApl3z7^*-0D1AipT(&}3Jed<|r_$3^prh#m{Us+7A zz;aIlU`*n&?)KnqR&kr5$alEL>Fdu$QPFY_qdste7S62mJ1`GP= zc7Lv>GA!cl{S~ZC$zc<2US25F`Ww=tde0^QgG#XdxJxv4g$lRCV|Uxm>bl7#wlXb)57SQ{CXLd+B**CzVm?5@*)q zAdYWDG>@_~0so?&r1(utxYnWifHuTc*MA7hQzC9W@7GnLF@=Vju$trg`J2y5uqtbN z9nti}>=;%q@^msL>jd4$T)#FfW+f~rRCmm6T+_s$e^oYLFlHdn_JCzB1VnU3nfiib zg1O)EUPJEnHA-Gpmr%}jGZ6E!D<7%<`oIO>wT;f8q<8na{_R(z^ZxwDSuwuN>3^$C zP*{U&<-XG_*bBoQd2k3hsd@J`3~KBK*zfuB(=N#6^Ga?6-H8dfa3PGTARDw8JZgO_ zs8z=jv~MT)Z+3y=xI!bL5Q1FheM!^%dhvsosc2wtlyvAh`E?tZnMq*bi{cT$FW}zD zt^oE-Vl5RTm@B3OMDE<7Cc4kFvwuq)Wv#@arahY3WRWVk-g6 zn~{y=r*1RVZ}=RS-ks?DDvO#1;{-e1Fj+tisGCxEVsKyV1$977e=9JHL;SPZbo~oy zJ5NyegeIPlb=cRfXr0(E z65E|5B`Lw1x58p?yCm$dZgL_X%*xet>03h^@pEaHOv>5nRRYoR>C znuR}Kunn2f2(L&M^%a<&On3X9?P>PPGc5PY9A|=mm{1I!<{NSme;o|{iY6`ohW%b2-@JHz{5S_P z(YaFtxZmfWBIc!;+P7TsA7<3a?Cnnq0KDo!N`sTwC*K~>r1k3sF@GGnDDKEo22V&E zQ{N`c@9*%7x>jd`7`IuIGQb26bDFeH)0}!s(rPncAheaZJ9Tdko6N0x5c z?n6@I^rq~ik$H-}8k*0%(s>>dH5a=QeQM2rJy?af{nVr7TXiQFX%@9H=bi4|=O{4P zKA~K-H%U&ZAEodh*5iT(*9C?o%St`ppQIw~7jU0-e z7h6052=6c-cT;P2&35XBO*u5afi2C1bXfO!LF?@_FaIPZsGsNz_lG)IqBo35t%C;x zHSM4jsm9$(pjj(vYXF}ad%kk%k`86SXhq7W7gHP5^3`Q7g@4?(;ng=3mks}~_|N<% z;8;(IG{BRrnuiKf-L|+k=?o_~!$0`CR(!xndk*T$;dB9)B}0_iab^B}h1nf{g_L0V9t& z?eOGFu%(+X4>UENWB|5e6RbIS1yomX!HjeccPkk zrZeb9d4C7mq?-+2z?bmBW+105QT9bdC5^iX!2!|{BP_-jcsT1&(h+zc-P6A%AtTP| znnN@l+(RS6`T-?qIr61zQGd{JB5mOb5iG!|1CseTZIW8yzIwDzq!()Wisl&| z1%KBr&nJ;}xN11*Pz{Qe?{|#G?cXtySy);1#n%30vnUs}hpbT!`MG#D{uttOubWGo zNsDWymaByq%CRea;Ay6bI>cU(xte5uSrU7<_CRV6jh-r0-%niw zsbR{P+$v3NIz5+wCHO-Z-O=w!2sJ}hpMMzCN`kQ!O&U;`)Cc=U2%rQ}t(|7eh*pWL z=&4m15I#Znr&^h!f<6hT;!({%!D5IEGiflYQNIs2xh*XsnaA2a7H-8bqDAOKJCYo8A;aapTrbQ@+) z7GDFsVJlr_Rd}0!i}tQ-#Xj(XD1T9rU=`2?ry`&LlGt?8{7!&DX#YE9#Z zH7Jl}HrSC)N#CyoPdnz6YW1f=Vw`G=Agv}d;yL!y+c{etiPF<)qdAj_Ro6F_muDe9 zubB|CWV@AXzh8lzTro%3Q2pk9l8L~GJZ%V_JN8vR7S2zmVF9a(b$_%_%rJbu&>ema zz5Tu`OCoS})X=vaakkHYe4m7I(eClr&jSz23VWIS(i@JaI)tKfBcQsMkh6|sG(3#h zb7&UiCj%4>X6=Vm`!lLbZ|r*g26a8R&6YffMsqzll;07pc~XIkL{T8?Ccux4Sbr_s z6c@`n0SXM_V(;f>Ie&{Iw_zillars1XOu4HdSmp68i{WOLeGN(=+fN!Z4cPSB04s2)YHyjQtCn`PRAdKNN|PtPMw&9yUfVTs(kDnD^YRD6S{q=R%gc zR40~^SXU!}i&vkwW(r$9#CvI1>9xL)ki76fwN)z;OhY-{1p9#JA{yg`o4NiA_gEsR z)s3DFkuncF
=m^Y*90#o0T;zIdTX&wh9XJWFBz+x{^)Xz7P3t}A#U2$CNs2{81 zTqB{CHTSvkS%`2}zYFz1;Jok#`Y_n)7;J16O~ga}Be^Ty-H#tOLWd@12DP6<6dRUG z{Xc>CvvX^(bnHiS1k#&*2RG{m2Lu#%ZQYHJKVp zWb$88yH7pCiM7$jVXTO z>6799L4T*nF&TUz^ZQ{AHi#?YLyz*Mri~?+)+yaz(@YgZ)&oAUHO@gSOazIF3#++P zQ7hlZPu8IMM==%sviMFx58iy6`DySzW*X1=zb*9%e|4xBdUbUuA|q^Yo(bf;SJi%n z_%I_@N1|mc(x@VXoDmK|RNhJ0u;pa@Q2_iCMt|RKWD-C=G%o&g3h=8-xzIdJR^LHH ztv6G>v&&=n1fNxXLTxS`fyli#l+o*>Cq3NmMc0zinlqK!bg8hQA-37CB9rO{#7~FM z(S6U~XUj%1Ec`;)Ds6_rTzhhO4Z(E&*F(%*&zR`c;rZ*}tootX-q zrp;egY@J{-;~q|N#{5S_5`s%6T4uynV}H|^X@c16L*NPH_%}w?AfsE=5`JY=dnV7h zA(BKFN8^6$p@~&EZ+==*%(v~vW`UefPx64Z+v~1vFWvgl>e6l8CfEKQcZ1u_1ls^L zn9czkBi^$O564G8?LnsX+PWE)0?&^Bj%7%s(J!gWoDNnDF8u+;dRaYGi5qegr&{k;6 z>IT2(^D#%WZEAYgzFg^Ye84&~yMO5!@`U>RX)ne+g92C8jZ^;H56V&x;IZ;j`8v0V zRbol0T9@!d_-1%emRveLwd(R+(C-|>`=O3n59j!Ct}P563<}rE!-dM^^vZx^UCbCP z*-&}YMV`E(#O=H{?A#}uv?1S+`CL^TkIMmzfmAShejp;CjPCfeCwfRntw?%9Vq$i+qFvB zUE+uzD{_}uWuU%s)tsiz@qqo??aAa;#wz_zt}R2LF7}plmH4g}w7}O{fT=fs9(%o5 zg#R2rEgzRX7oLBe9L0jD;pCx8&|M{p-5M#FD$@NKn_#fIlV)eB;*hVaa`uXG{&7)> zHXqA&j&E+`23qI#nSa(#JfLondt`Nm8|^_!M^;GmR!bFnINq&bvzNKpn*#yY0Ayy= zYL8|2bjn9hbO;ft)i%d%+oQA?>Pzkrep(pIG0z$_!z(Oaf%8I-ZzT+afEmPCDop)s za1=Kk8zWaJHg!5k?7f6jRaLyody<_v3AO*dUg;>csHgHi;D0sX_CkY!#eF+h^~=$& zT||G0G&uy5aaOa0qfB^22_RVBRV+1@J$VibWpH|J>ngsmn4`Y6#-*pN`Oze!bzUr7 z(S0d>zAz5~D>#%k->l<%K|Tj<7#nLsf=){rR-F3f%-8H?X)ES64Wvr9LRBL8!UyRW zk1C6gk#*U!Zh!UubiCgqhFpfUROGvEf2}1Nb*-{yKlNZv_J2v^td}UH-CRG&X`W-5 z1SKFw&(}D1u2>Q2VP1PviBl!Sk?(!Q2TW^EpnxTtAQK?-oZhyFqRLU z{_BUrRB2PY#86k&C6G3`Wz5@I=l2MiP`@WI%s7sR2i*=6pSdoCwrvqSm`MO07~Hym zlTqOS-BqpuqVYrODrvZXT%c9Nw>(SLMfVm@KI)~a8R$f(Eg0d;}>S1T3)_XOrDsH5Hi*# z5o$0|SVoP>>h{7hq;8;1-53+E5tf7gK1yFjvt-@#8TUrGfy?`!E~tVRlu+Y`L2NYg|o_YhniBltb`Y;K87HzNo}%$IstCbM;i^3%etJ9dEFPIx7DC zuQdm9NlIJTeSdSwi_$SORE(Q;8RyiWD;BPs_E($ctRc_UrAD`d3d}brg zN)D8#UY)wJF@+@-6-L)t;HDhlem?MRnSX>ijAnb=l&&gn@=%wxPG|A%3oB7rvDw)u z`ABWGfqEE$>k-9>)j?H~oLm3(yM(i>k@zcxcE^nM{Z~logp@(=V;vTva1HMZ6H2%l znnB7?_l4t@gXv=#diQ5SLt7Hk%XxSB!jC;#86{=+7V!Y(Q;#MO*3krAIp~K8Gk-d{ zkI|u6Bu7!+e#m0YU>`EQP9Hs1YiHmC3b*Eu!#{XVijAZf4(bN6kNoTs?8@6t53@*N z0pFb1V#JgN-BNCZoJM3*nuvEYPhz6!2RuUg*A@#40L6mlrM3zdUI$mdN(mvwERpu9O@DlKi)Qz*fh%&VXwF%MqWJ-)#_D%*+_8p#j*g%H zOG$fkm}RryG6-ruRk2}E0KP-tdi-o8(>M&8xuBoZVAfGEzU8|8*w9a4Dycj5fzIg3 z>=rw8m8;h}gtc^dIH^bbct(O~ymyTzQtiTXY{)t+r=ucHr1>+{O!iG`i+{!R-B~EZ z`YZYkxDJela;fo4iV!j>XWv1_6b2=A)4nrG3@>?v+>c~U%Q@mP<>`)I+n{`O$|{@~ zd=TvXU0s907-CBBcqE!lLEv_9m~0FR8y3qXRg>XKcX4Or>7(kk{`q5Z6ql{X7S!A; zy{b>jyDD652--^VBq`Sz;TczRvtum*^+Eg}a#+RfA7C^ToWU zG%+dBD^L)bShV;Up2LXzuFbJq+^TvJO^^i;It=5z<}p@G2ae6qIh!nlGYBU0(fj`WdoJ z_r$Aj1X?NHLwVXSOn=M6rgmCCbbE^|l71BvwoH(73}=XMg4qw%$kIgJgfy5&7jwm% zZMxb(Z81FC##h(Nn{Wzb~ z#3T>lQ#M+vp2B^nF9tmmCNRFvC8#BejDsPYjJTn!0u#P3l2}4uu|xDc5RXifeOe(_$f~VVO%=QfvpToN)4{~%)H?nxoGAbu#g?kl8Eai0c8>#caJgaV zB|8?W>o%?8hgn3`nrObmR8iXY+7BgCDdid!Q0_Wq%)`bmln6 zOF1H%>L`eBLuV5=?XB97bqP5nonas>(fQ~*bALZQJ!wBQvGhg<OtD)iJ7+;6ddC+j9_F+pT}&#wR&wU zKY1YER8TlPIS=(pt0 zdj}_UdMInkhf?#N?p0|UQj)a^RsgLc>`RvQO}Bc%rVza|KKbgVt=!( ziuR9m=(*HLUEMxw&Cx6-79BmRX4gdyF$3GJ%jseCUojL0#~Zm&lFK0zx0?nTw0U(s zn+8j;)okD#w{ff60?r+6IDnOxrE(^{L9}KY0JNM+ytPIwJ>Y6Z8m6HFaoZc^>spg) zs-#oFwnn{n4YopcxNuz>J)Z#1kbl+Bq%~fV1qinOF5F!{)Hq=`StMNMBMAI@U82*kGXz~6OuF1EPuK*xVYh6 zv;OO?0qYgSM&5g}6XZ231vRDFg*L&Go3_UtIO*j6Q@XL)rsO&Njn+X?V{*4y2JP=CXy^*nYi`i(wGmCAv9Gul>(LR$|d-4T1!h^*&S(G*>> z3-C1>NRMf^8Y?05JyEL zK^!hCIGwS{*br^3mS5p#`6BoRP2EPE)Y2z-GxErJ3wcLHFtKy7o2v@l-@tnu^K7Ri zZZ-1EgeHnJr&N3QWteexz#L`O3ASKchP7qHbmY*nYb(@V@c6t1F8PFx?CEiu5yKny zmCYpuqoMSj=EO%Zet!u2Jv4jpLEH9jeYl48Upz|fU$f^!Mf;$bRr{Q1y1UVH6{_D5 z!idnB!M_!k2T3h3FRX)mdE% z-J*pMz^OELR@8a1@%39fBE~zcu&heuEHq^M|0Ky_>KNM7KjE#W2o5@}pL1An9XK2Bi5TPHs?k9&H!Pe@X#VD$kS z0ARU*Xx5iBSx1UUM>!^$`J8DMdzVL6e~E({
Ok0oS4N@c?CngX!0WRRCU<7&dk) z^TQ8?n-|+}^l+ZY+E-}#(jtZaZ^_VjZ{CF?xRIPmQvs-Xi!>-Yq?ePs7q0k5xL3c2 zE`OwcbMFZ_XQe+M?zx!q+W)Y9*b2LD2_6Q;WnQIbR^dQt1&%n`ga^&qEPV7XZyeFT zQ!Y2&7ig4V{*ac)k^X(^2TIsmyGouBuyOdYfhx_Z2P=5@Z zXmni9@>(>vTCMN2+W-#j<6)w+4lKD{;eSqOj1yYs+068K=gPGgJ`@rqk>i2Gt=5~; z*s52sDUe4NzVejl*N9?jXA~(hR%A9{#x7Y_tm4>&20g~gD#+QlBpk8k^NSIy`2j1j z$I|MTDI`zN6sHHm+MV{Cj@C|cPt{GDABc65aPS?aPeD6!Jm5bJ#1;mub`>GWI)6B~ zUt1$6W|4Qx$c42jPj~m-zLF2VB%C?6=AlFTec1~9!X$tA8^nL8V>ygRIM3EI_0mX# z#up)9IH_${keEva$K3>&nW;>FmQJOj6@v?d9#qGeWyAD{emW&%P;nK_ysti&APuT1 zB8|0<63Nc!QsXe7OJ1$W?3;pz8-HMYMP*v0UU>Sg_v-7Q!~H=UOC7scTYn{d2eaub z|7B&5CJ3>eg1Ed@8@stvj4FnS37I~ZGoIQixZ@CugHCzYF2xo6IQ@LtFU{U?(*^?; zPY8#@oCxEY9H=P?(orAPCKdYPgq;De=cUU3R?aIn<}Fb%`~J_Di-5C&Gk=0~+Pe8S z;SyeJVsUJlEAQ5w1|p8pDOR87U2iMKt6Akv=3m`eIV92Wun$CTEx;}Wx5A1~#;3-y zAk#5_f4R-pG~DXE;)vWbKurL!bbVxPCFMTq}TZ!*V~-Z)PINU;R}LAhv-}= z{tPS!26`Nh)V^cvr@TqDR_*Art%|kE8=;ul6M|n-kaR&$ZR={cYayVSBmcvgxV!0A zAlgM9yNlNg=y!@R-(j6=u9O^NJ)OJLm}?bA&X;y~GgJfTN?h#I6Y%~D?D%qUH4)H| z8+3yCCyHDy&qBjwMt}95U$2a-p#;SRPn#d3CsAvRps!)d7fM43Kcz@`1V{PG8_8;e z)2LyK@G}YQw+!oC6^%|;@R8!yVcst{t&`_VSBT<55ya^x+XR2JXn#Jq$*xa9FPO-I zYq_q3np@BNf!Nw?55Bkg8K970r-QS$3m{NA&y?R1xw11*bl(`pjw1D*zHIbED1MvCY}0t2^M9 zF1Dw|GO7b0u0dXbszy|V_#{Hh&C83qbsW>)vI~d^Jr{!DwZ<{@HX4m*|@I+tm8`wf3o1Ot995jS*FJ z;CHlqD1i!oiKabfID4TD(FxOgX34Lz@-&<}~SMQ>3@zw=GyCm=nabk}Qa&X$XoSQvM zE{J_=*MC2o2Y(p+XakO~FRCOKdf)KNb|wE@l?l?A!+W-NF^gw2G<2s%Ab5l}x515C z;Y1I+#O?cvuE!_wdN@V$%}44;E@Vk_IHagRXAU#NUF7hzr*Q&Dw)?GRv*w8(nrfPz z)@7lT$Z+w-RKSNAu7(?jh_(KX)U&imvhAFu*xxWFeulh)MKWTOd2(O%9)(EjJbs=RrA;xPmUD5?djPQ!u(DR_HT4H=A z(tckT<_v$GU21T%pF6@0izCB^3Fis_IYVl}CSNs`=+Atj zz467Z_1t{gmk%0&$kFW^Ne&A5m?A1l7ewZ+lIZ7Cd3>+CU$z$lL#MKHP#<-|ZM1HF z6dg!*3<`l^4`@XQp$7@a=a!W>pMPC5s3vj<4xqq(>^te^6j<$@ASMh+c$t?MBDr6w zEa|w{bNzu7H$@i>#vBBzXFjEiy5Ggs&+D!crk#2K%}|z$dDAUW)5`Pc<=Zz(0 zVIl~>w8l*y6|bwqdO=+=V41wI!M{AeckV(FMB5mcuCRwK=|n_+TF+BlS1^(r`}OyJ zcTU}lV3UD-HivxP`W0qVfq$D73aO>WygBxKK7-l|>L{H+2S4EE+L9TFn}3YP(zGaf zE5}30yLRCjV!vphauN#xEZKnct*BRE1v?QB?@`5paY4TIB26zDkQM0p`1wl_HaSC zc}V&$P4wKN`5xM=imhZe9lKP&(FYHNQLBX9Qk|^6lS(LrStP`;zMQljH?bKroWOZY zAbZ<$j(YW0IWj(-OJz&F3hvS->%Q_9VyabpZ;Th}vM1!kM< z_?LccAEzm`h%RH|rp8!Ii-13z|Cfk``%`Y`o4)4DFqC_KR)2qtNP7f1%cZaP(iz#Y zFwW8)icN1SQBnC^B3Hk}dPS#3vS-7xVvk1azV2$r z`-&Z|iwQd$DMvUoC67#hdeK;g8p@<3{up579Ev}+JZ$!eITh@QyYq^Ksv=4~FzhMP z+IG0g_nT1d8-EgHZ2Tv=Vl6BwrV_=)6o0$#p%~RH1ZxYIDT%Y-FYMUYl1}@88Uy!!&b|u2EM3LbF0`#3h$;{*$jwe>>>9OoYQO*y z98#`4yGLvm-lfS*bjLH4XUP(=d)5H8!hZxcR~Z$oDc?>ZqEH!53HXaC zdOp_TF7VjuQ^H-+myZ!c$)BuVyFyixg0#HZ=|>6S;^5(Bh#(w=S==ijwrqN7apU2y zT+-%2^=Fr@Kk_4{lNiq&Ux?h6EW)#SF;CKF^Piw_vDdqmgo}y2oy^bgTR%?y6jDbT zj@f5Auz%!|FHGDv#rl5&h6{Q019BHfUWNwut3k9W%ZB;qERu}trej-~A~8i3Jj z)Q=*?f4mQDf_8TTQ^&z{Y8?TO2ipvaET=v&?hZMC19(N;XRd(F^7)u`nD6cx3iCKx zK9zI28sntfK2i*bS2PP}BiKPAMt)XL<;HdB%YTIiQmx=Hio`bOKJq3fEpuH%cgeoL zw^*h{qzLpJa%&o;(*erU8<1>t z2Y)TeoEZtL5E7oEuO#a8I&viVQP5`{rVSa;%RN|^o z4?YUMqR!q=2B+0*N=fDmzWTB%R;0>v_cv$l}z?kOO-LhZx-5WUh1;C1)z9I_iS|S4Xd4VaeurO z_p80FV^OPXzg`i(aMZKi`3&TnA`*F_V;v2Ixi4A5OcYv)KD z3pJ$2-$Bs-UaDc1k_-#XCVzr+R)4WMEL*?R$|6pmWj9Td*-G*DZh1LODz2tx8 z?)7itc7XnYx9B1X1w$`k!c)wrvu?QnBz}UZ@eQP(dYLq+HdoU;{=?)qyWsAiC96{% zkK4JV0pWxOQmui(l}h{03O0#*5H66-6uHixAp zrQPnvwyGcjL(33>r5m2Pq*V4jm1lnvEDyY0f376^9zj2cFtgkj<+?csCDtlBwklIc zQRkM7n4KM=fB8?_)@}L*A>d=s)sdiQ=FH4Y$l@s4kB!ieYx!MlR^g$&m0bh(pcrZ7 zY)P9M*F7gy9OnPCaV!|816O_{<0G~f1Jkg#BU^l}prvf%0`l}vK#~Q3y`z6o%-Nf2 zl5?0`1oI8sl_jbrLi=-%YK0Gz<25sswAy*BD)Q&Qk0fgfC`*{e&-Wn3W+!Felo{1y zYliUFkFt%zmxi9?_(iFhgWtlpB`$J=ydXVVg>7WsV4*Wp+FOc3Y5pHK!bDDms(z;A zE^Hc+#3ejwUAQzB8%)_aT3Uad+5>qN3K&TBuseZ+ase9@)Sa1V5-$`qAd_+`&?nu^ z^_~V;2oZ9I>i0nv5yH%IGPUt~0@EXe($y-4+_^>4UHeKEW5Cr?9PCN@j8lZgKS0V( z>$WDS1I>#yQwVteg5>UGkmi-MIr-F(bOjK-cH!(LrcT*?gN;{ZvEqO1JQUm`Jm1tB zw8_`}Td61HwmrtZDU^|r8MmEUWNh^`8%iR86`g|SE}C(B>60PQz&Q8Y&qeK{j5aF7 z%fAg>5aTYQ0eQK{XYz^|<`n)Si~LX2ZL598p3JmRXKm+{WlFlcN0CkQ?UgH@2=+uQ-026vfp}2%pgG@*M>IL1l2OG0FdsU1Omo0cy*)(ts>xwP5$%GnKs)QuR{TZw-&3N^~tHZu6`m!Qkh zWX-03+0j-xLriDJ@|V#Hu=yXw9=&2b&KVhD3!@@?AQ1AoGUaKrunsa z(VM6wy8O02*I|E$8Qbvy4t5YVgFj_mA;ozZ3C>xv@+lc&<&K%vjpELAf_l>KF(P5I zhbN^T=nDDezCypn7m-ZAwn+B*;*xRBg9f2U0U7LwG6`#Pc}}0bII&NEa%)TPUW`QV zbvjMAX)nRFc-b1RZZ{R1qgTHMu+QJ>T`nB`+-<1~H7tLvFX)yNZIHEIHL?59r`{gx zF59F9SV41OV4H2-+9BA%RPy^4hVi~zw(hSilK01 z>>FS&+y)qS3C70fsyAV8cRiuO#n}p$amZ1zz~xkK-*tVApL)_cwBd-fC5|bI=YY0hBEhbmEx%K}tkZ zCt&fZ?w`MW;D4;_b|gELbVc*4?v zhcL^#zUW^pfR45nDK~1kXY@ORE~#(Nj|Yd!-M;O`f0yk|60{5{yBKa%C=7(K zOU_WIBbZsJg?DK!2}=uZh={RRndQ5tg0cSMg-Z5MRWOR#gAOn=Fpm~eHFKYrp5jcR zuMX!CGbL(v>M^+!Nqd)mRXDKOX|aE;qr{BZkLO@c!>i;wr39EurR=Q?Wq_hIfJo$` zAMBWlQ6jc&Zi1%t7hN#U!Y0Zw%WqKDJ2#e^NWOlJf`6NqtsgSV8QDT(iLxFd>8|oR z{u)&c{Gh$6Syq0Ucw8SIY+0SX-hXQJ3mk&jdz=KwG*OvufDL6k1JY%9HB^7FHU4j2 zIiY>)O$A1@Y5c(Ry6~CWz`-$m^uD;iAMY)+px+Xjz37pQrpzB`#m+q(4NtpLTImc9 zhr+Oc+$(hX5lAm-%cEjjV6ygf`?X*Uj(ba+V!^2SN_v3x5E+8q$GxA|crvdbtaYg5 zFI23tAro(nGohiE5LwP)wyA%+m`#{2P<04Dx+~KjIlsV4WTywQ53Fi%C-e}PFviXz zT)p28;vCB zlygdg_kP9OE9Me&Rp^rU_|q(0rba#%<->{fVXU=_Ws2y=$e!l()cP-(EKZ3K9*b0G zc>UL-aMk-7_ZE^xEhL|Fm3~f*23{utO2u1;g@k!~vJ#Y5@}hH#wJavH=vg zENcRR90E8omvOQI6B9BpGd2n@Ol59obZ9alF*GwXHV6?h+gtcXzko5Zv9}3GVJraF^ijkG=P~C;Q(2uX?Y#ieBUM zG3WSJLqZ_0L?d8iV*nJjv38_kprz*o2+7DuumkAnnP}iK*j9oBw$PkQ-6}7&tiCsQ*p}2v`B_%?$Oe0W$iI zra-HYj)wY{03{nkGoYi}|0+SwZR+S~%SlJ);^IQ9Z{j0UriSGee-Y!$*dbwGq%B@X;Kg zBq0ruvjtlJ6D<8t05#x0X9HlMW%zHo|78DF$jtihWPL+J8!KCVYd14%6M(UqB@iGd zDoyL?>PQXHw>J7KP~XzQ=6@q!-&xm|Dinw0R3N||2}Dd$jiva+S2V$_}}+SrywdWCm~Mt599y(1O;te z0Uk7r%m5lj7J2{!1AhZOfbHYK>wlM#*Ejpm81#Q~C9I8Y03Y#xkNa^>|1+}le-uFe zpY5Ok{O@A2HXpJD0?7ZUT#KHC-tglO!~bWk|DE#xPvU=7`F~US{~buw$*V;c0Wvlpdtm*4L)C!)Y^@B?$jr&=|9^TV9Q8joLBQJNL(Mb{ z%(V2(|JcnOM9o}*M)GEkhNk~$<{!JtU%O^$W(}0LaWMPq9}8w^@$mw2 z_z>nlE`5iOZFBtl8vnw;kA3>zbBI_Q+8F({c#JHp0DXIVeK(kotN%bO01t+b4K)I~ z{w-|)9j&#E<9|mA;DfUlz}Utf=C5mJWdYC${AKzFu>$A>{~$I1ozQ;~8xw#|;tyg5 z&`JJ5A62COppPoje-Jx>PWBJt0MN<(7qQa==;Z$(h7V=`K_C5;{-BS3%Kt?iACu|- z7kz9QoxY{5=^qQnM^A%4e#Q?3bo`h5V+g}P?vHDrGk^LQ{3r+f7yQUJ{&OZD$mFlL z{)cS-gnZC9`xpG+Z~ia%F|5VE;Kyv1|AmYn%`Ek;42=Fv$NDjj43pR#af#$V=Z4cD~*e*1C6WkEz$q(v`G!ywcP>%f~GrC)GN*U=ZQl+BH zeGH;H=AE*Fb`P2Bi`O2zb@=se%y%^SqK78<27fUN?{}bcKRoVn2p15WL2}d*1@SnG z?E69Fal?_ip!tkU`jto!J;`c&mwvdAq85v?Nd~pac63!2r%R*baH#&?R&;DJ7*gJ2 zxxpmM+O~=g*on~ko+O(}D8=3J2ovX0g|s<1GPH`^huaFs2vXfV{k!Q8m=jFI_T1Ei z0#h5`q(>%}o&ffwtU1CElQ0h>?lntK^O#P8CzYJv)!WGplsc zm75-(3r_LpXha%pCkcyvWC7=_?ntLdrHHL@v)~+7`C=R>Rnu@Bw4IQfQWU)J3p-ex zq#}!C3j*XtA?z!~9#yhovEKb~bC9XzF8n+M1S_c z%^xCA(GU2hXefmPSu zG5yR*PHLv>?9{6fLXKf#yHT|y9PwQ_in)6 z?Y@pLmljfT_t|E7IP=}ZY2mbrbtY*)937?e3Im|A9LHf*3W?s%*~c*gs4G{Vf$h16 zVl)7X1qPvaW}-um?fFJQ@1)ZBL*Z}<1E{y#&$_Uz)KNTKtKl}(Q?j=bGJomjF}g3# zsx}~dBtyuiIYmPXW}twUG!}L4^?}lI%OCWq(%1okebA$K$UoQ5<50IDxb@>&p5-~y z>YokxGr_EgK*%02cCJ^AC+ov22!Xq|ECdu+W|&_Rze;kZUog24Bdy~;6(Bf-B<$}W zA0Uu;=KJ1cPB)~?my*20r+>*I5mxz6u;blt+d> zA{tR}wCiee;x(kFA|5f!;yj&aCK_W>q%!pebpvH$si}P3W@eNMENKj=zq8sqUQ=_Y z#m+U^BQTE?0RNifIXmeb#gPO=2DiH#T^n!{{btv*j5yGf1ZHU-1b=gMw^s!6BYhty zn!?fT?$1lFZ zMYzMnzpl8p`XZ>QUxO-+8wE8KSeTMOdvz(WbvP&jT1P#ZarOIJ!k_V~LV4I1OBfQe zHO~F(0c2NPmJ3WoxPP`%-@m4Pn*M5J^W}RqfDzZDTYi9VVb$VsH` zt=OlPgyQ6Q#C#3Ewk3 z-#ru|h?Hh?Xh1NCIllrsSpaao)p1+BwZZSOnR^u-Vd?SbNrJ^blE>Y!1C1tFR*sdO zU66gB1d7$#oE?ZG9fy8auq$1CrCTmoYxPlX*Ez2wQz--<#--kVH~SRO64FL!!_nbUo54NRi%a5xtgnql#Wd>Cggp{ zOmgr0Yk%V%31?Fj>HS%(Vj4;Ih4J{SN|;|9hrdM3oZx{kE(_}w(av-EI+5l&3n?L4 z@ZCz47jjUyN%^;f18)Sst-982@lO<9r%JN{3#X@Z*lv`$1JVHQZl&R=AskN%J>Pyy zu`Ttb$Kl=DyQ}&vTCZ+8kFVPKF$kuPVs&S6BlZ>+dp#(7oGzt%298uQ>??464Pcn~L{`l}po}Zj&e*+I!~d0FbblqfO6PU63jeu~M!Na=*7fJ-tn=`Ah?sP| z8z{HzV2j7bj`ukWSMeD(Cf)FprSJ0%I`lc3{xM3EBx{K)WjsmdpIuqh)ii|Da}Oa2 zLT{V7$^9OI3#PrSk>B$gOq;SB7X=%i`61D;LbCT6<&K9H(Z~soFr`o_t5>V=qJLhK zo8ujOM|2J#mk=&b3AqU9DX~XjK7%-l)jh*>ykl5au}f+o#(2i9;KTeZW0B$r4~)h= zpGR4}ys}D%)R-+99J59Rhz{NJ((q9<5)Ku8ZsJglAN-6nOIaA{Vh%s|Wz^(hbR_{R zF~TNYdas*A!y8OfX7sfizzJWFS$`kXJODslsN|znDJUu&-xJV(lz<(_e)Pser zexo|C8UfB36l|$&-otFEXo2#C=;~(|lbNq|^onFjwHP3W-S)&M8n4j>rmr@BCT&}1w$G*1PVet(`D!?O8%bdUuy+vccOwjIGq;iw zk+@5aGwUGC=pbb6&w2nu2$Uae#Ccn!80;l*jcDBegc=}$-=jMg`!;7##o7&l*^l?C zwg?8F*o?^nb-6sThOGK+o{+5!U>U_C zQ*C^!3o3do4dCRu27l=v<&*pA&a#hsk0dum;UJDV0H-izi@x{yP3OL^$$CP%jsT<} z#|X3A9fv!f3BM<5$&fAJqT_%B0Y*sa+xN@mGHWd16X>h(XGXRqQpR#ZcV!Mw^BU>V z#sgb)?I*>Rnn}zYG3oUh+Hm$ME6pDly00MuO8bL~bWKLCMOVhEm;Yu(j-`f?fZJ z{p~~|1{Y#l)_MuoG~`cX2Kc^XoTI|SOVfcRJZ;Bh?+WOrzk>~-7ATcAC{H^@cR?1^n4a;ktA5ll=;+kAGr^g zk5GiMS#;|}_H)9j^ci%|1WcnIhxW*6I8WxQGp=St;qLaEV=1}gfht0F{QVK6M>|5a&t%qW`2k9p6T_8K(I66Lp#H;&b+i;U;LdF zjenac9P^O!9Hb`>^Pks*95Nzx)%bmg`VJd%*v#Y-J32?yihaAt?D~Z&M!%=}$ zQa7N`CysNJ7bXg;y@}Qm28Rf}kMoSAbn4CS7ytFn)zLX7vy?XMi?K=_ zF+8k}YoCYJ5lEe0a8%e6KGC6{=C3{K@yl0*=QqXL?25^iM(_dn@4lgkm4FNqKfFMt zA;VMptyZzz+WpV;Y9 zItngHekrs>>e!}D4)i(sJ7~w(DKV$f)nQ{SM>};2K_1mzGgF0sjzCq?^tHRN)tj!w z%DeCjvlOn}jGsxNXQokfStX`V;D3BYSvu}Pn|ULebie2hqsA1I9+!rKa)ErA$w`&c zS&*HIdM`D&OrY58j6PIIwn-RaslC}z@yTHG-`{yh8V#kK6c8(B?qRTxv5Go+hd&)p z=h2(`6(GTVjYO$h!9zaEp8G&V^+2`f#&*PK%{N6NEa2-*Bt0q>iKUtCWs^iDxP13QTO)ytpTrwaa zF^U9*Rv(m^uC<%yoBNfmu2E9mw$k7(4TZbDS1_;7%6~y%vW3|BlDBX& zOXnraoDDA+zqWuxhn4P3J#^x0TH1)_b7}osNC& zOLC$wyhNEX}YaZwR&#X=&ZZ7WiwT&k`DK21VvYeFMs4yxCwK~yxS`#4%+t< z?6`VdX(*rPD$rFyc$(LuO)YAJGJZrWLrOl}smq{HCa{m`EW4i=0#hPUYNvxlC`uI* z;5rGCSi$>U8ZUE#wlDFq)8?2Gk=x10SP315JFJcZa3%D3=nY9srd*!_j4v=^8Oco; zPLbXq_7zAm(0_=K-%@QuhGfy0hF%9#Leu(a%s?DLA|$jH#o&mDlDDbw$-J&3|0YkQAJYqL8A3Vh0m}S9*&o zmij{w6R+(Ze)Wf{09nqN(rwX;-7InfoVoMfLw5j06nY&B^I7#J!Ysm6cpDZh&~qNg ztiKc6QqKuFfG&JL9>S*8iC1^2P8p0sM+st@1~16k#p{(CHdIr#Sp;oL2=u1v9##W3 zQV{~!;D6pTcXz?m_TbQnYwJ7p)K3g|_R1JEt|-ojK?}&S4Jync>ZX!K>cL2QS_AUR zU**|j{<@YJB5}h!dE^HNDY2$0t1hVQ+g4((S?+0^^Jtn_h%C^!_=btmD|coZSRhie zVHS~fq=k${i6ZFw9ZYCpDut+IjNE&Mh-aYt>wjb{{Oyn40d=jSp#`^1g^5O%qu-^v zuePL$EIr?qBo}l5sS~?%P4+hl>Ye*ei&$Z~QS0#OaXT5g6qzUk@eJkEf<>XCh9}~5`E-2V1G{PZW$!8sm_n(nC92N(Y)Ch@AK8Kn)2!V ztR0MuSI@qOP8|<76{$g${PdH9P3fl~vA`b10+67~E~t4RS$)s;Q+7UeX0jb?6p#}Z zoyBtV`E6SMti5Lpfi!{b`y(A%Wja=E>fLV`ksq#<8fhqy_vgjLOM5;2YlU4~k$*JnPZ!RHL|Ebl{@=~}#Kg|m02)kOOY)1qUMTA6wR6&8?#N_^(c;@gQ!oK#A1 z!cCmoRN@87{VW)$J>kY^v0AFpoLVC$6}R+5=anVffOv_ST1PLK-g+D1UJJx4hj(78 zxnXp?KH;TT_SGkr4X*^tt%y^9C4XxE^IR?3?mPAD^|hg6&Z9{#l+e`1aoBY)B53y{ zE+amk!y|ijLBzD&0ePoXSjN81uSQS!{UzCZ+m(HJxylVtJz5Z3hE=uK#S;WY`ANjc z_FtOhX)4_*^1LTPcw!;nU_K>o{yZbs*P>(LR7O10+h*L()pRiK=zhKnV}D5}YTw@v z&54UAz}SVL%rI(z75^@B=EcG6U1~uzC+1nN8z)*f*=dWahm@wm=!BMsJ0FSFNp_oF zt#9d2ZUv9bn-S|PVUZdu2$Z(shDieLiaa0VhDWZtuIwI-W8eF3uX_GtFV~HchpbU2 zR-p5BjhFvXY;nn{_c^!t5`S|BHOum(HB>S!9Q$4Yhx#$@QN?Bwa`)3dD+=;fwNY-v zFd~#y^SWGM?VgR^hC<9WJ*4~zN!0_#r9#-M+kvp)LjUENI#X`(Hor_GnjL3b2X0x{ zL!iKl9falk5Vsh5Fi<07#5WUVSctboy6k76u}?_z{n4#fRFE1zdVgi|a2h)74Y|;k zuf{$fzv*gf_3SaN*e*3ctSc${nQ88$fOIfL^2_an8Q~C&c8kY5HCOk!R@QgzWhIZi zf!dmef**82w`|;c{$;VV?eTAcpOQ;W*8$H7BQTx`$H_zyjk zlen>Khuz)Uo#>WMDt~m!g9(~hJrP(R$o0f-`1`LO9PO#8!SqimY-l`RMtornV_01$`KCXdp?!xxajv9z2$R-Cj(xV8jU0+MJ$s9#RI~b1)^ zaCE^zeW3-RxQG0bNv86tGOSs;IH6=0%?K1ZZtV1pSSB9kSbue@!8_kQnJ`u&G-q>m z8>4Y76U~b|)u;^_X+jt6IDkB`{C9Xu>7L3Plhb-mq?zW?%=qtX@GekROFAvPbuIXq z2EEL3G|3_^87chyY|3$IuF4v3fUkG?Etutx(0Q*Tdlp6Au8S*k_;JRexNpg0v96Z` z)kxOD13eWY>3=e``EXjdMTYzODqokhp}(b2vpu##@NAXZk1AD-LNSBcdlBmK*>0aE zUgsL4mOO-3{scR#_7SurYeWfgYa`L*1!^SY{ix0{LvG8TX zRC4NzwXBO7(OJTeUY#5S)53v^iIUHzQ%B$Rx7B9uy4ySZ50o+I6DBpxMdvsgw6Smy zAV9cFN8N z0tjiUc7MO4)`xrfIUqN(85^k{dKO{l%-x{uVc;@sZmrbNbP925pHM?#-{6Uk>Ns@a ze8U(O))h@~3jLI0VncL4+aEcV* zT<5IVL(yvuudjX0X^D-2g< z;VZ;L>P_5tQ>TTPJrlPtRW?jKEiKI0`DErxP^jZk5Exc_>hWz*~M)*JLIbPvxhxkY;tFQA(Z9RkxNwT;2 z0;M0g4d2rt^o063sld*o_Scvapeg(=awSH?jgFL4_lJK`x$Is*ix27|07mguViNaE zROR>GS2U`L5xWk$c9DF?+IzUBaY?K2kbn6^Uv7H(M*aQd(NkMECxaOKZ3_cKzYdqX z3DY_A8-aC8Z4l##PLl7Plths@Zw_u;Dj=qtWH?&JW)Hhvy9{a{+c}C8R zqXELXHOMO%lvLQ4&3eS*?6o%U(?DkL;*j8PKf|#KIOOgX?PzQbx|Q}6C@FG9Ub&VG;jUjI2uHa#n|#^)eFGN zbR1Tys7BJ)e5o46?k!XLT#XZVbh<{;Yzu99_HJtx-x^jrNI!v^s0bCpo_LOhQo);O zxGVR=SUfnVO(%1Bg4T*m&l!wk3xD1&l*I8lzRvNWkWndbhz`cZ^h9lRR&oC3-a2M&ebfg-EJcnVl(=(G>?d%n{{yqjN z-fb*7D+C~eD~txk!J=8i{8EU0joyj)mM$==%TZf2d1@Re%}nI>@QE;q^M4jg)2{tA zg?2jQ-abs0!OPJR3>E?OIOPodi?m0hX?qZ~ z<2HK3V!=sSz#81IGm)Rng0Xia;>}lAPIBJ_x-e_Fm$uN&F6F6yf0m?Cwn-{EDdSI(bm*{wVnX`_8BX~ln_C<_7hlYKXJ zF!!FmMP`2E2Y;eaHxIbPSiDD|mY2#77}8bmVFYMaVE4_KKj0#UDSxUL(OzTRTdh6K zOog7E4acWy6fgD^@uyUm%6bYVg;K~lS8 zl2NWYz3ZDrkWQC#o1p@iX-3DbH-k!Edq}rUk?nUT{gVhrPOPUsCjK2R6Zfuq722B^ zSgjcA_-!(}A?U2d6A!Gh+9lLYD$hXxcuG;6U^PRmLRiU0)_945V_~&Cwh{8*bw^f%m?X~#Rw&FwpNLexa^;QptwbOX=QdaB63Pv zZN5H?Z=1b-X+imc=twC90Rb3uQ-W zwJx_Mohpk$7~hcuv8)UQx8~gwbGu=Toti+oUpmvZ0$K|-d`EKOQ&1?8_F0P{bGn{k zrX)2vr7l@S<1vQp#WgOGUQ(V=?;Cq{dUI}UzgOnQ3V-^A%52|u&ut-|imH;0A|$pz zERnBde^hp4da!?^I+`ktxcHP2?Yls@3a8#iV4q2ZEHiynPk>?EM5)lzS=ndj#(6ec zw|??)DCX9b?Ct~uC<6b4*+D0XW47;uqp8vY+JvEUKY*Ax9p&@3wyG>-(}kn$*oB*^ zAnr9&YJX(ykcpl5qZB_nkh>|=>-diE%CD}dN`Q)vwEU|rBw28Ucbcb!QqILxNJCxL zaPv912M#jjEGUGkza`&OG zkt-sYz}_v7ov`!o>6uv)2nj*atX6^_P^t;dihod`Gq@^Xl+e8ujJX4buaIuuZ9U#) z{n_fbDTc@9@F(_8nMX?S#*LrLS@cXECN?EH?9Po*TzNnT>C*==Qo5=n+)+=~(9otg zv?PTFh{P63Vx(u@z`Qe*bjhaB{gb1!{9Ol3GM(29v*2Pc2X>H<(_l&rB&JePt3srN zW`Fp!xK;F6F;#Kz=~PEp%ej+zdmh=dA*B4=Pcc9TYrKww&IQ+IL+BIuA+F3&Q<(-`$JCJ+w`p!~zkd`1 za`%)$6E(O)(9tvDE^^RIh}n(19TAwXPk?&x@u*ZzcP}XM&0Q}#bz`H^#;wpFh83NV1I_F>N5>4?CbyXF2mG&`E1=K{Upv-EhZF!wI%h6 zT(SGMAZ|U_I|QGDN$KL|QLXY&u!=h~vgo6GnkCI=T_A&jX2OmDzd<_S#dI)VyJ2C7 z2nR$CrllXSq{OFEu3Nlhdhq*wWd7NZsMlUja=CWXeKnO-LV2jU&_jKKHGlA-?Lmu^ zrJDZtd#`28qi0r;<_LoK=q~baHNt*{TaVL(Q|PbGQYJzQ!n5(@5wewi{us!kN9kGT zUlM3=Z|VoByfkb+^G|y%uSjdg;R9pAwmJBp-VgWGsGi%7k1uV}I#~Row}W7C!=L~| zB}pzFRic4!D(7>?^>XR!6MwCzrWoV?QC9V^^uAu@Hn=X~KQ|5j@NEl7eVKh|xA9!tq14wc@F{C|<~mdt{CY@T5CBOn zo7XtqIx1%4i4C5jZLB#nxTCc5mPfUgp84Q+Et=)SVjdH3lqT{b27jMT#+{hhkT~0& zLhvKwI*jV(O~Z(BGd>=Rcb=zl3ICw0=r;hve*pl(_6bKx0|fmLAG(5#Nhz_H;}CQ} z%m(cnjnQ=o&KIkvOj1C3aZC1&9prVvu-9iuBDsCb!Cm-CR@RmqJ1jk7hBHvY!_4w7 z#c<)H!sbgHNnKB*gMY6LXY2E+hLchR_t%8^a;t7CLoFP?SfE#moaGil2G|oE#AX4< z(PD-&P=2q;J{R{a9^;fmmAGY&Uc;}^7qk^3BPy?S`5+;eqG!e85U-L%$kIcw$CZPv zt8r=6mbed=4c+Ay;n&}I$MpysQ7#K$7nN zDSMw5E2v_8tqDR$kkuU4MK8PKS6em;6qycQ(5_f{o?H5Nsv*tguu>&=HY}m=@8d1x zAtr4uwo356Nq_DwfsccusqzpAklf3xcec#u>k&JZyvL^zN2u-(rJ(pEZIzbKU@&!L z58Ct~dN?sAvSad;QIrB$^6Jq1b|Q;8K4CHqi|@!H{HYlf7orGzTR#uF&@mV@tV%xH zX0+qkQ61}2f_rf{Z$jk>LR9xZd4yd1-S%9a);ig;uz#}erduE}Qfb{Pa)AlOSvX>V zWzlnYw&9xHW=OTg_K%c}ZWZnwC>{pUkYz>m_g^M(d&gY=9w7I(e^_{jxJS(pvV{0X z46fMOFMs738;ALYsTI}H8tCfy=Bcu*&UG@Y-J@5nHl6Et3$u))RbBjTW3CeUz}9^a zK|7HU(0|sg{oJx3(60Fep1l9%DCfz6Y%c1AOe^mOZ zvdO+E|2OM(owmNOI5yPrjzkJvw|t~XM|m&T5_Gz^?QYwT7vyN=R{YhP-@ChyS$u-$ ze*OW!xtEobLB+~y7q-9`Afqj0@fjVK4>>ww>3>xnqHREf0gxgTKR~T|&!UeyiTvzj z3+>9pd~eR_+NTmjm6%D48Cq&E*cPdr)2|27svAnA6QM#`4GMfD*NlIGC6unPsD z#Gxr-gB>@5m}R)!;KSGyIB__+2k;b`(3zb1P0z%%etu>ptFSS&5XZdDj}uqbd<`7z z1b?;^>>{4p4~#U0e+PsT(96@DN(5sJ>wmUqfuZ7xYu_Btlp=>PIh=1f1`H!92?pG0 z(D6CT_w8Y_`oXTTUm)PSF-o`=;Kk;C>p?A0rn9=GQ>U~LJIWjSJ@KQ%yjhZ(g;PVj z$=PKG7mK1hl~dQFSz^@8C&ZnZk?m!4Vt*Wqf34naS|8)2^hgEQ0?qVt#xTg}1txqm zlUwCXteBubE^V@6D0<77_?J6cI#u$F{ALS{8$M5mdI{~?TD7X)L85PICOp}5k{pKY z4(kqF)2)%d!BGoHP6>%t-eFj}UvBAOG0t$AIjfPtK!mn_D5rQsAxqM9TXx@1e1Cgw z$?pP&Ol&PBX0`sR+x7bttA#OKs#?fJxa@%3arHzlw^{f#F{*h;s@59seW(Z=zd80^ z6gq3zp^(hw2fD|)(Res+k@Vk%wV?7{X+w;t`}q4QlYdQ0s75_)^2vq8$^n=U;z{5p`oAYht0-_D)T%6M z9N2-33bN09T0}*EaQiaYZ#qxK!cmXVU6H%nc5mK!5$DouNQA-U#zr3QBNuG|{(juq z9YoTHK1Tix#(C%Td-Uw{9 zbee3*qJ8egsv?qbtcuBZGg!$M%p5uVO(LHXK`CM}3EWq_vLXGur4Vx>oNz;h*w7#q zK3+dO%JXN}B%hXRynB{hPJgPAP6NyO@8(bmZmDCPLCJzNR>-Cd6kh0j0vlbWq$%w& zVNf-WqY}@-bYMgvJ#3<4*Te7$o2*~Wt%h!ZEh{o&1U$d`O}c+LDsxK#e&Sf2AQi$YftoPQEtk?Pw7s-&wJ zGC{$ho)V7Sl+UVXFoZ^qwy*sMJ_?OCw)oy*Ll|zR=&pX0C_x-921on>OtK3uDDPK; z_eyI*&qOcwD=3Sc=gjU2vWN=oxTssF$CLXa{c7^ zP+d=(U%%Ah|2U;wOT~S4UgZjhuRhwK&`H^XpMorSnG@-`4~{oN+wVFkKJ-(fZ7Io| z06BlOU)4E&r;P>oU^f}S3H5lV{6^z&;EL_y-D6V^r&`4TkS61)VDGlKUe7*iJlu|CW$=3R`k6D{I8mK8uUn&>9+!Ni&vvK(HqO$}78MILHB6mxJC*CN1*~elc$N<(Rf%$Fz zW`^U}4ivc^DB5XVw100ci=&u-%(drcd?-<&yO(c86@UM=CGw&)vehZRYvfkmS6Vs2 zUq3dEix)17e#dis`2zQ?VEp*PCxyzO8OimsJIB}vMVuYHrg`Y8ZlEG`p;(BPy&Lp#so*E99yQOWn+1rcB^IAVLPRu~>vHe(}8 zUY;;xsehliJX@Jr;=>AQ4lFdQRcSYjnpFcdN|65k;Y zUrur%1$B$)yT!JO0+<0>Z!i}H?E2ZzZhspxk#n$LrS(B2OAzY7a)aM=%phN9d_9$? zVakhrBUkQoP)^v(Gd&w9z^#w&36J8)OiOLH#6F{Rke17eM?>&4V-Qnl_X@BjyZ*`VH!p(pPnANI}R_L7ktgn z>xw=W!XeDW(iE#gUUeJ|KsYgBZ-1{ES*b>bJuc~YfsKagMamw}>DkINc}}Iak?sxT zlVCaT>`q@6jm?ubip>GI(0q(VYEjOJdwf3KnJZt*lKYs?1b6j)d2cBJr)+DuL;0vC zc(%V6Y~C@CoD?t2^V#EA)g|urz>#%Hu6cSDq8-s(P7V(}?Nku5pWs;NUVr5A0A$&v z!%&s32i`lt%Rza~y7>*(aTxavJPE}+Z?@Hf^iV?nNAilL)$c6tem9iyZwZ4F_T8o6 zd*t&k=<(~{8;t7}RK!W|Kd)I2sZOw6e*%BFDIuuP0gCjYCMpSwc=TW5buJSoeH!H$ zUO}a}jp!@Y*ep&ngckMi^?y^wBTWNAx5TfxGf(vTdJn$kL4QzN8M&@wDVw2;HhhRj zHW1&{Aym5%`0M!^CiW%vX{ZwP=b4Wo%GREJ6x|AuuJz>Lnwg)}$Skm^6G$b86IXM$YC&T~Z1L-t)%G5H>3Rcf(~xG=ucllX zr>E#rluLCMjh|`bci|(hKej97mfwxKiWAal@|U!{H|2E|>Mm(!{mr}D7P>d$`8m5( z%aM1OEx@>``i&x&)Jpv$*J%Anl#tJdH0S|E&g?Pn9rT^aY%*%hfiUlw3 zj3}Mh@ebbF@DMEXq1EU*kccc zO-53m=r0j7A=rDn=iXI2C=y2R?FtN!kq&oxdZ(Szn7Au$1!icLnZzLWyk(lh4I zVat_+HpXv&x*m}b=P0*CVQtfl-h2dtqaL~+m_<15yNQ2!OpMkmghpiH2tG&Or*krv zZN!x#I5&^SQQEbF^}SM(jem`n4MSXE$$wVODt6&sp@8=zmXTOf3t5%hcdLTfE zG6;DeC_Cbxlc}*|FjOu$hV45-;t2V@@nfY#vDW*BNF&}fG5qrAVkZFL#o48wsed8* zEnfwn+|_@yB#ebsOF3dZWpVfmJriAuf-}dl<-lUUB;2nuOJO>zE7 zI6Q@@0*F+hrW{S80zbh%RnO4-%GuO@8>9^@;nWpj=%CB#z zgE-;F))`D|uo$fP)pV=yz&WRyd7jm2V=zPL2Kf$|S^I4&6yBA}i+nOBY~;i@_onoK z?lONuDq?8v786=B!4BJoyLz~aHOkdfuC}4LVgxA_&UJjQ_gg#ldxaa%ZFuT=G9-f9 zZ{Cfjawy{UJ-Z=>nb$J<_-9ML72))iEo<9)DB4tev!{xSV6*vHMtL|SvPOW!g4*TF zM)&*%#$-d4Xod-NMLjvXx3m}ME$Kv`W9E*45;M3MJwE+c$?OtYE0HAEG1x3} z120fVRvI3g9P8?Yvu>5QX?gS8cBEctGeMG|jrJ9k4SiWSDKfcO+3;X~dxn%R@g09# zlB`qVa65wA*EZTVJ`3pRcd47{btaqOjCd(Bg%HlV24>1HXYEG?umd)%?J(JT1v`o* zonrDj-<8%fq}74|SU9Qzphgy6!yo?~kb`nb-6ekwD?+<&XE_3Q>@T9#TRTZB3eyfL z$T@}PAu8G=pie^O^PYzbCoBs<=VpIqdrn&hc>i1!cFs@0OPZV7GI_S0Um2-=dGvmL zEPohbO%>k^GI-@%W32m>k^1G(4H=K*5~hCi#rhUXQ!>m6szhkmp- z#?p1cf<13RN6Z?IszLL7S6{m~2T!%xu=fO$C?0J1CUJM9REOrS^QW;~$CiJL6S@K* z&v$pP?K89qg3GF{Rq3$Ja<_kNC#@6_{0%%(K@%GtCb(+|Y9bOgl~om# z74<9ME;04Z(a9pbotd*R&KFV%iAujR0LqKW7cDClbDj&~t=ZsHfrt1cE}@=7g1ZoP zrEgbeo1s-=zdMf>E7b=!+1K_6;{+j#EE{C=3^mWGCDo@8Tn^RNqsb}$9|9kpvzOs& z0TTi^Gna9)0TZ{G!~&380ys67ak2pvw?7~Q3?%|MHI4&)J#qvP1UNS_GM7f4Buy)9)KLj+B7XB|VVt?(XhJats)ZjTjA*N_U5pbO=aEOLq&>NJt|H z2#5&p^xMDx|D5+dJ7?Q{-TmCx{d{)DK&!3CA!7@(0V%?ua1I_$Zc%`ohMoxzH-MX) zkCU657mI;G9}I_p{=%^s3_))0U>H>NUlww1AZs`Rf0MU{BMdcQP=Klj1i-@w;1Lw% z5fbI*2Jmuoi~MB>a}x!~TYG|S0UDeDRTvcHj>RAcbMbKl+dIG!dH(teU4Fo^{5HJt~ zbw{{(Ky5*807Q0xo{Bm^%LN4e!&v^;O?C6V92i?xqgK~9J2z{Ru1Ou41&Vlv3}Jj4|W3q5$Ep1_2+P%pfE3}-(Qj) z7;0b(Svj@Qe0^A~kf&x4MkShS>4Rql8l|bLe1@v3_ ze;Y>h5a8zma{<^P+5iQB?LdeREI)T^PY?j^<^c-u`?uo15*7~+z!nUI18hL{U?|o< z(Gf7n?hhF;e>boFI~KOO-0uh-w-%n=N;g+U=c|Cs+CF_)sArh%y(+n+7}t(298 zc?0}7ctrplB7)oi9v&V+fRK;?AmG1of3&T^f7bCYUlphw3?TAHxrlT6t7OkVIl%nq zg0KMo8%q<0U@i#2{14HeaSLz*5pO*I&vgIo^8d&3Us3+AME~E46g?o2-+Jah4E{fQ zYiBUT=T8d+b3NdQEzp1=b^-dorbeJYR#yXL3-)mSU#$w<8nF#BPPy-oMEV;NpbB;0PB0qQ?M$9n1~u z*I)$&09-P^px=^^Ab?B#Z%LRNf54^vkHiPy()&l^2XN{CE%6|_<+6s_+qhW+oj`~? z)einIoxs0!f6(GDCGRhti;Ek~8|3PN;J{xvBA2y0ViaI^Cj>nl{uK;Sp^dfMzW|}% zfUV6x&cXmLAlMBE0l7dt-2bse7$TB@J*^=iD1xMamw@OJf;i&;7JvYqf5Fgyx$`0b z4+tFWf;jlUFabo@P>}ua2ZTGs+WlX30=Qfd)x&HN_amYW1XF)${xdnChnpKh`Fq6> zWBp71eP@C|-XI{>;yer}7UuXito^!HhQf>E^EmqYMrUM#Nq>X@obhA6pM(0tETtJ& zSu5M>C!^`w3*|4T=lv;If4^K$ct7jT30_N6&VwT<^l!t;|r(n39d=Z(j)Y@a?|YDf-#zzH2IS2yh0JT;kEDQNUwmayt)^qfKb( zH{c^C&+y_1+{`jO^i>Qde~qtRYdF8Gnw z^RXt6dYHhxL~hU88KvcRw*Gf6>?iM%A|2Rk)9GayYHX1%M>0-o_#k<`s3gPE)b&lfk>b4%~^n6FNNU(7`<>JM# zP|NEyb+9VcWKxCmCxDv{6K?lpO=f~mh341tWbX_DEeXq>Kg+X={So(V_oDG6&se5D z!W0sj(lryfe`Wc4jH<(QAdWKQ{nSx!2UF^l zfH=~?Y`|K*{o);lThEwX)5Z74JZ4v7{M*4U7JH4FCoVrKTxI0}1h`BKFGTpZsx^Wb zMf^}7M;HdmV}BDSz_y-h4B?%Jaw0j{HDPT-q|}y3e+m!H=%e37;n&|Nxtw11QmzuV z)=_e)4*CMGP>Mqog@1Tz^R0a1GS(6t@{xgc)qQz>xNC0YN+BPj(Sjaf!oOa6{_-7u zp-KGQSfR1D!m0XC-YrYsmPgesEx<&BXh4V7+| zLdsdme{p6@{4Dat55|&kaaDB?n|{rpl;QUd4==KZM+ZQ(lE6Ot>KwC zT9rpJZ)e~B*nRR%7yr%@K5HbF*){exW6(pIfB9(zoOP^}aQ2ZwevY62*0*mu0oHt< z70Vzfsh#J--l$a+4~u5tNy%)0 z6XoOXu>FuwAhmFE9h6+il_`{L=Yd+pe=Wb0 zmIUeXU8VHA0U)Vt1;W0n4O56-Bi(UA{*cLvBZT3KVzxw!esp!yJh8Ah`wZ3=V)2o_ znK9<``I$MsFeEj8yV<>kF)XZ`D`9iff+dSq|8rlEHTF63M%9gP-L<>j@X=@bXr}?58=u3T(~t5Tp|a2KVn3`=_}8q?V5xnnffb+n=ip zm$oMcL%XcYv&=8{q~_QkBOjmHzzZPB84h@YiT7F&o;{YO=(_u3^&$y+e*g;pw(h8+P%88alzQpVqNV$`km$$(ff`MEW;gf3QrgIifx&y zdOvqjaI`c%9^ysfqUZ-Oe|(J#2w&`?h*?-6ee68?qQ>-=ysuClM|kr6#bPXQ^t^Er zMzn}r6_u^7T>PO`ZRO&;DVHVV+e6n}wvWp|6Q9)n@wVc;><3tcmKtL*Kdm^V>mPCx z7^45AV7kbeted(lhwGIM7vb7Ut=1V6qY^TQnuNaSyK>SrYBYI&f2_D5z9$<{pSJH* zzufz9UH6!IX>QVjcYy(q8(HS|=aF+*8&b>!?moodITSWKbX3kyrt`U#xH_!B=M|xU za{Q7f4Z#W9^Ms;2>b?|(Mqu2Bw~HuA8Uu$PxvDRzNDko(FHmlkL0K;swdET2JvG1V z(kTfBJT5uH{_-#{f7iT`r$B}@;eAXBoBwVt^LC5j+}HIerLroBP>7lxg%OeOnp>Xb zvBVE0IzOfg{?V7l8h{e!t|z^zbuUlIe7RQYn-+a%)O$_C{97XBA5ahQbKrj8;8r+x zX^J8@)w_9jE;G0hUWE}+KeR!%@J?nsrKP(A4(Y6$Q2tq9e}<$V?Cn0GQAqVdJCd~_ z9|S6oFR?4>MDlW43V%Xm*1;q`Wzw;Z4&pfC;kw3&$rB2WVO0=#nr<8ZwFnlM=4UQf zAxVFSqKN5hPdgRC`Wn`XG>hgK^?^h4NAU4@@pv`te@r;OU(HL$el^x5hn2^I5GRCl zJ}TnXM9*Q}V|ByG=NCiwx7W_tL=fuU^+ z9*-sN6-i>WPI44uqw*te;||AUnOc%bvhS@`e`7reHdgCFUN&rE@?A7NACsY4V!?!d zxtx4dKd0ZGg5R5&u&h3@j-z^ba<*?F4=(#@R&pxpF8*re9d8fqSE4n8@EiYZq_n5# z-vtcA4(+B5q7GcOg9EN^XZ$7ZW3mvxXL_AS|g`*vm589r0b~*c^8V+lauC3cl3%<8JJ&>6RQwjr8c~HPJb$* zP}oY6;3$C=Z7v0<+ zn)UZ<)BKGOqo~7+5~jZJywSFM@&U8zoPA!eKTq&ts~wFp->sKkT?Py6Kf6%aw zc2sbpbM1Pe_eJUow=zpFE=FhhVguiGNcU@9ToX=QNwZK*MS_KbLs0u@8m>p&VN`#jCu;RdslE%gV!d9YLq5@HhTVp@6~0x3k^i4CO=tc zCo>Y&W}}Rl%jNt*<9R-%e}1xSr{c6Qs^#6B41Q7<^pH^J!^8VRXSFy#Mqe@UxvpIF zVCShEV-kTb{8!*$Eh2e zh1Wh$nYU`J7?%7hDDX;Y+jXdOxVRbJ*S%XV>~>`<*{bH;qE8goe^1Qd(@XYRYLu}$ zujy~--%1dXe+v1SBXwXa%?D(`Gv})yPs2HwqntxxVATjvrtBrp+%L`*le2xjk%2bs z=F&k{%R}V&Gfxqp9Iq<^_`;nEo_egrbhRn>EUndr1+|*x68$d6k|qnkkfm;px#cFi zxbcyOMk`iheHgaue}E@rQ_aYg-1=ueO{6AuQ}=o=eQgiFL=yM**2&sy?c8WKj#t&? z1qRXSb&B5%uC?jf)FxiOWUFkSG3f*e5lV4aGN)c*fNd!#veX;I?42HpbQ3U}sBk32 zK&;+;`yysFN4&cuGliin+VCcS!$g_Nh9|jkvrT!>@10lZf1s{~$#fPO4m(ypy<*vi zG-dh4GedGIm$QdH)9Ecl+G`Ao5^W(pg9EbR=$DI^1xjiQ+79*4H5<&{p{k5n9z+Dm zVVvrd_^!>^VeVpz&!(ls+y+0e;zvA{6?o=Vnc9DDtkPQr=whPdhCEyfd{!2Ozp2UV zWLIc?4)ahIf8u);hGkAm!#gFKX`U=wU9SVsUD1c z7+Rp6%qRqh<04;rDEW%1+4C=*PsdV=HG8no?bnOltmvht^>}uSp5A_wdtNWqr5f7C zm83`~Xuw&^ExC)1e8IM&rZXGHO-45|TRAOp82r_Jf9*Kb8>VW$@v(w-%fT_fPY$OxH(#0&sK$B++0=t{+3E8s@}joBka$Bdr5&{{|&k8sA}jCmbbe|?InYt~6Rl>yTfcYL~oamN(0+taxjlfsHd1lcCP<)-#<%^eFgr=GN)M^p-;i%>Pdqq9vySRkXF**8G zDS$a9>q|O@0X2Us9kqZ@g+p6s9`Y}9k|S{f&KZM#_6dt{{+usu+qEJ0lm)T{Ds-_) ze?1-+D2ZT%h+G)AXiH8(?JqD@6n90Xdf+Jw3FvwTS`)wl97kR`XS3o@m0CiQ!A?du zPQ``g9mu1`HB6yzzfhHs~qw{71=zirpxZOPnL~(6*JMlsQo4GLQK{|Ctj;O zneTfStL!7b`cMyO8w!2%y2=2~!F`^k7CPw8>H`){2L1bWtB?Q=5n>&#zT(dsfAyfC zT&acb!Qq3M+QtXect;M~DCSWmHm6;fKlj@XDlHFq#iy^w(+1d3@s8k>Jr%WPlR0$} zWU2*st|lA#3~C@RG&_PxR22bI-_IxNNqjd(Sis6^Tc<1@0%h@hUgPe4T&$ccuBe8;wH>~IHh%0-`l!WJaO%km zBxm-uX$L(HBU6HS9Fz&wCrr(?S0fT-+bdq0pI_BmLn=fg>94f}*0s08f4q7vry>=& zqiEIE_#&r9=`21^f46tN6XCA2Qy5?tbD@*C8?gg^ROo!wd6M zX9?8{#dmAjXpGp;>B6=Zf08A~U-~zRS)t~HT(J7@H zkUPe%SE7gcM4iGtz2`(dY;_VzJWPEoiQekl(j`~Cwqe`t)_Q5a0IBi*#3bl-wk2r% zRt~RAUX5DoAz630T{g45w3oSEiDBkwkJ&-s^TQY(#qayn7PvBef1XvCgPU5}o-;L+ zO}r00A7lC6eAa)rb~DPoxJqR6^fLQ_S+=jwWYQcxDu}0Q*=bH7-BwrT$cnlDg|uIS z1e%YLWY=lLw&YD>&90C1PXB$2!Nv{7@4pm!mBj{uerc!TKC(7KBtX8TXQpKZC>bRR1q**2$_zG5wP z87e+=&lEnQb&noIy111&X*_P0MwjjZF}}~|OU;1vjzq%sf39}=7^s4eS@yVGbO*23 z7T;IUJ>hNiz{*enB?(-!^)1%Amzth2kz)|mwUmC#__S*iq4Spf;!_C4)u@+==XX?oY5gQi0e8w> z&Zcl!%BO_21EG=1&h^ARo!r6Z&P5xrU*l6(N_o?%KC9dx#*RJ_pq0;2lqbFy-kFPlsOxF?(1;$<60klft7??C$+XGb3s;s#SXm51=~0_uZ@Z6?SHDHe-HTe23f4cj8W4Z6GNQo4sQmjo?0UI;%OU$ zSw(HSrza-K1y!;ClaHSKiy{&n%$RQFP?)$YYp;B3nEGK>hleZpeLlrD-lv&mGv->= zA>rrh^q&^QNy#0t^chSCgNV1~L<#QU1VmMGHwqj31?>jAe!!zlh5m~CfFgnNf7$)^ z0)oM11)9(6pW}`vdppc{A`Tvu{&2hK(-Ha_79|)?fI8?q)A{B@K*(Ic&_E?uU9oZ9 z`+e%=i7>c}@Xkn8zs$-mi2e{`{JpfZi?1@FEhh4nFUoFNK|bFU`PK7_HdC1%bGOuW z=wi??@7+_H8#@$s#rUuY7vb#jf9J(Sbt&Uk-j<}+=|Mgm$dpenDEM$u)p<2OFT8e* z80-2Z!vJZ-A}DvaeM>o;`!43k_{EGuVkOE6*$S{uJK7jc zQo(KZQy)nOzKH1LY0rBJ+ecYZ%Bv>U4;w7L$pI*zTs*mQGD+&+h@yO*c$>b@l(Eaa zMvnFAhcN~zDnx0~dN-I{Wfv#RE?W?NiyF1XKMeRdy3O2|_GDu6f0=93J~6$?3QM9u z@b%~-&)SZ;o7NF>v=*1YUuYs@ed1TZBh_5Kh@79;7(2{P3<4>dYs_S5HlJz~o^BJZ z3ncikn?|$n2QvpQ@d+2P*{Uv1>8sBI^W^Q0_bBJK%`q~1KS;S@5Ncsy$j~rP^BRxE z+4FRFQ+Dy^oH~}0e~Jjnu^Z8D^`yNS(B%@pDAXwTig6Tz|!)DyOu_t4x5OQwFQ`q=V;YufB_TheCi zqIv$_)Y}_%Z1SPAWWG;)!dl_Bp_DKJWg6Ub2-3})mNU~`f1wxT&+D7eP`ic16Tjuu zxsp_Ld#FT(gpRJ$S+Vb#JWsch!DOM3Sum0(LRJ(Ev(O3@Rm7Z6v{xx4O$VcB+`DT| zf5`}zkrjQVZ>%JcYOK!+)xCcg`l6Qh>t@DiuHzNG!`IheTJ5_v-Q@c~7BlkLsN%#2 z=|lXRX;oSjf5{!Ax@J2+@79hNgn8dyP72g(>+-`ZM2x+ZINRi1@odhf7Y z%(aOA)8-S|*Uf2+CqWf-HpSI1msjgR^uyZUCv)tNf6D4rJ?q=z@tiJ)6rJ?L#PO5D zYRV!fuT5<7bgm8Mm-QaMvdCR^SHN}2ngI7RU-%W@PGspLdk8=rkKQl#zbK4d*0KK} z5GaE?5l{8R6sb6`{^YL&nU1Z*_4(5(m#2JaGy5aXQ5eul@zgm^vHr4m-NCr>SKs|$~B9(Pc+m=}9~f0w9AODBTmc98UVI(e0cMegd@A>_>ueD8wxJmTcx)?XBw9}iS}54 z4~OST)+bUR)qSTeL9f@@87+RDw+>5xiu}&C3U1L4(ctT^k(P#%9(9zXdUD*bAmI|_ zs2=RVk+2K%{B~D?tob40Awx5QmF^Ove;}aV2hF=7d_I+-{W8YLY2%!_SjI$7?vo7+ z0om^c?)Dq#yX9Xi8V{Y?j5}{V#_Xm(H2t{n(fr!H1sB?LohTYm{Mex@Zl~?I8f3po zUgS>@cpXA|I&M<>#aml9c(0XSGFPk5DUG2*F_)Ze*sng}b=qE}6E`Ue?Q=;afBa^2 z&8f7pTxP3js$?yAe}w|6wVRf*jVm-y`pxX!eqM|%ab-4AeG&>xR`}r>A*%hv*=S?R z%~nVOJ>|w`wRvC4r~N4HUa;~c`Mf4O<~p4)jt zq_0#*(PyP;6b#~@3evtwmw9=O|4PG%rX~Tyw1RIZd;21AWQ_s3)A#dJ^e3G4BG$5~ zx8k2k$N25^$kAM~@49T&3bD=E;w`o@hemy)bM1DN`G|~;6)IlN&@1`J*rJUoZOhut zxT@3Oy3Ky$x0XP^iwJJ#e_w9Ws9B6F0-cTOGMa=>K6A&uwe$7O$8Veyti5X(5*s)} z*Ac#qUTNZ6Z0!3cEq<;2{ak~{AefP`OC{I+N-D@d>rh- zDuCEWarb_%vxmjp?`Fg@r!pQX&}$yj_R+2hTTzJfdi&E+^$_tpSLe8k3ag@GUZvxw zDOi5lC~=UJsBNi(SH2=g4Z7&6u*UW<`7oaul6 zKfdENBbVW70TY*c@B|aLGYSMg8<&dq1QWM}B?JQ>m-74s6t|m11dc72TLT3Yw>@$M zDHoT<2?Z3FaBTquw|tuCD~#8kd9^1r)cQ$^FbXeBWo~D5XdpE-F*cX5!viRP?Oa(? z8%ef)=U3F@Omw&^_a(wH5yqId-FO4MwZjhr3easK(UR!4=hx5qPG(6d3E{%_%Z-@` zE0vjbayk2=!d8e%R948!So%^`#7I|CV`wVr1AW^{DNWz5QqIwLsI-*y9V=~VEJbC6 z+_5xg492Q5k)BIhqcJv>4H(;h$|;Opl`XV6Kyu2gfWS8KgBkme@ci&+gR%nG zvknYX#3T!H67dNmPvj>2X?IW5R~~p1F^PKyJ!YRLqR>uKd*Yc5w8BW76=;Rgki0-E zjMI=kT0ufY*9NDEmNZ9lPAsRpT5#Agn#2RT05Q=AQMy1f<_K-+1?}$y zWI~gKIo1#x@YF$9NUEHGG$=yXL2QDt;0Vc8aF86LsSKX@rZk=g6Luax+-dfzPbPR$ z#lx!k@bPz|j;JLGhS8=bw5##WX!LpKU;nxrSeZHyDf8g!?@5vJKtF;h4nN3E#hR^E< ztU@jP8ngE&<9YS)Vb$!D-GzMCE}e2Tt}Q4amrwD7rzQf$j$6PK58)SlDtN z&`Hhf>E!gNomZc#=Jnow)f~59=GEd7$6v2odN8{lHo2Le zwlntgJoTb~JsS>oCts>h9E3$%D{^juL_fsOblPA_TacmV3lwxg;Ig2Li)=~*gwJnE z>I!T&yWY!MDANnp=~%m-`;ud<;pF?pm}sUA5O;2QSNx^Klf@78l(Cf zrxNyC#_2X#^5sfw^#wi>w&EMYxF)l`E&eBDpa1*()X!(4s+Kj9+W)oxwJk}336!zW zcO=g*t4Il&qmh%Urd0d8T5ZTccdaKsT1BgW>QGr9=xJ)xOoUOX0+}vbQGQ*VQf~3rbNSKOwo@RXagaSmO7q=c| zG}N%VXMm$1OXXgAV)DlpbGlg7_oIss_OZpDo7Cn4||PJ6Ug zCLAPIazF5Vg2AqCfu-l?pds(BmT<9uT$64gmbmG)yQ2@P8oTUku^e}BCQ~+uR3)_K zTIRaxxJMt%y1c9LP*BuPP?01lAeD7L)MA(J<4Ig;o@B`6HqDT7QBc9u5}p;qLrR^a zKBX$Go~(kzdB`Se*;t8c9L0iFh`dU7`=yn6Z9L&RfnDz{@d&U*`5!P=&ac zAsx(DY6FUlx#hHqOs>mqf?!mWhe~a6$#j~JaBPl@B7Td3>p*~S@JkIKWxy^GZZeR! zvh1@6KJDY!WRh|4_%TNSh;)>Hwuo?nF5)6V@>LC7v=cVFJ-Q&JV1YeXz>f}mn1+)} z7DAZ?np@j~Xog+sX1nkiOr+GRPIwT=Se%wyzG-f~V$ZqW+JHNzwwz~i?HG{uPc7Rs zo2?qClG;Sx+!lM5E&H3|BL$L z4N<(i&G32e#Tf-J1JhE<#Mnf3CTyOPHhtYS61*TLN#HHguG?Cf#3fT<^|(8};w`IK zbF=hq%&f>#DFa1Y(3K=KBo9uyM3muv3dJ}3eOf6v>?>pX{)>BUoxip}DbHSgva)n_ z&Y8#oaJ+jFes)paloxD&Nw|${wo;oaP$?J}3y5?f?>xscehs;Faxh3bT!d}1bOz~= zV*PW7#XVaQN;Rq|4BHBX`aWeBg7?*eO{K#%kikeUfl>5gSQP14%4P%ykA?%y;MgR> zNWw-d{#h0aQ0%9hTQM zTb1-I&RrB0((3XqB_C`~;oy*@@bFiqYLu5u7byEBWQkg-0qLo>=2n!yuPyJkqQZj3 zhTAlgkoTNyX0(%kRuD6U)X6Z~45@=+S87@IZBBB?{TAZ=Oflc=Y2 zxs@Wym5IdXk{FwR{S{L2#+idfU$ZwaVKTAPJZn!WM_D@y_yl95VFtzp8_TB&q14at zg)D7aA5<)Y;^UxMmO>O<80u;i6x}#nnx%y<=Q&+e9I_xsk06kaY{)SKXeY560S-Ac zPErg-Q>b6C5z(B|Sj0;(B5z_ve;982$q))Aw1+^WF5{8^V#Xu} zpxA=YG;p5-X+DJ(AcbcER$@idQ@ctxgO^VnyJc&b--6|U1Hh=bG$2@8Z7#CtN;}{N z`5+uPg~c0x2PhD+JQx;esaevvbmEiSXL*XCnx-(#^DPx#v0`_lxSHk^SG-c)3$G^7 z4FRho8&n1FfRYYg26J3d;!x57#(K#vhgE}MLWV~O!WiInA>2XPW$3}TN+l0et?&yW z@IpAOIDm!Yf(&APvW(7v&(TBfH`}f}@Z-gX)sjPhE;sO8*|(C*Ey(>1c<%+$k04V5 z0sYjR@2G4~@h%l|7Heb*33GuVvhMo;twSx3-8lN5UAW^t@6Fbj zQWw&D4=K_?u$5l6C7p~EEM11v4Z4-$oJ#~QwlVkEz8lBXXAWz^67Tu&i+!x2>^+#P zHn9AE`eaS87hX(4TEsYWfdvH@epigG9P>Oz>~51oCP^e2{JEtfEt4BxFBUnLac4Zc zn8?W>f(5fofh?zx367&6#hfyhW!7_mr8uofK^eoOEEjs@yS`334gXjK*K~4}G2Z|g zZs6!qclTfRI*E3i2@AILnsun?tH@kUGRgCQO0%1@p83MIlxI9wa`V~(KDAl{U+p1p znO_Og_#}1M4SiHbg6Fg__{eE?SI%AUrMQtO%%4;%Pp!_?X`RDayR}U;=49F%P7u2@ zY&NJ8WdtdW?uyEJZ`O+-^N9&M*XtKhhR3FWD0W!%?!IB4Ht$&6j4{wM2MH=sjdAsV zF>*T0w{eP#mSIuW#P1F|Q{Lc3&;ZZP1$mD*@yNlj@l342TXbCcw7DNN%rw~HIRFXH zFkECB;ss6ac9Om170xNCQDOwY#hS!?;%_dfl>Ei)3fCiB7P;gKuUo*T=Sk-f(1*;W z<+DVg)Xyy!R)Xv-wPPYAO=e4-inpnMq`T42e$1p-X|W4Ftc8V+ZELZA(#Sk6_D?f` zePfJj;Yn6~7EW9CmJp>SFZ~cd`!6f9cjj_|@M>>4!Zz7hE_y4b(wKs^aOQ!>AU&^G zK&59L6WqeVE}v!b;eKjMLC9`*o!oGEOc=vX`$yWePj1gx5^}W)KhL}J>f8?q$t?%G>4bbHw~-TnuX4sFxi2WO z*)M0(&WU?vzvO(HUy%rYaUj!%d6n0edooPNH{hE3#naEl3txDzX|J7~PKVd?$uzy^ z^m1@TPu?Bu?ftg*%i|ZjAEcrOqrt_jG6`arUy6HRb@f15)Ri^==& z@-L7_UavKIXlgVyojt1?QuDn z;#H}CG>@9y=5e#v>^Hyi8)*m4!QkrTY|y-DUN*0q*Ue#b)EqZ&n?ZBZoHl1o+weZk zd2>Fbe}A>j`Q&EWTr`)><=5-WcH9h`Kblc<)r_0*aNIVNWfJoTo$ z%XK>)PR^P?n`tv^X6;|Jd^Y^j%tnLRWixN)m(#Xw=6_F`o93_P@8(PMwfT4R?{+%* zXCm4DkPx*lmT%pDiv_Pf{{Hsx5wjp{;Xnij_%B=R&*6YlTRCt@z&;hi-~#rWxgsF z`aWXu`t8SeM=wb%o*f@=kqaqFEVwX&(xWTXK*|+0z;GcK3c_B>#RF+N$#8M2WWWk7 zO$`jqIa`%sHYO9;kamhQvb~s-Zv5SRU8RA&4-MWQJ$`-gjA-!U**0seWwr%Exo_A4 zeU~jLiD0*X65$b(;mN`rKW}~`ll+40@SALj-!<=>4@9ED==u_bI%($vGR&tFk_w{Q zSv#7;nzYxm;b=0JOvH-;9)gs~#Eg=OAGNbtveP%oKF@~`<@58-EMH#^7o?sKZrBKa zStq!^55b?m-hcf2J`>z+7dbY)M*bvnhr7tVyNb+zy&TD#{im;Wx0mHpK z)8XNVkFTE-0S~uopGmP$4B6Vn(=xzTxjK6*2|9|^c5-3 zY%o551F@IhWyNC& z;0ynT%NT5QOBmM06IX-NDV=bScnata>lM#b=gS3K2sheWB zt6@TDYcw|;o%M+6!o8f?o5#Ps+k3>49mUQX=&yAMzIK7cky+i2rdHo~4?Y}rm44DTyYtI5z~qRA_w09@87 z>CV!KEdoFwzl{FAg?(jI981?O3^PDrfB=Eu3>I7l7@R<`Ai*6bgy6vg!2^RkL4pPM zKyaO)3GNm&NN{&|_$KE)-+k}>b=R}HWOsG%U0u7oS3PUjs*)_4gEb$YdGG3nbA2iA zh=~e1Lp+tvn_PRZtvJ1x%}gJJF$O}*=-s#@z9UYL_YR`{=DJJuY4hvTPM1`h5#oOc z4=NZymo1yX-^)7L5|E{JE3=R4DUoYDS^lO za}(#EpyNMKM9v(&>yK5c<78Y-XLGgxl*U_Evl)`MU$ z*j-fU9vu67-$>^>Lg4%NEWKLlT3vbcDZS?Kvu2LP^72mvZ=^LpA({P@4zdtBM1=>h z0GZWwRMmuekb}6r#Zny}Sq*lDFT@vB0mByyV&amAA3iokp~10vZWpe;BdmTPACEAD z7nq{Im%v<^d`Y+~H24N8*9NWWmphsx*FK}Z1ko4CfLTR<3@vm zX7Wt+duNd^b#M;7=()7-ZxDX#qp2%yst95Cn)!%cY}s}K-ph7@X0yS%w){()0~n7J zNt74)S)3D7Hcks!6vB^iehZh|E_FS+yt@#00K~?>o)NEpMujK5DNocAolSS z?ah3MG9!1a=}7PJxmDbb+MGx9BKR_Z$epK<7pNxB~KH0C=HEk>@}?r1Bkb z1_0pY{mb;KC6!@-KGg1k902INf3=Y$h=VGS^gxsVz{~#+8JvV7gT;~_UjtEFP-1}` zQF2&P1|DbtnScXAS;31;#{-R{@>oLRqzXJxJ@Ppb2>Y-6B?;&`D*sHUO^p0P2AV^e z$;XovLI&zUhVz2h|MJO*FcM@xKPUkmz{iU;5dhI*phHn4GYf%`@c-eM`Cx*u|8UId z2DA25f<)d^x~HZV0X3GJ)V&|&pGkg3mSL(z9I*aAqqxQ< zQX^`zY>kknHXOfZR4+V4Ji1|0P~;dP<+qsN^Hb?WqTSVKc5{)!+Rl^%?%^UW7Hcp; zR_@VJ!5ZjpJZ)NMrJYn=?Nv1HA@qKYV|c@BJp(@`97F2z zzzDzTluDtg8deceM;dp3H@HU1xA)9hnhij7=(bnd)L3C?i@% zJ6u1KMyXe?=Q8WW^8~Vk#UB0zE%oRfMjs8xCdU~o!_*mSO7f%;rWb^8F0Eg5PxuM7 zU8K51rLRn>0^-}rx{dwxPkbZ#cqxaO{A~a`@4;LSUWX^cSQkSNE&8wvm9lbIRJrB8 zQb__@NU%@MiDcJH@p`FBlhJ&8xN>w7a!@NGKSoUnB} zkv&DmsqJrsr62x2qS+8J=l#dYu4aDxWJgeUCt@d>z3fqHu+P<+C|Y{U)#3Rr2*dNE z4;THhvy8xM%qz^W{zBi?7TRBp)hlC`(d55Qx@WLMm#GNNVhKGA>5mtpH+#2wj~tjE z#d4z`)jr2qeT~_3!||@6gSdruxcKu+ZdwUN_Z;8uanSO!D}*v?P8+^Juz9v~L93F< zlQpH$WuiVY78nGM=02)%d%StMHH&pYoB>&6weieR9XRX&M5`}EZ?qQcMt_R-ec7k0 zKGOB-v=^r*31oIkeb^)<;&~T;lqUX}Xp)pf*+aIw#Fr|;cYwO=3VA>)?oJ?SNuQOI z*Q?5?@kIuZgAnEKdV|{Qpvhy7j>x(&UnHkV`=*MU;@U@s*^>Lutt(iDHcw^#dizgy zRq?D1?*=hyA!UmvM@eDTQtcKxaj zPy4U<{%q}PN0V_EKGW00c2n~^q$h#$OTBcakJIrsVwCSx_RlVp43fmfXDKOtW-eP( zVs)(hDj-n4PhWkEUpb{;h1OhsRRC5C1YBNg{uxEX*0_AXl+LkArd6$ele7dtlPR+4m7TM!% zpR^%)<}G#8=7JhkE${50r!8ck2JBjNqCvcjh{0391)8mH@YcQrI{l-O{_@8DGm=T= z&OfJjIQbbFkMiEU?h*1Vb4y~M({P=$oIw;)d$y{o<<)<-R{~LA3 zr=8{^s_4FyFjvheEIT5!q|636A%&DBghjb-*H9uY@zVJH8tV^}G{>b;7M`m<-YeK* zAeU6`j9G_y9P=Z<7)wP|fKCF+Ru-*YV#)7lJ{X5Ii)m`$Vlum%on#^2p*z>dszo-B;nKxx zI{1Cv?Tms3j)tY{|8z)~=V< z);(+gaH#5}a@*vB-D@m9i3C)47n{Wtc;B4{RU@x2t!n4Xl61ko`Fy!u$tNCHYZfjZ zAMe&I>h&GUJyiN3wr)M!8@FEdv)kuyXt`r>VSH(oE3W48!Hae(R|~pR2*m5MIykOi zQgL(>&v1oG0v}C@tFcpU(~Jwnmd;a(U1qJCX%RrdU0N47LM)aK~?i*lYZGl(|t_? zf5X%1&~e!gFVa|HhX-U60)9X5L>RlDT}rlR@9phUNTA$s+hFHyA*p^1Ars0JVQH1* zA!}VUuApyqI9%rfrH>9}5$_6ZU|<-(Bm(9UIW3ae1B}&h9 zTMS!|6%jZM$8^0)UA5=3IneW?bLL%OA+wqPV{qUr4zM?yyaFj2Bd7l3;7GF zaXE2XPTwk*AE`AX@Oi2wU72%2_EltPjR{9{#A z3Z#YG-a)z{RfpdQS043*5okyh8Oc%iy#teFWSy0M_yjTs*&6%lloo7`0ToA8kNM|E<8q+6KsumB8PTx(r ziQ3edp}U&`BQVgAN!rox_ca+38vG}SBGCc@>D!D!(zwz^(aOpL6zuwvy=p-kQhGuY zLchoJOW$jVRaD7U`6hBgHMZYP#u>MgIFx?o=xID7F{18kE0&AY(5#j%cJ^`9a0mug)p_O7WVA#X_*QKmtr{u zG$|$J%m@ejtXUqs?G;NlenAh#CX+FF%(ID8iEqB7%`B%TA>V<$jTJ`r;toQ{P)N&Y z0z}W1iG&!J5Hr-WG~3f*p5>x0?v6{AKrj~4=9>9kSCVkx1L_p3B!3EwhYhB@JpTKT z)qbQ0oQB}suopqd$rwls)vJDfwc6@6F{bM^d0X__gu18AMxvY_{o=Aq37wjQ9!d~V zDC?V_z>#KFrC3!{v0L7O{?{N(x`aT&8+?6M&S|$E#dj|>pRtz(*XV^o>+liu+H2aY z{UdfYF$v4~Jo+&tL>_ePjK@+s@@#^;R9dzlD|{=gcWUNx9KVgVxympm(A6=}7lA9O z2^ADtQFSIzb4r?4@U(i*ME}S)*)11bs9C3iKI)W8A5I;ElZH+Ob?oP=IGPECrjd@` zss52`*)8pjAn))dt&r)jh#sZLO4ZmTGSf_YZfMtYStB#BIlEiJe+EN7B551%=7~qq zp9)l)ZM@CeJR$)e9F4XLKlQ?=^g;jJsoBpzo;0Ke$jXWT?vaK8RVe76(yxTwEL&`C zlQsPHHoK0PL`Z%o9p?*0TpsJ*P6keO#fX;%Iq`~!kzZ%Qo6D%)RRdTVme9T~4P7`j zHo_g;c8XO)mJXTGY-MqcBJl_ue>_0tyPiRM)+J?Luk1^7o4#R0z7Yre1+d10!} z-l_Chp(4xHu-EsS9g_yj%u;<bFGav4+yj-)&iki5flcmTw4t&zsijYn%_b>F? zy(k|=?>AtD#F@xfLD;(=s*PNpf>RW4tO|BO&Du>Pl zuyJ)M@Uk==j9gi}559FW|0VkMBN{g>IQ8q^b`C;wNP)d8#+DNxJ-=~+;}}qR)9CBk z;I#c&dYBs1?z)jmoK^<*eG8J$7oJW?P|&_hwFm4rbMn7MILboM|4x#L0m1@F0m2|( zY+fjopI;a%oP;X^qWo`-O9b=@AO!s^;YURV!{L^D=j8kW0_8;&Uzyumez1bT1Yk)^ zOF&jcly<-UEYIVn9d`E;f>`-*c%1LstU?Fn&pGc@{Ro_-fS9+|jI`GmuN7C?NcX;D zy)9a@wzR0t=~1Esd2q(#QrW1V$o|1@f9k<*t45`uCV!*iz9r;Is5L_%rBLdjiIZQ$ z6V1W8(H*X!)wJwSWzx97eW8x0~y_;iZI1`5b<*~^j%W8#K zW!#6^eo>B$ZB&?KFucw*#QMeS>QS5i%*&0no$Z9NBARhc5(DF{;tG^G%9p-hZOyHB^a*eZu zt$6lYmBz^aw%{PV0apFfUs4fgy7kw6_wf;m`rl%lTe1EkJD-e(-Z_C?d(xCGH5%B8 z*@{^Zjm^m<|NdB-E%p1P9a7vj@d(k}v?7?S8XSO!MTsv!We{GT1{WaTNEox)O+~tI z!Gt&6Mxv$t#SFHp)yded9GzvnqShd$mN6(evukhu1-ukDp~ib2jgYC1^{2i(j5 zI^#W=c5)S&zdB;LJQ;o-zO6I{+nG01_ujyFQW0O(iVm@Fo;eRCk6B_-MhFJq3#=h# zo4dAkDWiME-4{4k8q!sYL)r_x6Pw(>tyg~$;UXP)Bfh_K?p&VmAiK`8!~N5=dHY{4 z6ih#La%YSHQ#xfLj;6{aJY3LhENC}1d0-BI5>Pj31JW(hz1U~g1v;!D}(Z4UVb4V0bya3GYj(xNel7`3c>^hd8MSEL;n9w@KK8X^=qhrz`wzH zOi4<%+S*ToFB&cq6D@J$rCGf-vhvkf;x&vo)mWa)NNwHBYs3*_ZOdSFC6n*hINdxd39U=a6UaEk8bU+mw5q3*V&Ol{R1C(FJbQKXz)B zx*C(LiNUQu#g6r((qo)bh{pm|$n5hV)F0_3&?Uz1Wa;Dd^^`ty3thLa2!@l?2k=k% zyR2^a)Q-Uk1Y(Mr-Fz*C3n9qQb3Q4Qt|*G}QyW zPJ0GPB|kY^JvB&aYG1YJJz5u5{%9e?RmAjF^%v-qzv*ILkQ$fwrvPF&5@&Nz$=9L) zD-H0qm3#zu$lp1OAPwuOq{MdwHkThd4|ecRb4L(3px77~=?~?>fA*6x88Bu{`oXZ` z1>VQtr*I3M{M)o3ZLhO-vD~CiVaU}Pp^~53>t{HU&)+b&4fWvV=)12F$eu>UD{0kl z#x(_f!@2u*L+7a#>sVa)Ymxjt#*c4BN^E5N_#?o_tjA%wtCpXZpW#LcB3vvz@|U&r zi%1K7Lyy(_Ol?alN9uS<%|fT2jB+f$kr@ariRBF~e45Jnq4^ulG`XQiu-s1^q6_^^ z{VNh?h6(CQt}2?2cJQqTVX$mu=xfp;L;+0?Ni2JgmKeHdCzY%wnjHn9%7m%QXb6I-{zbKpP$9FW>yQR?McMdp77}$fdJUPpQ2F=al!ey% z%(;I|yW0A>w=jE1Hd+CCK&3?ry@FY`n9@cEo2$}(KL86<)LmBq>Y%_^&#Q(m;H!a) zd^TYR)5Bs}mQm`Gt00Ltyj%<}n*|C4D8@J*(d2llnJ?{AzeeI|Ap-WYFvtBxvS{!~ zpOgRUjFM!B6OS|$sOCUzIK2Ew3spv}m+tw_>@W=S@qGh)I}6J&Du5F%ez}YMLMBUZ z)xD$rRu+MqnBt31-Y6dghlSDj5SrQFUI$&D`&Tbg2@!Dl`taaz>0ct%pAz`K-~n<4 zup5)XK@7(DkzY!GAhPUNi~+CwS$Xg*esc5|6Aq?M)D?FB?WLqYe51kmyzeD^*+UJ- z$)ekyJ%rl`P|+LPI^|pIyLHZ6UHxWz+2teEJSe1zDl2{^!eM!;^droo|BGBXKjrOf zZ=^49F+mqy>-~SxqZlAqRa!Fp~tNEOEBnjLT867RGpp2C0tzDME622Ck#@Y&m1d2q!`rnDDv0OK9y z8sZ(@y5ztp$XjWp>2zXz`bYMR1}~;914ZCfuC;Yj7U zDK7+Kn$N z%Z>N+E;;*Q7K}0Hvnji0Y!#a$+t-voVAvO*|4RRxa}IvlEB!u1e7-^3m#TPHrGFDG zW`hC_^FED#66%%T<75Aq&q{81QEzs)0+WHZ+pI2MzCCuqoTPgbRQN;gnmbQILIk+I z`4W$`I?2d-BR?YEAXbV)BUBcrQl5^KwSyj}mxmcKZX8R&p%EZ!T_KN0DyY|s*Y@W3 gT_OVe0pqwVf+FdMDu@~k;}sTy;xIAEs>YqRkl8s&VB0%;e4X1zb^14>E}xm>QThslkL2aH1vSUc`>MbEZ*`3X3Uq4m=gS zeDUm(ncHB&b`fYeasUUBCb9Lr_67=VjKkZ2QYN({2b6K{=z6!3(!V-5xVnPHz81By z5e8j`ZdUtD)?n_QI$X;TOlG?8C9K`l@q!lOY3>cCCT$@7)wZEv0cPE=-cbKMb4H_w zMr79yIDkmkN5^{LvHn?j9hcXJr8t+;pdY&n^ z8{iXkk=0Zq+YlBI-{|g0pzLmgo>Wou^PUHHMmw8Ix#_q4qZU0+YItan zgH5+`ufCu!#W5A749WrP#b~9!2WFEkr+m!#TlcZmDo4IUvbDt~i zM=jM;`{mmzWaA4LsML|yV59BU;D120srE>412ELyDDMSEC`-j0kSFq&$9t=8suge2hRveq9so^^fDLFqy~hftFRZH z?Q)f^7>q}G?#Dquv`0B|Cx3a0c@>qaHI~a9u;n3GMmPR3XxmONI10YPji0?3LvsUj zEIwLaOQ)D2!#B|tP;_`=Iy3z<4K`vrlk4 zFKKe|$u@3{4=A+kHdhQn3)pEJeH9KY?bVznv{*SH4j~PMnUg}8Joe1Ufv#au!Ih

Z3u#=s6^qSmx7v_PZNAQKu>oa?069?^fwDK&w9!331(*u_b9b`u;*+u8VH6f_-Voljch>pLI@v!@PW!4hw+#qcq+p^%bxKK zZaQ6$hZD`%+r2=AGv>)l_M`)^wmIFT7kK|;*QeohlcHkB1h4wHxqpD_cw@~&KXx4Y z0jcFoXF)&algMd^?7V>(036_>yF4yRCdY6nb?jO+?AGYD*3Y}^_ZP}7&&zx0<#`VW zgi0M5xds)pbr*DQt?z=qt$U;08m#rJY`zNX&4+j_} zK)T$F9_fN-@9Oett$#}8Tck?w=(RZ9;r^j6-Excg#r<sEr7vd9WoAs@lhB|gQw4h_blA~&qvFL>aOlEmFie6<%rf3 zq*$f0RXUWe56P{+d>2-9prRF3IP&g1@zLyC#SJY#CT=adm_o!Z@rldKHo{EGTR5LI(Iu-yw)KN>1FZ=PdYoniSyI*WCTU zC0GCJ>uVu+iGN>{Gjh2a5+zk~2BLmC!3=u=Uf?|sa<6cr1V+3MC9=A`Ps``v{hO9D z2e23Ak*u#;<(ssHkdfn&2f_E~3$=#62!h(-t`H)dydqXVDbQkcSf|&U19C6Q!d$(@ zFL{}PoXe?4c7xUg87dbZ8B5-{y@XRcO%~%WL#~XkDt`iVg{pS7ZU`sUceN~sB~mzv zWM{5tgnj1?@J+&Au5k)BN067fE?sy2gr^|=FjM2~PThdQVevGY_LrRRIh&g`G=R&*Do%r74N3sefbTO^|PpfXU2e(?3lM0Gq=nqiBN>8Dppe}8%v+LbVcv?|vVWfzTbe&s0Ulq0Hi6f=U95N_4<{lby@77ILue~7!% zY`xhmX4?rFFW0N$f7NONf40dI-mV_p%Va)ZZedB1rk~tK+hWJ7b(*g2FFr0;*ZFsg z&E3O49PvPOjd;lsmn4d*K~n4d#`!`VDP$BTcAZ92iYO)^tb%z0=j&K)9YfTV44wuy zl89hcNdWF0V5vfc0GZ`s{|b=~V&YVkV(K7T)`@--pqL^CfBWsASQZQ3g~%01z@4gN zzQ}jc9=QT>oV{T}xpn^wkP|Z`IS@@@dA{B9>zhd|^!V%B(7se6A$UX;Vk+04_aSx( zw=V$+<;VXPI9?(QFyNpj`Qeu{yDEw?Fxx~iK;2OHjU(zdbe2IF14-~%`g~=cbhuWQ zESb}@tnFx}enS3z^C?(=*~$8w z4%T!1=VX0pvS%ghweiTf4e=hV6#N>)O2&}}X;u7>e+Whl2*8C`$qfDIVmkUTvSPpy ziHOz+e7-c`Afwsc=*>GE&EcExB49aq%#Yc+JGg)rmclf8HTuN`5e*FF8)-lR$-zQH z#?p$2M3lhxq;NqLhxiLFhOcz#VJ%t zUsFP`e*r2$p=yfKLt_Ur>Rs#)8&kp&2H*NQbN;f6^EYA6+xwi6^QB=)E*qAma;P_5 ztjD@;);~Yq&$@UY4AdZ?<8Y`%l$J3x&8(s`Hb6oZTvHLYw-l@@NHFFC8LpoSH*F+N zT)3&92sa6W&oKm%5|b+2Y)8ScpFKF2=2scne-sH|2>4&jOS)y~5R8ZcqH8OI90DSM z4^)FJc+W_d^zrAarYenVF{DYAjdW74Rl`AA!$2*vMB(2;OoLTQXAEM!8N_@BHEx~- zx>ArnDxn+tB0aeEp-kea8BlC0nSWHCM) ze<;vYH8NVzky`H0IEzdJAxj;Z%OLKtQbz!wRYyP+!ob0xNsdsO;jyW9Vw3j4rrHae zhbBQoW3!e7>7GfD$|4N$HxTv#g0G!Mkb?-S?*iB%CJTQs;|KbmX8Zw0P}%sSmG8B2 zK(Oc+Lh7C&RLK~Hec%vD1=2vxF@>^n zFG#Otvr^Wmf7xQDhOmwdswu6ohVHBanEq9O{{vKF50#YhIw}v36$oGuE+>JNf5Rm6 zw%oxYijlx(S5*Upm^HPnQp5-?G$f{!jvwxqtN1M@VtIcLZ`61(cOB5}VlyG*yN4ib zFho$K3>^L$YzEu1DjX^mQmpD}awJI6mIQ(@1jG`MY9PTOxnX>{n#7#b@ho{*xTke4 z9PV=fcBZ7>ZGLT=*j2|j)cKU4e=Vh?f-PIf>{z+t`+$VNb7*3Nc*e9>^|G?lB5P%E z9w?Z#%jzggcu66_WHk>_L^&e773>XDr)yE9OuZDo*v^~?l1(m)`4Z5=7Mq3Zn!A@* zoAq7T>4A(0|C^g0MSy!|!x!5Cfq0JC z0~q143UITS+ce46C`Au&f7P0fO>or{?rv~_;g+%{-tzgy^p5loCDMjc?C-f8)!ft3WkhhQ(VH zsP??vnd^4N8O5KjHJsDd`akd|-(=JrsX4d(pL(u*ZQg2jWhESb$7)xv4Jy^$7n9j>* z0H=dqzM~cbmmTc#f9WJ9w4?HT5C?XuxM#tWbk`tG>+*-G_$+jJ$K^Dn9uPc&tiZI% zN;_QU0NIbWZQUxhU@V-ez@zcKnrp7cOo3gty>e=2y2yS(#Bh0O7Dy`Nca%<1k!xRsK1Nq;erLre~daX(i{bd~nyfI0_$#GFPFL-sxT z4K7#?_Tr75@$`8!5Anv<^$sydAxkX4Pm3dH%ZC3c{p)DzG44tS+!fi$8j&g3aPZ&| zmWhMhRggHFe{~&$4~`&b8+N!S+!_>(UOrU~Cg2Xo%S0|JPNDai@}4T-e}63hTPEx>H;9t4Fec#Wg9rP}IzR}}d_*H?|@dE+(fy4ugS z%W3~!d_eYrltr<;-LSci+{3Tmj-oeYY=;1VO@_B3T19&lVvv#0XdNo6az9fF_*Cy1u1`9Npssq z7QXve;0V@)o!%Fx=HO(qPR$$~R^8>9*I6tjQ#6GrmdQ!Gj#zOL5AdctVl`oVd4%$gb2FJzm6!9@kF<68T?Q_f5tpXC1TO1&xyz@W0FU?fzuG@4=52rV&fb^Z`qR!R zgd@&_>=#vAtTtXrP%cuEF@y;RdPmo$>|hWjq@yU-pd42^e}kz^F{BJ>-ZR{$7)m51 z?I_S>s<6su)()IF#Xz0;e0x(_J8~jnDS=Z<8H@}y9i!@-$&^TyzXb-lyO#M&Kh*yu zgs}$Ds$&965if^V6fS?>RZY9Kp0PKFL{SQ1(Th?9Q7-NwhCob^eK9sS#oQv!UN36@ zyRKVrn0dXnzHf_a?VngQS@%yFHi!r{M8Oa&62Rhd0WJ`Nc^BC6@~>^tR`q)0Z!hcB zs`kKh_iaQsfjEdrZvg0}m&pf#%&lnl_jP%Rez(Fw$Xh)d8~1kal{;%o{CJe#>mRirtu+RlKS?6UE?DJx~u@b`M`qKUiuqWXkoJ26_g6N}<$9m%l z>LyG8pg#Dmt8D+scTPEt~aoLO7C)AHdh~kiZN?-$I6Lb6+V@~ct|CT=MC7? zXC)o75F|w+|Di6WnKAu?t{efT~_{?zxCz<0tZz)QhtE!Ij`DP5O7s( zT5rW(4H4ql0>#x{oDBpCR~3PR{^p`!ex>h>oU^0%!K?K z7O^hVw=RQ`&Sh}fPJAJP%iuM4ebdyT7&KwZ+A?XY&ByEOvTZ)5oa-$O#IdFA+>Wca zv@y92l-SrX6pZcYKFPfLpm{Ok%KpbgIP|w6C}74_Q-YxrCKe?B`PHw%X4cMM`Sg}h zHDQ@Hc!q!4Tm$8NQLV4+t<8oOtvVW?o|<(LMm8{ERoX=zVRJias3TGWRI>l5 za9R!qf}X(dqVd@>p=+vgz$K^Ilp2I-2!YpukYx%Pg^91i80(B9!$K=m`Am-yHaeRs zqzw&FN!1sP7*QFu_nzvXVGR*e5sEkn5vtHKAqIa(5D~E$uhJD>a{_(YEg58BoM5LB z2MPAH!YPG@qQV^L%p!%}rUhX_W>Dg3;Pt3 z7&U*e*I+@07$u+PT`@ET7kw{S9fVVC((h7y41^kwP5K7oZb3Z&u)E9%LsXHDlqO|U z2y8lyDW4?XciMU9Kzt6|QI9(@0(Z=KqHoi{(;(7#Yi#>TlHqyf&v(bOPlRZd6G@m>uL4x0rwxG9$*E$dj-us{- zidjPcr;`bX0OF*6uCUJ)_JJ$x?nj=T3j2?g;o(xrzP|h?1z(DU;&IT1K9wM9<*=Y5 zL(tJXLHAoqS^}x8WJ`ZglbmyV{)61s5_E%v7&F6K~pX9IC{-B{Vke}#p{E2Pk4Qn7g zl^7ma^yjQ;e6TtkS&U96UYCoiXv=W0(Vx16C)-WAc$o$P1gCw4l8E0XV#X5y1`1-5 zJG9K!?(ruH<#1b)?rncd_JEtE6StO0F(eho-#ZkUQC$1j>=*dtiyR5lC@69pt;=rVf9En@on=9uU~Q1{nL1K5ZTHn&IUrxa@>z$jB9Ad~2jy2$X46~3Rn_&+mb z;K>SQZe(+Ga%GdL@Cz3(IUq0~Z(?c+JUj|7Ol59obZ8(kGBlU47X>PRT1}7JHW0o0 zSLoIyd?8iPL(_wcZc+n_ED(Fqzu%Fy+7)R^rX<>F+C3PuC7LrF zKE9cGHZMLFym+?wv06NOin;(`PHRzA9}48m8dIR7tB^(YXYt$e{HMons*AU0r4(kV z*;$E3EURD71TJ4UH=kU8(DRo+zk2+tYHpmre)s0Z#gqC2F3(@Q`=$Q=@7421Po?Ra zQwo@sNZ#x$fvX2C_^p3M**-5NFx0vkRsD6@SlO&UeZ0EdG!xT=orw)FVW6G&Wz04h zrqHxQwwIqa*Pokt*PF)iKW^4n+ve74(_BAXUtL|-EB|}*ZOpEJQ}k9ArJ%_+t})VCDUY1G7hd8^?fXof?MXCYlHNjYp$803p7|H+|k177e(?j0n@wj z_SqsdTMBI$Iv@ufGe#wW!1RFtI`O(Y7-?vj;QJWBm`>)xbQtouME|BD zxb|!$!*HK}c9io$nU1+$#zD%Fco=-vGK=7Y&m}OCC4irSS#JnNl`59b)e3aMI>!g1&&Z zVlrwgL)_(yEZ@at398q)3U){KcL~Zdt%#Tut$C%ZUG(M>PuI~BPiZ-+#M9iJTr*8ow1DxjzXUbwV7KUsrMGFR=fL)*mK!(XtY z!H}l(>J*jEWl?%Dffa)w#e|K%ra&h)1-Ms#_Uxld+k|R|P^BFPsG9jpQWtpo-w(WA zE{r2^s+2qpq(^HKc8Pj=0?EUey`9wR0AnVJJ66z%3K{~W4kQGt z;6F=(e~ryds~yh%?^mp&`M;?<2mYAS2}h6SEa`o~xuWxX+3oD@^`ct*15c9Gy_2Ev z69O_hmmy3669Y6bHkYv%1uB=xH32ApLZl=B0!fg99!|PQL{TsS0_UE4a4!H{d@6A9 z;_T<~*~8~b6oeon1TDr_g~CWnSttXalojKT#fQ<8Umm|5KYMpxGAc&`otH||(fE&Z zszz_Bn@^v?@2`G+{rL5`y7A=A`?oKjJ+)ud=*i3XzuUk6Yy8{8=S;fQaZZqbW(r!f ztchY<=nU8GE6UaHB_l`)QI#5hzN~7QOs7>1lj+yblj`2r$?d$lnq5^t&R4}h&K4Kb z%e%1L^<7o&VsSmKZ%yi3SF`Ck8BJ&QRsXsBp?U*ox!YkBNw_MhL>!ZX*eN)>nifN(*YgSH*s+tMLZVAcFa- zKOaY*Ly%x*Rpd`BaO}M}vKQEGYWN_71a_Z8V$YFCaIq=Gc%*Nj>xl8XX4NwcYIJ*M z5^t(8((RaWqz;X^R)s)P>Z;JZE`*&z6lu+h3UYOWsf;`fBLZeqItA;0vE)cb5K*)d++sfoixSt<{uJ57D-sb;)^bASBpo!8VO~5CaBWDoIWi8RJMd!MGCw#gyV5 zqal^_M&mm2H2B>%ssylU(cSGT*6scaz%XJ3{f+^=r-3_-z`$B@#~fR1e0jDW-d1~K z;3$@*9!0^V88TY9Xc9nwU@J77VIXvPA^VSt;uaX+yYcSDSy*q$1cr9PP*aSU5lLh# z)5v!1bDCLKI;=aO^&T-dBgJX+eAQ%0eHL8A(P;gT)6gc9qVWHko?1+*2AXa*DT)-< zg;S^-w%UPhXrLShm3Sad;KgR6Vu+ajV0VBJ_OE8lW!Wg|sWymz5f-4HZBP%L0gZK%w`2Dvm}HPLv*shp++?<|iOMj6a)M z>`i*Kb8!q?22o>wy7Y-`&?h3JJ|T(vL>@z*&}4lQC(DBf6x}LNFwh4NY(q3rX34lg z(%8O+Psuxg&pmuxHv<2nVfty9*#dkknw#gbI>oE3Iij&egwlP>3SZn`#M`O>P!Z$l zoUBAFbu-N8>5yXP~He^iwna@ zN;m@?7T8Nk!E9Iy#1sfYt1WCab2o^Adrs6AGSC*+2Z36XVsDoeI-pFslbrBaRV1;h zN@LY#IRTeEGOgQZBtz{M$q*@qq;@kT4kAkrM{8)7Fafgj#5A*%QM2^v+NM47i3EwL zuB@E2iUbXRYA_TDYH$=|fQDH0@jNrydj~Q2K7tsBlN+ijiqR!E5~CQQl}F@;PLLbw zuxi5}=8f7AnWGl@^<@(m${bwSPgKZ0qJpGMEY+Sx1xrE{PeByv7qD1EE3Pi2hAFQK z_*Umr7`^6g5zZyaoXgBWiE*5W1<9d9WTK!C=2Q`XA)=C^6-mKIM~LuDLWE})BD!0M zC=CV_CJ{|{w1QHErRqezjgqQpn9kO#5~39hJZej@VmU>n9+I>Am4s;cqd2zdW}_cAP=?PzD>s=Vykp%YO>~p8 zb?&`?X1(?mEW;AD;rbOyn48vk5bGpA+S8uCVYwEJ=;Q?>(R}pK>`g)t?-W(F_FtD+ zD8k^}; zc2c=2)ci04MVzNaSy~_gv#d2smqeMyC;EJU9e#?{Sr;IvRM5rC z(E}84Ws|%@=VIjC0!rmDf9thqa`tv#>7H$Ws|8I@0jrc0@SyD2noWppv}zj`VXSjo z%gf$6G{7a1&}J5sViz;s}8AeNO4__oT*nq}H2k#E^a@~!B>w<3{mc{1PfB)(YoaGGRQM?1~YM-)rUzsjz08%hOP=l z&M52(uSqFcw!iQuxvO4-cYGMz55i*$alIDd!tNnRN%iUPh zayK2>pO>~RuYGSy(-OAovcI$3+p3S#*>OR&aQmi40Nr^feSd(sJ1%sN4V=ANKJeU# zd$lJgVfkzuR2a6in=n4cjsTTrE=f3MgqR#y`PSKFFIeG6rWKRpNSfV$&gaOu!unfV zy5H)i42+))HU~11<*b3E&4Da&yVS{^HIN|^EYc#uEK>q*3mF+^Q7w8om`*jSCApO% zk|zhlWNPcVfuu1?tHG}(BaNRx&SB_rLdn~0TaiXP_bOSW>5%VKKA`RDLrG7*J8hup zG@y|K1FezL$ew|wPY!5*`(m`gj#Ve1kSC&0q@j@AR}^~N`+iJ!tm_?UAWmtu8^b#R zczHxINWAG7?^!tZC*|d@t!TC0G}k zU*6o!ZmS2|gN~OqUd$)gHz~td%g6lcDewlhINX12Qo-m$4TGDSur_liRozzWZ13sIH7K*q2H9;CMV+ zW-Cum`H;y$-7S0M$lb1PDXGb?p9gLtL68I&P~A=rw%8IR5^w$9!@~nk-X%Es`q|$u zpMCz75(y#52tkv}w~4|?OPMGGuaqU1H_1O%FTZ*5^X0487i&i4N}!9il5}o4~E|GfO}^RJk!-i~vEG*j?2 z>76LCgP!61`I2?<`I-@=gvdr+{=Uubve|$9eUshe>S7K5Zx5U7laHJGLw2=$$Oc?* z_SeV#=CHlVzx$BAzP;P;@9b3m^YB^rgn#g4l_xX`2|Svr)Tz6t0Y-NMW61b4myOhN<-Y8b$>8vaSq#Z$|+^5MeY~YlIokJ~(=A zBj96E5VhqNYn=X6K4|0Pjz)|qcxDC?k&b$v|4vP0;8IC)x*NtmI%b!rQH*<@TYn#;e~3 znW{+r)#sWB6{#yN{Ryxf95lS<5CY%=kjeg|BDn`VQG4U{*U#L$S~P&L0)MPQF=9pp zxq21i>UF3u)62Q~5@WUdd{y!JBj{-m!M&zOrg9=1rbqO90g>V{da}Ij_o#5H+wSOI zt&=rQm3GG>#ERKza{?mN?5L(LRybBC1P5tlsr}I%3PU9a8_XPqAt!}NEQG_!zmnqW z?>-fQSpZiu6_G>Ga2w%upnt)aeuGaK3!?lK_uHx~3Nfatmj8JdDMhPxv^flesL>wC z-1Mv!Eh>#IW4RWQ09YG{rDVIkV~7jZZ-_)0>>Ud;CqVmB2(_ToRv?)ZAQY}qhk?_c zF=$Dhc3997;HvR7$1r% z&;>OHbVtfaP%DK2pgUFHVBZ%Hareu84XctM5F(Z`5a7mP@oI|rBHp+S2f z%@8q@K&UI>TCggETVep9g%S>=q0?f3D!>^O19StN(a7?V030157>H(SQ*RR(^?I$1 z$J_=4y)q;uG}A)Dbbo5mLqa#eFo5+dAz@2^L6B0$(MDEiY<**NWl!{FY}>YNcE`4D z+nwaaww-ir+qP|YY&(Q?QucY*p+Qk{~$pOsJfFowiG zW;%M?;AP!%u_##&uWMW)%6$&06bJ!l?AA*B(r3ktD#we|b29JM7trh^|oRR*eu-=7*Uhofk zQZ9VEIN3!H*b@GQAm);LAO;mqX)UMQb-X)�>}iVPf1{O$8F$T8~ocsfMGwp-}Wq z0k9qUZhix#jv>oJdHD!!Px468Gi5jSs>jIKU0K}oVW?*uVG6OYM(CU2)={V`o8YFu zhYtdGR5dE9w=iJu)G+7fA*w8wgO-ibC^^h(sX|J{AxQY{e4H$#c+eIm8LS*JR{Yqd zj*2Jy91ZN%l>OCvp`2#@B|k;(iO&hZRX$KGbbf(H2<%$`qM z!LHJK-6J3tHtR#!(|~X8p!OsQZ_3kSvlJM6%vjq=C*8QX zq%r7eZr58VsX%=q(-)PcwojUxknbori!M6BW^`-&cmn3ch`1{am(iUx zsP96#p7v3x3_WCSx*B{9b#8MYyH+Akztv~o3z59>To~1TBpx0i<+;7nrR&R(A}Qx# z5o1croG@dUQ0pnSBZSPQ)wj*GNnt*4 zy8yhs==A3pVQ)`BYN^=+W~8l0R~+DF9%tLMx#!4MMQglH}g>n~}^k?X_4Yt+ji| z?B6qHQPXCF&qV=rOR5&KNsrX|2wX;yLxY=+QR|O$$lf2i<}sYnd2qnkjzAtt>h8JV zrbB_FM`L%TIqNpmw30cLsjqnp9D`FGE6#Or5}Qx}=n4m|=yWUeBW(*!qQ8cUfdDwg zPldl>(pefY3%P%3pA7}l=~hPZk76hs^t4%?Q^yR$T?*dBW<qsVcJtXH5*xzqToFJiUWvKm@xRes1x?>%UGq&nt8yB0^baOl97Snn=jXd(!(Z35? z#F%rVzbV$!&I(@IevHj#n*h`gsCCp^+@;Kt*VWA*j{ym%*=iqKpvR?SjcCOK>dG0o zFVGaf_YRHtt;qQVFFEb=fFhj4f!jNb=GnTwM<=yK{^kO+!ArGGlU8XSTRZ>Q{{lay zAU3rW=-O;{BT44~_Md{omgZ?vmT|hXD$dG$Y~ocqnvbE%q5OP^b^$UnO_8WHHH5(H zncg4UD7FDw86uHr#*1qVp$EcM|A;gdkWGot*6i^^q-t-l?&Di3v3E4{58!}HhD0KT z`uWnO2=iCKap{CsKooB$)UJVq!WAf9dZ&AM5SAwSzZEUFLg^%5l zk6_BLkQVpESaJq*ngPywhBy;qvJ+wEA6t5C{ckO}ODL+^o?rcpQA`2cC5#bH%s@Hm zW(`&NnL0TeouBZi&0PW)U$%&P(>ot#_l7Nkn_E{LEqVe>xDKhd+1nl~R0gA`U=g~$ z{rB$&1H`BUbRch|`4esODoA!imoFfO2*8u9dO`hM1xz*puqFTd# zydc^N5^@va-A^}jh0<#AgVDq!hbYH&ZDI;xG#R(!_*}vYwk5_5gThXf4%2RSY8~1W z_XAH~ZVfX6?QOhzmo13Cz8X}>DwKmTs05~%?E73u!Eiqw;M9n*Wb0{V`{t}X;X&o?vV`3S+`4(Nj+=kZ4eDhPfrvbqb`|E zUt#xMn_5ijHoMusY~}@FVE5ROu;|WDJJ%Vi%qB&atN?8qsjR_ZbE??u|B~wSFk)|we9HQ!w!#qyrVn!bZu?-ydV5pSTgq?8aJ@) zg`w5rB=bWK6I3aG*;e01-7S#+|T_s%nti3dd5h_#8$=EmFEQ zIt`9#e5N?0GozKuDByU%Am`%0b*TwGLUJ>ptf7=F2vxg%JG)!UMdFAk{BL_0nCs`w z1r>~ilbP**t39OZ%lyba=oeEc|EucAUS;1}m{x91uw7Rai~K#7Em!tDiBZF1dq{aYyJJ)Gm&qvfA;52_Ny#!k4Q((~BZtrGr*XbS)Eu^YNk}l8ccj~w0*8aQS+z7<-1(~sBi1* z##aF@a*knXi#mvfK=v%)*7ma{q?+UWcYg@~KEvsH!t+yUFP#7H+o#r%f$Jj z6};PDL$<)yLxie1YS8)N)(gvZ4rzy09^xX?g-$x27F<$Ig(PaUkoY;0?1D1^2rJqj z?z}5T#nd3YiGZxP)q3vcv-sy+qo0nKdiU^q!L2G_t>aR+hvI!G_ZgHbBmw#25yJgo z#pUvC&0~uyI!TFpFj@>I@_cW9XbLR?l{2}(uQh{6GDCa&#So^=9-#1{2&WeqWCB=y zcUFjk_*A^r+H>QPI(Zbzr3j3flQ6{R*XfK&|K-S2?1Uy43*r^z5IfWB&8C#*iHJGl zU914WyD!57uO^a=UzFwi1~vRBe_6hgLUu5iYB)iUdotc~oAA220P% zYWeOuS++OsSI_hUORa3(`RTK?y+cRSQ3~Pna%^r!7qn==INno)7|i>`zz{B-vN+YW z;ST_GVqiu}WG42LNGW9h?_*(MP4=BRSu1(^jw{e((NwIV8MLZ&{<2w-J2&dmLlinv ztfbZ{0OJ7oOMZ()3h+)XD~B4w%qAMUu@F#Sh#_KL56k@J;{5pv910-j(ZWX`pEgxo z?Xal37fG8JW*@&}J=VOHBB9W3=r9&=o82S9rA1MG@!PL=gNKPoh07wzQ2@j?Ov{CH z8t(!Q21|%B`fkkm;VpsZ0+t`RK8DaFA$%VyJs$y98lJ_)?EACfMgb(YD7mFo0=#-Y zrNtKqmp$j{I0tChQaJ}C49I;)nhahz`N5I%2O6zZDN(zH%*JrT`%9an~+Y(;7q`p}J=}>YUYPzn_$W#GkD!Dh67?648aJC13tJ5CNfEaPN zx!5h782h)Dsb*b$CHth$_ma+8IhTIJ#_R)PMLs1B7eq`(uVRI)lQO(uR(d$6y2)Du zHUjF&&d^BnpB`gge|kIsh3heV>aV~o1t9l|$9Nuk6y~)`JIw7L!4x5LrWai9D}iq5 z72j9sH#C2=eBDdImo@)GbaE(Gl8am z{3=vf6~`VgD6weG$)S-gsy{bWDRINBO7-_;XrJg+Sh{Mp72KhgJ#Wk;C|4sF*5i?g zlLm`EIoy(%!wiLIjVlV72qQU8@I5aR6cfHwysB?7GK4lXaNe(FHoSVZ`S|yz^kmO$ z=S)>W5`e}-Kw04vOqq*^-UH}^NAA~d4Z-K8d1Xjton$lyNrSr%_V&9HsnL$Jf3Vu# z1C!j#sbzbP8ymQ}zxdccbh#4Ej-e>p2_#_@zXrXabT3%qJIi`-beDkOTn!V&6Wb#z7v1CqY zH&BLQ?F{BN34REHfJ-hL>c*|;v<@&46OokDoSzH>{F6U`e-aE_+)si5!jc=UO_f49 z##BXFO(B~u-yR&ZoFEg16Xp|-34?&)87vURB~vDf7F2p&vqLoEGO`Q4(KGSYAZ($- zd=r-Dy<`_nJ4!o^5QnL_-rN5-gBGzM_}@6##I^1)Cjf}%eR3lF>lRz#L=hzMrc(|- z7?J*9MEZjf!G9PblOxGXBWqHUhnYZS;-PB&0P^~ip+A1E-<3F_#p%PCqn(!+26DH{tb3Rh`oUJ{C?*s!4z1XLf5 zMO-Jt7w?6m1q_^7~aW*};fH5(+)69#8r7=LS~KRu9&n6p>E-6HR)lm_`|< zG}mz-Kr(?7(=m}ugs8|#rf`Tfn16q7pFiPe?#2JiJpy7J$$k_)Uy>k_;(rbLz9br? z2P>EY2mdGo;7P;;uRkL&h~&FI8ePO@yk9ND4+dA%=mMZf`5xD$V8bvPi%0etizQe% zx*r)w&jt(dkR( zzl)9jYZcH)d}UA)Xym~srVp9fkJ1}^v*S?t>l)92Aufoo@vdp&$2Gv!{#JD4>tv3T zhXLL5;TKlwq@n!yxw>21!!Q+A0N+2W?T3kdFCGSfMvQt7s->XP*e*r;ouzX7TamPc z**9b}iSX@zRfQm&|5sNO9+)dtM--eLFr_JLkH-nuHB&QN*JU9RpCr-?6^GbLKMNw9 z@LQXdO2=Fg3%awa3nJm`O(5pd2l_yfgduSloD@h4OcNAFczC8@Rpy7k(1WIhOjw!j4zO!YLLViRINT6)uG0r(f?5=5iB( zeBlOrcWR3lx4<44N_aR@bcFse@MOMMMEDl`MJ3mbJ(uhx@mdQ>0gy4%di;inh2et& ze~}w6g#{KoJh+2Mhom}y2~17@%ej3|pff#3t%P>C+;+nRBH=cIe9mN`s8LAZu79b* zo*vUac|g@_0gCV~egf-I{&X`6?4?3rSiV6dvMIA6t-U{Ds(FQj1JdyCG+88WSzfRe zI^CAKJ+OX#_tn6!;y~(Gvj{Jq*>i-a03`YqdmJ9yGlQkuf3J6d!$%|ZnEsc$Aw#Sk zI)Unb^Wbgow?F=vBLMo4Tka(7tSSbi#)St%@1|A_y_{S+hGH;w_|JL|cdrkdS7yAn z{?)dVnhXV-CyWaG+}~hNM)d|;;u3MWJ}Pt^FO}pm=+?F`&Oc?tctRe_Nw<}}z4^$< z<=C-i&&JjnNpV>K;Y@s~MU3!bDBvcylUbUmUru!K(O02bF%SaCOR@_DGRfK(twWiN zL9GM0hxqyRn5yd(s_W{Crrus|%|U|&r#H^YSCxESgu^STfa>C}nG*Bs(A%}UkF9-g zE#fYG03HA*mvC;;FFm_5H5ds1#0ug8STxP2d^0={9tQu8`a=)Fa!|Yx&`f7!TxyqtHhyT}s+ltqbPMv?9bxwvw59e_ZGZQ8C&3~yk`0G$;#-#eV5@coyYRI`JYL90y$QyU>e-x&hH%{*Um7&syMN(<@@K?=j~a* zMXWm|C+5dDP#GRx+W#R68`}Q&=|7S%8|(jUgfMackFOM&Q;6l{Gt7)d2kB zT>G5|o@zY+4J$H<)PY8R09Soo#-tJc*y8LL@2zL8sT1b{wYmL-6%GBnR_oE4OR-Yl zwtSTV@@%-Neg8{R$ckngpG=jB@WV<|=L}8@nNt%Z zOg@I{YdCDz_KIevIyv(_iaZ!ieXx0d8D+m%LP;VZeKvl1PpkuHsxDe#_sldO5(3G9 z8y@p9;ohoaqs3!2t>HQIH>$+0{j;e85Kx6hjR^O zl8hJ?iTepYOJ0s$%#wiJTfw$?+vn$(!rB%u+N|$f^VC(NgNz8D`U0P{wbJc3IqcWp zm?GLlxI{uj+;wd~3FIj*+zyKUyi^JMl^h}giZ6SMme)f4dI5q2c{S;hC?rU}V?}s@ z`kLTZWgs7xe)`egEN%ram>g;5KvG7lc}lUjs^ zyH7LxB;zAdetx8}T_XUWFlyO3kn^9v-Z*Z1H_a`s{ibT0*?;kR!oQsL9oWGFre`O5*3z)@Cg4a1gXD&8rY2Z~tw=Gv`a2v=6=wBBKk zm8JpUZ~W`nk($cM{*M?nqr@%2$h4%fYu9P&#F?*b;Z8LL>GBm>@8wVlunxC?%4uAC z^E6Vk)~4XfLu{W#282OBD`}E7BRAxE@I|@xyg;d~vc-#7pXR~&_Po;pC)mk2*f*#1 zbc=n&`&|2+g6Le=j^|xJgKUR#(K>rA%z3a$#~E*5(5PD2*vZh6B3j^_mB;PZw>xkf zF}nF4xSZ4EQ1nG_{@g!JgRj~E%H%q5!IO$U(Bp?gMhyfVUOf;c)S(dwp~8>bZm)Hq z!UJ?7Rb=_0^vn$LCX2V#d`*Ns%(UGpUMsYS-t<4ndp>Anp#l-Sqv8i_As-uS1ST=f zp}M=$Dop;x<8UaM-d)6M4HFaQnAr_5lrUvQYk3`L#IK8X|EzA@#MSNrnz3(~oz{?$S?{LAt;QWcH`P;0GeRT^y zM%+ztdK=90m>&|iWB*s)Z*fcjx+pemV3~CP2+UDKXpqnk*UHTS1ff;VJWU*Yf?9SQ z_+}IITJhM;kEaq&L0)4Q@KpL8$gzdIaWE0fk6*iO?_Flw&n7zn3?kzVwQzhZM(#qk zW2-V5EW)y{HT=ux0yQ)a6LqA`UU-kGggnMM_jVR@Is-jNBraiQb0UT_ZbwL1&Ezln z?GXGEUN)WT#Zn_>?z}_xk}YrD7eaWLAmj3;+d1;bqhpvBh+ldvy&3Z&( zMyJjIz2*Lw)}d`lm;ci^yU2Sz%)w{(qq{TPkd~X){x1!co$~qUH|z&lJ`TY=`v9?% zI))-;Q;1V3eJ5%vK-zrPbIUTKNlTQLhz-I>;uoEy* z%1s>T`Srb7;ufaA=O7vd5FVe;-XY+hb}z#8#U5(*@4wAFJFb8Dz1RMUojRfWmk5|d z68cF`5=KXc4S5Q}V&Z*j5W&S3^4nX269ylVwztoW;1=c>0-Pt->>ZFTKiu)4gZDV$ zJ|~}@u4ahtNb=de%czp;xx1g^_K*jr5RnF!2$++w#NpIW+HlbNeuoT}&MKqz{cDZ? zJ(>Y}A|`udK>gz!c++_2qSrsexF%I2}c(Mal1WPj>8=- zb^>~*I#Sps1yoFNA06!6)cz~BXLn6`XVI$iNhGQ=Y6-I@;eTKXnjJzXY{&WKGS@|{ z0F;Oy1NMgnrF4|9KZg%WCDxPVecKRjO~3&a8Du4tl9{U0|D+>Kb43WqSsUH1j!_4x z7*n)lI2gL<`qm=VkC!lnw{w(t^A`3*bknu4k$ay&5J0h6mKsM9KzZK_v5h%+8%)}U zRv^D_&?9Vwares%LO<^ij*&$~qquB@AS6?nvMxI@Z`W4DweEW#rlGZsGs4#9&X&+Xh8LWnp1s{y!B-EJV!goJ>rq#AcxAV4O^> zEUAiwz?6WfS7($kDR@hB(~s}p!S$RRcmi(9i0rH7Lu?;k|*xVGT?KRMrgAf+;;z>}MsSuTJM z&>&mC7$Q_sZNJX=2JqP<{(|s$cA=qZFff;=ms}(jZ;a{bC%&jCJ3Bi#F%CI6x0oZ4 zMHc`NXIulg5cUa}iwk%L$X7m`0#iNkS0)Z9AGgpF$l(KHa71=`LuNcF(hWl`L^{yV z8Ktg{jjVr+-}40!x+Qn7`JcSYo~VCcrb3V}?#@7yaFgHg&-T|nApSPrZX7Jkbq#f# z^^ZVn8K9Fw%R;^8(A*H_?&dsx@l~h#A!2}KIk)RCv1&0QYtjSvz#eH%5D6$+;HYiv zugu)UaMIE3weUV@lTS?X;hz4^7R}9NmBr~{2#fOzuy1uABO>vRaYRztT z&3fO$W<=V`4LufV?W?TiYXNvVe)C4(&7PQj-|^|7*}xYvGBR0sn?QM>Kqq!aeJ=oY z5LLuKyE{@xJ%iVH-kleh7rbnth?`sovDfOv`D)bCm;{EZzcNxWIk5bUNn<^ zI3|dUK%2d95dbFW)K~D%%ntG)!mObep`aPif`0C|z-gC!T3L2g(+J^xPi&f^sI;b< zV$#!2(su4bL7s{EU44zHj}$y!*Bv|Bkr(<~jLp zA%VuUKJR%{`DS_fp2J=9tK|Q(y%lImoI?w|v>-3d^Aox#yLUjIIst>mS@Pwyo<&n!(qD)2ws*f3<4?Jxt2Te2YJK>r$v) zuY@kV%Y0RVbTiI;7o)YX*Rg(DPiU-i1Bu1Nh!Nb#To(-XPb1tI`Ra=+=e_SJ!x@;= zHaYvc19v9g1E;NV_kX+Q;{h&!#P)hbzJK8XiNyp?fSIH|g)4!?P6bc+12+M49a7Vy!>fxYv0wa={e*+?1|J{#gO54Nw}@WuYOjH- zKvCs@Szg+vZ;~r_0sxCck2%v<;5KX82j-_MNL2B+-*u54ZJGz@b+=OcxwKjN z4ZJh9_TfKyefSk*1aNQi$*lvN?5wSSj(uI(JPV#ZpIv^J?gXy&^zhqM`I`Z7`iDR4 z%MQLD!Y{j=pRNHDcF(cf-93ER_+P*~W#0wNlh=INUyE;;AnjiT$QRc~a@XpI0M^b1 z$9fK@`WNxA=R$y#M~@d)Ha(vIH&?Vf#I&8;w}VIQ-W}r0w#*8k_u04g^PqI6YwIVp zfj=Lh-OuCq@{ZT>eEu=tQjdb?*8BS}+jPf0jH}OEUjW3f_h@Lac2L>f)T2uok3f3s z0PX9Fpxdnz_mNlgQFrzqs#;eH-i8iAykSBqZ4aa!*Y?kDl50WrRhaS?6g_H}2mWVe zAhfldf|ci;FGrYi&bqC?e%9bw?x-M2^(AQ#X`VXz`u&erxEf+@zz6g;@$a0=-TvUp zv`F9UWdQA|-iCTR3l2|DMWgx{apa8-kL@aAIq2tuEq)z3`9af;dkT6tdRJnU-gwAgH>w-Msd5 zluiq+a?q>@xrW2|)A~;)l6N%W@%#ksqC}6yRAQqj3N9@ML;?#;odHcv8hjZLv+OY5j52wv&@oRLbap_=yq+tc7e>ySoYnJEZc<&noU=#M6VS1 zZ6nqzwEt}kA$&OFYhKjkjM;9{!-GT2fzUi!Zm|Y;@dsQqUr{W_jw&?t2c#}Tlmg^* z$?yI~M7tM3UCt4h(GU!2-{TKw5{`Jmwdq1#7QEY|w?Gm1I%H@{wbe}s`57a(Yx*1il=cHK)CzaweU~F4X`Bs zm9v9mEb(JT?`Y33H10g~sum%hi~$H6E}6pYt4kYZ=wQiIgBAFF{`#R^XnrJ|_NXhq! z2yo~jIASqQvCcLr%*(Q=8h+5jq=rHMExiPt=`MIn8Z4j1i(*@@6lM`ut0x}+^Y80< z7x8u0^iOUtkXth7y)$%o+awmhT;=!qlEZhaN`lLHN+vLId@)K_ECj^$;+*bmGvgBH z#44mf8)`*enapmMwh9tgHDiD#$69wc$}L+<8S#kv(!c6m@2`7BdR8+X?%Ur${xym` z;FQ|FvjQrM*Gs1{0$4m>X6x}vuFy7#{L2E%<;a`B3>5-kk;b53l~%Zu^7VqT|oYyNXGzMr9_>3<*nX)wS8s{%8MB`r4-mEkPW1w!^rDJP^`gyKPZaB`0cFa6}$``-ZdZB1FYt=u3_@4rDU#UL|(S?XLap1$$Zf~TH z5g~p*u-Jx!LJbEUcp7@DuNN~PlVcc;)v?DjcY$2NP?EQuKk+il#RX#vlK=Zi6~NSh z(lMP{_36st9%q>DJqOcH+2c?ByVT@QNJ$dc=d<67ebwAA8k^Gsy-VS*CIp5RA?tqH zm<@_R$F&LQ3{sSNd0C;=@tGG_MC%iQO`!=9Jc)4w&5*~UY z?y(<9eW=Lo6VFiK@1OM2o#kde3Y^3`d9NLih=_(0YQ`{FPWc=P6#EB^w|2~dM^-ky zXSN6x(dy*^qNlO_eitjM++p=-W*D#f70{A+L0G8V|7+ zs_SCfyGDJF3d{ranYS&V_$zK?!8`vTfAoOu*BK}IpU>u$puFqJQh$uv6Xv zhnhwt$7m^jt~E5ERRf@^S3EJ#c=ed%rO4F|gw(N;3sEXXK;S&Q$*dhLiD{;EC?cbv zxU!AE@d??Pa7d^1MAtF6U6wm;;TCNNVEf@>{o-8O;K8+%y<}zuk)6% zdK@O)rm|4xnb)5KcIjXqJDuQwg<+S61@Z`e-ZqKZdeOyyFxY({Tg%Bp%X(OV?c^={ zHTwxNC2Z8>(FUqDzhagYN90ALCT2OQbgS}^28@3Hhq4Jmiphw1>pE?BxaBpehTW9k zD2FMULlLewlO^;y!*svVmvFw$?;1Jkqx%HkAtz5H)UY*u?!9O|bL|qjow2z)d~ae` z=dNiJ-^G6f*C%eB0SyJt*oJX=*UjqWsdJd+-UT6ZoClF4F z-WFi{73Sllf!zun?NE&Y{UIjemo(HuQnzv~A}g~V*5)x6%ke$gUNTH6bx7ASycvvJ z2)ZKhk2egOE)cA}VHG2u|DsH@+GnPa`eYaYdd1qncDSZ3{Oc_U#O0 zH^d*lVzD%DHrP4l&+}nL-1-hMKCVl&WPjYnS*!(6)k;H31V`FG>So3)V$TiAbn88} z`1>pWX&o6`Pg}h!_LZ`6IGVm( zbz=#r7FsQ$QrV19m?*hDx6|R#2Icqgaf!U5i66S|G7r-Dj z-Dx=uSEs+<#ZLn;Ob0nZ2z%2+#j zpKN%j+j9K|G)seLV#GcicR8cWOwV(!z|Jul|dDJr_d-P14%3A*cZ-gUv8p- z)j{Xc>va$S;$NXXkJNl^yh$;hTXbiVVdSCqz!_BibVoFj-ksgaO%_w>kW%+F+f%e8u7rjR)pQNTbd3zj$_C5vUn)Ho&*l}7g5W0n%(PM?c0U4dg6&B z(1Yd!IPV?$%@B(!v7&m<)90Zt6AgaCvZz;BuvS z@tQVkRBzLL`QxGQMbeyLqSLHj(CgUk!{OCC_0G@J8IJ!ERl*kY*$Ru{j~$fdk&w0= z2^*BTDq-CN6yu?3D3G+okS9{5dQ<;o=9d_3HCbza zM}u)dm1nop%Ov^`=I($f8S>0Z0K3)|2Yt}8EP;)>Io`z_kyEhFEa zt9JE2N~fA$J(+X#?{h>Ixg9jMY<=YF_hmbiG4L}yTe;gaP)&DMZzj1|G?D(0I`K0A zyOsbuXyUBP)zx`hjq#0$Oi9vpA~afQ6t!}n7sZlbow22Cw;H4X-K^&n;z*pnz?zjz z#$P(?p;bgDjDgsW&GKzTlMdEPr$Z%NtDmwCsZn!W?xC9^Z45*%6V1slpt7^mrdkM` z5D@BMbLAirk^WZ0hB(fkB*;V5@Muf`ec{~vQPK7HBjU6t+nln(958=KV7_HEZSbQH zaZOI~;EatabCla)O2PiI`w3Ft@HB#M-+Y@SYWxHwcM7=LSYAe`GR}29J%9Z_)hppx z0gg!Wtzr;VxQ%;f?Za?Uqf@f+-r65V(e4N)>}C@&i}n1!8T;&=Nkh?DemUC%P78q( zdzFzk1%jG{2JXLN=@YYmIG9vgV%G5&)cSA|GjY6cT{b~(;HB3%X(u=o^fAndCq2LW z>k7a=+m}vdKKoq9JYXlXp;eN3$CwY>+6QAkGbsMmXEk>A51mP@A^m6-c1B6L(0k&J z*}y8uhBi=*44VugCsJRcx*sn&u6jcU!su+-J_$^HPZR zeOjwnwOo11?3C1oCft7+^(Zfnp|CP>e-|?_hKaKC_M~Ta?aKtjH0RXICc1Ad9lpox z@&_$C<}SE&Uxf_(T4$L&;AdGIughuZrFc|OWwQR~u}6y!M?s)#;LQIg{^*Ugb3UzF zn{uj)jmf|oNtITll-YCv5HEz#QI~iZALbe~QY)0E%r>l^xNN{!q?@jCms;yp)1Vi$ z+D@(X2cLP9FY%j0)^7r0G2*!CmhqyzH;Lw>fJMBjEU_OaIIO%9;;w>P$62FxLYR+T z7ACTe5w9*XcjLK+fYY3PShM^w)$z)>FP@*ARz3%qDEQ*^wmuaTfY`tRn#`F%?oSEf zJfO{oj4=TX^EHnSdAW4!@$sBtbe`(}5*Wi1@fuXl>JFPQJ)RP_Q(wbygYI1eQf zQGr|31)H$j;C-9|SfHIUkrq2fjv_cigj;KkNJ@vd$giDm+GyZ7E3c1bRr}L zYCoZqI4>$CPrvGQp^p0=f&!{`p(=wT(NZ%$#vOJY1v96p8=Qnm`TE zQTSyspY+-e;9zLMm6-OxB8v4MQNA{$_T>v^SgPnJ4;b5{by$&lyIa7CZo&S?B)|~V ztgzJA)8{UPFw@EHl&Zxh3wMQVcf8gtn@BqPc2^bCT4K}TfkhpsN0n~iEW0icM}Cfl z2I2N?;p++uufA}az_}&Jtz;$dqsv(V8=79}exRuhAjSV#Uh&4+AIX+j9)@*zZZD@^ z=RA2Nuzh-xiYp8X>-_$bbldV}jbX4IS?-2CPt2+b!K!Lms4WX26Bmt!WQ}sfhKQoT zO{z2zhPS+?K3)_!$Lk`+ps~Wk4X2-Pb*P_QLctMmna4n;U<_pRh)TP_dl@a)&2!r$ zv(L!{)V-^oBda0ZIy)3x z9=pCu;H}ONk*!le(J#$^VFc};m+meGTb~sGT==6(94HG9C7zNHcc~VghL?dY@7{Qp z(`3JlZ;AQEdTQ4Nk%W&Q-%705YCTY0X@b)QZvU^kKo zur3qSvrbjN3QJa$p|A(j1g*nF=XaYqujd-#CyG6&Yj}Za)9wV>CKqP*RSG7N;9C#@ ziEuYve`;@xO$G4QGPp|=p2R5p4==qo?sG`msho(85r2Z&BgPC7w=P$O%=Kaqp#6PZ ztTQf@Xc555V!;Uyl1E+0ONKabU{KSBdebhP#!D^y#Yb&e=ZDcSy*K}l-t8elj$VDy zH397X6gIHJ!M+k3i(5srr)Zd#BDS9-n&)4`WtM>=VrMO^>8^u)Z2Y+tq+)FgXoBQ4 z!9CkwY;f2;* z%JOW72Ts2|zRp#aGRKg)&RORi4DQ^Xb7H=fBf!qw%azYQ+dKb0WM=UkJcTL|b6>ip zpM)sndPLF8mKC{h%xMeKPt6SDG~)l1_PKtV%SwL1qNSS5PmT%Qrq_j}0*upHp>yh! zVJjo&>{&A#P1-_59TUoR!Qs9{G3xU>(PR_TNBTguMR>P5BvTdA*2lNM;_7<}sC;PZ zudhrFDJMI~yAfGZS$M(Y76T|p7~>DyM-CUdRS>x51%D3zA?v@%QYHxd5dTu0`Zm2% zP)>+=GAn+%?Ra(BBkUg&1E@mTT$6HUSJ~GxtJjG29~`v8E;%BL)AC3rKv62m2h|hgP!c1z;i+sS4eL-23tjOrIbk|8jwdyzU zXhNr}k+S*>d=$hB$ij;%M3_%lHWEJmGR~cmvB(38nj~|Q?+mlO0Il5kZnvAC5EGd9 zzfMWr`Y?qY=R7*pc^8uSI2+yF8p@MBbU2Xj@BX;9V`mY z0{O#7r;ImKi<23bHgn~-fns$v{|2~@uNyHI zt%b3f0tFoauc2Ax1$Y)gmxGWm0!AttpCqF|9GZBsD7Ja1IuRgHBq#!1x4qH*PYO$(Kduc9Mz*8_cIm{<>bTQ&*3ZFL&?>L-BG87pMQRzN#DajYCn%+;#E4 z0Fyv$zf;C`yds`w!)!5RGB`S_;3MyCFWXAhDAWB8`IFz(bDXGl>%}F1jrfw;pp5`h z5+$7@N%c;YX(U(F)ztX~4X2b=8n=!ftXZ#6^P33K?q&O9SfZ+W*f)cS8VeSLZG5b7 z`}#eB44j?WOIH-g?&5(+&FAUGoe#YGDDlpgaBz zXM3?<#H-m3o}+VxW>?#N$vuhx+q4s7RT1S8@^ zpuH@kv_RqNs-5r#zv@AEK9_ZIrH*06o!&KHa7e!W`eBVWC_(jb-@j-gX)E#a%YM$H z^~;-A-sLHp*0QUs2zd5k9rVr->d5OzkvF?K8to$g(eekAuIG4v+C6sFWQj!Cs;k@& zQDd|&x5LE^q{@8TJ{UaoXX%CMLn+K{7Had!_nn3F;G(1aYVux+OL8QAQpgD47$4Ws zlEy=M)7d4D&(CiQo4Cp?+!TM*5q?n7jT7KZ4nP0kGuh*fm zS;pDXQBqlY!OcN`Qz6MhDh(9;#bw&{1@34&GhG_-vx}uWIxKS5%#|hK++;Lo3?!+o zqzcGWwEk2xf%#S)nu=fj8-KK@Id@kNGxiOx&)f4H8Z;9P*%Zt5=5EG)Q}|vRGaqGu zAbGw_*(R*qX27p-{kSLp-$<<6AsF;2cbSv|cU6WBMU}pPnqVuqfdNCbY}do*>0NvY z4nxaP%DY}|;`uY>Ev+N4>xEV>XAaD?gUN~O-?$8J`xP`F}JM+SWSHJKf z2xjrthWj;t!T6D87eHc+xK4VMSj{1-+kjb;eXxJbX|<@vbDkz{(;%qDc)|U6E%B6s zmRCrVc{W;}ys@o@lf$m{1+<2V3|k}bJ|A^FRl?+JMiPlEN5ZP=mMY39+O`&0LD7Z5 zPC`BzU@|c#69HWq9Ecgi+41eGIv(idqPOkZIo%sjBEFz)md7e;vyTAemqq4ih%6KzH6yvzv8RVP(sO@n+VZ*mB6O!uo zrj<)0w%t_^_9g@-F+B)6+iixB;mGq&-fs{>gJoF0A$dlVdQydzKdWw=z3LBWykzT- zB4#FkkO@{mD=zyA$sbA<89nC{teT*yC7A@batSsr429FTr|rL0#jPT;iNWq~FzE?v z?usJNVTYv3$@hcgfDn&EOYZ)8V-hj9L=Nzm0kZ%nQh$jF|Fc^BUR|MnM=Q zqXWcXy-eGa*WO6F4kA&ozPx`GuTHWr(+7Q+HM*nhyFg*1vLUYON_w zCb|==2hIwyuB@y@ET6fGis?6Y=^ZTS?<~-| ztLwb5o@_ba>r6<%AG)6_OYxy4RxzO3lpEVEfRjs?NoCidOh=Rv_W^?4bJ>QU2qHIL zuIJr<$-;q?of4Gbr;V!-c#C}en)@4nT|tyR0$&4u2ul_2a&Vy@1j%b$Y&b@7veo?3 z0ZDy2b=Dnj!xN~_9(NrwP-W7wJQHLX*$>jnOl6SRe8`nqpSip`@B}Z*BlmUb9(l%; zQ;SvnWMqp7DOQD!stlVUH^jl%IHxxn5tmxd*yMIp(Ai!zGr_KOSiltVrBP6SZb_$L zRw_wSn_1_=Qz~|k%X#ZI7Nh@FG-Y|=m;89Enzy$;V%7=bjE2a%eUdsVs!CFLU7c_T zn7n6%9xp!xlLjBUiW8L`fD(N64CE~b|KV~W5~id-!kdqqfdGw;gr-%znAFA89_D0# zag?*-l_CR1_L-|ZzdniPEBEVv{0nNK_Z)bjTCav`lz{I-xCnLQ=JA&HaLbt*Ra1<5 zUPJBP77}z{8v?X5-AUUcea&WMf!9y|9g3P}_WNsurM_YyT~ZQ%+W3l0ZB^x%^$TXr($P+tFz#v4K9R< zeV~)Fc3bbV!bp`p$j`XNQli2CuaHg@XpX$zKT zWa~kZmd&E%L~w@(Lhtveo&N+_& zl}3|_9s%!Pi94G})7vqB>gdbDm4lv0Y!Y?9#prHh*1a>~=rikR16u$vX`&F@OGvo| zVJyLeksmGCf3wq&xRN___<(!NE8L5Te=odqYm1e2a>%rfZlc&%KuY<3$G^>SU^>vd z)q~AAU^3o&oLhVV+Y@D3k(e*|w|UJXig3IM=6z zBL;vXZ0&A;bsVp|7iB0F@kUrLu;%w!zR4fg%7X5JNk5{Y&*5jXk~$6b`Nt{4${raE zkKQ-CSf`!5T#Fib>i-Wb3sxEcn!X+0ruZtSj zDV1{kir`cU=xP}Bk;GqY!;BDo4SJ(uYt+Xu%4oEM3TD+lHj|vGd9L;8?b&*wV7U*i zWB~v%z*}E$dYDEqyrAX}%oyGIL+=|jhEYLa%{TIf6*xYWiecZ#SyEuP@niYPs z`~nQTLrq_HWB)o9DCWC(EN?<-oHX32=pKp;%{K*;afGjWNk ze1W9E8#;l_Z+FF#p^@Scky2+)yNah8MkVm%_AjVAdhqo(v_Xo8f5Lh8s>kNza|5csHxF^itXTN;8}-ZbyC@G$RAY_-@34~ zHlM`*7PJQjyI{}4bt~E6K7f)Ep&*VulU+(3+NT{PvfboaDjXwaa4F-81tEy_c~WZr z`@DoAiT^RiXp*YOM*}TQOA*AY-}qd_hH*BKNJB;HA)ytiFzvaE!oTqr2rJ@ z9GUii#+_+?Fbc0?@8d1k&0&}tGm4f5`ZqMfwXyhk)lb$-!nbi6L?k^M? z(gL54lipyJv_$(%m}sG3qi0VA>t!1A8Tr>u1@Z`m);LK~16+lR(FB$Gk5pXX$p#>l z8^HG25j_;k^Ki5722izTautH%9mslX(>EZ0C?Ht&@6}XFb6(`2iGzh%RTxP{=9Br= zC_*NCe*uZJ?F*gG!R~-lBd({C9@sb@c`OSeztV(*9LOlDe#8l+G1X9S4oYF2N)Fkx z8bT`R45giG3#NJaW}KBrS$tc~eBzH$-HbXXRJJaAJ&TUOZ*<@|Z$-g&7Bme|SY|ta z4$Hd|;=R%3Zq@>KQP6?0>Hmm@l22Alfw?5%0N=frSoxgrGo0p43m;Gg^K)41)t}3r zF4b?WxKA7>ftwj_20kc@8(4F~%%7`}P0Drd^*B{{ZM^r3S{#yNRq{~&>C0$_-5 z0iN+~EAFXnFHt(JCRTG0nkDk^U{;1~Mg6!QR%5C%Em)374-D8DU< zR{47K+X9S=MryLg>X54WnLOrS;6*U-K;JAxmg~dc&o7 z_rbVtvM^*y`#H7a_6bqvdA<9)XT=ZdW5PlI{PMI)OjmXFkqHw#GI|S(e$h;uJZa=` z?|fvl0c36Zk5isz{Tn7&=p?&NYR;FKF(6l$Nxse2wWd-KO-zZ2v zZ3HmF6Jxe*oX{c6XJGXGbaSeIjPm+Y>-E@?ML~t?u^G>3RC-hEKsuY?T9-GrJq1_K zDTw&oZ)8r5o4=#{fl7x8&mal?RxHp+3h7CEon)ZznE#%~M$*Anl3R*0UbeZGcAw4D zFei|zx9jR!g?fOi!1c29BEz{?pvXfprRyMvA6dj;Tg<0}X^ka%v=@DUASt+OTh&(; zV!_kdVtzE}(eC>#R39`?9%h75_!Bl%xp_uqTK~l7i_%6TSG%~0^_W&hIg}KK?@jZ7 zSaKQOyrZ$Sn%yYKb?YYSWtMYzt+3Hs>Ip`vj{?Ur&M2*M!?=TfA0(ol9Egr_z`(f2 zCC!;-cSjq=nQhtz5MN4vLTwB4wxPy!WQMVVrFSBD95uy<2KLG*P^}EAMs6(~n8CQD zQO5SLAa>0+vhsR)Vew#3@#oXWCI#uT->i0;Mr*y8()T3Av}j`|91Z)La<4#obW%o% zWq4ki--+Iem6R~{Tg#Tvxuz-NZ!+!+>J@m$X-}8O(kp;xK|Di$#nX9WrSM)bG;3kI zFv*UHk_?SD=&ZY!P7QZ~+Q-+0YlSVP!`3I2RfRe9NaJWj7o!7`?b8Wf=g4aAjeLPI zH)(<2&?3~)oJv})8B9m6@|-oM1&u(u+lfQ_K(cR%F3JY98vpCL7Ts zM%!N~@YLVzb(uClrysHCk9!$@=;H^?(TNRgcm$KLZTHjGpD1Z?gvF7%glyJ1F+(hH zwmtP-2+5H%TQ0b<5YtQV5OXNYVr|GqM+LE2`##r)3z(;WlItPiOTDheiy(ZZa*cuk zBGS@9{vs$qr03D;+u4^f*2(H*VWxKKqPqBm2DbxQ7uCm9{l$Qqz?tsWSvO!|Lqhmq zd#a}wh2E)j&|{ML`P40_H_7F=QSgvkXl}`|d=cD4*tP$p!{$?TZxveN&GcpH?AC`f z;K}FfrZ~WV7Hk3XZ`i^b?rP1nt;1d%3)-i*uc%A3A8Z19ipvr#OGo|s zy&@hU(}<>qkk_VudBqY%bUw;nH}awR*&ST5N@;Yq+x+pTD@&ROE(*@g<8CxUxmh9k zz^20$+66Y+t6YX%@~JCEH!f^dOuc1f&^%5TP%)7cm_I1b~Vv+|+EtV7lve+#WOPzHuw*bmA> zI?5p^G4C}8-khH=wH$3)PSmxj2vSEisfp4jXGFs@AbXnqO4vCU8NU+jQ$)(K8X=;8 zTFU!HVM9Y&i=>8P{P@ydNVGg`P_To{XOY1g0gk)%@te!jgWuGF3kQqDLq=TY{L_Ay0`k$gd zPTwgUEGpIvF%#@z-b{Zi5ff(+iV%P|VwMrrAXdKqX?>}*`6-5vQzmb%(UT1n_X!mq z()Na3o4t&Fn>#fme$2haz|d0aF8GOFLp4$9=B2ZmI#V5`;b%h8ht4(IapAL|t0GY_ zJWedRw;uQ42@D&v?y9rbx)Qa2i1wK1$qpmlO8n4(QLXVvZzg|4Ce(AGHgUdt$^d6i z0^@xSr>Ldxo#|%QC#x#aA<8)hX{x@$uxWfBo@{D zGx#3n5K9~?orFZwgy-8KBi^%ugEegVZs&08>-T@RChr(*Nj%9gf*(M@hJ_5fGAX&;H2j@1;6{HCEY-mjhfi*n^uw zS(;vGZ8kXY|G9!?f?~9P9pv#NhBzPeLT(DRDYN3KOyk^f$tUJN8j{l0Lc2llMEfzZ z(0g;&<&+)|_;Jt2-|#q{r&M*&VDY&l89$Te9P5|0JpjYb|JQW{!Vfm$lAb7}zH~%l zh^}-N;&UpB&LGPgK(7-eOv*s$^5EGEeL#bB%E`ur{Wfof&FGweDnEiYY$L*zqg?9w z_HUTr0LQcDpA86;b&mkwFiUbVis;x11eDFkp8=60fd~Z;!_7@+?sfoK{jQ}8O8s+5 zYY}aNj0MY5($-^ad~9AyW6mzRaZX^itge?^9=LRj6cLH!3TkHF={nB1Wqtp;*$%yi zi@7{KPVQqy=dhW7#0T>Iih2N#gI)dc@pL}tg%vi;xEPZ70uM&5VKj#K_4g>&iQ@H+ zP+=+e3hRZp%KSsqpcQ$29q72sQw-4OiL<>V2WQ?g?nJMG?ddAMCaZbe-&Yt9;I zWS-l>y^J=G?kGJkLC4vT+#a5yaBG=vM+~puL+e&}3sW_JUYizC=+YL%v7rOp<5eIG z)3A+_8X#b-L%G}X@0VFvuF&!b45g5i60WgrPLC~-`Wc$v4(zv^8|s^EN|ul2%x&Y4 z@h+c9z6f2*`eFbeBvwW}&R1_n`D(Xn2DRQs1k>UpMB9vU#f~Z6xdh>ovN{tpojsmX z6K`!2S7yV19vSR(KOJDYA)-d1%@`(9vZMr12xSqLBH~mu=ng~MvXO1f7DhL@@XSge z>888dfI|zQR~wAqPb$dufVSFnyAxNllJ?yDQ8-wdEpZL%1|_} zkK#n|T{nz#m!wIvEnT&_F#o=`ux-)FiPil@XMJKb%k-D$0B$=h+Pu`+mK*R4a595% zezYrp<(y6dr|J3K$|kX^cQuK~Ll%_lHKUmfzDocQq_Weuf84 zZ4%(-e;EGJcH!>h0ISx_u@Qi@^5v=F5;0BZB%OFwW-oojP$xp@HqQO4pmO0p(1Yp; z5BcxE=RUE`h3rUQqjR{uK@ZKRbD<}6>v_iH-tDQ-IV|*Yoh5azAvzDqMy2z+XF`R4 z#?5TTm`LZ^3H6tkj^^jY0FT_*jDN?XGs?hJDswp60aNJf>G*Yy29ct^p+{2> zj|)E`mlGk4;FkcWW!L)tyFwSgWMI;NFFT$Ya68R?>H=1&hP&X0n~D)V=qVqvNu(=B zkEt%2q*&*=89Q#xyx?VOw4zA{|tuHEM~BzRp02BQJyb+<2f0|U015&MWr5O9Z!y^$ zCjO;;^*4Qm_PkIytQH_Hp!fC!Ke5<(e_4iC>xJUrcqy>0Jrf1HsA~f*@(locRZ-nV zxvZp!*qVrEyg{VATBpZhWIttpPi7nHZ8WXa$9`DyM1Doxj9BcYccT9hvCTp^9Z4z3 z{Zl0@;l&O+x=(c2sX!w=OE_g?93n=KjNcxoy#D7qJ9y}JeXty-^X&ENFXECn6L z{(vLqvC%s8T}?9A#_S(Ch5Uz0zO5yzOm*;Ic)Www)k`=vm6A~IJ_wV4=lbK@pW2!< za^^Nqgf^}5p*;);DlTFzvN&`LwL7ShRbJJh1v=%Y=?X-lxMH$%STv(p^)=~3+yEAT zpcH+bul%tv#2_wyG`DSJ7U)S+u5|kiS`||;L^apDyv=&~{J{bFYPeVojtvUuhEkk| z8j-Yk3fiMtwLLu=NU7d`YX)69i)N85>h9ce^?d@SOk(i@1NTOILHEkpOfn{wOtj1K z$r;iPbv8&<)5p>wQGYb%IJnf{+oXvfyNUWa!|qYC76{Jl9-nlFg%s*E6ZhJXk}lD_ z7W+5V#J%sN+cSOuRG`)U)9C3a&74D_Kzz}MNPwjBrIM>K{GNo z4>E<7}Fx*Qjqw-TH3BT7_&l8J~95Wtw{vjP!b7>sXcGv6fD* zD@Tu=jH|zpC!}3}3ib&ygb~v+=c(&rN^a;|;g@}*SO0O=R&?uB0zg@mM`oyN720bU zaES$t8c}g@sss{raVLTlH|Sbwu4-nk8VlNncALL(_IH!EjTBgJx(=(+1mu%U4Qpi{zea>Z z_7G}B>MNa|<;KyZ#W@0AQZu1q|H(SJ&2{06AB!7$R7b6&Mp~h)Evn1|HAR2%o?3Kg z0q-0@NESSQ%$;Da+f@B+P^x3mSWBUjR!HhxHA-oim!$&knu>3=|uTO+lLl_){wo2APMyOz2WkDw>th++3Fj<2b>o^{VmJA9xZrSaXQ*6G*pFR#ca>mv$ zmT~F#8!Y1mrq+bcmGN=ioAB3{lRA_=<5aDAA&Fs*37@nvLF9_5@8$^35oCv zu}>6SgoFMfK;ZtQRk;E^Y!$j@tjGdXac=x6el6~=76CAv)G0VS^f8EqvfSpXm_Kvy zewHTjZ@sSbb%xy1du}2|euYMqd5LI$q0OYvolPkLDiJND|2+HRs&|H}-Xj57ULuS0 z_5_-NdEo!pokvf(2cuCYX$4_0_ceGhUq})kvI6Qe4?`gt;!V1al0L+g&)tJMHc31)KF1OvGRPJ_VO%Rm0M# z{a9SNtbQv3tbl5-Thf}St_#3_9tcB$)nSDp%9B@pmErS}FZ;jrVo5 zMR!#tl>{1-zww?>Koorq@OjNV*0*kX7GmH*384s1fc^@2CcO&T_U>VlugoCbi-KMc z>l2d8;hf7$2MW7{-i+#6XbapH;Aj!YoG_)mEeIsCj@}n-*db(pKKwiq_#~IJdl@~H z>e!QjpiSa5dR@DYEuBDKqCUli$?@!(-{;h2 z-319^K1p!_;qZ@Vms{y|P6qjK)qW1YesMSxP<;FzZgLx2uoVBT1^0qnFDst&T$9Po z&x}c1RsYWW$sf6Y_Ph4*Zwp=s%e!9&mVzXQ7eA$JtD)zvO_}1tE*obg zf)uUNl&88q$i|&-lcmA$Etdb*Xj!&_FP?YEV5R|=q89Xj>F3wsFfz&>h3c(wdGygo zc{v>S791p{#vH;USERN1x+_-Z!kjrUor_j?wIkhjvX1?Zm>iuXAol>oBa{v=wLg1N zGfbD)Y{?Yq;3;iNxV+{3wB4tQOg$(qp#eFLmO~iS*%!!`8^02}$Is>3+FX*V z$a3J-9MNrmOkUCawf~<0`Tzz0$7C{lVO`s$yd6CiD0Y64z&TlZDw6gW1Y>WB>8>sP zatl{goUkai1J8K?M-8`SZKCHVByWd=Mjs5t&=-Q|O-0>IY=6H~UNl1G|M*wadU%+9 zx@O|mpkS2&N0GJ75zJ&g{8!gh@({}jcWs*LZ`+4|q&fC$l~)hVHcf9n_ltxLZ{?_OgdCaKN*~TWaZ)cLS~?_Pm?T~(kp(UWUXEg z)Ei2b%-(?us6LR(353t2l}##a(m{o@@gn?LahuQm<3cg=61R@Gt~XfVozi)!E&LoZ zcI*EklL{uSE$AsZcBp9}3T19&b98cLVQmU!Ze(v_Y6>(pIG3T`0~EJt)dAus12i@; zm!aMR7Pn*l0p}V6G&VAqq22=%6EZO~F$ynCWo~D5Xfhx%H!v_bmmy{Y6$CgkIXRb6 z9|0$SjQ0gl9O%{sisBX=f(IH6?(Xgo+#xtLE{(er+}+(B5}e@f5Zv9}1DBa2ne)F_ zb#GAxy|%9{Ul-)W3d(ds#r?fRT}fo{^Cmft*|g2(mKy zj~szq&BVbGXluj$4+{|o69dq@Ow<7MZYXDeYXgvWvH~!%0GQahnK-x^83D|Uj9mXQ zv~}PHh#EKpjRA7>0BKtr6GsGc5nDSq2cVfb=snMWJ_0C>r~ph{TpYB2y90!*O&owm z1~vdW1CY6i^?ODm11o^Ctr5@!dIM`mdRqrGekxjk3lL;~ z4p1_2G;we?F$Vla86a<9ZSrqw^a$ht6?35DzZA;0rXUvs2NS@%zzS$&V&nMk;$&lN z;sAKh4p5eo1$?nHvH6#=?7s|X0sn3efQg>zzv2Gv{Z}BM&EL)jMn<;Qb_OE|7B=kJtSzm>9kH-HqYj!?m=rb+PgI4>ASX z7@Ph@!`R7=LDdFm?_?q+`frmOR!pROWu?LvA8ksZvl|aRR&CcX+ zCDUKxcMe`2cD8l^({~ysUO-cm_df_8jt0&q0FZ-|iI>Me75|G6n3w>@KqC;q(8LUA zgYYN%yV%6^U-*6g4nS9cHskyHF##C=`uXoC-S-VMwzaWx`(yt1h#5r1WMnlYX#P$4 zze-_YTUUSw9SakHj+u=Sz{JRZ%nsmq|KRn%aTE-I|E`1akFS)CsqMSRzv_K&)PHJr z{`V44{`*3x0RJ0I-u8WUO#qaCHeH92jnU}+7t{aeegE6#|KFPb73KeR)BkTp;!ajp zf9om#W$^!_H?Rg;x&7PXeRZ8c?`I%q`+f{I|JPLAK~cpv^dVgqFfif6a*_r>5aJ^f98~)M1S72xY`iJ_x zAx8g2Y=5Em$LSvd-v`QI{0F{QX>4Kz`lrErN|QhEy-_B1?@yks4bwkt-qV`?f$zl4 z4E{IEdtCE>!1pM?f57){So{ONQ?~pw()R+b{@SlU`ga!A|7gj(fz3bQdo6Z?)}7V|8Qq{k7H;4kFx&aVgC>K9?Ib#@SVdyieh@_0QxUv zeh&{aaQcV(ozp+zyWaU9Q+rSC`VaWta<{+X{~V5ylY_(iW&Qo)yX zMhJ`ZwnjXG7IlGb4>dygE_A!&ywK+<4;svL;{|$fpgysG>93n{%9$BUGG*e6y-ebI z7M=3K_77QWzpg!Y>WLcMSnueF#1G7f3}fcs?!af`J?;re=23ot<*FwM6LJ?j^nodS z3Pb@(N$BDA&W)8rFOEV1Zp-MRM};_!TFrM zWgQ)`9ij7oEm=N|M25HH5h2c{8g*k}cyI-+_tVdCKWS(G-3zi{5SkdzAb}_=Y_-}- z9`Z|evGZ{nx`&|zh6t9jTrRN^4#J>FUPALZj?N1ytcFF#H}iOeV;q$BytMs7b6el! zM;5m30M6v>S&|U5Fb`wiRdFTXj^!_(OJi_jZ?!#h?Vx+YsGGe|wnD@v|>yhntT z!!1&(jI`+J)pJbdF>-s+sa=d1KioGm;)Xu#9bIwQJA+UWh28eoclOmAccv$iOgDBueh8{_p9Cd)cTDz-MQI;D zq;j^PtK15OvYJ-!`C&9?6^u>e4&!8BEz5*!^O1$Hiowga6j2;K&zYsp?FI%?aIk-* z;J`9)(I>JRqFwnUxkyHgp=%xU@Elz#nWx)WWo;peH(&Sl)|0(| zYFF%$sedtFO7IJ09gs?@s9lJC`J1=Eu8;rgG7jf-DuFBp^}@!k=MMsdUUAJBbu;(Mv@ORGMEqV5_CVWSSXEPl7yosns_obDt%#BrBs8RQ%YHooMyf{$`}2ARQ0q5YD1y5h2d6fSf-)XA z14-ay|9rmQ?OQW5%jAN4WS*O1{)QZ={yo9aT5g;ck~4$6nm*7i71MWZN}$Glj!>|O z46U12LnQ8KCEyA`pqNzPAg|tkAz_fTg@n5&bpS&)SwI=yJwTEfj9yYh^@{gevJ{$H zqXSh2tD;qU9k+e3ji3G8@sij^v1Du9#P2*;E?CZoyCBcqb4q%_v;Kk^3cIjkycnG- z`>@rWjm!ljW9>Hv?;^2{d!jN6*HV)9=|b#G0tSB=uaag(BI^pCapUZN`Wj)?1;Sy; zh=`-C+OxDaW!U75Xs90@nzce?hrq`33(2<+))Q(6!|8RRh)Y7hEwY}558()rF7t2G zi&nVW7CQZw3N0^NH80RBX&~WX>iHcUBYP=LS65c*Jh_knwdTgufdMBb#!XFgfnJ|RO~Q`Bi(65gGnyskc8|6>0p6kIpX5)zMpfh~FpHv%l4Hh&Sl zL%vY(yJWKi3+Coo8~WBUsV(<8*a;hy^(^kM|%xIbVwW}+sr|%4UpGC(4zljqQLjI5R<7if+AF2g4>DT6R{nWMtH_Mqy z8QmxH+JfA<%===0ICws5B%T}xfzU`DXS#jnR~im1iZQbM!fz$y!q1}YW|=D*maS=r z=7rQPD!?zH77KGLu{ph&@+LfWTV?3jDL!Cd$LoU2;@7BR($6sW?!9%<+nOFF^8ydP zT0TP7;<)eNUnNA;0Vf6fPf9*}9^a*m17ev6Y8H)WDte{%2Vdhqtlr0tQW{uQ# zmd6vkrXVwaKT(CBs7pwyO#{(L?Q`s{ktXL?zF4Wx)T?V|aVK}H$y&`i&4F#Bpu-^o z@qXgI;q4?CC~Vy2MRsY<5}&F18(f#UL~C49zh!BVfcu==*s?&LN%qyz>wFUz$<~7% zVhHJj*p{1;JCV|_ZjN>Ac>LQEw@BIqR;=A__<(+Yb=LFAC2osSg*aEO%xHRoiMU7M zt?xBm)}8Poj!J#tUh7(iA@@eu#kt?m@Yht^QZAq81+j|IQ%hmQtu`5MtdkHiWs%sH z;Tk*1d&Z06Kl0ve99u{vy~)bR);&7kENgm2j@J8Dia(3tj?HUo&cR>zs?mA^$6t45 z{0CHjmY8yU@eEXroGZv6M_mKX?f2s7PxXmvq#}D%Q=a#NP+MRq<1_-awd@N$w`IAD z2I874Gk<*cC<;^wPmq#%phWrN8iy2W#?F`S1WyaIpZ~Pzdt$Aq#3Il{xCe z5y!@>VE`)qEw}eI6`h=Mx5LwZ48l*d;^`}hc|8iIrriQj3^#1q=NTHTFq^AFYACjB zoppFn?isO6{4K_OVCH^7Hf=0(x= zaG%gLfTp6uUlO64Nc`AU3Iy(oN+2{~6$O=kS~(el%RnJca-j0H48eL#LpXihL0VFT zyB*g>j|vsB8bctN_o~e2keNG51EdF2rfSdmB!`f#sip>hk;c76nkPgWb~^cg?F!m+ zM|U)7`{>u5tJx_2=?lt5B`95t-9 z9wM3ZZ&o&DSQ)R@Gn(6kz+KmpoJN}AC82rL%&h`2n1!3gq67;l`QLWP{^F!cJI|GhyUs9Wtmt$jyB`-2iQOS{c`=-yhXx`IhCBEv0fQ21pqzS-dW9vFhKaB`r+yXU zG+?WoR52mO}ofIF^#?6CXlyohXcj1FyF zaPB%Pj?CfU{HbChi}mM!-Zxwu#GqnK>_CPGAM{r6&7 zg(IA!t`tS;ur$rdo35W^GyQAEz)UGMi+_E)>G-lf{&CluFn(@mjQA;ldr5>rgdCk> z^m!5Ws>(i@R@Dv1Vni-0NfN9GhHCpZ>FPGPs!<07my9BHL!FWYham;5a$icY2M{Wb zZM?d4&8aibplIU9dW{F?E5y2whaFTz#gPk}#m z1RWE$8+FZKQ`i15b(<{}E-VNffD=00<&0qw(k4kVvqs?AN*q*#~%`*t$ zv_bZNK|3j24PxggxAF_9io1Y?d8DKRGHiZDGj>4WS|1qPrrTvdv8ET(Uib8ijUU2L z4s>lXZ)9s#dBGoRgKNWnWzCr8-BgIK|M2mnxhwJORArc}x4>@_1qsYAnP6g`ZtgKM zlfqfgNl=QXWXVy=3mYCqCs%!3!4zm^8{dk5`Prp@}V zCS4#{n*51uJ0HrY_j~(m6_z#GZdfN(HLo=QHHhFljVkv9Y66Qwp+~VHIBK zu&XJ-BO3n&hym}8o#)$-stVY*Tx(Uj#W70ADXTZZSuDKZtk9sWpK|q@`2G3Q1BnQK zfuA7f`lVX;Zm+T;m8%Jl6SRFOIkzn-Qd&f5?_nN+h8Y2V0YE1pKb(HHZHoQj3R!71 zd3omzYGmjuYAh0g*%7DFlEpAnM(sfI*AwVD5l)??8dZQqadLHIw`UD=Ca<`C*o+Aa z_fICHE3jRdW_8^%M7_$3Ln+_leejZhlhN80tm{KhxJP^gN6eBB*3;gO-IeU8pTNGD zvvzl5W?5Z#GA+o|H?0k_oNu+4A$3ijBIMVX@^|w>hqxXus?+@nIVL5qsgOA=s>H1> zhcAW&es(@rQ5qEX@c0QXGAqFjq{=y6CJo91BQdbERiCa1*&vmTR}Y3G^uLahx?-sAzjY}(Piv*n z4_abRf9l8f3JvE{bj0Uf)R7Roi3rg+RPED*xM~|>dXB}3=Ki_*X-vMhGPv@%=GRS< z0<6;7UQ0MFAuEOjNRCF@a2>yY{g`8N!)#96j7)jQ)XFJY6ne6(;etLDd9DL2ZNWFR zHO$Bh923mtp8Fbdud7bts-lp5uAPpMhgI=NbrO*SzHJ+wPC@7Xb-ib@&T;?O=Q&ZH z&6%q-U~sKd*}lUZ*l)Uf(ttoxV$=3(7}UrOu)AL+r)`kS=VhD-+7lCha3O*i)BaXy z5xA7P7Er79g=jq|cyBg-VmN|BK@b8Qrd@F}`#RD6mx*X#Z{#%SnK{)Pm}zlfA&X+6 zCf~t5kevXmX@nX|`Y=}v2Ol`I2I^^&=H`|*ikk+HmT5H_<#rG&n>&bn@v5i1sA&vM zL|1$nH^0@9o;uG~yy3BbU3#>l^C~T>>y6{@w8NyEs6pKnxe$VTVJ)ZvBD$MQ(%Hn4 zjAv?o6E}1Dw@;|!3R(sy)!O~?p*l&~qulcT4Igzm`Z3xBEKuw=wznd>ugWGQ;u%AQ~EH?qgq#Jv>@0eJ8z2Dw>)`E z%m@-~vF2rl2~GE75gSWflHS{1D^nKw#+&*{qV|E*v>$1xP~o94^gDM|m{mH-NR2_I z>;1?QpM#hvCcrFz42so@*;~4tL85q7i3RNo;LTask|`{tEq5SSLM?Xi~a00vPrjWcMTq z{U^kAiEk685BGTaZL72X^xMpFsbB(!ne`f{$qt=`$yKR;Fc6vwoUPh72QQy5mZanY z3%(U?S?@!VV|OO(qmj6YzJ4{GeWh_b{M1n3^og%2=k;I};+C&N!>jyW_M36o#=J+0 zN0&W+fAfT5`Q8*Mxvrn~F|Dd?4;&4$h{=+?w_D4U1w>bS+D=A@QL0%Yw$+X?D&@f`9j?Gn^4suviZm z!zw#hI!fw(Nn*A86+h!9;wE1nW7ZtSq9rYI-{H~(zTZYxs3oh*9P(K|23OxuKpQ?k z@m_ch!9PC7Qkk5jS3Z^!Bj-Q`CkZwIMUE`Jwa09KR8x^Y_UDqNV*Idm#PV#otmx2W z7zBlPoG@Jd`1&=U4_nPMCXcM8PM&)P{rKYhmv7bkFCoaz?T?$U%EN289t79RbT+@J zB0HM%5_gjNJv)<@uJoh)<+m`3Xkrsd65E`A@_1{l6jLa`XHSy3^%}>=nP2m3U5K^M;q>P&ySANVZctI?PGOfd-Vl#_jkau=Sj&|r#W}ms ziP!=6Tzed+4s0B%%;hUKS$!!o?hZ*h5R=QI&6qF1Cd8rgJLNKVciFaQU4n!&%iUN2 z;L~%NQV&l34lsB2;)15cmGH&-Qclu770&s81XICb_n24mlw=M0G9FTK$jQ^VUTCki z#ccc*gw_CI0_WLydHuvQ5Q%qom?tdz`|k6;IBj}aWkB5Z=*$ zy(KO!#_p8)X(ph9N|+fD#eezR@6K7FQ~+-RWW{qPGlg0TR%iFCI&TVbxQbdJRX`BY z(B}aiTR$7a#k6kbiuA9^ulVR04&Kb3Jr!i$O1L5JwqBq7`GTB?uApflJh9MTVDp&C zC_XqD&Fp2jjg~UX<+$0|xIC~5nN^E_-V%RgBtv?HCD4qL-MyG8o)jVGLM=5~9N$N% zcCVT((TO)}3dJ<6@FxxmU2n6v)Txu!ePCkIgE;tR4Nrhz22SZ4&%C=jZr@+)~K$NIEm1=0Sp1lDfV zf#e<(cKh;%2#F22-GtCu@!YHV6Y^jZ5@P( z_@^ox^~NEMLK%@$i((V_7@1L(;xF>Le?-92CrL9-TarLK+OL)eA4z?xKtC4AcA}z= zJj#i@AE)^TntF4-xaM%BO|eDmg!#$Vy9_>w`u`x2kM7YCSwqtL0*(2`=%Y8Ka)!6b zhPsRML9V{R-%5ZiopXfFntnnHflZm^S8sEYxo<>#y^bIGIc?tDWurz90`MHY zmUM85!(2h7T|0ZS`0D2YTjnIA#NBWw(z&h?`N#t#M@52_N9&&sg#wV8SUT3`o=|O7 z@PxZVF;+cxX1=scR=lCm!$cJ$e^1YiHdm)&v~~dsP%W^metkB|q*zs#RYk}TmaSyi zf$9;&U-#Cx^Q%H3bpgX6zGz86Cg3TE!oZo0U$J-N4{W{O>exE=)8UBpJ&Z;HN4@ze|(3ws4U15t5W@;uFf25o?9S3?YqL(W|9Cd3xx5e>rudUKnT| zlTaRVTOX&;wjkj{o>{W{DKh*;hWL0n3tth276~4gC<^%~oVpzUhtgYGXvJ=rRQWI} zUQ9QeS!|*`Yvr`01X`=bWy#J1f-9oz9H~Q3b74?E+qXF{aSCvyZ+rs*FhR+MpQ|c6 zYeX>>g$0|Ed13W(Wf=8#f23k0zV?z*b1q!R@c9kpQ^jXCa@Msgq(M@0?pcC7_;g!- zo=5lgY?6523%%+);O6prK$71Ne?<|D=ANjU^gUO(`A|WnaYi(G? zwk2Yvi^Ue7xQqH4HZ>pM;wkhyi}Kj(===B*H#&CwT;9xJGfDdcU*?P~)k6lQcs42c z*VMfy!sv}Nizq*xNr(%@WEFvm=LTTLweEslsNYso&um$zdLrI~7?8BL& zPzI+oDJkiRn}or6j&k%P)fMGZ0vCP2QW^TfAc64wN29&c_J>(C`Yzu z3D2mnU(`Kae0FPPome6`qkRj*Dv;=uwu=;rN1SdQKSo7kq%z8#7k79Fe>PXVLJ7e! z%xYCii6s{#OoaeU7$yX!(lomGsrrN0)26Vi-}|eNyWFRCmgu6gQ5L7FUwn87Oml3W zO#$uyZq&!Ae=kTLHlp3bbea)LCu#9-+J4i4AQ(~jX?8l{wklCtU2Dq(>w1SNu!@eB ztg>`08`|#?O8`gJTxnqJ)kLxh3+*|uv{RK%OR=_Gj2P_!0+c>%PKJeOAeAuJ;mg4m(_-78i8<)~$owFIQfdA~o>I#WA-`JIb zlMAXyB)$-i8(qsbcRl075GkE}^L(HzkDME&$CsC%XhJDv@Fb!eeQ^v4FukdcIxV4` z^@7?Df0p+YLjG5{p?e;#qgm}6zji%B+97k~A;qeJ%O~2~FGZ+!=j0x;? z1R%bav0%{9bz?}QA{?#WSMC?;m@6ae zYIJ|}lhLietE1>FLa6xba6XTw~MK`Z56$+q#>U|!In-9v6vH0--WEF6h$3_ zOpv@uMo?@8zZ#iG&5mgVwry4>(!OQq!E}ma*U!$blyI>q?ykDHd<&GyZs?pm%Mn-f ze;!<=q6J_wxx#FIg{VSr*Kc%*;mSspSFPI1fV|f7HY5-83To94-I^{jJ4MJJ%6e&7 z9-ZqB8h?C9Ox9R)>oB*&>2Z>FBXG%A@@>+QWF8T}8?J`JINdI&5eA<<(9x1qy1R}4 zFc02eda>4<=x%)C>PRS+q$YSWA}&K2mx-r{-~6r|?n*81Ziao>zyFC}I%vnL>#*6tl|5 zGKDsM=GH07>k)E7RvGujUg+%3Pnh^jhS$FjZP^?kZ5ULW&6lcFc(+29X|7?5e`F}F zAOvC1iA?q7F72Yx=3Rgw@T!UW0%q6>+8{K12%YE4-f?pn3|qIuLK086b_YI5*q`5G zA=TooZKpycQH`HAMV_*4IZ;Blc1LiC2;!qrd069#n^q_v-6wPX_IAKyjN!G4>duMf z^RstGi*$>0MhFnpdBMizAWqlne~SAzUGhd82Kt`gnv!PXs+e*E(HaXkWeCZ%w^6UX zA5NwkO2%>;lms&(#si{d%+}EoyeH>jo@7cBApwQxMB}9pelX2&UKKI+)qGxLAL1A}gKJGe12}dSUiLJbvV{9e$_F1((rFkDt)pB~b_~#3G4Z7*F zIxHHINy%q!O!=&}hJJiQAe*Ti)x=*bm^QRPn2)4l3PY`u!Ivcf!bx7)j{rmjX!&2W9sd07_JS&Kk0cUK=4Z}W3n z0aYy?_Qwe zoLW$!-`3*^y6GoI<{?6*xQniCrS!93P|1%lcLa8CJ*1qQ`%wvm9b~C+qDD~Ug>Go1 z?3tJgQWFyLy(4taXQMWI22+Iy*l;7x6ASLGD5yf6Gz>*l~^F_=F*NU=_t= zPe*L4IAPJ^+plv-xFsvql0vVN{p@br!@*o6FeBU&*C?&ywIaXePi`@~?R`)e~Z zGHp6_EmT*%?~lEPkvOCc<>Bzu!|G?z1Cv&NJZK|kZm6!SVA|4 zaoH-Gjyuu&e}{K;`ch?{i>?EluJv>6$81mck^1lsYSVN)h(nJ(ZkJsQsnAG-_QLS& zEf;$~hB^qI&fO^VKZYb*x!fB;w3HrUaLU7x?Tv3Rk08g-W!5IFhN2BFvA<8gM>}|0Fz|4Hl&1f1GAuzbar+3(p+Lf4W^+bRL2? z503@{r!@5%d(quQ%NwTPVt_F2u_0;?#Nx#$QjD_|q|@B$t*^Oa{G3r&Ow487Rs!z`m%C z&D=2}e@kFF*WTv{*3iJ?d?&pVvJcT1XypB1!xAro{6ca=S>v@1DU(4yfqjd<-efpeCz0o_;b7ZtpF4)ZDJkP0n0>bYd?fb| z%>F#0+d!E?v64MY_8pero+4E>Qr*@+3Uei|HU4|n05PammW8#Or+7*rg)70iF&G3r z@H@e%lyERTYDO4S9~q1881<3{Uv5>lfA3T5y(E9DKU?o`C+YI*qXAP%C$7oOZfA^( zn`jA*A?fEMM!l_GyqH@_D@lp(R!oJYzG!;LmqmI!Z7VX;#mN$m1?yjv{fp-f9m}E( zY>V9nC~D8*>Z;|JUl!qIoAOjIoEfb=T5cdTZj0rtY$XiHg}*mcs|$@cx&D$Ge`>Sn z$e(^Vs)^AG7#$$(TM%j)TfleK*w-Bs{QB{?Qf0#T2d`I6XaP;sg$E+WD*tB?;6U6d zv2&10;KxK~pl)r9Bg*HdACwB6YoU0R?0p{V`U{-dmCi61=z(;zhXq|7O1%ZPzU#)F zi%%A7+~XrBjr&eg|axh+tON5K~9|x&&voe?3~&DKKR@ zX8V+Nxq3>lR7|;O#+btW)Pbj$%(WG#mg*Fm?zQ#CD%Eoa>$x8Xs)r@boE(XFys>Xu zGlU5q0#<%{@!Q?8m$lS=W4jVaqsW`xi^p2|puN5|(mnS4A>gP8B z`ZQD@TBHW!{KAduRObsiGff|X3g^0dmfqXvw^O^Pe68WS*lS`p8H1<&Y9j-je6o7E zePORSMZ_Uprooq*aeJ>`VKKS(h1ge=gC8OeFzG)~zde zA^CCj^rr|B9BS&}E{%j;mbiO763Of=qog620lt8aQZ?C5&rz*eIs7|IS_XMfxG5h9 zYu)jp>ZOhsBTra&6-J8deG{r*v`(Z;K|Vk&Xx?hNd(t;vUZxQ2(e^1_ zd#ivE$X*p>3XTwuK2ds_Lb&miuYZbmF4AeGCI!Eub6;l$f4PPtQS8MM7G;HrcP}?- z^vGl59Y+|~f}v&w*vRI#6Z-f165@ek0=x7Xa<4e^ahEs!wDa105>;baa~rL=52QAn^a=isW&!%74wK``OW8sgt2~U!2jCyiD*HYv*TAZ4V}4LC z3{3;JoQvlhe*>r76VJ5xGl(E?FnyPzhyyTe^U(_$bFia$4UKQU4W1sE0cyjaaT`!{ zQn+kIRRi24FB*;l2lwJv{JJq0F@*8d(Sn9|>AtTKvwhkWEFh=S;txOjq+T0l3E}D7 z#LaJBC|BT4>`2y1h9#@QEHc&;JSm1M!_^;lcJV+Re?fKiZ6s>Rn7xunAy1%;Sbr2hp?CTe7 zmpC`@_Gi zW1h&35cf4$BHZFkWb5}8?c3@LH9972W-5COckWx^jPa^$uhudRvXLe$BOUUx>E#)v z>Mw&d264(>9YNaouCO`XE42jX8DG^0U-mnGCFBPu5F8Br)}Tjla7$m6o?56MxX_=)|a^*Ho-YE1A%AQ?_Mbn$DKOI z>-U|#Xw$(t)^j>F;)`Lc>f*uTYX|juxck!&IObiP*cM7Kb2CWbPk#E^Zvhkza5T#~ zGbMPM1?->BRz-hASRK*yOio0w&pdwhe`a0t?sdUE71IuUuT3>5Ud(3zfV6(W`ZU4?DHrvm!bXQ-j?NkU|t$lHFm;K8`=$yEhf?!+72 zP9j^*+vaOj57Cb}`5zx7Kk{SB6z!?U<*LT+5nHOHBo*twQlVt__l>kL6hw05B4M4+ zK%0#;`^+sR%`dOmhtHVj+hVE^f20l2@jy(e60{L@U7eXfARO)Kv07!MOCie~ zBiNuuKn*fz%~pU(z+0=jJBPHONJ*QF&w5Z31ueZ+2D&t=porZg2I0RoVazCaKyDBO zrZ7<}N1Q9}1)EQYQ;yaj^($3c=BFaSCe;e^bpN_u6-2%i!P!kqZ#2(we+aQ+RvZ5f zF5Zcg+AWTGa{)(uT~e^noGaj4MQmDnmLlJ9>k?LmSoINN4QnBxrw)6z{v-k=QjNF` zs9>T&R!^Z#s;y$)>VeoVve1&hv}uVaekd)|>Th##4YLF?KwOjaxtDndX3RTyn&T)5qU$d{X|yMc|tf7l>&QO_$rXeW-V zx&Y!i{mi@v=d15)k;xJ=`AA04F{vT99W)Rg|15gb!Mk*=z+$u#iUXC7SDNaBOGdc0wZn5QuL zYH}x*^U-uXe~~(5qf?ii$LsvTFE*8rg+#DtggDk}X}yEFCn{Rc-&0h7BITu&lg}iO zYqdMmR^^xEw$pM5UCtA4=6yUV>$O^ecCalwjkR9Mkuw)v%hShS{iT@k4WA@^q`CM; znzLQE`f*A5TPyKiUn64Ia=!LV_X{~*7`@!J>`u6Ven>Q4sgrkt+!;yHe|YF>D|<}8ed`9BHuS?+m}dMe$qW}m zpr~_J7c6zRsMiWl3o|6L-AC5KqC2#&5FZTF`L?9u^o&cxCK#)|dGyS2-%y!YyFuSD z(4pD8e|35Eqbm64vs-Y$oLz3V#%6EGvWFpq@^w?A!vwmzSthhgzxQ5pJDO$6x;*xjOMrch3bza7!l2exu4`)fGj!(EfH#V7o2azaxGit** z;Aq!fk68%g{zCrO5Cd+P#n>P=iP21Ym5fyFd8oh+@#cPxA0+DSE&mM3_HXQZ&QH&~ zGLu13n?-M>Lpj%3<(eKW1sPrDi9`X$e;>=Xy(419Yd=#hNR+UmDk{2B%t7|V9A^;~ zhRW9`{jyL#{r;wrB$96k4?rNDAs&U_hC|5Rxhgq5NiDFyT}qmIHrS#6Y-+6AOY!Yv z5IxRF4~rmB_h&E`edlQ43*}}R;Ao9VELSfHwy8nBNfZ#OpYY`WNIYMSk!m$Cf1Jz3 z>g9nq&T?_=bM0un9otK$ zX-QFWt@l^SLf7^kXn~qeutTtw4ZX>cwG)`fG`WqIGayDFA9Y67tx=vzdEV^$f`@TV z_Qh9U^7kOlzFps$M;yFE_MDi?e}!BuBQAiC0{w>#ep~y4ua5LYZaQtNAoLt~nKhBD zCK`^!tI>0XRIB&=7*dvV2FD^=>C5i`FV3uEvQX42AQ%!>+Sve&swn{;I7JTGfJP7s zsGswff?da$mdb7dpgDWxVsa=l`H;8(TE03h-}deCZqKNrbYICk&Kf3?bHtvL6O z3a%r)#1-;JvE@Em72U*6N10WJmIS3r+Fz>}kgIQbP+sb#(>S&idcB>Vwo_Rv=)yT} zZiK}gQCN3ba+?}68|s6sq+g7Mb>4#=qU?VacOJe=jlv=Bz8ZIW5BMa1l{CUXpWW?Oi2jC@qEs?3ChEZ*~ zbQTJtWw8!>iZK>#l|(cr*h`v~ofd0Eoy|(rrKG#m2R`+Ev zBTim$0~!kH+xbl}^roKfz*%{qjRksKZ*g>)!Ht(;US&DB9LP`IJxEP$P?<(daq!P=Q(bdk;*ZZms*VO$N^BOC}d{y2&^(9!L5!DSO zvYWfQkb;?AQUeit=gD~Oy0A?DXqKrH}C2!;Ar;sK`WqxhC*&&H;WPORa zSCREs`l_`;Qdrc)0Hv}Dl5KYP;0B1+o9y)d#WgdLa;DVAYIK_UH_QxT z9jBk%VzAp+{%ek7BPWlpR)r8t&$;*ENThL61$ccS6-9iI%3Jex?~lKBLtxu3wK*co z_461fm^=|fD3;f0A2#;*_m08sz>{w-Le5rYl;g%-d0W3dfAW&^BnZ{ zvQqJ#mmD@mv$9THq(LC64B!`mCyMOXyPV|iPVjq_+R^26d3$~yLvPuJ<6Ndu(W;3x zEUBi>D+iy!)(&u7`55#8)%lfNnc{>MHfM+e#%Vucb#k~U_O>$iPIVH&Hw0}{vz9dg=W~7n{0H-cXc}QA zbVkZZf7pR#Nr8=i1LPv&C4I(PaevLHm;tCX7T-_d=NBsK`S`^{jX-GXSa|Fm(B_dC zEwxK0O`u`@1_`5^r{hc(I%L~I#_M?fEAXlvb8Se{puwVt%Hz{WgOo);yMJJ-+c;K}dt- z4c3`HHa+t%Gw>Zd%*tMojFBcx_>rUAY4QFTG_|{sM-CexnbijxX%D#-dQ}XvS_K{Q z-;kq5Gd}ao%e+w3Sp99>=vElBZsW?WvDAmHUggS~s-q`wG7%b7)%GqiBo(+sy>Mzf zf2-p+*=V_+O+RtBrb`SQf2V++1kUGhP@EE&`z=cIB6VvHf14Gf{sf)eTwF6+0zJUs2(@m(r{|8Ve&Jx; zgpU!%%3r%qEiVKbUWTFe>!wDLFoa%yUPaYR(XMIaf=|+?)pP*d!g0*q}}80x2GsAQ6uv-sMVle{fWR zr*MF^)v1szBZqqQy^=~YT|})%?U3=3(9(}!G}Rohw~w}FY*|6;az4TO`IOgcy4MG1 z;vB0#-Dc-O)mO+6$2O+^r`J=6Kv%-6u9tg0ZoPE7+>6FY&5>B;Lt)%>aqTHObvIs4 zDcy3oMT_!Z*J&WbG^3RfL%#D6f6BGxl`7t$w({QIP`>b_Cc1tLS}n}oL-eKk z^DEobyrVwE4`PB7amRMXe|KWYJf)E;`Lg8CB@-e=#zP}fki$jyJ4DDS=3l1+n22Hr z#wc5>_gt{*)L-<}`!U@KOMC^fDv4_o@F-c3c{rlwgqT{OBOkv5<8xC!T2dS^O!{KF zlFAceBDv;cGn`ij%lexQnH%eL4IxXy`lUjAZK#zftEV#N$uY&ce<^UC;E1zQHM$bjYiL*P6jkCVyMHmHnM^uW_E*Zk$-Bq5BXD$ImK7rgum#anv(`Pqa-Mi<&u zWUfitUXElS$4ldIvhD}+K$sKDG~eJh-RfnCqLbpT%v%L2?pepJ;1CxQ6MUMr-w^hg z1z)Z2wSw#Yw9e_Ge<9%K_mWD{M)~jACK&4Mfe~-yk-Pa2_$wTZx~K){Upgw*-b&>SV68g zPg}EO8nB070tFdfvJnXF>^n&Ak8sFHhci!7c@y%qw0SiPem-zuV!7Xj&a<0aQ8-P5AKi)g?4^z z)r6n3&ZtndKrBfDdW4FS>7)#P4Kx~2&>5N_Z_a;u9k~c_M~+*wQF`kpJ+po3jV+-!ux!Vn2v9=X?LT2bwNH0f?Omz&n{l|{$Bo9F7LfBVIA*pw}fKc;u)2%v%8(>N-9 zq18P*Q>j0s;gAHmH@S%`%4wB*8{t&Aq{lor!zA+(o4cW%;@|#L+QiJ2D1HDvELD#P znN5?dzN-ybBWB~m!HPQ#vlV|;NfC6Nrfton8vOgSx6a1Vu~G65z)UdC=KmA^1p)e! zd*tOoe+8PMMc@s>x5Q(Lu0@kOBFUN${?7p;IY*=#_qwcH;vk+C<)_U+pr~3kV4XK)#k8))ZO^Lu_v|_GG{6 z9779Q4U%;Kw|)<}XrNaLIO1};xmri%-TVcRfCYh66d0;bLL&C1^989Y_}pZNds?IwvKWQ(`Y{zKT6%)%z$TY7?3~|1VU;aLCLpiPDE+aq zQnalbWbz}Aiam)0@+TI-kWks71NgO5l_if<3+%B+s6I^3QQ@Jwg}T@`M2Ya49Ca@I z3Ari8`TPEs#S@-!S+?>JR`<5l493@SnL!+evTw;P+=5+xfI-~a zBe!#@Lqiwb$u2;+3@psxUv5_nQ6WrPS!=JzQHGy4u_HUF#yfV!gMBRR0A?F-f11c% zzYCG7^6uvBUINK+2}z~={;u2=FJBa~zOP_&wyTj}-cKCpMYUhZOqGJC8ANa46T7AP zr_sXFnQ@sL-ERGIruh7cb2ACr3UIfN-LYAoKK-U4Go3$zyRqL`9~-TD#;jZ{II@Lf z1%V9;@D4C2WX(e}Ke_55sjgdzNos}ZN;rV}WJoQsQ=@!~JA;cwEXH_SC!7-t-IJ?)lz4q0p6xr!7ICec3{5uVSOVCO z>7IWzK&zjG#MB;1FR#LKK^U})FdYlPtG69&by6MMaAk^SWM`|%HCA0_e?L-^d4ZXf zpP~SGi)d2W1A#BHTe$N`CrI3Tu?ECzBBpP;I6CY68aR0%Asv%)c6f6XE2k{Wgax-jEB zPB8%Y7a~R{e*}R#$ONt1?L}BNE&j<#BYf@iAgWxYILufUn!rYanZg|lc5kqIQONHo6$_QP6CdUt#sl`_ zZ3bb|>C9xP*STpoFtN%h^>l^iq)}gJE_>VZQE7{9d~To=_DQ7Mkl#B z_}+8g@BhcRchneF&s^GTu07XNq=a&cwERXk1|Sg|Ye!lj9RnvoP+D4?9l*fAM909u z2v16?WaelI`r8aossgfiFtf4d{8xaWJxJg2-6o{(_#P*1e`5`haIypdnE*gmP9Pg6 z0|S7Ofq~hWge3X?;gikk$K%hWeHOMH@pikfYmwm7w4@b#%1lq^EaraiP<9~9~TDDysLVQV8n8!Ic2wW9<4AN>iL*@Fz<$L>b|*Ueg3 z+qhVJ{0)rFtc{HSAYtTWORsEgX6FPF7y3Ko-30%S%>?8KU}0cqV`66lfb0MuS3^_! zKguh)f7ycmbOQe{zccXiu(h!T7{8MMd6^l5-hbdd9Q2(*07rW#keA259siBsfk1$f znV}=V0Aylj4gXK|cQeTNFZ_P__GYdCO@?>v0RaqueE##K{Vp#f8*59qf5QK~UwSnq zDJ4l|>c1HO$0s0Q;|lPgWn>1>GO{oLfIuJve}L`%!Rx=v$myH?-3G%yx#HHwHh}l| zKihqu)Bm*W{I>!q{@xBsz<(E$v3Zv*2te_V%C#6+7!2RPfd9{0|1;(PPvU=6`M;_B ze>WuJWNG=Qo8nLZ|HrLwWoGI2cfh-9ogCjcK-%Vg53K)ps4D2Mt(68DnK@bgZ?Cwc zfByR>@LQX_tC<$aOvk|dm)*=k#LN|BBxmMmX!@6C{<16ov1^uQ)*v|>2eUt3F7H_k z4FAjbzF>wH?=KLCcVYhJ(sy{@Hpf4&@ed4o->3iXL)hBT#^{g5V`O0k=-b=tyTQL- z{X1d-cmUrw)ClDIr?dg|bk;VG?N=)H>6KZqSbFY_P7&H$j7`v(C5^z#3p_nJ!oK^*U= z>;DJ6ZxX$}rLE~d7LND22LJdO-x0|1Uv3Tnz2QIZ_fgXu{R_UA1N{rWXB+)d%X2O-uD?>|J(cC zrp>?Ld$R4n;Cr;)zu^1$?EfkC-n6~xzmwld{nHlXI|&Cf6RUqu_&vk%U+_KR->tmU zbp8|mm;MZ$?CswL`sZuoU7Y`efB*a!0D)XVhVaV^Hile*=HCO`9%}e;TxfSExS`Hd zAJiCWCkl079s7l6bT{J_vocpC%SD#^fFe5PoiYM;583OB*B(1{1odvrceDf|2POmt zu?uf^;ByHc_qaq02+d%5s>uTQoF(@CU~+g7h+S~JMkf7=qzInm-+Px5e_Y5=OGVfu zg4$#{x@t-@rO-rg_vQgRaW!A{LU$HK2AsWFc3u%L|2r~BUHeI9}>(@ zY&pl&`b`X@W}X>lngD-{e~HkZpT1vYYU7*o$i&hUz@CybM-*Zb?qS5eCZgcm(Xtpa zGJ|oy47D+`WBIXbs+A&>*weJK^vcJ3lwUEzJhjSDgO*M;7qozq*N05yV#x6EzC{$6 z!tI*fUwD<;5yYu%3b<$gD*wzXm2%~#hwp-03LS$$i{m72v4_O(f1J}DkMtF7}23vdt+sNv^IbdVN_MnXfVc3`l0um~B>v`JB-qt01T10E&Vjh{rpsa&1 zhfwk}KQbsa_Ul$We=sD>o8LbnYQEnw{m4sAX{PV&)T^|GvvR zc$}}-?oGT0T;GN3UYV-sEs6tACGK`!#+S>Bskr-Wb3B}RfA2qO;kJr)rf5GL9%k|g z0pPG4$3H3;6ThCbk7ESTRINON+Vc-YX#tcAK*2X=;scJY`9=Znl=8#_p$KsU*wb*f2^O!qi#WQ>&Le|%W-DZKO696Ls$`mkw0K;U#}WZ)<=9J0`1(g5K>;5 zVWK2sOK@ghFu9N*uH!uweQ^j$+S@zY|3d0n=zEhr-Hd^O>|_2S^^vk{X=SWXA91Ci~N=P_{~YoqVv; z^d6e6e+FlgKpEBSmv%gyC!Iw{6knkdykU}`S6rKYku)?fLEnxV1=QtPm{Os=y5!k9 z925Ypqn^xo`h6`C&-m4$U)dMSfJwRP=l=Bo@+&UO1twxVTgfo&49ID0BO8>k7yu)l zN4MMn@4~9ZFU$shw?{;oye=7_IVW1FTj+e_fU9i^bqus9aUP!0X2tAC; zz5OU$u$8@}2Lf4t!=eZfq%lCO}+l)%r2rvkPxqx9*x{5{XVv^GHHZAl< z7_xjAcD<5#f}9=~pHh0^@=oL;L(+PRqkxl!c3-tnqzDCnYz~(wmdzxwZ8bk+^kYNh{SS@ zc`=kq%I8#TVRo+OYanLg5RM6YA25^N`~Lj(hKRc%g823<`fVCf<~QRJwsN>%Jcqw{ z?3}>9FCGi)74i0SWYBs{8>d0C%_I@YE2lC#9ZmzoqD=+S23j&iA{k`W!m1Zh8-F?ZVgvOU$Z9IE?8M zBqDSYd1v97S(SF&jREx>zR}YjhQ9SEb4C@o>X@G70SS)*72LmX)RA(~g%M>7x%p{HK75ZQA6|>>MwHb;FMaF~5EuNg zyAFJu|v-V!R zip(JY4w?Ae7^4F4`g!SNf7HqvUuhT2s6Y-D(c+0 z6y50-sgj|+H?G5wreM0b!Wd>#c>M_Zg4&YN1Zx#}vd$Gx1Vr3joWe$zlggqi@l_^| zn^nY*g$%L{=v&tx&^hN3iBPeb_&2a_xxp5XjU8`u7OrA5Y)rZlf5%H<^9?!-c^dw) zij$;k$tx9KQ_P`VS=3b3g);LGUn)8K`hZ;Gw}BMeCm7JKiuX ztJx*g5n?^#R|w#Le^jtYazq5i;GNGSuU=kRWx}Y>mJN2C&!LQ(JdCa+VI@b}WJ>LJld5||Xh@H~bOSg)7iHJSHjjO39oX*z z0|ZT8+_&dNqGlho5y}yEOjjtaBmTK6R(fBJ-_As5+aHg_Fw7e+%V zeuL%6GZ9#5lzxOu4PDPT%47bXGi9dBfj)^(=2j5uFk;C+H+l89 zl6o;f7N_lre^(??y$eELb^J`sDj@49@4J>|_5vImk6{_rvk*wQ2;URV_;*b%xTy0N zRunC$z>ujg-OB98MD2Z9Q}|ZETOa)ch8NSHpcwupW5J<$YKYA9{8*NalhHvIm|UB~ zUYU+$7vyoB2#d@%PLyAwpP#uE6^X@M@|;-*;YSByf4={y2LMB0{XRyXw?&D5yacTg zkNY3f0K^G;bjRXe=M1V@yP+`q@n2LIAwFk!7z9c7qGj$_R6N}T+z^KZH6X)3gF8NM zj-Bsq=+!N~+~Yr?I7By=7}JGS^uSo3m>O1&zLn-%UkkHDX)wnSlfeA;Vj}M)t(zGRH7UzsM(83Sdsk`2&(B#E7>P%!YO`6-wNCn81ylNZrnQf#?nP*VMy9 z6OPc-LefL4wEVpJm$s0%0Zenc=;Wu&JHE`MI4}8&*FkEl91#MJd7=5d(XxxG9k|a? zmQeYf=!9h}yXuN{FTvI_kVQNGk$YRof5bo+5<1p;an}qa$T0%~-!aZnq2Zud*Zi!nS zU1xK!*QKYnI}+#uxSA5Ez2PiAA-Yw&@5=T~AWZypu4UK;8b4~x(~3;#%56v%g$+wd z0{Hw%lzX5>TOYW0TKXe!9Hog_aknWk>TD33$`$~mJ z3*(tVpBM}$`*Ub#IM$h$w(DJY3>FE~25_Mf3Cb=vHR;xPE@UKTABSVZU>5JML^G zzt+%3fGRF~Z$d(l!2xbc}rWs?|wb{EX`_)<7!#!icS4`?4uBE5PFYW_d zD?*zjb_}tNf@`2xf4O;V?K}O%&VbxebV>SCz9mY>He+(2&&l6GJF!lYIfK3q2V*(L zsZ$W5VJgdvIZ1$pVH2W{q+ zc+&l%JDdhnRBBub7S;vk_e@^8q|SoORP&wn7MexTlU zV>{%v=A9xH;`enZ68*NG%Egq8w)x5esY7Kxlqq)ns2mQ20kg*Mr%y$!ae=7QQ*6wL zH!0`C(XS+Tn86iuZhv!y6W;4>ThXCR`eEz;VJ2qwI`g8GlH@6+t{)HMP{TP-MBsIEgKdnBI=QqI#I^qCCI zrGlwBHAs$IBwFnl4>H}yJs`FLo0mITa0M~5wlOy9Fg6QCjejL~*(d06_%0zbT5XgX z@Z4Fh+Bn(%R0Y={9{lHWU(eov5p;VU6OO`ns9tb{de(??~-I>OOO1SgBGu-OJ za*4tkf18tVoqrF*@m5Wf!T2^29TD8N=P-T}s(dX~V_>BHDQj!l7GO50PD;T$tFuwQ zI8e8NW~-kngz1Os!<%<+tC-ELcSGen9sAmsWJP}S5VIo5Df5F9sVyI6G><)puF?zW zJa$t+#zZFZeX%AX4xd55I2Y?)UppvFWPshSZ#C{-uz#mn*f9db-;BB%TP3OuJU+K; zf1plv_|5y#y08?v-8*vVQ79fMRVuRj3eG)Va2fC|GvawGK04B^R8V;I^-|(j{?e3d z#Y}a&gu{IXVae6OZ;C0rq`6d{trZgo?fVIKJUy-qWaznX=qg}eo7ZAYExre3CB!Jf zNIcxBNq-|#C9#j`EV~~Yg3_XpzfT7VQ8#F| zD~9zpXAtM}JRd5md4EnaovtOtGLoN+I`OpfJbw=s3U6ElLEnSGiX?k?=av{Z9TuRp zJ;ssh8TG6!y8tz)muUX&aJdeMNF5rIu8I~wZd5FjzP;Q_5m{pSs~=ciB`~}qgsG#w zS5BPg6#=gO9{7zeN>IPY}SwZ+rW^nxMi@o_D5rTk_j(7AfhI zxqtKSLw5jWGL7wxtX8oNwmU>P|0rU}jiBLAJPCU9xbxIJF zI*L%!wD>{RE?zG*A44@{nuXD(1i^2r??0-4j8cFCHMsZ8-CZ!XJvcPt+4@dB^^<%$ zdtnS3R}kaHpabOD1{LQJcT>wC_F$wut$%@df2Ieu3heFobza!Scoc8ztF_Q=#@P)4J;Ba`(+lHbEt)cMTIQj8U`V_FqKAJHb&t+ zL;Q818+$VD^KC-!fSOjx(1P2B{6r(m;Yqpfi!GS~OHY`h#DWeWePU;>$^Irut$%aR zX%Q1kAI>Mwo1PTVASa9||8W^G0K$54K+o)zkS|I|Mn8o_!C!8a`e+VuK3BDSxDcO*v$c zXkd>*5m?Y=7wkNUyuN4aDYuX&JJpUg8pQb#oyBtF`E^?Eti5OK3t19d*dsk!RVLQ= z^t%&y;RIJI^$cW~`}0zgrQM$Xwc@VLsM-AD+|%sqGoSL{b6_IN+Yn}^77tqS?44;1 z@g8tmWGqT6TaW*n1 zZ?_CX=T&7}fJE_`?~Y#Zz4bOiy%q>p4sSfvbHnKPeL_nw?5j^Kzr2zxHzQB|6>0d+ z^R?)@@6>YF*M^Qb4=1^hL(?0_KdyTb!?~w$8S#ESIJ8$2K*-1+kbiSZ|H#<4fo=3e z&|j9jyH(X!kgwDL+oJ`wX;}UJx^#lDq%eg9$sVOij<(93vcP*Hyj2$SdETe{xVqwB(UL4Hc@Pmt7eIek64IS@GJLamo5N1TfdyFR?X$`C^C-dN3v+EWlr;qn|N#>xVbAPZ#*`08&%}2+xLjiBO{xsVi;V<+$@vgF z)L)Jg3~NiSqHl6hl35(1jpZ~Yp|<#peWqeNjzBv(ZO4x{Z6L7fe)FqUy@;41Ty@uFx9X>6!H$H?GDQWp!C(4ez-UyM2bp&^7cwwv}iL11+GfQQKmX#FzTf?juh$;D0l zuzk-FLorf)_q|6q9fCigUVg2e65}y=$52*QwtxIcKZMVjU|GxQh(5TCD|!8m`exsp zT%Fh$-o>@d&vGRPEtq(1RH^Wgo(>-hsDtdr2NtZ8U_mFMtZB40qL7(cp535OAZd)t zSWVxs$DPq5=WfA={l0gGqn?m2)^P@+g@0h= z?~V_umb0|DuH=%5cFIbS%?zZ!NtMVEC-DkXt5=9(weeL_Q~aYm!G|%c!CarB*u^!W z2~tyz2MMEZ8W}8iK1^M8y0Hzt?fA_LC7^zGy%R60=Hix-r~pM>kn6F%S%`rGpLJUX znCPoqs^7@P$r*AO(a-N<_w^{~E`QW4i`-Yg&bl=WCKN{Hhj;y|7=&+vqt5L0lL%iBykP++#5I*nX|XVM9xz&#uWrIybpoqxc*4B1Oi zb(R#JK8`Z`5St;=usfl_{d|HkxmfAL1H7zIR5@zqc`bp^W!b83^m??lwtu% z$(rP1Ddgiq-7Fprj(p$pXH_tay#_Vj}b9*L>cvbAMzUb%Xgog!iM|{p|dC>YJT$YhYAUL%evbA5dPT>#MjV zte%!KF=qaZ|NQ$zilFMO{UYSf6E!e`S;dfGytUPKxf_dh^W(ruVI3Z>k=Tb8!HNpy zY}dAa{vNEUe3g3oX(`x%tNhGoD{0B^Ydjm$n~z{Et290j%@h+2=zp4Jp581hE0`mA z16y&47oLNIF`q;<_L7=;Sy{4;Q_DWqy(Gx+-OqtzSJ6^8(Vy|LiL)r}^XHl}G5H2{ z3`SF+2qitHaDX|^*w|1XfmLWU`IdjVA=WrD`a!Pi^;qxDWz~+z(jUyLi7sQb4Kaio z23pQ6bl1Bn3}2b~z<={}$D!HU)}d!G)~8e$u1e`pZ7^6j3A@dr6dirf!a4}TbomJB%Vf%&`s9-tU4 z)aIh6+QW3XhB2@UKr%^X1#nrcXD?x`((QdI`yoy$$y?4BgK=<1Z!{pBMdN@X(7 z#ct;ak38qjC;ogw=AXR2#qm>k_l{y&Mqs~T6Irg+Jd<6KDVrGUsC%k4Fxeb4iDFYg z7&ZI;{6@O8s(+xwM2f)f`4Cl^LAHYy__Cy#ydi{UC;_`yOeUcTNrYRQZ>(NxlD_|V zvKQyp_TABwey@{5yLYwxPcI`uwfu~1e1O4hy!I{5{rD2Bcqyn-X2rduyDcS^{H zPBRz%V0~M6)7doY7c(I(RA#I)i(1r@ISn{Nu||$C zE6KjE{83pBSw|`2_mV^SkZREznEpEX2=N<&9gMUy_6B%OU%nU z0oPbJdVlCAB=|uJt5t+44x6{Gp823c#hj`mR}*uA`4+a&CS~x@HH8z@9w*JE z4SpZTLuSZ+UjTv`)1=;R)z-`AfJ+!b1|l1jNAVA^ny5@~U&t?AovVZ&(NGwvpCZy1 zSND&CBT~{D5b(?ugxWGb8?}LIy18FyI&O9P(|;T^#^?32Vxd^|7#`Bg}-6vjSXicWZveL4p$eVjQ?{bg$XHDoQJqZoa`9_@*f=D;K z*p7XZH(Ev%7hGKDYqOfUMi0h4mp|mlYj2?nM@bK13rK03YR#xQgy3=R+KRQ+U?Aj& z6n~|48L6VrX?<7yId&w@x~_^>)ERHqVzUewI;+ow~T8JMB(Kf0S*F zE&zPtHN&Q>cOKURvJ%86&sF*md}WVLH{m><$;Obp;51tGqnT_kn#A96zW=+ z(pJMO5k!4_m;ipWMpMh%vWHmYJ({lZ7P~!OfcsD=v^pAO|ARy5t77yST^&M%*MF6t zU-@Pvtdb#-v`86#^rv*zlI%}Kz|V$Jg~i(QQM~k`OcL7~6z$>3smJ`4RFMz9tUd6^4u-mG z^{lB;uW1MbdJSpvG^lwK4)HZZ&VP46nc84@q3E-Buq8ieH?hzn5E6P=cViykx{JNY zBtCLeXM#YTY|1I1KH&yEizkwbG@go$8y)}F%x&f+a znYEJafS;tmoKLgFDJ&5SR>`h?N%WWn3Cg9WRL%;*x$eLd#l!L^spuR(xKsRT#dPTv zdHuCy=pog4{E)Z1;IWiD(|@TDfy^sA_|N2{q&=+0^npm8BcDBa`#fTa$|AFsDqBp% zR0*xJO11v$3`)5)aMPU6wAwcUW#!O42eX&2*2hrn1tuJk&m^kUwzlOBuHu7}ZS(lAj)lr`iuU3?2erfsHsx z3K6u@0+f81&?k6$&Sb#b*;9XE8{Lb%T4IgD*O1?;IP#G(9|{7_sb@|Jx5 z&8-UWdzyUygnPdlH)fB~-H&XJ=I83YJdJwc=;41Gx~q@N+%VcK%SsIyP=y5)_bFOj z{>h@JoiR5)2jt^WZt^PLXb>x}l&RSM9al-rk>geo4b=3k(%!!#)+2`PF(t9psPbeR zhekxD3i+_C%6~bJkZFRf+xxn~>%G~tER6VV7d^LGi;Rsd1Psk{Pw})Cw-|TrOGv0f znxJVSv--}51V%L5)y$=N!@?SEj8^F6Ds>1#{+H~5@h4}`Ey zYDP&X0cVs-lIY@)$TP0dB;%C^H(2)S56g_iJl|p{+JO~cKNux$e4RC23@~P!^&`b3 z?$3$E*9EI7;uWl#5MfggZAp#!6wNO3)=sw%N1?b!?hxH(RS}cl-XwVu&a5>m8+@L9 z0y{fiR)1$WxUm@8KR$+w^hLK%z;1$}4nCNbg~liN%h>7Xh^@?yjygM=3M=Q1oucHt ztZ18M0__jKxU|LGf~(cd9x(YxOhGfw*+l$3Q%n~{_p+GSvdpMhg9#UBy9(Q)cocg8 z%*CX<9Cs0-4iOExH&&-kjK-Z7(;f|XH_`7#EPrk%+?HnuEC!r>Cz%<@s;$@Aq0sTg zzggnACnx<;u#W?jjOz3j#dN7XZ7+jD4a*!v)IzX1D-Cp%GX#3G-&Cmyh*Dc0q!~`q zsfmN5zu>VhyTD_Y1ewcV&bX0#R@m!BB&ob&&Ow)Vq)QbEG%+jBBp`9Ew%Sry1D%O@ zv40h0E@XX++t;exABu|Vmbu8C)%-REwClMNjrtlS3h|J#^{^0@F1_G92drr}dr#Vm zdn@u|EZwCj{0i6Z4!aH-v^bALFZ`BpiG&fTMbm1+pcqasq={jlq2)+>JB6~0Xn z`r>uzzwYSvs_*}N+CEk(#^jB2ItL~~tK=I~56QF~nZ(w45M4?uFy(|{A8<=+AbRW< z_kg;vtiC4KDtTacSwX<3U70tkP8*#S2~~^XN_+~sEeml;*?R4BkhSKQwtte#vXyR0 zR+sr6DeLV@e|weX%r#A7YLayG#@%_l;*HAUTlRepgB%Y9_b^h^KOPPW`kZ|K@YU8* z3wOoyRSK~WCPy9OI)if?U1KUMe@QnE3u1mvZf-YhOGuC?ccDW~LPRDT%%WekXV_gvTYQ7-Cv>A4+>JUM6k^&+!@^Q7I9aLNi{ zh7;uIW4O321igs)(Y##f>lZCtZ++}9WjKml_KdTmkUlF6Fgy`e-PJ?No*nWR!dWb> zgQZ?#Df1E)N7%?U@&k7aSTsVXSsv`ou?OFO(Abtc?npJ?v4US_s(*!rMSdOVrW&Kx zWMa?5+2$U&+)cenQ)S=NUQ-r&z#nU=0`?&9yUXZydy2h&z`V0j-((LgU<1PnJYQ?y zxwzbN$Pl7fHOs_P#&6Gvk;rBD(hMU#$+{jaY-~oTi?kv^2t! zYsLSqMy5`Ie7819oVhpjzDp%I@L)PYrAiaw)LlfGlAyRp)PQ(I)ukv2)vL=oo{XC0 zA#6S+fkj=+`;s!}3bu{NR1qhWIM_3pS)7G?kNSg~pyTvp2ZA!#+_#foLg1?oSo=6E+Mn1cnHX`XHp{WvTGGcC~S4a^fN^hZ^cs+d!w$-vjpH6dMyv#D0Y5wI{2 zKo(<~u5XgB`MLsoZ1Chv`nhxWn{&>M?u!jWuScmrI{6rx80~S zVaY%``6;(d2+&o8X~%G5R>UDJNxiCY<{qT zSFOLEKMeA6OWCSZP+ ztJi5it$&*~zAd38xT-;XN*SJ@&e(2bpf#gi2$TBJf%HOq>oLmEfyaZUayQE{M=Afo z0|dUhB@A7yF1pzhWs(^y>Jb$=CSwqwrv-$=IKCJR=_13u-7(ge`pxYQ*3kN6#&9xN z(Z&E9VFE=W)Y3?Y8@he+2Jx9p3sBB_R&+ENpMSfHEKtcNlM)+j&klQvj~_391g3xB zB~-h}dzOcb;ucO+yGGoLEhZa?Rt&qU_S%}|lNRI^XCh=;KPT1}Fo+6FAD@z6Em8lj zvei+*r}|rG23=t8bKnSZ$Vo=&bjEyp7m^7*4Z4!tQJAV`Ck@f=Rhxx@X>Au(sj-O6 zV}FuvwD0)g7cvI;e71cFxRp=!-Hxk<{lESf20GFCTUbkWHjCeZ$;E ztG;avl+#52+F;3r?$wJQaxRr)(CMvw{Ix^i$E11%7S(^Vz$j?1m)%|lGsbkyUz1f* zFq<#t-roL=a+4)bN2rxs#w9v`icyGg%;N$*c5T>`aW(|O3D}>6+~FaVY~gr z{NU?4z}FYhyzkJen95JN_<|G`DjOVF@I;j6ubbF zy=V)3hmIz;81iTianlgEfR z5?a9EPKINXWH~AvQKr00i;8EbAaKp=yl zhSv01CFkvH&LXn;FkbZf9QfAS1Tp(1rGK5vyrR_jRF%SH`mmQ(Z4_jHN5220ZA*+i z1?vo%RU%#POVU?WSqZl?BO^^*lLqpNkS#pufvmLF-#5)&&Vmf;>3?^Pk(*uxwC&#Q z8}&bj<-bvnE4C$31=ol#0H-;9X_^|1467^}ZtysL@JU^kcY^qNLAP$w(@yqpIRM_9pYt(qZpLpZc57ODkA>1MtL!<_jBz)5U@iE$d@ME45 zTk3r!3b!8V9h7fH?*|d&gJZ2?9S;G_z>w!VEXu=uPM#0d^?!)JX5y=*#eQ<4`+sV= z(W!^CKk)2CwxA2$t}|NWW0)tDV;C=p{Ghp<+R#}=$e+2A35{@)Z5`qBEg^QeO><){1 zIYV$Jhlf{2yVshn-J&+A4*pR%KQi!m-gW0zmW#icLaFPj^c#pK;_zhNY+fNdD#$(S zm?!dE{1lMoHQ5lvC%9-~W286n$xG1t?d|CzK=B%Whkrhp*t78!lLpoo%3*;LMWs&E zp9zJDIfir>Q;fXs^JSZz=LBf!k?UuyH6%GAMI0BGVYJ_ZL{7q8EVj}|0>Ivc)#w%a zFd*2zc>?z=rPvX)FLfZdMXg zeMm9N{eQN;iYI0CLWi!dczfDccU}wfuahw5pmx&Z4F+PqN?|%ao-U&ljXl%i*IoNzRxH}?vj8C08 zuUsg85>I%(tN_wIHpC}HMmZrUcb|I)pT22Bm30a#{Vv5i|2jj?#OcKcr%rjN&;d}< zX3fwjn*JGw?hC8ZtOxW5eEcvWvKeeLjdA-~nY;=@M+KM-N9&@WU&osXhF%_}zj;h; zlYii=k`qrfafF8|2l$3DNmZTfIoI1G07%snt~XUs*Ewl3r`#a@i`!4*`9l=9zPT$N(;}3ocP?wS{ zotdB{6irA~!yMG}=ACl3q7w?G@6-WdUd+#QU`qw}0JoBs- zuwwMmd@27a@H70|DC1(3fPcMKQyVX7Qmbd8S`*A|NYk2%mc@V%8`^xv=R>jMfB>t* znBrL;1GTcGBgUy5=HXO%EY%zw_Ykqy9}NIpo`q~2M|xWZi|&L+WIWFOmAc#7I!-K} zBsQyTaJj@Z*1Jk6DVCPw3pHdJiY}g{IS^2?v`BdNBjyPwkyky?J~svWM?Mv3@c#fu zWN%_>3N$u2m!aMR6B9BwH#iC}Ol59obZ9alGBGeSFqa`_ z0~7@^GBz!5Lt1cXtTx7Tnzu2u=v@ z5}ZIF0fH0cPImWQvfuw#-CI<_Jl%b|pSE)bDl%0KCNT>~GoZ91$d!qWnUxFU}j}yN1~$Av~jfu{v$@B(guQEY#c%Se;7!Bfu^nynSZ3IE5uI85d@HTvj?zo z0NA+s*?9O_Spn>S_&ifJ8JmwFhW8n%e+fz5e5ZR?ynj)rp^l#lypc z+0?;>*%53dOn=7+@UU^U2B-sFfM9o^1>kqW0A*7L;NO`sBT)e~t!-TXmTNd#x_X#` zfdGiW-o_jVa)F$116csU07!6vhMXcm#R&-d+gR~$14h6$pFuT~;|4xzRw;M>6r9c)Ejt&k$kgE&QZ+?|QK? zch(N%=mGNi2UyyGEG&N~Vd3V)q6M;Xb_2>u{$m0WAwA2ifUW>8R#sLXK28A8836P& zw`Te6UVqce3HXJ9|Bg57|AK7T6yi;&pZ z02Vgpt^hNjl?@2#**ioGwEP=Gnh&<|1Q@VFW{(ZP`upeKPezdOvTy|1dp(=~)n67( zEpa&|Er!1{{#Pe1?&t~dVdCHfFtKy70r+@%0e?JPtN_3NdQmmC`G*DT^HDjFr6Yjv zZ?cdo{g1HwKmDiuXE*2o|MjKp2pL)+fcAOD4OzKZ%^|Hz=VStX!_jhn;&)ylb= zLVxx^3}j{hZy9Y|q-{Kb7OFO`=GK1?%inUX-%Dn10|Kf#y4d`_RRBzEtgQb>2iYuh zJIKx90-4CaR6xk${5PZ&$lTH5_lB`^aRW@jU{fz7R>&Z+b8!KD*dVKD0rdQ9h5;{j5q)+a?gkpz#{*QAmkLD5rmxLzX)8%VJ&pCQD+@(;-Q8`}Kg z6M~;17sqet{>*~yx8T`1*Kc!2H}D_PAO=={K#2cmcASuIT6;NJ13`aSKxBW!XN9C` z`v-(n#_kUYDej-CK^o%lFJy<1aWFLp|5182Hb|kLAs56O2yz4bp@)>i@qd{g#Gm7T z)DV|W&uWM>C&;@F`p>vT5V}E0Vv_Nf3A0PH!!4Ku75qikp1}| z{_EQm5aq1(ZdNnjzawOI?NQ_9tq$#@Z z`{3-W9c1^S1NwtJRe`e`FPdr*_KnAYjAzqeOoK~!1P}v++ zp;_+yYjSv3CgPX$SbwLU=yR7>vsn3)Po(lm3`l;*aU7*S`kUuShKKyA+O*P3+i~pMC z1&&-y>_(?-vO^hJGCXJQ>6-k8r`%7T4l@@j0E`N1ozP-M?{3h=M1X|oi zUHS-hYuwZ(Qcyov1Tl1e6E#|7@t)Q2eH`8w!(sFFv2~o5c0RN>Qp6oSf!kI&jUGXV z>zZVvYn~%=b7%72Gm-9xJM{KArx)hgjzb^zKf72s;2T4yQnj=M3mw#Vrshi`GZ4nS zYRV;cyW;C0gnuK5qe#ukD(K*7QAHj$F>2g9LZ-{EJLnqpK)Q(>{I-Krsa5$TR##KN zn}b<`D2tE~f7=EVvGv*QmCV!@zvLIJh%NcZ_($6CqH~>^kLRD?pPv{NGqDOXS6XR^ zqoXL>zs1(iQ%O`jnJtXxA~fb}?#FrLFH`8Ghx7d*jeisz`sC9e1z3p)tXz;{+`!NK z<=hQ}C){JpYMkzQl-8&=_(-GMfA~G%Ff6Lu1|MZq0N+c0RQ1xe9d@S(=9TbM!_u15 zR}!`$4efepzl34_cfDUKP0uY@tp^r;0s;gb;OE&rzK`dp-G$?ZS#b^dzX(nnIe|jD z4Iv`rlYa@e4vh7m{C+-1C&-~O{TemQ;zJdTd_U9zo+61eeaz(tD#EZGK@S?X0+*n3 zV`WMA;?~$aj2vc}fo2U*x2OKekCNn9-m}@im~%B^Qj{)8>B3h9N84h5xId`QS_e`H zvdK}XnC!W%mvjw`NMBpI)%Wjwe`U65yUO4SAAf%Hl#*O{`U^GRLA8p`ljd$GftsD$ z=Z%x)f;D;+-u2`?211+-?1R-Au~OBfVV5#O^*P!ZNrQ-XR{0E`=S;RP@P|2}lg+y^ z1(d!_^uu(XwT~id8Pu<`IbjC$2j=L~A4?brq8!u)Xt4RXx0d91;EPOo_h=+@V5Z4Q zb$?ll&&JxbZW+E!TC5w1AEx2Vpo$D9Ta}r5wVsH*Yn(RTZL53(pK!_dDvOKx&?c23 zB=)^LoM#;he_!$b+T@9zpZeEHtKmI9|GKF|*F$@)J6vzFN+X&Gu*feFdP~xc8{fqF zt7+OIsSBCDp%0>PT_~6!yKH~&1K{_S=zqatl`G-?FFW#iu}xz6ba@jQRS^aQi11z2 zI9bG6QT;*>a9$^IuemO9o!*|dtLJN7xBtYZ9%k+CEXPg^rb%Pk%&utU#ZH}em3tEN zq#rM)+#*}EB2|C!S~gGvil|CJy-yqJyVhplu?U&{yEvug>S=Z>Y?XsmW}Gn10e_y9 z*LSTRlPLjoA{{SEC0=e6q-mSs@EC8~W#?5~$_rGRqarEyzNJ4$U5=9>>U~$Tx$K*r zJl9VWsa5i1{<(Ie=m2fB+PVn>@awyx_{R73vU#O8OM}a;J}n5=1&hcZcS(@oXt<9r|#f9bAMU_Z+phw zZ*c)%kQ5{sTcc;&iJobgjK}YhO4u74!;kx|v@$vKiFQtJ0H3}fiZ*mTzC$Qz^NsdU ziUy~cLUs>wges4U{PZGU^&Q>_noyLCOH%`D+I%7-7wxNxS;3mxo}t zuzEdFB~Wym+l0;=DiH#7HD2Ni4;cS*7JruUH`k&eUuW}Y z7PJIaBc8+pHpwDn(V7{`lwSU(y0Fzj|5++QDaPYI2 zx-OqBdr=cgXOejcUOAJVpnb3Jl4e$#Me})Gu_cft#tOPKORg1hAHddAo?wtqAKIzI z9^|Gjpghk0l_-eph4qcX3H^Gq{so92J~OG!{T$#pH1|lCq$r;b8u~+t>w2+rZ`Ct zE`F;xOSo^U?pe@J7Itqz)}xLL{Wd!wGOLCDtN=df!+$Q{egU3F?VzLuw%t-cL9!WT z{hjvNaCoJ$YZ|AYH5V}Hi>z`actEyBu9Q)w4S}0xvlM@864Sn@i8MSLDfB5^S>@a7 z6$(#ND8w-p&AgY|drV!lZDjH-ZTj!MbT<%t%E^rCycgF*7nxfFD{gU7xV}e0O)@2< zNGdjSnSX$nW%mwioUMY(>R3p?U(13q4y-=csZyoHcmk>|zI{mR^(>eZdoVv5%oyvO zEG)X$vskAMrRUGPag4Kg6IoOwrgW!j78)DQ1S(02IIMGpO*W!vDUBMkx1t`M1(v7R zpdX}}aamwb)2m1!awVcRXlYvC;ji1ff8gsPG=HIkzMaD#r*x9Y&Kf!*#$XtyZC8p% zobO&y{iPj~tm0HSHtcFH@uqXWV4F2NexNb1mY1tqPmFeu<}f*uO+E{m4uzl&`|YgI z7)V6QDL#J7)EToV+OY2S8x7qj6V7Gg_kId`g>?)q77N10=3lg9xQDP);#`mP`$M7Wo|~W^QPMuCUoeuYPr{uAKuR3B z%hhA!cF=OKDY9OrFz!uZksZZmt%pdTQ~y@;)8~}_hb`BZ+*ib_y<{eAfbQ7=3vi=P z>AeL?@(yFljOb4zhNae|o@j|xbnlK!5Pzl*>>;cAu~zK|g|k>9M(X*Xl|w?(dP9Pt zn#8r;sUkK-@%pMsEDHJEM(CE)-t)))vvy)9JUmw1&j1{#3EePxEX*VY9(_ega?|3} z3(I{uwsInoIa}9$no(YU7TQ?3Jek7$6$E&wu@>&=VOac#3{=4ohQh`Q@D<=D$A2?# z$u{VdP-JsJT^HYnJ@0|)0^RCO4zy@CHD=4Z^YkT`F}QrQM(MpPN39s>yiyvQGhHaBMeeJFn2?PK(wJ2 z%kk-sbB?6fWhP6e^yyRHu+vJR>4^>&Eq#wwF5?_zPe1Quj zH}ZpSmB#rn*qgL0rHRcx;(wrSBZ&C!BbdYV73=WPAQ_3}cJlB6TvxP44z&)hk2c`~ zR4x3f$rEZN+U7u63rl*YjyX~g>KTbX?ynEq2nSn{WgzA;W^~^q0~k> zHc&xSSu`W|2!AKz+Olq7cl|bm{Y!nxN1Fw3A+V3ETkLADY&NMTj7B=A{E{(mLSL5!FZ7oy=I3v%+4Y+(J4 zaCda!b-8P5SrQUho+HK~B6Stdtd5Z{jt0E}w-=NSXFjRrtMap)p+k$9vKc%rv>XwY zSW5^>d}#j4^=3S^m~nH9W$x4%EWjl~z&EyZiY}~{qr51iZ-Wq0y>XqBWR)K7B;*r5 zYl1$K$$vU0`&pRwQ?r{+&upo;Z?@)m^NzNh(oUTv{YG&p_eWfWar3XWE5?H9IqF=W z-I+XU>Gzb-ml7gx&(qj~wTs@N*hGlz76r?TTZR?j=N=KOzk@-r@!6H7Xy&v=rVWEG zAha6v??&Q%&$JM~_${pGGmhvDt>1C>>-(tvSAUv0@S4a<={cdQH4VXUPMqc<3*UIh z`aIHP=R|s-j2#+|ipr;(P@sMn@;2L2DNo6abwAJx#xgcx?Sfi0e&twUY~QbzSFMy z@v%jH?_urTby?1c9Du)egNxd~!24S7GJjkwgX$G&Sb`_i)OI4o}FRm>xkINmQUznFra|{PeDU&vY3K>fAUJ;I z{c_uc5JLg;p{q&D3?oh8yN{}LD}U!xWqDxwS=^K@CU+0}DiwwBJFIy8FhXgNX`#UMOzOkJ9&M2whwK2VkCETn- zsSx1aSGw~Z%)5^g1V0yKMUZJPg?{Xj($?O$5P!-L7#rYp zVX@MrYmbv4sq03HQU#2ah#jO$fi$pE4b^cA z;S0RdrDnI#gR(!q$ov>WXghhY$;bBkL^Y)hT-UmMVWjChFzv>g>Ak6=6s_@9s6H{} z#W{!&dYvF-#xDCd`*9%dC4X=(j`1LFVE%?wtaw2>cge1q#mw+>=b+JDZvA?H6s8UN zMWGtj7p(JKXvv1TZ|A@4Zd}retc6>%-h?IPo5oeB*3XdGk-T!MIo1=CI5ml zxLtYsaM=>RbqqJ!+lP}ng8}6o21^v1pUyy@vKvU)jx-$^4DzN$~6sjq7dW8^#go$?`a`R%&5aOx*IE7 zvGo)h&j>SdRSUtool@hOc*a>W^!`Hk`8|gvWO=fr271BT1{RG*n30b#LQ3O&e!9d4 ztLhwEcVg@e${`j<T!cUTk(HJ)`Bq%2Yb$}d5iKY&ZR4)1JZgai`JFX!-)X6s-!NbOM0M>=L3;E0Y$PBu z@8GIA0mQav4Szrfc~7qb)pIukDL}UlyEtD|>R}$2!(V%R^iXl5S027WvxD+9kIn#2 zK(W8ge9|tS>*K4I{pieF&pui*iOF$RH1YH2V!(X%MNtTIkVY0f!w8-zHF{5UlHtI# zQE#r9&PE|wk@A;Pr)6Bz{vWK#mI>YV3G1M)StKdRIFx25gadyGF#lQoIWgwm+_4%4 ztWfbTRMG*?_IR#N3*n1bygnpJ4iZ{RZ31m-u8)K}xdye-`Wuy4n6^V%&Axgs)Hq2; z_9X;y^?{R1KkyuP_wFRaT+SDGp(kal?s8XQ$CNH)(+@gM3%+tdeb2N#>8kM!>v!Tk z4OFikQt6&ALY9&Kv~dqhglORs!z z=?-h1f@=SX7@a(V@cv#qF@`GzrsvnEk^upF&}TEspBlC9->vUIF$MB^eg2f#u-W?f zgGA`m#$~lPmK02z%Yu3WM2F&~(T?o6(~nYQ<>Ad##6^D{rj2|Xp|nh1*_VdxhVN4Z1I(*WEk^Vs_W1!diiLEioy8Eb5xiSGk-f@A^!1t2aSJY(WR>*93 z!-dzlS`~ksrIA>pg+?fg32dUG{lJd6f_ja8BBS=}y^;`=DoCf^j*JniaJ>45`Ux#C z9P4i4JIv8LV<8k)OI_CJ0eE0pfwI*PkHo2nQ%i%cho>g%h+o679|J>%Tw6pYmzxO` z&K7Z8p_mdbMPjdhS~ck)5bhM&@p2=$KxVd&)%}s;Ip6VafXauX|nr5i3fO290q39^8M2 z3OY2yGuP1ivX5SSgv!pQ7}AY?8W4nEGec?fwq6t*Eke`{@3#)4vNQc%+VdLi!E(_ITg zqpeo#+4WS=4i`6^FNt#)cUqmaUPga<8`9Y%YDWsUr?aIexBq#Gx2h)z4O>^6a)}Y+ zt$S^?_`JvMW`iCQRI#xF~DG#@WVEbp|ttLdo;oN@c!Yfh7Z`H*kt z$Bt3skCW|i76{acpY9(-Ze$|*;z$BlR0wrt<7`w4guhdYB%+Uw#yb=1$P0gTIjX?x zHy6CPp4HfMj(~YOxxF5~8g(o*51NUhJ|B7#JmVjXUpWvi*`Nj<;i$Y-4>dsxmN8l_ zhyA47nqevB9HjPbyhDK6Eq%hY`LJLYZ#3}pnWim)6#AF2+uWmlS1BrY7*=DG>8oKI z4^Q?V6)glbUy9JxDu%o=MVEi9-SVcjP)+nnOLQSIOJ> zcqAFKE#Epb6&jq5v$|msQ1Ww$CO3G}KKk+^#XDlmAejf3h)>e>vmY+<30)-S&d)R> z=EY`hWp_+4IA>PF@PTiCBO9Olv@=p3Ivz0wFK`@FX=E|` zxZ%9Hxp^5aQTCEg6_fsFmM#5Qd5-uoe>V0k%K`}%v+TW%!=hF`sP6|li|Uyoiqx-+ z{@UA{(q5xA@Ru{1O3r_x*G?-%ej#A6x~j(YhaZf3q8NnChc z1-v5r zeSKZ*DO&d22*I<%7zcH)507T)fKT|xXInmF?^*P7Fehv124ed?wCLSQ9IxYsK@w z_&oER>FvHYyIr7!b!R#ZKd`PeJ$(=ut40Un75J3(9F3lR@|6B`C| z+KC#a;2VF6RwVaNVWga4)VxS7lU$s4h}>6irmSw2sC|FI-<4@m+l0Ata=*`@^VpZT zo|sNGzvf^fiju!Yu+%Vm@`&0;_JTK@ndIy8G1mC-c2qHgnuL^*3ZJW$kD zAr||>+qZwsDE&QK=@~TZ)8Tev!6eK z?$G@NWD)ownA8YqI}~da8#54kx>Zrm*m{UB;hWb~_RtxaVpxfhiqep=1vnjEs~ zvwa#`aqYBmxCq0DPX3bLm+(sFD&9gkwr{NrLE(R48|^Z8iJoXMVX-ucp_|r~+Bwr1 z+)IuA!SIaDnkp~I@=F9fg}e{Rz49>yQKbUTE?6beA*Lm>_~(!JqN|@vXDDZf?Z)y5 zC-1f}7@<1iDp;%isi!}e8Xl`}L6w8w1VGD`IXQUq-HpU$eF{4G?^lWi-Ao$%9>U3^r zV|MnvKPmg@(KAvC-K6oL(yG%F3j0CD&Vfn6$0BmVQ;<4p0Q!d3^HYx&&VvN3nu<`x zHK%`15BuZdg?HI1B3%>gx-$nt6Un`pD3_>}%s+dfI<{ z)6F^R9gh~+qZL%^E(4>6TG7bn+^2l!r(0Uqj{RPUy)O7fSaQ9WaGY~vjNJ*Ji;WQs zni4#o?t5NkxcgoH;GZoA@mx$X);#rXZr3hr=8BU4_tUVPTvT%*%W;hyhG5p*>Z4}tVnd%=|B+AkGKU1&@` zO@iH~GDH&oLKk;yp&6G`3UPn!X69bPqLD|f_{B3$Lzw^`$`9kzxpky*RZHwAC2Lmv~-?iTEz3bE&a$J#kE7G$a8+I*-wOwb{ z6DT)-eme1DWLnJ%kxZmM<%#)r8;7EdbPUpbyrc!7IYm)6YRMCJo!=A!FLKA69vCmkDb(IsW#Sw8^f zk+O7`;{y5>f!|DH*LuE6=LO{esXU3B32)eUB0{+bSU=&5?}S#&+FHD0e{~NlBvdT_ z*|E#&IE$rh?64Xp^W%T=sTUMUkQd#+@fuy0?aa!MmC~_9O~|L9tw-~D!gWy5$BA(UU35_~i}DOvcb z8%q`D9G}X?EI0edbUgF6rqaoNq%Jk~6w;}n@Tp5e$XlN83fK`993~zaQ%LlK9}`8y za3%K~#}O?Og{yyi*Au=3y^@8X44#}-}h}swPPQtqKRLsq0 zE>Kf2fgWDEO~KBsn3js=8)FrzYlQNPzoo~ku`W?d?^Azfkd^ZA+&P@+HHU13$i z9r2F7YMn#$6Z7Pjqq&*U;o4JF#C53QPjmwoT?z8#Re?{*vQJjMDE;rDS*KA#Fl6~3 zOZE7(_E6ktvM_K-G@01h8|d68YJ{bJ2rJkV6!agsEv|HhUD^gUnrF_+{LIPwe01AjmONhKQ-4>eyi3pVHY}ZIDbzz2DYe+^feIC% zU>5Vwk>_&I_iCplgF>ifo_c5GEuazjYT)s~X$kiQNndwa1tuAp2=S`Q2}M&#IIb89 zjSwxC8Gb9lw3}a^>>)5FnTjZv#r+XFdijzpf?9tBAT!?V?85bR&tUHI=xL$%{&1(S zzm2b`)Y)ZxgK9SB-CJl9Nh|&WERJe}S#AY=5}kO9fr(X zkfx*w_YA&PHnk5j-ASriWb($mDKm3g6{e7&&G*L@WbZk?Um zJ_;9Ch+Twm@nfo9WCJY4;m$lZr}|o(xk5=+n1_aWIrHno`=>T=MPLM*>OCk?I39l~ z@Yiw0XnaTZqa)0qi9}F?*DzQt0(%@6dSX9jH@Jd(4fH9lfMGdVkGD4EjJ`;|phK@Z z7f8CSr<0m^_pW&b0h*jEEQ3EY=xaAe4TeA4udZJYCUKkcT@0Dz z2J)7P1z9qoA1iwi_KR>by00XNTUmcKm+M(*h|IcH-R4&K^WlCVd1et1_lT`V4W#QX zq2>W)FXmXN*)It6eP#@z$J4JmxmEQ=Rm3bs>zAd4)e1tj^X7Vgah&Di4=5{BY9Q_X zs231%;u7ju{B9}<`95ysw!PSX)G1JDl2+ZWb`%>~-Iaa_SB13#X1|W(Bwl~_6_;|J zEqHBl{H9yO3GSR`G@yl9>)jmu((oH48ndq;%Th0VU%%`aEfUHzu)Ri*e&ot4_Ujj4 zWm<##**QI&c^P4$zIG0d%1lWAbhy_y?#DDIRK`^~G#y-fGj8FE@eBW||4`@w{E4L! z1^J=oNj6Wvu;QJ*12SPu`{9401FWDsD0Dh77~eVd*7wdCakUn~jg=0sPHIW(1pEkIup$G+Fd)+YLG5QQbk<86O>s`|_vQxCB3 z4E8jqc^AS%PZ>^T-;bwp4FgtVXvIMgBeand-pmV@=&Y_{=mIQoBNB2zcg{ZwP%@;9P&NTgn7-puFIR3sYq9hRBFBLB#d#q9&*z`bId^b2ddCi)1`%)8jh2>Zy zCP4jG$oar7q-LJ#$R~t zUGdLr%nugmH?n+hZW`#1iOK_sDKFqBTkK?2jV+-UGjTI`799IfKvd)@eR#X8-NXr1 zY}eARcW4xi1qs^KUXy30goqU2J@@*iT%8Sb?U|1|N0om{c$-~s^K$NwqP9wB`&}q1 zqpeIjOOYH=w*AVb=cY*2nLjm@520yOC_Y49-1{}T=Cp+`r-?C>QkBD0;};r?Q@B~_ z{HM8ttmaZ{$D7a6Nbe`s`01#+*OG5zpYpG{gj=+d;W1uydL`ba@$loEjhm)#Ipo>c zmqK-hBc()k*}W3c+018}^z~w}%h>*ifvf96E7yOqcd%6e{bQI&L^N@?4$;Vcn>oSR z`Pxqd%yfHI22GfWw@%$WeONwaoOSwUno~xj!K)=PN%gw#^6f@T*LE))Tyl<%tXRy* z(MRJ|a!!=Bk4ORVzi^BMwj|PJRE4!Q$3jsl%YLnd`%~)#hiFrc#d8K?Ry|>28l>G{ zj(>k)l#xUZZpw{HHJ#t4s;bgv zzs3`KyOhT?6GfA#U7CB&?O59>kVQ)ZMVv?Pe6zvzk<*7Y+NVTf_!BMZ&HdzQL6@V) zYEWx~vOfQ}fve@oBk(*Rk=|F?PQ|8sA*6qZPET5#m$w!>^82b2suG{F9xM)QNfmza zXcN}vh&i)86y;hcMeLVWps!vfDRsk;<*Ykg2 zPBcIHO-MnZu!%b)Th0CGrK@~Wj7X}cJf+B?3kuNH>>FbXuQKC)SsX`bYtF_eE8Gb0 zaiasLE>Jw@8uxYM>?;P-?&JPc=Y~np!Aq68E)iJ`5w=o4=JFY^=gI+vzdYyi!19%V zz@d+wxAptDF+gUYV*;jJT)+>V`Q3jA!|A<8fhdoFkFx-QST}iM@QQDWr^P@rdE_<*Q<{~v6&ryYzu8MQhiUZS<6G`4LEuz$vG`AIapLL zACzU@ak_PHUO1u(^JgM>iwlK0k%Ud3<**K;8e>5H-k8P5mQj_SZ3Yr#&E%eh0N2hBGc4zAK0 zCFNKMf|fio*ab<5_ax)0|&S_a3ANI zg;>?g1tX7ytF}-oWL~+*oQsLb8-#qhp2nb0^|04Z=fNYII;N4YdRyObI54>!n;?|p z8_NE+@?$8&8P+c)&iQ}KGpaf&<}KD5rxsvjY37&M?^NYD*e=a;Jpt}9#qN(OLOqBR z84?{XMrQ@^WJ?|{TR`Iip$+8sm9z(EUXOF_EOkkbyG!|Bc_n=ES$!)A(}Q~JR%j~^ zKa_dtxvk*Q+7Zh$nO;n+F!?h}f4x0f2esCt246j5QhP2be&2rrhqcEKsliH{nn#)% zkv3}-wT@o?OMp7Tf9Io#6{GgPRN*E#K&5oW!ydObKwkKnLyls57CCsmV!Mw* zzNAR%4v9`3+D>g83=(){Xz90n$PmPkdhW%sEp8++XV%!^V>X$%y0JKF`-V3-Ua|GO z1a<4jR1n#!P*Dfq#r#=wm1q|#%}rHe(@qU)XZ4vpr;dMSvaHV1&$#n4T*3ICBGm<6 z*VOM%Jl0pIxK+fpR7`_%Ux{uacjp^N@0Y>~EA4^I>4@dfzm6qSuLEbkIx&;GCN*~e zlk?ji*le**EOqf@ntZq4-?FN?|MadpgV?rRgZ%~9=j>bmSqXua(5E7Fyuy*{ zjZ@Tp`_zBJK(;Fb^PP@>esw4g;>xrNT2ek#;lLJiDmb1O1VkKCEWI?L39NlpDDJQK zf?Qo^tcRu&+L?T(Uwu)d&RnSPOT+YcXJEX~DnnkNE(WdC^nDXmzN?Fo`pkTlMXs^; z%YZY+%fd#Vt`54=eZ6$H=L3JxoNRXf9QR8SeK3DRCqt1#p(@pr8s)p;f}NL8FTRP| z_@RJyYzW?d z;^Q*(fPN^T)z*YBVWdv6bVKK=OwUMkrSk(NCa%YxM!K%Dt1?meybvPGh-~-dTLwPr zeTRR2eKpx=>k#OG>GxrOji7`sFTaYRtsb+w)g3fvCg)hN2Kz~Q(Ch}uLHb^*T($lI zmqaNTYWpp%f;XLzd7I>8Is|08j((mCd3Zez;1#@dUjZG>Q~WM42i zJJ~6HnoHs#n#x)q5Hp_|EI)G<4HW=qq!p`6Ac2>{=?M<8L~c$Sw&SGuf-(3gyyX~g z0MOdfL&7&>>ZUnGZH_F^Y4GS@tWY`*wYIu=Ct|DP;J{D&K(?(F}E|mER<*TJ-zIvgtlSq^uCIXx`@mM6kE9UMIr4VzWeNxIAWEX z&Vlcsu}{0wQQU>r#3zs_%))Zg9ut4)v28kYvzSaI-|yDi@veT&hoDVc@=k>2GFNyQ zt)H8mc{Ehk-2KV(;;kKnoJX%LWulHtrjgT3riv=xXmjS!`oK>S**-sNB*b-zq@}Wl z`Zf{G79letBIAsXwS_ym^~khSN9i0--TYOuQ>-n|i51)Zl?B>r=t2*b~zg6+MVACkuR2t=Z4Rx zlpM3F(MI-NVq()Z%JR{?)xvQiot1LUh4UxQ^~E$ zEZsQ@;;W|nzadQv7C~*1|Say-ga?tiWhuA5sQHbTvfOCItc=WEx@@VSz z#<_D#+6uQIYUw3Cw#aTwxE#7SspQY-PYuF4BjAo%s?ZLxgo?60)co5_ee1Dh3d z*JY9ZJ-dlXtXc-2OWq=A7zja0!VPE(5WcW>w1QiD^luq;)@y$f{T6?i8#ARMvFpcj zq&q)@nmW&KnQX}*l`?p#{;Bb84=_gJ*NFV1 zU-9;*zdmOmIBI_d6|3k%`~^+(55YrULkEg8kf+GXij@L)VJ)tirfE5a*6?&x2#iK0 z-~Br>x_c~Uzi)J**anD7Hjqyk*SY!%Pjx`giYXqsbQ5}&M} zI)y13XD#JyDm1N9r*Bd8&^YC0Jol7UKKT~&zXbwV-y^!vzs_sZ6--HvNXnfnBE_tN zvOWQ6>FP7|88QiW6tNXPt)3x!z6%i4&!oQm8CXGpTB$eo^8+fwg|W`)@l#`G^tT#j zEzN)8V4K97r=Xf29|YQmCOT1O+(J;zhmDnbWX`VChFp=&n-qxL)Aq{ynq!fvC2LSw z{pm>YVXYm6G2-%bzv~l_Q4!27wVU#FeDqJz>DaX;$XY&SWe<{AklT+mqMMMq(fr!Q zxEx|p^}x}5BGxmrUo)OD+6Q2!njBXnXEuMnp%g(%OV|xO7rULHv==ydLFDP`yMr){ zI8nX91;2No`lRP>_wBUM+aqMM;wAeLyy^Qc%5Q@3E~g^76<1Zl$BUk^K!Btox717V zB-iIk8mMgyNd}P7jf1p_G0S$k~ zF5t*XGRoX!ov^;v6*Jkzahyi7$LA{8v!*Rk8e{DGxPG!v7srK$i#zcD`W~u4AzHJf zbxqfR(YX3^LjT6ggrYgbiy0#!9<7F_x?OHKrdGqV1>t6`TaUuuy+{`Cn7I zFj-2{7dNhZBOcQSq4pZ&ND3p==ySz8Go9ZN=$p_KTgLkt=Z6JHiaBX2Z48b?VX?wr zR=(O6HMrq`x7Ly=_A|z)*}UG=j}N{+%5i^ry}8}Om6Xr+63CKC$U^Oz0Q25JxJ6ps z7n*YT)}y=_n++iw{JCdvjkSL(Dh>KRN#NIc`;c_+xcNs4cUapl#|`&vJgJr%%hj@P zP7jBjwsF<0{>U5obpb~qjO_2fTXK7DDRfY6x8i!HX?-eIj!b_LjJ590-wo?S=c8zx zaHT}A)y}s$NM>mguv^uf2;WlqP8qo2D^FlhqruQy`%+}dPf8?+oA-aD^t>sq;j7R_ z!Ep=f!1(U>srCoCP}B73*B zxLGqdZb8|m(H--ogc!{6=dwBdAZ@~Dw_zE48X5N=9i#f#*;_@nf%Deap^x(<>@IsG z{BeVv(tC~p-e#5P)Bh7?7MkgVzXVkDO=1-nPM%WaWTN*fQPY2>{Bj`uo1ks(DVquG zPd-I%Bh88p)ne*8Q2RV{Zm+x9yT|S^zp{p`!{Yu=)ftE+MteG2JIFC}<8tTx`ScWTJ~bi1<4`qt$&%`JS1U zO4ZX_P~;a(kaf6OgGcg;qo0oc$(nzB)R@N%^c!Va0Oh4ex>8lVwRTXSW@i+Giq9Escg#sGdgL zhQePA>ug=o1sU7+r1*E*dUlA2Gq#D6=c4nEJU7&0bALXgrjQCDxhL3{db?_WU3ZzF zH%t+y>bZYKN#{FqNwz|7X2JM6N7wLS9kk$QYqRlP_&x!J%eam`Aiyy&lGOG6i@Z>` zDtIfRuN!c10U~_BvhmuF3!yMrCe`Sy*R8H^|AdiJ7N8oqP1fr5GJ6V`yN`F#VfNmb z|BbTW^^BMBkh?0kc?fqK;0C=s>M5V^GWw@))K!03=`yZBDCxC}P?q^X4pRs>iZ(|p ze!_7MKOn&wv%$hl3#Y0q5GoO4-D!S8W-d+3V&qE3He5*5LP-q-Og0sLuKDh5j`|=9 z)#8s*hep#4i{*hii)<#ge1}XakYa+q^YSzvgMBV?0@WM|9Lz(9JTf%!&fm>DHH&!} z)boF&l6Mi&<4sSFZV8E5?CbZ=Hn(nL;}X)>9TgoK_XH{hZJ{suo_bdGN;V{vr87iV zIwsuAT>3DZP!IbxDmyF;GD(M`N7KFUffp2QE^TcoxNO6nu7nR4nt3R8 zzugU97vY*edO%Mkp67t-H_j6LE7|GJhkbwkIV<$g{CoAKS_j8+On>OaUuW2?`o+*o zkweX`XVf_d{SgRSyYRjAj3;I~_3T?MdyAfN#P0bz$mtByk4@^r9p@-q@E&apNGVp` zzi#%gfjlk%fXyU_YAH&3bF>*Cx-ax|^T&pzk`b)z1u~9UKLD-TT|PfN+xEyD>!N?V zc=GalnEtMA!d@lwnH?cR`bfHqt0|k1IlNGb1fcM~5%`zB0A4!|TC-_)ND?AOsOcfr zvL^4kTSBK!St7NA6$gvVSkpLEJZeOaU1sN<8ks5rPRQ-_NTu^Ov%1N8{4jp+Q@BSP z@{-AQv+aqbSz}jO0*L(FF33~Ylm~zKO7Wxl{%zKVM%ReM*jSp8KKz@Twxq2MMeozc zWtC*=D03ITcQ|*p+q8$2E-QnOm@xxZl1W|Swzz&9`{UvqPwsQo_J(SRpugxmAZV-Z zbR@4D@t0i^A5L0Yu%U{!*>;3==OC$E(|klSg;SP)D`Pa+P8m&z${F@dNwS0^;tIj8JrTIXQa3h;BJh1U&D%1`F>M6sMn@jVC($m)uo7Y?rVvOn!kKY9m zBxLc3BL5uyXYTkCwFs@;rq2ujtXikGcN9!0`qRdfZ#SCkt}n*df-D^6Pun;Y&b%67 zBZkn0gr-JZrv2uIa#c!iI*xxZm7%z8#SXCmFY|wg1|w;G$!mKA zs5NDKV?|(i?=x?fhlAVFPgO&gcSpZWe&E2LIG^~1D$@T4$6L;%FTOj%G(>$y3@8ja z>ax|c+b{EUL2|M=-ZbQApdm;pypSNtjc;~c)Ko;EBGgua=`*pS;QsUv#e)Ncn$^LGXAChos+~ z83dmfebi=aVW9FL1-S}|JlK=dhwV)-q#2OoEJxGg-tMa)sIoReN| zNk9xlT2GfX>W2p(}YX#<`;&%tqz^6v`6Gz{hd#CmL88dVSVeNv<0R zE}wpXLpjpKfArrUqO8Q8mrphCQB~5!Av5IrsAO=<&+G^9&dJu87Kwm@RQ=#DyCG%$ zx@{j)GxaLJSDb%+N$<`G%#lvo(j{`a1V>x@Yyb$gl=6v*6dL?sw_diFbxaDVb7|PJ z941GVA90y=yDbahWOKUhk+`?$ zDXT2W5QKehWlPQl`|}=g%^N70N(H}kovB7FTkSQJyT5-h{1{WuFl(nGWwh0pI65<3 zewW(DG?j0KHi@7kxB^iC>*6x)FIjpsTcT5VU!>~ccytrWiu@%+pTdA_I;SIp9c|C< zS%I-0-1aXvIyEpkxW<9XM5Bu-@-#B9Bl-^X7@#3vzyG7rSu4X{b7sZ$#@VXT|*xMG-w+n(eUGc@ygq+B8 zxH`9hEXOo(8c*=MOiPXUC#;c#JMV@Y5DJzr2$w~*PBESuD|+< zEtdWk+AmTdH9(@g3Ad{Aul<)&q-qPdJB!e8c6Q@Dt)vHr@JZmX+nxZ}D}p@{x!B5`i5 zIp%+skQCv%j`-Xx}evn=F_@SN_S9P_Cm2Wy9hRowj}OSg7n+@_44wt&5V`Lks8g1>3$MO+v0L z+?FeRov=ktwl2uSlpOA`E-5#8geu7_!Yh9>eb{o8#|vKDOh1I`(D-I-o-PNC#>M-7 z$^ZA{GmR#5o!aLBj|>87wgxv$Dy^y{NN+tj(!LsNX)&$>mrI+LPi=N>4(amZ=QeNx zr9n7bDXX$XfS?9u*7+CDkfPeup`@m^gp@ zQvf8Bpa87OshaSd>(UNC8TO->)2@U3g7szZLFWElMWPOp|cE% z*v5&@cW5CJ8-avo0WbL)Gq;R~EPfo@_yA99EI!6_bX2)Dl91aXD+<@pr8YWfBea|o z&&~{DB%Tgq#tlrkezw7N^USs?IFf&8cr`*Y!pO1hW96lzE)m3pD{#)Hs$zR=YWR;N zKnUI;WS=IwlWnpo3}6;K)Cv&V(uKev4YFkVi>8X&or_=?F}Ss^)FVXQ{9K0eVM%Qo zY`?t23@Vm1gG^)oOM^uQZOJ5HA&v9DMT0ORrD)YSQ}g1jH2Tp`%HF*8;BtRSD|khm zztop#u<1wZd_g*gkBax)a7PmJf_v0eRg?=lDW7xs{*c4f&T+y#fLk%fJ0cV}W8xwhT0-$9+Ydq0dyAWAs?}o`U)1%#J@0qxb z^SK6ZdTN>@#;?9v10A+`8ts2_8OqyPlsDT?aKGG=_h5B%(=roG8Jhq$%}^&Yy7HQU zuu|zQb>2a;oe_1vBBJJcIKll(CIjQJwQ}BOgmP-`Iq3;kGM>=zJoSLze?s!0tR~~T z3^eDC&}W^r4E{wRLS5dWplpR7p`*d?93I*tka{*8e&7+&q>4^mO(1`%E5`{Qir7sV zuy%f%c)DjBQcLGt@>ZXBQnvM-{a15RB5v`~cP8J|6K;}+$9)wO~np14W!VOrj7yv4VElG$;q>+7%$T!8izpxEj zOv()${AWFYFYF=MlevE|3ioY%eLDTr7Q35^0#cj9qI4-A*;{yVuek6lY+HhHqBKBx zmH9h!>E>5r4hq4K*Py_k8R=|=&z0QAl0`x80th;DhCPVer6jr8qWB3it2ey%XrIvv z&B5cAKk#qcmxLVtSu-p%*}>zue`<(CCU`|Q@J^>z#j8&Uxuk!PbGqE1HSev%>i}t{ zegdyBL_V+@F6!LurM9xV#2MwJj)9e94%PJ?ri)*K(+ktvAWAYiwYwWvRR7dV*^|mG z7g2tBZXKv@jk3QY7wBN7<$gG#9Fm%1Hqqz#UUWWut zm7y7VnJBmWc*(n{^NLFD=twzQ7~=-t)a}1OMDXI^%8w$0L*kyBDDB_t z;pa~eBWB3F$LXG6fsnhKGpb=E7AH#TC>z({`*wf-<4`Sfr?_o-`E4QNhze2p?DCE^ zBjLlWR9rkk3)B(?roFR{UDw`UUAbj7If6^~h-tpVyx)Q?j3DETe{z=!I_>)dsdx=0 zp)BTAozG!gZml)Q%9gC_rHHNdON~qJZtX!-1#C{S(komqnh7|CGmm_A_HiSRoGC;f zdf$Hs%nhR#IrRSu6ChRxg<+4lCtCMWo=c8}HL{k+nE5IPGyl_is7uz{4O~h!5i5GJ5xelXA8K zNv7>ztEacYC0K%zPgAqCKHEURxn#48ZmNHXaNHJ6=DlXZT8>z2 zcxmw6K<1jaYq%O)=w;c~?b0*@j(zA(yzx^3Qe4rsItJqeQ$x(G*}510 zvmgYBOXh-6lyOx7K%jV)nQ7L04tHS*j(cz~3;8C1PCxXBGl)sO zCfe(my$6g_?ERiKI}Z4_U`Uag;okc(AquK$a4mhd3pF!&UHBYGS)h={C$d zOYsO)_}yBp)mmF=2(;}~xzcBz1)bEx88T8}mAU(}4E&A?H%ffI?-A+-Aj^^dC z(2~s3Ry|~#($OWCuc%Sn=z}EXA6KrAp~y5TkXLz5voGj^{P5&=se8=4I@tEY*@1qg z^8_?G+;hx;*p%rX9m5Mc^?!dfdd5cZ*V0r_H#Y(%o_DXgjXc0_qcz?1kA>J<gEH|*#V7^N#~CPygkR2bXg((wU!R`L3IeMFX2nj$cr~pKYHP#g}md#jXZxX=!LMuaQhI~ zve%+08)hUZp0MZQpoz-AJ@RL@hJldP<4431kYO4sQ?k=CTYz{eSQ$|m*0L2vk4FYP z(s$iO)cd`31^cN7z8n~YBe#ubkjJGrU82YQ+YD>IG~L+!_2n$-p0->d z*JZRWSY7Bk-GR4&m1uufqgWBK^;=|i7)AYCQIcHVb_z>jI%p*Plgqf|pq4F4FCWb0 zhJx-P+;|PwqB`&&S`Q$8GT}P?o4GJqp{l8))5Y?q<57@u@_|PWbN#pTzecQ&6vP_U zoe@WiO@MafenpEA@3!23SqI%KUtF#7M&_$LR+Ag{Mm0ws!;F76Mzj8_ql0^;?F23f z^-XkUf{O4oNG{lYLSDVcD+d_+O(-cMP_<4Z zWB+RK&Pn#p|4039-T)+?{!{vY`8 z2z0wZpPwUopDurA>+OGF3viesO@Ib^xoX5WzhlnIeA3YrCgf5tvh2`2L6u6-hHv3W zYTHB3OLD={O>(n4ZI5P`^r`FQa`nwl)UQ2>cXgX0-CfH>UyqBubEjqg!Wv zZOec5jYnKR2@iC{2$(qG*M)`K&G5}lVhJ6EpxNcM(d`%16m0*;JEL@$cJflt*QEwS_vYlJl z(b_5RO)OhYTJYD8zdQl=X@h&H0F7Il!Z%(nxp8fOHSiAq~11Kl*5i@2 zfmwl+U{C}Pke6Q^Ag`e-3gG8|#LLewfXl+74@N*he^6W&1CT2m41_37qS8;%Xr90RLpur1Jg+W1ZTo!ql zvzIH_&K`mE@}DPw-I@ac6cZES{;dv>bppA9tu3Jd4NHVQ$O-Au+7bfLgIR+?2(N#c zV3)KE!o$)P1V921ur&w@M=H2MZ9uL7q;G(piaJ2c83g?!to}!U8}L_Y06<>g z-{$_({$&UZ{jF?iZ4GmBwuE|tp>_aUFa!k9Qc~wdcp|s~mQb5tf|d|C45@GFZV7*e zSXvPfMW~HD%*hD^MZj@?#isyv z1z97j?#1`Jt&UKb2h``!+ZGJ9vHg{Tjhi#yQz+QQ4Wy#*mjn{R{RguHApk=B{QM$f zKmf=E0P?i9=lf+`-^&^FoB10?#_xaU;|y~K*dkK^`GIXg$Uj^kxTQM?fN*sK`T6`e z7-aj0Mt0s6>{8toz z{Qu~xKy6_Fu|L5gtMs3M-T&%7`(KN}0r+rD2Hccih~FCd0scRa`EQl~ zzv=#E<^M9^{~M2z8wB#3%l?b~|KVCXfgxUh@sacDhCt4~1`N3Y(Ek;E2KuwE8Xz06 zo74YtRS=fQ9gv0ELH;fx7_J2N1leeRgAvyDe@5jG{`A*^LBLRuHVh8_bx;62Kz{!J z;UTxm+7Wp);K+IW%>p5p=HD(Aq1G^)U)v=hBn+^0b+z=uMYb482?2b7$ThS9dH$YY z03RmWY+O?S5V;(Du)j$` zq#5Ml{Dthk=ZruKg#THH`%Kb4thxb^wkScetfl&tgd+V{pH zQFnanBkt!hik{J;ud=n>^f+`p`ZC+Tw=TX0L5^sRsBNk&c`k0E1lk3Eq!%7t%AU2| z6$?XQGg~^_)xv7`Zz?8uVxPvC29-{+vW$weQ&aJwk*P$-tTa7Iaw=s^!W7ItT2x)}RQVy&Xa(oi zN&??$K}6mWSacoRjn}?vfeTA)r+(5-3(QWdYpC)=ka*T{x2w3TMm_2>Ldn@5s5Ha; zfqN~rc;H|0fgzpzOZJm>SBS(D9PuG`&qQrL?f&bOJN0zhAHBnWv3eIOY;db(+K+{^ z{sC#Un7-O=XwIn=n$}w64R5Mshf7aS-^$e(^lWr8ap>D8mW-Oq6BBygdr8HvyWy3} z-45sAda@ENvEhXBiIYMJ5$?}t$J-%@y)^e z%vB9XO(zLp8cQO7&{+yRufA(}Em(;IBJTI#uKLlYA#NfDKD~zf1zH)4vgT3iY&RwM zL`e&u|MRiPbEeFFG*t|u1TBF_qVox0Oh62enTqlY>&+HhkVlA#|0v%@rr^M!u; z0D_-idhp9TWsY%JJ;}-FDOPGpMD1}y$me|QEbD~mR@4K3d#63v{L!Vf8c)=ztnDte z*Wd2BCyKpQ8qD;*B4;6bQE@>W0`k3$&`RT*v^or~rVelYe7(14fKwTyhQFR<-q_F; zCOQ@VQIbQWsy#F&Y(omi0PSLj)|F02b~6aREf+ZBrx~Es`~8UV`A{lpLQGC41Xk5D zs(3s+Erdp57)4^-N*Bnyf3^%1O8O>(y6WFZg|%axgL03qd_HybpoFl9=V_=y$GDU9 zy+t&<{M5A1~bF=}oGaPkM$63K%AiU(aIV?RrfP5m_Cb$E0tcno~H6?@DydIv&E??uI2Q(L$P(gV;!@bcmt+x1=(C^6j<@g(mR0h&5c;!zFG*QOMorYioqWj;a?7Rer!!_+QO|Cb!hdbR+(Jbl}}@VeVn|hjLXo1 ziqihjwR`wdLZSKPAZ^YVkw7B5Dp&B}vG3e}cn7v}R&wdi^g-5FvQ%;31S!W=c4J z=nRR-i!g!$-HM!TOb!PRAdVdvj1b-ZP4^#x(Sk7+o}nboI~EU^X)p~;zFlJ`KQX?| zIajN`b~W`l&2LT$aAP^Nc$cAsZ+^cCO{#DcC2@x=bt=0rOg_xE_UB8t?uLI z^(Y;*dn1GhnUlfZF3HAldDprds?|e(@51fPWQFn2SL~!`AiwH8aVl)ZQ50##z|huH zI|@80;^U6_9eS%Xex}f|8W(*nR5Nu<)4*0-GTEWbi}BZ(6I~j^$)_4|siCk+hFnke zrq<}l34gc#2WG(^Eyl;^zu=>iiH-60SIA7(Kgghs?&X7Bp!VdbFw>e8EE;itKM9K> zDQ@jnnSU&hF^9+THSeaW{0(JWab35+ceH1Wa9c@$Q*tN;mf@L_K~&0_yrPz;YS0jVSfu+KHcz}^oBg8UAUE@5&1#}KyWo_4g#oo6X+*qCD*W!?f-qXKcuzBY|CCIpI(A@ND6ZG!X zHOkn1%9tBuP%;sQF3pc?d~fOCS+{Z#=B4}H0;G=AfA_FwE~3Un$W=Yu&jnlm$lb|7 zerBuEN~4QJ+%9MBprbSV45!OL>nj;}Wcy3zHOw65a%L4gb4VxOr2cTG zW!?;YTdeQw9;*;)o|Zt?)rG|nld*t*;>rB#{Q;LPbN>B#lWj+W+$b@Zn>OHp3_luvt{x8w8QSigpGf!(vglo&adFuj!Ly-Rn2EUWGE#g4xAd~UhQ3Q z&@&@v9RThtxr_~Q_U&;l^c!Yy#>ImxAmKmsY&BCz(|lZv>2Rvq&}4d7ZO|{E5c&q6 zTPC$Gg_8o*yY38}89~H?zEM0OrC7$Dp`V~VNCywnVId-alR|7v_q40Lm9JRVx`}g) z6s26Y!&H!7LUYom4wFIf?jZjLUFh`nX1jWI$D9}Df=<%zm%e@0aWNSLRsn-cVb!HF*W2*#;Es8VbRV$4~*3=SM4t**m?C}|pxA;-f@+X;nN#_Q9$6qx%K2-WOLa+lup4lLD^oct6=w>~+q zcMrKLYRZ96_SG%FS`Dbj0aCUi(=)yYpKkTse`dvhP-DiS6H7enU<<{HA9S`4BHBV! zrAv&MCM?FBiHh%W`$W8ZCv}UaN~jntVDjvZLX(d|x5(m0da;f(S~k_d<(%`et?P%t zlTn~Un)o=B>l8z|fP1!klslDti!=ZN|M{qS>4lQYo&J;6_$PFs&y!HjGTgITQ@@sP zNwG|S@>*_tp{j+&M^<@h$X!AiTlCxW(y|HC^q;ScpoHl7;{&CA0RbQ-}wHu>CclH6zSJ7PwkMJlwpGK4Fp`k^nj@j>6| z^vonKe-**>My}nDP3jH{TsjZvTAR;qvyN5?xqdfGjNMw}zwbQ$M8;YfS4Z>oNQzviAM4p7v$fiwGwSdM?s(d!a z-sHtf8%z#r7IHglpXnzrLq>A%+uG$wsQheM=}46>U`k(*o1B?c@EUuEr@pW87*}zL zyIat@WTwM+7njB_ksyKqV@vAlOAXn7hha~0E44#`o5Op}QP<{Mhvv`D(Vxm1h`jOC z@duGVJXBO2vgH#()fFhkbI4roC8(Q%%G^^ToXSvPCAaZyO65WxG%NG4{wB>b_G~@C zyd&{x#`b42$yw^CkYN1RflV2J*Dm9H7)13HNz0FSbsB#Am{5%0tBE~=bf=PO_>UML?tY4OV zWt?&FuZWfQV6zS2& zYHwK@-m>G_s(MEbZJ0l}pIOJ2TKf+B-cdciE}%|eI6llWq?w{OxZu!#h=gD!%(x-{ z)TR^Xsn{gnhHw7Kq`_#5z6A-z5-Sa}MdoXYP$^*gwKwUA@~rZjXYURk z-@QntcOOcsmCjFL7-hAR+?4D0#)+PXTPaP+L(^NO9}2;5E;<#E4({8DqM!EHVD zGyd5F{lio21gSFACSh}cLHetoMa=IoV~$Mdl57(;M-FE8UtY<7n80ToQ3B2d9aTRb z$?(0=)2bMS8mXExIrY(O9eVo!^J_6^V^iM$#K_v>M8k+sy-_=yOY%i$Z!LhfddQQ` zGywVp`&sWfShTh%zb0Phtu~6Qy0J1jYE<18Els6565(WGWkd-a8OeT4auLhQ{M|?S z@~|Xc`Z=V9D7UkJf+ILag4NeOOoM=`3G1T0GspBShd@scTd|Np9d_in!+RUiHLjUM z8_O#59F=H7FC#|m6jV5PTKDpMO<3RfXf#FIhg9pV%z!0uOV0gXDBejFYAb4M%OMjz z=jqQfG;cC?P4=9T&g%-a^yh~e?8KNKD<&LXK9-M419HlL_h*!?sE}kQV3S!Pu3f_& z?pdcjb7?(C1WKEzfEgrRY}O_VjXVy|h%)Nx7RiAN=eW73^?dOT&0?@cZY#KR{{+5}LV zBXMFh>Eh+*tX{t2DgW{gooQD#-`K@N>#=JR-Idp(Dlcl66yqD^?K+D1Q zi=1nJT;v2sJ(6A*EAMv|nmDRXmelilZ))|l-vn(RtlipU+^#L`9apcHH}T|4&<;3y zrKO1f#Pf}Bg8o?-_2k2mzJ-`ModLRPX$ydxYRQKDkCFyqr=#aTgb?GP_$yM=cv{8} zZ8hi3KTn!*bb{~5skI=lBO`DI0DAm4~YeE4QU?vK%> zCSyUf7PTd3Iy)c*RVUF*dOK(40^Q>fL=~7M%PuT8L6jYCp)$d?PNj+1@73gQUll@UzV)RLG^$NYV7N?>h zi^b$HdXSD+Bq=W-hzr<)8hkY1w;XgTF+5_b_X?t>DD!%Ng%Y#7NQY?(YjgR3_<+Sg z;kZ2Vb#z=)CVAMzcB9t;V}t}hMXAGc-g1We)IIh~v3HB>H#Rtor78Rp@$oPDOi;U` zj~_pDfvwxbnPqD|ZpW1J=HaNktNdU?e^Fxh4B`t7#8#hvhx2_yDPHl(M5d`fgpKx& zU?L=GkgRd-`?ry;1h?xA;iu()ppx#JfJ5asa;?z%_)lsYLy_4xTJ+a38K9G!C5)WF z$)Loqod(kOFkK<95b33K_q?tKCWBd!Xyo`uYy_$Z}+&Td4gcNbs1 zx2|Jgz@?ctcMhae?9nIIy8GsFc$H+acV5?BtPQVCar49L+_?(f4fjZ!zPiZ^T%oDF z$s^du^v^w^u?tR5f=gX6u{&?+G?$*`G3n~G@0RMh06imzO1Qu50&V*vOq5@=nt8G^ z45tzYIOe`;5>mV=W5c_D@s3k+O1nxotBO2Ybkgti8GT`&4h-lrj!JyR-t(ZE|*^u8B>KbARg{p=XW$_(9_8VRR`R?W3Nzb1h_x z%oX*w>*5gt(Zqf*I7K13>uy*-==S~=MRC`oy`YGu?1#F4#pmxT-pgcTtx z7`Q^PAkOV++kf8fZy3OTqIF-UBn#!$ZLO!ewQX1aS21k|HWACRS7#ZIWN~JWEB(;? zwX@8M%Jmf7B0rbiHqy-*Q2B(x$_L+=I73FO{jn;hBHlP}$@j`QRKrguG zYvia!st+IcWahb}^1;EdG4qDf*J|aEsqUc_ljTl1AH7c|w990#3k;sdg0I0j=I3#P zkjM9ah|y_XRmlss3(d_mt{b>qzBbB`>GWY1Ylp3WEO^W0h!Qh9wPC+Q6#>c_&r0zi6FcM|Mf}ti`bj=NIFqTVGBN4@h>S?J}t`&M4(^BDeyL%^J zqmF%lHXlDYtUmcG*~w%3k3&g&Uu^+eSehn@Lk*LQ?wzyPfC^v3V zPAp{YDPz44wIL{+!Ze;?9x&B`I|1Sk>p;YBY1YY~erHYL8`b3^Of0@|8Bhns9QkcYh4D5&+ihUgh@uBgO4l5mYM zAJqxq_U?L@5b>@jwQz-%|G@YdA!54W<$#$zhm^2v!b_?R+T^_YsDk_2@x= zKBA66`kOOByO`j&#EX3uUW#JpFX?G7gZoFiu3Tv(;;2W{zTHT^xgd)sXA+`~{~&H& zOGl~@DRrt@pSAzFXT&hL+|4PrQp=pGgLPs!jj$AN9CZ9+THm(4Sk8c~zt2X3Xf?zu zjSFS=#AdGjr^T&PjU2<-p>Fqg3Sbj|&}hfhW;`adEj1%9l6Gyy%3J1J5K&M*-f|3~ zcDG4d4o=8ixx?_p&c>?5s)S4sdgS4E3r|6tN+lqj!0qEt<_GfXQ@R$CDFuval-@&a z1}zU4i%qQ!W4=jBDu&Lbj}>ifjkhVyFXOkS0puTM-BXBeif{h{5A}0v|GeCPYT%Jm zo)B-CvfqgDtj6ghYd|Jobh>U+yp(TS96P!mQl?a_SRO{3r9X?H`N2_4&RX|f^Lfmu z%=)*lSb*9drVV``3$*^ zl}dsY{Bfym`@p<+WFyaB>7hV>U)l{q?(;NdG0l1RqP{ICRI|=dSh0F-F!naJWDG3P zjIAyBkUzQNO8>67qiAv-iWtwRzrWF}crr*J@s=taJN0Grcv6V!wRW3;t>fu;8?|pR zGelh#)7I_Vx_OVOIj51BIoyY?U&@vuw2tu{-iAl^ysz4VRchu)1UZp^zeoKLD*LEg zV2r=`M+BS^^J*fGxW%_zzR^E z2gBDr(oCL2Oe(z(iJ1e4sXX{OL~ZoB*u~$Bgxzw_*wTaCf)bCIf+jlp6I((ht4G<* zL4KN~Xf9u3pN-G}K3#6Rp*Om$m!S^SrnjlT$~Qrkt`^;Y`ZzGSCfE5ZU(-vI#;y8x zqd@Y{42&8~M&~rynBh19eDGY^9m5ZNcNv0s{b=G3Qco}Pn+twsRBSBuKikRJFg7c< zvPvdi7_5}BeU^6{`W{U`JU!&V$=cLNG!ce&P18fRM=HvKVXv%hDL5)j;0nj$vBM?D zAfA1nlcjQh9)qiPE~Ai+ovYD4l8F967=<}Dw88)Ti?+E8`^A(7db1gKgDDBL0{Q@# zQT>+@wDRKqy~2`4X4I??10;(B^V7aLUr~Wx%WV za2o_hH;jS|70XR^@Zov{`U38wi=iJ{9lhSqtOC@q#gpwll)DSM%~WZZ9k)eE5<}*l z=TmIIH^l!uCXc#U!`~;`DCMIvDx;Ng}6rT`7z7@#Reg7;Hddaai zT*IqOm5O-DP$DJL{mEL?&jV((xzQE9_8~!kM&M_M@kg4FFU3Uf{AS3G6<&_(22UJ3kk3Nu*S_?+oIqutb}u8U|({VlTt{Qg=eOY{r^Ot7{YgT8~?3=S`k7qi~C-;QY1|rv}i#ee7AnxbD`l46#T|uaS zZ-N!s6RdIY0aWRiiuk4x=H4tD5Iz}$6Ya#4qy=8o2pkViobN?}-E}0e{2!(HmLgX` z(SG^*C_%E2NEr5k!SU#3=Qm2xVb;&%Rnt~E%-8#63_4T3RPH_GPjcNWp)?2fa;*nq zRDgiFBRdq?+tp3uA_NbyKoBoJ;4(e2Pcbm9qrl@>Vegxe} zsm3-J8I6(bP79@`>-&(9^^%OzFw7%Sz;)Pok63+UK%LZXsuqDcvmBE=*XPF%Fsz<@ z+mnFXBxz5y$Cpt^w|f`)1V)0Z4wQr<<-=xs^3-x{Utv;Pc5gA^Ql*cyOpx6tBZp#? zi%(}@V$b?8{~t$+=N$@VZe(+Ga%Ev{3T19&Z(?c+G&eMtq22=(5i~anFHB`_XLM*X zATcpCGc}hXW&;%jGBq|amr)-9Cx4B%1yGx7*Dl=R?gWS64#C~s-HJ6pfZ*<~rAUF| zUbINj;_gtiSdrrHTD;}Zz4yEOz2E=OoHLn8o@@EK?`y4jLQAQx#VTRpXauTXDHjOX?SEM&4R(7r zRB?0wD!SVNIkFax{lR+`RuQ1cR`( zo12p$JG-Z+CmYz_mCez`N`I7*1?UNNvj%EHTp=zV5DVb%mVv5Zd&obnv7yicwXLD9 ze=D>cE!{l9E)d|ezz%8-ad3Thad)tQxB#EC1GN;Cfoe_=hrf-L|2AL&{&P4$4mOT| z!~Ns^I}p_2FK4j1xud-k*ufj>U1V4B9Pk*lFE>I^oS2kCu-R~aRe}{QKW*G+yDMx#Ih=ZFe%J2H5 zp)L^f=X3XF|L1aT9UMI!eE)+ip$-<7zuT~IcVgFZfI7QF6r}&Lc^0Akky%09fIJ`& zh)+NO2yq5Nyv(iHe}5;?_I85&rR4Z6e(u5F*U8ZdX!+a*#2;!2dHzB1bp?AsfNn1C z5P#qQsrYY%!odNwfSS7j%^+4#2b4e2pT!W%zwz_^yFk5whM;HqaR5QTKmR@%KQqk2 z(ZSC9kNIC$%&s7#AtkTN{7=jODkUWyy@0-~JiI_wP96>*2Y&~M6UfH{0{Z`V9Ca}C zpE^K)d=(rl9f1OWm-~E9|0&ty9}Y15Ga!t>|Bj{V_{>}gkl_!}jX*pg^XD&)|7W`Y z^50SZuSEaf70J5W+5M$w_}k$BqX*kV?Y#f7cxJA<+w&BtI6lvU!~ZtbgZw?Z zDi8~(yZ!&xDu1|vpQk~>!RndOtO9J@ynlL2u+ zUF~1Q|D0X@4|>k7@drI;*ZhN?vupi9+(35iKj^s@oj>R~yWYQu=h@E^`aIPC3ZBDS zI=Z|3D}UgA_O|wRvVPu^|B9a5ae8L9qs1S$=i1z?T_FD>&~xo>o{oRv|GG+ZcNdrE zwf5J@J>TFqb$rhnhS;5)P}X)R!fk0vTl!aa-$DiyuCuw+ma#j*wqM; z6280SDu|w!=$hGyzFWgNGdRVns%#4hVUVtA>^tpESSN}byQ2ZNmKJ3oAUcWi?*gVUXBG=zcdc=ol z#pbVbc6+a1$?s#hjY8=x;517F z`-G1N{hFL07!)$c9Bcjo@ewaEOn*@-80yvIv-=2-V7%Nx5=-pNkL1P4CA&9DV$KkL zPM^}!%Zyy!+BNQO-nnh3RVo|!DW7z;779@q{UTl9$;(aJY9TvxCz|$gqIsEVEBEp< zzDnrcW?|Me-W0mc^n&yhv}@ewq$|s4@$);WkQL*<<9x|g@L&6eFu;~raOyJ3$vD-mOPR(_oCK+9eDd$ zn1)5o&In>KaxX6f&$UjesXzgzJa(DPW{+&_-94rXP1bUuxZHtJlYcZB){*9kN3YRA z)o>H~sYqOSpQQQ1ru-A->68ciokw9GiIC`ldbE&F6YV*O&tQ-Vf$UTM;3CSr@7}!Ncr1KY2&i?2H44<8g42{lF zr+f{Ia}g}~^~YP_c7Igm*pMcO-Hedc+=BYoeV|=fdGP^1*FDF5a3-=Ihq=i=P?wPd zFFnfGdi)lSMXJhFP8I!589``98={Y~qYB*>mRP6AMk&Z(O2y_?zOFzmTXnIguzAfN z0X8qZH`r1p=>w(bj|zMD;N)BrTQATIt?g#&qAX7rVL7nqT7QCwC~|xHWd!T}S5eH2 zTFiR($X`L2(wxb3CKtYG!FLQs$*K)*%h_)$jmcLEPO!n{88k(CdLonDOYqgcYYs3W zPAyi#Dog(QWZ*g~;=bR^ykFpUS6}(rC`@3p%nRTLcSgp?>&W%$`SQ;2&463_NQ<-N z2(AkMcN=Kut4^c-7;K}YfxHrgwsZc{siF$)7gw?2!rm~9f3=2+B?1f_V$}Q=7sIPk*NX8RG5rnWk8kv+CRf$@>5Y zF>2W2Nvdsd34wcjA7ff5Y<#W)#_2|%{d#QE8N0S;MFQ&lV@q)w97irW3y-A5+C~go zuBa=C4R@#UZPTqTZg2;E)1edJnlj}TYp2nJQ+b;5&7#`bO_B{pP2{IRVEm%|U=@f4 zSEm@^5r3k=CI|%&`V6?Btqy1M5}~g#hXf{Gw2Lf7&ZnD^Dm++ z)R0^@U%~QOO5t|^ie3$cChd&n!f!v+W^)M@QvjCClSND%uW;3eGD@p>?}quty{gvm zK2j`FFND~c=iK#W8CKopwCBksUba`FC4X?1q#^|A8evnXwU@oH8pQF7g=7qRSC*5A5X=HS*a7MN0eE#- z51fl;Cy_ttt1FILQ}Y6MMWc%My68N@gWm{by`e5U9A624d8)J7AiZ$U$bS8Tx zx8Pi33zE0z)<<@$CJ`n0IDZQtNS{MRAhDYc36^reDg2pUCQuZSKY{Ie8}`!h1kz_l zT+bdykFm>DFS|Ft$t8K&fL)|SbQ|W3(=t36cbBP1mNW72$y=I~q`TF)+=RVmhZJ`d z=ev*l!p6IRSQMRX7db4?S%&>_c*h2KrgD$Hs{SInP~po!K8&t5RDWb<^oqg#2ZV_S zJv&f~$*dl0D(J&BK3xgs zE#TdE*%WGBg{Znp@~3}^{p|3(bppTXihg~A0G6>a}pK)B(Yf7 z(%h^-CZvUM^nqIWS)=nEKK9f`r>tm(}}-f#k+*Y|f%JeaKL&?-6a)lK~L$l%oq zv=t-|;wV%BvFjo+ZUpq~FzY4XFm7^dwgg*w0i-X{7k`V>U@2rC&96ohS#J}lC%a>Y zc^UHKpKu^PXnIN6hueg>U3g%Q zCSqK_5E==Uc%9OQEFL^T^c}+(E(38nx5F3l%l%thgccTbS1B%K@Au~0URs-jQ@nM& zkO7w_G7a?QOTD)m&gY@Mvg^(u^7<(Y!fTmV`He(p|Z zNS;yGfaC=zt6SzUgqAnEz#*|+O0+7r5KNd1-)=<_z)yf>&yfNc>p~o5&Y@Ch#9>7& zY=6w^qJDb`S{#x;c8LCFsyGjui_n>d-=ctoMbPh%$zk99!#JySX@Fol>Em+eGA?CP zevPd62Jf{M@>>j2xa`NF5UVY8#t>zjw)(1hX_TgBEPO5u^jg<<11Cfr8&!02836dT zTc>*jMMY6E8#50FLW>o@pilNJfX~_Iet%byuj{QDwTr5a={PnUuec~hOhY+CND@j+ z-@FKCRoZKx)Daxtd#R1)Zr9!V>*5QRW(R^pZ|Pk58&}V`cr0{D%n)6tL?Jy71%s6C z-Ao5cN_y19S&n!Y*;tnSYpdw9!|+NID(oVi&hW)nk({UWpX6)?;w0-A*@zo_xPOu< z?fLEpdx}nW<3faoS4T&e1IWTKgsT1fR45#l9)jU^s^BBNqUy!^VZkPBV4A+5@;Sf* zcF9L*G&1rIyCyf}YpI@xw&9&6JEiyBc`W`WX_I2Fj5bc|IJPIvP#HcHfP4$)mT<^` zYcx#goxGE~(TZ+Cqor+AZfi{6?tkZ{bT;o<3|WgGJ|CGbhPHcZ=F}Ehr2F@8uQc*h zZOz~ypCt#icj{;It>ktq`u;-V2LR}FNa>@=T3)R7jgViDU(1`LYI~zTNHkQtj_VtI z{Z(*rBEm3~03cCE5yERwqah488>6a|8k>h)NI)7C&5+v)x5$T)&|`TI_H4>_q?rcp6bG`HFIV0=2DL#40{?zCy{DFTQ_ZLTP0yn7G)|U*J6M~N` zlpi0Dlqc;Hm(&h1M}Jl$)SaVsEC#N+n4%9?{b647+l+_Ho+Qk1eN;yf(S#bjkow|l zR!o_fGAaigqnvilV%DyH7`3;DZ}u+bY&PKrk8L)PESPPHFM{l38Ak_Xq&TumauL4% zieNR1aCCfrpC`Za`~lb*X~t)s#_48Qv+wFx+UY@fV^|M*^?x-FkF_khQ5YIbr(X)0 z46!pMsP8#C%8`nwhvb_eF;?&r)yj2pU?#9-;BBLNBop59R;p$%l8jB`nvxo4$W<%>mW^_=27oyUuEhf+xA@@4 z&(XK)Z-3x86zQc7nNw+Gz;z1iJlgFvv`HQ=RemGiPjc=ZDR6)%HS5EvQdC028Fs>H z<68*sX%pqlBwHTWQ}u(YD+47m*NkNq)b&v?bQ;6L>Oaly(#8P_R4)A-&4~BEWC^2+bX}?#+l^AHVXFFaHUq;L4cMC`0b<}W3=)`j~ zkHZV2R5nt}lF&ScJyQ(~suPz-*$J806n|rC3dg(Mz!z0#Xf z7Bf2QlOr=9rkx);EvcWkt93>{uYQfrQB(^Xwy2WVOP9N$p|-z5-MuMrwtjb((SKr@ zer(2e9`A-ZnJ2o95k!yTf+HT5(Rf9AXZnJm&#&<;NNziKQt3fA=L3d}Xm~F@LEYqr zez#!UOZ7HGs$$%;*LcKK>oYl@v~>28jZzLQSI^eiSrKyLW`wwxd3@5|*Zn$9q-*(Z zU(snG*cwyrb)tR)z_iVCqb@`(_J2q>S2w=v7X5tYYxn(=vQOU+V5P39BvTBLYWKMkah0q}^V*VmsDYcQuBM1xm_Lj;f7@&4= z$=RLRpq;BPGcbVq(*Ar-#CaI<`b$rFJXZjJlPepbHYID5PyE}QoOyW znRulhk|uF^o<>`f@V1~M@N6^HHY~~$y=Eig_91$lxzn+qw+)F$;ydECA~JGT^U%jb z3OFdx<2VBU7n%=$7__iz-&}e*gf;8i*OXVqTQGXEDjuDj&Ij<^zY2#vBHh=WzM7FaDP(>mGFZ+ls@QG!3 zpniRFh+fB+osqBhN4G#K2s6FbJ$4^W=npv+^d3I5s^Q23`xo-ES5XMaf(mlm0YyFj zmh(AZ;mu>EIcZ^Ly|nfQ7L6Mn_k{O6Je(1QTNe_sii&xrHPGtDk$;i2C6F~YE8)!N z2A|gY)=IJ!cSB3vh{dgCtYl|J-=~_4sOc$q!Jsd(^}_t1r+VE@EtD-rl$RRjJ!sa< z7K%ZYBb8DiF~*8*tkPgZ(Ns~1wQ&-h0Q*WFuDxE=!i6)$)i<*(jKJ_NQF?J*uC8L> zFfuf+aA#zjy=oK3vVVuk9AU(E$qKMBva%Ve@R}`Y&R~d1E~&uZanj?oqW!DtpjuVZ z@cF<#|I>YO{OKzczi%`*$2Nk#lmZ7VwFvZMXC5411~;`#3pEljwNX)>f`|fpfngpP zB>VAR>&56}SxMhShQDOyxGP311SroaArtitR|jf0Mv^f%6$_lG+u-HUUsivNE!b-xb@5|GTgQE)n!Dhf#svRo% z)v7f<8C%6>Fn`cqUc||fQ1Im%$vN0G({8h?BFBF(vr2u-j7=^y;E+^~68t)dzupjS z%JX{}(oonVEtCcP#-ybh86dy?g-Fa`MzyR{D<{C5)nI9X|4q}3XR{i8b7^Kt(%iJz z#kj!?RXX!{nXlw*KyH{#5V=QO=mgyDt9Gya-O2@a&VOe6h)!iEXiDHRKfDI6yT}Vv z+)^3T8^()W1n!qlq~uYX-KXC~wPa4rRncuY)}CY;e6OHH3}~*=S1kso?^v{mOzLWz{N9vs{c7;V$>0{O-$p@Sse^AM1 z1|+yHvh47u^eiL7KE)9t{at$+*~b7a5>xFR^j0SPPGQYjOVS(`ejCSF~w{F=RJRX<4Ol==}^9Lf9YM_I$*b7qxXYk5_JNn@A#w{>APl!PJab-p~q?b+gk zg_O~C9p2kD0kYB`%)qUy>N)v>%p@q#^pBIsmhn9qhj;U&z+dwhyN^{x(c#-*{yv5K zZ?9xBzV-SZJ2xLfjmoVNCz|(x_U}nOWz%p#Ad-$fM*G918UG`dhqnBb7C-x-nBM0Z zV-?!|sz{UM;a`2Eiw#ST{^m3>OEpwao3Vkzwyo%-Q_Z*eoh<)GeCp^ zQ2H}6pYT-Kb3gw&xz3E>FWTKTMqWl>KYh@oW*H1UcVThsu4)ck37r@!w_C;}$Lx-} zSc(;jF8ceGCO!lfPqUwUd9z)tEsIt=ZH>U=LdQ4!@_O8xF|y z#YT4O$6vjtxYTCM6*zT0=}{Fg9m%|s=`8Os$9k&!sHmNmuDBHQ51botC=k=najhB` zW^EVJd8N+XI?-PazNf>_`a3lQ#kjZG#CrMkYLMi}`@-CCdtHDqC>%|7&t=X6gKJXb z_blG+YOBl;dU<6Ig&gfSr*Sh=%r7=7l2MFzgDaDKP+`aEMlH&+u{4(3A*3}EmuhtO zUbAp>3FqD>IHbd#3kP{66?opiUv1-tw{X%~ab;q(uf^;1x}vn_HrDjKLqA=)eyhE0 zoOjT~lR079uMr;8UEDHpYr&mF>1 zP+w|z(}wFS%2NbHNzh#(qZg$iA7V@``^%+TQuAbm&`*H zA8;lk;;ar~h=(~9cuU~eyBn$B#;CMkH7K0wwz6FIXR%DyFTOTlN2QXBHEH;U&9mg7 zK#`BexXm5V8+B{|f1 zzXylOX#~A|DA$UicNJ(+=Bc+XAh~1nS9Y$jpTTwt+sATe*3*fCj;{8H*V)Oypt2{~ zFCWcGDVD_j-~1;S!zh1I=^n)-lbL?5Qc|b;cCL+_ZvXs)SLb^xXYOqTS=L@$Qntf ztrki>2!hWs$(tH9ICs53wu=ko!L%@{mH&i=6&P2nn>D>%V}_++*u8}75FIXheWqj$ zD@BWUnE|aepg~lm%=6K83Jx=pRqmqp*8T2&2%%K*45MwU02`-2VUOTB2%SM?*V*2Y z@sj{cr`c!Birx%ZUoau{38L;4dW1RJH#rOj+*qkQ36zA)gwfMZ^pzI-a*_}8V|c~g zdj<|&RY{)xcjVtWqayPr^L~#9Yip1&sO!lz^jO{kAZXytqny2m>A|H`O&^3F+#k?8 zwi;~G*sRv!@8NSGT_C2=H!~6z_fUKl)Sn>W5*sL}_ zx*0x9%0J@=7bTgEm_2D>1D5&uhD|?U)*KW!2!55g69(!9Z9#tb1Nw;2*bYk1rz#93 zZ3`9PdN+jrk~-m=XjYceQB$gxi6-H>kc?I15ocL1hn$wYD;sFZVD)leXR#oMzDm)4 zr$H6gu1R~ve&}N~V?@wgMG=RrNHLOEa*r-(+;f%!m17{jFlP`A{nIAkL)-wCF~-Vv z#cPM`rSd2k0&Y7faknvzVbm`F+q-W`F?JcC%^f6RS+MnPtXIEfc}FcF_0VZ0;~i;QcdW$#<3I$O)hng%1<>Z~a`uB#H5Ckf#Ok zsbI*+&K^-+e|W!$B!qBY3h{gd;xsSQcZMLiM$aRfv}K}EB20}y{9;>m2{n_@ar;|M zWk4EtRGvnM|D1(BQ)@)W%&#U|?cs{G@{Uc?1&!DrQevoOI}-#sRLP0-Dip9}i;R86 zs%=8D;&Pdy>nxMX(A1KHqbjOonVMEn;ZmAFWz&$U8Hm zvYj=ddZ9~kN!#3{&o(q8_8ofI#bTHfw2==s%KPM6`pQ*>cm5P;;>WaIG0G>Nzsgu7 z{Dvv8g`ZqK+YVLvUATt!dq~g>{k=#n0)MM1NF28>{Fu*yE3Ji9FBT?CN3R=@`lCo6 zjlA40(j75pbdNUKrZChEiC49JsiDEHJ)wBO3_mc?V3jDD)1x5e=Oc#|U#CH2&+zK05noF>6h9{r~AE2Fp$^fkuN{mxA%eIv3tF3G>*cLrA-=mLd)EH|w?du37 zdhD^>;S4*?L<_OzLd0-BEAwuel5ACEy9SRiTQ*mePp=R0^UNlX=z4>bzc$y^UP|z2 z6ZI3KNSk4kstD1j$~$Rm661Y)fu#J|KmXI`^`V-dyS3u3nq)UT+-xK;?eDYH7nWgl zlGl4F@JI++hkHfOfPaZ*h+XDWrC+heGQWelt{J+SG)QTAP-{d%eRRyrt&Dq5EN?`$ z_eYX=Aha@V!g_MPLG@3N-+J+)`J)Q*2^?{yOA8H*Kvf;H#UkZpQ)D^ zFT2Qa0JLQt>>BFygytDtV0BMCpc9!404c#!E=-Zu)gaed?8CD_%0iK1urL@hd1 z_PW~}hN^iSgh5XUP#UF{$-a(t(d@GxKlyd_oqx}lo$@7BF!l#bg0wd$L7`FPOgTRj zvB&la1MIfS%=d7DcaleR{YGy*hN^N`3`GS_ggl9TW3vE5%IHb&lPIg@ zQPnupB>seG3|a-iF2i0}J&0hF^614kM&7(8)qo8m_EFfiVAFc(cH#gV6-Au9KXY>j zl=2u&^z`Vt;A)q@VIx>hz}Vqx?@4Uop|d*$fAuH0bK=Mi^Y88mQ(VrRZA7cC zUzZ-1wp4$dq$>^L9gtVqAT4n-nDUnEoj__|I?%*z(@>6w(b?rfpU z7-}OzLqUA45jTStt()w+?}a|^0y$;ubVuf{CI{I`J78)cQDX>+I>>tk*(!Y){=ewn zUJ~XPn$drx`d3pl8JvI@v};(au;JkZuEJtU3;h1w8k(BZy_j!-YNF79OZ+}3 zhi8B|QNzJUdV%Bh}PKFNskyT8G;IKK~>7a4~&S- z{>HW`fNo(mTl&2+Wt5o4z}>GDZ%4!0vBT|!ZX#l3N#g9)aksH9o<%EFZE<8Tre;mg zYTsTKZy|D-yG!M(Eab=P_zo&vx{bMiJT21roJxyBj1q0Vc$r(^wYxl{POi)2^>7xt z-(gfx-S+ijwt2btBm3f)uS8s}R{)I^_aAjDKutdpyX&zttCQRt^Eca6Pe05|<|9A0 zs%vlC1wVSG?9Gzmc|^O0Uisp|QdsLvswPyVP3kWvl_5MmPc1gL<20!w=JgD`k(E#9 zU>#};VXpZXIR|S#@5IHiNE{E6_HNqcO4J=BA9M)*H}*Vz>`MFV#OB~MO}rx*qV-c= zpg148Rdh!CZsszJE1%!1C~dj)j*Wj)tvm!hPp!)_S-qokCtXQ$_w*w_<{Y z2Rilj28<&!o=2@NRXTildCf}rBB}-KUb*0MG4Nmqb8M`N1J3~CZTIP)CI`%}q7fcO z*GItkC7?Z9Lyef7`3{b2#(I(9@j&Ak(CJpjXOTUrL1J9&e3?-r{49!TmqxB57s(#+ zhdWw@V}pYyzclp>iD2foDzM&myO1LwoRN!+?pw-B6@gEKThB)&KJNRzM;5(Az1Fx|ua_Ira$)_L)LT-aK6 z5)JEWbGlo;TFKKH+_?ZD|M)XV;k@sRqpPn?$%laEyZ30J|vW$Z1R%Iqj`Qz3tA zIlCHMPLIG&4Au>`h~`^o>vN_pKxRS;6*^^4}XkDDzW5fo2};&A-ZRe;YLnLl$zWHbaCjqthvxi}^kBXq1!@hPE-B5;9oewd3D%_LPC zv$K*eI^NYC6gw^lDj zrvUyPZc>N+0w%G>0ji;UeO3P6dOqwCM`E^H>oIrlVWz3xeK#^<7fEQ~;QI?oGG3}( z#aP}kh?d$r$(t|qPG!-jVcV^#+MY#?{xs+MWUFz7!o&w45r{B|!@n5lwMXIZwZic= z2r(J_(L2JrtvW$hX7E)_0M;0y@GEcgJbOCP^Dri2a%)^^cq`74otp7W#0cmGw z3Cot6vk8vTOqc<#_WwDsT>s&~Hb-=WeH5ru<;`F}<^xLDcP|AU1EV`ED- zfP(m!WB&(*y+GrLk_w+i0F!n5w^H}(div@jYuLh^WlEBWHl#?w5@yNC$v2|?!mg_X zKEAq~HlNP9+q=`POfS=0tJ62?;n`L_@mQLeaN|heVUMaUX9T-srtnay}h@jWkpzaXj9zkNQ zt)Lz2>m&enpSC#Y?IMA`mLC+Q5IPiOs{zYMuXcw{?<1o905`x7mgY|fLV$uo{J3=q zf^8N@i)D@gX|CCiFEkm3=D&#SM*t54)!X@n7VvW&6wwXkVE6X^e!s!hbuXxORTikL z0q5(rhxTI_LD)Y9t%H20!Opd~fPbxLQ;>u5>jGcCKoUYSg??&qg#<;0g~5UeXd~8M z&ub#m0NHi^FB=vT;-g>l0}0%?c|QHVV_$~!p^t)M!+4ECG~ zoJ{)~(c0a8M5`4bjmd%Byn(s)oa1^gqk%fYLSkE;t)Cs*lvLwrr*Emo&>^dNajOD2tv?;qS28LO% z#!eXZv>&l4=xcYeM6RHO2DmYttJ|lZ8l-J>8WeUZf4~eL!1tcH{tg`X+D7Oz##M4) zAv!+?vIEBmz7x0*@Q@b$>pk5Z@O_cL-vFk8IM6I)tpNn#i7jLpX3;Nx4N%yil}{WF zT~J}a#`5w;PKwwE5d-@mI1uFm!5+lJh?g@%NJtQEmTt9f za$;eS)YmN_fr-;k_Kh$csi){Eb^vL6_DgG5SZ&M%p|RPa5sJqjnRfy4lTmJaYnia& z8E*e0xV5FFuR~~R0|oDS_*;BWoWh%c zW5YLu4;t_3eQaC0uJWI4?OhSQ%ZmHv_UFmgTJS4wS1$F-QN2Y)ia&iiExgTMEH@Sc zk_{k?g9OUhxJAQ1jK#kFER(mDimC%kbu6L=ZW@e(Ck>*;kSc>x0J(#wPQ~LRC%c-Z zBslMi2g8<`PDBbO()hVX@5gyZQq?bBObiPr!$NQ`d7Mr<(MI~&1N~PAc0#gd+~71= zKlP<9`)X!LT835@Wy#N3tiVr_v?)WY%=^{Tg);~O-MjDK!tB46n(G2qk!ezic?%eU z=3QzKFh?jbo8-_8wwUruQRnl_trx< z{r zvJzlHK}h!C4vv)Hc2<-5`A{Tc{~Rp_DAkKaT+3c!!tGHa?YkiE+FLCVo;mwSHik7j z@bByn)+mkHaJtmcEE=l>-wg-iKJD4L8Ou|ED+ZaSIGJ3*gVBAH(d8R!^m-tDTzeGn zcc`kB(+Q#`V`(*F(cieeU^;-F>sl^3$=ZY7AWTzf>P*75Wl&atv4%<(d$SM)V2KZ+ z9l$CbWqrirp-g=iPi-(Ku>RqZT%$3!a<0>K!f)&#+BDDE%n91xsk|6yk$Q#=GT_j6 zw5sRbN2zurZ^`T>g?cq*-&}NTwY< zY5^pxp)t=$y!|46sW@gTAh(5m*@ZT`_2dcqb(8)4(~pOst_oZcJ=rj3!b14~NE6iJf{?vj z#ZyvinI4Qnxt;H~#laXi<&?-Mss*HUjsVDbPgrA}m|Xs{2AJu}Wfn#!#I>Fecm_me z+BuxGs3K(#ygS>|jaZvmyEb>Xlxu3z+NhYFxqDwX3)40ht}}b)-g%=y&YxYrXIot- z&sujjG$}#^#SJ-dUU_POQZA-kA6jy>u}mAy(!i;C7ZyY8mceKvA}SPa-{~v{-!CUb z)S|Z2gg=7`^_Juz800IWuZxjmYdJG1fSsI&JWHNe*l8YZDvL%~LJ{eepL7U6xy@+y zoFZRR@Llh>oaf|dd}A$%gI{Z4trZOYPM_?;@s)r5>SEDYuOk?N4rbH z5a}V@$>i#vW|ro7u)bSK>C9iqR#LRqOa{St=uag`(V5@1yj0WfkV#{jQ^0CwUKfd- z+AV%tYYYJ$>2!$z`U15YG(}EpXMLdD&3SBCumk<2xq_t0OpUuP#4>$#TL%CW~bQa zK5>I|K4?bchcD^e*-T{Qwgsb=!OUd)q#Ez58IWUEI3E+)sf(INBjxClcY7}71O9~f z=63_Tt}3=0^l|qj%q9?%ED$E-*BH0_xp3I8XIRPD4vj`O4S8r9MG%MD=A?L_pIsADNw}tyi6@VjBEU(phS)1RhAgY z&^FfUSiUP*7fAnvY(6%=wWRD5pAawC<51bq(lTy6=yEMf5!c6cbP{tL_*H1(OW>M( z^8$r44y~T|%-OqTgFmjzE($aavMf#&B)39_@sh)UIW)Tt&0VMiF*{6V#~1$<7oh~w z6=KE3mg8{SFpoi%;^^3f%93GazEB%iQ1jiaS>D?&CeAxh3jd-Z`*B5D z#1kH8TW`^ZobPg&KaCpqQj6?66a2yOwEh(RG9vj7cBr4YJ)KQUDPI7UI4L^FeS`n= zt8HGVq%GL?9(_afka5lkqr(ZlWqpLDSr91`5ZxpljM_aHdCv?qP|ZPMDbAKX}q#_L|MkO^7(-$@k zn60oc-74*dqE<4hVt*;6)k5WlwFWlu7IB=XjfYy*Ryk~%sdTQf4OEk>e1iTU6oj69 z`e7R^nmR<~sM`7a&?)_M;Tkq7tWB}p*lB_Vca)w`u!s1fvEZ-Z-FVzRc;~tV`z^I- zBk9kxEkB_m2XR;N3#n`cy*}wbRmmQjKoFD6Zcjt?P(p{_}IZ zz|mTtPp2<_a6;2l%;syg9;7QL7SEGiQDp)@BSBLtE}1NsB3JgAwa3?X;&aPrC^{SRFeuUzyQ^H4l0JNS0EkY8&9en4 z9mm3wc9mSh=Vjh5DWO-!4a{P5jd~%q+HmO!rO?Mt7U#S_Iz$WeWwi(z*S$+_Z+EDMi~MfA;bEzo zk)+dA&<|)H?na7Re9lxzvviM9g0LiuhZO0~%1XLx3mqoQY1kNMr6NmFhZS;8MT*exr({D&-cM&LrCCV;P1CmgLWx$@g3UvjN7^*ed<5i7v2*}2f{m?8?Rznp)tjFT$|yG#t{qV9~ECirl_G0dMx^u*<7jZ=_ z9qz&aNq*dx4Bi!$Kei16B-PgFL?5a>vAxwtv9s`bbX${@?3`HNi$F;0Poj;=(b8QYGo}7seKzed(Fyk0S;_Oe zNR*AUBCiEiNrzJw{rgI|F%RgE^*0{bIs7pmY@h0yeNjd;1V6iIrWB8;0LO_SE#a|`hJhT^vLt|>vJj%1P|5Ww`!JLj5Q+^lT64J zz3%;(cb2x^-%N;Cki7HsKIYD;Ews#zo$q+xk^MGtHVsW^ovWEt?VXdjoW>+OI|)~R zDb|b>#g*)Sr_;ZfUlor5$~Z-uywqN^yU)M$t7-y((-n9TLQ!n6dmGXqjyJEV;az35 z&$eaW{29pj#xfC% zldt+gA#FxWiaKc87!)>k@Gji{^1I|!dTI@wGDw;3s@UWjl{fbdf+uI@>Mm=+&x-i~aG@|7#m1>` zH~%9b_fu!A`?1(ax4Oyjc~?uqUrTPTSTuQXaN@XWcfrx1nO75CK*HE3Ti(6qkr(YolxkFEtc^fuZ5v+OmeSQ3w=$^M?4^qkz38M?N_2#%IaxffXb+2xNEA3^al=O zPLXRy>px|4%}#BI1g)v44$R`60MgLVX)kSSvb=zNp@fTSGmoN=joTK4VRO@BZH5(a zk!j8mbN+XhFYvhG*PtEL(rUxif<%Ac^4~QI`Bh;N2$l7Naq3hoeJ$9CrPBw)M}=b& z!kct?HLhJFBK03zF#{FF;Z4oPL(ECyXXTp}8C0sP*JSJ!of?-OHZi+{>Ngk!N|+DX zp8AATcdLvJ1=p9wBPO>W#9ikg>z%Kxu?w9sksytbq+4{+e@q1ath8tp;g}r)TjJ3p z128vyrF)_dbIQ?614^RCf6xfUF>uia94xEL!lVyok1@qSxCl90Q3&}u*qF9TVHJ|n zm}1(z-dUA%yI4<)&SVi<3Y*1Tu+BVlqu2W%F)=g=w>!VHR5f}a7Z06n<|nP)K~FJM z9Xdj1mqC+UK_6LAGQ;-naE+t_mofr|mXGgxla#v3;q0yT)0d0k8+4~dg{~gnSUjyC z6i@jIWuolQ{2KWrmARm12+jK(IJb~%`5BXHFr3&I+iEXC1HRjT)-G=iYB1#%yj_~2 zOqcJ}m8`<&1bL3gy#XpAkSnq+dz;dRm`bqfnm_qe)5jG^T?^L$J@f~ z#Za5KmqeE&=p(kPj_2S2M`ZWu5<(pIAwQiFziZICVB<6?=x6jQ7GW3=#;B~et4{xD zixwrqPb|`lhfg!D>nb!kR=umARlfVm__FvI*AbwjrAA%*%Dg$4A}~Oi%wZk8YPK2S zH}woSn zInoo43Q-o|mh`>PB8`X+Ey(p=#ZX0t)!T=)4Io5pO;|F(l=oZXW3HRlzS#GZ=NL~b z$K@0&^rT0rT8E1*e-E-$WaFG>VzD*~^6{FOGR)MfYwa5)c*@#6?8u2Gr)eO6B8ub? zMigb0?(8Ud3~EINw9ieajj8U<&ETkIdZmUv@fsb(7AI*eSOr%pMa-SR_;2_+05H`;2Q~o+J8v#dTST7a@6F2`s6=Avl{oU?=iqbvX^vjO2(0Nrje| z*sB&G-m^$rUK)M%Y#Ph=gVU^ohen4UDvNVa;>Y@4c5TrD&Fg#UIV}Xz7e=DJ{Cx*dnFpoTIW{BA}V{&?f9uF&?FTit* zHLd@!t+ZFC^QB|8nEFI+Ej_8lonBH~97 zHmAYHB!-Z1*E1?|9Xnv9?+zOX;{6~uu`FxFNupZOyq{kmuc{A83YVDGv-(zHZWrY4 zsud$iV=p;VN`EIFgEaHYTEV*+@TKh2u_~D!raKe?XdO7sp)(K0omCupGgEL^k+fqy z3m-n5w_pL}f@N~%jb@J`G4VJth94It>!J)(8P;YZ_qT(>om2Necmzu+_U9RIr_eIO zJ7@U`eQX%>;eS}`PKucfcnagz<;9V4qaH3%nFa^Uy$$R^_p?8wTKd$BZo_B1I3UAt zN2pT+6MpMA3o_il!rbP+t@m5~n%_{T^k3eXUrV^o>Y}$%S<%96x`_Q{aOf0gSzRp` zkZpDrFm$zV&%3`++AuvT5VB^%vL@@5v4)Oq3h$DB0okz}yQBQxC2QhO+JB^cQwqq_ z&KcFcT996W$5N&VaQ=Rs7~>ROzmpB(a86AJkj7bjI)+h8PLzfC(BTy3{%O10SfJI% zJM(6{Zcs}%B@*x{QE(GDzb&k7&T4f&(Ly!X%5BV|DKS zQdBCE?H430(YIed%%k(R-&*zxnP(5^5dTeJKe+G9b}T7I+S>CJ*#3zw?Y5>Bc~WK! zsHB|0BW_Vtwxr-xrsL{rZzNQC;#Dj1zG2Oy@N{BfX4gILeY3I=eDLj>8ZFGC4>VrQ z)P4oD2*fE1~;($62eH1Kg*BxZK-|r)F2n0&v<3W zapt01H~WgNfc(J5eppTegdA48{$YFxXhHv-%^Yupyx8;|ko{`2LCd>~dEYIRKnln? zTlV@EMoIc4{6r+$r{mlD7~r2MG;x$pVW6uv@_6xzUfV~&^Tsn0=Z2~%5(pvDBQko5+LmdGcZQC;2aWlSIvk@!bhz|EzGiXC4(;1}#V-NDU)=r^M=?G7fFs(_ zTJm6PD|0|gAb+?I@w+kFY}D)6nIfgvISbgda5DN}>GvwSKWjUsQ9tOMtT-n<<*RsG zPo74W?Gpxb{^rSmt?Pag$>5?yvGKDEUHwGIYWH9NU3H;1_9OC7k{(4alrE8#y1-dn z-L@Ie-_=@be0M>KjZv~P4vT{mFaU3kQYyOOr*=&T;P@v~LD>m^;ntFxhHmFQW|p%t z^*Qn@%Q3W`8ZYIY-Pc3Wyr#p4oLGahr2CK0CKO$3nn~FYCAkL*GMdq*1$BouaF~I@ z5_(18+)ZR#sHkkupLk5{lkUx61BST2Mt^CDw=2u?2ZnPxk=O3n{tZM5J79c^aS#f* z`($_;p`jLZ=0V>R&^#u66B#*&<7(Ff|7kwBJo&!SrA9q_l$8EBAEMtuTW{gGfmqSN z^H8B6RkYf5dj4Ud{nwD$4(Fiw?}snm8^)B>{Bbi|AC z)9{(8^OcKeIpf(*Vd)FUhHp5$7~Tpg>!l(J%v@r^daA>_Yg4toAOeNR>Q5P z2Rjzbi6Ka`qZN^N)Th8y=*)o6ze?@n^Ooi{raox@BK%0%l>~sydgVu6&~QHf*u5qa zV#)4n0+kp})-PQ=DVR+{V`il4!YiZm+y;juQQR@wid!QK)!r%&^XCZNRJQx|ZaKtY z@~X&TzXJ-NZ;}B5!YvJl;CYPmB{I`~OJ%lj=R8u2%Q3zpn8+1I+AiuSDGF4d&x9M|j8{G4S%+6x_QLSk zG^S^s2(nvuvX&?AI5800$TPMjOW`!9YX5X!OHqrrN?#U>2$^zab)WBd@FSZH5n;(v z`^i855=PftEb*~{*6RRuas?4Dz zmazfPbtyK0g4WAxg33ah$NpT&RLK3`_&MKTrT;@r zmJ>qIfSKcO@HU}raVH))LFahb_}d;xw#hE$UQ5@RQH*5d{P-sq56M8Rb8tZmYzw zd%zgFY18q*oCHIR6P3Xmb-GlRoqfE^@@=;+&5}NUldm&{ocI?0@^s6_($Ql@^It#< zJ{GX=i`~&YVh~F>W=;?HxoBTGOj%?n1&XKULy+WcB3g~J4mfsa?gnDzXngB_VO{0h zrs|#76SCXAfFH)SJeJ7)g~dN;4k2VHpD$-Y_Y#kAAj|aTe}r9r0vEtJdxjl@@);>b zZH+S?rHs2}n=Q4b>FTEt+%tv8Ngu+-dVGu6gR!rQZH5}$!f1zflTbi2aRG&@jhvJb{hV~)yF#<@m zdb>?q1=q91c#wz{+2>zdSDn4&lV^5+4s)zJ5l!hBrJb5#_fI9n36 z6^;dI#|;ZnMuaf>h|ZlDY^fRV96!qYXUWQ@(Gs)gmEUm)ryO)GcqAr8!adNDzWR6I z{rP~F-r2e9J8uh}yx=s6)P8$%?zVF1JMu%wg4m=#eT2M{E3fllkdwMvpwP1v{`>a3 zb9_+0H==YZVnds-XXdL|;g;TZMKf$LgUJ)@Kwa}a*7Ji9+wrX7DDzWYx)OO4Civ+& zR_X5+OZA?X2OFKR9 zcBX*zQ)lNHau%LwXDs^3qOYu&W7$x6CyZGh zkrg2{@8NTj3z-oW!kJC|kqh%y4JG_w7ZY?&ui4uSkbyo#byVld|PJSy;d;#VBmksIxakU#( z{pQJ3nPYcXrxaR(lVzc~H7u7fG0A|xQ%8TB$+;d%( zC^-|yeKhhicWfuo${oT#*e8?uE$Y;RGnbr(Rn4VM)}eZ zLWG18L1P>41(5j39q|ZCNz%vEr1iPepgt9^&9hew%WjXwoc@Q2<}c`e5eNDI8^HQc z{)+3r>g{H3C=Kdq;qH=KlZ~m+kAVSmkb8^Ym(j2RGgLncGM3t|9=tffg|&a9uL|bDhuo;IyYtFd|TdGob^5S4D&kpLr*pk86n9{xlOM8Bc?2rC0YXl^}0ru&0{iO`y0 z(RDs#KA5nvD{K#-#DmM!q%@0Ud;uN)L1_E^Qt=xY^qN3sJL8pJ>KS~nhv>&w;5o4p z@7tEqvPatujxh0MwtnucUM4i!q#y@$4YW{NY^pl z+4!arPj4X{Le&6R;CL{#(1P#V&!j@S`hL*sXn4n8cEbQEp0BST{=g!*KDeu&ki+Nb zr#{r$S2*D%A>s`v-=0?-p`hQ@)6o@WBy{jfZ!SaE*YsD5p{|jMxQ@x*zlZkTtSSt8 z2!4Hp@g3A24(1O0`Q-%y0L}07_UrkYEPxAmUx3~ctQ9KdhbQ_pYezb|&q?Y0oCSH) zgX;r*zS3T;fj$TTJ^zB)$W%<5dfbWp`uceZ1igR#d3Q_sDxdypCPi1oOci`T2T(r+ zedA~c2A>#*0v-AJ37Ul99&6yHzlsDPzgpXV>GOt_oPBxv6Xb>hHgTamd{h~~^}<3G zj}>_#^1yCD*G@$Etnt6pCURU0w%!iG`~zGJU`DPu$3?#rZhbuyq>L}V?9d0e#~l(f zT=ye>xapXb(vM$0)qR7B1QD|58o>;`5>^K5>-(253$1Jbe|sl31z|+`et3fn=AOok ztdA79_ui$6q6|_E?Apx{N~yv0lz$?jf?ivGMh`rLbhLftLKp9Bg?$OAbv{( zw~SZdD>r)A#MN`%+oEujUje%yx=R4jm*~&qe+A;@e;avociyz9VKcNv@A>DTdnv*f z=69%Tl21rN628w6q|ouRosX+~q)LxZtBTOwE}-YD4FK0t)DX%lcVg*BF(!?<4bN1H?xtE`v|$hKf)iJWz+v!X)wwupWdp~5ZNksdAU+v zI!5o83!V7X*MEb|sXs{dtKj+;Q553p?Dbo|%8wfLq`VqNUeO;vx{86-O1Lx&d~n9= zgZL`P5n#nj(!LaII&yscQKY%0k)^>yU{J@7f4iM0M>b#}fQp7TAR2xgH+52~QktBT zegVNks<2PdRW$qOT+j3&78b@1-kat~B&5P@1`lt$-QscBxwVR*_7x(S5Gipl9heA>Y|6&9DsW!8JCw=I+uRG93!O0oa##zj=)9p z$iiFbvlT3QE@6~j_EtSBzME(uAk6G?bh5#BW;{Jksv*sYG?RLUzc-i9;$BDH`Hg_$|+aQ^F}vbCu{Dm@G>+*|Nxs@a?U( zZ_0iq?;4x+!e$MDG3y+OFeynrH!W^ez#FN^-DG#T9Gx&3>r$U=KS)Rhe1#YK8VCtD zx_c>}=>7hiLn|dLjhv3m{}uN$b${Kye*vZhY{-eWLHra-dkRMwHgMLg$gZgzvYhV6 zKTx@@n?8TE*L=1To=>>F@w~4~7=}QH_~iAy*F}*NI5?Wp6`jocL;}A2$`j{a= zIkj@stRJH47b^7w;Gc|3#JiQ^hw9TNEaY7+A)jw+nv}nRvnBUUCD11I$pC_X*FW*g zrhc;y3(YFFlIh`#L7tc#FnAr+hyZ-kG%;6J8ckMQkS8xfd)a~iCw>z@iY=Z`+A+DS8VE?+UNwW$1`^Di;m*v-hZaXT;!16m* zsw4j`rPb0*zxBW9H^(y*+S09-7U54uB)bHig`DO z=^lNp)kz!cp%^~_TU=-_F8V8@xeQm!2KBNzNoBb@tSj}eGeQSznZoXyQs|;1HIsJc z_GKJ>*$CfMFd`w90t*cwc`}IQDRNrQf~ND&Ke4_UjYv>BJwN$Hjdo(^-|*kjhnP1- z25Uqs8TRAXyR-(`!b~ak;VH;1?hzjM`58>yf);HYoV{K$sYg0*Pgn}*((>pix&GF@ zEL9qqZwZ}v8+`Bi*%_LnRM0V|*U)ezl)WOozr zq97fcScqYqNoigfPOQjC;Q1m>?Pe0kdrju2q;nAsDB`d<3XaeYi-faVc1H-G1pb`A zmvzslY>Ri&&0uUhHeu z+*zDr>Mxz!|Hr9i*WtI?u4RcuK}ABqK>Rex`AnAI461<=;shN9WTK}Ds{XD^pSv^P zxmhcbT8K&E-Jmd(TNAIXaTS`0TQ=e{f`#$en-#SgZB#zc#wDmFrl98>N1&0oN#OuN za!mS1s#!&Z9z%-#bq_&cNtrCFLD0hz9!o=iPQv95QwOn_2!i7;@6YpF8tu}4EPuXP0M!3HTlg>7ZwVC>-?ZE1x;JjKq{FM=~2X z)8^RXXzo2r_K56vk1#qT_kSH`I~`}hg6=SfUgv-s^U*pWaLNty z5AKu6=k1TVL(wP%G)bf9Z_X)_cB*rB&UeSBsqg_0@q66$ThlK@_Il~^+{P9NM2Ww{ zLEMQG3@sP?Vo7jI_^YQjST1K{x7Y1bh+S`IUIQ)r)G;E!=#!57mi-6l0*1Lz?&pSm z1Hhy|m$)ghv46tb(^zvL*YrG-eJcC!3I!`$GY_-hlz^66W>inBuh-OhNU*DyxrJrb zLS+JGJS#nNq?7{il@F+L4h_y}c0X&k)4vCru}$947P||gN6W1%9I%Kr=sa1C*BZeM zXv}3>w)JCzKV>o2Nuu?dW0P~d&blTI=FUu)ySR<2{&kWUCwK=VL-okBBO58py^AeK-z5ToyxSM-__KRXk}|*NNoew zRFE{KgM&FDMfG_R(y*=b!#wx6q~}HG)qh z8g47qbM7j(f*r(J#OC+dnl1xKw6R4O;l#K438Bx8SQ)OGKGtB9e8;L~y9{vIn!+*VX{6(=tMG4)oj3DbNa{&`_ETaBbg%bEdX)$~EQ==&Bdjpg%lodWM&vmr`(yFk$ zqc6m*5$OPi{P4|Ah*BL47op@6_i^Iv?U@Qr2)2bcFV-E?NtjM*<1Q( zrT>jGjmDyVRDx#`9Tl@KQwZRM1-zdlap*%83n^ZfKAz1vy?)NRcV8@J3cU6|K394l z${ZY4DO|wEl+$mCAIp(@+d4v`^>?d6;a-TT!n>RfE*>hR3*ez+h?z*RiSHEO2U5N7 zhh>p&9#HR>8$)a;{CQ|TO$toJyIUEK@U{2$ zUx3v9QX#nAVGBJaFy^qql8yC5-B+0RoSO%AcWu1_o%~oYQ`n{sAl!TjX?4wY9Dt&k z6CmWIENJb}ld|PC467Stm__nxH?&743&?4ojuG2VVnyd_?CQRYm~3~yYoZfXmj7WB zJWd7seY@-A>bL>Siyi1(dxcZy`zXPY1flkz@q=vhF|UZy*!Zb|e=KOS0g<#M83VA_S7=Ja+MYAZZcNw01-}cCM?qzPdo`A?GzS{r;~cXf;;juePI> z;h2sWL_{gkCxPR;#+cG50!Wp-0biV>$erVG&Y-dWYFphuGfRM$Zj#d#9t5IT=&Y`F z>H@|EgQ;{5xUqu}noWhl?8MJ3uliFhBp9~rxhSlBh@CY34FCS5aOjevc(cp(<^XDk zD@PrI6WpY^?VrueDLkLbNO`xYm_`ZdS2G3d;Y0+Pflbp4JIxI8KQhH(8R=JC5K`EO z+j5Lb7ceLU+Xw)s9|T!6&uV66OjQwhAu_QiM)Pt0;d7gXUe{EADIJ(t7}ousc`wJt zK$f>$$K|MM+24}=iDay8efC?ii)(8B0hJv06GiLAKB&L0I&`k^GY@L>JMi#ot@X{-3b(^r6%-b+{NG)_deTc*5@oiXnxT>B(NWtRYv!Ayi2@?}6e z4Illo$l#hoa-Pu$M(E*(3mGAYIt99QYi6rnS`O{*mKmF1qi#1%?A_oErkzb}#Qwax z@RS#Xm}SbJ)^w|m63Jl7)^fII;T?K&mnN!Hs?T!1PTo3aV5~XNlrNBCeigZSd6Mo%_p!jFQ#U6%XjvpSfsM?Ne`$9=^Mt-Bq=XH~Fe9pj2jaVzHxSRO?|+p_+Xg(~qo^<#_oXVle4hgvu5k{9bO^62Xok1%sJ z<+ZV19tw*t=_;$tedDi&r z0M&KCdHpy!gf~Z(o#9wt?m#Dev$&6fsIAGAeIIcwAn}r>UfY?oO4sqAHRgP zfkVV=Bt~}d=PZ%m4lAVANUjoT4STVBQP0nuc@MRAb#okr*Rvv;g4G=yfLy~a9{HYtdbYi#QWJF_4;kw?~ zeKw@!rotkhfmsN_B|GpczcX{TLX)O}Rh(~hmt!!Y8;K)A`qPYMz-++wn~HaP<~wdU z-Lu`z(QZcfqCZcWtA@~m6`(;rF64=}BFOd|Lgz@|73s6uDsMKG3-7)X4T)cx7>Y*U z4lU$$Rvc7fE}!Uct!ZujOBG&1>A@2B3^kMFN5H?)OfL()c??N z*jWy{GPBT|`lq%9H!v)0(H%aaGKGxL_oQ@^mXibK+Rjc{Y8uz4B~ob4Z8kJ^SgT62 z=}j_xu;}|BVVCvR7X`qEl@!X#>`*(Uj~yL(ZC`M>ZrMwR7sRK3s0VaC5ADiEZS65V zGnQ|tLSPC$JRoP!S*J{*Y)597>LgsK@*Z|gg0ZekrgP-TNhLM<3%yG!!SQAM7{LIV zHf;@4(t<%S#jCucnsPdt8@O%NA(+*P z1nDw)gV?SK-`n2etx~hQ1@=zObT8#uFPgNRDrn@e8d|JI7i_xpgoh&%@vao>JH)Ig z+5WixiRmcU3oXg|9o(Vj4=HHxW=nL~%=DM=WZ` zH4w%&{R7`%%A76kO^)s?Lr#85FxMIKChm_R1Dy9MEbY9NMjacbZI*RK&%N$AaE@0i zY`25&f3xqe+II=1tk5;f@qM+mq6SjMSy{FoNk9J8_6(h6M-|Qz!4{Et%$t0Kd6ytz zLYHPZE*sEYjW`<%n0?RWJ6L_>s1sUVyR$nSWrfdaVmi5t4|hlY(cRT|Si{70P$}6k z2V}BEHxZF4_p;94oXwuPX61B-t6RXol=5+NjW&>O*Wp_BB!%kfSXU`_9ymF3pN`-| zygaLm%T#UFLSjvXr<$s;B&jC_@QLpK)ST+wzm*u)2)HZB7_-hYJvURK+B=A+KHh5!5**K@wUABD%S zCDOm&P|nY+4X#)@a(eas?(0z>ufYVTW`dcIaHeOw=+f7e6L>*tv;K^C-zKw52Haam zM@3$Tqp^6RF4s#>JKCG*HNvGK7Y&tlWvqv+o3~j{`;lj3Z%UwX>v?gaI2~DKq01ku zmC6vDwQIHkT-h$0PnL%34Qj85@nhE8A(D z!Id>Tz(>IwcQ|g3%}TXBg&Uhz^Vx@vsNNz{D`?MPzUOWHh-owSSCjMH9d>^D#~nOY z;&~eQR=kB&H}rO-%9eHPe#N8&D+&|7+^U5l&0=T-4vH4L9NrJbCj@!73LxRpRXx`% zwD#5``CzHEF)qgJmfGo{xk}6?7?<#q=Z+FUKfiK2TX_gky(_M{mA)xZunlCcPpG}oj3w6B#D|OLWo9EqwU^-j!Bfu zbbO^?yfvd^ylk*1nF=&PI$>flJo(k1EyTZz_mnx;3Hdz3HXN>P{ba z50&;IoAw!Vy-#hLmm&qqa;;uYu%#cgdFn zFOd_$3zdv?%+wcpewy{1OeyARCjiZZ9dUy^&l6*mEb!{9JI;~RhiG=SvK7dgZ``H zD3WsTRaAyPBB)Q*AQ9ZZ$i8xu-}M#eVXRAwih4Aql}3k@@Rc!{5uJh|5g@~ZFOb}` zBJ*4Xk>UH`fo^seRM62ZBF_GsSA|V>pb$T9k%ZUx`O&)L#8)s~1-Rf{t|^TOWx z(gQ|NW{49xp!S?$HV>bhS2 zVJO#d6A*HJV)FmIsoj5ovyCbiysI7`-r8#(HIk*M==b-xdqjMy zs43AGn*mQ*@(tF|)W1yJX)ej2rgV#FIJI<=$QA6Os9!qRQR2A|w#8nr4LQ}9O? z-eKi|y*Fq!WL3*9trp3J*c6YAf*3#lI9)|LbW4JhxmVk+;SEqr{EpW{MvP;TG5Z13 zI^>Y-ohJA%K>T-?v9xRgPKdvDg00g0p+JqU%@2trOfQ9rJTxiybm}(hb#x=Qr8FYy zFk8D?GjeeD%v<642uH_)*3DsDli}$QqH5vPIry@BkHH~hS^)E)m5sDU60YcT;GC)j z?yyXm0}hA}vTK3vFNR0{Jy%iVHXx}EDSTI+8{4?I%C088O}IEvy3f|SPW%@?76@&o zD(pT_pWFV{wJ}wnK3>zn2tjYw9_RdD8d2)kiq`NA@bYhjxxRXqgf`N zWGtF^kwsk)nXpkW7IClUaTl@dOW+0vVh#bm)Y`0PB)44h(VlaSXo!KDG%+Maj`D27 zR2*96-9&NzjSLMj+HM!I=A8gHeqK&mk}UOQ_aG!@ZYU?1K0cWU-swn&@4n8#llj#9 z5OlQze^iIogWSFyl=;}3NoIYa^}dhN<&gIJpXI>%WilxGizhpFvUd088=x=aWQvdk z3X2bE90&@_m92EoWLljj&7m8WSPlb`ZqE+&J&x+@D%gcL>r9H#pH@uIXW>lW=x(^} z5qIV`p+1t;E0&!v96jc#$t8jr3|CjH-_!jZan2hJjE-3EbYyo;uKcy&O)Y9Wbqg!38;ZR%a1A zUntmIIu|S@WUqol4VP-*CIU1d@7XU2FUC9YcA?J~C2R@2z-(eU>FXgiEzOn$ibL3U z8FuP+lza<^ttb&kL)6@SfAQH{WWM64^uw1gtF7Uqj{Dn=*ruvs0K%b{O_VJ`Ime_K zRQ`|O>@Q33+~1%>rbX%yr>JyPp63>~`g}~qhVi8?f;;NYBPt~;EGD-!G4egv7x_U4 zLhBY|w3o=VA0Og$Kj(Ym@weq2kN4Q=$GzupEVJZa-EfGTQzz^)1P?Kk4@-hSzyY_Z#a&U#x1 zdkvSu_O-K^xh8rmB1fIr{J3-}&O;qL9@s(eM|l(2GJcyJn^Zozn7y_QOOyMxWtqub z(j1E3;Nq{MsSjxucY`@bhHd3!cur8v=$-U|anz(`%KeI22D&SfCe0~i@he0+mviD1 zdRW|I|1dz-=GN+z<~)`7CrhnQZFD(mdT}35gL}!=MZq)lc@6uQ20DhMJV?D_()OwS z31w^_tZI{5OlM4YY+v+@sx?)zbjupA*C!l+lp>})jPHqkm^ zEtY;P%HT|v2b@3PGN6Q*qvyG*ri~QSTOEN8vP4}2x#jVr+wvd{bz@=MU7f8z-0=gKKA5}|YTNR3F%KNbZte>B&t)J@%?wXI@o?sQ?%iA!FK z!a$~FxF3^~;Jeh29?ATpV10aXeSd?62NE#*oF#hofW)<5F<*&ivpCp#+KB|CF$5%r z+p;}KI_VJ;$}D3T6Nj(kvt)_FVN9K|l;0L=((H)QIjr95 zaX=h&@lHH05#Ka#$LPeLFZe>5be43Tv}(jP6C#Y~^9zsBeAM;moH1MGtwwWmX*nVb z#S=T60R{=v=ed^2CBqhrU`-zr;oH}Vyp3Wce5c)7Bc>RrsP|zfT5V7A3EHr9$`9Dc zWct~eq&)ITykb@50f;u1%sxh%6^I3UU}1wt5xCPua4W#nrMP>m>DX$*_b|i>Gg#C~ zh0+JN$uN$Mb5oWpS=v~V5Dkj>O=BQq)hNsbbXHB!&Cm?*>Nyh-jl=xpVUNw#Nyq83 zwq6N2;mSvxTk4{49nQJQ6)!pCe#>5Ty`M4n*PP%CtNRo!F@Y82)-NrL`!kuIR zux8bNl|lMFx^;?U!%I>TL&Mp2jj3^uupz{U4_`h3kLPlBP)E34k_88$VZNOWfLlNh z+;to(q54$TQ#nQ2B)fV2`jct;NWv|DKd%j$(^Ef3IhpHz>NHVw6~V zWw*?pI8yD&5ptF{;9pS7*3mF&V}jI|<__x0u3!47kL_nN78d=t_-#=9-TjaLVA7r7fQmGtiWcq zp+{G*{5T0^_TiwEy1WXc0`vVR+0C*)tl33+rCH=yBH8a)p4eR6H|t|@St%qx11ll<|2ZqvopIVhtt)8?i>&d*;b`-Z-OVw79EYEx(w zF`ivMBKZHzJhH<%Z(Db+|eNC1WWX5pL zm(p)Tk6j=})$x&(B4IT2GK_dNiN2vK`ndSk|9XMWH%vX~iO0b7DBKPzBv~RcN)W^@ zGNu`?uoK{r!Cn|0*R=2B2aE3i~*F3RwflPj>8_FtNWp zp6XE_KF)Y)zC4Qqet@D7PS;O_(T(xBvuSc|Sf->u_=GA6XIa9nOo3jkBK3ptd=D+y zsx6NE1yks2t=qL7V^@DKfLTnIK$;gwr1lb@SoOMu)Py%SlX9OxA$8{{;gDdX`;sck zCbt~Rd{k1D#RwL`8HQXN-QOB-ZiBQhwGgEsfCo0a>FM7>B0&GijR&gy$)f{?WiS^S zNAIK?%1^-jiSo{*Vt8m#Oz7%0f5X#cCSFZ%6Rp+-a~Inr58~e0#1(bS-j({O_ztcE z!k}aU)0R~|xm6t^FaZI}#KUx6V@m7KSf>sd0N?-03X|j}rD?|@+|KoSz+x9E`uIAF zsG^c_=lPRJ1fYC)tx_(e!RM66y45C9LtVhp%*yI>yC4e?P-@WvXN@0iKp>9vo4LFE z3K|eZ+9y`KK{}8b9(a+4esY$1D32fE;pPS(g~kYVM#ea}d}4r^vJtW>nGFi+jVUl@ z3$<3gY277vIq!?txPNA4k=5MaH2L; zV0f)oHb1Vc z_?M>63Lq`D?st4pX)&k>IbB8qek7^j&wV-SRw+Iyi&?=izrX`Ct4-)J7lxoPZpR zm6{HnXR?(aDc`EVSKJmkI=CF=YS3N2S+3Jp_ayZ)Tg(u2!1~t}#{9w+V2U^my__ zwE)nm*1!D&tu=-F8)$M2Td9<^Yr#$z7jjYLyBYnC6PRrV7hn_QF&h>FW^lMm5U4YG zFy8W$|aZoh|38c+PJQ=fVkGcio;amo($JUO53C7mk!eC7vLV1&yInKJr zvQ3ao5F>e$IfWne4$PMQQb^PcoVAZujsW~pbm|Q_q(0Ta> z;6&9Oc(5DJBva0+afdupl6-$9Uir9mP)I2%_HwGwEMWol6xBX=o3=5R6Ux7pGbgtQNyl zG4ZHD=Zoukp*9BI;As1k;(OnG5&Z-Z2co9H#s+}{F7rJFqTIr6&$n(#srRc}wj}{r zOHSK?T3J!sZ~MdP+>Dc>sM3Za0$rU6Rqpxi`)kP+hQg%I3#HcEe)HC+{J??*!cx=u z+Y=ZZ*ocf18P6JOpTAy`I~(enI1I4L)JHIN^=0j#>$^MCxj9_4C4>iJw>chwhLlR~w&9EamB~_VRkzxayIDbzRJwWi9>GIa+B}z*R7hj^x8e5NS5E<;lqzpW}dw@5Pjsh;5~(4gFQC{P`!uF$3VFm<)IkUck{9Ji!CV=f znYX94*IqD8Q0ACAtJZWWQ8IK^)}(B}rLwmExAgUHsqMk5xS}CYEk+pKz#bXT4q7)8 zKCg`aZ)sfIyw@?wPy)B89-GQ?|KE~No_PGdv33+%12e&gexCSu<%DoOsJ_?R(S)WE z?>`?bmZ&5%#*ylHxqM+UkTQY@{5b2N00r9eg0ln-KJtlrmtL?_HldWSP z1^jwlmHt6}N;^hQOV<*LB{|P#jUJy-JFd6=HxK(6da}rb3f1#tryA~0Me*RR92z!< z%x`-^(3=3Gx*qJ(_oN}RAvFVg$b&VMT?ZeajRk8N!@Ef47aDLf!?*wrjg@V_B|3xV zk2v9_HOPW8p%g{P8w*h~NKtzHR>M`c(cwNZ>1sMV|9o%n&fHnV_x@6>T~R{Mw~RvZ z{=AR_LZ6~s9NS$}fve_6sVM?_Z`}y_kLeH_mlMJ4lhmOltU=$7!(juGh-T+rp{|0- zxM=>T1~}|AdoExW!;>JrB0Amk{WYde)QBe%N&I!hgp_V(dIpO>a-nA*lI5!@pFDxs z^o-I5^96|&8XlKJLl91u?!V@KfPeGu7Fmm}L^$(h^M=0>9M3IH}sZa3@3ofr@+z zc0j9g@=i43J$WPOwrL}spm492+r zukj@KG%>)mV~w5OrJ9hQ|N0}tn4i(eF~!5}_qy;l28#F;Q8MBdp@T*s(m&W=MQf(F zJ0PY^%qVi`zJtWV*v2i-GebO$fi(O0Y8)KJR|0M_dbmd5nctv{1RgeTK6NFia7YG5 zJwe5!QciMqI4le$yK+rQM3HcriqTvjT~4h%JoC$H`Jsun^p(|9;9trYqvjqW)5EH(_gr{nn1yXiXh3+^^ z35>9B>feUx0No-^5i7U!p$Kp?&43R>we#2m2fv~DCYT83z&b49$cQlGKb1Fry&DP- z$tD0(VSBFDE3CdEHH7qCSR~E9qDzXDoXR@A_ST2u@+D@G%a~l3bp8@!5*;>Y>`32= z*2BSB(vG1Aq4KExO;S{7ht$XirALFC7`Fdqqg28jH2|?~MDHC6^C1k{sOJWx9N(^; zvUxbb_ekZ(%A>9ZR5wdC-#P1+CW0_!{{jlcYi($heI*Zi?3z70cJOnBEm>}C?%}KE z27gtaU86%I3|k6Cbzv754qdo-OBY+f+`ka*Jay+5Oz5s=-7OOEVZ-A;u(6}8DsHd@ zKMuE?-qfohQ{^U?DHT|jq^3nPE94wf`_Udbxh#tHg_S3zqClKE81U|qRRh#@K;{(=EOSS_EslI_KvHYLS>;Ld9$#&k zw*)(#?WM8l4={3JizZRYOzntf=xy%zL6Re#g=PGh8T%qloxEjN`+56%XsAl|Zyvqk zOH6p1tW_YXk)fKxJe-K~xMz{GaNmbL+}X$1*NSDCmDLb;HDMTjnsdpQ0H!Yli8h*q z-zs4=5_3&B{VCQM=jSb`xpcMcM5lbm-6fFg{b}SutcZu`C=ob4#n&k#P3*u-$wNX! zNCTAHv5-m3!wt)XNdy-q{q#uUQUduu|A2V#3c)I;7TKosZZG2dJ{1hDAGoBalNy$* z#A3t+bxWD;6qiIS<^Y)>z@I|=S_czMi-$q--QV*XT(LxD0n?d(5ChA^CPoR;z`vWR z%R?4ReWxqc`!?$WQdI$!nmIzW`84Wh*+<7sb5j8Uh4M|5ZV{y3tWKRd=j}seYj{^ZFqzbL+zHoUB;;A}-6dY?*zJzKP7FF!)hM z=9E85{PL4;xo<$RXBzdoarA$DOh5EK5{LEz=Zxp2=Rz`Qemj#qc$&$zTX7~8CP zVs0(j*A@DhQo1q~))=q|qfoa2b&}S&{I~X^-@Ug3=lR`N3)zWn&IAWjC*R(tx>sE7 z-xmaxDI4Rpjq25_rUXMvU4pfWhAu?~f6qcDk0NoMy~jJIYFkRZ-pn-vzUB!brUcGc zE9(sUaHkbRI&g2yA*1IM{lI^?BV^2Q?~J~A$G_XwlgUWQVGH1>48-Yn>&2XNWMqWFqfcI{7KGA)tFE4TwxQ-KFjjZV^M~uJjSi3gG*|| zy8gjYk2oE%*IB>hM#42$dP=D%lN|43-Pg^@;DAg+&ATy*J-bBUO&ziA9zn5D(}t3N z596F3;k*$9&H%vZUn#_%UfevG(20a^Re2EunG^XjhXY?-CR)mkcdGNIHY6>U%C~E% zl-qdZM^Z0fIVb5nkd<_p6bfGgMD`kW{=vyDtzCPjuJC1FiG`y@(` zB5#uOxWBSPTH8dggxShDI?3 z7QmpNlgB!fb(q9F%{Zpy=aCh=T{~i2aLivm?=ks!=_0+nsY!jSF743hz>xSe<>~A! zaJ8NkG?nU`kPca=whIbVDl1jSK767Co$nME|77jRkropCa0Ymrc|co1ynm_k+S1??v`t{2W8Sh-^sI0 z<0u2ZA2&Q->*C?kVUXVX+a8_ILZFAE4*W zIQVST?P}9eN}$?0A9rG2ulxRkp{%`3N0vTPj$&SJp1;KJq>8I#LnZE{iK|$)v>}$W zL~g#2>ciWnRPOdv#91Xn^$^g?XiS=~d#O)V#+)~H=4`hrb!QWESJu8x=v03-Pq2VX z*)P$SJ}jKKozKxw8GT?0WGK`v0rstGcq&!qPrRlZ=1(5oowdCyd@4JX0Hx20k9GP3 zKU8`_yf9`SWD!sK0ek?{mXbd2`&yy4&Yji14Et?pyVCXZh<{rRP}C z`9_b|sb?EU$>i&9|6U%Ms!O41+Q4;$s13~Ig8vLx$Fk(O?y52{v&Pc_%;PnvzAv1V zSRy2zuM9S>n$F)j%xBV(*Ulc_Sg=1Ek~l`{a75a&PIv^Xp;lmG*G-h{-}m?X+X^1A z1^$9Y0_o{qMY==;K)+`a;#&*&Dt`0Tg1Z_iKQ7Kz1Y0d-ay~=$wGmKd`^oEtqt9X+v1fG`#WDpVz@a-{PM(Gf=yU_%}JgUiLiWa}%W()+q z%7RrnF+NM^IXL0sNkr7Vaf54V&2nppi7M=c-EzK9-ofi-%X$;s91C3RADv&^s_xCE zmBSjxIYtqAA*7uE$SZTr4~026o|c$d$%*T4rDsP-|Gs6Ew4)n?aWMSDA06JO;%u=; z1e=vZPp6lyVBi~HVVDv<+7P8EJkQaVO*(DLZs*CjwFO!;$FPL2Hl0wV#x9^KJ`%t} z!-j`JfAjySXiC*)AllljSj}(a`CPsCn$IMd^l!7wL#Fx$G$$9F+aib*)XpM>k>LYX{6aPMyy@3n=O z!*RXVJb$BP59UW#F;~@l4uptU$I>(Z;C>GI9D=XZR4bpFML=!(Tj&Og0nvuf`j7V? ztB1!&nrGlUn?@9*mUw^@hot98nwYJ<7J*A95*H7!=4Z7P)Z2bInR#tT*g$TK%xF#8 zrWbp`UI=#eso~abWJ9y0d$8u};J(0tl4hd#HatIX@Im%myE`mcHc*B>={IqFI9%4w zV@`G>E{r)V#nal9Sze%8%U?43Abo>v&kBYZ2(`RGsEgO(-AaMi#=Z1Lpf9$Ub$C_j z>SYFWfPAjG7~0n->(uq`@(ewlcX-`y2Z3=;u}xIY%Yhp31mK|ADpZVZ^j!X2gi7im!fi@#lj&9 zf=A4@E?8};C~*p;wgn(B2HzJab(pz+adiOuSFw?|)M=e=O`WNcQ6cHB+k5P;I@-j1 zjF*0`rFi5$Lr9!gKWLgBFRlu63w!?3{c|;uHh1#Z={4vMb`7A$o_Wg zYx}mqn345h>uo#VnxsK-e9m>nUpj$t4$kGwJ)>KA{225^)v&3Bhgb<$$siZgls-m= zS)O;@C|KRZUhxTa3;Ig&zk`hb6JzB3A7DXUDflwZSB#PEKRsel8*>N1sW3rVIb)Df zlZrqg_!)jB(S7s7Wc8 z;I)my=imaMpp48(z!`Xdqx996l%)F!j-CYf3@+06#kySv1!H6U>N@iYE}wJ&3gOfk z^Z;)2A069&bf}GA^9aDcME3uPeT`RdU!$OGjQ_ET?+v`Bo(#eU6of7AI~`i%myJaK znaY`z4FfUOm<$O42?ol>6o-t3nzR7{(b8xQ`#+lhnD?b=ZWKU-fcpA`iTS@5(?N!y z`j5!c7>WjQ1q#BN^!4m(jG%}3+A13pTildCTH^#GL_A268zux|lGP_TbfX(H1RU7c zkNE$gSa>8(*8kgG=LZWr3u}_X9yleCp|NVSDvsj4sCvb;B5>BB?1~Bv`m;lt*`8VA z?B@icZ@`Wnp1$=m&9LKglqOCI+C3g7?PU;vFfjv~3 zX6JBXEmPzeee8uw$ap?!!~<$r7o`c#Ykww)F!HJE*j#!<&%N}(&{r&7h%Rt|U;z6= z;pSI0ZMXy8)D@;Sjtg`^HHK^lBfSHECG0K}I20SvQAmUpHQQr#OVvnPkEo_vuAqX0 zA3}HlemPuXkRHu7W@%AXX6JYA6?q`!Y{*ZvKg&2BTz4t1DF z-=Buc0<^v`O5Y!aj0WHF>?u9~G59%q{!kZ#<}6d$#8(Idj5P*omGD=Pj=xJFD`>~GJuD^hOJr$pGt&=oEw|(+iC|59AJ*F!1V|z zj1D)FNgH=Jz4bv-SxXi+Hh6itRLkYfD^H`lHe*JRhMD`*X z!F-ahSWrxl7L(wfw9YgH>;$TXwOm(ThB`70m%eRiQLl(zUE%d6zVTNlxxm_A)BY^K zMu-Zmc(sQ&txM(cWMAfee{G<4iL${s^|NrUPT#DsO^kbaTwP|<#RVx0P(m9WUY6U9VBg@5(Y=F z=$4zR-iEdJ?<@CD@N5jXwD9e6Wu9eHK$)_=0$Fr&CC=AIt_OE@FrKWY6oVkj*ZMba z&z~Z@ce90$3_j1tdq=&v)^qH{F`Ji2vq?YX9SZou9@x>tyu?~3!AFRcBvJG9E6yTkT9SEvIAKE zI4)&%v(B0R_1?DB1pXNz`Y{iYcaQYzZOP=%PA^FN>(euEwnqo%;p{<8v~y@jsc>XI z_t%IjNQn<`rhEHz_cjZACQVgwrVXFimzJ40vlcQ~yf}#DWq*D8gFnhbSm&Ft(63Cc zKW&$kN(XLtz1Qhk1X&#)YP%tznT+(&kr~t|-%^6WxZa<3=5fEh{4k*{J@M%gq|j#{ zG$f2XeE&EFYW>=AvfceB3+ zoS%F?_px_5ITKMZYC>JsLnAZ%IWxd+kf834&))XCIlpBD|EY;}>7a-?$&>zd7o75P zhs*J1Hpf=wxsG5} z^%2CAF$`4}=v}@wU(m+WRpb#e$#nkwxOzTxWh2;T3S%vib6vJ08oUiQe>t=JTqnw` z`E5@W_RM45Ks&$lEamio7C5^nIXLmcA|u*wJsai@6f%Ep@XgxgBiZSBkib~8L~r*^SY_zZ8&XDOZ!YL|1p+@+z{ zX(0n_2#y3fsJ0C|Z1~cO{V)}7kFW+>On`8cB<*AqLV2t#9}0MKzRV!=8OzG6hsTGdes1XJd7F9^39xPc zSl}7(*lw>e>49|#F1O;AdY-w*{mlz4aM?@(j1Ho%P9bVde5}F^#zV4NH3RQeCo=0q zpe&*%uVK)FBhQ%@re+oTOcdPaaKr?Q1in^bb=YDtQ}+9kHF$$zzeS7i%8k^d$YZxS zrt3F+@7Ez+?vTIjFd#tb`gy?OT=%Sa!WA*5w*95Uj z^iG6C4-%sHUZN#RmdGRJw|?(?zUTY>>wE4wGjs3#oatxonVCChj{9kjRP1z^|pGKAAuM8%OhOU37RFmS+hcGJ_d#9XtRGe|#<@2nl` zsnH+W)_x@$M~GZQaOmpJG;Rl)!EPCz;I}p|Kl@oq{;n@BYun_7<%-oJT4rOCBG?b% z$4m7FR;+n&`*U1~qBUcW|LqX27p^)y@d);Mdt3)4fkMuC3Mu;YUlF z3q0Bk`}0`hF%>+np2Qu)=8gPiE5lVz+9q$gBTv0*RcEMql`oez(;ox!7E%reuU%HS zE4XO9o=F)KYdMJh+|NrVe-tS2ef`Mubj0f>%kJwTg6Yzcx24UPTc8ogYF6Xl{D`dS zjBzdOYV&V@KltTq^+QAFTI5(@2)=P{T%lCTV3Ue6)iE3sy7uL{Q{~W_}wa|f_QTm_wj;W@dF$Uq{3N%gQ&4^@>jGP5D-VVeRL^PE}s4iJDR?$ zXwnZ|C&=YVyCkdu1<*j^N-*Uj0@9pa<-nYxp;V`&o8S^sW()U+gqags^zTr{r%7b< zFP@b;gzek00{P}j>M4MW{5P|2yUKqI$KSJ5)ttxbHfC{r>8oATm z=`wbBW*yDen3F>F!YI?@7S?I@zW4U03pSYRsr@}H!gMXY?dcNvwk|D1=Lhyy=S)OS zqbX>YjgWREz8_6m%SB8Iqf&b?+jW92CUi1H?wu&Rcidu(0r2N{pT8myA9I_iMW zMl(KZpMEz(2xG7$yIp$ z|AUFNdwO!&4{WwdU(F(+m?`}`$xT#Zl6+Tc6>aUIYqum5sr45UQ-^1y!zQMkgW=ZI zJMr2pMR%y*_-RkI7P>ApN}IF$&stXsD@^eeoI3kpLV+cYVY)$zW35xz20;@V8Dc8# z=WghOMY_G`8bo@8n#Z|29OsOPo$EYj_VuM1$b)=16s02@iE1!rnUnC8Iwyc`5fQMRC{7P z&}gBr<%B!nL^N8kp`0KAjvY?cuQ-Cy+}})iif4;-9K>Ao#)`Byz6X3XI9*;v>a_GP zHcc7p)hy~;D<;|w*iQP5*2zU*{M2F84pwDpmptp&tYu8vdfbqkc_F&u(k<5h;Shs( zfaq+&lT~I3O>@2M zuQ?JAt2};gg5zg?4cJsv*8&p~^%o;6j+`b9>MEorg4o!>z(r8uAwsUUd>CtMY4(%! z{_n!9k9NBKr%a)8!kN+=<%ZtDQ3f99??^0Ouu?T}Zjh_c_1@^8zj8~T6we0Sdi3P9 zSz&Z~dG@}^np?}Ie!>Fue2&Wb*QeOj@9E-s6Y1J}GvWGtgKhO3Q|8u)64AZtn zXpXh?n%82MZfS;$IC@yetWNzzCsm0#E!v+U-HlUpyPyi+Wq5GhLrBcP5#q_wWx;5? zu4qXwQl8kQkZ`Ca)Q=WMlRN_9RQ8CmInbN23DAOk}K6iMgiixUI6cwl`Tz3s3dKRYjPCwDiHoRq8-TnwP3bajYu z<(>pbK(k(}Q-knugp4IX+Q2E$4n#@Vx5P>?JLN)qb3yZeCPa`GSuNFN}rx2fgNftcd(y_s zIsb@7Q$+WPB2R=kW1Va^a*r7uV`8;moOFM`tyCT>O|wJX-cFO<8SV5w`s?k^(shAI z5kp$Ty1E}vRD9a{0w`0$0H-PDx(_LRJt8eQ9#A?`;Ul(Ym~|+0FfkS)d#f2iIjUad~|KW`&m6ah5$bAJ*eAk&yzGi3K{E zj&$6|CzU-6EXvrLc{;gy2E9NBhm=K)Ndz>hx#W~Z*@q6PSPLl%rL!*4%7u*-^0<HLgLL{*uS%%RK9W1%O(x_Q79fB5v%P8S5pC>6?FW0SiNZtG)rr*b@8 zNWHZtZnpo2hGY}pY+9{nZAWx(1r#!Rrvhxq&i8h-L#SXz(&wAArlgP(eEpkH>*h)1 z%QWDJgHn4s^VMlySM}WfKN|!K3hGpP0-ai-Ru*$bC~e0h^KM9{-HY)z$cuU-4QI>~ z#{bAVwl*7m1k;_um|?NI<|D;07CG%X32bBJD;D1zh^9C=`7L4SyZCx#WG%}Z^k?e{ zm)#RiF)X2p|I`FmWN^OmkHSP8`!ceGB@=zETOjn)UT74L^8QM1A>$45cU_(y;q-YQ zTOU)K$YaBNhI^Kq+s|QLO4lz5_(lv9klabhb$xRd#x*H)FHM6iL@SFdTDy1+kRcIV zYl=IKb?aq!%BO2;axA2P>md%x_bBYRc_e@QWuSIp=1P(7MgW1W;?uQV$s1KYwcI9n zWyz&tnLkkbbZX|sJKyn^__0_$^jUj`n@*L-go-^v*dpUe3v>y%Fj8fWKd-RH=4xie z-6HE0tD)e*0E{56Q5078#p6SxS)?N#fFdlYkv*nMo{^ihvsQ^YlFrlAz|@p+o=`KPT!nV| z6_1W}pMZCuB-I-cNVl){p@uiyktAWt*&Rh^hB0oF{`$B|dxFvx4%d4Uy-EL0XN3V0 zQ5mtD6~$$tEdF6FyBiwe-g;5fdS)uRdqs0SDdP(Gk#;^u0F5Vb<9q-3>^Q-aqO%3Z6wz2*j%H_X4$Z?Hd$uTvOo-u)2PP#?L2>R%P8-=_PAkXurg{K zUa9D046{FbRU9`^z4E(^0o}cyOapj+siW3-@jm|j@pN}M&k<{fXXDz40=0Xmwa0rp zx8M36{`TELPXJ17R>$kT;mN;5amT1`HMcxm%Ua_lb-}9m_x+4;cR5D^U@BCzG_{cd z?GwL5FS>!h$LtV?H0a9#kD7pN!xE?)M)hOzg=H@6Pe*Pe3*9wVt2VBl1(C xqK = exp(\hat{R})|0>, +\end{equation} +where +\begin{equation} +\begin{aligned} + \exp(\hat{R}) &= 1+\hat{R}+\frac{1}{2!}\hat{R}^2+ \cdots=\hat{U}, \\ + \forall \hat{R} &= \sum_{r\mathchar"313E k}R_{rk}(\hat{E}_{rk}-\hat{E}_{kr}), \bf{R}=-\bf{R}^{\dagger},\\ +\end{aligned} +\end{equation} +In which $\hat{E}_{rk}$ is the singlet excitation operator. In this package we let the $R_{rk}$ be real. As long as $\bf{R}$ is antisymmetric, the transforming matrix $\bf{U}$ is unitary. + +\section{MCSCF} +The energy expectation value of the wavefunction is be given by +\begin{equation} +\begin{aligned} +E(R) &= <\Psi|\hat{H}|\Psi> \\ +&= <0|\exp(-\hat{R})\hat{H}exp(\hat{R})|0> \\ +&= <0|\hat{H}|0> + <0|[\hat{H},\hat{R}]|0> + \frac{1}{2!}< 0|[[\hat{H},\hat{R}], \hat{R}]|0> + \cdots\\ +&= E_0+\bf{g}^T\bf{x} +\frac{1}{2} \bf{x}^T\bf{hx}+ \cdots.\\ +\end{aligned} +\end{equation} +Here, the orbital transformation parameters $\bf{R}$ is expressed as vector $\bf{x}$, the linear coefficients as gradient vector $\bf{g}$, the quadratic coefficients as matrix $\bf{h}$. When terms after the quadratic terms truncated, to minimize the energy expectation value, the Lagrangian equation as known as the Newton-Raphson equation is +\begin{equation} +\frac{\partial}{\partial \bf{x}}(\bf{g}^T\bf{x}+\frac{1}{2}\bf{x}^T\bf{hx})= \bf{g}+\bf{hx} =0. +\end{equation} +In the end, expectation energy $E$ is calculated with transformed orbital coefficients and active orbital one- and two-particle density matrices +\begin{equation} +E=\sum_{tu}F_{tu}^cD_{tu}+\frac{1}{2}\sum_{tuvw}v^{uw}_{tv}D_{tu,vw}+E_C+E_{nuc}, +\end{equation} +with +\begin{equation} +\begin{aligned} + E_C=&\sum_j[h^j_j+F^c_{jj}],\\ + F^c_{rs} =& h^s_r+\sum_j[(2v^{sj}_{rj}-v^{js}_{rj})], +\end{aligned} +\end{equation} +and 1-particle density matrix $\bf{D}_{tu}$ and symmetrized 2-particle density matrix $\bf{D}_{tu,vw}$ are defined as +\begin{equation} +\begin{aligned} + D_{tu} =& \sum_{IJ} c_Ic_J<\Phi_I|\hat{E}_{tu}|\Phi_J>,\\ + D_{tu,vw} =& \sum_{IJ} c_Ic_J<\Phi_I|\frac{1}{2}[\hat{E}_{tu,vw}+\hat{E}_{ut,vw}]|\Phi_J>. +\end{aligned} +\end{equation} +Here, the 4-index integral $v^{uw}_{tv}$ is calculated as the density fitted integrals, as mentioned in previous chapter, +\begin{equation} +\begin{aligned} + v^{uw}_{tv} =& v^{uL}_t v^{wL}_v,\\ + v^{uL}_t =& v^{\nu L}_{\mu} C^t_{\mu} C^u_{\nu}.\\ +\end{aligned} +\end{equation} +Likewise, other four-index integrals in this chapter are calculated in the same way. + + +\section{Augmented Hessian} +In order to make the coefficients transforming step smaller and more robust, a level-shift $\epsilon$ is introduced to control the step $\bf{x}$ \cite{augmentedHessian1981} +\begin{equation} +\bf{g}+(\bf{h}+\epsilon \bf{I})\bf{x}=0, +\end{equation} +in which +\begin{equation} +\epsilon =-\lambda^2\bf{x}^T\bf{g}, +\end{equation} +\begin{equation} +\begin{pmatrix} + 0 & \lambda \bf{g}^T \\ + \lambda \bf{g} & \bf{h} +\end{pmatrix} +\begin{pmatrix} + \frac{1}{\lambda} \\ + \bf{x} +\end{pmatrix} += \nu +\begin{pmatrix} + \frac{1}{\lambda} \\ + \bf{x} +\end{pmatrix}. +\end{equation} +Here, $\bf{g}$ is calculated from +\begin{equation} + g_{rk} = (\frac{\partial E}{\partial R_{rk}})_{\bf{R = \bf{0}}} = 2(A_{rk}-A_{kr}) = 0, +\end{equation} +where $\bf{A}_{rk}$ is defined as +\begin{equation} +\begin{aligned} + A_{ri}=&2F_{ri},\\ + A_{ru}=&\sum_v F^c_{rv}D_{vu} + \sum_{tvw}v^{tw}_{rv}D_{tu,vw},\\ + A_{ra}=&0,\\ +\end{aligned} +\end{equation} +with +\begin{equation} + F_{rs} = F^c_{rs} + \sum_{tu}D_{tu}[v^{su}_{rt}-\frac{1}{2}v^{ts}_{ru}]. +\end{equation} +Since matrix $\bf{g}$ is asymmetric, $g_{rk}=-g_{kr}$, and we don't need the internal rotation parts of doubly occupied orbitals and virtual orbitals, we exclude the redundant parts of $\bf{g}$ and $\bf{h}$. Thus $\bf{g}$ is a combination of only $[\bf{g}_{tj},\bf{g}_{aj},\bf{g}_{tu}, \bf{g}_{au} ]$. + +We search for the value of $\lambda$ with a combination method of linear search and logarithmic bisection search: +\begin{equation} +\begin{aligned} + \lambda =&\frac{(\left\lVert\bf{x_{small\lambda}}\right\rVert - trust) + (trust -\left\lVert\bf{x_{large\lambda}}\right\rVert)}{\left\lVert\bf{x_{small\lambda}}\right\rVert-\left\lVert\bf{x_{large\lambda}}\right\rVert},\\ + \lambda=&\exp{(\ln{small\lambda}+(\ln{big\lambda}-\ln{small\lambda}) * bisecdamp)}. +\end{aligned} +\end{equation} +If there are both tested smallest and biggest limits in one iteration search for $\lambda$, we adopt the linear search with the norm of both limit $\bf{x}$, otherwise, we use either the upper and lower boundaries value(by default set to be 1000 and 1) and the tested $\lambda$ to do the logarithmic bisection search. + + +\section{Hessian Approximation} + +\subsection{First Order Approximation} +We adopt the Super-CI optimization approximation\cite{SCI1989}, in which +\begin{equation} +\hat{H}^{eff}=\sum_{pq}F_{pq}\hat{E}_{pq}, +\end{equation} +\begin{equation} +E^{(0)}=<0|\hat{H}^{eff}|0>, +\end{equation} +\begin{equation} +H^{SCI}_{rk,sl}=2. +\end{equation} +More specifically, +\begin{equation} +\begin{aligned} + H^{SCI}_{ai,bj} =& 4(\delta_{ij}F_{ab}-\delta_{ab}F_{ij}),\\ + H^{SCI}_{ai,bu} =& -2\delta_{ab}F_{iv}D_{vu},\\ + H^{SCI}_{ai,uj} =& \delta_{ij}(4F_{au}-2F_{av}D_{vu}),\\ + H^{SCI}_{ti,bu} =& 0,\\ + H^{SCI}_{ti,uj} =& (2D_{tu}-4\delta_{tu}) F_{ij}\\ + &+2\delta_{ij}[2F_{tu}-(D_{tu,vw}-D_{tu}D_{vw})F_{vw}\\ + &-D_{tv}F_{vu}-F_{tv}D_{vu}],\\ + H^{SCI}_{at,bu} =&2\delta_{ab}(D_{tu,vw}-D_{tu}D_{vw})F_{vw} + 2D_{tu}F_{ab}. +\end{aligned} +\end{equation} + +\subsection{Second Order Approximation} +In general, the second-order Hessian matrix elements are calculated as +\begin{equation} + H^{SO}_{rk,sl} = (1-\tau_{rk})(1-\tau_{sl})[2G^{kl}_{rs}-\delta_{kl}(A_{rs}+A_{sr})], +\end{equation} +in which $\tau_{rk}, \tau_{sl}$ is the permutation operator, matrices $\bf{G}$ are +\begin{equation} +\begin{aligned} +G^{ij}_{rs} =& 2[F_{rs}\delta_{ij}+L^{ij}_{rs}],\\ +G^{tj}_{rs} =& D_{tv}L^{vj}_{rs} = G^{jt}_{sr},\\ +G^{tu}_{rs} =& F^c_{rs}D_{tu} + [v^{sw}_{rv}D_{tu,vw}+2v^{vw}_{rs}D_{tv,uw}],\\ +\end{aligned} +\end{equation} +where +\begin{equation} + L^{ij}_{rs} = 4v^{ij}_{rs} - v^{ij}_{sr} - v^{sj}_{ri}. +\end{equation} + +\subsection{Combined Second-Order and Super-CI Hessian Approximation} +By default, the SO-SCI Hessian matrix \cite{kreplinMCSCF2020} is approximated as below: +\begin{equation} +\begin{aligned} +H^{SO-SCI}_{ai,bj} =& H^{SCI}_{ai,bj},\\ +H^{SO-SCI}_{ai,bu} =& H^{SCI}_{ai,bu},\\ +H^{SO-SCI}_{ai,uj} =& H^{SCI}_{ai,uj},\\ +H^{SO-SCI}_{ti,bu} =& H^{SO}_{ti,bu},\\ +H^{SO-SCI}_{ti,uj} =& H^{SO}_{ti,uj},\\ +H^{SO-SCI}_{at,bu} =& H^{SO}_{at,bu}.\\ +\end{aligned} +\end{equation} +If the $\bf{SO\_SCI\_origin}$ option is set to be $false$, +\begin{equation} + H^{SO-SCI}_{at,bu} = H^{SCI}_{at,bu}, +\end{equation} +and the rest blocks of Hessian matrix remain the same. \chapter{CCSD and DCSD amplitude and $\Lambda$ equations} \section{Closed-shell CCSD/DCSD Lagrangian} \label{sec:cs-ccsd} diff --git a/docs/equations/references.bib b/docs/equations/references.bib index 913bab7..8165b95 100755 --- a/docs/equations/references.bib +++ b/docs/equations/references.bib @@ -185,3 +185,48 @@ @article{aroeiraFermi2022 issn = {1549-9618}, doi = {10.1021/acs.jctc.1c00719}, } + +@article{kreplinMCSCF2020, + author = {Kreplin, David A. and Knowles, Peter J. and Werner, Hans-Joachim}, + title = "{MCSCF optimization revisited. II. Combined first- and second-order orbital optimization for large molecules}", + journal = jcp, + volume = {152}, + number = {7}, + pages = {074102}, + year = {2020}, + month = {02}, + doi = {10.1063/1.5142241}, + urldate = {2020-02-21}, + issn = {0021-9606}, + doi = {10.1063/1.5142241}, +} + + + @article{SCI1989, + author = {Meier, U. and Staemmler, V.}, + date = {1989/03/01}, + date-added = {2024-04-26 10:53:27 +0200}, + date-modified = {2024-04-26 10:53:27 +0200}, + doi = {10.1007/BF00532127}, + id = {Meier1989}, + isbn = {1432-2234}, + journal = tcac, + number = {2}, + pages = {95--111}, + title = {An efficient first-order CASSCF method based on the renormalized Fock-operator technique}, + volume = {76}, + year = {1989}, + } + + @article{augmentedHessian1981, + title = {Comment on the use of the augmented matrix in MCSCF theory}, + journal = cpl, + volume = {77}, + number = {3}, + pages = {634-635}, + year = {1981}, + issn = {0009-2614}, + doi = {https://doi.org/10.1016/0009-2614(81)85223-2}, + author = {David R. Yarkony}, + abstract = {The augmented matrix (AM) approach to the solution of the system of linear equations occurring in second-order MCSCF theory is discussed. It is shown that the AM approach provides a damped solution to this system of equations which eliminates the appropriate number of negative eigenvalues of the hessian and that the intermediate normalization is appropriate for the eigenvector of the AM.} + } diff --git a/src/dfmcscf.jl b/src/dfmcscf.jl index d823fa2..10d0289 100644 --- a/src/dfmcscf.jl +++ b/src/dfmcscf.jl @@ -575,7 +575,7 @@ Do the H * x calculation Depending on the Hessian type, do the calculation from unsimplified and simplified parts of blocks seperatly Calculate the first element of H*v vector, and the part of H*v from the multiplying of first element of v and g vector(first column of Hessian Matrix) Assembly the matrix -the Hessian Matrix is | 0 g_21'*λ g_31'*λ g_22'*λ g_32'*λ | +the Hessian Matrix is | 0 g_21'*λ g_31'*λ g_22'*λ g_32'*λ | | g_21*λ h_2121 h_2131 h_2122 h_2132 | | g_31*λ h_3121 h_3131 h_3122 h_3132 | | g_22*λ h_2221 h_2231 h_2222 h_2232 | @@ -723,6 +723,7 @@ function λTuning(EC::ECInfo, trust::Number, maxit4λ::Integer, λmax::Number, micro_converged = false davItMax = EC.options.scf.iniDavMatSize # for davidson eigenvalue solving algorithm bisecdamp = EC.options.scf.bisecdamp + trustScale = EC.options.scf.trustScale γ = EC.options.scf.gamaDavScale # gradient scaling factor for micro-iteration accuracy davErrorMin = EC.options.scf.davErrorMin davError = γ * norm(g) @@ -745,12 +746,12 @@ function λTuning(EC::ECInfo, trust::Number, maxit4λ::Integer, λmax::Number, # end x = vec[2:end] ./ (vec[1] * λ) # check if square of norm of x in trust region (trustScale*trust ~ trust) - sumx2 = sqrt(sum(x.^2)) + sumx2 = sqrt(sum(x.^2)) # norm(x) # sumx2 = sum(x.^2) if sumx2 > trust λl = λ xλl = sumx2 - elseif sumx2 < EC.options.scf.trustScale*trust + elseif sumx2 < trustScale*trust λr = λ xλr = sumx2 else @@ -849,11 +850,11 @@ Print the information of the Hessian type function print_initial(Enuc::Float64, HessianType::Symbol) println("Nuclear Electronic Energy: ", Enuc) if HessianType == :SO - HessianTypeString = "Second Order Approximation" + HessianTypeString = "Second-Order Approximation" elseif HessianType == :SCI - HessianTypeString = "Super CI (First Order Approximation)" + HessianTypeString = "Super-CI (First-Order Approximation)" elseif HessianType == :SO_SCI - HessianTypeString = "Combined Second Order and Super CI Approximation" + HessianTypeString = "Combined Second-Order and Super-CI Approximation" end println("Hessian Type: ", HessianTypeString) end From 815a073bb0fa6c42c0614c973e3668c9008fca60 Mon Sep 17 00:00:00 2001 From: Fangcheng Wu Date: Thu, 2 May 2024 10:08:57 +0200 Subject: [PATCH 02/44] changelog added, c and method name of matrix put ahead --- CHANGELOG.md | 2 ++ docs/equations/equations.pdf | Bin 347119 -> 347713 bytes docs/equations/equations.tex | 48 +++++++++++++++++------------------ 3 files changed, 26 insertions(+), 24 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index e802b54..ba21d27 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -7,11 +7,13 @@ ### Changed * use SVD in DIIS +* Save the memory using in Hessian matrix caclulation in dfmcscf function ### Added * Expand README * `amdmkl()` function to speed up MKL on AMD machines. +* Add dfmcscf part in documentation ### Fixed diff --git a/docs/equations/equations.pdf b/docs/equations/equations.pdf index f2e33b86583bb8caeb103940d2fbf1b841cbab78..cece2170ec11518cd95f7ef653143622123527fd 100644 GIT binary patch delta 32811 zcmZUaLv)}Gu%=^oY}>ZcamTjRvDLvB+qP}nwrzCmq+`v0@0nT6rcRw&)vDgYQ#Yv? z{aF}sl%PDRA|DVmK(L~W%n&nj&$Gr9i@)uZEa9g9vYyDDXs-cqSlLi7=zU1NG}v;9{$hECem-P7IpJSB(IK-G@KiuRA+$@MuAEsVws zFwJbg_)KNEr$#k@jYXDfNLxE<8eh*EUN5#8o6}`B7|jN-Kl1yg{D^=z*%4Z7RVqje zVZVPM$x$#P5O%5%57^)~+q`)j)kGEI2~fAm$IlzbT+Q9x4myWNFV-uEGqW>wc5yN@ zvi%>=-q@;97F0k0oQ0b!Rp~DTHL$F$!tiYSy;kGEBEo)=8 zfis#eLLDY17r+Xmtql0g7(1^1EJEjzHV})`^nTuaCFa$cKE1rLX!`oNcwHwl81){Z zn3rf=e?5{_F;2>$u?<)Jt}Xwm9$9C}@_*#| z7H7u;0!q>o?ECa7^2*4HQNPvD;)15JqVBlgT3%@A`iuX3T-8*y{eerE!6xH`qEPUs z8<4xC$*NW1A5?3yhIJrF2E-F)wVI&sPEoNsjdd(Tbyl4}q>s16a<|p~c#frF)J9CO zj(^tY9>cq@erN3HVx0NjNKiMXTloHzB&@e_(c)C{vUKj&x3MI&z|q$3E6b2kzjRb6 zR=2ags4RW{(vt^-TFQ{#oC<@aD7&#SuUSLfSOWEW#69V6l;Lm=pGabLy!?1cDR4`P zm>&I7aqVpj-MF;@N?8(VIqUb81}S~(+@%I{LoJ9}5q?#oYrK>B#)x`!hyei{3tie} ziByaJJyA0A5Ji<$pkU&+MeWS2U^dUJ|3H+EM41{JjY+_1E<>xujnLdWq+P)ja{2US z2X9ApLtp*c)K0d~$>gqLSV{`=5c|Qs&{9rW0B9)>R;)61@T3`znI6KR=g(!E0WF%n zf8sZ5jfTw*$#L$!g*Di;+xj#B#*9YI6!A^=Iz{TJK%@)=;ASv?(;qcKi4?-hmKdbiT!XiBSdT}P)3BK^GweC8FiuG04Yp^Ze_Y*Za+ZfRhDg5!r z(xQ%pPNuDyOg-WWJOLF><#A%rR+A>i<3=Oip|qf`Yu}Kr>AaPW@V5r_x4H~)PK52+ zR`6SAeL;@hdY72EC#E;6^JW|^4GU+NFY~H9s2J}aXd4htJ*t$`elu9iG*h1qUw+e|#yrf-cPn z&t`A1R)iqk%(WBgZ8tZnV}K19=hZJ@xGX*V`7^WCg?RR7u_io%eVyMu6*Gc+9qBzT z4+L)kXfUB!#-p>&rX!qDzFv&oTrS1iZ2Y`(%RE?H_`W3ayzbStIO6@QhUlzGA^%Xp zKU~QYwaLe?1+SWiUgk){jD&hA#j)hmKITnA5xqkm#-+)iLzy{kdu5A(ruHLmX0zhv ziYCrk?J^6ApSB`izFmIenD#1f`3u#L))~ecI0CW|Eg1ExS~y>P3kGkm!;pSp5IC8- zJMwYSlaf$}hs2yH-Xm{N$2W*1bx9=I>-TuQzLCJNPA?j}USK$Jmp4o|lrvusop{pw z6KFN@EUh@aZn4E$?H3~sOiFNBcr0T3CchSXg6JU@jJJ8tn;>#fw;ysl%J`wA;Jupx zb1bEi2uS%6!ki8pvHx7d2uH$RMEtnIzR)w8cz3cLgogsJ|G6@U(CbAX9XlmNxl~4RM#yjml)XYh=vW~8A6&Nu2Kskao@SJ(8ervvG?I>D zoA1Gsl_{9PYTOr0wP5vED^^|WTwlLLjtVD?X*s_ErDDp$b8&9crey>3LjfG%o>diiN5-!UIFIc1I6uuKe>H#6t+4^vqwL4uJ5;H!1b&f$~awAf6K! zXbu#Zl3QEnjTx07yrE;5+x=_~rjtPb1qH5u@^ec=2YudKRYzj4G9U7>@^8j*d$Kg zUbxkZBHSRM8*7Mc+^n5$00)K4PdkQdf2&~oi8b$;a&ocgb}NN1)?^!?TM=*c5LT2H z(B*IA8lR+pFy!gqyEs6XMH-EHZ7mm|qezGN+JMU4?Vw-8PV4@)!a2!?mA3x9@Ma@g zv+k$5>dr}gtG4}H169Z z^Geyx=>B?O>(sn+b1r&DCAEXH$Vl}QL!_Y5iJ0w~w8iol01K$yW5*W-^ykVC+80^JM zhfQM^`b|rcS%SOqwTY@6KO)A15WB_R6oV|l9VGRN1LEy-k!Zw)mUu3K3C6~nT8{-u z18D2mZ*pV$&eqNqMyccOFsY!g*=4#YoAPy5L$8T%Lh{EXlsR5TkyD+0y$O(0M5EVcp}ao9l9fiCrm<6*vEeH3cQ_(okJYzI?E@ViIXbT1W6TzDEv%3^Sr0= z`JAlmRfrXmWerf9xR<7^liJ1a{r2Gf1T@^7c(Vz6S#C_F?R9rS>?Gkaq+N`E0Jl@T_~IRFWn&fG!9x`<+5lx zi)5La;CRO>&T#wRtslI4@~jhT8@d?BBBjIkA3Xf9@t8=h#EK=uUFjT06$F~}K;-#- zCfaN;6Cr#8JT2edC<_M5G~|s$Qgf!0pw854q?Sq+AIA0Mam8{)2E#?9n(Lu{xr^GT zK4+u&doRW*G_IV(8;%hRQ{)lEKU*uVX&X;FRVh|_arvYmXeg-PSb~{cN7*=bD{?_x zjjs*#tPkW@wCBV0rvsaHg_Hi05*bN~N<|e~ z+}x%t8=@Z2gpZ*$VYlUn7_MWnuyY7hthoi zj!F&~`SpQE!9s}AgAcs~oUnKffITgSq4~ER@n(p|Sr7fy7P=LeWr9=^0Q@EWy2HG)vP-B(83z4#y#Z4&^ zU;R(wgo!>911g+L52Z&{d9l3|CX=Uii2F$F9YZlAcF5c^e7crh(jk&f5y#)yIXm@7&AxnWSt{&^V1)o)xZRoWI$y_Y&iwYsAXVZ6dB#i# zziplo{$@9JZ7{E)RXZ&v{Ie##UxG%Z8IOH0-!H`CA!jOR(g|?NVSnVXp}QI4a_O`sN(eUlwQ(4R zU2b&AHI+jthqTyRUfc6M-c`$FRH;Nv|y zW@WI>l>g+D4~IPaW?^uyq5H-5PJBhXBb_)6r^BGPywq(mAt`WlFl}KankOtzTeZ3b z1EwYKQW}^)$sa*4e}=|k@*rM-EMhK|+qfqzN>i!W0 zxTEdc1Fsx=+joX<34Y<=Ou1rQQF_~TFeDFmK z3|(WSbJ+>O?2!BKXh%q>74lp;o7w9`Z3t5HO|-Q_E{Zs1Y_aGeEb@T375+_B*N<2z zJ$Up1BI3SF$Iwb)R0A|Gtt@|=vjw49!M_q&S-Lp)KT)FGY2%hq2EYU_fE(3P2huc~ z!~p83fFykX5Y{3<+EkTUtqnRn#IBxuHve`BAP4)#ltbL*8^Ntr)}sqXro_iUvRyj{ z`qESk#PLgOpHu&yXmIk>=Wk;=TKK1udC&l4FdP&kqyN#qtl)1l>;6+TE8a08x_a_w z$j-0Q12W&NGf#J}Hsq%9>Di5j+|=bbdjIFNx%b(|lAEKeb%r(65R9Mu#? z5X%=V;_&H z+!bAqDxCJ=tf3*Vp>?vg;(nt{`Axsx-dv^qF|Qx$DQykq%+mKdXE^`eBGWTplPqZUkO-;nWh9j#NSta`pzDq*+>dzQqU*5N0O7 zcctsOLwmGci1dlN)34>i(z;VhDO#y-Wz(cg$~;4RgkEJHtVCDXn@5UMO}mmrwW%%t zDpT*Ry*O^i<98;CJeYx@#nkdq(--rH34ZzUHtt~{6(So{@S5KtyEPcvDmk*aFXF7=0Op9(hv=8- z$aukg%leDfiIGz;-J(warw!cjYMctc4UCXg{lQL-SJwSMUmVUcQ-IkS7Y%Y4a$#rw zM~uSYd(XsR*a*T!|2R`@_D74TB7Pj((RT+^Z15`^0j0kI7eMG(uYS&ryw z$kX4(J9ut5&&eaEowY$tp^W~G%;$mh^eg=q!W_h2Y$`48KlGU4anAIAjmU;LO|%3h zS@zzi#gE^bx*pC?hMjF$0o@W0?AkF(mal~rauHW4#k{5<#R+O}8a5TKeK`<@7B(6n+kdM%x4}ikxiyrKFo0h|PovA=;$W zNS4U8#@G>QLfY>9xXdi^WHwZ8S(1oojfb-Nx_#IYXg~uBTP6lG(7iZ?;DNEUs9<v^Qsm@FXmDR zZjl5WwnAU{E7Hmpt$VwWzMm5-Yic?SYz4{Ufx%TUG@B zxA-AOOTCYL;+sTBke|Sf|HCQ zKW`}^d(AUnDIprZ{$YEIY-a?U>f$xr-vFY^4IQ+hR3@h>z}@EI7%>FjfmN1t9Pv!N z!&?7YkqUF(6q+#P$Z&h`@aNQECFSzt*tA^D(&3@iKEY!MirO?pOuWREC zNpIzd%>Ltx!0oSnJ$Ic2(_<1Wk>11OS-lU=GR(`{&AggJL338jov;nhWQ)l0Ewi&* z+~X9TG;GY+pw8fOq~G-%g{{o3Ylx_RV|m?AKF|T+S*%o;f9K`Io#S!c)UMvt!}bTs zygA(p#h_4bQLknWuk700lSknl9y@T>?2E$5p z9chRjQ`5{o@6Vi`G37}H9l`LNGdK^dHtLZAMg9c_6gLVij)v?Bdg&9 zQZngf2!b>+Ba451-aeKafvDM?>=^2K8p%>JY16lZ%ju)x7ooz3$h#NdGT5_Z!2s~` zsgUOF@%Vb0ejT3N-4WnhMz`DT@qF6&e7nDVe1*x;*Vm1i-HFLV z5Pkk_u;c@%3I4KxCwoVivR2gRc|h~JSeXb*zGvIk}fe^ZsP0sdn|YQz@P!D zA%gDRPQVPBf0LmDhYX{_*O@UFdE4+X_rSzO_J~U{@-Z%Vp#SYH>4QiWmT|vj1FkG7?@DZyvL_&a`TuSv_*v2f4YgcoKtS3E?Rsm*Or#)ts2L zM(c(sv#BxPo#K#BO?enMb=J`SbL*j{mwe&f;sg?-@bV_3Rn3)B7Yv%}XedEQkH@lS zdFRTyDGPuO?DE0x70{Ms4zok^2-80&n{1GD$9NK#?#-O%A;EPqgoYf!6rhCOrgju2 zZDI>TzMA2=Dz5UNoxQ9`wP_72vN>2dg^9{(B2%cAw7-HpGMz|}X&e=_PSOq6#0WXRz>ze^onZ@2!lz4_3Afm~5XC8Iz`lQ&svG zy<6^DH`ib{e?Sqy9?6Xq7KAF4w0v3PiAS=#54mqG@(2F)y+{~c62SpDkj#(3(%e_| z5rE_s7%W1MmM;H)aT>x_f7ySMo6;*mm)>Zd91XR9skPHm%Gt1=zw(@`B8c2ro)e7R z=bf7BpxDgUZT#kn$AamS?UZy z&_WGkJF)MgkxhC^;f3==)5eK))zk8_QwJ{6O3K8N;?*-n@UJB~U{R?0vLE{#6puii|0Ekzi95}LB(#}Q66(JvY7O#)zJ z$}5COIWI2q{&_fU{pbmah02Jgg1@tRcGBT32Y+kbAa4gY3#1>S$Npebz< zHUH$02M0r*w2d-I=8Cg3t6j)rIb65n>Sp_GAva4vWnFSMc1T27;p-Vfj z%6k4R`~K{H1`)lBkTb|u%qDT)Zc`VRd-WKiS2HVP-2B>Zs|o%0vJvF=P$FiL5hJfw zC7(uG)AHDegE=$SvH*8>xBYaWuvg=K7Dll@+*)v{dmMX}aag7R$v5@b!ywzI%}lnnZPOeh<9;mxMgnW?tVv@*%bIG8m@)8Cgo zet%5Km681hUE|6uw8nZY#)>s#VGFdDeYw(_wSUO*Nnh-wg8zAyM;Rz!#qtX0f-><5Pud)ZYbTZF4>Us=v!BDA8&1x42us=D80gnQ2GTb9c_HGFhD zgVTg7(0j{vwvD^>9osc8Z3jC@rht9f<#Dq*UlOOv72fIbd=K$E!a?N+_`FGI`@ffK zdl{ml7K~L0CF+xs8YkfB;v6u!W(hd+hkY06UeO=MoMDdde^|M$Y2%C-K672lOky~> zntoV3%~-ptN2(2<#$?q*+x^^Wq*PbL-mpF}!n?uUmRE#nG+PzBR3Qzp*$hIo2J=AMzAC7_Y<&S<@a|~=9gn||w zz3l2dEZIaS(j&kT+eD8&>@Km}2voR39TUDxA?VpWS|?1s34_rJgUSeN7z2qwz-o+o zmS#|U^njMVpQfDg3bpc-)KM-AHV3z_$Q{4V`IPxhV*2*sQsnRl5GLY=5XE%&^m@?y`?~#h~6FacvoUmqZ@OiM0tS`mc?< z%+X7BQWSVXN=rd}f+&ye*Uc!eP2?7A8nH z=aGwyPv1*YPlj$B{Zig1Ayy;$`%`x`LqpsvQz+?!v+euPzLqurlPi6i+wyn-Mv&qYowm(5jm{WyQ?2MZW;015LOi=B9~V~_x- zi?22m^rTFpl+T^To}kIt#3!R4yQ^kU=4%GDt=5J0@u<`7QZPE*A&toeXBgYqVZhgMBmV<=|J7_S)lV?Bj=by@~%xI!ha$vj{v)cQA z#Ie+JZSJBs8tb=VDQbLOR_d3?-LIRnOGrel>&FzQ*>WmOsYb*dvj5$|Jsoh68P|b#$*PMEj8)ZQB1} z3NWbtBD_-&CHId0R@%MzIsImbO|z`F%vM%jvn({SNxL1zIA2H$JFeI05U*G& zeT`>|j0YQ81j1wlp84CiVwpjwLB|lSA-k(gS5M7=!JyglA4S3Z=1Qi>g_=etj2||Q z7CUz=J4Ly2Jm<@V2RnCU%we~CC-8%pXahEo9kVE#TJg^Jq;41QBhkexP{d+a5Lmp+ zB|_Su84BFlnKx>EemV@@cAL08oZr9pe|PP5o|C(^>|G^tL4>}x*w#NW?EUn-{ZiAI zt6&*$APxGd1JCEDosaprA}RgKzc1XBBv0FGN0n9na!o2^%SK?pJ*~XVZVfh&6d|O< z*p(E+&XN&;kq}fu`b)9(Ez3$}+Z3(nbQA2st`AeLNFLlzLG)Z10bJGbRZIl35k|dX%(Lx0lq96S zq6bTaN>NzkY)E7dw(u_{s2;C6*AS0-_{m8eNfvW^ok=M-2`C(SbDl{V1)7eZ;Je!# zUPJ<;va8VVFmnzY^Hvf8MxX?vJ{k;&e5&-AJOw8MiS-IG4k%Cl>BBvedL>qJM{hXe zvXHfhA<92NNs;8w;7IzSPCQ#_(P%5I{;0SVTaT>~!}EjF8;pA;A!3c}hp^2&$WS0G zR7uIaILRKJUxk&IKNTBhs18mH#ZMtnp5o8UQgjycuE#4&w;v z9~$|4{~%`avoo%8%Ge03rXdeDgBn?lUbiT9wuh=4g7|&;WiJ7+}rTd8x=D7PhDp_ z>tcTWK+aM_d=_z`4S>6%8G+ZY&qW>evOsI8&bCFyI2oqA5r?OK>`AZfvUOtHE-ED_AJJ4G{geh&;u!g%Rn=XgJ^!_@AHs*xL~pV>fp=ab>`7V z^_TXVh{DG@(x_}3nbZ5Y*S_q)gCGtOiorCWKuz2Kg?Gk)b;g^7+t{!BbTfMl;2 z?~1Uyds4P40ZhOlboYgud}#y^ZC}j66`018wFRQ&ye-_2Nh{vPqiHnJ&eRE=QH(_n zRas=qVpR>DZCF#`9_TYiVz89wP6#&K1bnLFsF+v|dY}Al$X`~rtdOk^XC1T3|3a2o zJHY0KEC9)X0%U_xj+In;zB?NLhi$ z{o|GT_o|m`!09*C{@N^@5lS~sjKhiNCw3S3QB7N3lp38Z7Je@$X7gh~X;9zNexYZ4 zq*-EAM8g(gFp%#@=?7MMe)XS^s`?OW)}B)NLdkv4ifHRwsqTLKhI#*g78&a;c%=P!AB81;I3OH2yU8 z!~PHU`(M1RI$h5GPy#jN<_*JVOILe)dAE;P_`p9A1dllEq;A|0F(MQuhAe_s*m(LL z4{N4}1$poUELr$7ioR&WDGU}4U48|6E%=^{di_`}?dF3uPW>9i=~94M!0F-uc|h^7 z1zG?Aro=rIr3jkUfV&YCWqwNNw16kW`_Y6iO^{eY!m?r-s)i!aLzwOm=1+S(KCK$DOJ5gSjK%{%m>wxGLFC9$bxGqE-pZ-KWolh4*ls zovv>kVO;rDeo+=qfrPczZ&GjtiJVJxWB4n!oRCown$DJ~E_gO}ft|?NCn!Fo>o)Lr z4vo${HT$P!b658n=W${B*T1g~Ss@nyu%G&N{k)w`jlpZ&?HvCH*WEd6F87Pi$D8%D zU5DvLqjkH(BGC7A^!ma3>FVD8L5ZcDqSCx(-lS1sic^Q=Cypunw|TuL>79v!UPXfP z>XYW%VGgB$FKc)Ex9y_Aw^z@L3G1g@``cFa8_ss=+4CY%iH7cNOs?vvjy@uwT#tB2 zzMuAouwmNzHVRQ4%By-e&cdOX07>Z1;!<*5xbqLHheop7rjMe?s< zZjXBQN}CoEX4?xb#mkR@5BLi|i$$wAX}j6Bn{el7jW345YNek*`btSbiNQ-X*m=8iXp1I5`Bv8ixR}@>M2eu@AKc9 zHxic;DkjbR&-g0wschd5{@g|Xs19~cp0_==VdqyRiiM(neHWAg=yzTpHFEoS_qfKW78cP&5cH8fa}>!CiKVG%OMUON zOq&)cOV$L8cYXUhpZe#w1Z2|OyLp{!EV#S@a<{@1KNXCdc?(OIF}JN`0Msh|Xic8` zoSmb_ro57)bd+eoC&Aa>^s)HIZ!%hy*^sm!xEG9rli_B4@Zc#pszHGmc6~yf`)l@1 zO_2xm_#;|z@Zl6Mt(P_wizR0X1ustIwzhn*l1G{bg?>Ld| z-ej@&x6SzvuJjybd#2r8!{*p4Vj7cnW*QUU$sz=o-I}uOL_i41z5bx^u}LoYA8mp{pumM(zxIY;vJ>umTMQ3xwKpLrW=1J*z;LU& z`$2O?3h$GfWhP{P0^}EhiXsH`0$no-gEuVa(iT;xZx8p$Bmcw;S*Dn1fBW3b!eaYY z>Qm~`!9()11HrajuaU8SPNWv16H6z&GfOj<9`9;^`_KF1W6)cBzAX!(h93YLbtI%^4d5Sk^xENVDr<_)Qr1|b@6LrgMn*->Ht~t zWA=)BSd3W_rt(7^!bJ#p{lJ1uOcOvjrX3hRJ31N$b#XiK6TSk-)7C-s4budK@%|zP z{0XoD>BWO81J4!#+(!IoK<1jEJHIVg{nrM%{1lP*#`hpvpxWDn%skrG{PO%tr$Kpt zRe=1^h?~squK=LxK)-nLK)9fvcU=IpZ%VMvk9dTpmJsevFg@=+MmG?hIy9KP{JaU! zhmd+uKSs`8aDPDlIrM;~U0ulm*m_<{@baCV!EO3hnEf!u5HAD1klqt5@yP+^{8X#VQHthY(*6%{i_oaF_ z&rv-7dcqmV?zcCRkbN`L!;eBerTq={H~&*8aEJ3R zAUX&VG^-DYWAPh9-uTz+ z{;-PVCiVfdTRs(caZD0aovz?;v|M-{$Tm$)vk;VXEhp^d*B$Hk&`zi?7!`)OJTG_8~*s|IZGw7R6Bdf{e-90Sb9 zT-T{iC&qCW=%0#r_~9MT08g?~364Zu^J(RhA?8d%(xn;%;d z16p_tiRWYeMRLx&otrR2D#99s)9e`9COIQ!dr9m1llH@Axp?0y*i4c}q@XR)YIY8* zeo4=FI!Uz|{q!?u1rQgS(7rxOGgiPiIel`+T+~GyT}Gne@)rUGeRQ6n8-BmaittP_ zS$j`C-*c5$@$lNKaUSTWs*~o>qYtfnpI7Dnik2&Q(JZo58;azrYvW$K36MK**!{C- zn8M-odH3Ro?T156fHr7}r)z|gALox>g7$OIOO5MiZcmo6ACST^&}GwwB;uY-k9ae> zNQ~j|vt{mOjwgoqEnKm!<#V)b>&RIJ^1MJb;?GqSCdsLppIRPy=-zou1Dv2l$8ko6 z%>npo67J{&(-G}PjZr~&dM?9NJWE9t7_@Y84>|nfHJ9v#CA%P72pV)K3E9?8{{^M0 z(C-tz3AIGReW1`Am@yt7lGMohuUZkWL+~W9`&{5Px(UA3Qp^v!X2yBXqYtwmE1|pl z-)ob-V+F~kEx%t}&^c%ryN7jRMj7v={D}!3Z-1*lvnE8JA7f2oRR1TLg1dhzG8bt) zOTWju#AY{n5RAryQ$FoLl`BpDDyfy*$eWgiKo+g|1l%vVOV?_OBq^dYt&;esTp*Lr zqFi#}2Qx^ar}Ql!(_MFmhELbetTDxS)Z_%YOi!6D(uxGlV3Pf+F`>An`VdeyPVUtX zWTe&YbuuzPe8f!!)g;f+3h%xo-$!9UuNK4V$Wdg_Hxry$;jfHFLQ=Ze!jwh-el3{w z{AuY%0z^ciX8T@x`i>Vt(;%G`wc@Ic8avC)fQfiQ_P!9}O{LB=aOSN9UfC=ZjKkctM? zh)%K2%^aUtKw^(r+A@Vnd+ET7HnrpKx(~i~ZoQSBwgiIrI9rdU<{HNF`go!=9Lu-Eych7a!#~p#megHsuBKYGA}LnML!(8 zx&@SEMvLaZZ=W1U8iAW>kQt3VHU3gecfcQn6Kec$spd|He&BfPMmix(%G{(A&B6}_ zGq4FK^H(z={Iv(H4HK+xb-CXU`**O6t#`B(d!|faW;`Yaeet1_@U1dG_;NYpv7p!u zHvv~NEb(vJvDBPZo;AC+kVp7vJd)wq9uRB6RWUUe*Fus*el&bfS>E$z(?!Zc4=~_e zzLRO!IAA(^tk6&;!;#^%Q~EL(x&N`f&DibIu*F^C)`&CaBM%(h+>#{Lvbr`RQ_s5D z%CrHQnZU8e^nFmbgT5Y&J?gu;GfYG*O3pdW?#^=6E6z4#Gh_zGis{-xp@yp0*aM;L z$JQ|zM(~P@tURIg#!*@|gt54H9dMGivA0uHQm?D35q zLNkyjzVw7?9y?r3MYnr*PU)NZ9^SQ0IvU}@y)8P<-|Z7MBk6Jy$HhFvZ+8LUHRaFWnv zgfFB}z2}^-H3kX$+1gknf&IXb7|aB+=@LF(=>VbgRCBt8IeZMu>xPx8nT8KDCu?Nt z>XtgcwIV!M7%>KpmROHN43{<*7}2+9*$EzWub=I_&ba$GqQ~V}_2`-)92y0nr#P`2 zqfB7ElCO+1l{}!0A+?jsdbb|Ie~At`ObV?UZO7sYZG)O{;$F2#f$orGm8#*PUF&kl zbe!ZAmlZW8Dgr(77>eM|>%4MHQMTT4{<)bDd_l=)u1h#U-**=EvcCZzR3)Mx$o=XW z9$V-?57y7gpQAu8v;`lZhxCeI&`dIiv-;tCqDU4*8~h_)*9T$MC{I?km0eD*%SEX5 zJCv{;1k^0SWZKB#flFce8*!G`B7*IaWV<$Y@V|B)8YRZp2M77^~NkY5l)VxqD)vOoqT;=X? zce!L}q1p$32SwS05@M+;jCJCNSv2;bXnx18Edm91F`YV^z`S6W5DHv#wn^cNyRs?y zZv7s2Mb(rr&LdNvk!+2=M+*?w2vgKnQawoCuJNo$^GWX_;asUt-NL00S&W3#Xil}q zJdj)*6Z+E|l4YzyVE}AfgH5cu%K-o8YHxYiwZv=jtmh0&mfb<(SEl^A2L1zossVJE zxR=Ecxnt5V0J`{>?E05fr(XpYv-RI7lsqAT=WKE4Vox-pOTga-h`M_PMBQ#&Jx-_R1$HlgMf&G|cT80=L=Mr9rONa~37>YnnlP#Wn1~ z<;HJ22hH*SR2%FZD~gk0#QX8yXd*3?3*?xtBFI?J!6O!rf)Qo7N7rkP1D-t!EK4|P zI0ZUT$4l&oR&^1K<@jQ$aUq#hUC)huN3d{NeRJ&t4|*rN(|cL>XwcYAuB`V+_GkIK z*{~>8fHXY4sDlZO;RIvm&A zlH**^H1mIDL!Hp_B~C{Hcr`Wy)#*9y71U30z_4k)HHDY#CF=ViPcNflY>izZ_pM08 zCkMT_dn0>=U{Die9q$k8fNJ5zzCY;=ii5|8gbUkDwONXDC%mr9aOPiV*IkUm zYnc%K$=;&v-jU26YaT!Wby>aE!SkBLjR30gK;faK++K>vMmF!^d9xf2GnW{wQ*yO2X}d^;FbUSbe8;7{;h*dl>msg! zaHx~lZmqRFd)XtG8h8}he>H)WDc80iml-%RRYDfNiZ<#?%0bOA9NIXuFrffzJ2Di@ zL6`orilSN~gF|8Uv^TEx1O6_APiE!rRtXsZi?5IjW}+v=&b+^=D@0l6ueNJYSBTze?%3F%^mCv-&%&j%Wp2d;+07Ivq09M3{$6Ufm*m*l zeA$-8pr*1<38yGo?^$*B2vyWl*pl`B;4m!Dk01pciqN02{`;gNJXM>ps}C>W{Gis) zJER>}a_}4$wSrvXcS68#z!#=gYIRqm?#<{&yLOM*Ps3bP2Q|D6at%`fwy50b1L(N8 ztGQvEChZ(-`mg+-6tv5*w{WnoN9XE{E_#mAPW>13JoJLf(z;|mf{r!RrD~WxqkA_ytDaAIjw{u zB}!}gR?W0UzFz^`riqz8uo<``CU8Ba{TeYP4gCpyl!t=a>)6Yl!89&LZMW`nw3Ov< z)?GE)J59)VvNxll*^~Y>3{uQDKE>l`=ynR6(XEIso}1?+DqS-=!y0}V58N7Y-ulr} zqT>XDa@ke37e)LIpGIFyzKur#-k^n8toAV8#j;F))F&l|Q`zK2=hA(82vzEBR=`b+Y|bD#?Rj59lf_k0mqQJn9tQd(mcT|^ zWZQu$%XI-Q2f^Lz3@e)g+%eQZP!lkeiz;IaEsuJjZJ(3Gy zR=26Hj+g8!hxZi>T-_BgreeUW;?*=)l(_YCu&yt|ufl5N$%Z+wqszLYoNZ zS0ic31Qqvv!f@>El5^P~+3`R0oA(C#-}10D9>6{cj`i|b=*e$qjg4*JjYg29FjN3N zPC*{CZFng@TbtHa=MGAy#jZ{zYJr{I&o49oCqJ4r;y< z-c`n5(g5$fx6ix2>!P5X-8)EJ8P#zum!Z5@EvZE0^3aBNr>bH2#VrB&q=P3x-Df|# z9Nt{39*+U)xik8jKr;3U2T_$RrB6WSRc+nK@C95!Pa@?wd?^oLT&n6w2o~xT6_`JN!>g13*rBzYnYeFwEI&0v}EnNog29ad)w=sZsWJ}gc zFp&Uo|6u8E~!2*n??tiAO zd%!3s(2ItLy-X_3w)iyO2pwp$o;R&T=Qsz*%cJ859Zfxob<35TDph0Uul2b_EEmEn zbVz85whs{%iuk6aVP^*#O8&KtgqEDg0e-idu5tZ5HO z0kOx#HRTFn$SkZZ1dG% zMFT2aD-NxFc>yIO#DGT$LFUiVC5)jAi3VV_Mh?3vP3fx%Cky(R@k>o!jc&aG&cK z2l{0~?nN0Vvw+`n8k~Qq{w~BWH(jcGe+$VQ)*AjRIH=s06G*F+ZNydP$MDgk5X&pt zD{D7cd$TOHCsJI#A%p!{OI<NgRo_@f-@YX6Dw5eV3_AI!ga7b1-Dhfbd?t1Nlfpc=mW1sd|PFwWggyxp778{@qYAX%uziLe}`C4pgegM0zc5m;Gnh z37EkU;(kzTgcJ)z$aAfo;6@kDl{r+8sz`H^9rnFvO=m~`Cd$s1_ORt>xTk9#XSSXf z`V-7EOcP+ills(x$%ErzVl!Yf0`FmgI@D#zm{*QOJ?IhbXrAA=C%UvEdZ##yqcgm^huWk+_ggOPZ|aH&V<*2+4O!@_~2b%w+CkOtRZi+3y z?pZhlztE>~1${>j-Gw*JPD+wz1FYD$^>=^f;|w!lK7;eA9-2NILrnfc~p-g#y~ZU1_y&Z zLe>noK;b9wb5r2nq0ac#ddr|PPo97&Oj)S7&>4W`MO81e87lXcC28U!E^ z6M?zVC*VIt6P~cjw4oH0P0*qZ7cC5|PNjYzv2%(FtRmf~HRIf;z!sBCZJsp%YDxx3=HpvK4GWmKnWX$S z6=%$CJYo2jnwz2Hc%dJcJL%Cg>DSf!CY6pExN$|r z{{9FY2^^k=%ZxktZS+%lXTq`TE^^RUbH63(IX5hYa8M7KFg)j$2Eg1^d~ECENII!5 zYnY?npDOK;H-q7NK!sU7-ElYJAiK}(eN=7e0WyLUZ zjPcLuxe;*x&z)?8kDs~+5%95Yl@zQgJBs%Mdyi`tJC>@Tdbu5hmK_607u%diZ0W;- z=3){OrdC8Z6)QPXIN(HI5^kgCD@2M~=k&*q5xp?L5Lvz+e$SOR*&F)2~1OrRFb-U82@a`cmi z8w%pVn8pZPa9>y&h-}G`LxE7uyT9l9b1d&Hf=E+RAfqbL*WFl*K@WR_kp*rxo6 zPGXZukxu4=^es~zFvsM`8*9aC+NcJ-oxhNO`MV3y!Y^6~NFobSs5(_Nwdyt2oB zI|MeC)u2r42q+XnAN0{hrRQd$eS9 zGOXz88(TV>mOoMN8S9>_ax^Q3E4HN;b)z zI;>uA_xfSXMOWh65PmA%@bJP#Zz(EtI4y!4Yj1A~Cr%>$nnMR1LrJPai`XUN9 z24D)QQ*k_vcy@8Ss|0N&Rv1|LTr4Y%?|j@8!Z_lX<6YWWYo{FnA}^cCtqI?WhE#&p*SD84BlO2-Kc|nPWGk) z8CmaN#wG%As~A9m!B)J^qpiyQed-HA1F%VkR72&(Agj!|gy7N+f}3)8dw60sfbsiZ zrZu+@Hm1#QKLSRqpUMGtADE_2`^v z5zud}sV?;_#+G->8?1DX3=Z80+@+1eJ~cI#^7UD!sO{AR@waB|JB@UcV*q@4DwhG6 zW+qUvw&c@|fofjYfTV1i=n^2RaKqSY>$WO5eSsujXz3HSJqeCzcPpFl1{gl$acuY=FXNw;e`0__DXpNb@! zf$b+x4uS>J?E@H6g#eNvGeF18)k8;WUdQ%$haeQ5+Se-y1np7&jcKy6+$yOC8^Jf7 zoYiX1Kmvl6yxpsFm*d|NPXO;cv&b!bYcLt&L1;RgrEocj?P)jw~Ow# zTlKFaD!K{{pQcc9kc48qox9LPB_*VRj&KnpZhUVV$r2zL-iPWLQRuG6s*P6MP=4cwt4bI1=)O?d@=&%Kp?4QSTtn$7S za6^?=|A`9j)Ki1?CPLM5$zGnLXsB;W0o0fWn=xntDX!QcuK9K~`H~-uk?^>l7pCp+ zG!|5z-j}G99bS2&KCh7^U&qAoDMEQVfnB&jg`pbHJE8p)0|3PdCc!?>>ZG%2n=L~7 zHH}Hq4uWLci!mD%DRi1$0`W30pEPjODz!ADMeWY-V46!f=Vh`4{SR}}3bDJQt|x^1 z^#BGU?M=$SBRE=*hc859Ga5!Mfiu63O_qct3d1bZ&FecIKR^$MUVLNtI+N-WumqSi({PB)MLYPJ8aKsvb72g^<%yt%DV$H^UOCeUOVJh)6gNBH7$dS$Q4C|}IGz+Zr0I2HK*e>pnrO=~&dPht(fHI|xmJvW3^&X)E6tGo2E(X*2k~bikU?RL zkJ__$OVL0p!6fhh$P}Z0LHjTa+Y_BT8FuRiWRL;jEzWks0TYwTFxTn)ABZ-)OjWgw zf$v>vWQ# zKnG`a5y3&t9`o!G;-lpu5hn@rNKmo^d4dQ>VTkg`G(z2y05IB>;w8^HM)}+kI#*U< zYI_F+OT}kr=fwmN!r_U{Rj;@K-AcG9dX2%3*(gUPGe5-{<(>iVq*14HI;aI7d$$+U zJ>N~Z>JiyR6I-zAW4Lo&1ht7gV$y4{>ZQ2OZcMw9PuOLbqP>Gp*@V8f;Fm5lTK_zl zx?}{Z&cNnHx2OD~t}I&il48#v%Pj{c(8iziky$~KyVcsJP4J?{8us5F^0}GgQA1O3 z&dGlqejSkz#02smkF&@DOD9`^`@2w8F;J(pV1h{ih>TR+k$mvF=PkaVYy?bM0_a|W z`It{4eiLIhLie8}lQe-{P=>h3K2nyk1vF7UUWRCm*XRVtkD(#KI z9*Guz&oqp@BC5ojN+gXo@TNp!fgJ+^IppMwu*`rXp^sjI1O(dTV&>%rON<9^7d7B9 zU{dwTX(^chC{3(Fyv_wU+G`TUnv49BR1Sx%K}a6qH8B7+A2W-!DHO60WdQbW^vkgW zuX9;PHXq!kl!8$NgtNBtCNvjUrbkQrP}Po~y_K`?*aw|7W!;dHYmf>O$#(^^ye4Ai;GlpLAq6WRvo(C!L$lNu_}m@DCI8pTojrgxX49e~S{O$Wq~79_3I zgPtBgp9X4VxE5W8+iFRS`WH4rpIZS+hiIop;!fwe$6{q|G6m`;z>igr)FrTqmo?9o z*89uH&&Ao`IYcxNsLslATWfFq)yhnJS{bis5`bB}K>qRqOW0ug8A}3kHD)E8ZSLGY zerktkD2H@MI3QyWS)VnQxVmICkrF0Vtvjs)W!gO4n>p+l5`gH25q#s;Ap}Sa^+Ouz z_3ECCj|D9`h6od^l&}a=7f-7UGYJ03IRVK|$16ON%PQgZ@v2nl&_O>jTHYw#+iv+U(q1O2!Y;-2vfBV@n&=0CH=F(OsWeG(~QOq($VZ;pTjRb}kwqr0!;2)1=jpDN$@oGssZ&GqaCPJ4Rn zWx9A`!}>HwR4o9KEl5Vy>ae9U>|_Opu<)qHNL}Ow0=nEYCREt(TA7e(e4O}70GdOa z5tX2Y7$W6VGq6EVM4IT(NBLiwA~4KRQ_z$Fa?d&Hzs}Sqtf&w%=^!$8YsCHH{i1=a zAQ$1}Xb!OkOqKKr3LTrrpIR0h^$~Lc4Uo14mq&63ymf#a;svZ`iC(hjrfb8b2PQ5z zUHz~MC+&MLdWx(-A*7_ho^cf-F-F4J7pKw8Ms1LNC6mWMV!rAr2dgssA;STi%HvY^~Fa#&;I*Hiz_7Lh4 z_){gbz=gNez4ewBp4J=Q3+_w<^;)dyHywr?yT9ngX@4tMR*|A=E9X(02YR!2?)=(A zi;e(@P{XH#X_6;1(`L1vK5JwHw-%F2J4F@^&O~3@600p&9-gaJ`m5}ws`{z;|1J-5 zUeWsUs$}8{*XDYna~jwODdb)Il!O0> z)Wn%jq}dN8>(;@U`22ZQEs(zNRK5fpM;>??XpJ*PSF~H$fa7Tu@z*%Uwm9n{Dt3^& ztp4^<7VSJ}obBkfa8;VVdN$k)TN%9#cX?PXS1wbf$Yi0~7&VeD&N>FI;}{?gq?8v$ z5UeOJ&3rcPx+ToQ$WyxVg)8!?WD2tm^|0d!$!N3~fn_S@4@V&$9c3wA3ho7*(Hj|& zpwoPHR)!n4OJ=UPi%ktUIXPrs!`by~ux8&`GLMs$dZ#bGK$~LzdkXn=r^=+QkE@y1 z9%W2-4SjOBIZ6?*V<@xlwQomTdiWBtwp<0#Ol{~u)oBZdl_QoV#DB9uLz686H{@&C zR=Y1^R7S%@V9BU;uHG3%vQ-4|y*F|fir?Wo1Xf(^mmX1VTII7e#x(mF`7_ha0Lt+~ zY?BkbfYt>jY&+(}H#qY>^7k^TEfab3nnrY$^v{GxjR|GbbT!)a<^x9M393`+Yh@cK zms@RwnS^&M-i9_p{Ki#17F^7qf;EdDajbuE6fF1>;c}tBi|el)v5N|T;N7rtb7t-y z(1=(DW_dLKY-VgEbI^k2+a>$hU8DCtdT|7K3uBgp?kaZiluJvO&)*1!cyglAN5|^+ z3M&NGNtv9amiNA*X{?ai2>Oat+9h;834&wHbR4ZIoZzgG;s>yTlyj9}-2HkuR({yl z!Rj!s*k@vz9X`H!q5U|3Y76^_S(-xCbMhE%CHhee)uub@DQ+pIH4TShsu2T1GFI-K z=M&a`{7IB5U%2pFjY8JGLpdsj5f7f`j7ARII+@1OQ`$)S){g-jsARxM6u$&@ z`+7`S+470?4HYABm=(341uGu8uf{8sc8G}Cuy2Qv=hHU9WjpTye~^!O4+b6ia>BVr zHYPsarbgb9g>R)m!`ZymENr^T2AE&KHI4YZ-dVifU~brP78fGMc5PX+2i>xL&vxb$ z;Kd*y?BIOY0Ua+A;-2)EdU7y01kbNvZDyjVGsHdYHLqkRHC#v6kH9x0Yy7bvUmYn= zyYHqU>~1B44DQbW>D|2w4FG%VDvl2PMgBU4oY~VA#G<3?xSR!|2HyHXF<+mR(hs@Y zM3-X^H#z)7&f8UE!F?&f%Xf`#C%GrFCwb&Z!b3AV>1M*$LsvI3#YE?x_ejNqB^Ll# zJX(77Rn$#kJDSpSV|yyaPV7k-* z?ny~-)Rev8GkIbC~)njr(aE_J%e; zyJ-PCu~5EJt}k1g_rBzO$vI&XUwd1>)m?OF^yz4ai7^LTCOpNB7$@8o`s}%pCWkM0 zaRbuk3SkQr@Rk=W8Yf@o2xq_%b}A}{5q7pA=9GP z+H{%o@5=1T*yxQ9a(sFI(f&hI*c0y7;-@i+CXLo4K2DCe$G2COx?AHS@NKKd z;F9P$dO;4za$Ys2D`B3|eAK~NZb4d3-?^4zjs?IO%9YMra>8gA8ayH5W23_0D+*v6 zsO*y0ALywl2eIH`uM$Ix_-mnea25(xeKH=4uBt^aIAIKJ%%Ix?q01jePU zJ73Yq_g8oJy&l@9FJJaj%83xT9k>Hnj3L{wO-rEo>^P(?edi{Abb}U0quYlaFZN|U zaT{uUVLl^xRKL%vdi*4`1S4fiAtfNC5Iw4qnUhr?z1dzH&`7a0ZPVrT;)rK@VjR4r z(CnaD?TM7-;2JgENqDy-Jz4OJOha1mH5QVV*qnf3V!keEhvU`6?&k3K-Q}aXNxn&j za78?yam7HU&3#9)sey5RiCv_tk&?awnuW^zMPa^trHAC=e$>Wzl+Wkw*%6?R?Dp6h z)o!#@jOg;!BzdW_&tA*ll8pajFhMUILPE1;+ zifu8W=j{#~WQ<$jfD+`4rPxAz;KcV6i%8{DZMTTvYTF~)k}s9k>qCth*~o|R)7p8W z{T|t(Qc;kljpS?k({bb!L9iE_H6mVPC_}L&nYk}j#OwR*)&xNh5#~g85sZ>JYt1+RML0OFI)*J#Y4}qf0-I+H!nIaPjXQxqlSk zNx!B!6=c%J382h589MMl3>|_w{D(hhW>{;BGxhJQ+!qx}_`^y5i61maun+6K@5ThC zP!Wzc9pYYm?Zg$H4B3m??CO8_K2^b=53V~J;OPLI>pE96!hV4Ky%UVj@C;4usq%i4 zCk(#jm3*0D)sUylgAq5c8UQB`w?_nDl)3<9+M*fs4@6}0sQTe@A@zKsrAe=YuiV>a zrHGV!uXZkm2^ZP>j&$`!{S`1nR z^e3Ibr`bCPOF`1rM(fBCW_yQb<)!;m>V4%oC72{qk;7s5(K(G)*>jrQ_<4zeHnd z7q_4V(M^dOa0`;lo+mJP`jy=lzG+2mt8PjeX_Vl_pNL>x$QZ8ok(WKyvMkc-CtkVx zrQH}e;COW_kK`t7!c4qz4T?KB%+T{pxM62z(I-4Z#ssrZAw z+D>(l;tvdl+%iG~#tR9>LeI!RPtV4{o&v`ThWUSW8Cbyv6M)1h09jf#F`LbZ-`zce zcpbkT$>IkHpfJEQogy2XvQnH3Q3T{GXJEYIye_VF=O0(xaR0`WIH;~YU9 z2`T13lfM?*NYh6V?8w(f$=q+Xhj^P;vP6xrI1V_vY_kYd9||HLjfbQQOH_9=R2?NT zsPYQ;=L};QzTxXt0z{aGW%4BEPr2D7)<=g)CFP*2{ZnF!!{=kVYyuu(ma9M$pysFN z>HZ>1^&D=5Yz#O58g=|#hKOzj%z^^OHY#tFwHH#Dli*7BMc$s2;F}#88*e2!zq*QV zU-bw>El{M_$WNmwZdOO!M-I|>7(~f7J*sXk48PKjnz70*36LjZp@l?B&MQUzt+5;D z5}*Q#??@kB5BrEF&ZFslphYl}94r*1X3kyIXy|_$Xg;ZWN@8IeX_D#eN*MN_`>kFm z`ptd^s{ro27}RXCnxPLQv9Jwoax}WD)!)){z z3~U_pAJGWAcz}?CcnEUKDRp?1s3_VS$x=XO5q%*!G4ZP;jyrympjFyjG8IYwltfvh z1f&FP8NOf!N}_|rFGj~YpZA`_(M5x=yCu)?b%lFc8ZEz9C&wI(lid{Cq;qH7YqjkJ1 z#|~cYW9#eAcIOqt*!CO$s^e?V{m!8wrCc+sXETvb(8lH4_2v8Z4nH`dz1!~Ew{uHp zt7}Ix3((khcD69{>+yN*#m@KrI3i_+_QygKOrabh4Uy3M3`ina#qaV2#Pi|#>P7GC zD`EnjuQOhlDz?zpG}hQPTBW}QNcrsZsS1C6%QrT;IpoYTb;pL+8ouHoq5}em1jM&x z&F)U3oVw%3=;eF%lREfsO?`BmW7HN);dQ#BD4S(`)PS zT(CI0DtNWQjNgEs)S4*nZ>a_!zV^uD5z z12FKo|6Zhj>)eRjDzS~qjisVs3&BH5BMmBTkxR#^_g3jW4URS0OZb=zL%@ECaQ!QA+^tnhwEK z?O7ph&2`u(yu<|3AeomTpe!UM)$g9lerz_PqDPpy%eKyHroyKylH_Bc4$E9)o1|F( zZDF+-?h>8ALlBM5R^jB))wVV+0~pcE-qG>#@YuYJv0BUM=t$|&_SxLTYx(HO{$oMi zBA0`CrCFSl#++Y}(X8Goo3W{Bi`k)-`jFC*vE_gUSiDQ&nA{ddGXHx&S(8B@IDpid z1q5vlQ)J_|nXRMyIaQbns@xWFozC{rab?@%QMa{odH9CM9iLTz+sCn|!ooDVh0D7s z{@i@ivxW=TF;(>o;f(qX(Jv+=I8w?MyeZw{qisgZ1#n#KZ*Sxbm(RE!BF%f~D??83wPCfo~y|r|W7M!_R`nCg) z^!CC<&XTOr_|?h;HFdBZS`qUxb=}edzhPzdx3^GH4KW8p_{975=GgN=Y@9`h-Wu%6 z!OhLfblN)GcdMC~DVLms9DJqjolUbegyiT&%D#O}v7o;|6_Q#~_@v4`^ zZ8H`CL1oA_d9Vqk{`FD}{?VqtKtb44;0TVIk-vnvCBiHPZ#4*woot@8wnlf`kq8Sk z?sW}WU=9gNG;-nN{wutvt{umxDk0IF2RirsO>_*q^oDSk+u@cD*6%e>9XsPS74PP) zo4e#+*_rGfjyC!iUXnkevKAbP4LzA97EJ?SuuMHF+4TIuSkc~4h1|&*>r}GP=$)qO zpJe_^o#wu~5_yU6=A(!XY${-5#1dx;4JLw1VtmF-)j^Zc#A&KSbs%iNl9f=e*w^td z5Nc{;p1hv~7W7k!yT2lY{dJ>oSw>}b)qqRWrRFjp%L;Ywi&>+RH7#Va|bfpFhK^AMCORW9h2h+jMm1e2sbCeAcV*lAJ9pZ(& zs%{KI;JYpf_*0h(HRw|pcusEj3Sbu*^iZ{dpPzMNaKHUolT=hbN99#MC(G3Ty%H(# zT^sp;DZnppi5h{P8o6L?Kdvh|>@F?zy^j)zXAxeZf&Ys>bjHkv_b^O>NgSix_N8H{ zR}kjkHYTlD=(Yt8)#}2W>KjZ6)`Cv$8z_V`P?w{{8*93gpDFwoP6P&E*&GO&TD1;e zPhlWTBrP%-%^FAf%5DwVL`L%%b){*Ak?xX9nFq!MX5Nrxc-3vRJTeZg0!c`-QWADt zvqyZg-R0^DlA&#mlC{XdQRaCowZN@Eyq zL2zZPs`6@SSYv*_s7N6yDl6r^=AB^yVa-`+Ry{9yHUD&0vW0;iehmp27KR56#cJ=U zmBgL+-=Uqz}zS#up;xQ=}smd z{zY^=Bo1R`0aT?50ZcjvVSpf=jq0NZOfM#+(3s&%sv&cIdWtTWO$@f7Z2A0 z&vw)774DjRFo$4g?Dtopska1>n61eus!B}{I_1~?8?}OCux*BsOxYU%0AXjy-TnCJ z2?rw4@@-{i!Ec%)2QOsR9P(QfZ4nRqcbAd!KAZgvWlFi+^9nV06XH$#w7Q#@sNv8G zG$7GBddH_1jF&(LEFfYOve04-2&Rzq@6t*7`_sW{0^UCk!of_^)=e~hbvS4i`lrh5 znhJN17h5zH?VZk}l2HJgZ5{&GU9DPN6vdCn4Aqipw zr3J@erKBb_LxrNcvGB!s388b(TkRBG-TOdMH9?P^^FgxrzT`pjXZ~`umc48`Da~79 z^?VmRr!yxIOv@kB0Ky!iHwP(RzI_K6+)j&mvK;jw1u5T>)pJ1Yr{`(mz<7x>_a9n5 zeL2nhz;z5&-Y6-fxQB&V;pa~j;dbpd?hjouzr4=(90+F`b*y)>x@s`10348s8=?`} zRN*hqG%S1hO;Q}xnowCza%|F!J9Bp7>_YmU&p&L3DQIAi23{)LLw|=2wnMnj9f4L_ z^}wpxTOx-F2ez9#7!pfY?kVrV;2sx{xp)=eY5MIS?qDLH&j z962Y9PHl^DDHg-a)L)k;iyf~>h1mY~WjwSaSlXnpDQOd|pFcIDW;NaK;$XfU=DUvI zGex~^+)oW3mFS8K2}elf*x>eQq}s_=w4oo`(f4abGwhdHIje~*>PJPCDNG);@Ne3t zL@5yNq(5mT^z^DLfgW9@~ zOb_#g9>ST7XK4oqhj?JxsiCe=vu6g`cJT8V9XjssJ22=O2gmQ%1LYq%VRApZb3bYW zr)JR}PltPK$MZi+TOU_%F`+g)9Bkd2og2D%+1wm}FMFrgwj}tJlbIY|makAf;_tVX zmyHdxKUCl0wV_XZ`N^52&?YHPEMQ0}?ZRL>ilQt6qC!ISB5cA8?2H_O0z#~!B0@q! zOd`zetn?zHqP+Or|6doK{{wZxXJGmFpOOEKcO*%cuvSw+3BB?7*_c<%4HncIpH0q_ zreR7#fko24}40w?$Tf61ETD z1c>G{%Io5*#BTK3BbMT;NmK_Lkf=*n`)e}|P}T-*dOFI$rUaNArjJ&cssFYdwIOVY z-gB%C*pzj&`m-F6bm$tVHDHfgO4O2~O*G&+%YO~owgd}SUCiL9J>?8?of#ds!2HD_ zmsC9Ja3T#qja8&{_?Y5pp-N;S<54aR0~nShtt!J+i`ddk%q@$=wo9}D(i*EGEK%D6 zZ%(ix9kDd#;>T)Zb<`|&txebja;!9NhPfnV6Oxtcgt#PeOT$(fefIwnnT|=9}+gOKp!+R0Ki}m ziw$w04=f!(LI2ydmpT=MtXF~_Ue&qhKExZ$$TLz3{OnWzVZ6+TH31vjZ%em_*#lQeok`( zV^OA9DgrgZGG`2D5Nt{IM0@f*dCXm3>-HdCDERr<;5N=J=nN!Q66=3sfd2;j^O&c8 zH`02RH|Q__%YkkOA|w%(3`>;9CvaIL%r=8LbJN^%Ld$k9-2=;wA4>uEHS=3wI6|vt zvA<_E$ps}OH$$A5Y<8kGb6{z+lsDL0N?|ELq6Sydhf;@52AV3ZyH)M*?ZmG9)uc~S z3i8A+*92Y(mLX6O4DSn=-E`6CF$bp62U&$=^{3$%OPWqmg~{ozZrkviuE5E~IaS{` zkB;L1*?@Xhe?3N*SqN{0w})fF0ma!xzyQ@j^SxY&fe*B`2YvL@orQP@vOPQ!KFFQj zk0E1m!@ve3(npE(H`--qha#PEVy1xZ$|rxdsTK`I0# z%uNf+BvHUa^K1}jLPHOvtOczEan_4lrnGIYU(!1-cGjy~zucd}JdbF=ZuC=~wRUw$ zsI~>g>P4$XowXda@p~V}@na=v1_7iumlo)=t%8`(=JUdR0DVa*pUeTl`OD6N!DaA# zg?x8zTpqlj;xKePROjP1h}lt{H&xy_ESjw;9sPZ$@jBuW0ZHEal%2~>TIQ=UAC(Ne zA;)ZYeZ|06O&ZR_p*)H>w9@pqU;*9#yp7c{iO ztH5k=SK#%xnA-QNE8il*?ILhUj|}?LwX3%)0}OYQ{Pwm2xCfxMTf+tRT}^pwr|18Z z{ae)(4=s!jwNzar_uSY2+)z{FDg*4?7Ik$?KDVK`w|gA;;|Zfp)Ai{Tg}KC?V`!pG ztJ+6m%dshCkw&ed>N>ssXc0i8W+b!ac%EEwQ)tWK^3O%~zup4Q@fLrV8~iDlPcGi+ zBrd3s{{NiCQn3|L>kvX>V6c4t?t94y10dX2_|JV4s;jMOfKYi)4#FO^G0JHT`KZQcsDl@= z`MAXMnC6qL4U&j+$3xdI{24F@Ll^T6=4Y_z!W z%>DEFE=n!tv7h+)7|*9t2XyX@u7%n-W!vxg>-S}x*ns?s6@+Aq;?K`+LiGi=CtY!q zaUm14PystV128x>mtg_{DSuj9bKAxhe%G%+-oSCN-93A+C!Myg9k-LDQ(Kv2#&u^9 z3L;UHpbSEmlwY5-y8vX2KAj0m4CCR%-+zi~TQ)P!(!1fe-!#dV!G<)+G49R)xN#smtli`8ZJY=dOBO;I^YO(5~2ELIop z2`?$r1eg>~QY4@l(W)gN2%BY$flU8d|57%{#XtUP(|E3df}jaw#7d+TD1ahhWT0@q zEbtjn>1Ia&blTK;HGgC27Kx{qc(JM1UOT*XGs8dm3{3jLT@{zt)!g&)ROWdVj{P#r z+}-eNaeGx4+if7B@E+c}Yt^$u;h5n>TjoU+lm!w08&iW54h)s?C(zO?M$QsOMR%x- zkL?tlCz#vubD@!@Q6?p2J5 zC6w9$kEqImxC?r!HEk{OMt?hdet!1;%y|weBw!h#RwY76g3+JM*Jp3u(&PefVwoXAo8-nHUHdF> zELO?uvwwy1Hx^IXXQX9D5S2 z7OoOP?>Fj-q0+l66|Um>3d)S~-kDv1xZksQiGe*-^nXWWMn#tgV;M6hkgh<>xPHTJ zc*4Y^kl9aHEzofs?4-1zwWg)b6X&vxw4Ym+df+n*4hqOu6481CyCT^1Pw%4j(hzVa zz;vg490)_AhPX114zzqo^W6c%XynnK9TZsC$WAbs<}fnZ^QcHJ6%Wd^7kh^Du~3vo z9f8FX6My*=3aLgyzVn^7KGkq6Ue5&_SVHJsYDvFjjfNZ%|!*&Icc7^5NY7tKTy>j7Uux*ud zH_~>zZbE3bwxe7BIPOO`n z%us37>WBm3vZHmCdu89vq)78c5pMgTu;tOx4_qUvbE=5ZFmdpMi^IOwyV27LQ5X5D z)#WeS;7o3@zhGcyuHuV!4qk1lMVLwoZj69(@vYi}=c!Y*;p4npX3o#WBlm>|HcFW0o|J@JwQ+)gFAuF&1}-OR9*#IQvM z#}!jZQb`bJM|%MH!A(5x6l5MFRvh_kYr>Q4&teD94&R8SY~xlpl?cgHvXtQUVZEBbNLw{fx z43Sz!!LWKn$aVk>-ye)0jfE$H$Z$B|n5=HXXN-OMNc@PDmM5n4W2_YRFdtPTAbcF| zJ(~4K%DnNR>zbQ-c%H<^PJ^-VIJ=>@F~vE;GWG?$I9z9#gX;_qoG6R?PgjmLww=5dPt!6^Tqsa5PD zt10XvIC5hd0f&doeVgf>7|$cywte_W53Sqm5J5eO0gtgti*N)HbI(p8Y#YJy^B5hs zv#}#sejE3-mU3$2>H5lItvFs-K)Kx}$AKDWd~J_a7DY5nD$4|VwX~R(M1L4NSYSFM zz_66uM$Dt}Vfz5{EN>63FhPGr!#o~@lh8t``@!gsasCvuRVG-mMYq-rdlMennwJw56irb_F*D)8fDvPQG-#D5~QOevH8v~-By zvB3aYcN{O>OWa^jVTm;pd$y}F?iA^?a9>*zV3AsVUCq6~#f9@9rD?MXx7KABNPmu0S{$dOV1Azp zaP*Co+mwNslv*|3as^`U%@l_L&uOqIV))VY!yK~0{oPyNz`+gp|4(ysnR1H7Pv~u) z)X?7J&i2{*8hS#r!)r3wTa%fi1q|ox{!QQE!KTNRhq|q?douqh0Eb_0M0bRp7mjpQ zWTccGzc&|ML*4xk3nn9#L^)(2-TSt7SF1;dFjRg6CrJmMlRrl(0yZ_1p}8r4T5WF| zxe@;EU!ji@67BK*<$?fp6Z_6Vnrjms&>~3zoxHJ?*itI3?4-ZG56NALTys})oB;Qs zpS03aoZ-yy;WINNgNp$f{Brcy$z@Y%1& zf1jMZ9*r3_Ls5*zimKuBlUHwl&L;mFpPo%7C(qqGJ^b76FGq$BCuh%odv$vD%kQs` zM~30+Z?BGDhJU{~d3id<+c#%#CMT~Z;cusBCoi9m-cMfqbSg-!jIg{ALP1xrhjC+$ zNUi)}+`JxhT4*W5ptHqj%%vGtm!*5K!*X%{7*9$K%P*fHP!G#lHLd1<%X(nBC|4I> zgLtW8@l>%waovbN$*D+rp=2{+z7A8)rdPAg)wC+lg9^9v>ax~qHC?PfELYdzl^HHq zf6S}tRsFvu^n*qtI($c{n$63_2>Mp*FwJyv?o=3zsa6Fu8V>>ns24t+Rr4D++^w6b zXlD0iQI6e{_LKOZDmV6jb_99L@#pEPn$NDvFyy>ktml<`^ELc%J*`&rS-H*{i3mKy z3Ct8yvp!S7nr3Uwr(uXD?=&-?Ef^7))xz0+(5$v|p%_-C3u9TI7*hyo2h4pB!=7hdaAVPc@EEwG~5_0ik+WN?mmF9xI# z+6->}$m@YDjO2K_8oW9BM*xCUkL^?h%a=5WWI3l{VcZNLQTF+4ObTUn+i5p$XCewS zMrFi%IriO6W?lt<#te4r;c{kY@VFhLM0Pj)Ta^I6g` z0M<+qCJ}531%QbKKg-F3e(>jy5VzROI<^*bTWdG)Nlq^VJBTenz9SNFA@MXxy3G4%0%MukFmiU+M|Ll2(~LPh&nt{x~~tE%(`)ZTB1kRX^bWq^{69Qb@=6n1*_Y^EE_P62yIXIE~GYb$gV#oNbLfbZGFK> zqm;C*HF6_-{E7xt2fmo<5>f#AFZ;TMat=H}Bp)ds~jQil^z*!z){E?m3c5vaRS1t{S$ zh3guB$j(M%ZH6!MXL%tMbsPe#j&Qj(rSwNtypFTnY{H{+H0rRqUgY2fyjUl5U1k&0 zDCvXaNS1~Om!o8Kx4pV&(FH(-hy%K?8j1d$v%{Eqs2WG(4kJk0ZD8+aHTzTpSnPJo z!M5nMeZpbqd2cJkeo6+Ya0xNo%W=3G{atB)yy5)+TjbBbMUYldwJ$xk!tW3%0KJ4g zEI)4M0s&FLAs4bxp#mAI35SJgdiN7Hqb@3(a4}_LY)vFa44o$Y#`&(=Tpao1vNG8tkyHh|ZUeD+TPArm)!h37?uT0+IT>DsSe?%{tUEXU=e!)6Z48 zdYrYK!NOS}Seo#Ci9?jgWr|L;*M2~McaZjbWt4|0^0HHrjvOhiTplFk)|b&cC3ThA ztk$up`s`K`S&loCkwOuANTIKLsVrG)%jEcLNTJntwfH;2^a!gMcB+FBs>AqP#~MA$ zXCpi*U{sA5BM%b;`&xc)F`FJSIwuAUOvO@u&f^Av1Dn+rJcdM*fkf9&XfW}A<@}TH zY~0S*9vfXp1BkK;j~|ws)fONzEC$H+_NUPFxb#4UrFwjKY^&H`O#G*M<&@U4H7yHaK&zaDubb7E;x*59l3@DP?kayt%jrsBt8|UYeFT z0oLpJbdj?kreTii#?3Bjhs)J}xnBkzt7Z7So_=bYLGIVf`k`qt?fOe5^p_YJx)nG5 zsrlj}`~mN%e^Y)Aqt@5ctE)y@Navln<*JsjTK=(FSC7NsY52G*Z=9g=YP`Ojf5;*c zNdX-C>3p3v+oo{B1-@GxLvzN_?tHhCNxUR6STopur84qZ+q%ZmO zxq1Dz?o7HLRu_Zt@cNe{=jpU*xnnqqxG``C=r(4&u%teDFY20L@P$cXjVCoppQL>LSX!UBoT_ zA$hRUO!gPyKr42t1emgaIhcw(*1*K=lD3&gw~SF4xbo$y^tCUs=lfeWf(A8ZO6kZxNz@>NqrwM-VY)N%=7e}&#S9<` z>+MOr5e*{EyVDX%Gm}P4H>YXW%8~04?WiR|ddQP-RqaTm^3J;R(cqfJu!yh3cJs*g zzHB&CDi;vL=^&neti#N11;Xw%vjDF`KK&ic+{|>Sna#tj+`d!dv+u;pc{&M_$ab~( zdgId=ra1_M@vMm|8fVybOl-3^tCj^oEr-XYJt{RhI zURsG$B(0-_*3+ksm=v~E#s?2FF)v7ORxpGek85Rr8I7fX2o;@H#SD<35jG5V)U5YL z2@^gIPh%>T+e}8C0wNauI%5Rn$Xc|Gz-)&R5PX{9ptDxADMkXYfnmh6zRv77R{)W% zgSUm#au+G2qa&E{3F~o+;ai$@oULDJ-4hgd+N7<*^8aG##ZjmOI+070bwrdz3=NpF9x7#9%f9hy+ zN|Wrs1{jjQp6=-D8CjEmRy0KDVEb%m| zV>|2sruF@e*Y2aVaLRQoSZu$h1&N%(F+O*;6Y&ipKJ9Q9*CGjVvVR*t$#;N23XSqD zO_?-*Bq+~dsDQ>|-<3Qe5g*bMHEqm67$Oe4ZACNNI>WHlVK>y&o*QcY+EA8+QTK+S zdpFEC-CVYZTq+iQ7d>{Ze6i=!Aw8sRw7b8y>ED=DSIL5~*rGdXa_3y7(8v+ho}@<- zAJ+!BjMVHQJ>6z1jR@f^t%9_UIaim7I=lx{S*u$2TWgc&Q$i-;_kQnv(R`{zO`$Ap zu_w{&{B4D@`Gk%C2kGl!lO4Q|CpToc&@S$At)1qjwaV5g;6Ty zNM-P!ve9HV`k1`>>E%BsXCF?-l%xqqr(;QE^7`!E<;CQGzvJ_Z$>i*{ex{ONetmnI zl4Nr6>ixU(i#NZ1czK#qxPAZb&*ROJ^-8)$ZD%M_() zL-{7eonVxI@$HgwZHeaVuZu-dSLO7XBP%`qrHJr8U7 zS@L^O28t9_qt4>LJCa#%nFIwmuD@Z7L$YOvW(P$Ro@l>=XbJ=jh?XIuJjtGcf;dj{ z<;-g8;S|1VOret5YWcU?e!MISx1hdtPs^oVS{K!SGN0Q|s#TrWp`%1Az)ZthCM4<4_otFq4LYrDY82_N5=RlPBc z%^GkSyG-u~%XS;^wD>ZeZ)UK<-P;|&MODl;%UKTlfNj~2tk9O|b;tub<)FfYJ}B@u z0JO+|0YYQWIFf0j6loXVhUh886>Z2tBy%Q`$*tbuW*s8Uz@5n<2~)znD4{aR^*>Pm zYN0i9RW2KA!iUCMux7P1wt}mVA=ZRp#KAp%=1O+_RYGw1{#t(y1|_1P=gzVhA%+4` zaIB-)!8T=@1bL>&kB+BeS#QFjtw{D=cDRXu7+p$Fqo0tAPo5$seNX(it^$Qlaw=ID zc{SBOacl3dS0?*O8%p}({#5WJpKsjlHg=@%90C!_+l)s=L{6r*{`*kYx0YybneVu# zeg?_?)+UdcU8Vh1KbV(G5Z+$9ZK$LnxO9u>s~boUc?GP-RwG10#uB~YT$EGm`d8(D zx|p`H(W>Wp(5V>82q+o;F?Mk4WLptT(JaeWCm zl0q0tP1ljui+ny0)Er7d&UDw1zDNRb=J}g0Oq51T9fiD^W)0Q4GWOi8>yW0XM3j+M z0zoY89~u@S%z`07S&W4*KGk3&_3E>Kp&e8%QO3GQX?LDiH$_Ohke#`DgmwdZ@{DfO zq~X}v8YiRa;^gBeJetA7pGT0+;rkC}=>jB^2x=o-&qtRh z|FT%Lr!^`NhAb*2U=97zUVl^rHO8OTANj67#!U;ZCgeduGf&W`GA;M@=lQaK0Jc=; z2HL3}kY^~c(*PR`A^B1H2GSm&rZ0E;LYf$wFGHNUuFYF#*GAFmOYGkmFQ&t3`=w5t zhIv5rVYv%Jz=CWB8W($|9Z3TvIO_~7eMOj})P#W&a$ifIj zGT!bQ>dY)(+yx_>L1z%)Df?A_VXO1!K{6l~cngt;K$Y5-7(ltAAqrR(@}{H^i%`K8 zcIEH_N-S4ggMg~gmkdg1VL!VviFKt*w^>rGYYpi2wTa;Z>Mfv7qH(wR;?g|@L*Kw+ zdowR#*`m~lT;D>+Vg9d{j!RiwAq8*;Pvk-*n z<|;rxrlFsptWxe73qX-2`ts4Pj7-K^XS7E2Um%F^>0*<*9CK7WT%rN}g6NRnSd1 zV?hq)qL;GzO@+=`?cNy9H07dt0H-teon{btZ`Mw-qSUKAapCD5Bn_h&VjE9LKMImE z??EWrzX=VwG;PbEvLCsB-RYLBDvP!K5P+pHz*0Nqm0teUKA08P`DR|*n|0wX>Q$GP z7EYuI!621R@%kp$nw_}^7B}cGYz4Dh(ihfe1Kz_j4yo**_rN7?TlYq?*{bDZod`oA zOogu}K%@qah9PGc%A(c*Ad(4SR$z@GQZs~^vebYu#2TR@`KefcughE$Q6hPHcUP@W z8A-mB3mZdQQXG(gq>dDYMn#b=DMTEx^Rm*Bs!6@CX2y(hs=jVCRd5ff{ANR==_Y=t zYcKT0<>t;Bv>LyRC8z}I_uq3Nz&d_iBlsFc(`5np8$8Tqs$COAWc5M`y*HoIlvI$z)W2< z3(o`e6cS2#=(ZuZ6BIxn;)jTRDx^p;>Z$N7z!Zw56hWqc{i2%E&?uoNngH3lDAH6x z87r;OHB*#jT1t*&rhGAZM@(=SDUG33OB%Oydtz`6+s2*cvFRbF+Y}$18)-t@6pzC| zGi~9)=Wq#Ru6p_IyGJKn57$q^9~jF z4h1*Rp^iy^iWtcT~cm6%%n=R7)i`;5oChbWlP2<_kq_K&F-!bfuZ5fR1 z9&2KJq02frhxA;!F|JQ4LsatNKK(p=Pyslxomx15pH2g~zw5-mtSVQQ*ADbeq12YY zVZx^X?Z4{Nq-SAmLdmDZlu(h%L3u*%4GHdrL|(qQ`Wy)aJuK=50*_6Iv}~QZ5|P0p z7n1sQr;LrTp+0q%#VV&i7s{_9zC)EqZJ5^%-out{zajO9)WfQO`8nKlP>2?93-P{{ zdifZCs8aff;DGy()_sD5b3m#XOhk=V_f%xqmn6pxA!u;0(=AtjmHB)Z zEbqhqtUOw;1GJ!5pdP7vGq{NyfTUyxmW_1gM$nE9H1zSM6AZoi95FOwS;){mu?Zd$ zUi^^}fq5{hG2$)Tfth3zDbGU4a3=XSXC0P*8}j?GRymdfyo+RU_v#;Zr-VE@+i(IN zqns1cCofiYG~4VJD;#OevbI}sQgdO>EWRm4?iYG9w8CmfrUxtRFeBHSNWvxL5q`{{ zF6q`m6Q+oZ>}baun3;q6AM0V8)RRbwQk;1+_OKBY6ow;`7$26z+_H}}mN)sp-SUBd zhUdo^K8E=`Gwd&FTe)7?#Pbk2jUX}&%NKxZa$qpNVKF5zC=IvrfcO=XFT?{y7 zI8XyZe0}YW3AD}z=Ls|NIs)qs0wi?=+hmWy>OQ*Jnb1fz7_iIZifDWn-?@l>3OB5@ z&FR|;3eBUk#mI1eD!ksnxH^v4DfnZ5w;0jG6?8C=Yk+n?=l6j26C@ipIN4;!_k~AR zUb(lx9ph$)k_~&hWHW#-GbebR#Rsb0~2)G}yitU)+MOvi6RT-HpKj*4IgB=EM(c2^MNz7=4TVOOrpHVkZRUEv z(|VG}Ol^fXwbj-NP8F#@y!WEgfT2B!&iZBIooP-~N*VTb5qx)@K&7GWnCngCgp{kT*>r9XogD!v0vO26X#;Os;#gpNhmy9*ZDN`Z zad3S^-p$zbW6;IZ?kix!8Vo;|^g%?gy*To;qMyz)N{Q0R<_4%~xAf+eQ?A*RR+|X(qeu{Su}R#Mqz=!3k0xI+O>2 zMXDBCt}he%?|W7&5jzMBofdeKwEFg3zWvV5ITU?E6dgq$@@Q{l9Ab<(r8vs3k)gzD zjf{gQ7bu^g^LTK4@HrozC73fCOOjyCbbL5G&C>i=JWBI?c>#lmKF6mACt-IsJQ-p5o26MkJk7(lQ93+1OfK?|dm~9VgON@UDK*5}#KEWs zMYN56Zv-eNiIBQM;|`7mBSxvPNfJOLm@%&6K|M_bi!ZBLIZ3djF3!rUdN#r1#iU%o z3Zro`n}nBaJx{<=TrTi`APwl_a=EOES@?f2pD$`}?zX}{E{K*0rVwU^IKhMWX|by6 zSzm6rgL6)pHUa+OZ*a+VJSne>_08&?|1$CF_cAPJW1RU|{QF%j9szC=7B8yX@Oj?y z#DJ%TC(FN_9Yx?lZ&3&f7r|V$3|ou&+*_&>c)zW{u4l>viWYEx31?>F@}@z2e;-m) zdNVa<861j()HD&IJ%{5KX%Nt3C~JU}XwH!&PTGLV60CGQ4p>b$v7B(&+)Cj$N@)5@2xPD?6Of$s&cR=n36IK%m$@?6+a&MpX^$U@1ogm2vfx+{W7`DN>(DFthAsH# zn}(q+wa}_|>^2ER!#w&c^8K0b(imriQi&9_;Z9g|HI2?MD4M{}kBAcCEc)I+r$DP> z-qsDuqA#I;li&8nxCDr5Y#GsAe}lBgD`YCc*ni?x`2&&LUh75mt?KQ9g#q?lM@c2fW6il90sG%(cZuY4tDzdbI^@t-HvyCMzQ9^OVM|; zlCm8_70)O}{e)sPyNb~~qZs9`VuY|H-(8L33Eiwy{I@l^-(Qpd+O|IkYwA(<)Z^wU zHM3k-kd2xa<+7F2B}_1WlDYD8%%97!SYHR&#&D(maMey$8um|%svWxg$ko|h7Sob! zjaJx&p?dFIAi7V11 zW<@MIA~&jX?MbS%q*hn7g;7)*0v-y8}^U))>Ge4X8KmPeI-64yTF!5w-^JevMclT-b%{NEEIEAf9 z+NxCt9AU55tF3wW&djgXMNwM+)^$|JlE(+M=yB-X0}!8|deE&$_{RstK})*_RO<87 zXzGu-KEZH9^zt|~@08up2sHm`v%bCQw&tUm|MdRa%s+I0Y|Ve4vVQpQmyV9buib2Z zh1}h0dyh*yeSJ3nxw~IKY;L>zo(=k@AG^=X#dqsJ%tytfmaM9|Mvu-uG23Fp5XvAs z__wRonh`(t)TJURb?vUDzwSxW<7e}mhhMh+^WT@N-)8gg)|=1Wrk~M$ntwn4VSdE} zYy6}#-m*AI#X5hKlZ0#PdB`@eHlA!r8Qi!1mfV>6-_{@2h7JA8?Q+}M-&X7Y+;#Ww zyKT4meYsk!w!YQ&S5@7c2o_wk_#j^AZHBYp8XF*mB;E%9yj+XTx?64**D4k4DsLxI zL^aCmPZCA0x?fWg-7SB)U9Pr6LDVZs`|1_B*~%tVW+;E99(vFaTU?JV#ak!wENrUL z);fWOA+Z36v?7F`5P}e7Axqiq$!VxKON`Q3VExqMU{#wmJh1zffN~m~Sys_lm~4YG zCcuoWAwM)*s-F^rkxh%p5-;SaqB(+06V{N4MjSO_uQ9KY*wlIvVYPZdSS?>jSmYl) zQMGg#QTc!V;mP|1TaGN9;As0yp%xo`>IIASsQ2CT;&Q#RVlQHWu^gB(#@2cdD4LQ8 zgsFKLW=;s65XA4ZKr837zz|Df2kB@8XJ5h;*hQ&z9%-;Th%0^qoS2@>JdlP|-zLCN zxns)^g~(FQS|9a~^=?9M6g5P4Se0uk@^a>X-Vn!>{*}1*`F&`w0~39%Rr*7#^e?hX z5x;-O?^+bTA+J+TW2BmZHm)cJ3us!V#|W>dqkP)^`(e=&YOomM9;IsadbZd2k--x5 zsU34kFnM}8L5+6*`LKN!LA`dvB_3?}PQI6J_&`Y#&R6IVJ4HiBun8WhSm;TtW@i~K z#@4t_2%)d{fKxxAw49n->yWJU?$ zD8P;AXK0P=x=6do%)+6W1-Xz{f`7}xRx(wZMihz!Pt206^`ss=1#+NtqJVt(^>-xf zK7Zfc-!B&{a^(H2O%JEe_J|>tVjhYSQv%6sE2qIibyf8oM^|#BdK-^i30-=+1dD%$ zG%;|h*0rEVTvku6PJ$m@B9iIFT&D(hR#QIM)9O*vX)qg;DK>V6{S=t#i=L@9XURS$ zz)laOq^}EoodT1~Bt5Bxd7O_^;B3`$;S_n^kI#(|&wA_F-G{6&aNRe_50XFd+&YYJA?0Z?1mWKatYyOzwQw9b!E}r=Wmb1uk!= z!B5dlImf5-uv%{&bAut4&9QnOAIa9W=sXQhJ2!}UqaOdC1`BZv1B?MRw=kiLiV-5WJqU*i#p?Hz3B{3vu+wCAUS8q1Lmz)Uv)UZF z>T{*%YyCDK#@~Et{EhWZ<8LW8Q*agNz3I0PbRSuHA*$ta;#_&teYsn%e!RN5x)vvH z-+%K9LT`RSGMYzmOstkUB$rk{1WtfmA3ze|Qse*4xCSZQYpte)1FI?iLaTYS_qSqu z;=B@@vb}zcQHCk{LCujk<$7MiY!=)5n=gyaeMj^U`$kjbe4`m+r;O$ZHW4RU%crqk zgO`5B^dw3#O@J$TpnmSmRLb$Z>LKViX!pWW;@R_x!C~8LO|Kp%8s%k)M$P-CS9S}O zG9a%10o!~|K!b0Fw{M04M=23CI5r9|Ol59obZ9alI5{#kml5Fu76LXllQ9q|e~q^V zP#fA7E=+-V z{{PH-lbK|HOTN9=+TYqUVW82_=8(38nuFw_5I6@9C-)10jOxob!T@e=K2C0KUJM2X z9WdM;^p_cfK^Fvb216k){uLkte**#Gk2YB#{4q`y3IQm&*aLX@06c;(c!XYXa|3v} zxkdgH2!*`>$O2u#mH<^wfD#k}a>ihgfjWA?z}7bK$8G+z1Tb5$0C+@1gxLQ`2S_`B zU|Sn`^T&WcP7VafOKSpvj|Ki!p0foE>9$bIktQ`dE2J!j}Sb-syR=c0OW3A!}Xh9f5*cS^oNt@xB0OG zA1_C!Bf#ph2#^oh3iSAc;pGf;1p(kN7m$zFza9ULFnD+XmS77wz#L=^hG6`|{%8hS z{fQqh9|m>@7;-;qj|ag0`}6n8_)%V#P>8+9KjDAeFPFZaqRbm@wm&QW+xPM%)E(f( zAs_jL5e~7jH-%SKN%Y)rPmKtEV zh0UK@`P2UT_l((tAs`K?Gx+zT0^s1`=Kdew<6v3XJw6=HkAnQe1$vyD|K3s#Vga@M zJz%^7f&d^42K2yqyy8bB0Px~@oJ32I`yUbpaB)JQ@W&LuV{twJD<}-(_k9ZU0=Tq( zoBl-n04|-sf02j~fD8CH;&~Jw7wBJ*55Q&pFDMA$vi%o)%(eR$6b5kF{|kx$xE%h0 zJdfML{sjd9T+aW3kIe9Y!AEA7f5As)*MGrBX1Bi~|D)3r1cUxz_^-ZMxWHhK562(6 zer)Q0@E@-f2;>g3z?hqcT8IYPRtL6TRZ5e)acm5We@`%M=%ui5c+J5+yWC)-CbCp~ zc()9@kWT#CiMy~S$9yg|PkryT*Hnud(j2eZa_fC(8ml$7(Sk8MO4K`&yC+@KLy1no zp(C~FeedM0>u-nD^rT&hAt=?%@z3PEMeyW(+<$k!1@ z{sof^f7#|4QzWz~a1Kf|R{UdkoXPWx3H;2FU(`ymY#2WKk$ibx1}nT#*HfO0r8>OM zUr6am4M-@F&hZDw7`ur@ZmX{J`Y?2; zcO5g)Yz&(h;gHcUI7}PS^2^ihs$!B&yYw^yX>S+%pG^B=qr7+$gb-aj7%|k6NMXgT zF^v<-70i*}tC?W(aBQeTN7{$qGqnkq3h0)3_l8b|4)e(s1#dd&=w7FFr$X!bsp)Htd=p@a**w4Q-~6^erV}D!DVp*$%=7s0`j?gl`XJaO zw)f2kw#Mlr*G(tCh5^rfrNhIyto%z%L*$d625AR8_q?hep-)t`~?krZ;atspfN$oJRd5T$X?mIv#)fp$;vtK*&TD=a%06`oa^c3;- z?ukxx#e-Ikooof^5kBf5F{>Ffe?MJ*>XWg9IK!v!Nt3p|v1sLB950I=u3HA=h{h`< zvW%iS3l>-D+b|I@KdabZU;lw{C3c6jYsx4FZmi*4oSLs0pSk8m6@6cX`h^YS7i*wavg)_GinZgXX+Hl3Q_b|CR-X76uhv(=@K-a)hG^6ZC;9xqU=r~^Rc z#J@B3I!r3gErya&V$hEhf9DiTxsdX5O}VR5wJkMNW-dN24k55e?Irj5RR(;zGhhsp zUSsE|9^I`gTmZWI6P8Q{qdjYR+B3+Bp#&wBqn+}LQRbe#!V1JEn28J>jmS*rDkAIX zCS8g%a20l{e)VgC@+5$S7Hypr#8=>a!e6tYo5Y+x#$YVBcU^Rse>8v%QgN!fqI$3J zjFgcY6QKe<%O)$8jkOP`|6XI0!DsU8ZWyx3o8cdwbRAtXZ^bSz7yX}zMeWd*`NwqI zZ~Qoi!2^Prprg_{0dhwvXS{(Zq?1_~bgp+yXOPwJeP_W$r$gbAjw`stMsTkp&f5MlETP%Wxtif1GBxK|9 z-N`e+2&-P=tYw*Mw<%AQ1h$(5uI9AQhP%xtnymX%)^D#GzR$~yj^xt|I39Ydq6h3% z8TX(kw7(%W2oWdAG|H5qRmV`Tvv_b5k0kHMe2G68#i3u8tS)UyG)2mXQjS+3=iwW&#yv+|$aawdmcMwSj8^lOEL>P~H5ec&nk8ID8Gg&m{{@ zTr9=%a~yi&^uXzv;|(GyX|g*ArDH3;gHd3^Hsl}OVLN-7>pF@%{>DIm25ua=*GHgm zq#nToxCCQFO*sqvK`yLDiKIq$)4?A(V2Q>cn7KJQe|XPU9D2TX_dKp;Dky5)i2~hH zGIh=Mesrv6yKzsr+r5qD0b%*JyfR}1i3s`gfF-kV*JAcJ_6dtpm4?Y~EuD>V>X-OB z6=arBwFe2PnNxCaD7%{eP2uz>f&2MVL#b~$4Q8tlBS+1MA3Rz}GPFo($I|&h{f0Qn z=o(Mcf4iFI{j-|#`zMKehnD3ZTwcw|IQ%T-%_&BFjZJ)CWk7d!p@;84S8@Ms3Tx?y z>r`AGMihao9rybJt%}9&n2E@ZsFMxt0D*?G@~zB={?XH{FR>TXvNI+%?-EUKUZ|K= z4V^P6Dina$ktO(H=R9wRUHoTp!;gXo1nf*De@7aOcC=%K#%h-5N)plS6lm_!*UZn- zywc{8!N4T;Z2m#;f5m)>E1IdWm4=3XKBx?2Y(D$pkBg~X9ZMV ziTYq9|I#{P@*NEIT#;6_2c{2S7pp<=_=M$tMQKEYR(-G}dm3gbti|wDfc3rGuu{B* zf0+13O;tZ*{lbFw>WY=vql=jF*kH#UbX6@_>Nn*F+PQ#3Vhry$U;Izfnj(Y?F37(> zvyB>hzLh8*IgJ=|wmQW#tH-vMLp>O?iyUHTV7ZhzaKWEEM0!ZpU$QWFIH|(y@J>^T z?%X-S57kX46ceGlJW+5Nmt>Ix$mPBye3*ne$l&T~(^irj z#!sq7!X^8JPHCHE{>@;NuUWH>!qj`_Zs2R9uOfCjw?EnQdq3~v^<{*5^RJF#U}D`W zv3*QQxRa0Scpo#=7%3MVnA$`>5u<`_P8P{hg6k)*HDW{mnZ`ZxZt;iK;r*#_f1uSo zJGHL80wej3Dd$mHSu*OV_a_?0xQa!T{e#RUAjLIp^)r%tH5cW=4&gJJTeV!Vy@_%d zeQ=Nk$8%17Tp8*p7}Qe;ldR%2$k%x_S=8K}>11yQuR5|l$(>ForVQ>{%L1OIB$;!YsJ9aB9kMz|VqW>o z$o?}#8@X+++E*5Yu|uHxf_ob=Ex zK)h4@k|;l&Pv4WjHjN*(1nV2b@=zF+&7Ga3oS7GjI5i5D?Q#KA!D}Q zT3!-?)Sq`IB4qOOqe~^Tf0G(oUV>e)VqTZh=WRN5^%B3x#RRw)KySn_F>{7n7q0_& zmnw6=iQ4)B9MC;yynMe5l(3%Cos|KwcZ*LCpcmmlvv;=WYHfbOIrI{73Gt2aM&Fe}R_i%v^64 z-5?ES*4`t4J?e*90MmKdx0ScGRNQ@>${ z8&)eJmVG5*3lXWWSDGM8pKTA8nFfm3qkz5K* zUtPm`45iFWi_rC{R3YP-W^4`}B8PX`+buL~U#zbUUPL2$yb>fCK8Uvsi;d-0GT2z_ z>$#40T__U)f8f9QFdicP_1w_~Gtd5k;jnvAKLk07j3$qC2X$9OMka*OWhtuqz?4O# zthnZMWl_#Q{~V?c81kdTkN2jqF39%?J}Bzh+$)p1Sg(3t6>o@~nQf=e({Y^3k(8TY zruZ}=etlw7qxv=<#{pkgyui71ZR$M-bGP&K+1rUOf7G}}mG>vF?uW5*mX}M*u3W1G zWKfE13GuNvE-JZJ*#;nQ)rCx)Z`>5YPKbgJN_Z~x*2*>DDp55MSye~)ZOP*aWPK*r1rF*o+Mv%!J6A$qARcRESUd^Jd+CiP3Wd(zm3Zg~CiDCX74 zNk=sM@R~IdL~)J7N>ia4Z6kAfA_YeyZ0H@&z}z!-E0e*l^r{6o~zIfl0ZiX`>mh55ZO#d8QPl4qWe+2!7opWq&LD%nV+qQLT+qP}n{?%?z z-JaUEb!ywTZS$VzeXo-H$IUluvL`dMv$AI=Gs&#^td7xf0bEV9tkcf#^2(uWHv5Av zm0F1`TvoXsD5lw&Z9lIC{~=j@gaqzY-9l8z1~Mz}R=?XkrhfUd_TGGSD4|CRhoF}_& zN6#0&;zQZJ$7?uc^o$xmwnDz$lWUu_*7Hi@O2P=^^F#xm6KSV{ZZGOTI-e$9lU?BD zZU6HQ6eAs}fHaGG-;g~PpC15$up%r#z^~;k1Uh4;X5=vVLt%RfRZowyM5&Pj5w5F4y#on=1qYe?FJ;GIjt% zkFAj9nptX*KJVYeS)06ISN63?g z4oe=hh16q=pg$mQB`@o9MPfq9IS$}t>y0#rXiK})vKYIz zU+d$nqy(S*v~8?6;_e%=B0=zI+H%QsRlG57tcAw}t_*9-mqVcQTn)f(gZ!3U@0*6QPrz1-KXE>O&r-w|y`wM-#TtF>S?DM$QHxioB)dj|k}`u0v13#Jv} zGHuUVFD?5gSYzU}_lv%%s~3Z#Y^1jH6qi6%<8L>7;4oj~>10-`8DWYM&qfS_d8E^o zeheLwVivaSsl|u()PVNP?6X!j3NrkhhG83yxbSAT-pws%7u-l#1J@J{|HQwOIX*UW zK@iyQ$P&ZzY#zevD{g>4Po}5NA)+<=C8;z{!5yN+@DR5OIJ)w8C`I)v{XVF@2^6a# zj~Srd0U9qC*?ygN89=xE+UNQCWInft257euR4mo&)u7r<8Vn&0?~9J;VSB(jw-E zDgRGP)*jK)Oic%XSEz))HYQS61{vFg7#FO#CfDN>HcTn`?~+=LC{+8sVdgh3Qo8~k z6U^I~lvn}i`Y-^k&*WsZ1S~Q0SjQ%o-LDVI)c8`sw0~j6AJ4*?D`^~TQa2^dpN#@7 znSOUr`Np^qNLq-1In7cDiG|=NTIgT-NyxkzkFTt3q4{MxEQ=}?;f)zCQyt3Z3_alu zkvK*ixPm7q%5c@mXc&?18{l@l`CLyd6;ao|#?J#C_A-E0p2=?E3dLV}%l!)c)^dn6 zJGbOA`{lpqq>^O3jTnIS**2~Mlc-|Qk9<}ToX+A$g~7KbOr$%X_lkI8y*GYKqEL7< z??gJaqF$t!8c(Mi1XG|-^~Q}L@DwN@$1uQDr*xAr&9wz|RHge!jA^qyIEVZhz3M0N z#Xi92F2e`32&T*(BujcynG5Gs7yd1FvmudkHDh&PV1_IGkG0%7vsKip>v5)Y- z?a^r<@`KunU0PfjBP5=B=#V{f#Ya+6bu>=aNVZ2^)N}FdJP_lsA;hT9?Ty5BpA@PN zpfM={=`CnHOz_yYXk?R!ML@O!^J)>v)H6ubfoB5P5L4Y#;h>rNs9#vbVqDUJ;j&hY z@b_quJ^oUws3Pz~U2UbMQ%zGV>=U0JD5y1g4Kz7CE#j(tV}TXUY$M1{ijkaNc#bY^EdTLG$)YT0_)U$%61?NnHnvxDmM7-ybqNcv=z=zzFM4<$Vi=$XmD zkcS5#x!R+OI$~=*@PsTZDm*5rMY4SD`#v|_K(A1dYKnS>m6Mk!r-Z9&FJ$NO3hRJ? zPd0QQK$_C|EqRklN{&{%Jfkic3-&cMc2kOFoh8j#*ZyK^Jc`6Ihkxm|6R^XF>cJOJ zvw4Z#M%6%+C@$Zo;ZD!`wfWZ^jaJHr_@sjUnO?i(-^3gEZ zbjvKcWI7q5qPDHkyJM?H#I|xtP#^FZ?O=ZuQ}g=(h4%Lhdh^@#a%p(7UUQ^|nDse; zur*sgS^xJF>;ya22>vUpf(L^wpDqVnP%9&i($Lj`JbWH}*STvlH8mauznlXkL-DyJFGht__vJ$r z$=!fLCcpf;qQPkS+nvhe;BU-|2Pgk{+s2a15@ir*(?evne)tu3R{=L+_lt+RLENOB zE9cg}{Y$=N80Z(Msk4cBu*l8rCk>{7oP((DUPHbH0#(S`dWv|AQx`VVm$M!KXQ0wz z6z^lVc}II#B;~tO!Q$rxbmR}?vzNw#y3H9ePf;L=3Fh4fqr@l3@}Rzkt4u3bz&pOl zWZdKNKY9cMk+~?K#q;4+HQPZD(Fc?DU`bF%6G|U;-N3A_3acelhBHh%DW6Qt8tu9*9ieNo+~V_V_KMw#V+%*zklk6YoB7nyNoN z@_D{6^}L3cK8blV%E=--EQB}z8g<@8almcXUFLxW?&E>cUXk@?oeK+Sm%)@KB2l6f zB0X5mGbYGp@!1&}EO{eEEp`hDcrOM4>2Nu>5CajXe^o~y8r;^ce$(g?KiSwv6AQnp z5DTui+@{gno+&ozBw%JaoziRJh%?n;=M|&yu^-lkQSbuD=2U@sxF<2H;Pu}gxp;hGqP`Ul@>MBtzaL5`^HWykal_LR zLTPs-QIhNIw!rrY3Pza|Cmef7+A_(6ju4*@F5yU%!bg;HN=~A{SuNCv&*>be?ICl| zuJTmp`)R@A2JWarf^eumS!X6S?N62~6Frg?GRaO@Z1pZc(b@xWyqqSAnvXJb-j>5r zeQkwxdBm$HgegDc*G_+X9c$}8pdO<<<&+*AHl902;KVKpXMc`VW87n!EVsHoT0?th zDcx}#msP1my8l)1vtA;V0z3gU=#o!}>5zj6!Lgm~$=U98J3cGI@)sr(WV3=L4T?A> zX^36Xp1LsfE)@Yn6iO4quiPQ=qKV1j6=i4C+)6>oFI(D1A1Her1)*eX85OJ(wp)e= z%iE_!baFqU#*W-u_Iz!ED4lMU10r$>x!V`3=j?QrlYd?4SveFkM9g;oy;n!F?zDiIjz7wIyi)Z}7`~K!y(U^dDS0k%@dNu>_)C$ro`!mf2D*38(52oie zP_A+8DRr1CO`E3Z_ovs#LbX=;^D*0JbsO*s8p~9)Oc~ zp#fu?0=899#1L~Ot5#dDxo&gxfhgKPPd z)s)pqsq3uu3jvI%oz!)3YWwntlNa2HmZ;|mmR!K?@8q2eFFSOYRme_q&+7$cWYO^O z7_)EQ!x*+XttySEF{=0SVc$>(R7y9_#freBvTgg*Uvr|IY}Ru6wE2VVM}kqNP%QA( zJjTsp^C);(*Pr7y>w=XMyr}te>n}mHvn?etZb4;@Qg-n*{5Gapz70>$pLtHD4`apG zFSURxy*;#4^aN{_Z*5WDTb%Vv1B=J^^gH>y)TJO~o_h4LlEJn>(7@npUzxJRn4SAW zOl!o5RBXpm`N_}BWD0_{K%r@ud^e9xu!N?A)^&|R6@*=1TTiab)Ava5%?O>|arI+suSCQTaVsUm82SXj`^VXzJ8$mQ2{L?!$m<5(jUcfMw`hPTngIQpr)N##>M zU`?W{j2R8wZyMu_{e$ioiudv`LKXo){wn8F+-!U13-4Lt8?{Zw54opL#$?gv(^7Z zW#4QK=An3|6oLlu_TPp&3sQF^%3a>?1F|N^#{vHn(&8{p03?MFfiz(Bd+HA_&hr;*C%@0|=2p?fkthemq(s=s~>W1P7g?wx?Z$hkzQM9_n8wsW0huSnLWBB8g@=8HL#ZBz(R4~{nVHwW$G2_jcmux zt=+YvaEsAHR&4SYKm`IW^JKg|#br6inuF!eQ#n%tJ#ncKh=fx$=+iaZIuxp~D5P93 zR{ZLuikNn0+Y1zM8EaoDZ^tG5cTyLj>C~}Z_*xTe?p^-cGxh}#WguC3}v|qUlW5Z8Mq{f8DVyOV@$FU9ZOiVaJ3eQJ$|M<#Xxu0`eQs;ke9?P;=I#iQz zZZ#<$xzo8+ZvDs~nD|MZM3;!O^10#N7$lQcZ~_=0@x9i-Md^Xs>RJ z#2-T(@4uU{hU*UI1QV5kuw!l^{|M#)UO|O_e8`N{DIx49;$SQUnam>oQ6((hwyvdg z3hu|S>VshOflW8@5C|sYz@h?m4k}J?_qbZ+!pQdaoWAyI?_y0|>7m!2uUHY!fKvfb zZu@IX%B&KRz;h5N!=LOx7Pk44Ydk)O~lb7dva1Q{P4$eH-!P%X>=|$l&cuVS(%-uBj*1$2w6$o z%XuGrbYJG;AR04b6RSi>4i)F?1m#f}ZN9)*Dalkw*U9-9EY|yk9 z%4lI#Ny(sHS{3*u4hrGjrz*Zf7A#L^%ao?t-|ph;fyRG;!lGSzV|th)$FZRB;rdZt#L|24-GcX;*lLI$xmbM+q9L*Yv{(DidjyQF&_FxDX2y9M z8_TDEV+g3@Q;y|tendR&%X^iy#+=9MptpT<6?2(!l@H2#wusuLI|Om3ZiS8_-|H-B z4W4k|lS-A4!eN4n8vZfz1ch_|`# zd#L_oFZ)^R)e{J4XUpj{JJO^~$MI**%zi#@ih_J>MnAJtZF3fsgad8t#%;Y7jKbgi z0L3&rjHWSJf})0JuK@oukbef+n!N(1D-6QMm6X>`lSYmMo(EW04tI}ll7>1f3%1K9 z^0mw+Gc78`wi3=q>!T9ZqmIvqmbfgmbRo4Ar)@L=o3g~T3`@m@#&i9*d$cC|7l4hx zcb{WeL~mMbC5}W$g9viUE3{!!j5e)2f*Q?xCy3I4F-gLThA)l}Z6Ampl2qqe1ZxIz zB_g|wu4I!;-vj`eNGU|9CCTB=l7B=ku^+MAZ-NNZMr(0y(w*q{4veG88b%H&#&nen zvtQtmn}~E1;+$+F@ziDBLJCAu3d@1z?p|lw?WhyYWg5iRN+7~ADWilYHt997I3?Qu zb%!CbPmv4~gt5sMxQt@A%Tis}BrM_|1Haou@_E(*770Kx+O-6)4_!tv?#CL%x=!GB zWzd7o7sj;Zt*(O^UD$%PAwP^z*F-$$t9A_Hw19#oQCj#rPY!$Hs8La%4^%x|fO(2? zCb}0oT*G=(Oj%=6y%LWtgLwmgRaMvML5DmGglHKdRu-~Od@ZQlhdPTJflr2>zJSvv z2Y_jVufvm=+X zni8)w_4BFA!0nUXf?c-o1POyH#- zl>I$8I5>dU7BS`wJuB9FSF4NTa^rwl@tjPcbZL7sGFUpvPSse>srD=zUz$VWQ`JVMLhna4P>jm9 zEZH_6CGZ&%B({&=8kZyUUUrPVOSPL=j+uM<$h4L4s+O{pU{By2)qtQruOj4Rvo!LZ2@uzy#a}6TX`Qg^qW!snn zR6mCJlcX6jNP4gr&dR9U_+o4_bkR9VjAEsPU6`?aPG^W+ggNIJBrA)&@Kh|a6Jn_v=3fbu~%bfmIzA*Mveb) zIW+3_;h7#Z5RD;x&h>|OBgQIY>)e^=1$(k+bzIyNX%QXpgE$!#l7a6*Il{9(;c9Y~m0b2yo1?;0C?c^}XHZY0nIuYP zU-+Yq&0sH3t*Tw>J=I*hA$dY@+1!^L`e`mWi2>Q7jd0-p=$oRtjPr8h;A0BYp~>xC z`-@DV^Q)-2iO<4q*O0TyfJ|!8l;wz~g=`Z7z^+ptyHtjiuHh095#JbRg1th_kaNj~ zf`n_B370LzO{Vojx9>cn9x@+CqMBg`-tUje5*ziRhMp-6%Njog#SpIaSfGV=ra5j) zgFwIrnX%m<6_OAV3tqk#mZREo!$iW1$N#B*7-LkyOVpF&Fc z>t-G-EAK@Og>7)6MtWpwQyo`jzIW%v;?%&0_x`xQ0l^H0}7tWq(Ar=2>exJ-q*33`dpSL00} zX4MVZK=8h`vc+^A>4Re<_LGN+^n;KCZ9;`+0~cIBjiuq@AMlOajDvNV!>?)qkPQ1$ z7v*JnH;Zu zg@SBoK8GU!d;QOVWr`5a|TJEmu{Z>-jXE>@Nr1k3K zH0J0UUv_oaa*kHSY=Zs*BwM)XjWgPNgMwfi1}u+Wr$u_NDY#7&MHBl<>Cvf?w>(=l zO|^!r-7k$nD1)Ie9!bENvxLPt*7z7BSH*{W5jR-#R3q}UxY zQ7*{41g&NnB?_TakwWFGsi?~PH0paM$j8iJy_={q>hcne@n~RXF?6yqBG2JiH|fRr%%4eZW~_ zFC6g#JS(vo7!j*wx5OJTJwjca?GMrV9O^0V`0h9`RqsEBY%i8UbujAN(DgaOV`mDd ziSu60QZZ&o!i@!*bv5q_>K9Z0AhG?Scca@LPP|qYcw_1UxQ*NpIs;Q%8H39mH7dUrO-4zhIEsCdC|etuUu(TWG*q zTzkPSKSXh<`Y!7RW%H~KHIngf{I`pi6E71X__Hj7lt@TqHwgNSdK30NRmU(--wyMN>}Eb_HT$9urITqhq5M zg_xT)oXGK#z)1Hn-)xQT$mGDNN!pir3G2#8+QlbU8v5Dq1jOxo0USB;(}(Pi`zbT& zR4>>7%G8fH*-fr({p}eC{^?e-AOjM~uDwoan+HDZl6H<+oR77I+O-J-&ylmd9DP{` zkH$N)?uSR2pVS;*PHs+5m)nK!jlT-Q^T9?x-rA>7^&`JV`B*AEDc**>h6K0(Thtz< zn4SXD5J8(aJAbPnS2$P(+j+?2`Wh`j5DlgP?*n~9*Qef^m`n0r+?5Ujd8v&m{?gH- z@3RCPU(ouQ?-K1g*C`)ILSCBRlMbc$DH2~B4-@`xEuY1o&Abc>;|upyz6Q?|5BCLK zbQg&))V1T4z+WGQ47I~AN%tLH)DGVro#hfod7ssIsjWw4c<|zGTnrc&*b0~H zr(S)%eDx5-8{fU>3H1?5JO;iEVBdz%-*&rL+NO&D2%G{%Y#j`xFRiV9UB`a_)0VJ7 z+u}%ZJAiM;cUb8D%Em_YL?SR~kTfAh%ceiGuyZKha3_gG#Ov*3yr>-s;JE7JAhy%} zb-h)(_3+qa3rt}{Wt5zxT9B55xn|*z?zjYaUA}JKk2#*V&r38Lm7?>X((5;t-P)yZ zT&R=M6qn4n`jfFY7x(bkyRD`Gx1Fi0>+pM%x5)HG!tJd9wUehRg|Js+*#aTo&Z=-0 z&EN0#+*olEL2I5{BO;6}8OcVhX9M2cvF>mD>j!H<`#x?<>3f}-eOYUb-+Y;Q4tl8{ zcADSsuZ}-E;gimt+NZ0F)_0P+IAmF?$)1D^2`d#q6-H_Y#zpx%`AZ z6c{;Gi-P!txw~J#9qZO5zl<+kdbtGl~qI{|#ys(R+^;wu;cs-B7p=Vyl8h}GwF6KVBLxGb6pwcFCfppa@a=Lc!?C%(S>$?s*`4 zF0Zn?h;y}_G_#!1Shy|Y!(qSzE7w7Z;i z+UtK4^8e+11>4R7)a=7!KUs$0_l!4WuwmKLDqcNW-MHq+% z?5r0#9Qpfi`*^&5tC9JIF6F&aXv52Qb5L&C7RjikJ!Xu8*B^*lX0}z+?eCrZc8Gh^ z7pR?lqN+bqMFgB)-Ku+v;8XV=?4uq=(1w0Tgk&Bh%(>YEm@x({f!;kllI~h98QxVm z)6N`{UpJFazM%OJy;p1CY}{4AIA03|sw6PkB%1F zj)QRSo70ZIB3xs9pX;Wst0(U-I7)AJdJNqK@YeYYCBuFSfj+NF9-g7o?bLPBJI8ig z?2{T(hBkQs+;5)`Oi7L7Q>vnf-wzObcjk_sFnd~8mfFsaYdzg15zPe4t&&hYY1;+s z4rZ``@2AT{&)hP8oop0_&k*m5WW{PZXoJS>ta`2@$D1(v{orTDVbv?JDF-uT1Hx_} zuMo!bOIvi%HoCkw0CRmGZwp z!3e3I0@?>O_VW@6zZZ^O$KGMxAL7mxz|wIxWQbHqONL|0Px@s`n)$A!PMB%o=LR#_ z#vJe5Q=Da_kE@wWH%MosRArZDc_Wc#s`hI*DFYT#hAC@jyw`uz&*ORTNI{~r^6L+j zBI_prD_Fo$CAv~et*wgSVB}r9X>4`8F30cl)&Ay5p){P*;VvAR7K%9OU3L!;Fo%L2 zy_u0LmZ4k?$2omNotxQg35}ROfms-RcVy@)X8~VRGinrf+xlq`(qI){JJB@rBl~w( zYJW!`p#8Ap{p;&^&R8w*hcx2n^v99$&vXF5R_OSyEcacP`-ihFYfJV`0N;4F@$Lh; z7%q*-FtlAKT=4`mfPudv`u8)JFbN%!vNbkwGoSDlvmYku!cdttF&Q(0+62_u6|y!B zrU%o%&C{`VT53Mo7qhgvPjbi727`EhH1g^_qqz1j6Vuj_GL_9sBGa@%oE(R^_~t(V zv@tW^&F5Fw^CUgrMQ?~B<7z@An;t&lY-vw}vl*}4#H05kBsGdAHJlrOhh5`wtBRDm1A9Di%HId;AT*13Io zLG)}xaSJ_$8g?{6?hmO#xvFWm@$s+TTKX#!+`nmo3&d_M}6TVuB**S2ze@Ol{ z*|45(zxGW93%!avcCJMFnY{T%-$-=xr&T+AeasB$q$|hCB}tQQ=@Cs#vi|TXvU^7+ zm^;&Zj^atwO)67{&iN0B`y_2=S|BPoYAZG)I6o9LD>FM26C)EdW11l+IL`l74dw(N z1pcqPylIYH;9!6ac9j20WAKE&g+8_y4;BP;Rw8!8AZ5UA=SUS5+{lDd_~G8t`ggmw z$BRljVX(gCEG=c~Uwq)nA7W}HeVA@5TvS<;Q4Ta)lO*5P8e&2m8@U6g*v&fKY!A73 z+V)w|_J({4rNl}HSsO32m=wf>+ft@5P5x0#o4FV#6@X%pN6L3pt~c;-b-i#Fo3lcFst zfhhZ7G@0Gxq)W;Aqw_5 zltsx{SU^yS8I`q|2!^L=wjnxj1fFaG9q37iAhd6k!w*nuu8na5G($fJA*0UN>+{vJQiK38x|6oWVN!LBr%U zHsM6_F!Ir1lmTyQdGko41O)N7RUltFCQ%1$Y^~PFU1BEPi>W9j`{{sYB=+g3bUd;! z7r&VjE(ZGhuca(S|_m8v7YX5u| z;A!Ega%D!K$MfyoP4{SfrZv3s>-yWX)xj5znFA32y!Gwa^;)+kqgFj_U^|YP-@*-O z^zry~jPIAy+gb4t*uJj0-nJ{2U*CLu1e{R~tLLqlQ z1{C$v2tF?W|Mh=3{`mEC_ja@*(3LDo8((B^9&hR%r`F#Jta|pjR86$L)t#2w5_V>t zzGJuTfLQqu-3bXy4(i{!=5QxfLD%`?@^U@Yl!|HUWT(HMP^fvf>O zVO6h|SdmLg9MWgc2|FMbu)U$FTIPo8y_qbGTaX}8g}WWt%QRAms%ryET;%cHn^98 z0WBFH6&iKUvg`8Min?Hq6_AeWykEj~7Cuv-B|Ho7+^POF*_%~RhmY10E%VftN1@okOSn?Dg_(3$TQlHZt|ymio87 z)93B-eBk)IZR_W1QqrW|?|s#Bh52i;2pNB?X{g_A{czcNVRfrNt7moVGOqEpFs^6P z=$Rr>P$k*Ie=7tVFLn0{PEk;Y%C7U^`SO1MhGK{;Z#5=^J+zUR%mvuADWLBNxY zM}jZNrN7cVzLT%3hdJTWZpW{Y56?YQ2bgGn&3=nk#BX(T)1mg)wf!~6$JU-t=Iv^ zAKYl?zdka-92v?wdYwqIlnU^2j4e=l)o&|_eDBqrz1RP8s3 zjvr@uREHrCY1xT(%YGfAfzmKqiR1$%v7?>;x&tXj*xj^>ROZmq(+R(@UTdz>!b;84 z3Q1up(juXA%d*$!Y8~f~C#!!uw$^ieIDq zgi7nfCk%J4gHEt13T_%06){iH`9R)zqqH&2HYziwvSRr5DBLJG3X;7VZ)1E04c?kcjA?C<_EK;dOWT;6Y-Z(_+LyvsGg7_4y2I5^tSYRIb zZiJ9Kv+g^JTxcH8sJeA+5gizc;ps+1Tf5NZ3>j_o7h|@sKO@u-I%8;{0L4U8m7Z*@ z=~i*R@IUTgFjWEOKqxe;jD@-j!jPkxvFYhoxy#mf8o}X#Om;G7ZS6YZgoXJa_{gkO3|q;=rY3-4Gezl?=_U1{XF_`6f4%@6 zA-h#qoeJ{*Tg0H!KU7#E^NGW15m%ShDIr^lg~mon($d(f9yad}iHqqkAo7^`De4Ah z@z5{yZwu>#ehZeLag|8OLS0W+$|DfZ4G{zkoyggD7O6T z-OxnqKn3XxaEG^b^+rz37;|FHOAuNfg(NjZxKeyxaW`$=uuxW+fFYYyC|DbeE|~M1 z-;@~1X4Yv|Z*E6TvalSb-AjoAOq%EVOB$%>*Qq(&Mm>cJ{$qXgt?+T5twuj4QFp22g(w2rXP?z!JO z_mQ-*I``4qJobHDRvAr)NgdKJ{HL>LV04@2k29=#GW-%5yW=Mky!L&;9CGi6sL_np zV>f6z0Q^(~#B5j1x8yj=fg{LEDH(r7+=1~@Co4K&Z!&T^{G6PB%P=u(BqQd>BS*d@^v?&V#eE4V*+Hsn|LD=Vf zLGqlDkJ|Q7)UeTZ81K0=@JgEjcnycUL(YP0nv58@B7mm=WK+Kt>h=5IaSJl*R}-F= zFNgNucZIqo0?@Q;%n4op@5v+IoQcUJWgguUY@No(#$1(~eVKS?u>RubHarK%Ka9HO z3>&v61_?9zeoqN7pU$(rM{qeZfi7O>7B5o2ib^Oa$W^)EcA4ec=vH(QUfS`F8f9`F zS9t{LsafmCWz-lf?sW<7+b6{t5N~C_Q5BSi6-4~1`U`oZT)b|N@6)G_@-zOvsmxHF z$4Wq}rHZ5}h=bDt4Bj2vM+}dPr5++U&E{D~M#cnS+87b9Q1TWAcy|bjI6OLUAA2wv z*hi+Gwm#He1ds`T{ucbyhRx03J)DmXI7}A*Omuo|JP;yobi3I91EqHU<>&Qs{yyJ3 zzICA`WSGen@UwnL?2-I@aJXr0onco0L^VRZ_yO6-qJl9?3q}P;PJ@vE*H>l~=3?aJ z5@QzP5MvQzXA=@;;Sv%PVipw^6=rATU>4>l;{E@2(feQEBqAm@E~fwDC6T8}*{Z9d zjof(cd`Sli%lv^!mKXe^O(in1n1JBQkeokB&r6PjYTPd@w~B?7gt}Hni>lSmvKTK);$YVR z(T=et+8AoWTaVh2xBl6qQIxSqZ1)bU?89;P`3Kf*!>A%{&D|6ayAZ-}Cve8ag3*;T zIc&=~gV^MXO!RswE94oF&7{ara^PcJ>I zNil+Jw$X>+Y%_MI<`JZKm@!(9vt~alUK5*@T8@87ydo8sGWi^Y;9NRt75NhQby$;7 z2(t$4SU36x#+6cv>WV(l7KDdBi4Zuj3w7FpR8c&m*WZn3&MwCD~(t)VrHLs zpGL2GIUh=^i!=?q6#yQc*2@;Q5;+~<6~=WlaV@n;^e1$qCL%Uzl|gDFw4x+2l$%~p zyC2?}#13Vd-^xa@x+$>|RuqkEiLna2GBA0hqzKARr8@MO1K?(X7nRoM7PbysmZiuq z^`@@qkneY=<;Xi`K_}mU<$>Bzf)DgG?+zPoZw29AqSw{Fjbf#o8M-}G$@zyHXt@}a z7nV&L5}2L5BDaGshIbC`P@h3n&}~fgDeoGue>}-dV+6UpQBEFX`K4wg1wi zgIbzASvn#a2|!J(EL;>K0v$e2*E-Lv2WCM>*K`UIk*r8W?6ydvZw`A_q5hH>iV4Bm z1)|FQraW>3=g3{M**~Sh>4nRp2!gCy7h%?jpA=|?JE|5e4eQaf6!Y&F(nP4}g{eca z6psz{*qQyU5vW~z!A+4tCzhUN_e-vBB!W0Oyh}>;;j=TIg1DWL7H1!FaP?q%YLLdCC}o z&;X}${vSzu!3!cu{Fe-1%Q9;@F1kv81koiJcA%(oNMlVR|051yRj2>fp>wxu9P2-k z*SLrP5c$E@C*R*6(GNq{tks3@>hdt{jrd`=KHGW~RB6rqp+`N|J z4*xWy1)d>9YsuVsS5adROmE1u3T(-?FE8kKU@w@7vH>iov#2x+{0xlKRQ7v7Nbm<` z$qNr8ybswC4Ufg=OybL{b&V20bt9ceIEk;@OctkH&sQ!KwSilsGP9HT)&;Cn4yKeO+ zih_RIR)y86{DYgfn;r7D@JZF>U_T&l#utk46 z!vhY;;itL1v$403cgi>$Pl7wD#_B;;?UO}Ux8fxhIRE*$~!O${91XN z(53J6c7@4M>B`zaTBKj;F0yZ5mpM9)@vleee`;q4 z5B7Q6otTe-{)|Ab<_~-`;k}Glz?8j0REocAV$0;+P%KI1LEVli1K;(!Pu{Eq(^7N6 zU0vEco*o3{XnYt;YbVZ9ojba9r#`w;cy7=t*&nrD2~7#@ozk%6!3klQIhbL{$;A}J GVg3iY4}g&X diff --git a/docs/equations/equations.tex b/docs/equations/equations.tex index 9ccf030..efeacaa 100644 --- a/docs/equations/equations.tex +++ b/docs/equations/equations.tex @@ -330,13 +330,13 @@ \section{Orbital Rotation} \forall \hat{R} &= \sum_{r\mathchar"313E k}R_{rk}(\hat{E}_{rk}-\hat{E}_{kr}), \bf{R}=-\bf{R}^{\dagger},\\ \end{aligned} \end{equation} -In which $\hat{E}_{rk}$ is the singlet excitation operator. In this package we let the $R_{rk}$ be real. As long as $\bf{R}$ is antisymmetric, the transforming matrix $\bf{U}$ is unitary. +In which $\hat{E}_{rk}$ is the singlet excitation operator. $R_{rk}$ is the element of matrix $\bf{R}$, here we let it be real, thus $\bf{R}$ matrix is an antisymmetric matrix, with $R_{rk}=-R_{kr}$. Mathemetically it can be proved that the transforming matrix $\bf{U}$ is unitary. \section{MCSCF} The energy expectation value of the wavefunction is be given by \begin{equation} \begin{aligned} -E(R) &= <\Psi|\hat{H}|\Psi> \\ +E(\bf{R}) &= <\Psi|\hat{H}|\Psi> \\ &= <0|\exp(-\hat{R})\hat{H}exp(\hat{R})|0> \\ &= <0|\hat{H}|0> + <0|[\hat{H},\hat{R}]|0> + \frac{1}{2!}< 0|[[\hat{H},\hat{R}], \hat{R}]|0> + \cdots\\ &= E_0+\bf{g}^T\bf{x} +\frac{1}{2} \bf{x}^T\bf{hx}+ \cdots.\\ @@ -348,16 +348,16 @@ \section{MCSCF} \end{equation} In the end, expectation energy $E$ is calculated with transformed orbital coefficients and active orbital one- and two-particle density matrices \begin{equation} -E=\sum_{tu}F_{tu}^cD_{tu}+\frac{1}{2}\sum_{tuvw}v^{uw}_{tv}D_{tu,vw}+E_C+E_{nuc}, +E=\sum_{tu}{}^{c}F_{tu}D_{tu}+\frac{1}{2}\sum_{tuvw}v^{uw}_{tv}D_{tu,vw}+E_c+E_{nuc}, \end{equation} with \begin{equation} \begin{aligned} - E_C=&\sum_j[h^j_j+F^c_{jj}],\\ - F^c_{rs} =& h^s_r+\sum_j[(2v^{sj}_{rj}-v^{js}_{rj})], + E_c=&\sum_j[h^j_j+{}^cF_{jj}],\\ + {}^cF_{rs} =& h^s_r+\sum_j[(2v^{sj}_{rj}-v^{js}_{rj})], \end{aligned} \end{equation} -and 1-particle density matrix $\bf{D}_{tu}$ and symmetrized 2-particle density matrix $\bf{D}_{tu,vw}$ are defined as +$E_c$ is the closed shell electronic energy, $\bf{{}^cF}$ is the closed shell part of Fock matrix, and 1-particle density matrix $\bf{D}_{tu}$ and symmetrized 2-particle density matrix $\bf{D}_{tu,vw}$ are defined as \begin{equation} \begin{aligned} D_{tu} =& \sum_{IJ} c_Ic_J<\Phi_I|\hat{E}_{tu}|\Phi_J>,\\ @@ -406,13 +406,13 @@ \section{Augmented Hessian} \begin{equation} \begin{aligned} A_{ri}=&2F_{ri},\\ - A_{ru}=&\sum_v F^c_{rv}D_{vu} + \sum_{tvw}v^{tw}_{rv}D_{tu,vw},\\ + A_{ru}=&\sum_v {}^cF_{rv}D_{vu} + \sum_{tvw}v^{tw}_{rv}D_{tu,vw},\\ A_{ra}=&0,\\ \end{aligned} \end{equation} with \begin{equation} - F_{rs} = F^c_{rs} + \sum_{tu}D_{tu}[v^{su}_{rt}-\frac{1}{2}v^{ts}_{ru}]. + F_{rs} = {}^cF_{rs} + \sum_{tu}D_{tu}[v^{su}_{rt}-\frac{1}{2}v^{ts}_{ru}]. \end{equation} Since matrix $\bf{g}$ is asymmetric, $g_{rk}=-g_{kr}$, and we don't need the internal rotation parts of doubly occupied orbitals and virtual orbitals, we exclude the redundant parts of $\bf{g}$ and $\bf{h}$. Thus $\bf{g}$ is a combination of only $[\bf{g}_{tj},\bf{g}_{aj},\bf{g}_{tu}, \bf{g}_{au} ]$. @@ -437,33 +437,33 @@ \subsection{First Order Approximation} E^{(0)}=<0|\hat{H}^{eff}|0>, \end{equation} \begin{equation} -H^{SCI}_{rk,sl}=2. +{}^{SCI}H_{rk,sl}=2. \end{equation} More specifically, \begin{equation} \begin{aligned} - H^{SCI}_{ai,bj} =& 4(\delta_{ij}F_{ab}-\delta_{ab}F_{ij}),\\ - H^{SCI}_{ai,bu} =& -2\delta_{ab}F_{iv}D_{vu},\\ - H^{SCI}_{ai,uj} =& \delta_{ij}(4F_{au}-2F_{av}D_{vu}),\\ - H^{SCI}_{ti,bu} =& 0,\\ - H^{SCI}_{ti,uj} =& (2D_{tu}-4\delta_{tu}) F_{ij}\\ + {}^{SCI}H_{ai,bj} =& 4(\delta_{ij}F_{ab}-\delta_{ab}F_{ij}),\\ + {}^{SCI}H_{ai,bu} =& -2\delta_{ab}F_{iv}D_{vu},\\ + {}^{SCI}H_{ai,uj} =& \delta_{ij}(4F_{au}-2F_{av}D_{vu}),\\ + {}^{SCI}H_{ti,bu} =& 0,\\ + {}^{SCI}H_{ti,uj} =& (2D_{tu}-4\delta_{tu}) F_{ij}\\ &+2\delta_{ij}[2F_{tu}-(D_{tu,vw}-D_{tu}D_{vw})F_{vw}\\ &-D_{tv}F_{vu}-F_{tv}D_{vu}],\\ - H^{SCI}_{at,bu} =&2\delta_{ab}(D_{tu,vw}-D_{tu}D_{vw})F_{vw} + 2D_{tu}F_{ab}. + {}^{SCI}H_{at,bu} =&2\delta_{ab}(D_{tu,vw}-D_{tu}D_{vw})F_{vw} + 2D_{tu}F_{ab}. \end{aligned} \end{equation} \subsection{Second Order Approximation} In general, the second-order Hessian matrix elements are calculated as \begin{equation} - H^{SO}_{rk,sl} = (1-\tau_{rk})(1-\tau_{sl})[2G^{kl}_{rs}-\delta_{kl}(A_{rs}+A_{sr})], + {}^{SO}H_{rk,sl} = (1-\tau_{rk})(1-\tau_{sl})[2G^{kl}_{rs}-\delta_{kl}(A_{rs}+A_{sr})], \end{equation} in which $\tau_{rk}, \tau_{sl}$ is the permutation operator, matrices $\bf{G}$ are \begin{equation} \begin{aligned} G^{ij}_{rs} =& 2[F_{rs}\delta_{ij}+L^{ij}_{rs}],\\ G^{tj}_{rs} =& D_{tv}L^{vj}_{rs} = G^{jt}_{sr},\\ -G^{tu}_{rs} =& F^c_{rs}D_{tu} + [v^{sw}_{rv}D_{tu,vw}+2v^{vw}_{rs}D_{tv,uw}],\\ +G^{tu}_{rs} =& {}^cF_{rs}D_{tu} + [v^{sw}_{rv}D_{tu,vw}+2v^{vw}_{rs}D_{tv,uw}],\\ \end{aligned} \end{equation} where @@ -475,17 +475,17 @@ \subsection{Combined Second-Order and Super-CI Hessian Approximation} By default, the SO-SCI Hessian matrix \cite{kreplinMCSCF2020} is approximated as below: \begin{equation} \begin{aligned} -H^{SO-SCI}_{ai,bj} =& H^{SCI}_{ai,bj},\\ -H^{SO-SCI}_{ai,bu} =& H^{SCI}_{ai,bu},\\ -H^{SO-SCI}_{ai,uj} =& H^{SCI}_{ai,uj},\\ -H^{SO-SCI}_{ti,bu} =& H^{SO}_{ti,bu},\\ -H^{SO-SCI}_{ti,uj} =& H^{SO}_{ti,uj},\\ -H^{SO-SCI}_{at,bu} =& H^{SO}_{at,bu}.\\ +{}^{SO-SCI}H_{ai,bj} =& {}^{SCI}H_{ai,bj},\\ +{}^{SO-SCI}H_{ai,bu} =& {}^{SCI}H_{ai,bu},\\ +{}^{SO-SCI}H_{ai,uj} =& {}^{SCI}H_{ai,uj},\\ +{}^{SO-SCI}H_{ti,bu} =& {}^{SO}H_{ti,bu},\\ +{}^{SO-SCI}H_{ti,uj} =& {}^{SO}H_{ti,uj},\\ +{}^{SO-SCI}H_{at,bu} =& {}^{SO}H_{at,bu}.\\ \end{aligned} \end{equation} If the $\bf{SO\_SCI\_origin}$ option is set to be $false$, \begin{equation} - H^{SO-SCI}_{at,bu} = H^{SCI}_{at,bu}, + {}^{SO-SCI}H_{at,bu} = {}^{SCI}H_{at,bu}, \end{equation} and the rest blocks of Hessian matrix remain the same. From 5935620b76aaa7de6240beca52472ef541ecf939 Mon Sep 17 00:00:00 2001 From: Fangcheng Wu Date: Thu, 2 May 2024 11:30:53 +0200 Subject: [PATCH 03/44] dfmcscf documentation updated--index format --- docs/equations/equations.pdf | Bin 347713 -> 348030 bytes docs/equations/equations.tex | 78 +++++++++++++++++------------------ 2 files changed, 39 insertions(+), 39 deletions(-) diff --git a/docs/equations/equations.pdf b/docs/equations/equations.pdf index cece2170ec11518cd95f7ef653143622123527fd..a212dec3ec0a2ad8415f8fd41d3aad26b7594616 100644 GIT binary patch delta 45618 zcmV({K+?a#oE83_6|jpw12Q!=mtg_{DSuj9bKAxhe%G&H-@tLX+54rLb~<(Krk%Q- z+RC&ujyr=;5Q&%<8H6mUzrNq@0we$}NGg$&_C*AVgR|#;&UYX>Sxo5UPZzZL{KMtN zSFaVHa7m0cY;t)$F_c)XC)zk7w3%F9P2OiOm-$UyRMVL-DwER>mw&<2GwFzBB7ai+ zvDoa&dMa4(7-&X}ZWu_yrZdL4%Klz`U)DG!JpOiDhf^a5NhgdE zr@$$4;F@r&B8SUmfoHhRwtEKLWPf#)Z>B8Ufq8a~i*2Ef6%GCphDfGx809 zsnZ;x)EEqXj>{Na=EYY;HqJm> z<1YK%$CP-?67DU4bf=;p2j*BDe2j&G66)Z2L#*TNVF~3F%7dG5eAkBx6F9)JR-R)- zgDTiH;;W>T0*yT-rGF<#NZI$jMH-sEl$0iYg@TGQ_obw+#-#o@Vp|;Bw=GL|0e{hN z1Bwq=$$b+@M=83I8iwg0%VU_*p$Yp(pf_9e*wE=Vdc4hVR>(IJ#kQ-Bu)7A&elJnSrk!RR^0?f%?*W zN(GCdK^;}0SQYC6lj+7gp^m?8uOrbqudDJt6=Mt~+!}j4pktUdB)`VUip~%Qo9Osy zoNN8Hw_#9AIDa%UKezf8BwLyNFi%Bi6vmgT$X9`<*Tu8C-K7LImWb1dr`0~I8lA%# z-dO%K%;NFW8>!qqtb@%!IgfYZQ;j@#WxY(fn^Ql_opiSg?zZV>aLV0E^qRqV8PSO{ zqK9R~K1tSUAgh$-XmMpe(HU(5n@mwCO!g*6Xs!zYzkhtSdT9L6Mu$RFpxedhXjE*F zlI|iUligHX@2k%qU$uy@!9Sgs0@i5iPrGzXxMX(a5}{Fw<8^li@o7O z2;rdH4QfO6FtscrDLjgq2-A%58Gw2#TU5#$RQl%SyO*z@fs|$aRD-qY zf~S;QdhPd&TGYigiTvQS8~V!>zb@=M2Abtj{Hf9L_335@0-<`%?we#;Pv#$K zMMDJDy`9VP&BB=Rr2C21>nZa-gsyLE=EtST%$O0d0<7|dQu{+naRCI$e*rJX%^44y zGk-g}ITJ`7PC4o#4NJzKvN_xH!jMZj>u$~xvF&$yyxn&GOhFZ+%3(yd|9?@XN2BWN zbVL|uzRXg1G|t)oT(x@29u#c^0gRBtTnLC``~5_Z_mfwN-L55CYrh{gPV_WREq6Oq zFOpchr_&;m7~MHe6UTb{oXaE>Mm_DXl7H{h&NfO7jXd0zIzW}4SW zPC^00uq%Lo+m%pUxQWEVO$%b%*!rfZ3csK*Jgb5F0>;y#^SV;=0~~H~A_#8sDu4H& zxTuRNxnkjd5M%5({*qx8*9FC3UEG83;f*GK$#+qZ2qNe8wn}G&LICYgyieyAJ#0Y} zdaue&kyr7w`8GmW|AuzftQs_eN}B$v!M})}mqpwHK~hO&kl24Ns{E?G6@Q7lhfy5_ zn#RE-i}Xn8^ZKBJM#>woe4m47onk7u@;KvEqgwF602w$9_~D!tfqhOh%h zTBc1a&0Z`rooQ{ee=a@b_s1Yi*6oSc{>6W^r*youCy+jwhTZb~1R<$sEXwq@5YKf?8+<%j<@E7M$IaH;`L20mpYH~1l)n{s^>#CRo8K&V+lHw41j!G~jL(TwMUd#M z9LS6dqS~hP`$V?o5-rJsLn33KFM;JD~B;(^tvPIg`O55X> z_N{X7`q7SS9UHzE7 zMhIHWE(?W`maFbx%kF!_bpK%;3!wo~6OVHKnq3xIx9F#B0_Un=nq=fK;&R5ft2|d|fSN6e7s@26a zc#?8bJ>G&qHK`Wc`LtNh!b82i4q7$y)#h^D-1x8bWZnE$Z|BSKyEW(s8coUM1154&SF0)LyWRL{=Bo>< zLQxVW5!DJFI2a%-e7@M$_jb5lH{_F)S0f7a#gyxG=^W#xxl zRI5$BwcmX9FK*`Bre0K=tdZcENL`fFAfe z$S6#lUx3XSNEC?RAaQ%=OalgySQkWtDDJ;myF3XHhY#e*AqQwXHNi zfg{zUn+r>%x$-h;Zj%jC47Lc|<R05fDIrZ6%X^?XXcg8 zBC)w2T6=S9QhVQL9iAdW$yaRa!{EN&XTt?tS@FG{-H$({Br9$SP~Mc zJlHl0`?MSNWa3tL*%*WcQmkT$&vSagNyJ148y~R190~YCyg6ah5Z43_0ge<7mU4ib zMRWq&4}-x=e*`z*Y%>L-WxRqss)0~&Wru2N*yANQd_Xl5u`fj=Q&U^pa)C=r!*pe!~wI}ttwzdSXGk^e+>k`^FSYaU#f`#{1nICU{48r zT)sk-&{%=*2HfBJ!5H_aW8Gh+?r%|nW&_^Rvkp9l&jagNVY1Ed$$4Nsi?lWXlG7?B zOmB@0{2_9%4;bSC0JVVrB^v!cErA?vMyb^&2MQQSqLm;Y^ISzkeBlE)Oqf87X!}aE z`{>bFf3|4cpL7S#970R+!+0x>ED~}__Od9JnjdcwHR7S(j22uq|Op+@&&8>p| zIZ^())7r9g|8jll-<;XJ$|nm8%hNyk*N&$@e?qpyAwlc11xh6n;G8~N2$4!+&aY_4 z`IY1RiiNpyR$)MZh>Wd5a#jIvNsaPyfaNIJIi62WK>FtM4VdMo0v-NSg?IF;Ri@Nt z3_4bsKAFl*<)vR#khAfX-OXTlX5gFzEKJk1HjCnkO@Y%uY(ZE{!cwF5jum^(xno5g ze<7c|h(_(_6!bt&Vc_RU;xbHY^wDGuaN40dY+1Onv!kj6XQ7S@o>kuTl~3sS5U+u>3;>=6 zP?H10IZMwpb@Ow+KEwILnZuUEkle`%f+ z$yBW6c2LW^`=KO*Cjs~|=O9VK_)T!fpAhcEVIGea;=~ooh)Q_8%2ZW2a7WJ4s!9Q0 zTKhe*OLeSk&!uRa5DvJMbRZLL*4&b7* zgCOOS*k2|{HCZkiI@I%~u?EcI+KGof(H*zRl)El%gmxd1&hGwp#fQ^Xx5v)JX6A?vGGUKq@O^ z?W}RNYSWyaaT!4r(&P-`e;Uh1=eZo`p%7sIOWQsS8TWvK$u&Y9bh=zGf0t`_Rb*oV z($1eD5+KKM=5HMz#__UVT~v?$L+$Uas;g$c%p-%8i1OYI)}eB}r9=60{qdDy%HtxH zGd-2*EuFm?3-A4s;2}*g;e}1`w%vHUNF5frd6v#`6K?JR2dZ%2<_rpd0Uz$`_1(t* zz@_ik^V@CJJj++C1pu(Ee>hq)qQ3H8LytR{Ij5t_iTqgk$|Q=s-n(F-2X4)5eF-Lr z^cc0=2Z!E+qK2+=j8d_v=l=KB=)y8m?T(-?F#55z?v)b4!S%Ez|A48Q!YYRC0VCvq z^;u$(AM<5vmXxixtr#uzC^2APL&u2W*?d%sz165JbRwD*$p4f_e+UVLNLn5evmu?k zV`50iFxTt)le=wys5cG_?JYY%N8=wa*LO{ah<&i=UIo1A5XnyH!N9-p#U%?9Emi^a zUi5z+#%$&{p_J$^_5qFj9lj0r5UsRz6C^e3-|jYBw@EOQf48jet&nP2Zm#Rg zEE3_gWD2^ed{J7`w5;pV-r|3=cCd7Dw`fldXA8U6>vqJle|PM_(r$CrNn(kB>5_@Z ztS=LUaW~|BXqd4tnybP;y#49KZg$#Bv&(N1ktINnac7Ug;rzYI7Yv2$Oz<5nnNk-; z`DGwRSnon=kBSl+&3E)3dbc(G%Dlb*z)6bVr5l~nEyIN2 zD5JnA4z@pmJMgq7msVKYnJA>GyZFhkyabF^#_x06V)>X`xI3x$)}8kT+mZwpfpw?@ zOtK%Ce=TcD5tr|9M&p?rVs>Mn*s#OOF%?IN)9| zqY=92V5v+ykx)n^65r-(F2ddVGsFe!S;HPPCFB(C3Ebpw?l|n2ZJrgf&ps0Dwd8{( z)#109P_%Ur(L0oT5H7Ur(T}}m5lqr%Hn%@?aDyP8S;xU%WGmZBB~6f@;?^RPm?xzW ze+qt?l=}|$)5tGUqRA-nDNhd5f~eaeXA@@{l|OSKsEHtlxdA-eZp#!QXa*qwGkNR& z50G6}S%d)cMpVxRY10OTwoq|}FxrW(f;P}(X8o^Ux^(3+*YFUP&$8I!NF`|jb7+H- zd*^!COZp9HS|yiBKhS|rQy=$7+6(tof5>!tH~De~#!16Os3URs!q)DvySf?Sp-H<2 z9)qch(x>XwkRHe5j_dojnOrmKyXwWbrbjiV=`k*6Cbp&rY%Lw-9n*e2t^?+Nd{_OU z&c*|F_5YoccCsI6WG8U^U^%Lh-Q@2$_m5-SA$UJPYG?|yN4nY7zzxV=b$O3@I%1+T zAwmR&lvcR^AHke_0gTVbq6BOvN!yw5ag@m7HqZmaZQ+u;lq3dk)`E9eRB8VLQ~58x z^+3Xt1XCyhGLtV5Du2yeS##S)5`NdO;M-Cab29e;N%_HROO8^Gy&EyLyXAPRAQF;b z^N@K+c7FZ#93U`Yg8(BdwJ#!$K~GQ5*Y}7HZU%Jl`sDB9lkd+>I$(^XO7X$?dSEC? zv>uogez_Qor-S#ymp{Gu$N22m(-CLMP?FP;W_tMQ?Cs^n_*gp|4xf}OygcnJ)l7kUfgwa55v&FZAXle#b z5F=AR@D(N~N~nw$xAlvoM1TP6i`!s}Q^fFSaqlr^1b^Xh5m0uIu%QVB$kau=V?*+^ zA>)ytB{M40ExYSf)VcYcQi`z+VquEG*3c5E%whj*eDe8(0jDr}AS7&^;R7QT;ehPP z{N()yI+()Cp9jF0Nd^yY=p4k5C;?Zq!R5(6z1qhU?q~@~s0kawFtSYpK>W+O zmB>}GD0dScy4`{?%Z1x3xO$IG%|NRqz<)EI+~~+&rNAAaRtM$(Seh%AfQltVm9fwU z_tQL8V5pKZ2>B7?1FSUQt&PJ~UurFrC0+{#LVHsvv z5?qAAv*it#oooeDjY6EL!4j%c>4UuH#l)-BRk6+|mCjY-`2kyYB4FQ~AEi`xE}iW> zjdMm$8ug&ZdTPu|Nuny3{|U!eT7MbDF9^OMi~$$sJXFBZdY;W@h%e(D_)PXUGG<8; zDUv~roOO7dx4KXWNmP=SR5vTPpW8JW#BxozV72gtdD`EVQz(22;mlUc6fyhU1~EzG z_Z@9ixD13N#BtJ{WviPUlP*|&Y5s(C(O|!}>1A{m$IQ%t<$;U$kcr-mFCcZ5m#XcU}w-&^rbSI-}#OSx$S`o`H_H8gN7xlE` z$6(JnOlWHWuoYUeqf8E1J_yLZ+}R85)M&Oq-8*<2v%|aH7c0S`|Jyc~uo|`dsHUp; z9H4+y?{xgCxB+vkTZIMzpMOmEqx8mV-DNonpVp@JRhH3rY1-*fL(!T%g3xH4M}hha zqJ^wh4X$RI&F@g|JR;!t> zShH2FP0-X*&Q}irI)8Ux%QIo_?K*Il7j{&{F1)=1qu~U@d`=7Y$ADdK=94}(R5t3e zwEYAt|0t}^W_zn5U;Bp;TPhb@T2Nlu;a~lWX?~q;XB&UB&cnrKS*K;0Q^}A~;L2Kg zdy`qoPQwcyI@k|(jQJ(m3y)c>z>-QZWu54OOIlS0O3tRsYJVONA_~4RQL&sLD0LAj z9(C5ESyBN2G?_uz3R6>vI8zssIBGx`bd7N}{3&0ri_8)+YWU*rZnZoWZ1|;^dmY-5 zf;>ZN9!T*Nl%DTM5f+G@7b~l&mejk|)NNxs)mS!`D!@aVINz`Vb*Vo*WEl41a(m}D zbTxW;5pvzT4S&G@kF1hO<|c+$VPe?l#rsepw~l0WGw>I`zCM9DRa`uWjOdxCTm*U# zw?$A=7m6n!6XpG?G{LX_7lX$LvIn8u4-ZoN39sa8@ZhzYV18`{ONZAenv8Sj_1gDy zv@Y!{>D_f{h(w~Y^xfx{vb2E&re2orRdWB_R&u|?OMmVuh{A`f2L#KB5j+y?8On>$ z8sUW!I{@KjuWF#93i*%db|_ofH;odiZu7$iv(~53`4d6mz zpx7_8^PN9H>sOZ0&L2=bFiomh;v?=at%lUL=SlUWu|!Z$9!UaaQNSqHf0+dyRMkY) zf(}UgtABD}K!>TJqrOtGY_=_9U8Qvef&EK}H}vr3>Bz9*1*)3b4X!V_pB#PZc~)vg zYG<}u!Rif&bz1}tj;~fmdTwbYyUs|wC6Jv|`R8q?D1AcysRh7Q?EL?SJ?*mDQKYqa znIq0Y{)_==ObvFPr5Ns;O`#g@*E5V1*l^tme1Fx^SYo7J<8!c2kUWB0*o6)FWw{D& zejS3y3Apa!cgo}hQiZR!gZ>Qd8QbR6V3fM0J%!HH>fgo3NL|2TrQuC>)ut)ZO1*3@ z$+oH#ONpx0vY1BON6a-Ls-i&g5${D>-&Gsd=Bp!YU$yz_41-BRB$as2_7K#2udI~k zUVmN;Fz>N4iF7T($`Tho)ZyJUA(ST8glO5FRr7`eh%Gu35d6coj%?thRTG``8(Z{Z zyJyV#L3DDWc#0j$NcYY-u;a=q9FM7LKJ@?+R8%7ELV`R3K!DWfk25Nd-v8nwUbx^OhT1UaW>6v6 zQx3bbTrZexk1~a+>kaogzH+3B^h&YryLjD$wCDwCbqu6CP8U7GfJ%xg|1Tw<6A!NbBCp}NEKQw_?8*) zrt)YpbXn#w>^*OD2I?qFw{Ml%0hCy)Eb5wh5GD1t4ei{so~VArthSE)?6I>t}bRvd59J%5fA##FrCM=8ucBl}oEB|oy28hhN=Ro~0bR==@iT%BddbeLsRZ@7cEJ`$TtC% z0C$_u@_FvhX|F>ow=C>VvVYlRJImY|5Z9_*quZ_s)xw@cCsIcS_8kf&?*7TCSFXqF zx!zv?Lp1*ZgQo}j9~$X@*j+{I^R`>uI7ir{R4OEDlxZTG|K1=de)Mnee+VqzTDfed z0gvP|F6frshQ0GALN^)269#a&wN~qET$zPz+hW?jyL;tM#!c@qTvHwGL~C5_i^E8M zv?qOmOba=pQFU3YQ7Pd08{_rmf7fta9-g?j`<;_+0#EzB{-AR@aIbZH zos;ACr@`+pyBt@+aKjMi60qht2)05kT%eDV@_E7tQbIVX?5>?KD&xoN?6OT&eC;#~ z>1kGoa8oM&h#4=WRHTqmm{=i!u;x($x=rDUDSrSq@t2TBgNTAZRfcL0CToX^9=Lmx+;}HiVWntcpl>+^V zLVwzjs^e!tJk~WNqV^9b{2M(FVImrATXNnFW5FJld_hZ+q_T!5uz*DHb_K^rOk^;u zh!!66&g8mb1{q4L#J>ny1p<IDboQx(W}?JhXrSLs%8YPJ}#w?`6CvD}*9K z*jAH4jMI8XZ+8AoI}zI1SA#PP#=VV?DvpwTaE7)eP9e_rB7ad`n(jls^gZD(W4W&^ za~a$i5P|J4sfaZd3bwgW&|M0J+!Bc%-o;uZQZEwgNy{{=F7g5#NNF4{jj+{0EPvrj z$k*TiWZ<%D@nZ>xQxjn7p`ln2_BEzIu59=HJAY`{qofi6>uC^`LXz;ktall^$px#l zU2}nijelPDz#LHmSK?rC%5vip&X6EQ z%0FJG;U0lNuStw;uz23Z?NBdOXnzBv+e@V_5Y#V~&=)~7+tep0y)7I}08nExl#yWS z$v~CgFksveGgfA&0NsjcS;N=C=;s6@kd(Su(g&lFV&0aXg?AMN-eCyKqWyUl&U6Sh zwrb?_kfdcuy8f0U#-(dZml4XKLdXIHgdbwitrIHZqsh3E+~Z zl$=dRDWK&9$HTjkyXh~WzXs`anjH0<^t*I6%Z7LE`QiQjbYj&#Wl8Pic{F?WkKwle_b0tO0R~C+xdYT0g72b#{ILTZ?V|>B^E0I%d|;6&7R!P z^J0{;o#WKbQ}*UP3{~f`^na%;TQhQXZthU=@c!Ovn%HUMDFeOMQ&wPD2wb?K<2ILg zd=)Bh3RuEG0|je~I?;!&L&j%LTH>lSh595{953V24?3Y$DdThC3 z3&*|-mthH0a3z#id1aumLMR(kyg$5XC_P{xgL-W?w52=#`c#mXVfYjzt5rLd)%P}?15RDK1cax0?^2JoN(^%=-! zUcFskXB3#UM=N_Us&-&ht~0vHA?j-wy;){TXAMKNJzxAD(3_HT6PHFKtX$*F=(92Ty;8Gb_hEMTVPzyX z&M(TkLzbJ=k0o+1tr5lOlEMRJk_&S*kKswpRxf9Ubka&q37lT90D?Ia~U zhzNo(A@<7xqHTvA!r+ z%0bt&EGk?aRTrI1v(H&@E@BF*!tx-0a=-fCQI06HbY8f0;;wci(Q)t?!pJ-_3vECJ z!7$_8+VdjN6MtHtLdfXlk^4a?u@yv}O>7{B|61MC_Us5GHrtli`6;vv_fOB=E_`!- zhflz`K!ljuNdph0HkF9uvIV~z)jrlu(^(Ol7cd~(K{@|Q`K9=%H@R|RmD#=cWcTFm zr|Ec@6*Ik^=u5q`;W$O!r?ypjf+{r7p*^6Yd=8c`Yv@VLKT z7pse}UKOdB$psg4ax5-NcBSH~I?{-vxK!<0oe1HWoz~)FiLNAry8>veu2P!Bl3dk{ zr|e>gfEPf5;J>0S#(-f8e;!90$VQ13ckGYMR)$@|0I}ka6|Yy=kxG+T?J?oG`BGFI z1$!LeWk@&?c4WtDH`x9X{xevym()>AgsTi#{~S0DIw9O(2`)t(F&f3-NK(NG?g+kz z@EN3JcW|MI5?rMm?FR5!%`EH}vmNnQ6=o5aWJ41olgQpC3_^%Be?@gE84wO9Rv0CK zMJ>=SDLjMkNyQ!js@0&`rOY&8I~Kc9Tq@>tg4u$}AtJnwK`3D!gH0bEGX=v4Ok(mV zDNZaHDLZDiM+GMZ4r6Q5cORn^1T>ZuRGUFgS;Q+(O4*=pI%SF>C53hGMN^N0}|)Ac8h7)P70mPZfs&-e4iX6T4z zMXt|Tf1%YEOhUm3IhXwm8e((ku{lQ{h)=>wVP8rE3xxy&AfyFO#D)_nK^}5U+c`N7 zrQlJctQPp#`Z$QE7b_2#{epsW9IW^((<^YbLNXd)ShkX%s?R01+<;|Q8NTp^8kMa_ zptfKQm1v|@S|OkHBTdr%MJiAk|c| z=P12nTn=X68ZXY53s3$c6&U*gDuZmb&wy+#2|+NeUW4XIxZz0LRe_pMSAiiGjh(mB zuLbjxTHwImIvwHDz$@i8>whD8l3J5&`% z$#lN*zf8ojq(2MyuD%cXI-uxlSsC|Pe;LnWB~jebcUu%*QP;7Y21%^}tvDhuU_iBH zIx}=#4(e(5pT}7*sL6wfJCbUv*ORj*jtGmQPqs=DZ;Pq31!^?=FPH6;1nRXDPP{ka zTmR0T@IjC$ogUC3wk1OcumT+@VCYe-b!Uo&CfDj!8ctxYAV0QIfNnkLNnW6*fAuU4 zkE2juAW?m>45%$Hs!yyA9@{R%`NA^Ng^|jPI>J$f8|lxGj{QbUy@+RNpJ$0K6qXdP zxw0k2GR;a#M76Lz47CNNwIAfO@{twf8lgb%XnShOLely=OE$};61;6b9tX$TuQ<^h9IN@Ks{V@!INoY{ zPQab4ze3IDx|f=qFHB9=Yo=yO##P%PR-bIUm@%uijKDFZBb!clH$U(0e=^y8aydO4 zhgg(REBW1p%SI92pCEF--_X<*5c8zAecskFXMY+n`v zSS-n#q3FLVK{TZ{yoeQf)n_hN))Y_rJS^4@ZVrzPqw}g%`~G`(i{|W9e7XG|7t>+( zjq~#IR8-naMGY6GqSUKaf61J^VqGK!1KSTqMf%o9Du|He$o}uD`}#0n{Bm=5b4!83 zZcaWe&QHn7A(jFnfj%uK^lc$Fz_w?Jl+38A+`xV#q9!a$Lu%QDr`5K0QO1h4z-R;^ zy0!_Dgs(~4acLMW6`uRK*OD`*J#yxFAvyJ`jgwztMrz5O&}XMK4#a)Kj8%Mo(U zHtV~uv(>tz5YsL-Go4P&A-1)iIe--ujav0M7RwUk8cIME5J?)~0{&L}sSo+Vr~QJK z>=)^9=DOlV`5bJ$y_R|*` z0wICm4#nM_7I$}w7ccHstXOdh#r4veIWu$4|F3oL%38_yY~TBR_WP~SQ7Nmjh?&7m zK+-U%0}BT$`x}6Sg19z6fSsL-m7SdvosLc&>;M7%B}S*y1i|gWFzB0q8A!lEK!1lv znIzER(M|yd1;{!=032KZ4&FB$d~ev<0i5jY0{=0D!QTKRflgpEfC4K(76t{`qti*i zY+d1C3rmN`H2--7(3>&Z9so^#)?h{ zP`3oz|0!34nL9WG;UK`H00K4zLG2$s9HC|)IN&ikKuty-pkxbz{%I`#rvWqIuh{@N zSULU<_m}tYKw#(}&OlRBn2jwE>I#Nh0L;M<5I{* zAQ%EPc{KQ=av(rjOa%aZZ1Au4>`mcdTL*hqdobj8i)_EcJWg2(Y9;}*u>nCH?9qSM zCkcjwOdrSY%J%2UT0>#ZQ1`!pIT&hY{<{e?M_V=xDA>*sBqRBk$)gDUADIQn0l>q~ z&d$fn3jo;xKrW`1Y`?>+yMNk({!nuK7C(02>23?N1(-iJ0rCW!gC2j--R*%+Abk$U{yWP5jpYAZkhCKN@`sxK5B>i~4YUD6T>mn7B(0;v;{qta9@hZ+zouHCKbKY< z1~L0zos0wUaSghw-viwKQ@mLi6UyujDX8$kv zn91R9_&6pu2WQy7)Q_1R|B3yW*bM~#Q~zIcGXx#|KLAvEfB~BWQsmN z12Yx$x2pDUxqqw_BXwrk91)(R+tf;CU~!*^w>n;9qb4v^q<>g}pNl1Y?ZjDJm!dxt zU7);k-}_vP8q^f0(tP7_YZRk8zS)dEH%8Dqn!6`f(?gC%#-c8|<#A`{q3LUl^!Z7< zEM2CZBR{rs_KQpB?sqOVJ;mRK0%tZ=wkmk#Fm8({Sbrik!u5R%rs%RvK28%+qd2gT zKV!uE>GFK)?0gb0WAuSiHiik^b3cMB&s}$wGxBQMZK+h9)4qe4mROgF9O(>iX#ADC z_;#W!;jDXMen@TB)O5jn*Q4f*lg+-dDzheH5mKAX!Vz-pS$G1P$H9dAqgR4Yp- z^uB};nSZi}kU}TL0K>;r&@0}Tk*y#ueGSG+Tf42W+UrU8MXBrOYpTr=lcMJ&w2L+~ z`qbRgG`k8IBr}dZjX>&~rT!-~-q~*fs^HVbP z>ZSjw#t{{DhUeP>&c?W$Kyy9&%dyyp^Rc%IajXR0?~!8ENfiUg0rt)-@MbFvWZDTZ z$Vsthf!au09!Ub|pk4*;Fc0DODDkeHY`v( z#eYjR9RaJ~2_*ccpmNW=P22lsHm$ZnEa_VArOc8hZF71lNvKo`pQLf;Iyb|e)O9>l zhFYrJX2gfWGNhBGoCvel_L`aa@EEesdCDevT)6$q%L9E-Y$B_>rUNU3w9%{2#}6X_ zOmDHUFgA1F5~CpLq^ALDelOfEt4C=QSAXNQ(9%X3R(1Db=(cb31N(55h$p%!?j`DF{ny-Q#iL$&8EuF|o5{gNKD zVt-@fJHn;VEz+*hD)W%@-~F?RBrslz+_pQV0n- zI_(5ucEPkGF(=!!ivmU4azkat(u?Atm!>Jbq@E9Dz^6L{25_-;W|r!)-MYd>pp!3t z$yDGo%;u*(L#*hsFk&g{X`g60_PI+ef4rBo5g}vY8EI@qBwxCTmt%FE`0c9SKP-|T z`w>w;+aLyU71$qh*KBGg(toFo(-}zZT@~FX4q$`i?W!&*g5O~hzoNuIs6flK%uHco z>;viqD{s+xPJP`CMK;tP`QAzMrAxv~=;C6@_lZ#C4t1GtbT?%4`x)H9FW@z7OibNR z>L~e?(;tO+DifW?>Gt(0bnRQ;X&}MLaM)YhRUATn2lrS{ne_AktbY|d*jW?l&U#D# z+>f@GRTak!G~_Lyw6G(R9Xah`0e1K}5m3-JOR+`jpwA>K>jI zsczj;ye`q4;(c+EixS>$C!t4cv=8Knyv)w2-=^zD&^j3}e8RrrIY;+5nS1)#q{SJ^ zwK(O(b$>Dd*j$3waDO3<_Pn0VbZ?L2J0@?iUN&S7#k@sAHkjC*It7d}Y9-8>l__)^ zaYTw>JB#3`%y@3PSmsb=-kmTGzHj)pATc(YPs?L_=%Ik-w^wD*gBIVeO{^OvOq8LY zAwsQ$u2g4w?<^ca+K(ZQHx$XDQHRqvrluwEPT_wLZ0y^IZYnH^sPpf4T!b197@P#97V?}3BJtMHm~28Vm8 z&>C5y8p$miUw>r3Wh&i3`lh77Ju6|@+4}8^*yibg$O$_#G_$uU>rQuL<2Bojd;Hxl zZ4CDaD>vnpA4ic0kXr}L==r;rvIdzaO-tn)rn*(tHzz2?@zg6w%wUT5A~0jSq}~u_ zMV;%ynH-+Gg;G7y!R!X(HK@L=O89pURU`>&q|~2c`F{cZde4*4l%J+`eO~a*{G8uE zMc6yMB7N`peqO@nS1D(9F`@=G;a!z3&FQ%oo()aK-QYCV@^`1{*gW*emrmB~!3C-n zOWo0v5u1_6n`(YM4Q1s&GVc4wPBJ@U&SxZN4QoCm7+t@SH?A5!qmy}80NOwn;f9}a zc#Syv&VS*A9R&{XSR1_^ZP4FQi{TruS(z_MK(l^Fb(^+sa+>BLo>_@VZt?>Qh)uj% zjfme^Y5ssaSwe#ohB&NwM=zT}w#T2TwxAUF$#0Qz8B3ZGPgZD8y}5 zOaTH+8@Vc0gyM4XOFcv?hlf<9n~^*XHRD&MdwUs{@QWV_!Vxow(Wh(E z9CKPs>)Dh;(Ywe&db(!I83X6sNyEg4B>g3e^M_ON^fn(~B!h<5);|A8bVmP0(TKkciSHD%T;bjd zMEROIXUk8yXW|UL(*G)8t$y>1Ils4cAGhyghzIxD7&->ljV#lrIzNEBwNLN_C@{E3`LR4yO$aFlBkcs)Hjz83~8E z@nMiuoCJ8=uO$hZxV%2z+rh1lXis#ZQBUpwOx3ali|J2mmK<{uN^JmyLS2%=Vt-f* z#eCvLX3WPE&f$tV3`!XjFVG3!PrKH0S-BEF-JU>V~gNTgqFeZ~AMNDaAdzS>(7gue4q z;SKvXU^Xql$CUAeM=eGs*FoSdd4I0f!N5oL)~F3r&=>mA@NmRinT`bMnS9!w{Poeq zc#&ClgwTV zuS2!M_1llg>iEv()vCk3MdoV18d_|I<9*D$UcA)eEaEd@>aFD@;z{{+Ykw#}BE2xS zTrxMMtm@9&1uy1wEPc_YURN*jKq|z;z6jD5!obKLX<54R<6N%H9Tc?k0ob6q&ANMc z43sdQ(43Y5zmZLPuqBMVLmVQR(3Yk@8l!v%(>pg+EuijYk;07%G^yLW3z2H@k)g_% z_2Pjv zYD=_}tcl;H6nx{DSthEw{@vkZIsdgEwc?x-#zD4wCT z-6wTxd@)(ekAEO?KN=XX_PHI z`^EJ`(usd**XrjWYO4UdC)Y?TGYPG2c}k(UC1%3S@%0fC3m}19G8J!4y?S)nj11F| zjp-CVgXkt~7Igxf4_VvIR7@QfSGsSa5MAH%5{(?hS%t>Lu*>RhuJ?cSTtzu8mI(mx zw9_Yo#J--{I%4EO?&%J@mvn-VBT1<8h<8wT1tcVbUO6sDRv#EK2$U7qoUATM`R1R& zl>oy&GZQbIXn*Z21GYoty_dyxq_vQ%0apnsf=Hr&T**z7w1we|bEYyE?uIfa=m0{4gjJK}hmYjFi1ahTwz+SD zd(w=b&k7~E>e+wOz5v&gVc7-1zAiCx&-qswBzSM+bTwOR;507S^}5D7!%}sQ5dD21 zE-PD*B=-`*_z#VN1-{Y3Ko<{n4CTN^H8u5^=M-ap`nnEO$|d0|MGKk`P9|)sh2AWW zV|@Z--s?=2xAF!;p`NHI{WCfrjT;Rjmxz{qP*5W{9an!#$_uO68;F&v)>QC!+Qlg} z`gB{Uh!sUiB}Q2)dH4_NA$kT9rF=E?^Rw~Zw$N6Wttfm&%A35Au*YrNg5uxqO7Re;%{?{zpsp&G$Xa_@9_%0#Nmk)8Qdfr zKxwEzMGb#;Lmv71H9R*_b!DT*n(ITcX1C@SoojmuPU?Ctn^%$;-F}2oNw|vs97~0AN+lB$LeCdPLb{|xl3kZfqhHT$$oxI< zL@i>!LJR$>uojn;l41n)YOp??9289rAExAcxPX60G-fYk6epxtO!3XSj1!fLXIA5T zb=8qhr#jKYp6mGuZ~P3}_ROj=r&u_;513#E8d-%&ED3_ z{ju!G;d_CGXl()()$Cw zy5)bQ51-7&NLePZX`e$E@bXG*G&tK!oajva&V|Jc9hxq&MX!yQ9_~m51(i`YdW$t} z+wl-Ij$CO;teB(I1hYP+$o*jF%1eAMtV5X?v35aG<9eHP>M6vqNRlVzodHdXJ4Ecx zGFNZ9;LVSGs6pXDTg}NvL|Zt@xi^q^N;`l5rZmIQ)tNEDmo%5g<&7DJu&JkwuiK@g z`#E?Hx}>Q5!XsO(|Mne;b?y)b{mSz7uYea)6I1jOyZDyR>bet8j{PBNtT=E>KDO!j zS$Zv_g|}gbwd5hx21A#`GUhF+pmeMsYJ65~gdXsMx8=Dt0a$%J2neFpo>EQIwt#<< z@((Sz{$4wV$~#DBXBL>mTyR^=ZjA~t0WwbB>${pWnQDrMEXyK#tlm2IJIsz?{4Hm0 z54(-?p>10xCNG>>?YB_~1sFuSlgz{KaBEk6^X2jx($6zplQ`vui~Dc^2nAo5qC6^6 zxZ2*R0)jTfKEoZErk{lp{<&Z;FF#UhQg$w6q z1FxM)xGmy4B@^}$ITgV~`jJ7g`gB2ssBfWR3tqGEfb%#471&zNS86bxr4`}k1H;-n z;ma?9>z&UD%$LxRql8zgc0MWvW3wzZ3Hk#?(ckBhJMp*_Ma?v|MMRY7yW9&7LZv8T zpxg6D=V@%uF7oh@3=@-oXzG8t;D!v6Cx?ynyAcalm=>6!ryi5Z#J^UIjMgoYoV6&I zWd?_CH;5$5o1i`u{j@_CWp^>rTpsNtadogpPT;-a=MaUELeDk#>68A#GL2?JJ>=pN zm-M90FK{hUbdHUD4vesR=$$_-j_oP;=JW50ih9i8~RohAnH{ z*quWaAtKSD+~C<>)-NnRH{b02Mg?QxMop{LRFYSeMWOv(MRR8O?YgYSU*hl0=>YoU zovvR#-&?#FapyZ8#idG%OI3U~9C>4mdO~r3T63mSS4!FCb6+-D!|!Yf=xi-TS4~c4 z5NWqsRKw+)S30Gr=+1v9WIn9xHgmqk=qscMaR;g{{^Fukai#DMTQ(z{{uGrswX7BD z=;vOu-R?hy@~WbI@5&}N4H{ASPV?d?xpn(U;;nMM)h8qoLoJDKggDy?^|BJtr}P@2 zDH&t1?N6H>!KVoN=Y3hdWT2%6~`CpS-hlYQ9zlyW@LTU2@R2elv zj)aS1%;(lJ)>~S)p8o90dBel$^_aGQ z-!4C2U1p6k6DbFSj=Ekt%jnT@Q)W{u145gy7LA>RYm4k{$xOq|&^2+s0k5rG79sIh zKddRH-HqawC{i@*9E;Cw2!Xe95>b*<+*C)Jx*zEIBjSHrgEMFNQ~Y@C+jtQiN7sE0 z9jNLj`$(#UUq7&7KJ9zLHuefEz(4!CIl5ATgIG+(el~ z49^yCHRyl&TSbI^kTpGPvxRjx8@#c2MzC~Ks99*sasl`IK8CY4GDRg061|q1eI4pX zbPYBM$W;F2abQVn$VIB+BB&O^h4{SFt+|dSy?uHo;sh!wUSd>u5uji=Zpf-2?akwB zyvCD~YkY@TK-}S-TRW@iX}iqG;dx1EvhyS7K6!svaq@kUqSB{ryJK06@qT{E2D#V+ z&!(Bq#UJ-q4MX4`=#{9#kk}JlSOcdL4S90%q`*a#ziiuD*$^~KC&^CArv$MM_#m@2 z-;%7Ib0Abq?mUusQ7)$lKcttJERr%hrlswm8hyqhlro7T&3CoAdgcAKF3ieU?d7F< zmQ{b(6Y|38aKY!b2_37}`Df#NA_FBWVGcHO9%SUPiufBoIWI%+$|T8Dl$_)@joZD3 zb2oz}+`l>Cp-ebmzEF6=J3zgV(BgjB{*hBqJ^fpMXZ6MC{N@+C8=UPvl(%6(Uq6Z5 z=()gi}Xq5x+LanSz!^eMFv`39Pu1cdhwe;v??%nrW$~Y*}9{SYx zf8Dd3@?)QMeg4r>ddLiIAp5wBI5@%*w}>^l*A>;=Z33YD@G5#oZ0l4zk`0Iv-k&Ah zG%;Q0?bpNH1^f7ZpsgYBN+#ZD&T7CTd3R$|u_v;jA(zLT1MlWiyxA>uZ@6dB8k3oYjv2&v-Z zYEUmz$}JrH_bcs#?~Xl}$dkCR>XUU*Ld`J@(Zn=xSGJt;^?#N=iJr9rbRdB9@LfkI z7#uR3oq`TTvIN}gGO^}H%&G4`hwgunTa)VZS_F?Y^k|1rT8klOk-E6*s0K{k2n9wb zoZCvp;CPraBnYO-SAo;D^!8faSNvFCbk|wkF=0ICN(O{Rk;FH98WQL)v>jeljEA?qwyr8#1~mBeRxThIahK?ZP?0qgBRI3^{)tUQ!ez ztcCh2?c`{u-uA2Q@?p1Ox$(c*aWoJsY|ZDR(n&WUQ}D|uW;#+ibYhd6XZV?K;rLZ& zNNR2^D#cN<@O{i>qMT)YqU_Y_^Sh@lFVyz9Uq^IyV<5LhY-|QG? zx*sCL`d|UH3kn8^*aK@VwYq=!lZ_X0ws^(N9q-?%Nda>V&X&o-qFVXPSzHh-d)#xhx3PSZPrTC+lMhvd3!w+vBxt<}fv z-BlIx7#{;GROIEBVp;`ye|HIyp>=kWQ z@jIG<0<6XH1oSHk5V>y>{cu&i=CMs{S}yX#53F)CTY{bCA%u{ScXUaxaD0a8pCvY+z-WTlu1 z?he?~^=T?+aG;)5?9+PVVq|mk7o+D|F}@grl`Sh@mAb>F@n0cTNrAb8CBi=~hw~O7 zC|>K)Z2HE}LI|P@E6`#(?Q%P8O9A+Ag`zwWo=bI&G~<6f3-}<^g<0pltc{{&D3rmt zrr=pGOdX*1Ty74#vOmR`O>**W2(h_TBEub9L6Lc9VLojGy>x|2=m?^~j}XT1;Sx;t ztRe3D2N@B^6$Vh}Y84JNBjW9{sBt<3_cGm~49P6a59xU)wt@@a4dEO({4a@^6)cE& zJ-k^iE%1M#o6NOx7j+EJE3^(G4fubxsfV?zonM%=v?MM|z$cy<^wYYLb><;$aSr81JGU2pA?Q0QPPVUIK3uCXC?zVkGx1bwN zkQZK}tSDRusO$5M$oNOJF5OZJZ%<#KIwTa=s$VJ31#@gO>g&OWcIkn;O}1*HL=~sY z4{bShQc-)M!qy9QTpgv$BBWfQNI2h;y7E^JV>tr*^{PgUVhmET8o!+clf3LA01tnx zSB;Qc?g%rJ7fZ3mD$3~+A4^$ON9@bE^)!7`p^W~9ZDp?B`E>mv(zpp5F^ z)=hTU=pn{H7w7jRkJcK1MPk;;cB~$WX&J9f5KOLI~~U%705kMHQB{9}cf3WCM! zK3=tM8}5mMMht9~9w+Q(8($*&=(cT!5*!EfB-GN`*<{FOse_hqeBONJp?rTCZHuUj zce@-CtRleL`^h(eBgoY&2@p|G0W{< zxS42B0w0m&$Li*R+;HU;U~V2y9Sw_@*C>yvQOP9xwfz!V;DnT2&?}_72_6QQkrKhD zL)C*O?~4M&4YXgZps;)*x^;h>JkYPYr8WwGE*RU{bes-XNJ!lj@iAW-*#nL0cTv1a zgzI~TFkwi}fK0 zipTcpo}EccjjlePJuD~!ig;WiWnJBKpL@lw-PfVEV^M(`HU!%5@lk&=@-`J-(N5*< zbA8@VMLGSbIACI~D{T6ij|VU6iG+xMOmXiDsjQpG7kVbnu|$tRTN|o|mo6{kT6CXe za?j>4iyDnCtaoSwyo*)t!;!inh+Y!xdUjFRC(X* zE6#k#8(W8Efm1LLF<8pFXR;*GA%Q%E5vrOd=4hV(s+h%7(m8)FwJ|n))vm2H`z6pL zcU?jX;-E*E1_?P19UNJfdbwK|WPOYaZRO5EZ}u8FkJNwoD1TOwIOjE{mXvu4a8_VM z-o>Y?Q&f2>1u3}Z$6F;TlZ$_0r!M^Vt@z190ayJKvdzk;(tPgzzW&moxrxW-Zvj|C z=gAJ{XGyC4?XT8M;lUyk~#BgaGLovt}h$FjZK&N6=%B zL8ulcKHzA`Pdlcaxu`m1jASwV=@Yxs4) z(Z1Ce-K~FA4oI|TBZ3alF0N7Kq2uFTJ$4gZ=}PA_BqD~>luKah%GXt*&mrvv@BDcm zv{4|B-mNRNFtr6TJ2dwU6&7wac@Wpp$UF9iQ;86#RW(!7%jxu^MOm1|CO8)RdgV~y zpb_ta8EdR4RJ6%{39O{lbc*IN#5bW#s<=t2An?k+)s%VY0-?#aIQ|Eu1suIgUn^D*c6R+AAa zDANiWgA9RUAR9+oMmh#AfUvBrBnN-oYGX!}YHK zVSAu~ zARC|q9GNi4*3I7B)Xed{&Hp?CD2=`V7&$rFY5q`dZ<)Wu|adDwDuy&vW*_-lxp#ivmm^+#Qlzn82?-DKiPj3GPn6V*}%vMWNm9;<7RGS3NSIZ0s`d4Wau1S9ccgt zHpYJi8dy1hfZp>BoDIya3=H1`{+`?bASS2?FnA~UA9@Z(_U5*Z4s;IYR)0~X|EtXV zDT~?|3xlk!fi{i~aDUAwVr~yKdOvnI`hRZL(gx&W@)rqXCtG?|8*@7+ zprpuuLf%bqe{7~eM*u4W2RkzdGXQ7@0J<8P(f?I{Ud7E8__vesFY`MCFArOgEx_cR z1klUe1o-{~=iy-B36Zf@qc|nLLgUw2Q3o|fR>4s z0l>(A$jAU-e}C}$-(?gG%>Oe6!=GG98xs)VJ^t@;-_PlPMt1&>0x18p9bW+dyOIYgXnqKn0M4`Cl)W_bdj6|KodKFeA(N7l^~VF#mBGIJ|G0 zMV#-G8T=Q$ZyCLTm95zy z3+H=J!#{qecLa3&m-~GPqd)HVYoIrO{ug{N2mBX&&o=pUChy4fuebiYZ2pA2(>MPY zeCKcRFZe#J<-g$jY*zn;Oz+LC46F@}|4hgBK91F28u*j)KCktkl=l&=o&LrCJ>KSz z_x;#x{_TBl0QwhvPqzIRe2=#K7koeEKfIXUdDxr%JNcdGpRt(Uc{!MyTL1fhBHl9` z{{`P8{yoY&bLW4-cUCTc!~dmdBPVSAalQpb^~CJjjSU(4r== z?Y>G7*M)X(oCoS6vQ-F?>j!nMb4 zEn%G-%PlRT*r6$*Va)v7?T6Wac#k_g;(4Sdu-vanLIhle_WfWA_~FQ1u>8iR{mNuW zo)k5`i}5bxpNquUrGnbzI=ZTgGGs9DIMq(Kl^mN52UYf1Z?Gt`x2>ZCb|SPxljYKg zrFl9Y;Nn~=kvD%153Zv0;dh7oNjdxP{UZJ5h$6~8h$q4VU8%O3hxnX-UFdw0hU#G` zjwXzuESpQDgatP!oR`pifu;RS0cY=k~o|kq|UYp!7KV0jYNyYI!@kQ$F}DwfP$hGiazF)q0qIs~HKQ!0Kn@Wz4$hL3r{8%ww(dJQX)+h-VwpZV zbGs>RZPr@28qc?XxrYyPbvnHXcYy2LFuf}?HT?xi#xtqg-IuYYk{?t&eYV*i&ir?u zwDDTSJCk+pkB&0YpOnVu7vCj zAzdDsxboD0Ma`v#K`Qk%QyWHaxk|Kc3%B9i6tL=r0!2sXrVb_^b-6aEp?d zYD!EGrc$76RrWgtU}Wh%v|0_%r5WYEX1%oI<38#xIHLKA6ygt&u3T|%^+nLoyabgW zHwbAcvNET9^y*S%?{H88w2pYP;2ZQchd&WihVXJM6f-8~Xk7T$0VuAxt>&3Y@NK0- zand1wrf`fwXra*nCVY=>g#rHgRm+Frm&kf#X{SC_GVo>eBA-@P0lf(!gA}R@s96uy zxVGr@094waO>5xddEZJIyJc`gSyj8l7>=H%1Nn|+l`ubjSU{R&{9la$lgJbTZ`ou^hj^cDSokxECsnEwfZ{|<&2Oj@%kB;XsEg@7Ul zMF4QU)p1+BwchWriDwl9aq*$$B++so+2eM|fmRbdJJ;IIF37%564iQb)(*^(p3@-v zo80H{kETYN7Z|f*!6p^>BA!-7$1*V*58Xl*cc$f!K~?F6Uiy{4{C6^{%t$fQ_DR!! zqE#gNX;CS7dQJ7j)ZMwPckf2;o;pdQwKB1}8ol9owTnb=cYn{68vcZaLV`Y7D%oLJqlJNj*Y;OpQrSs=RP}CvcOaXg|hM!peShU$s=G4EgZT z6eg8F#i*-lv1@n;3}9pO$EU93;%~Y}s2pS_f7_+~CEBijMX%NNlJDG|?%pUMec2IV zLUP>t;sbrNO6?#P!#(Q7P$aFGU8#-LxtgbmoPkR;D(rp8LU!l7vhjwDw<(5y{PrYX zK7}mz%yf*S8s-$<*%+e8^51y`X-Oe#Vkm~z zBD#^~wK0kwI)o&JA$R?KsytmHIJRn4(`UMJuD>e@R144vWqTDt7DTXr?8m9e{S@3Kmz*7CQewP*T7-{WUK1$lf*ujd#wK1k6^_&M&%iXz zS#uH&`1v(X-AtlCtW1XPY@1BQ$le>zVNgprO;TwTt1+x@m||Xi(RiG#f+9)xiZ2{I z_BK{&v&%_s!Ik7HgU`)>I=p2*oqY4-Z`YQO*%#pnP%#+zmKDx51f7KAl$UB543i;i{L+SSboHy%biww=L zH*3skSP*J>5`ad>4$j$Ul0P0&LZ>7;!jk?>Rkd145cQJMl;GHZJFI&Ey@+^uM$Apb zK!rOD_Yurdy!HvM;|aNe9k&-BT^vhn6QduWbhE{c08s~KmMK-+j<}k z-X|&xvA{9CwdeSIek6qQ87y0onb1iWIg>jm!&3q(p--dV}gL(EkDFz*h+AA zIGLF$WE)(-)sjX4+|#vdca=UTaA|60IBDUF{5+3fP!BeLiu#S(oLU4VSI{>r9g7|o zDTLg#>vdgVHjTu{e!!!0w~xX?Dl5uSLIl}RLAa-G?J!j1fdu4$gvQQ@9GI6iERUhHq`*Dk)?5j>(fL^TwDn$U%o_CVX5ni-XiycOlyT#K?s zYO+L=kU~FuF;jH?Xe{rO9dG;L{p~6r+;sNVC^JRzu&C}xi*751i;ft(EU>kvou7KM64t2U_cr6hoh`x>l& zgkQdY#hrEk^BuDMKk|I&L27HssQbzi+gh+a0n;O2IJeP8)h+vJ~D+yL+S6rSmcQ?kzOZ}zTq ziyfRlsMl2dO5ci3e=K_l4uG*>-?>MA$u>$fDDe3v1F#_DYJs2$Hs&t^1JN#|KuOvR z5xQ{@YuMS$6TiW1Oy1u&;)+bpC*HTpD$ZFTwgtZpU|G;bB|T=`3S=b4dMW;T{YhpoF~yrA#@XpNBba$A6+KHIrVYpAs%2mmnWvA1MBsN~w^-m3 z15GUJ)Yn3UJGznU2i4Kc$LNe;o=9zf#2?Zuhy6p6SD!zqX~(JNLwS3bs)u2|U2+h0 z-!ez`eeb#}&kyGmb|UNXmh4>Kb;BJhk_J+0mgzQ%7z9-)|jx@f1;#|$J z!)WrLIY%otsi&|hT@X4XBMlJnCspnFDBdhZw3a0c(RCNO|LHqoA?9Y`ZzqbDaqE(& z4|}HI8g+PdM@~cevN+E8nh`%v3rt4I<(^iD1I26a-N3*Fj#l|ao-WnA^E0u@K$Uji z&y!d%9fsFaXB3kj_a+6LJAQ_LliCu^mSZaWbATSF6UpkB_zgBJW@zWPz`eQ55>nG1 z7{|~WS)@nu$wdyFd{<`ix1kfkv6aI#Hjy`x%sdvdf+om1uUunw0-R&1coKlB!gd1v z5#&cZ!gNm*HebI7;9RNkX=6Sy7?6PBW+8-hhGCz3>9{`oJ1dzqesRoyN6vSU89)5~ zv?lD38L9VGz=x#ous)aFTt2Czb6CA_X*0o*+ymOz(0n?twN=ALt=kT=$$vCwlSn-P zJ6a2LHU^pR@~n3bATAZy+?_(xnL^5uV#x_Up0-yOtseVC4OT%@kIIlV###0wN#yIR zSPk*FVBxnh0rS;;t=VLMSOJJLZw|i%oLg5%=a{S#x-c{o)ml;ncwN^%59=eaTK#WP zVUL6)hklwXdo*L0FN#mEN;Ns<6Uz;d0|=qMAxIT~Ofo-$K;=QBGls2J@w~i!y5*UD z?iJp<^MvCnj#~$}lgNs%B~HM1(C`fP%eGEze5W2c7*IP3F3DCDn*?Re_!V%P-7Iq+&B+I+cNi zR>@_Rlp&Gp1$FU%xCedum1M&GS9cfTc zeF}1w3wW)*azlEYX^8-?K^cX^G@gWWn=7p7es9~d?w7VUCVsLk2WH)H-W$se2{5N?bAENqicYJXSCP3x z@%cr@b+(ItF`bUJm_IqI4#D{wg;popgIw=npApB9-OHW)TPX>PjtS1^Askl9Dl4Ai zPantNxP)0BF4XTp^VLtKqV$7xVNH9#D_AUS_Cgdp9sAlB<;9-)NZ3#mR0Tf} zt1lgYr#Fp0g{;yG={|H*LPSR-3Lx5$l7vkoVO~gdudf|`Phf!AscSXqp0}r&-!%p! z*owRwT_vs#Jh`xIzo$-dc;<(<`Cf$D?j14sAQFd?A`?-01?wIsyaXuE2!Gm+i;8e7 z5*8hKy_DL>Tby()ovuuia=1$;D!e*;rkuooPn=ER+g>(x(77Auz}M$aNBuZkj-dv| z+q4#KW?2)I86T|zEp>mZE{jT)$T6zB*;W9U9 z`;rhheU>>1rJaI;jo4wR!}=%yUs9i!!HCRs()BUGu_Gu=kdqor#Y|?IFkZ!`W_@U z6#3g*w}jZK&;XU4QO*?4$R{27d8nWI2^Qr?OSO#1)FHuXU(o|7jDN_b?JV_DMig3Y z^fQ)J2n{WZVCm{?<+r)RTv2z+uv9UBCV$IARZLYywS$WwDEa+aJS|=bi=gcdVKrV& zkRtb7`FG*7-3&_NCkyAj`|f}*Q5dzTEaz31h%<JckmkUkxEd&diS1x+1p>t zZTAih__n^2kNu>d&R>{<#*`%ZG3fxgwn0C#NxG@!kb5wbAJ>3<3Rn5|SS#0(gJf=4 zCl3OUV8u4HrBwwLecQ?`)k{4MvmTA(^N|G_zqGJ0d*#o~0t-ZoH_RilkF-&+sZfPn zL&1gTCsRp^M=8ChNq7gkaVBDa5q`(_4ybDv4$ix6Dvmd>9-Wrxz1Wf~vG#;2OU>&7 z(#CgZ8|`lr)jRi{7O=zeqSg^I;&w9gzGR^eBrulI2o4YL=pw;jazn% zk7(D9$_EV=UTI)Q2;7_5q$F}tT^8=wg$XF~rzHl|D~Mu=_$ps(SB5`-79RuF7ISv9 z3#tMug=?`MuY;~-%@h^mv!`8UCz4Y|oELSDB3g46ZXYYAf0S-Xl~6USZ0C`z5?@c7 zt>6YNT$+E?V?`TIO~k=6kRDShD#5uXT_6bt3vQ-^Iz9*Z4J7}9*MKm9vOe(b$0&>A)uv%?Cy-q2dxA%-9 zk|(lZWqyk$iS49CE^6gZB8^-+)Di_M{j8Xu zd%{i7W3|>sYaG4cdh0+Uy_QH<4sU$avqKmJeIko59IKD4 z8(xW4TM=je$}|Fh7kS!r-M8vF>uZC@Tt^e!s3B<$WAN)m_? z^TtBI!a*c$wwzNMXw$QDsUV%}Z!>M@X*!s6bU)pOv1X8ewD0eSXBOVOYkE7+(gal*Vv@Rc5vj@`O zP>i`|fL1smtGwsDR18~nI}j0?@4q}(XU;3y7LaW~x8rK-z%T8(4-{OsgR*)X-;uG9-cl293D(EXAMn%ehP&x+u4W;mwuf{&VfZ1wV)yy%S z_%4kAyem1zxmn(Wpv<=~DbK&h&4~x$becWhXt=vCw6jBXmXtm62WqP83*za6ezWuF z`GR|f%^z{pP`z2xDWSA&i?_McOtTOIdCE3|9G z>~7Wj(olovZU@1*8`sjgp?#ZbPF`w+-K2Wo;lB(j+7#*pb>8!tXyDmu(Qs7=4nL0q zEl|n`rkZ`|srBs5C@c62gIl3iO9b$rqin{1WFGm(?_*9l6`D-B3_P|0CB;mO-NfDx33_9-hljA6aPvpW|<5iPwHO(|J068um-pU&LsC z329KXtr%;31W~@v&`i{rQ>o zIad!Rxmkb90k$8yX0o97tOc_pU2z_N8e&KYX*)n*AaCczVeHWQ7OWd(tE3Q$VM?bs zk7X~MU+op1H^%#kN*#g3M~HxIs54w^Ty+~MmG*Un*ps+>E1L=T?@NL!0mQ6&wIOU?s*MQMbVW(Lov&1VvhD#Cg&LE(oXJ$u#aH{a~ z?O4!VwRn;~G>}CAd_?L97RK246YBg8MiSRf@N*kkzvq#p7F@Sj&mFjq*}c|&C?rOTbL5B3EnC*no+nkGzq8DiJK(AgCC1 zvq#QZvT#qDg9@`hX#%53b%mImAs~0EYT_ejJ*0GrMn+d8F&pE{G=kOWb^%!7k{`YXqlQv?YeV!m>e_~Xo-=oC-06L;w+*?g7&`uW zMBI%-nVc;_$_ zN2w`NZLm6j7vlHM&=9mJk6E~DmuwnBrHyF{L`o+dTU2-RJ;0qDlY|E)kskxw-r_h5bDazKT-aU4 zGz#ME(%qWB(mQAr`YlmS;{%)z!>l1Ijo7*3M+=7JWY|oO2lLV~LO!VQp!>M4C z3Pv;Fx7L1>}vZ6`O`fPqSS(}@Kw#YJNEmL*7=od)L z*XU4w?CPPH^~4g{s8j#mZ}g~7Q#>Gl@I5UQfU-77xf{oTl*l@Tp3|-d!TN~~+LVfQ zpTM$p`#}@d`(?ZNHIT+fFuAs6&qII%g=v&-Ux3feV6NY0hBjohx~WroI$un@B=zZk z<0nRVsFx&jJZW&yrx2unWe}<>^BEk_q(7;vZP&bl)Hrc6` zLft_7m|4X$pLy90&LA0H#6K`Bgi)|f?23<<1nwIgY@4%%g2s+}0SDr-es9Ebk*#Jb$jwlHJ&AZA7gT;n546r!Qd)b#!amFb&FL4k68xbZT<5)Wvm!~ z`N}ulfSJhxoJERR!R|@+>-M2v`3H@?53Tz@U3zc{fk3ZY2HGZVOWT_!)0v-DIkwKJ zD!6aJIE$5iID-(iDGxKBQE*$=BvDNaC*@LeX(` zB*>zu1?2Q9h3_94XmiR@vuz>A5pd0D#Xk9~Cv!*^R9I}?y989v3{%?HZSx)2jF6HL z`Ya&YqTHHkDGf7oY7MV$HDnT9Pb0MLHd@dM!#L_iXrHzG-}a!Xb>O`{)7(6lfV1G)9Lb?{JQah!|$1#{77Cj(}_NFd=rb zXapM~q~|xNpnHhe_%X43E|Haqqy<5R^b2y zJ_j9~UsA2^&5eH=ZIj~{CzHFHIHgMKbygwHF?)Hw3E6=V^hjoZhlUR|ZY(Lr!ec%N zfo%hj0#tkY)dPYYYlJ#SVMRI4xZF|U`GM}AzUHqdkzq)6HcXuP{MNn4;#SgO-B;sq zx>0i}e4crLlE?ZgMY8n@MuY*4kGF<)cUf!un~vi^;Sv-1i0h1K!b#Xb-%-Xoow;RH zshXT=hYu-D5l_CaCU0#2?jl}&Q+7QUX$#ZG@M*&-`SK< z4O)B{Qg#0t;vt^rDSn`V=J}LN%wt{GI<{n(k;7gGlYQ8lYWVR?v+gK-W0eAXQ_{eH z%Y5Xgk%XReb$Iv)GW@e|gRHP$6>RM0xgh-x(6f)Fb4t{Ig`HDyra{-PW9NnGmmEPC8dLgEM0p z=j@}@#$&Bp<|1K$B3VfY&d!Src@Z!A{LoLVUzTT0IOzpVN1A$TDT7mAQ<3A;Y7xoi zL{$z+DKZ>;8BG2O5C>Z!O%ixdxBOV2w3gRomb}N=UPxO(!0-}yjiwZ*K8Z8>_EVi# zOL`DaW|7}DDiMX%2|FcfXC@i9NcgBdA6vuChLpEhS*@x0SWY8h11M06vV^h1uDu$s zBSkb=8rnJs_eCs$k4sQ#?_%H7Ls5Ig~8Jo&sDy-!x zavofhc@KU>>Ek_X+BkjDzQAU1L}Cw~{>hm0vGXwc^8|Kh$|x0K?CkB!42sG-o;yIn z&+QJ01|+d21qg>*DCCyL6GtIk3mU=}*jutUuGQ77qbfKAzuXC{Be(jA zYbOnzW*tnmde=|Ku%0&=z4~&T>$;&ttn^0D2uM57W-eexoagjc?e_|Wyzx6qoHVS8 zMr-ZoHg%tK(+$Y_`(_~)PI z1uR?};)tUii#qwm+MVn+0U$2@%{Qp6?QO~x9P31O0vj|H5usR)wD7469%X*->Jdq$ zJ4rjc1(^oPf^Z@yE@)}628RPC4`vUy>>{Y{uF&*dvHZi|IGE3t>5oE`)ox_g%aeHk zo)$sc<~#y{`PHiQxU&JVg*d=MOV6SF6i5q(4hr)4gryIaxtKS*H;3cI)#BZD0#~M# zP8E(fLKF3S485uNLd?KG2bR!sIF(D8Km;gmjqc~{y1uxg%eqWOXLwzVED|+tqAG7j zhJuNPw*c~+ujTiX8lHtc|GwX_zv{eEXkUcUJEGV4emk&@+7XR(VpL{9X(3P{ag4YX)C?3ya~!K?@%k6_OI=(fbF`6v2jLgD|70& z_17?r8j*%7GPnSAE*?EjxNWkeI?yimO4&Y|-?MxYl%&3V&??nEPpNi^#Gi&6AmdQph%HJ7fUrhy+o=qU+bgIP)NTlN zd+`=`t*n6AK2g#>@`qU7AV}X&#DUPsQej5arJ|i&JCUtNL;Cu>uV)y&Wv4!-%*`@o z1;aipzUjp-lp^qg6EqCfUf_~Qpcx8o)EZk_eII?ggYbcnBF>9g-m2{zr4gceczgz-VOBEnPu8wXyKfASVMXIXB`OV273#+xdae~qRIpsvo z4Z{gHXbOK}X4&#&diK;JfkSr3>DJ&4iZZU+XgepX+RuT9=^WLiDFUfxkhDG@L)BE$ zvqQLqHO$Kf1_>nm!f}X=_L+QGRck!O2l$gx!lUX)S1m8ji6E@O58`#7EDflouEi*l zoq)DzCAGc$e&Gk&Nt~hU_V@;{48No@v;-~= z8r-oy51z;pCMGu1=e;9XY&3pVNgj$srOqj|vyfeznmH49uLJpB>vbLHw;*c09b{Wu z5}9&{aSoP$W9m8)sTD=*Ia@+4?+o-gf731T4huNyIJ|KrtlRO>&lbbQx~eB;xV|RY z_66y2$UI66$Xk_7H{MAM!t7r-dVb@r+It zi4aZ*CEW6ZvImCnc__MFnk+hnj??wsXs#f=VhopSTHF|pYzWJ%;tWK8zrZ5V>W<-}U`P#u4*IFe z6;Sm>jb9!T{mLlIMn`n&7dcx?Oj@{3W^T3Td22yuH?|R%i%}cEt zrDgtdsuLV?IkeWa_7BvQd*qMg%$f#gRxVInN|O43Ea;o&qc)@h5scqOdqx8*VY4r$@ObLQHp0dtR1SIL%Qnug zER~^H)+3YtHIHdF59ohwS#G9GlzgP==b0`3z4?%P0%p(_iUodDgPqG;+8DXzAwb32 zIoxS%z%uSac8d<<2Ls#r3fd@V2_d${FJ)VB?d`v1k?)#Q zMEBx96iS$Fpy{E&^Hz?O6fxP3)^FLJe|T7F_M{Pm+wLGG2ygl<^1Y-9xvgR7lM;j; z;k&_~0F$;j|74p&tE(zD%j>GSXpEpaFv1}tVkspnC^A!`6BsnD9W9_@di>`Vw6iK= zA_wgMhi{rH23-+={YtUFOAr6O z%w*|iVaq_~{vrYX^WYY?%I9(=a6vX*k@Pa@b+Z_-vH>T35q^Vh#cka?r~3KCat7E= z!Nv%~ar-(q?btvqv{WQ6-+!oTw zmy)jh@IDtqP4>L)72&lXMj@n@_ef&6Xe)2|bYAnzLd^*~fqMI6g-(T6-%2r$AJNQm zoZ3(1-Y1?U_wQUwG&V8~DK>qWVKCwu)UFL{!B-i)--MLYhF%yW$M(--aV6+QS|%X1 zelP8U7YJ_;3Ib1neTi6>7+eXmJ>`9)UDS~+?Rs`7rwAv8(_hCnx#r3xKs4OMVUY|j zrYS$VgdHSehfEH8ja6Q0(@CuIqi2ANwrp2(>O-q*jP+B7Zg`itdro~7(B5=6OHs}1 z>V9Z7y8hu~?xRAjrb+4N2vkkpxIOTJMv7F-GyQztbYI2op@e-JW$y&V={~=@sGM)@ zZ}x35SY=6(eg`eT(()8htB*dj+b=i9TrPw^HEvAmpnTERX-ByYFADG$E_2qSKszv5 z{|@86XUX-6<#s><^RV1sXhxLJ3x~Y^LD={SAO(7b&$T@d0p}X(o;$=Y9TCt+qtGG9 zGwP*xM}0m_qYSl@BCpn-fnc-&{d`2=iju2VKmOrZab9Gi_V6>k8#q+dD_9p%{DAfh zl~){k{{;8|l<#Li9k_(W6AI!hTG{egRcKY5TS41-`rlKah+k4rZrki@c_(8ufH z;f4-p!m7ZrpVT+t__U03VD%0s`H41Z(PE`9qs*&LU9VEREY#z+y5dpd0JZAYvr^xK zOipl3Zgl6>miF!%d(O_=4q_q%n{5Z^Z$$NY$ArSxJ%S?^kZ5Cw*+3m+fKAXKRC^7> zdtvT2RH$;oblf6leBA|s<~*9eTbaQ78Ij!1ug9+d3{MG-hnfo|Tw|Jp8djC4AMqDQ zzi-Xb6I@KdbxQwT-&Dzc%axll{2r)QIVPaqHa3oZirOn1+?ppsrF*tJE6)CR#yJ2h zR$a-Oz4dkY;o$|6_<-jFI`wmJ;|w;A)=X+;_2-+T)a?s1fM2PIy~{Kike7(z>flVMno6KFEErU#mO)OZ-YgvB>iNVLqg;6b&E`ym7x? zKrBSH%t@FIzOtcsc7`vloQH!_Y84rc;xYFA|AOG$%V)g8u z&Vf8KkVex~h(^kz%D#%8e5K zKBzCF{kHkw!7H9t9b7g_CJhdD z+y|1=46_g&(1>0p*hoB3cm40I`#Cx=wOO>SQjpu7 zT&*$$mP&40mx%vR@byV^Ks;~^|G5NZzMN0 z2YboC*ry+8x<~Il{O`}BK_7!U$H`z|tcp30F1X;8E2};vwe=rx9_Mz~B zF$`F0r`X|>8*jLTMQ<(dwCs9HV;$PpMAHqsqKN){4VO?p)YLM@)97l7GSyw2lrN0J zu^*SMOPm z;j1hyxD=LsX}$1`C9^~%_9qge>C)T2_Omg%8f=!mkh0s;A&?2))rJa#I~AypCQ6_# zutt6~FIwIBy>PXuK0dS(YN~&USm7YvQxZ&z4tXgOu(P)Ai%v3L$KL^UCpbUUg!biL zW*U{R3i)E>vZ`%xtIRuX^1$GIE0_5`ZA=i3Styb@-YiK~mF^o^>dJg;=T(c~Y~z5j z$Lzl>dslj`=TVt%Va`AMq;EYoKMMqpV!NTVVrGIXlH$W9wx?S4(r{_hqkp16O<8!2Wd)lWU2T`)%CW69}fdq{B9vKdbHOFK~kr zPGhPq)t(cvz%(t1nU#%!i_j`L8L4}HxkR453e9&b;8rCf#bB$CA41~LBLIX>k^%eF z{}?YBFDckJB`a4nmNK3_GP%+&D@o2I>#j$UP)U1_doq8oGciZ8UyP{2XUHs(DV!a+zQV+et_tqqBrlFRU-<_}M0f z+%s^G;KTg6N{xuj!vGwF#FFNGKKpHh45?Dp+T$oCCZUye)8g1?|3ZaWiLd3L%sc-F zijy&f>fvH8&+KRMKc42ZIf%hOt)DM7`|;fG<{W2IDmhB1D0HFy$PR?@F0d$SL&H=3 zj2#us>`#x6`Hk0lFJYH$D2zi^J7#=ua_RaM;S;t7>18EG4Wg5w&QA?nOHHrK*sw|n z#V#1(;7#jFpFmxo5)jK40O3=E+RV;|nRtheb>D!Teg9`?+L%$u`g!07LU7l9pFaV% ztCl<~6&2W1b70b_D-m#y_Io4ga@WI&&gKzc)LOMm7R<$672!FfCNpTSt+ez=UfrTK ze1x~id0oSOlfX~lApmJ1F;?z2=N%pf&kZ0-rp+jVE9+49VDe}oZ{NeOrf66L@0=xP zAPlCk8Gdg7Ks+LNl-M*bx9K05Juh<8A@aQt7F9D8yt`gDV^d>N@&UTcI*}Jf&!cIP z?!vPCT3MyJ9ednHfuzOtfJ6xM=Mm)iG|RlXSj!t^*fCA7@BZ z8}6tiKrywkzfvsaZfZF|Z1EDvO@;Q6HK}SJIO1 z6qny=Xy8#r-4WIp37r5^^C6{pu$78o;P+GGU(n*5ZOXi>t3|sjE)Xi8YElo#!)*v_ zU6%M3pv_TmGXaIMV6A;{ z1JXQvEGaF4>L^JuApf8#(NMS>Dw32vIEq7B1v{@oTzGvbHdP5JXtAkyYVE{x^C_GV zmavn=ect<;w@n%BHIb-t6cR)E^CS|mbH?&T`shZpK^I~IcJ{wmS%Pe3*skKwHARnn$XwUb)lAI0!hi5lC;sFlX?)P7<-DX0R%u|%%3prl+xDH$|Q;ToHQH4 zu>V3pUCvQR;$_agQfW8%p%(Br;OkIrNK_Y$>80!Es%#=5>96@c>okZ|^P+>Dd&D%Md;L@Sk&uj0^xnHL#G`T3Ku8 z75K0xeLx6{PCpL;wEd*tI3Q_ZquOx%9S{`1*-yh7F=7X46NDF0))GukqUO!JF@}{? z0knm+xdPD#(rS`G`^#$H&jx!&O}AmF&vo0u!cVVk4#+5~_ic%Of%!z={3JJ9RsAIr z=ToNq<;aq;5Szzk4JHGVdAmIru=jlab#~d6aksMX@>S%oEm#1$UN9?k99_mFj4&4e z?wb{I-WUJ&umI?STDzM*3u>t{h^FXW1|kvh?Sh|&TSU#fDif_b?C=er5MdP#A5EX_ z+Ip)2->zg?4VHR$5GbPrOaK1px(>&MX8>amoD=IsjZJ1_si0XSioy*ELzr9{DG&Kd zb?QJ&^=(JR^9xi2o!K5(OIoj{|E7#M*vTV$f0NT)b`Egezj+3>kW=Tw*n(I^01w}& zTh&b)EDwut*UtT`IZX36SCWW|qxBHudm+6uH`vgORH=F?5h{cNIg9fm6vrd>$~{1t z08I1By2>~#C9(B!w}lu-yG;_L;xZsVe;#T>#?Egn{qfoh8h?KeNvy&82>j&)*hyPPJsi-_e!p=hvv5Yq}( zz$O#^yu92n$?sEl^u|w*5aO5T&~(9(sPYRcnhMjTT7&S+yt_h!L;hv3g^98yuY@F#F}J>g|9D=e{oa{t$(!o(5@Px&mPZ)B(f8xtv%A=ytYqTkbE<||s_K3Az2I3K5x z;zU{(qeiAZD=*TlgGpaB_Sx;J4_5!GM7FcX)(++ z(&+fZ;0MJ@-CTh|2*H9`dX&mMU9EA+{ZWnB$J~6x7iHrEYV~)ifxmIRB9OLR{&L!` z-eSF>ms&uXN&0P45(q0eV%H9*&+umf>iEl>7LE5_!_fYCrSx?dueFXM(xVke;HI0e zux+xhE15;l)|i)-Ls2@b=NcDQA35pAEvD6~e6`$uV*4Ebb!@HYB+beeou3UWffkKf zz9oE5Vo2Cwzx2Py$yTrOMiFE&uVI8}iUJgO(S>Uz68Qs+kHySrctOuj= z595lQ`yhJQ)`V$wYZXWu$OB{81myb}7rFzVq2i=q;e|a?+oWPvsc`g*JW;yq^+=_P zpW;Sq>cmSg)Sbv(wV1Xv1am@AWbF{gw`6!Nr6$x_DENH10JdP0Bp5PSJj4yUD#`-Q zA>q{Nx)C|yE1y0lU|5s=tU>oTdV)TKRzbYe!V<0KL1 z;tNpedEgr?ZqUfdXvEUE$Y-NSEvdx|{|aGJv;{vn%z2A~yRD9I!x$#Iwt+LWXj0|G5r?1Skv{shlKnyG>t zK9Ykx}&9L7NYl%+KY^`p2m0YwQr9gqG`|CiZzpIsDd4*X7R-43#TBg zIPWt4dVm4pyG%FAv_nphW0<5|Wwj*55$TV9Mz&ls|1%$AvoEFE_vx43rCL+9H6KX3y0YjM# zHVRD5B#)7$6lnKLErqGEf?MP>DZf=A>%<#gW-D#mPdV2I!)L{<<7p69y9H34#rryw z%i;mZ2@I>!E}b>mVJJ*JLx|--pOCll%rt&Oo21APmTB){iOhvMYC3_yk3!-My_@3X z0Q>nRk=hL$Ht+jhu<$y_!*%U<+Z!Cn({$oL@V2_Kqy&THU?Cn=TzU!{_{r&)$F!;v zsDDgBhK+UHfHwh}`P>gqecboLCIf?Fq!XFD?1G87X;g*kIdx2A^rUY1i=?3Y)xDQf zeOZ+2TyYdQVQ7cB(_nOM4>nCc?D1XlfDW2yDH3(DQKqTuKDX5yefJkh?EU&bHnTCA zr*#d5`ytnj8k~Jkn2kNM@L8lu$9LoCF|0DSJbN_{HAiypE{#bkgJCeIXdoN1MJTvp zgV1-9>**SE!Rdyr#Nj5eDa_jE$abFH7OY-JN!vzbWm(J-;`g9p3EiUpR;xx&aM8yrndzODB@zt_*a$mgZuch8cpUBwj>-3eX+ssw+AJXq=1hEN76S#{Kr6lZf z(<2BtXKtsud~~C8?k_X@Dp&J0^JtX10W7XYIPTJutQ@$6ZD;G&^JS7zir6~nX->Me z7=xxLDNc234McDVv%m`0jMh8xfP;1$T_%AzD*0vrRMmal#dDKG*YtX)$f#5!t(Bo0 z0FMjdjc4FMpZ4|X_3d+($w5ZVNWO2-MCtTbzEO!2K`wawF2bPr@o$y(O_}HO8b^ik zm_*W7`jsC&l;6ieGG4vuS6kkulcXB00~e`vXI=~35RW7~3+Gz<`T3zcZEwp^w z@-~!_8#b>R@c?l+CTmtepkmhZKhqebTC*C_iLH*u&UhB-(A@|z7TiDsU-2<)9jb64 zMJ)g>n^?Yz>)CJFtKSj85$&e~gf|(xe2FH*!qfr6(92jMCVQ z%mxD`b2>0Ai1a0yor}u35+#~hTEKORbRZ(w0$XsrOp6U@-0f-+5SJKQhj}@OU-JFe zihrKL{%^-{8{92Y*QjUx>3OU+wZtFsx>! z1|p=ssqNEDM=B&~TstvW9Cp8StXb)K+I4DT$rUIBbQ;PP*UsJ`rw)fbCN8abc^9ne)R(U{2Ti zF($W{7Qez3u?Fu>FZT|Ow^WU51@zf8Zj>h1D+Le5P5mt6Cif6(WxfjiHE&kq&V%3U zzC(AUe17&~>*wSmU8Fr#zOTNQ`Ku7EQa){ZYv!$3Jb7&|bt!%of3p+-foxA{XVXpIk#OZu1P(d+_r^^jRFRmPXHpI{$ zg;C49O`Kz7sfpyoaS9)WY@gLy$yvvHXB&0A`pJdEZoKFCo3VD8#mXsr}-Zf>@1 zJOs5gavOG#b0Mvm!9?t-Nn0`mBq$^Ko`sdRmZMW4UEh7x)W0(ltK~v9)ho6fSDMx^3d3|Fm%<1%p<< z`LyHw6vx=`vOFqc8DWv3J9nrJpZ!*?w=w62mRV0k&)7be7-GFYwC|q;lwHia_Qv6$F`JIqm_CT-rAJO_d?k-d%(rh1!df`@EMd( zq25JJ*DDFn!8QTUL-G)imst@k+l(20&yKV$F+ZiKN_JF%@ML%S`#bAosPO;`Z;@`b zL`%dkEhSdArQ9JiGbKS)nCG_+6b~q*U7%(=D z^B)$(n`I!^z-)aA7r_Ig%>Ml$!tC%?{=%q} z#ePj5W%o30uPq~+9lzO>mo;;)u`=t<*p>ggGM5c2n~hu}IUU}5Y&Cb46K#R{e*J)< z(}QJlHkYW^?<0NP&qwJ4$STf)@)rf{TYnMy1w7r3Qz!jm{j}mNu`y|Q3wU>Yz$hs< zL%~TFLHHSt$g(@V`$`sK(O7sk*8g_9A4IxhzNJfoajEAWeqNVE|9P~U#3>mUah^0i zzB{3KN|b_d&YRS4QN>AV3!vWWG>!7CFD_I>>7j#51vyHSc+IY33 zv<50PH|gj9$jyucD{|#65YrG=jN9sx0{#BpK8<%$3U+(8t>=xyh!4gwzZP3pr0;2h#;JKOv3d+}dCcd@`W^;bNY}@pD zxoWEI{e|2Yd=$i=K87dON$~Pzp7LYJ=_SfxWH|XGLS#N2f4mA&4s$`S>)+ZARl30n z5D@5yi-RQ>iNMzhY0{UJx`|cl71|jcduB!@2r=y^sgI3cC-~hg;zUH&>u%BGVg)Hf zQ&nhs<7Cwh?64y$TpNY4Z6_czSz&hWG+Cmxc}8}&F-Dwi6&q_8iCp3l@b~cbP8k;v zc(;cd*JL`ytOs*u-xfty;lt4JawQGGym6R22gy)ZadE8Rp*&VvpFE4tzld0|@mQWhur?IwH0Lx&0( zW#4~FnA%|=d}?BPGg4+!F~}qF!nFL=)Ek%3yXXFJ-K zfS@1D)b?qCXpm^FI82ZtFp$hF+-%%whFp+@|66Sh=7Kx|D2uSMNC=Awi?VWYiE%ND zai3$+&{eMIB{ttVTn3q(vC?}M{M08Gtpm`QWCg(umlJ9k?oC;xmV&I>C;Bv|s8}AQ<{u*DdTS^H`fiINR z0L-Ub%0=Twk3j6aTpUlfpM2eX^m@#C-0+fw+_J%wz++bYMHFjoj6b>(gJP+ZsEH|q zAZ-(^Nhw1BCSyrq9BO0RgJB%fjI*;=L1c}y$Mg2p!P%0u=INphRvY5AQ#gO%s0ZUZ z+Z{eLS3$ZR#wOXAwh=5P@e12B4iXqrwyPXIGi^cQj^&WGX8rD4W)qFA%&_mvS%h@X zED<~@U*O}u&OYn+Dr}Nd0G6kjvnQ@3mrgVpR+%mUGtZrx*Px?N*-{b?Vj2LB5nBLf z@8!W=n0D|(&6rE7(;utS3X`q~_>`-nu_;pu0ZE4pNsFi+fhvb9<3B?$*-jap1!NVD z&Op0|ne53WAsbnD=}y6eF-4jm&!E9SU!iuV58O(|vq_i`B>JehkVg8r(m|38;pBpG z96_gmLEMfgx?m56pt?{ReQJ(~bV1~G2Lc#^9U=-FjtVG#*ou=+o1@$l#%*<+cB8eGSxc^?-cuU*Pd_kx z0gQ951UK@5`EE*m74}VUuV@GeSYG28kE09z#{Vz zroL}RQY$q$IkGT!l&1NL7bBA$XS=nM(O$Cwdm*YVl$s&@8e9wLbXooF4ER?Y=2GBQ zKH()qXF#qsqb0#$gg}kQ0HFPPi8RfR;HpmmIT{d4 z9(&vdeG2>#N(*H?VUwp^u@Ud*UPR;YS&GOtdr}I@GJz-`6t&j5gV1~a;{;vv? zS3w}0{;NBJfQ~nY#vY_cqO$$5BOj1qmm(*+|L6`JL=FFc)t=3mLl#38WAf`_Yc4o0 z7^u)#uk$WjA(}aS zus6*U*rm24b?=xG7V;3vKQV&;cUGt5dvc*-0%3e%T_R$=VUiP7C*Oa1bB3-0hj8j) z{b>;b3JX*QLz$Bkn@KD~g74NU!imZf##jS;2JNVovccG_wsnZHmwCacoL;eDU&1QI zWD5@74Os8ybZf?F3II65%vlc&2E30H25^uQg0tEElfC;~=E&~?82D)>36pQG&hr(yI1BSx$I zETO=OHs)`U<$%m=cd_My%uRQ#<%CRJ1-iV>S-8G9D<-X=nrpxD$H=l))B%0uFkULb|$=iN4#AW&^L?HsIE4db=Dr!OxCGPeoi)uOl$ z=m13beD|trxRegOFNCC7g}1$;SJIKAt^8XfB&rfvvkCd02Io49b^3dI*17ree4g4; z;m$cSO{G=$BeCPinz3A`#$0Ec-EHz;WhArXXo+59M|#`&JXNJN`#)c$yi?GD-Z%fd z`OIbTLyh!9q(i6};+9FSN~o6da6>ntFoL=r`!2aWb^hCcgwj$O!8+P?x8LEEk|qeJ w&MurginD7NH6D7*&HQ|#)UtAs{(`q~S>2>zD?k#$b1-u=!;zDVD@wrq519mpMF0Q* delta 45310 zcmV(>K-jm(MGe``Q=PgVw9RGZHZ8Nc78E?AH7^BS7lnv7edF8oPRj~C!StNOAHhKf5hL? ze4mwb!J^y6>#Qu(3xD{{VN+(yUH$`Qa&;(@GTY_JrlG(=!5B~BUAnnkyxf7zzD#pR zsq`dXXX)m`JyA)@G~q0kPErt1jA&I8kc7<_jPW@7w)iP4!KHfq?XIl2dJ2-x7$Y_Y zB~O7X!cFWcoUc|id;(tSG2qHLxGSvxK znuW+&!l-NxWg#+}SlyEOs-~d^B5@*l+#G=>Au{lgjYTI;Oe=S5@Q)!Xf92fY`7y*{ z!AXpV7rk?DLrg58)b@A;RhGnE&{Hi(Lo{MyI%Tqu$dV}8it-|85ygo$eTyJg8=;X$ zNCRm`j=o-}MOxiwT#(qpCQKnoO>6tsvPfQQpVYEuU|9sOK|E9+?i=UPvx>141j0QT zXIv`PMwe&7;6o#3hEP-2f1=80XRprBKAkzwfx?ViMyORYDPw}@pDnj%??2Gl1#Y6u z5UI`Vx;nb8vcR#}%-)@S=gZ$vh?bTR#5CgaKh&P6f&r&F7mrdHh0A3bWnB!zc|z4} z!dWTc^hNL3vtYGwm5_ISqplb#-Cikw70y?#%pmWb*(I09J&Q{Oe|BHd@4<}9CJ%-( zE|>&e3Cp;CBdmYIgrktzr>holoZxm;+F-45X{(5fxQ?{{)GT$+X9y0;!8azd_6E8l zx6z+J2J59E+?fFBPQ@?~`a}(JWgZT+qEGYVgkdyzbZ2`7)-|#dOr`}NnCw+hB$tYl zGTn(iBg9ZBN`sC-f3ZX&KcSFnAmqoY(-x;1j)m)auWP*M29JJE;IeI{;ebP9>DtCu zL8A?NX=kt@D@(YwBUXy`1CkO7Q}xQjZCELec<)z{aHpcMyy0LgwCcAj9%xr6|5i(X z>K_<&xT0uV+0sokYu_LszK*|~yYI;pm=_t}JDcsjgrytuf4IUxm*uNXTKZqpn`Ktd ziPiVrm7m!#vF-{I%x#T!)dk8g&Fkaxrkiw&!5G74>3`T=`V-rvEV7$W^f1neV*LJ4 zbph1QK+m1pGOC6T@6fp)UEQ^_RuuxmVxY0o6?D||dV0>>ybkGl)2@k%G}%0NmlldR z*$?}Wpa2`vf3jmK)f+2oohu&BQts1_+tsHV+q3=ccAMhZ(*NuqdG5blXXQHNRSt7l zB~J6IJjJUqjN3arSqoI46sU12Fb@*!NHx@bxyXDWC5_%Bh&Na*TPB;$ZS8Fp6IBhM z&fBW*?J1CRRqUJ(JSwV@PPtCX<|^%=)&3HIDsu>Hf8~Fi4reZ1thP4zexk$h?uZW! z6&-S9cX2y6EFvK&iH45nQ1TGkD3P*3l)OfiZ(hE8`T8LUGR@Osb?X&!IH|JDvZ*lc z#OHY|fgM@2In>s0`P?&)YT>00!plZCXL!>XewF#7c>rAwqRF^<(PIuZD7oV}aZ7*^ zmK*zJf6y_fiwqB;ia<7S+K=>gh#tm>_(6a-i2f9sv^w6Ma6rU^?(}sqi78QBoDMf1 z57ZYi%8JC?%`C8|IC;o8YRcmXIH*=k1QWfjKrc>)j)gQLQ0MNzK!d9;0UK$-Vd=(^sfAD<^-kYNxCUnajlgcKJ5;ruu7qF-L|YI$WQmsbL* z!zo8`MBDp?%d3_ag;hA~FRucz?bd3%**E@5LFJ>$Vk$QOe^I3-qv}OCBDB?CX5&2> zf9LFXSFIkhibNYh087_T9IP=XzlwMjSg+n)7tpEw>Hv5@3nJ-(PAh)|c%fsbfW8KM znDZdeMLo5HJ=L^zY6Fn(R<&hcn69bu!sX!Ns(;vKw73naDl=F!w`OCg97=K z8bD)^PH#ZBdnJiqlD!wiBgtjCE5aEOBY;|tH{sl(-S#q|_a@8Jr10F9JC9@Ce=F8S zvv@#INj+RVxHrkmEcH7cNGhqUBzB*xBDrX8`CmS}ozt`q0!^bc$tpZj+HQje9VC~n z4wA;vr-K9W7w*;e((`OIfuzbyYDSXA(bhdQxwf-F3>{EfhfOPWD;AkAlrqu3*ADkP zHVBh#!|~F+x%c*zmRO^P_VoKje=D3KjTY`}O@docD-QXx5;(nZUZgZCcmCEk%QF|4 z+5gh|Y(uWufK=CaHX!a-zX91C(uQX9=)V#;GGAp$-u$CLU*Hsic3Y4tSV8(@zH@fI zuD4OiezZ&ZCcQ3q`QmMIwchXQL+K|--VxI-CqflLqO)=!Gxs94X-aU`1;=l=etPb=a2*XVC9 zQBE-U3Ei!t)HnCTd)vbdGtt}N2+gK9Wqf*5whCK1?q2Rrk2bCACp)gOcm6koPY-0l z4R+&&dpau^DP@QMDj}Pu8ruHb5>k=IL^%wP+%&X~5Is1ANckB6e0}SagGVO>GC4Cc zlQ9q|f9+aZZ`(K)e$TJaql{J>-Y-)W*lwG2Qe->3tq0ge+XXz1lBjX)j3g)N{`x&6 zC5u!jU)l_?5Bp@Pk_iIU3%C2x=ZIz9U7MCt_NTysv6=|v(@u7pUWhEGD1 z>3Q-gef`U;zfX@pOfrI1%JNAjut?t=zyEkTfBjc>ayp$JzcKG*`nTWCCJLw1)7QVg zKRJE-+lN;ZMd0hN?_Zs{e}6naJIUbf$J39~_$myLPz&HZpQYpQZy)KMcL zmQ$*%6Oho`Oa<0d8*9FFLj)NNVZ=@k=5XWw*$S13%(X<=#s%1%B^lv4M#2qi*48v& z5P@WZ6^Lr>GLLD^atu+Pv0Q_H?XZ)G9GPHYue4E!YlnX6}Zo4zN z32_)PD?!%JkYbXx^WH_~71ko2e=FDbE=^#)1S~FdrAaI9E*iol$Al!tzWgx%y$G}) zn9szRe&okT!eM~G1B?j-Lo5Tt_=4v#dBOtr(})v+xaB&ULy&94aqK?|58h)lErKA4pMu*oDy4i*pxB>*;%f4K{k1VlG+ z(XHEL`5Mh{1X(3aR4dwM!Kc_-X-?pwHQQBGprjhoSP12bgMVZS-ry}N$Q%J;Q^4y% zsQA;{NFjb+{UDOcz#(5J8SHpb^;Awo;Fd3A_SppTix}QuL}4@qpQs!ww%;PeA=^O( z`?XH%5g3;c508T@l&k>@f7xy?dz#gqmkqArPLHUU3C2FEJsXK`>3-Qey7`{b-NwTw zlk+5+&W1c~pkW-_y%?{*2H0*QooswTQKuBwgEdm{zX^EO!4N_t@Mz3+h(<1u>%G(( z#<>Jw47B1n8tdTdK1yE1c__p%qUI;grH{3u!`k7bJ@hij6HI>?e@-FGV7xcV@?l62 z$Hn1czF5_k`I@Y`Di#a(SS)~&SF2??Z@)WA4yD9%CkG2(x=yUBD-J_{5YtD_dX84YR&>uPt?cc<#ou+*_wObKyd;w(0GN ze4F4s87D$-$hb6Qf86}wW{fQu8`=v@2?Zo3v>nPRQv0w_VgcP7XO%Y!)ZcDy3ee#{ zMf(HEzFTFe33Dd&PL<=tdBD#I8SV$cMBwLsL%oY~Hek(&2i$vBZ59P38Cw=@2}ZTb zY3R3Eygq`>NAZ@jF#RO;0qjDDkQO-(>j2Xh)TwNDlG8~he^vS}x)Khq!iM&NA;P@# zr{tDg`0F^0Z@Gi*alg6V#qb?U85zuV740T?l{)wmMS+f)!ZM<}-m3f8I3Y(sJ^;sTa4O1C_Boyw*}Kda+=&RT@2GX0CuC~ zlU81e(x>9}e|?IO|EI_krwCMnSnO(PXl65n6KV_jA8KiIbHVl|5%F3YrY3?2h0+6I zuPB2lwPTKdRuX?l3&F$}(|;ngtedS`0mZ~LR-ft7`s{xYg?^5y1o5F^3fQZ$6h4cV zk&Xp3?s0>DDXPMdJV{#WC}_&Ea(P}nxG&|>^i!MSf3lh_;-wH2dRpwNJhWxKdZf=q zy2eA-=X%6$fU9@~p=GDttGadm5kZjPG?PTMwi zx!TYt%oUUzA|z1d(sib9tKzO)t!vkOo*Tnm&2F2bdLFf$f`t=Duq2}U^a;gipAc`g zAD}yIFy-YPlg&6;oUL2 zZK)(!>cHgiSJ%T3Pipbch{y@7A{|u+Mu-vPQ|W8;I$n!V=F4k3F^cae2JEZp!D7~1 z#K@Q!U|_*sZ;R&Vzpv}&xf?ulAB*D72r3p?eN|pWfe3~84f@G=Ur3NahedRIM&(*2=j(ar zH){;z>{T~n5jaw$bpz{)^*@BNc-BgKe~4Gl-Rn>7X|nmDx=h@|hqp(@)8RpLPjCWp z8Nd#Jn{h7dFz_-;DsnD1U72UFUP5dN#n+HiJZuO*YO&(po_n0~^nMvO$Yg&oa~cx` z#Rbyd(G8AI!~4F%qw{kDdIsLr@&6B;nhepuj46RUAs`7)p5_>tN#kf2wrw z61Ar`{p@|C9rZo9m(g~#S*urP#aqz;?%K0G;q4$6>}!eyN1tTG&!!CUhCM{uV^9ET z?awuh%?0RaV%{5e8TXaOWV^3~w1+N%voPv|EG*W+XFxR|doxqEcMV-I3mNHNO2$lv za>}-Zlxe^6n32iwWOd`w%ZTaRe`>u(^E6tHQEB<3B~6O$mZ^K05P4X1u^CzhX4OD@ zp*q&RRm@H$q-UQXY@mX}%tnMFamwrbrZeaqb$KT7o5z^hye7$PMkn|csxu|dOZ@8Ob^=luwLa8 zgYYs8fv}@~uk0_Aj5F8Ke;IVl01~7*BhV(5*tUow%$DI{Ooej0$)pB5Ghg(F*sTF` zHWxV~zaH_6>8b+9)@;Zz0)TZC!=Lp-B;QQ_@WIYIz-it`3K}_*jrfFYaf+fFp7ko) zzmjrGP&_)P9yG4^JEtBK9A4wOwoJQcCM^~lXluGHh>YT+IAxf_$wb3H}vEw;=Y zHgwhVjsReOLX;y3A=~4dcJNCwa`j607bkYyRbhVImGSEZj4EGh+vVZdUfs$FvZn_J z2l?2^vXuI%4lseqf79?v;azuI(q!f#7eT+{=FeUHHmDZt@Y|rS<346G7T$>3d6j32 z$=qe>@EYcpTbLLYkA%C0sSjweHKVsMx7ZF6fXJY|_I(F}1DrA^7Ua=QMRSoFc2({A zR*2!lBYZY?qeKP~@DlCL;urA~Aa_5)qD*kD2h$EiH;sz!2@}Y`e*q4=^LUeZR44;5 zIWm(m5Ga4`8{2ZzNcKHnp|@2E+|&1N4aEZs31o_aUE-?1g!z(qDgjeX2=1zIguj&H2U4 z-`+ht)f8^uzIpcA{rd9k_4x>%US3>|&)$sP&(1H-UcWf~IR53QbB^20@QfkOCGcwb z$PCO0_RJ@v`tgVnq=axl_vQN5;S#cqi*SahqREIzq_lRx=N?ie3S|lts{tgG1~8;D zFModpY-Z^y#vw6aBxwOZji4kHaViszGA13=B*r2~1XMq2f%WmHy8JQR%O9b-&EF#j zCTUj;Nz4ZWS{Cl#5z-tY6M?i~ za5YOVPyXp*Hzc^l#W=#s>z&4Qr4Z&CIHN{0`}CEy^|fB@(HBHW)OH!-fVHKrk9~i} zqqXsVj(f5MpVBqV2P`ne3x`kQxZ;!{3BC@N1Gn-TzbqG%0*uLYI?vaqB(2J?o_-Jj zQX{>^eG{dRQO36*<;o$=SKsFIVqKM!$5B0NV6lrgP_h7_WF*^sj`Bc}qAHecx-Kdq z9pbKghP-8nW(Qdl0c)RuH3bYt%}jq(z}aI^5XWi0m^w|}pTbYADO5ULF8;Q5UoVQn z1FUcT({f=z*G09+XYQM7xz5++a^V2)@~ZYk3NeN`q$EfYxt_ye)@@z+|xXRD$gAH0t>|>QoFt?`i5C#`2)(WLptz(XiTR zHz%f|#;OTNqAAUvow13vq;UM6!_G;h74H}h%@JJyeUkS z_Le#dc@tV0k9A#Hdv1SL>zJmfM3j+Mn?W4zM>Po%C&7@QtdB&CFmUYYZ7G%rYGc^lcC-d# z2Zk&viGT@+9`HvsP-E<2{gLhZW4~!ZEkYh-G#ro~%Cs!hU*Lbs0?1O<9uJ=QbWVYw z8Mwg|l9QuS4rD%PoW9wulbFraW)`-PpxwFm-?XXfYE}+aI+;HBJKp5X)_h zUzInIZe_31pfTgwZa2L%XlG5&9Vct1>}DDmDw?!0)CsgMkDxT%=8?sl5XpEWHI$lZ zKEI0wH_T&Mgrf)uN@>FLe24dVhzE;OFRwBGiI3;z@heFMPmW>x~&yfjU@xrL#_el8cD zO1U<8D&GoN7DZF^3Dzv zydE}$ZA5I7;cnYp8aUVH1ix6En#pGFZrrpKXw_i_-Ncg?q+u>PS*tr&n6%Z%#&BjZ z7u7vDoxN|(gFt(;@|+c=feP4#r+1JvtYV0pJt6-n$jjZi&y8@xbX^9wBT%`oymV$N ztIA^KzJ!0?QrOkrJLo-diJR%Y=4`rb=r||BPz$vP^#o0+?MUNYXSq8VznxBgG7n++1-C#wLE1c{aVgl3~f4P&WoExQA5XykQ#ZI)131FwDi}=FS46FRLA};q#TL#mk-_uU?yk5tipA-5)SHwo=k3k&)99Mm?XeH9 ziOm)=SQFp<-m@lFP#D^4;$a)_8r@D%2(x9^MC?-`MT*ftg=Z0>P%Nd0673dMO=H`H z4r>B<6W#5l>?^G>I8&5?Y9NB4bpck?w5bqW2iK7y0Or`Nw!p8;%GcIN^1#uNmrt%f^~3}g!4~!@@7o@c42jmxiOA@2 z4AEghD*M*kP`FxP!w$Lgs~$I^D!?|(fd|X5CEJ};!v*%RwxIkJpGK&Zp$Pp0E$t-g zF!RF90nGz^LdPP-4|6TvxK?!G4(%;g!HVu_kMWcwgEkl21w-_>IH+-ZOv`^m_79kr z4{}crRep*4x(aahyktNFRA212r{~~AlQzD%6HxG|O#T@!@U=i4nP4`bdc1(KEOr{) zk%?e2+;~Ta66R5Hp+#xP4opFto)RyFjHjS|JGjH1Jdmp|ajhEhT42N8ZwY*_dxEYB zd7v~UwAtVN=rmQILH4F8=$3!Nb@Nl)GX`eOY!sD9f)jAsClP*liF!f~Bb|jIXCi%a4=xVGZBcWd>&0Un;kJJ#iW9zUN?s$n5y$@W^10dwuShynBD&_ljgT*o_Ys z57kdM)ZU0Ff;jiSOa>@W4pg9TUe-M=Q|8Bmqx!F~Y1-KqN!3O!5Ok{?zh}Lgx znWHM|kE$+<$@z?V-6n+ginJDBZtSP^eL17JD0Y3Tl7<1LManmvv;hY)ltj zewt&n_8IE1jTPh3%!fOfZ_oSL<|XKzO;azIVIU2wnR~co;R{W(o`ZR|!(hCNg`^;x z_ibNBjY%1AFQlCnEn(x>JO3ZB>T7bTivK^wgKQXETU9)hJPq(KK+avG#^K5+bKY<#A zOp}FSC;~M%lQ0k|f7Mw@SKCMszWZ0`D8EFVu3pvQ&4GZOIFEsu*g4E2IT#Q@1Y^bv zF#mq4)h%1HTVNBioxG@AT~%K#U$trUC8E*W)|)}=Ract`fEX!RG&qkmC8<)8Hu%bT zG&qZnX zp%(SlM@jiS;Xt&MPAb1{C!DGH?jk>JGaX+z%~I7gYXZWQia${I1)k(i*teFn!Z{f3}Ku{0-aRey-O>F`V&o3e*=raa~e;B_Sn#{h}kck@E`0r zWD}(5+XC}$z!puUP6L2XL+Vlt15|POL_r0!2v)MldARC_A%?N4z866!P(VTH#6i#r zqvR$5T{>1b#5q=p=jV_ioG`htW2ZPF0SY9wpkt^d6I*~j`*zS9ijpo;bw6l`W;JYP zw;??)f2I|&jRJp*_N#cy=mR4Fk9&q^0yx%^ir6C!Ky1+f#DfV2rl!$FA>b>3s%m?I zCo>j@TN#cf;3fLEfpZnkuCyAJ>77H5V&0fle+1CQ+lFof2yq30hl^<8;*QJxyO68Q zVqpTVvY-i?C=gq@S~Q+5(Sldu)Dc3)1k4#p476DoFJoY ze;U?UiW|XRHz=|?zHW?(Yj8;{x?;*qsdu@)(W8U@Vb07f4{NB7D;Zh*K=RJ%cj$Oc3Fy&-RsZ_qGXXHxPuX%`qJ+sNl@{T6IZk<&agk}CCH1!tY@7}7p%nT+G{5o z;$AR|6)~xw%09C1g8fz*Q)6kveCOn{q194ps!XkkGRSJ7{t!#o=9;eWbvprt2{1Q; z6W~bviF>tH2Ooo)`2fBJ!zu1z70zkM7eWaF?MNNNL+^g2lN`CXr1Hh{#r z`L#frhbze-88#b$MDc_CttzRcmyMM~iSkWEYz@*;!(M4`(!R;YwMNH5S8WW#gF6kU z{1>UAt$O^dv4$uzzNb#3N8x#@jcf2oy}=x^(Sh`5SC8H(GwXMF!&&nje`0o>dQyvf zrs`R@acu$_Ub_}-VBkP3y%vh-)YN!553Gh7o4fV~_Rg2r$$=|j4kT5JwX|Qj-RcZl z|F$eywUpIT6l$+vxLwtCbUJDsf2PqHKE(BqaD?No5FJIlScGYG74=(xyT2b+E})q} z5n1RG;5Qe`rPogtR)Rgxf2k5j0~7UA$CLa^9$X1f$_CkoWPG!{Z!g*TG@JRLj@_$e z<7ph+zzssSyre`hfFixWvR5LgCz!XmNT!Rs*O#GkP3>0isJ-~jSmU=tJC|40ESEh)deorp;-rCFED1WV)O>g5y z5{B>k6@A=XTHV#(z#u^4fs+6mAc*I%$zTqOhX{l?(ySyS$-m#HD0?kRvM5^yER$@$ ztS;8a+f_|p#5m(iFfkdQim8pOW+Z!#$%LlY*`y>Ki^;7TU%jb8;idxh%`^!UUxR76 za5oz7Jn#y{CH~cHymw4fxqt0-BAvxIM)W5ts~}gHz&Cy|^LRr}YBKRnZwvQTmzt9i zr?(wiy1+?_M)cTpAnGshPhnLb%0_$;t_raJKDg-eL>P$4ncz7xn|Nm=g~|ydiT4p+ zL$c@y7a1#|suZsS;7eAq$ge8f^J^Kg*d^%Hf@Ol})50WzrNw6xf`0;0IK+%l0i3cL z+JuZ|=pJ&?8$feYXfdHgnM6HS9jGQ$RXQNH;v5m-c_xv7ADz07+fkfi5+ZS)gv^N= zBNP*3P-9e1s-FmR$Alt@hf;BB9TT&@VPqsH-XMyJ1#1iX#S(QSa?%*Vwy~-_Mq|?% zBJtvVoe0K7E+a@z!GEcFg%cuxu)xyIB>o~=V|PyQzu--R4TTkwvW_4w;}Xn;r7$pI zikhmYo*+%5H8u4u^0LEp0yt|}OO7V@zQM>DXBtH2pkB+F6I7Ibq{WG3XL4^Ee3g4k zWaQH(6Z7;Be&yUhHA9H<#k%qkRgJ_;9ThS;q{b{wlz3DdQ zqnZBn{@P4Gbbo(u%>Q-$@Xwcy8?)cL$@B`nyTxWrN;`dgGX1$*FYi~k-MVLke(1;U z^L+O0@^AA|F{vf1X0Fj=vro)6TOmRjWDEahu~;JUV^3YGl2X_9So-6hCOv*Ky}AEw z(_jC4zW8G@{dT$f+^zZ<-KXjI(;uc+T=0&cRL5Ih4u4Xy4&x-@n0g+v&1+~UTT%x1 zP4AK$GyQJ)VQFyazi#K7&i=7j{&m-_-*=mC_2+ysTWox*?JG6in?&`kQN%RL>yH{mj_R*5jqc{Z-Od-AT}3o2N_)zR z+-$`Om46vZsfQV~i!H9lmg23GcosI*Xlot8!jMEjRR*-WE}RCtVxeQ%`s6fJoMnyD zwZQtZmxDZQ(&Yi~S2*c3IP+Rcw8UzIGDg5i)+IkQTdE&Z1IeaEbcq*oRM8qi#tCbe zi3S`sV6P#sQP|Xa5n;7@Kv*qbNLbV#JyErE8Gljv{^BwFgji+)XO$!}plYebM(Pt) zEY_phx8}k5a$&_@!~#P-2xWq;^%+pKBoPQx>oCGRq&T98-)DhV&S!yLEQKAUqboRm z31eUvA#=(IskX*;8vMu^A=*sAc3QBI(@~8Ot#fi3to1>m?g;SZzTl^{(vr`)qiIE{ z=70PP>wss|YLH1gx%|pZqC(%#B(0}kkx5V1(>nj$;22;>mWX56RG~#Tf~6s{S{v&M z7{>(nl^&gkCWtG31e}_$^#wLJG6Q<0Z5 z|MP)3r1U4^-skt-c-;xn*G8p3j7tBasDBjkd;G3V;T!Tg?X=Z4CrRUoVTgdHZF-FG zdOFId-GA?AJ)s6mAnsABc1UMujUNOoi@wk$l?0QgmlM>$`_C`iXA#tE9WL>};amM) z>hK*SNjTr2yVx-rI)Y8`KqW#?VzoM>r_~nSYD<3-tX_>+Ir5&~<+HS)rsbItjemWT zet~55r448!DpSvfm<<~1F2l=-WxxvqmKjupgB5PTKfB@BZ?v?F;w&7-S&$2fCHS}O zY$emC>5`(37u^TchLZ9l;bb|{+0O2N{}T2l#q7xfq8x!oTmU|&^ zEF)MNx2)T16dggr8J5r;%&bMnnAx1}Md@Cq*cAL2xY^{%A8p{vrF{Qv>J2xUo>Ffw z-``-hkL@5SW4SOXV}8q|40PYF>E3X*K{tvctGzZ599=k(ls8vD?C&qBJAY$6KM!}Y z;-mGnO@;I-l23y@>rKI0+CG(X8vD48IXbO;9yS)5r#gbgw^n!JwVIYX_I7ET1)-7! z{tQ!41P9V9wGl0R2{zQ+C%b;WIOp{|%J?IjL_@*3(9Y7+x!jlbm*wK~mG^KR-A%t? zVqTt$Sq^eBy9;wMwKrWLOMkJMmMB#w)^9~M^;J)5L_$a>wtiRLm%I7m$E%yGYlznE zC*@;beoj*EVttdoV=OEo&iT{ee!G&KEMi?8!9GM{4s@h0jL6k}kAf9Md)+ZC4G1ZT z-Ew%#m>n(*gBIbbj(crnmT(Z6#a|ei`As7;U{T#ui!EFIB%}3s(PqeW2}jlwkvZF} zZ@$b{>yAPo?8jx1^W$!6udr{eXB9t7Mn-W2R43s%ZpV3Erk32uY53-j}nW zU!vU$`-x|{b7#x#wV_x2Vd%9Ngq^KaR8JdE+BVw z23d%!4-{-?4}03?KT80UH8X%)SXhwlk92^vGYAT{2D$*$fG~TI^V5#jKqr6>#2O5O z`TQ3JlbAgW<|@L;>E-3c0d#iffI#gef0)?-USOC#KpW%^f_j2%0KXdsr~{ore|E-! z&H&K02fP1i*MZo=yns*;;K|?wwg$PlKV^8h*npsbr_BL6N~!=2SCGq}!K!}-umS!$ z8vr*4_uq7XW&b7uyZn(1w6=ygy8>N&z%F(GTd)%dprN430rQ5j0e~(xzXO3zf9{Z{ ze4r-~>;$xW3izXPAV5J{3jlm-@UQmVt)XC7m^+6%*y(qRoWE(FPFdc?Mi%1i403_F zqyMf?4h#iZKOMUd=btz0=mPO_@%szdf?aHEe>Y*{;mWD!0(SENDarj6@?=8)$7TnD z0rGdipa8#rJN_G?b8`c1z}7H;703?kg8mQtlNn_DCw{toDA*fd!u6y*ZUEQs&)+Mv zCwbXGT%3IV3IF4MIi;0VU#cpy{@L;0J{cK^H^7gbUl_p7!_Nia=HcZBe+WJ;0{)vu z6A1pR46c82m0WBg0O3EYeLAN9RP6be0GR$74raiAbE!j~R0{$y{UdTyE`BcSr!VgR zXQ}^@^8css-z@((k^gT&3LZ{Qf4G_c@c)0@KxeR%&tCygqV<414S*WtX$)NcH`D<1 z=g`VPoNWHrrvw8&je)d_f1T6chX{680DFUMG{G=y`#-hvr(N&&j5&c_K$;MD@b5^&oWB z5^X@$>9QlJ*5DinhOBfLZIls?^B2ez^VP)^e5s2aO(bze}n}AoWOsOFo4tg zZ^Zp1MNZJaATNN^?q5&Z1Vf(HyGat-XE1h3 zR2KYS-Z&HI7vuOjBahU|Nv!Ar`*FNQe#Xl@@z;~S3m{SQ{eZ#iea$f+$XN~S(FK9M~t;%r7=;xiM zOlkQP=yugG$fi7cTY$8;3j^>|f!NPP;KSe&8otL4wWU$ma%oQCL~(|*7x!tUnm_z9 zQKcj8$M2oogh_?;$i6nDQ>DXzzoOvD0v+A!wl65FU8clw@7?o5@;UMmLiI}8It{z4SaQ9k*wmD!R(T{;a zp6b1Gv=)Y{h_XPKZY{XWHj2-`BCx@f;fT*SI{Ks>S zI&W1r;$D|lBAzT1#Myl6te;AaO``Z%q-j;ei#M>iIN0xkP2zChdf;G|HFEv&_;DD3 z87LhS!)Y5_VG*H_fgGk2Lg0HK9qY`hOacavhf(D=|f zjyn2@P`I}J$Ee)pb5jNCqEw1{?Ti*7=w*Oapd^Rj>W;DsK1RCcnwo6l1J{%q$MY}c zD%!4LqP>})E$xvps;mMBNu|Cd3-#_dOzUYhJ~M_B2Ztde+}^?KCR9IY=R3+(lOExt ze|&$=V#&luSDXp|;~?1tIg&Je>l?FnKKidE(Zh9{kbKb;#Wdzo6nBC0S|j@xgiM&# z`|Il~a93h?h`SbyV&Il~j)lp&`myP29u(2YGL$Y>^hcH&;pjooi(=0#;4;)RZp-3@ z6FC{F&2T55NhJA4S)a2yn3xPBjZpUTf7EwLuUJ8pP!ccKA%T|b5G2nL>^B^REl3oW zz}4m}?!AYJ&9TndFOGPwo`iJG%w^LmL4?j0BTBAgCGaQwJyK$ozgmMXDqO#EVP@m? z8kYfBB%WD`z3e365iJz0L>IcAP%U0%KF-!WtBns2QS00mOcek5qR)9kX?7use~c2H ze(ZUE$)pD<59g$}8db+)b4|_yL3sqBb!H!Vz+)v4d1ufJD!st&Rxxxy?C!CIp8ja1#;w&Tk+(WvUZ0srIR`>F8p7J<^ zgcfz36vSKNe#}?Dp`Xr_^@G7oe}3<}>@Ix}8>H%1dqowgh)K#wjR9AUmTRAz$;#3X zG>X*RWC)n}x*LsTZaBR1h3<2=>?^U$%Y|TgvG^U@%HYHvr;U|!C@duG1!PoOH$?vE z%^6SVGt!A%bUM$w7iTW3Kl{(ZiBE=NBwd$rpPRz`k^_{ov%|2K+#u(zf8;xB?E^Dg z9fY;j$INt;?VzlfBeES8!y#cV=noR0sHH#Dk@-qd`3w7$(+0U^#=DdsBe zo&_mA@67Y?n@mnmy=G^Z|l88uVW4jY)fDsmhv>BU9wH^!Z zcnNGT30$qIfDLc^0-D_W6P9l;n}5#9j*b-5^Sd7UtD%ML)tdF9rFI&U8b^qehbPi zet=uLt*Uu9f=Gs zJ&EIS8}Y{*IwAbcl~r3g4+Enoxm`&YQ*zVh^{>+`ZbVcqYlqGmloU%q>qruO&~xrr z!ydsixG_iJe}nvv7Lp^)raL-GfF9N?u`7TSV zIRUeVugle4@OXvfALBJ+qiVBl$dIFLgtQru`B@^pe}SVj z9bF`jC55~0ps8s?Gry@k(9VV&K1cUA>vSKtOIXph*_f1>e@yIWY%e?GiF5el`PW24r0Qe-6GvEVqWtjs_e z^)H}dOs-ydwttYb2&A~Ct-~a_SNBjU{Va4wbE{q`wl`h{r4J9YW+&h zG03VPvUk8XqduPNXag<62 zf2B%H+5SkofT|ZTYvha(pg(^(>C?pP;6sYMJ$phV=wA>}SXJrb-!!*RLF@W6VAA-m zy)xuV-sg?=r+F>qSBJz7aB5tpKpWWzstRuzcSz{6EtJ(Yv3W_&pf>|7ba7fe;Zw_ zn3>Sj_7muamh*UgAn4F-Y?62+7vtxe2N{ZCVB`%@Ysd;>HoR60WgV2K?F6&ovFz(F_DHu?demp}L*Vo0P_N^exDCHEWEykkpBi1+S#em6YFRXSVETq<%48S+c9*dCv zdhY6hQRMW%aM-h86oC{^MpHz(gR(0uD;vS+u^3->V8JY0Szdp#ydWQ3d=AwB3mJKEzwy%78~RKB=LO@B3hLrof#dI#Uqfo5|3{wVR~@$u&bw&689Vi%<~ zc3UmQI@FDvsqr^Bn$bhAxd&%4*=)_f$H|bs6_ZAl8iZ?>b!fGJ{f@E^foUqzwNNCo zH_H-dS}eoI#GRf1+FW6IyGQ7Pwx}-R7u=+cM|Y=acLOd24ip5E|s< zy|n3+;a4G=`nn~&BsftV=%tcYDIo6~pVVa2AI>&x>$ zHYG+9xXIO$R5cTe4nWBqm@;~2*~w0NtIH?v%>*KK>f55>n4Wt|$?4Lm-D$*H zRDGv9Mkm1OuAav$jn#=) zpEXybphWs24S#?A8e5pIy|iBM$oslnzeoSG(T%$-4{Z~#Gou_vPssBG%1Cx-Vv$-d z(F~dZqW_l`?1=e^1-S~=L{L?WV_zE7NapIR9F$EA9cC8$dxMAdrhhM$)W;N-tch&8Ez>p1r2peMqS~x_}kfGOwarv%%kgNAAq-3C2&fhjE z+*--4zo^1lkEgT3lff$FLR{J$)_R34bz`~kcuy`Ws`+fauUy}? z6CY0R$cLWHfh{phH1B<;$`%)IQ96#e5p{ap>LpdZ&t1k@fEe>US&@8Tj!Q<$Awo}{ zt#0e3KymzI{WE^F<$``6a44t2`nz=hfia!#gB zGZ|RSNyeBrP)5<3eZL}AvTfG}Wn*pW2s&^+_lK59Ru$HVVfFLF!AaEx$hS_q0xGIr zw}0b>zS=R@+(A4)x5Fgmg}P$)=v7M#Q}77f+}EEg)log>*_Sb4^)+(cV|GOnZF=$f zyRBb*-*#nXeT6%1D476PfEBVZt;9s4| z+W{S1K;i|*^G-$ugj)6}iNW`_h<|Wvj(=+mynvjqPtZt^MY!khCOlV7taSEk8y&pA zg;bR|;D+@E^^|?XgXn8Cb->Yh=aijU@wDxuFl^^p(m`#|uf5BW_(RHb!ij<$^wfRq z3``s_8_LQw}ZBuf63r3r$DFG5#umYNr$=BYzxPQ0n z_?@ic9dRqvtk_4CG{j@sM`q=^lO@$s!KLQy_-*2YUO(Vyz>X@x^50U~Kf&F;W?o%; zPWU-|?F$aE?E)H7g7{MH&O41rZ1#m#(NLfi`pY6pPk!&RgsIk!xVQ>a?+4LuF7i}K zF59z57g?OBmqqx9=IL*?^i90+qJO?ozKIzg@Ff+mwl1+je|t=!l=?zFKGC>BZrZL& znGGDh-7N7&)d~ew>irHyg4^X-TUDZ`?DfGaC2`<-2rL0ElZkic{d?27MLPYoCa23Q zJo1yqknq)XsToen88F=PVPO7H3@v#AeUoysP#YJP`RTN@x&E|c2qp_FUw=A6J!jqz zOFwRHxVUt?Dl^o*yi+Ve-{AcH7Bx%p7JY~1w`7deWzhq#%4TecI*mCjKc_y}G5}0} zeDV4G@xkt;grDH?2p&yV%3F2Cq4--%loP6lv-)$b#t+opK@XMV^+I0ufG?jupliQ* z!z|J1Ft39rIID3+RozqkoPX`GvB$>i4x_)6D#{P2J%7qet>r@%7_(^eeDZxl`oy9^ zv`2_v{dQ;Q#52a~s=aIHCIDSt(LLE{1Hwq@!YC2Q9z$`^V;?id{#$bXpP{F&N$3sjRZ zMu~{`%u>*|eYEdG<61WAwbzcHbb?S&7a)Y?&GbjUPpW29t{bA+!FP++qz_TMNm@p_ z#UrFeewUdXo`Ygaif)VwO41zy`fJXwcKqmOoT6j*Q#o*>f3Z_5qR3jR0&srPDM6BZi0{INZ)YDWS{|0rw68IFFIF zphFl<(|A8wt@w*a4ou{Jc+OEqu&~hdi?+lXHEvRAEpNiASRILHVCL0z7~tLFS8YQ9 zA|e)pR|PK?LQ0n0jeIGRE#OD%{JIins?szqo9_cVP92GY4@Kd&2(f2($@ zT25wZj$C(`F`Ohf2I~TdH5`%6DQHLHfsmhhfTO8BVchQWXvWsPoKT{CA-dMg4{Ms1fV5viR zrJLu_4S!ErIvFd9(~#D+>{xvMLr`L{VkrjZtm02WnXFE<9#lXWeP1a@p{3!ex?$P* zYN&7{Qr7P$4FB1f*A;;pyucvsTw1%|Vdpy@QQhpH17GScM`kxZyWQe$_dk=20S1T2 z7ADSwN8RBC)hxW6+K9cvWkstQRE&0T{1E$t-G6YzqU-uYB9DOyQ__RqetRW1Rn}v_ z?*8cm`5U97yB|`!(ib%?#VpK75Scp?`EFHx;mp9B%G4jG}gwM#v-g_A$~9o46GV zPfWXTl~2O;w`NWg%~GueXB(L8eezoh;UMT~bhu~5z~OxZh)y6&Z3{3bHl6D@yxK&V z(YXC10KO6hk54;-Cvg1v?RJNGn=*Xbyi3dPK z{A8;zyPq%Xd@bLXm3p%bNB(U7!kpCBeMu_mg!OeOvD0g@1-p}VL7c#k9W9)DbdaV3 zA#5_C48cd#&ckTyu(!_%UTVyr#eXqCuVP8@5PoP+71ufZcyVFvgcTkkYnE5`QXA)p zY-Lr45!r#`DE5^=zXhL1(9aG#VNXgV=c~dK)?Z|ZZ4VR3Un!4aR){Sf7&wbgW(2J7 zRJ%Li+ zfz2(6lh`xcQ;nV>w_Fa6L;_K%=xfItAmpsdM^!yyh;XyvBt{9XtJo_7CCX3qWLaIE zZk%cpct1jQO|xz$TiCBsX{)Ye3gA;D)QELmQJNT#j&0fnGYZN%og}oE(OefxhYqDey=PH%YX08D*k3jGM%zE zetV1UxaXiG5!lA&d-qkqo^-MTIh~?T|FVk^f`4F0yFi{eKs$HUZ+FKrlgg+<5RO{8 zHQz8GkWuB=0g`{aL}k#W_;{Ft{yXTXZhCWOxC=&0KCiOW+X}#|= za_ulRdQL}QO@w7{(j&t+Y_+M=ne~?TdF@YZgWMZ$Ovvd>_}KEbRlCm)%2HCo!iybA z9X+$`oAD3c7wAxQBFXN(C6nyhIzjmEC8&*PCs&5BdZ!smkH_>^JsPofW)Rht% zTZ_IcHYgH_=YL>I4%@%|hD$76=>LE+7o>t>6Hv2{H{?fhbEwBKHP;$^79LaRjATuM zorUIz+T>OKYgUX5Um^O{1zJZYN-V0zAm+*U9Ke=CrO(+Z1^;uy)}Jek$owrl2?z6J zEn@~k;zUdVC)IK}Q6g7-!oTkP#FMX;RmIRglIloRYkv(WpR)L? zV#lgZ72F~c-k(_@<2oJXsAypU4AflS$9OSsi=2-8rJNh&ozP;2&@f+xZL0MzN!&A1 zH*Izft;c5lx)A&2u59$$8duRS*z2<`CA1}fXOng%`}_BFqJA|CzN=XF*Wozu#RbWo zvs5l}r++wGNGHo@?A`b*M$|6MU!M{)1<%m zuROnOHARj@3J+0Na*i|AwER?KQ>v!hLDHa!kAI$d*YjnMTX|eV4bGmi^lCD5VynHu z$<^h~O%&hv=iap*KHi$?y3C_dVtDL6pDm=wAc%>)R^+Gr{A%5=kvaH2iw}kZK^z=4 zizSDYap^?{2{Aq$gv+@PhQ@JI^}irnEv?YMLH2z!srw?8 z5PumF-e0{Cmg{y>fSQdX|5?0Ev5S2$cIX>VcRsJq_iA3~OU3zi;g{)4mSv#L$I&65adqOet9f|}&3?y@iVG6}lgJchKbX-XrvI#%VF0aD+&fn) zrU!)r>ptJX{dS~jr!wrxU}9lN$>pzkXX3eg^oEHP7q(~18YHtRFV zE;W>|Z?`HtrA9x~|dW`77> ztLDxT>Fe;|QwnQGtKWer8NZEd!^V^_-xA4szP<>)U_y-KX32gvK=R&&Xe~4FU4975 zN6OQ=Zvy#z7M2*5)=}?<$be#|D11x5qF_=K*MyFfrlJ$64|qk|W4kEPPVc)D6JL~m zq!0qQM}JW~6+B{P^Q7VhNh*Mcy zZrO8a`rz(X=IUDOHS!W#DXg&4(+{V}+c1z1`XCkCTIQ`K^CBU!%Whl8PJbM~7xMmU zwZYz$dAh=PI>hHaUovG{_}oX#%`nvnd4fXJF+=RVi;P{znF(&OL4&oayqo2(R@}5w zUO+k7$TgcW=K_jzwt?3r4^C>QNKp~5a+U<`wt*4-qXlA%Q#DE< z>|bfg*5InMYhLAHOk;@rT3OYiU^UGwa92Vg-Oq5mV_uezKYyWB?1CC+WeJdO zD9*HlS9|V%m7Xn*iI^S}Z-hE@>$I6s!;wLA3}|TH#RqABCu$TmJiH%TT&C?&Hrgc< z+vYRWYv3nJmYpZqYY^raA(|rJISsPPNE0y|`l^ z@GH{B#V1d*AL$8Uz7UQ|Cy^FLU&OQtwc9`b zxG95TXnfMBcz>8ln8lR10|)eWuhI9mjxAc-I`p-eqGgT>h|?6F|Mcn`s=?<5VpX_- z%d0$?=waHmB38;uz&+)T3H~ZU6_4|6$qFG$JCKAs(z;hrr~eqoiIKneGv5B0H5EO; z_l=j|K2RgUd&iZ2a+Hb9B2X_u;0}XP#jkqtL*kcVDSzi0A>uvQ%yeeCZV43Z3HItPoVx4B(?(toKf4@0jlC+81GgkO~W$7Qpjg6@4 zs!sI8)=}PDyh%;0uEAZ4!qP&9TQLkWH}^HSFxvj6IRdg*0WtVe2HK>Bm9L4zNzJ5> zjdHP1#pA(C1sk-Or?O&=J}CoLyTU!U_9a(EdH)9>w7waau^$5yw@29l7_JdBI0`RJ zWo~D5Xfhx%G&3+Vmoc&d6a+CfH8hveX#**L_61O!TeE-*;}+bV!6CT2ySuv#?(Xgm z!6CQ@3r=u?ySrPE;O>{b_jkVRbN;{T-kK`recD!cukLpsCstIU6Ed|o28!F;xzI7u zGjan&+D)uIpKo`&d6@rS_ z!o|gbn}NaI-JRaZ)|uYk$()~>7T|7w>0$v;208NlzX}G(8`%Q?sf-?u9H44p z>HLpe#oo-t-N*?D_z>7wngH#bKRjIROo2{-kHY~fQnCOA2cX?Q#2e;jb_sT^6%56|uLq1=_hd z!~K?|E!fl{LXG5HX|{gIgi zT>xy1oE$8iEC8S*0O(<2!SGjqcvVja;NME7zr-IE_3;O-e^Pe)&je8YXFI3?|2vqx{m0k>0aSmcT$hoJ z(d6R~)BopL|J&vN--!Pe<^OHU|8GL#t~NG*tEv9h|Np3sY%Og(|6}kmwXQB78z5)@ zu?Kel*Hi=e&(_KTO)Xu2ZU3)U%Ejno6NK!{Kc<&K=p%~kAL0Zs$p0ZO z0E5DRiIWk)p!kQF01Qfh=;J(VJvrBQvA_(#MuD7}+>j{E={doN4?=&-_6^ zmw%~0k}&x%vHeAVAMclc1^l=e2Gf7x#{s~9;YU2PKVAAD^S^!vJ_hNJ$wxyh|AikN zvHBN&q;LH%{K(ekzsUS?n2nLGvFV?D*gw*-`D-fvxP0Vn`^V)Y1zXpD_2a|d?vM7P zk#_&qejH%`FZ^(J_!oXyJN^ql`u?Xb=8rm@EdK5MQRkn3w3t8Ya<(-8cPE)XJY4>T z9~S>k<)d=9f8j?}?tkO|nsF0XC#R1k`1{rLu>k+WfB(_|fgV5;xa9?V6P^&Ox{&sV zS|L1ly8Q`W$n*3EO=h}@B7GQ_ez6&Y?Ie}2*()*?;>&$Z;`&xy^1_Y}IU9@D-h1^# z4W6ubbVTBRhvr1a2@CIcpmSfm@9{|%kXk_UHByBMxl5h;K@wYeMai>5p6X%c)ZI|!tt}V-!#l+`Q|GlH^(rP@Uy3cllO_{r68y~zIqZ^qfpGhLa z+xZBWx=dc9MzeZ7hK% zf~g{xPppg$HzZP!+X_Xym@dfS#8>yop^H;HjeL&hH3tMk6XIkzYNw|5G zw<+(sxN<;e>tguG4A%WJ_pK64X}lge{Y6*louS-n7Jz$BKBZ@N*|aN9Lqd1_GN^bYIy_e?>jM-a zx7?ms*I1R9?QzSne0Ie$d>D0$Xnc&_@S6%$!pMbP9BvA+Mal&ss?u=Il``)d`KUy{ ze)u`)+bTkIE+S_{KFJ(Y0!MG-9YLa9RIPx2T#zwRC*al>F_`!VBC^k3cJp+VKiig^ z=#cG5OZep%L%$wII!92R1yVq2a$dI)fS_RCysU!N*4?rE$WKpeVd&~I{4Ro$z`}8( zZbLE>uyT}e_h<}RF^?q=R3s3TX@gcb$x#mB6t&>wsyKPREy#25+Re+9JaRC{ zzn9+LZmWZ*^>UYg_&DF7_cQq(aD5kLaAl!xxG2SRDt)*2I=);{@|m~KA=leY;2vHV zzfGbmP4D68D4Smt0E^=?{z=S%ZxZ%P zt4KZ+jg~TodAo%&_{2^d$H%i4ZBILYC4Va=mu;0`@ZzR!53)}_gkq6jI;3O?3TVw@ z)8yS4sHn90!k8(G7aYxmW8*vteFu`)D5>>Xkvps5*;p_K%$5{{@&Rl2dd+OI zA-akLxOdA&OnqgEjh2cl&7FP0;!cLVLGV6#@kn27=x8svG#4erZcmvkO3q`6xbuu5hWML?q*kh6Gj@c5tCf* z(|K0XF&1SS3qMd#P!_iD)vr6O%rYV6O~DO!w)@BH8ea5x1?Kz2R0Z(xq$KGY6f!;KKFdM5-xTCxMQjjm%2l(;SRx=qT&fxqurL}lvsmyg1 z=D()XAsti?x&&e57`%1bjL&44u#|KCA>reXY^Ygf$U-oQvg5DS2AwK@9-PD;}GF1r|~Q2boCR zEbwVuQ+u??cmOkjcaP$Lz`~mKxh`E{vz&8>5P4@^7->gB^47*C(|G|L5^5d`jGNI+z?TOxwPK&%9nI4OgH z8*MH-nr)4Nhb_Eon21Y{KTcAt50Jg@hMnoO!E*C$9UViR`lL{8*XJBTTo|~Fa>L}& zqoK@Aw9hf;#KX<12}FHt%8q3dv>tnet?tdMo}^)z7f9uftL7^=5W@ZfgCCQ8kS$ z|H6EXs}>cQ#1$l!Fem&gfPjttigfq6a)VTRgN=fOGVE@p#up{D$GlSK*DpWB!0r0B z9Z7I%-&2*@;DyuEIXutL1p~4G-X4|VsUdtHYQunj8;NbrrN`mDy1T1}TzcOg25(%w zqJ#w-?CK_eSgh$%6cS7_B{#8|S@jP5tpTlE!O_!RuwTCTG~`^5v#)9>j8`}Vn;Y+P zCa^zu`r1M|nDk$3;1^NmOuyl4Vf#=9e|Zf4#`|)kg_4UYhOAJ;D?~>IQI|kDydKko zte}fo_Sh*bB?7S*cj^ua-62op)WNEcji2kX|^~w+x~@eSvT~ka4rtX;%|{8gP?3I^SpIe zk>Ej%Buxv+{-{b>`qLe9RTC#aeCHt@kxVJ&G3@53h7rmI%_Y+b_G-#h{VV=xu*ADW z<*jaiSM@~?(yMHKPuu7p3t1FfP`4gGpmNWnlOYqb32$IL^TMnjn>yd;tUV-WI9Lp# zPnII*8}%9UwSy8=Cdt=RSHAJ3SwVTQX=-SRW)~bn6Gz;(@KOan0v9ZPvd2aiHd-|2 zH7yD^Jqto(;DqNLFe@AnD`QX*A7RU&f397Bt09bgO>aqd`8lHh3wjCh@|1*!nDH~- z2pklMi$wi1T<1HMO%12C7E*#w(h3pWk8f-;T+t!%1n2XpYnNBH+0a_E<%45(=m7Dd zdwx0r>L!w*QmAGw_2fY){MpYXvF=s~b7-UH52Gt7IH@uA*|PgRJpgWh zgyNirgqAV*wt-*WAb`-xi~ElJ81$UOc49^1&PkhCCPr`Z9+zWE&Euk+#I|2DV0~h8 z;ES9y+xsrJ3!@QKFCe)}EJW7YWuIWvBQ~;*^I7Y1rz{P)FeeEqJPRY7M{I=VM$%Y5 zN9=$JdRWs6g86uK@2xT9g)C3cj-)PsQY$R*3WfIKplIHx&#T8kaEFH3=vno$+9+G2 zJ|TGoIws^4=^niz+t4fqE8w+135X|ab%PmcjGsx`27f)yuhX^3S%Br>H!1)8ED97W zCiHm2g93N7IE237FE19MQF=(>u+?(_-e5Vj2CJ)6B(L+rvb}8 zFGyh9`aL?x2AyYr^i#ew)g5(QKiWFGof~aa0^ylgMTJz-J>QLe5N>o3y6#5U@Y-%&bWrX2NJuV@Ks|G3?Zk}I8^2*M)scdx2K!n z8`AL5MpU?GP?yK;vGap1!}_Iv*L%VzH0QXcQZxFFOPZ_tCkT{aMP3ERED(G7kj|rM_Frk z-hAI$A}0qyGZ1%>E>+~K0B;?#`Gyp}7PxgnxiWxbnutQPsZ$?X`dSfx%*}HR(myJo z@WYGk0R0|WVT#&W5_p2zOUJCLbje5q&VLcyT=QkH<^W~H*U#A|+9MKcltLSHDjwK4_N)j(sE+4D!vZGDE95D5slvln_V&_Z9ZhWVY z=A5$C{&HdP8ZOlAOXszJc7+hXVtUTQ>GT$=~E%J7G>9^h=#w zB{b`*f#2TCewVCx3k`s<;@o@1QsFEs(s!Y)(BqG~bYT*guk357)W3$=$%7Z~1;rffq>?hZlhLy`NO@$TfR7my z1&ncziViPLhm`ZRA5*?7VV?dDGl5z7tZHEG&%Eh!T)P6SCHL{Sk_;&#@k|6RGtwrq zO>2}Q+|!Rr??fx*Rk!bqyG&+} z+VgbcQwEA#GR2X@vN8a{ATqUHD2Y~S;`JOk@b3HA1Nb7uQmn1gTUW{-6Sfu4p!?=v zS`GO0N3O$#a=2~;+A$@+i_OL;wi-3m9!$&C)GwgZXh=BxhtkGL54( zv&xJXQi%R?4OpEc*nv&~!%>OS+Ctt!vhZHa37sVGy7EZW3wBHV%$p2U6LA#mkD)l) z6`_Bow9_aG#=TPK*Ts5fG$IAT%Rz|fio!Yb)$@3N335|5Yo>N7L@soeoj5FdUKerx z8f%~-=ug^r*qF~@sgT;)HKJL%yp`-i;SC*NY&lcV)~02r-s1?-5;T^#MXVW&6R%@` zIu23j{$g+jAo(V^wKt8XH;t4h&6*c}JmaJy_I(_l2Bey{5tT7@oU5`VRaE0mypAL+ zT;zR!T+njuKxZxuRuKHuk25eC_s+w`Eg`3ZJ_^lDt)2|wlfFlvx9t%~yn`DWMmUfvmN z!4h(3DP2QDAt`^D@8WbRk|$uhX!yp4mD?wF0n<;MjHsQ(m*lHTt+DzJS(5{Ou0hUv z$@MC%Sq$}fSj+LQT_Vs&_1CO4(NHnyD%t^#7Y>Hg)i{M0fl)T1)mzCk8H}uS%I<4_ zWQ-}?uc%AMy%;lZq?2A3JyEpS60+m6Ffi`WFEja>GWrYhQ*rMV#+ND7TV3&oO6m3~ zBW!gyyK4SlIf4#$-;qZnK2Hisl(F_QIVIS}9lax*j%V{3POSz@@m?c;RgU?g1-y@UwkIpE~7-LlDGF{Ooo1MHw~OQ(ApL0oIYW zTfVsP4_QQsG)_0>Z(XEDY?^StCI?wpLUL}n9!%wj1zECmxinmI;xlU&RAujfQT#8+ zxli{nXR@%D3a92Y!MScx==9>fDGVMDm~f3be7z{bzLB!(nc<=j++*I~v^MHcjI*cqGV%?7q5VNiC2Y|ez?<=L;ak>Ii|ntbz%a{h()cN4i%%WP)>pGB2Ht6=yz|r%n#kUB*M#@ zV@XBnprm9caUSlpJqjj}GUQ`4Avd4$cnUVVz)EDMGG{tPeuF%JP@=%XAVqo0bcj%h zX}Sh?(-O>+#Ce}HPV|4CkC4#0KPQ{c)Rko$DM&@1cv^X$2Z?|)D+XieMPf%$xV!UA zPMnSmR^1)rO81F<)>Bx395hU}sybS(XF{fl2+!2O2&ObGk5JnmN(#J{+x|mOFm)VeJu2&2?Iq$Y;#71y&L^PHJicXr7oLrwD@rg!^g%MDeVZ%4 z!BV{{7`46%&sGYm-EA6KUZTS{4j42V&o0|JiTAyNnl_7zRUcGa77cA`$&P@ak z0aH)?WbkLN%%S7Tk^)%tfP9D0l3dar8hPYithA?fAiv^Op%eD%wbT%~C-%vsAOuLc z9o@Iu;_AK~71r;|y-jo8%@Yf;#ab6S*jPUm&MZQT#mYA=V{(slQE)z^3VTF?i7ZTI zkd}{8`OT1j@(uLhP9`GUe)&0|sara<;JKwV(ZqK2yTahrfkK(BH&R7O;)6IBqmfsmcF`?Y{N2X!EssghQ>l;aFZBILWmyyzg37+`pfhA0uU1{u) z_F>YY&9kO;|A7#emXzv0HfqLbn0c$BqYd0Zd9i_ z1$VZu01uT2=~XTU3BBxwnFmrf^zJ<6718FTJF>?Cxj$jD*=#+(O)H*t^o}7?q;Nz& zGGJ6^@eF!^S zmmi~K_RgY~^nhtvd@NQs$55!s8hTJgz^X-ZCv}ONMg?B9nOl!WvRJjB4GXohHEsMP87X$= z%f;$fVNE(G;nQG{Bwjz+<$!L8oTbL>icv@~AB)pPd7E8pWaC_Ei-5xaH8DWSIx|ri zC~M0Lmj>D$dp^dCfKqc^-7}iRxgY7Ie*R^@z>}GevPnNtsOxo|U+__4amn?6=W{{X zCH4$@uFXkXgmhLk-n|k&?PJoTn*Aj79{2$}D#~`PX+h&K5{zxjhC)c)zP;h5Qo=PO zwBiYQ%>&n^Qq-E~FHzxz{>w8>mV&Y!LAfRjNAC7cf^XdqAwnyTkT&l_yb_pUK&`JM z0Xe9{BK+mD-+q*s`G>dMAKmJI#)WDSVOFOPXJLN2p%U2+&^izhv{=imojsN4cBpXJZ{&G8ENiqbd*XsRF%hPkNn;WUOtm0ibQ1`vD_zOemEeEe*(6_|d zj^wux@bn6EMXxlWUo6O-HvUq#$##jU;}8+%?hfacf`>loX}oxK!(N_$9j**ZCsq2D zVZ<%$K8WlORE82ag8f$yE>5(xU`8iZ_H;fkimQ7@vKM<>`?q1&?$<-+YyLmM`estJ zAJ-wa_CEE}j~a`o$ft)jF`^2uUti0#%N@nVJDZIR_2DfVb9KYRpwWX+-$SG2P^y7f zN43b7rIhbsn1Z4tjh()Kk;x^)9ji|@`W1PllO#$-~*jIaFaoxy|wbVYE8UK9^(GALO!=UT9p^K2vXqZ!pAzjKNCqq<}_jz2F zr~11eAi%Hk7R=^L#Jum36PvO@_r;YJ!Z`C#l1}gPZ7MSn&WZiT9Det&0+Qzf7A;y(aXlE^voAKd3Q_Fvy?AC_45%e zN(L?_%AqW#jv|eAG-mF4I=cFQsbbHkOlnz)&v7;C;ou`eg7B6rsLd|od?yk42~|~T z9V^^3-hqRF`KXE>M{>G6TPz*s!>`Bs6K-Xc6M0BFmquWJ3qV3wvlofp5bYc2jMBtm zW~zSZQ;L^AcZ0f*MZmPRz4D!|ON3kRgcb(xhERM|-?}xx!cRBt>n8ct11Y#!w3y9eAUB6^`SS9q zCj@103Dn$wC7lPM@))-mL(qtqN>f4FX@YnE({qJrh790b_j$_vn>Nb10`6i-VZYSK zGiyL5I~($Gzdxhm^7j<~vkof}OgyDz_xI@Uk{AxJa6Hu|uaFO!H%XBet_unK=ALLZ z_AGp@t*m%OlvYbH=;LvaSho9`$?Y_JMPL1K;|j2URi2JQU;6cgWYel4GoSNJ>O{?e+N8v-)h58*@7oUH*s*#};e_iRW*k$!F(u=BWs zb(R!Z>cEQvsnKZDBh}1<;Z+*b|+U;(^zSRxKG)_pk0fK=PB1E}rMdbviRC#JV*L4x z-;$@%eU!ANCG5@6q$u?auov5 zPP{M~nke$D^%OaK?9>9jvok;k3Vn}@Q6uS1=31x_zKMsw@;Xc;gm>L?wL&0ntIF|z znZY`?=I=(moS>s=u>_Z}DWhv)Zap>&t2WL0649Jk(O*u6TKiBhw3=FN+J5yF+ZYx8 zB^*5(rQT|WmE?xE)S$I9(=_}!3af*WmCAN^zohN=F-X~7Q~6m500ly6G&JcGh8^6h zQsQg;Zj4U0(5L}dUFqbhS%@qvspkWKI7u4!EsnNh$7u%r^w)c*D0wEU%8eKrZ&rxo z&mt0O$R@FPCBEQ1rVPe^bI>bGG~R)j&l4>T2cc#HeP&?OSW? zl*0|5D?vLNFuP&yd529_D}1%U%IoMj3>XBh_UOoq=>t@5=XG#o6ZWibGEB#TXM|inF!xG9HrURZ;Pcluj5`%M@UH~_LJM~w|(z>Ck zyKPy>my|n_15zvo)<;|E5|K%~SF=5}p|T;tY|$%;FqOhorSyY&MuU)2143(LJzn*Z zlf=bPgkGOugw~T7so!;HcoZU-8lw|Gn)vPBG3ZCDaZ1XS_S!?uTJ9b=?N-pXvRnm!6 zK`oz?o$@hAJAI*lOfFK$4b|DU_yG0H;o*hzAhNM0V~MR!<{Mb>=I1mEbOihfLmrJvtQ;$b3kkBb z|9Xin^~X*I5scYH13F&u9Wt6~$Z7w4QF!m0t*0BE8FoN_9luoClnDRmn$BnP!P`}N zet9W$zkGD*G^8akK@Tb7>$a9c)>J>$V#*6}UauSz2oKnmN4~IIEJ$Pl{QHMGRw?cI zO3sJZyKjD1=JF|u&pJk>WP8mQ^D;S~!kz_KZ;~3WPD*MJITv92?s{6H=r136Do141 zhv3QYWLRW>UQ>L;e>2Hj*IjvySc&PDy4p*{V(APx3nX_8764FRIhuQuZir}48vX0c zQ_rj@oeqyZ=;<6>bGi+d!{LLft+fUMEM#VGGhjl5;TJP3SNrpmEN{P&qWTzaAO*Jd zj`HZ3TW?rry{fl38^bO2Str9vaS)F=<1+4KbxnSMZpVx$Pf0ClZ^K}TD0QOyf*hUl z%Uj}`Jvhvs=-YPg>L{7?20_*o-q_+TPT?Kt%7);4qapb^p#_{8fYlUBx!Y#r?ok?n zw39E&(co4@&c+P=(qNU$p{$9s(p@Ow2VKv%B~PwCnO;~KWe8tEh%h`v?y2nnAbU9w zY>>Bq%WIRcOk)NFfd= zOHTV-i&PoI_zrP=CGQjNY9hP38;~4GVofz#XJ4ff3739X$v1IrpV*G%(9zuB>j-pW zO@_<%bn%RbCa~5EfHK`5DTVZL5S(GaqAq=ZS`s2W?yFxr;%mK?A%&aXh`VgwSmEVO ztXI7X$4|@i{zL_V8z)aS+Ur2NY&b0e^Tly3VWH3xBObaxSHj?4$cq-&umaRL@(?+$ zV_kxzcl;qQMSmBSuafJfd{lZr%OH~O-K$tbEx&V8u4Il6{9T4KPG!~Sj1vh@RHt2k z$3Tp$<-0KkUE>Q;-lUlG{L4)8c3%Vh;I%WRXl5pR_F{<971P>xT4O|H=@qp0i`*H9 z@offK=2P5>Y{r%7JzxN0{sHRw~MWZRx+}@(u?_7~qjZg!}f<-UtA;1O(0Wv$0oQ zo-s6n2YPUbFZAe%(00LP&}y8H@%KnQ{$gVUHPRerk`s&N^51I=O(XVwhmUT~-(}=T z_1p2UmE(*lbaKlmqJAzWcuSF1iVo4CsqVk@^J*+xd$Vb3D7agz-=$mp0BuHp~LAmVLAFI_rb2?E|$9ag*`4?e^Q zei3$<0=e8E1w^I47K^YJ;Cc5(ku4RaizSH_}CYXMnayF&dg|uyY+>y;O$FW zw5PWNS%1-sWr;5_IF~S(rcZ8v+DNngVqg!)s+|TwA5ZvHt*0sFg`Z+50Bd3Wv)_8s zwEM|@;Y_@5FNQ_1%%VjR)G38U+*Qsxv+4DdpCw&5ag-syzSogo@(;tY9A?VC#KS{B{gR_c*=46Agu#TN|I!i?}b9)TQx0ghlcK}h1k z#Sz=uVX&M>{sD$0j#;KtWMO~!N3~f_llY(bg`Hz?W>MFsJGMLO*tXTNZQHi-Bza;x z9UC3nwrzB5+sWj8znPl(H+Ah(wRW9VXVheQngW6QHq8J{;$yr1 zckn;l3%QA`=|_Bi^YV9rW?8P}VmJcH%t2*8Y;fc5L)i2!@c&(_aI5*e>XsYnPcgN; z2FApa{LvdG?2)h9h?x-R7Vx-z0caH2IPiF?EbYz1gJR#`j|aGh7b793gA=3DhC#y- zdugW(+e->w8@1@gPHc4_@T%>XsuB_SxLP{cz8*L=T*AAUc-Ts03=9jyCzlAR-;6$${w3-Gb`3eZ6;B)h^rLKoAkmRs{>BdB=gl()I6JB4&~fni zF*WmNO1Rm~58HxE-nW$&C-AXWyuv1hcI9Bl#r)urTfNgE$Y_8t{Q@L7gYAC%2MA7m zv7VMb`rq!;%yNWJr~4wd)902{{%~Fh4nPd`l28Zbiu=ITG`VgG+4&={-Fxs+DffQ< zk_|RJb%L}yz&x+@U>k5%eoBM&E1hUqYa5(M)g;IhdNp~HK(#01#j)hnCvH8o5pc;cp%!y}FHPmbE z^@Qdo9!k7H>PRX%DNl- z7L`RjcK{qtAWU&%Zm6?1yk2L+LUBC5=(Dbmz)DnlP{LkK(w&jEvNuh3GN>Uoj?a5a z6gp&aXE1rUfT0@` M^B^1+MJY(2_1tz8ft7$O7QmoiSe~&z7m6KHz4+Y6GW;Uf{ zFe3hVMPy#Jz#ds7^%0J6;$n80Nz8N!*;bQc9)L5U&(hmG^|C#}^D@;jEcxGO-%`UC(l!0CJrUWxF+&UF~ z9C9|!HmPMI`p}=NKdL4}zT(&N8^$Z(Y9n6(+ll}Rfw9CoVgh2-n7`o@X2Qebp4Zrqa6NP|n zN}!--rR;QS>=Vz^!rI-8_~itAhZb{zFChKSX!Z?v?H7219EHjDbR3&ooXY|1OAtG{ z3fAsSx|}CP(6FI%gMPjprABA={f0I=!hx_4FY19_6dcx-4;PSr-61;4#a&I~h8v*T z`gI^RMo1p~vfF_%g8lA1C8GmJG`So-jk?RLLdVK$N!X)Op#qmA8d&qLyhaYu2GBSD zs)nzCK}AAHi(V;8Ud~V@?y#QMgAla~--wcvDr_*?37Uh%TUN@iFqH_^k2&WLx%6-GH1)sji-5@CSx*~`&BKV^{Y{rOM(B|zU(^mIz7*^185xb0 z4Q&FUkjz}$Qg?X86D>u%mZkPaRc7PtzE2IdiN(z7^e|puEy9-LPx^iZVRx(FFY@6@S`y2nypsAhm`D4Z+Ilq zMdd7J|S0YJGt&D40+xSf*^d$hbFj~>tVKIR~Lm6T-jnk?PWcQMplJ91+tov()JiY zoHfDIpSK(-B=D>DFPdktJueCDR|P_t^ zil=s%$3gZrYSGc_eR7ZCm_8a zis8ap5(TXw}XyS?i7RLe=h)8wC@aXRDDS} zB143A=N9n}sq!m~;b~5mmRPssK3`lZAIb;!FTJk?>Eh_?0<=_^_nhf5E6i7loGez5 zE+D+EckZXxwvLx6*Xwl>F3p4-BpS*tNJCck1XJ1&xfgHk;0p=qnp49CuZJT)4W)>o zTmtT{?~9?+o2CeIz8xZ^X15z%5|&4WBD2{&h!AspMFIk($l?wq5J?kKSYa=?B%m6# z3fnykqlHVO05StVQPgf!i56Q{Q!1sUMMkEj)S!4q{-U6q zpg!E5kj~8ka zM@bOA=+Dx6U$>K0hW zP$(wv7ywE(NH94aRl^==-CqMm9+Eqom4!I*xdRE88hHMCt;6vAJT2_*@4a0^UO1G~ z31oW9vQbU@iio}ZrqK!dUGUl=oa4Xmu$*x{g`AXVL*T}ZY|N)CGVgviR5EMj1B-1ebNl!b^q=j-`s5J#XlQ%YF%wB0|mR0=tv z1pvS5Qn0Yk5z68yb;p+7KI=TO%3TF*;58f<-Ir2j>?8NoVcPV7HCxmr zng99Nsg)0~X{J6pr!%VWl&9`3r;a*gZM#Gh7pms!DGx~a zRDGKs?XUvI+KidHH(>^6AcrSjPhm3eIT$}amN(8I5zqaj&JIHUsbdiNg-NKh2mm3K zP)hQF=Mk4+q8bZB`{QNkUWcT>QZ z-S~U-5eMtV)m*0Yym*qXw1D+T*o9S)5@$vF-Atz_+^ZeMM8BDbV)6wNtNJk)bjJkZ8*ClD*)HFj)Wm_xhbx4tcLatkD;E}Dj*w=e4S{caQPy>)=3U^h{{gRMy zEMs*La+cA{Or8Xb;!#8^v#C+9&FV@J5LI)2JHGi zC6+RG#EYL()HCTU^z58^FOT?Si2oD8T#7KS5*4g`b zTiP#tWS@qV*7n?vt2+)+$6v%t;^^&gp?I35>d)*=$1Mc`^_pO_*2FF^>xJ>zH$+2k zqJc1`NT<5P_uF;Gxxr}t5p6-+8e?25%|EA7llGU>L{aR7^ZO4v*R&Mu`Wljkz%9D;qWNQ}WMp2A^^(~RJ_Q5-c_R(Jrhfho&xXbf@dw9Z(gSk9Jezw-@wVKh^ zz1@c-%K=Dkz}sJqXRiJKj4&(jYSSI*PSz0uFcy;9nB{8oUP6MGOW*@b|47wrG&$*) zQ9YU^UUhXq7^A7LfA%FawqW0Z^3@&uj{2M&0!BzOST!V((Rq?F%qxgbM7hMp7|XA! zkI2UNMrH2IG9C9v@4G(z#H67TQz5(W?wRh$-2zyUYy04nwLeHf_r4}U1nscrwi&c& zx6YoFAR9te|8*~w+uawl6*G~CC7!`4zB=ntJ5SP)6{WP{SH`WUX4b)$`K|(eOXwbW zr+dwOyrRN5`urWKJmGMTyRMJR_Q{JX=v=MD67zY@KkbZ4@x|PcK(pJ@2*6TH4wjWV zo&c1-1cF|C`kWfE&K?|5D0^zqa)v~_%O^U)6pF(}C?3pv`69IQ`(m3I_y5}BC z!6`&IU4YxFPGD9kEiSEK&vvmc<=kC#Wt9!NY6SaxBD;bMn2dMTyaO+4aunyG*FCd$ zPk|@k3=g+`*mD8ty-+rqFC8YD`(s<-trXAOsCw3}dNE&1 zSe&e0#cG%86w!ia_Tt8uN`L7_5=;l^HgNB)kHCV6C}!{AaxS zXDHzS==THGOgI2et`5e|$ogMvwF@0>dmOGhzo+WsVO{uqyMK~|8a=5VPL5`{>#eqN zP^)(9+$7TYlG&r@)myI-HsPCfKSyuIdl8WpN!!2m3D2tBT%bi&|CCWT3gXPFBU zqFNI~Ih6{4m*q4f5Y505WYJ2)Be4)`7hq}Fkl4k!1;d zR`5g?ID%Qjrzvts;m+3B2ZTc<%rqKc`?6AfV(st%rGY>FbvC=I!LH8LB zq4(}3oPLRGx9cEE2&ku$LzKAYn25vusN};Ql=q>lt{+ zCib&~Ja?Ve{!U@(lohNzftdR@=^uSz*}Rh+cY0rD)jy6g_F#a<4wllT-a2JU5F=i{ z`*N4h%bI{5nu>Qy`Q`ZIfQ%>>C~!E&CJ!o;VhI`GN>j;1yMZ+$d2nOm_w26R)RA)A?sz!uz*m?`>3+&vboK+5T)?5Mcja z`K;8N3NcS&tm=X4OVBlE`2k}qXvP-E@C?e&dK8I3`l|u9?n6Z*Sm2{c~=K&J$$lucTY=*yJV5mhkpd3;10 z(9AmH^d$f;gQ0AOfHmlw>mfBWHjPvj4ki%yBn#8^!_O$H31*VXBlW+9lE*e@Eo6B7 zc1mF=i7fiup}<1csh)-s$G!Tr)%C|y56Yc#AWb5>K-1vzh2F}nVlG-urdp%ULQ?BIocJ5-&de09(JKUMN=&JqN%S!5R zpWZ$#9*>@Lf|mCbjC)0U4!k0cQ3ym|=TcITRm0WL4C&!WcII_c#9agr5rFOF&le+xH}GX=Y8rzpkS+f?40~SiOInAf+i9c+#drjNo2B+No zWPHYKfXvFjB2`vd1hc&&&TDrQWE$`D;8W!mG)Q)&Xg;seU@^koH@Lm%PYTk_{R{l1 zi}if+=Z8(4skIwV#7zm#jqCWRW{cMWMVa^-hH`o4*wW*^;-EXInNAkbVXV*<`&~yb z&_LabOsV1NUg3Yb^xHyR0Mt zx1#fKJ8j94fWijYQ)@u!ApPWU{P7&`Xq=pFreN(j{NmS ziAz)yndangZcEK|fcjsv?iS_?xPs0a0i zxuE0r*&j6*c{*jaP!lKAY&vX!vaOyTOwr2c~cF)M6VqQ#>o?- zfP35w{u1Jrkw4rmz>seO6&D?ro0vx-Py>@EzCXO)ka?eWtBae&ziTNm|JSL zCzVLY%7~kpO*$&MUnP!e2cd}MHr;MjxfaSGnPZ;sMtb#i5B1UpsjoB(o#vP+p*2fa zLeT4RuViW%%SNo>ixU8lsHTGZcyRM^7|F55?OW-WkhAGGr?r+{&+Wj7yTp({YE+lz zgszQh2bNK}GGwI!KT*ylA~K>mTpM+Uj4A*43nmPqMmA)M5HFzufZ^C`Oe16|jzT@z z1ZvnFnI<;)Ru&;!1o3Oc3_P`;(rcDB!iCn99UUq*9Zc4Km9!5a(I*CE2RjR=#Bhu= zWT{|GRBYckeAl*IuZx@wtcSKMI6siz`(2wuI*-#N*+cQzcxjY;$HL>TXAoBItaIzl zNRIgeyE=z#4io8ALS`Ku-!t^Ya<8ui;|h7a(_@uIEH@=J$d z3!PeE$p)(Eeb4x_(Y}$Bahcq5#>!!$xTh#8v|bU}N}d;#4m-D^t0Gs1drWh&q`c9o z-3*;T)^{1%XZMqu4SOzS>%=6unO&oZ!A)Xf9WMXjj|Ly~3!FBwTz$>;+94x=nq>Z& z|HH7fJVn99Hh@(cj_8O}Hwm|nP#?)44%TLb3Cx0~<`)P6@vCBrn7$>YS4_lF${3lU zH>{_zkMOw1lG~4o407ZJkx8dkkUp*daTyHrrZAy>>;kKpbX1FsQxp=Zb8luqP_;6# z0)PnO55$|7slP!#1j^oyHX@{lh13{{@j$a$u_C@On7MTP_^F4S?se%*I9W0ST6j&{ zQ)gxAWwQ?OnfGAnuhV8vziKz)+Wx^PL64wPQAv)jqmoB!0rcVQ*!r=95fdp&i&0jSDp)ANrv7U52G#^&E#;pJV05A&+>oKkS+paqI> zpNau=#oLtdnZmL$M@*M7W>qVzMlDk~a|nn1HBdajit^FSTIMg@Nhk0pm40oqUISN7 zL#YO!jkN?PD0x4#{8q?SMJe^b_FgfyHKD6dVeMBH{`S36P{rG2q72>#tcLwhU=Yr+{E<$wzz z*+pfmVTK2#kuV>DmBb`7;gly{by8kBe;o_Zbcn|MBO-xC*#CgbR|fedS{-jOp5`!^ zqF0M(>WlrXRv>fRp>lp0wdZZ9J;oAK-ezeFNuXUMQ0)}g?4pmN)K2NTg5awn*0I+x z)81q0raX1=XtWWwJaQfGdbd)h@>h*2lZ|G5#8|F4>kzz_tDh7|tssUhR9;+~`Dg~{ zye7`V%2U4ZLoD*FU;$!M?~hG!`j2>(esGQw887~FHhXlzV|N%zrF5pL8b zmAUL8KH2Z=?3jItXy2#Fo_%A*I!00IlfLi-Yxe6~EbzyT8jFqrzE)aWvqCr3O>Sm0`&jxJjianR4IwPsh;_%9s` zkrlJ{sYXXM*=CX7t+9u2!WRENsM128%&=PH3cr=fFY~uy?CCBhaIPm(+nnHej7|s< zyHRKUf$7iTi1X;yOtg(lI~YU(Q|iX4DvYU(JFJQ$bm!9NidJwQ_nJt6xuj1E z!MYA|!umxW4q_~J!K&q#1kRHr9S%~7NSScN!rF6t+=628c37DOD{nV=WE>N#0!BbK zD=w-9c)`;3qC?!a@oO)m1hRsq3EN&*C8tE{xs~fX0)3dbR?Bw@)9>+8@^@SOd-t_e5N) z-PbQKv=6V!(jjt&u2AiiGFC^KaRf`P@rHJiSDIy2({YGq*pQfloj2$4h`o<+;%B8F zV)(UYA$#w>JPp&ZCtp)W1D9Q`Y(wd>T`M;R7xs(Iec(De1t==j4PaGv4y@wb=B;g=MV zYiaOs4j*+(+b)WJ)+b0UV}9>fHt!d>D^9$H`N+|2JNE1W_iVqDt+_-baVRKzM87pa z`;(-E7vs6UJRBa;<1+-H)m#jHnzWm<`kCUWn&;s19`tH>RUq!|qdoOu`_(Lj)4gPX z$>ULGd#79zz}d2br;Bu!zeXi*{%`@c;N&(YZ;7Hwu(nss-)pV>Md?1?>D0|ji8P+` za?wz5TMF>@TV>cv=}ziS89tEo)XGl28u#8IUY)Jle&}pZ<}zF3wlfGhY$X&wcjFMJtLfzYo5z`q_%r8W9g@KrzSdS$(`|A zytrIfW+J}LXE>=%*^#^IPJQC0J{=GoP7CD8=Y{hw(xU0 zUuvWmx}HhPLPwL+M-VXhWv~#?HD=1oGdHM7QaTo4jT*--REbL-eCE1KiNL&pXM@`v zED|Isaa@G4Q|$$u@0HmH8O1v7H*7r=XcI5PVrs)_K}7JTRV;|QswJC3k}n@5`nMktQZ zfe5@vEF-)VnXY!&fgT36FH5?QB@ail#;}OC=ag0k4t^Y6J6@0(-*_d;E086@*I(>i z)6K)6c?ZzjJFZ?LeiaU7uU}c$B}KYfUHB1mS?=1F!_r$}(nnvvGq~~IMZXmX<0tL* zw7GHXN6DX(6DIkwvx%VLsyA)GKtDwKYoK}DOTw6W+`olxH0%hjT>*nLMBGOt(O~qMB4#XT=V*XUP|&% z^PUc>vGgcE7Q45eLQOv|0_mYaFh3D69G9;HX3E0}?cOlaxD6w*&h0$-i{3szy0UNe zG2Z?7vlmm3gdy!A9U)?kIEHMSff6%g&;UEejt#_7b`OJ{f zeZDIi2@|lA%+#rc-wQLkft8!x0JF(K2hc#ZIc3}F{p3Voc4QK~sMzGFRpo`6<>(eY z)j@o-B{Na*gF;hA=s6CWp45VfYJ9FXd5i1W)c$H8;pY6_!ZhDBL!>-`-=w@BkZF6{ zUTkJ)l3!vUuTbGBwXhq#J{Il!etmM#OL2YZf^I)jDo%3#Y?`uI z(d(ccU_~MDHjt{Feie(067=2RBS|KR4q(2*DObKCI-#%Ul~ z2q4loc{6g%&4C?h$ok`>y?yjqn-%keDs%jvL(0c)?Cuksz=_XBJ%p{D3KaK!mSCwM zGQA+h#2k{u%gviV6X7xhkX-PZu3T~)LF_Du@Uk|3>nFl3_S<{K>`BcG@bZu`|8%9# z*iL|Go1;jIcD+TsUCoizEZ<{Ozt*=Q3)$?Nky%N5_-}UfC?_^8Q`N4R*z0jYqBntNCut6bc2xTe;SW#H`(L_GKUT=<*1Sy)Emt*yqf=qs;h9ex-ng+;%-tyf> zM@kthBU`)x)dm?w)1JPqi0n<-^?f)$4$l3#YRU+qAtgSyB#z8V? zWf>rWSh_^Bgm>5{<~XYh({-;ayl3UgghR;zNpExq@ONuHuO>tQGnhyx+ja?W{x;Hb zFQ)7T9Zrpiop&|J$Gyw;dL#w__nPj-w1|KH&Josoc!rkFWLcl-0~Y_%a=z@4TFArs z-mtrOHGrFs*E5noT0;;zZNVJ&3o0sQL}P!ckajM~%CyJPPyS`2LR8wLN2d!*H;MtO zz?$3I!BrH|Ij9?O_(hx~%j2V4?E4vd3L%gB_4qoU{iRTHqo5iF#3_wK z|GhvtO*v`DN~0H3g(Hf0EY%W|u#cTlYHf*(*KT83ZfgL*lbxh0GOrgbRQ_{gg4K=c zNeN||^TH-+=M&4?HG?8*CtbSsaSp1OER>+%+iMywQO-HvEm&fq#I*kK*LeFrK;^9s znoiR7txqQ;R(puTCRV=0Y+-P?vQfCt{5gpJcT*WY(Ol)29A*|-KnU5yb0SP!%J_4b z`1btYbQb`llQe3jbNFMcF6%fnU!Q`zG`en33SFaZZRwcC{SUF&nuSeRAxx5b{DPFf zkKJq zLf-#xithhW_atOu<6{0#2|ATh5&{VjETla)laePx$C8vX*V+&~70j%>Js3t#PK%2{ zP9DO!Pg=Dw5ImF&hpES5=OXwMGrff|0of%_P!>KYXu!~r6=mzm`0ili?(^wmtNp0` zDGOQ1BPloz0&ejOJU>!%m3{852Lx`oSfiTs-146qpXz0)Mq(-J zStbKFBt>5N7hgScQ!6R=Zxk-TKFJnDd$f|cM12#oDbbpI*vf=Q0H>ARNvqhcCUFDA zslucQ?wp)MSWdbF>YU6y4OeyKG2laVDmGEs6VV?y$Vg8n4pEQj0PPZJ2bZVy>JrfZ z{!F_)xrbdmnu$LH_bR}T^#f=C4G%0Z0FMe}a)8H$+A{!^38Z2~_%^Gi{R2kPBgu#) z7cjpK&j}TyQA5Sof}h$dIhNC`@UIvSvxRU1Y||ei@~Fo&L_JK-A0mY7YWz}igD@>P zmHTI{BkDStWxK+nO5IG2jyk3zFjL}N)=YlwmkJHt-YFSzM5Yy1)sIGjF=J(=peD=U z;FPmA7R153ZCK$82o*U1Wlo_FjfQpJ$4&jVN5Zs5rU}y}xrwYc$Y~KB26y&6{JG4! zr*kLSTp>FgUu^ZR$r?fp{l%VUsp1+^4ON~1w}qjJ7)u-tk-E@d7c3VrTq({Z2g)6V zU)z2*Z9%_bkmlloTe&x3Gf>&dZ2tGVzC6}Rga&%AvU&r+(zpJ78wfF(h*VgT0wIy> z0&%uE+=;u^rZYyiN9hhkZo+6Pq@TI}JktS26`R8?yJ;>sF{L@m_(YR4y}2V>tCfP` z&SENC0V*w|ssW4!YzoL^Y3;RIyI%)x#g9e3=z}Gs=qsH?grtExp1Cj$G8y+~` zHZm5tE{5Ovax4W;d3C%^eFDg2dowRDkg|CnpT~M4jT~ zA8=)ZUlV~`4xpK!M?D>yn@8!6zcNA0dm$W9XdQ+CWrs(T=>*5aK1v0bP7wR=L2xmw z*^aK2t0&V*1%ddJk7|}0kRHy)mY;d`2^@n--QyrU)Rw@T!+!!N3Gk z*ML`mx#-6)QQI}uE$W{ZyXe=ho$pTnI*qKyZSYr{v2k-vtg-{g>A|Q$pRpRS^?x10 z^Jgb(0!wcyEim9%0kfFN|Bd(t@*%BqGz)?lAU6Ynn8EiE^4YO|zW0QV$JBmTm5*O9 zZclUCSaIXHV7{t+5CM3l^FH7c1xwj{mz&K^UgEE|7?A>AQT}S0TND%(ue`s^%txW| zbrha0O}_l6&T3Y>i!C}#Yv<$h&@vdX9x+6x=PfuJG`Rd*k=631z&oOt*6*V;-!jtu z3^=Gy0sHRO+0&T;fxkg{eO(UP4ba}M=7IREqQ17*5BSPPPy?6|V1)6bmuhI{p85rx z8fj@>WI&wSp|5Nzmu zB7j@R`S)q->!v0n)bZSHqQ4!zdb8iJQb|*!!+Te*O(nVI)N)V#n!1?v!Ln$TkS~z) vJ12HnQ#%u97bjCg+y6xNMpm%SE{0An9!{oauq>=>oa}6{WMrc9VzB=UNDGj( diff --git a/docs/equations/equations.tex b/docs/equations/equations.tex index efeacaa..29f6120 100644 --- a/docs/equations/equations.tex +++ b/docs/equations/equations.tex @@ -321,23 +321,23 @@ \chapter{Density-Fitted Multiconfigurational Self-Consistent Field} \section{Orbital Rotation} The orbital transformed wavefunction can be expressed by \begin{equation} - |\Psi> = exp(\hat{R})|0>, + |\Psi> = \exp(\hat{R})|0>, \end{equation} where \begin{equation} \begin{aligned} \exp(\hat{R}) &= 1+\hat{R}+\frac{1}{2!}\hat{R}^2+ \cdots=\hat{U}, \\ - \forall \hat{R} &= \sum_{r\mathchar"313E k}R_{rk}(\hat{E}_{rk}-\hat{E}_{kr}), \bf{R}=-\bf{R}^{\dagger},\\ + \forall \hat{R} &= \sum_{r\mathchar"313E k}R_r^k(\hat{E}_r^k-\hat{E}_k^r), \bf{R}=-\bf{R}^{\dagger},\\ \end{aligned} \end{equation} -In which $\hat{E}_{rk}$ is the singlet excitation operator. $R_{rk}$ is the element of matrix $\bf{R}$, here we let it be real, thus $\bf{R}$ matrix is an antisymmetric matrix, with $R_{rk}=-R_{kr}$. Mathemetically it can be proved that the transforming matrix $\bf{U}$ is unitary. +In which $\hat{E}_r^k$ is the singlet excitation operator. $R_r^k$ is the element of matrix $\bf{R}$, here we let it be real, thus $\bf{R}$ matrix is an antisymmetric matrix, with $R_r^k=-R_k^r$. Mathemetically it can be proved that the transforming matrix $\bf{U}$ is unitary. \section{MCSCF} The energy expectation value of the wavefunction is be given by \begin{equation} \begin{aligned} E(\bf{R}) &= <\Psi|\hat{H}|\Psi> \\ -&= <0|\exp(-\hat{R})\hat{H}exp(\hat{R})|0> \\ +&= <0|\exp(-\hat{R})\hat{H}\exp(\hat{R})|0> \\ &= <0|\hat{H}|0> + <0|[\hat{H},\hat{R}]|0> + \frac{1}{2!}< 0|[[\hat{H},\hat{R}], \hat{R}]|0> + \cdots\\ &= E_0+\bf{g}^T\bf{x} +\frac{1}{2} \bf{x}^T\bf{hx}+ \cdots.\\ \end{aligned} @@ -348,23 +348,23 @@ \section{MCSCF} \end{equation} In the end, expectation energy $E$ is calculated with transformed orbital coefficients and active orbital one- and two-particle density matrices \begin{equation} -E=\sum_{tu}{}^{c}F_{tu}D_{tu}+\frac{1}{2}\sum_{tuvw}v^{uw}_{tv}D_{tu,vw}+E_c+E_{nuc}, +E=\sum_{tu}{}^{c}F_t^uD_t^u+\frac{1}{2}\sum_{tuvw}v^{uw}_{tv}D_{tv}^{uw}+E_c+E_{nuc}, \end{equation} with \begin{equation} \begin{aligned} - E_c=&\sum_j[h^j_j+{}^cF_{jj}],\\ - {}^cF_{rs} =& h^s_r+\sum_j[(2v^{sj}_{rj}-v^{js}_{rj})], + E_c=&\sum_j[h^j_j+{}^cF_j^j],\\ + {}^cF_r^s =& h^s_r+\sum_j[(2v^{sj}_{rj}-v^{js}_{rj})], \end{aligned} \end{equation} -$E_c$ is the closed shell electronic energy, $\bf{{}^cF}$ is the closed shell part of Fock matrix, and 1-particle density matrix $\bf{D}_{tu}$ and symmetrized 2-particle density matrix $\bf{D}_{tu,vw}$ are defined as +$E_c$ is the closed shell electronic energy, $\bf{{}^cF}$ is the closed shell part of Fock matrix, and 1-particle density matrix $\bf{{}^1D}$ and symmetrized 2-particle density matrix $\bf{{}^2D}$ are defined as \begin{equation} \begin{aligned} - D_{tu} =& \sum_{IJ} c_Ic_J<\Phi_I|\hat{E}_{tu}|\Phi_J>,\\ - D_{tu,vw} =& \sum_{IJ} c_Ic_J<\Phi_I|\frac{1}{2}[\hat{E}_{tu,vw}+\hat{E}_{ut,vw}]|\Phi_J>. + {}^1D_t^u =& \sum_{IJ} c_Ic_J<\Phi_I|\hat{E}_t^u|\Phi_J>,\\ + {}^2D_{tv}^{uw} =& \sum_{IJ} c_Ic_J<\Phi_I|\frac{1}{2}[\hat{E}_{tv}^{uw}+\hat{E}_{uv}^{tw}]|\Phi_J>, \end{aligned} \end{equation} -Here, the 4-index integral $v^{uw}_{tv}$ is calculated as the density fitted integrals, as mentioned in previous chapter, +with $\hat{E}_{tv}^{uw}$ as the 2-electron excitation operator. In order to simplify the expression, the ${}^1D_v^u$ is written as $D_v^u$, and ${}^2D_{tv}^{uw}$ is written as $D_{tv}^{uw}$ in follow. Here, the 4-index integral $v^{uw}_{tv}$ is calculated as the density fitted integrals, as mentioned in previous chapter, \begin{equation} \begin{aligned} v^{uw}_{tv} =& v^{uL}_t v^{wL}_v,\\ @@ -400,21 +400,21 @@ \section{Augmented Hessian} \end{equation} Here, $\bf{g}$ is calculated from \begin{equation} - g_{rk} = (\frac{\partial E}{\partial R_{rk}})_{\bf{R = \bf{0}}} = 2(A_{rk}-A_{kr}) = 0, + g_r^k = (\frac{\partial E}{\partial R_r^k})_{\bf{R = \bf{0}}} = 2(A_r^k-A_k^r) = 0, \end{equation} -where $\bf{A}_{rk}$ is defined as +where $\bf{A}_r^k$ is defined as \begin{equation} \begin{aligned} - A_{ri}=&2F_{ri},\\ - A_{ru}=&\sum_v {}^cF_{rv}D_{vu} + \sum_{tvw}v^{tw}_{rv}D_{tu,vw},\\ - A_{ra}=&0,\\ + A_r^i=&2F_r^i,\\ + A_r^u=&\sum_v {}^cF_r^v D_v^u + \sum_{tvw}v^{tw}_{rv}D_{tv}^{uw},\\ + A_r^a=&0,\\ \end{aligned} \end{equation} with \begin{equation} - F_{rs} = {}^cF_{rs} + \sum_{tu}D_{tu}[v^{su}_{rt}-\frac{1}{2}v^{ts}_{ru}]. + F_r^s = {}^cF_r^s + \sum_{tu}D_t^u[v^{su}_{rt}-\frac{1}{2}v^{ts}_{ru}]. \end{equation} -Since matrix $\bf{g}$ is asymmetric, $g_{rk}=-g_{kr}$, and we don't need the internal rotation parts of doubly occupied orbitals and virtual orbitals, we exclude the redundant parts of $\bf{g}$ and $\bf{h}$. Thus $\bf{g}$ is a combination of only $[\bf{g}_{tj},\bf{g}_{aj},\bf{g}_{tu}, \bf{g}_{au} ]$. +Since matrix $\bf{g}$ is asymmetric, $g_{rk}=-g_{kr}$, and we don't need the internal rotation parts of doubly occupied orbitals and virtual orbitals, we exclude the redundant parts of $\bf{g}$ and $\bf{h}$. Thus $\bf{g}$ is a combination of only $[\bf{g}_t^j,\bf{g}_a^j,\bf{g}_t^u, \bf{g}_a^u ]$. We search for the value of $\lambda$ with a combination method of linear search and logarithmic bisection search: \begin{equation} @@ -431,39 +431,39 @@ \section{Hessian Approximation} \subsection{First Order Approximation} We adopt the Super-CI optimization approximation\cite{SCI1989}, in which \begin{equation} -\hat{H}^{eff}=\sum_{pq}F_{pq}\hat{E}_{pq}, +\hat{H}^{eff}=\sum_{pq}F_p^q \hat{E}_p^q, \end{equation} \begin{equation} E^{(0)}=<0|\hat{H}^{eff}|0>, \end{equation} \begin{equation} -{}^{SCI}H_{rk,sl}=2. +{}^{SCI}H_{rs}^{kl}=2. \end{equation} More specifically, \begin{equation} \begin{aligned} - {}^{SCI}H_{ai,bj} =& 4(\delta_{ij}F_{ab}-\delta_{ab}F_{ij}),\\ - {}^{SCI}H_{ai,bu} =& -2\delta_{ab}F_{iv}D_{vu},\\ - {}^{SCI}H_{ai,uj} =& \delta_{ij}(4F_{au}-2F_{av}D_{vu}),\\ - {}^{SCI}H_{ti,bu} =& 0,\\ - {}^{SCI}H_{ti,uj} =& (2D_{tu}-4\delta_{tu}) F_{ij}\\ - &+2\delta_{ij}[2F_{tu}-(D_{tu,vw}-D_{tu}D_{vw})F_{vw}\\ - &-D_{tv}F_{vu}-F_{tv}D_{vu}],\\ - {}^{SCI}H_{at,bu} =&2\delta_{ab}(D_{tu,vw}-D_{tu}D_{vw})F_{vw} + 2D_{tu}F_{ab}. + {}^{SCI}H_{ab}^{ij} =& 4(\delta_{ij}F_a^b-\delta_{ab}F_i^j),\\ + {}^{SCI}H_{ab}^{iu} =& -2\delta_{ab}F_i^vD_v^u,\\ + {}^{SCI}H_{au}^{ij} =& \delta_{ij}(4F_a^u-2F_a^vD_v^u),\\ + {}^{SCI}H_{tb}^{iu} =& 0,\\ + {}^{SCI}H_{tu}^{ij} =& (2D_t^u-4\delta_{tu}) F_i^j\\ + &+2\delta_{ij}[2F_t^u-(D_{tv}^{uw}-D_t^uD_v^w)F_v^w\\ + &-D_t^vF_v^u-F_t^vD_v^u],\\ + {}^{SCI}H_{ab}^{tu} =&2\delta_{ab}(D_{tv}^{uw}-D_t^uD_v^w)F_v^w + 2D_t^uF_a^b. \end{aligned} \end{equation} \subsection{Second Order Approximation} In general, the second-order Hessian matrix elements are calculated as \begin{equation} - {}^{SO}H_{rk,sl} = (1-\tau_{rk})(1-\tau_{sl})[2G^{kl}_{rs}-\delta_{kl}(A_{rs}+A_{sr})], + {}^{SO}H_{rs}^{kl} = (1-\tau_{rk})(1-\tau_{sl})[2G^{kl}_{rs}-\delta_{kl}(A_r^s+A_s^r)], \end{equation} in which $\tau_{rk}, \tau_{sl}$ is the permutation operator, matrices $\bf{G}$ are \begin{equation} \begin{aligned} -G^{ij}_{rs} =& 2[F_{rs}\delta_{ij}+L^{ij}_{rs}],\\ -G^{tj}_{rs} =& D_{tv}L^{vj}_{rs} = G^{jt}_{sr},\\ -G^{tu}_{rs} =& {}^cF_{rs}D_{tu} + [v^{sw}_{rv}D_{tu,vw}+2v^{vw}_{rs}D_{tv,uw}],\\ +G^{ij}_{rs} =& 2[F_r^s\delta_{ij}+L^{ij}_{rs}],\\ +G^{tj}_{rs} =& D_t^vL^{vj}_{rs} = G^{jt}_{sr},\\ +G^{tu}_{rs} =& {}^cF_r^sD_t^u + [v^{sw}_{rv}D_{tv}^{uw}+2v^{vw}_{rs}D_{tu}^{vw}],\\ \end{aligned} \end{equation} where @@ -475,17 +475,17 @@ \subsection{Combined Second-Order and Super-CI Hessian Approximation} By default, the SO-SCI Hessian matrix \cite{kreplinMCSCF2020} is approximated as below: \begin{equation} \begin{aligned} -{}^{SO-SCI}H_{ai,bj} =& {}^{SCI}H_{ai,bj},\\ -{}^{SO-SCI}H_{ai,bu} =& {}^{SCI}H_{ai,bu},\\ -{}^{SO-SCI}H_{ai,uj} =& {}^{SCI}H_{ai,uj},\\ -{}^{SO-SCI}H_{ti,bu} =& {}^{SO}H_{ti,bu},\\ -{}^{SO-SCI}H_{ti,uj} =& {}^{SO}H_{ti,uj},\\ -{}^{SO-SCI}H_{at,bu} =& {}^{SO}H_{at,bu}.\\ +{}^{SO-SCI}H_{ab}^{ij} =& {}^{SCI}H_{ab}^{ij},\\ +{}^{SO-SCI}H_{ab}^{iu} =& {}^{SCI}H_{ab}^{iu},\\ +{}^{SO-SCI}H_{au}^{ij} =& {}^{SCI}H_{au}^{ij},\\ +{}^{SO-SCI}H_{tb}^{iu} =& {}^{SO}H_{tb}^{iu},\\ +{}^{SO-SCI}H_{tu}^{ij} =& {}^{SO}H_{tu}^{ij},\\ +{}^{SO-SCI}H_{ab}^{tu} =& {}^{SO}H_{ab}^{tu}.\\ \end{aligned} \end{equation} If the $\bf{SO\_SCI\_origin}$ option is set to be $false$, \begin{equation} - {}^{SO-SCI}H_{at,bu} = {}^{SCI}H_{at,bu}, + {}^{SO-SCI}H_{ab}^{tu} = {}^{SCI}H_{ab}^{tu}, \end{equation} and the rest blocks of Hessian matrix remain the same. From 2426009d6649e042819e4e4968a3833a616a6d9c Mon Sep 17 00:00:00 2001 From: Fangcheng Wu Date: Mon, 6 May 2024 14:21:59 +0200 Subject: [PATCH 04/44] dfmcscf documentation updated--\pre, E sub/superscripts, \perm --- docs/equations/equations.pdf | Bin 348030 -> 348162 bytes docs/equations/equations.tex | 82 +++++++++++++++++++++-------------- 2 files changed, 49 insertions(+), 33 deletions(-) diff --git a/docs/equations/equations.pdf b/docs/equations/equations.pdf index a212dec3ec0a2ad8415f8fd41d3aad26b7594616..dd62457ca8bc73a79e6b77e549774883b9d6f8d9 100644 GIT binary patch delta 17208 zcmagFV{9(o6E#}fwr$%w#i?!E#%cT1wr$(C+o!gTQ@5w~{k{LZxw+r&hqW@)bt0G@u?e)P8C~QTh$ZyDl0g&#?wMbQr-8L^SnV;5a<#! z-Hqc=h(J-#xiwE@YmeN8D`Lx*x9_dd4bQVEOFcAGL?BZgn|S03-_jUrp}dE4W-rjN z4vX7edFFJeLT`50@Ds*yu9Q42vH@^-JL+M$%0Bq-Am_(eK;$z+n|&_*VKfzCuMAcD%Q z+s)!=z6n<&n{9%^9@#gcHdso!}j+u)$8HWeek3V)6ls%#S!E;u3&fY3Xn+FQ2I^V}A3Zr?C`pSmO26G_K-k-w9dna7(Tt zCOmaL(sA;BACdu1dF4cL=HE4P4pd&Wps*0!tRyX9Tje?KD{_0gcmN+?2(?%=W}JnfYY$jtQY92?yXOt&9XF4j+1G()AJ0U|mUeK13bcR4Vu318i=Gr#C5MnpTv)rRj4 z5r3i61_!bYOm>hp1>&M(&HTKxQW736C#k?mZzQIu(^E1?hSynRV1OJ(#$DAeBqt69Is(`Eg4b6^A@uWTWlMdc|ABi}(?2cMoprL*|-F>lpa*EmsUQguI2% z%186OQ?%gPf7*$fz~EgSMr=Sxiir-yLB`|82FFZ6mQGUcC9^{i4%PHj?j>YO1MwU+ zz8Xe1A*XKCJ4c$lF>P=zXZG=-DM|G<-AY@6m3)-MZ2>jMIQ9n2FQTV-f8cx8)3+|& zmBWcgcbe=r(O(f`#}R$SHxOeN>)_gb#{zn?cQKdtU-a6ibSYBGVUy{07yL}NFxtm* zuh6JH*JUC~zG;*mZz|&sVynl35WR|w(7;oii$XE*OUZp3edAVzgCXV?uSDbhv{@11 zQ=;sDcmSZ$PoMyp=-=r(8m6?2BbvoUixm^FYCJr$EkwN$6tSVneFFj-*KTEObsl8! zGWfz?T4p%VV}>=+h#W6o)vT}8cSg+>)&H1qPa#us@RHfnTI{V~EWqG4J%a%Xq9BMm zdlQ6m#e@*bczz%dSQ3IFB3)3R9XMnl+yY>Cy@1R{Uo;3P-dSgUv`?cKu?+v0`Piv# z?!vsje07dB((eJu4PQ@mxKCxw=vIJ!;5yHC#}2hQnh{fPynJZ|4LXcI%NovuT zoa*G;KUf;0!38%VJSYZ+HtZd_L`1ew?Ypx^Q^s7kD2C7c&SPl*+S>l;65L&p()dz~ z3;=tnD)ZV=vm(8ElqrKc29+5(eVX9*um;~SBd?qe9QE--4&br~+%pcs+zMCX=&$tn znz&?RsL+h=>a|Hb*tP?-Rx9NuJPgf{`_J;2S*;t-H}hGXE73*F;?5^IC3$p*s_E>^ zF#u(3^mrT%vV(W{NVf_}9mB%v4g37O0pA&<#*K_smme$#^fwM*VnD9!qbNmoO46}r zUq9Ut_rF)KB@U4-=n}~}ByGAMC{;msM_mYV?UA5|14VW?GzE`7N_R1_IMMEWSBm4C zxQ|N6Fn#yyv8q`RuO$_MjuBzllXKj2$Me6WTJ2<6`b0EXC8+N#tAx|AwTFuQvd`B! zUvMkL9FJL*5Mcg39|H%qpGgPTBU(Aa+X%!0*upr^tR&!Y0gP;8-%jMdV3z(q7=>Pi zJ}hX$La(`Cie2>*jt!ZfyKbztfJ|m^H-~8nPvq-Y^v>sx&4G`i*_g|Te20#G`>g{NtY+h zB!=*Ipd?>^+@3Xo=_bJ8Cmp?`c^z6*48L$`k>*VVR~AiWjA_)8nn!{v`VVuUFoEC9(%}>{vsV>Ek~}F z8Q0q8X@5<_`7bUbs_e8Q%x`x1VDXP~CW6v^3|u=^F$n89_8B8oiKHJ8?_W*uaOMtX zu5K>o#`gawax}5QgJWZ7Ct)G^FN6~ifMfn`?qKO=MZ(U`#qq!L=vqh4bxR7Z?^5$l zT4Q>$hxpP(y{9pSrj)0f%XQtQNgV-Frr}LVL@DLrvi%Iy35p;=jbZPZEO5Z6Y+>i& zX-zN|x*c5L_24Q$x!I991s5eK2E~n~6PG5YB?a7kU)Vf&@@aqg?t|Fy$JXWBful?U znHMjXGI5yu%yG{UpzzJ!*OBvkc5mI%=JlaolUzP58F&lu{^R^MTz_j2&k>s6-{a?Z zvgZ%*cV`VNzh&N2oZVCSw8c(8({z;TSM+~>4m#4palkp$3#w5-vLDYmAo(=f79e5| zNftv~xY*HwXK`)4xTy;Xa*j2!F*P-hr3hHzxu`!62rq)Bfe z`CmO*jC~n>nxy*&ub%Mka3~&DGai-}m7qU+cdu5{Sm~Zxx-a`T zBCvI>DxpyW0BaecA_THSKADn!$X~woFu9R$2|)qDjzBXg?Zl=eL0bD{)W-91$4{g; zEdB~Jl1gN^Gd~)@Vpb6beB1xp=Uq!goYojTH-F;x@Zc@;_* z6E)y8@=GHdo=}zI{I20oyR^}j_S4z|fotLf#H$sUEy+Grja%ikd5m@I12@ZadDzFhYGkF08#E_WUk!0 zF#dX|i9wirrk`rfcj3yN<9eV4DaAI{UG)^D3ut+osnU7<<=oJ&|`UzK>;T6 zj)=}nAAJIIT)XCy4EvL`_WQf>ED{JC2@H*czTd#wN|F3U6ZCD<$2-l4 zBU#l3w|}tpF4bVq`&ePOO$wD6VYwvc>&nFV8kGmIkvG@y0hzcgA?D*Yk?d^yte@J6 zwu-AzozIXrP#Q7r40ph3JX6Vp0ih5WBZhGEQv(ZkEeoy)sM?SDwkdRUs;@WzwxPp` zAnlzqXh0%pa0J9Flo)HN1G`yaLXd%3w%OA`fwKhygUc7|;NV1Ds=T+3Z59&2I*#$o zWY$-tGqO_#VY-k^QG7A$eB6_ai930E&|QY~$w3jldXmENK{)-{9TcvD2~3iot5gKU zPpkl}**a*#!al1RO03K8*^B`I8KP42o6R*(cH=u9x|1*)!>OxqO$K;*jfPw{*A{A^ zs+h(PSu!~axW5#m4olfmZaSJz3F$y=u`#wFMhaT8lM;0&=DZ>G&|a&G?&_Iiox^7? zysq~hg`36O9yMU=zWZj?SJ8D;{CQ-ZBF#5Fs3AS_!e2ecIppQ09Li2apFhIO7zTks>|JaMspPx!y6 zqm;FQOW1m$xX0!g9IzrllLFVXIgwwA4A--@>sN}nNx=e2PqDJ+#sz+ofUGv`Y!Mo^ z0DaFnoZ=Cr@ToQ>7L(9?!Sjy=DS8aNogG0e|6G`}bc*TGYOM2hz46Npw6=PPgvJ5i`EI ziE(}CR=wg-W64LIbi#<@S>3QQtoov>Vkm|F2cXY%b9ORwHY+xI_LD^+Q_wT7Kaii{GvB=4(@69C_j{T zZ;3zkTvQftBf>4ud=Ms|eBsgaB~2*g@;elFNyUFlVj&^ZSgn#do}i9lZfX3w6{Lk?fMJWV;=bJYY*No|nw zMzMcd#ql3u*~1nRpqJj|M-FP#=xCS)Z*_y>P~k5s`D3}-fmJIghputgO&`%%O?k9Z*8_A5i1s&wMl$JUYMR|BUJ$J> zU)u^vLGmC>fEc;7btO*U?zT>fX`SV`3IV7yC{Mg&<+%-t?)0w~T2x+H$=`C7`-{qS zCYOQvS-}>I%hCr$ynVa5`nCWM`TP0Q?V$~TXJ^k7bB9>f(r7PntHJNH2MbQa=4N1R zRfAaTyJ>S>ZYqq`=uS2^vPYqbkilLmxAw15YZUM|wLUloYn@+DtbA?P(%q%4N51d88coo2$iZ=_X4=o=Q+RZR#;9>tx>5 z^~ZH`);;yb4}9I@^H|2WX$30^E1z8(m$TZ$QM`=x-Bcojrgx6%=fK>**KG(3ZyHN` zBTJrF5U&noJF1BXZ_mg4u>LLMvt00i9Y@?hX-L&uJ+*esTcWxf9t}I9`P^88{M5-U z;@PdyB3!y9Uf7q`igGbQDIgvdMxOz4s9RL&sxIx&PVIZ|d@s_|%hcMZa~NLnPh_u2 zRCqZZR9-}hv5sX~f!c^rX>$qI(YVV}bkbX%?=stAXb=zD^fsG&FvATqKw}Glt^o+0 zSAiY$%>aKd0G80kVhBZH@&K6_JtWoH!a^Q+YkJe2N-dK+H_IPv{|7V_gk1%?!@|>$ ztAA^S2MgsEk>JM5m zhpRiUT$a|7=)uy>_C4|Zj{XB+%UL zeKDSnn6u@|OuUYq^ANUaDTU6+O3mxXfdgxM4V(YOQ`$ZoV^_t`E3k1~DSH#V`zcSpgnQA4_?-PM`!W0G&LDNM@GqM=@_Z2`vY(8NX%IT}YFa zpr-Of(fiBvv2Hs(FsZG;f^yx80*To|aOK{1Q=78xiJS9~mLf{y#V)gh^jtSV4XbP( z@|r>&Zf&W!Ers}_CUiVhM-@asJCDA$kS+!>BLY!e7dfpdO482IgaW!9TM>t}hy@Fy zSddZyMyy@L*!0AqrTqhlZkgYYzGcvo!fdPYCSk?cL#|S26i#^F6-%$M0AcaG5D? zVBhfld9KH=1Y?s+x?bUk_ad}?OHg!ZU}Wr$P~}CEI7v1%n6rLFV85X|@cYtHbwSaS zqtvj#+1c3t*G$dm>bh=mVfnw*&u=X*!Hg0bv3pNYd0Z%Dx!JmVcqUyTFfMSRYr9ZP zDSTYM5P+0O!!3{2@%u?n!^05dJmm6AKx=~YdAUB$EiAm0QxURAsg%ANx$&~3Xw^bf zh4$+qNF@)3AFsqS18{RceFToDsgekgIhQ6clReKYivd4KigQxM$!o8(6v98x&+AQQ zZqFBA-Am2f{a^3@)?GUMer`^5f1chZx0XnI1cmvDb9?aL<`m`>cKd|BIo{7dRAsV9 zCe%=9Ip;6_N;^-ZB90)3ty~rwjnJGx?_i&_=F6R*>ixDhff9%M(Y*}M3v;$GlD454 zHl{sLLjX|7ggytS@xb(vXH^f*qh!1Mn4lK(P~H)SZ{0mbPoVuqo3wL{b&fGo$VhCM zd}tBseDjKvoXWM{=QV#k9qMD|Bj|0N?awOUc3)+mpUGqg-3wTVsL zNyI-JW3BRxfI}glG((lA`a;vOZK!zK3`p^sOxDf|2SwuaQl56Q%4D|KSQgfv1^{aq zPT2vT@FufZ<_QCzZ0n9r1HZG{MyMZFMllwWqToD^R_qTNLgTTpSu~X`mP!Hp6{FGJ zCdzeAZ!FWX-eK+5z39HF0DMJFbkAY%n}c(*{2Gho>Dysp9rSC9o|r-ckoe@mN_a&l*cP>Vy0%n%jQbSMkQTo1Usv<$OvnPQ zqN;$}7}^L33z~+-wx-27Q@4QVBo}N<0xI;Ou?m)kD1^lr<-mvPvU)Eb0A`KMXjOa^ z4Kqhz{f`(~6HZ!}gfCo2XadfV_KwCEpt#!k-73jEk8v!b#TEeI^_4Cw93;Tpo!RV;sOP!Ko<(V1>|a+yh3}>6axNr^jt$b(_z^E6{`2K?P{X@YHU%`Kqr2 zALQfkXS|SuQ!YR|#SvtXt+ zVa3C3^+bz|pitn^Z9N7SKJE9{nYBf-7WrZ2f50X^2=EzzlI#aQMAN+Ckd3mSN%KjB zX3hh5qIS>MSj;VerJ{3&i><-647?i}>|>+DpIcqI0<1DJ+bw#bV_U7Xiy6~&hNc!Aa}GQ|;H@I|3|w|D|G6y2S%7hGl? z)@JfMPw<>`fCvR}Gf+L85NP!qLN;T}$q>p0>W(7zyT(O;bPO0)#vdGMkk8QHOgZMc z#kU^f|4M<<_nX$vNJ!X0+F|#-A5K`iK{@qC4gHxWvOcOEdXNs$nLqsbq3Tg+XWD9$ zhzh%R_g?XZvN7}^*i$ogN)qVZrz|DRQLMiW?a-3UU=?;&6ICN#n&NAh7gxgpp>P6Nm` zL!W7PL#A9B+Om{dO}T#q<+_+q)l%e7FWm(qXgb8IH+_Q=mPd>4Gn#RMNt_@eiMSB8 z4IH6f?4c19CEzTqfANm!-dGKpq7kTB>Ab!FbY~F5r}@%5^dPOMiY5h?q6uRjSB^FK z&I5Eq8`ZIV~pXWAD5oh7&jLuIRR&(MXy|Fsa6`cI^@IDyV9o zfxs`YUC?mrfZ|S77P|s{uZ8KKN$q%xvIJ6&_8wwlKU^OjTFEK% z_Iom`rmN`uTI&~lVD*ZVBZwCv@6T65xjqxWowa?>*uty` zkqHQ&TyUnPHNwk|g%+1$XO~2QV9AF{$)AoRS<}O9&=E-VHl1} zjDBc*$|S29T)%1fkM?hA6cHRazWlCU_mnVuWxUS%MGl+2(X+I^fMMC;?5iSxqB=!W z?*+$XUlxX3q>WlrM%;4}$>$v<)JBPAGi-EUHLG1c*0*GS{j3R3qeM`3JXdwQvEOa3 z`scQEH0ar%tKU+5SjLvC+8b1T-CQ9m(OeS19U0DBuYfig%WdqXFdQE1ClI%+-f7j) zS@nF*TTyCiI5yoIh!#o*tK4D0dVST<5v%%erGuzgw_z7NtO;>U_Ly}D&RDcpzZC3- znc^)j#)e+W3&NCs4($pqMk}JsI#|jls`RG$nb#5)$92x#9~ipiS|5cHCn9i_a_!j) z0j=-RGp~anaD2Ssocu_(z@W;-Tyoqk`2!npD!XXf-;r&M8K2s8O`1^v_x9*jMCs^W zlHMaN^$#z_y+*nxD|kAFJo`U<>+Q$8jv_#PsFtV@Yhuw$2G%a+(FlyX_u$0s{9Bq1 z*9fkv-HF2st)(jH4ybsYbGl9Mz|AqwG1mB&baR0_6b*tp`+sw;(#}MpA|;D)qML~C z*Z0wW(w}V0v?8=dm2}F0P$4-zGbrElqFH4cry&$%ZirV=04;R?A@yY{jt`T^@b#89WC76+9 z%Zv~=n&=i>tfuq<7e$nfJ$_AO_Au2e_WJ44s)*M8THN~HR$X~#N1d1I!hM%MSa`Vy zo=}Bf+T8l-4y6YI3}A|@JEl0E!O(c0$jEnG`KR1(2*|%ufb$cz7hN-Z6dh96Y-Fg> zzxE;Xq$rzmZ+mYiuVYUY7r*w;({94!+=P`X7A^$ZqD+4QU;vRs))+Sgv!wS{)uv4c zC{~wFO0R3;6~9K4QFYu2x`ci9bv&$NED_h`st6ymJH(<5c$dDR)}#iLoj*cGuc6el zp?0KqYn&X9?Cj?a$J8Qmin##AzdU~gkQEaezWnpXk&BE_3ypAZ#pzoU@qMFS_^!Ij zaO{U|WHBz$KYOCrYFpm_{(5>bb9)3xVEN@HhZ@s>b8>P2uRq$+o^;ugLg{^=cY*+p zdHFmy(nD*L*_UC^vYv~}J_n+a;>S_YQM4Z4E(L>1gAh0=_oypCgj&2@y1&O-J<=8} zWY1nIpGg{S!31d0YIAhOa8OEBO6z`_3E;^WHNW0n58f8qufLqvLtyebtBe9{C43h6f*1c(VNy zzC`vJ|FsieY-sohSsR3!hE9rMGUE*5E=H(R5TEqVZz#};ws-l-ixtSU*r^#2RRxF1 zI+pgn8)6qkA{MP;CLq@hYe|<^LQE5p?RMCA;iXrl*$UWaHEE4Q8-v}?u0pLOk7cIi z;g!R|P9#ag7Tdt44wXWek1_v_XOD@CJrhm%TOSHDlWO5_Y)L9%1XC;*{$b3}5=P05 zLn(rxiYNdI9<^Uj&%+{1XC#TnvPip})dZq~)1uzGpNXZ3Ep&coMz$i@{BTn|d zgrLouA9dz?qhZY@1%G_gHEKpn~+Rm}8*-=Gydiz3X>Fx9$NT@;n&rbiY>| z(j>afgAJ-+SlKhzxMG5D5W&~Yi}ElU z`6#eU9fPfmaGQ4Y(D)!~wGc4VjMmvR18$fr(6ZKYGd!8OaBlQPCn$!{rhQa6GAV4K zlYBVh9Q89%48Ap1F-X*EnAyWXr*hLuMgX;@a#9V0O#dU?Q0P>tCgzm0SOpkF8u7sn zM8M>$lh4ixO1|ZrKYc}P`1$CgMN-Zz6>Slw$kF}Gh%myfL*ri(1;9AQ36?)^U$>6H3qbDm z(6uoKSuweA_%JVBD+eO$TucB+^tIL;B;2v$d@3FC$1D8zA%ljy&4Gnf9aA@nC`UFYE=UAmVSE}o+fYM6gveGv_i)Payr=xHcQBNR7|x>xqT ziQ$rydM1g`TR(h9LR(YPfA`=R)V~n|X9xLH9gqq^!__9mGmscFkuQ*6!$ozgalhXR-b$H|fUJhU z+0}0=r7M6Uikw9dq1@b7S6{xYPkxoI(kd?dl&n(aDO+j4d@m(C%#Y?E46p+{H)u*d zDd4UQ5+U-;Pgm3q?IkGQ3tKN7PH5TLDt7{+^Pn145%4~!*0-`;RoQBF8?^ekU2|rI z+qm1uhY5ubb|vC;m^^DgCA+<7ssYk;FF}1C^knv!KDu=J#a{&WoogvNc7mR(n<{I! zzW{o=Ol^7ZGi?mFD$7)K05Vho5eklfh#KS+0t1OVh~ACrh)iE#*KMx@>VnWF%Srjj z4_awAl)i<=$}%k!R! z8Q0^9IC?{#vd^_`+8<}1^HI7-{Wrjg;QN`jkKinv&aJdxrKeDzf=p~rdj5Lb57;tX zRCBYWRT2&u3(x<4jaqH_cydmZ-ZRZt80>L%k5qf>RGhU8;7?|UO2GCx(WK0yiZEc&uW&qS51dS_l_uq-m>7cfI;ORjMILJv5 z*szQ~rf_kTSbF=BMglR$4NZcBv1GDNsq7oz`^{O}>&zC}cbb?MsOeVv>}2R0eHLy* z5gf@~IEXOe08VRIZ_>* zAUTRV7;f4&ax6WV0cB_7!HA906c)7@j?yHmn7-rzIwKhtX^C-4PHyzPideS7aJ%Py z!zmNRd2z0veb^c;1Y=UI0<>2#WvZBcxNK3aG>`39fC?Ex5LS|rBAt#avUplZrp0tw zM5iSR?K8w_O0{^01p6nXd}(fo88((=1EyM_W9cvz)I?n3xa?t<`TNxXVlNvd` zgmd92)v7gFUc(_H*}h$!+JL;qI&drqfgQ4*jT9P;H$>l-jcXn96@jZ`TLFv&Mx9fq zBL+4P(BsXX+2=|u4d-%A&HeS3Zpdh75TvZ<8<-zG9v&W_-0p}Rl!(zs!qVy`H$e34 z(YfBi?YRB8s)EsI)88eZruFF-OiL1C^#>g0`~g2E0;Q@PzayB&-Vp_U(b6_8UMJ63 zT72YWlA~`@cge}>{m8}}ux7Un&HZ)1Q=8ofaQxor`0?}mxjlnow&>?hK1cj?z{=)S z;afjTK3AOadF$wMT&=}xiTAe>nz1xw{&6NoAXo1R#kCWk7Ak7rfTQ{?+IClu6-~+D zZ&eD^V>{n$>$LY2u)a?|-#K#3e*XS=JB*)vyga#3ZMOM?KwQ43@ZYq^K9uRFmC&v! zzzGGD7=^&NW$_}R-fS5wUo!BcDmRIr`^)0Z|D2`JaC?qB_Q$mG^P^C^-vCp^mN|Dm5Mmw!?ZyqiP;f5-PHweYS1*csdZp!exD@Iz|MQ%3Y&qZd@#!R#KZg!Gl>->%v|@M z=~L%?0)E4lO%U_BZ0wW<`CWsNdum0wvf$IjB_3S1N*!8_&ND>yMQTv!dogAefNl*I zvz2>pV|?FbXr3|{H^GK!qgcd>Q0~O&x%U3RxAX3*UL~-PxPWa!V+&zIBZ&oK>4Ifm zKo-v_#6!K{^qy{hw5TEYZ$j~ab zjJ~2eQ+~uG9Z;PGG8Q9|R(l`Wd3WB5@)^VUW(}ocXjD&%6_5Jj<}ja-(IUs}W(Fk} zUc&;PW`OSo5v5YP0#A7_?B2WQO^9dEh_kOq_c|#qUjXJ`5m0eOlUhDiI}X)a1M>k` zDN5V~DA-H(NgigU6LE%P07qKL7Gx6KoA01PTmFUM!Cy@8Udd`|TKzC%s?1CE#UV=BcP$Yz^2j@N3@KO`-)4_(RH5^z5PWy`PZqnR3VMCm$i*f}5S%k*i~C z4q&$yxz_IjUR`=|qi4)T zpdv0RByJ&x84j(*nH6O8YhlQ3;7XF#^)YZwoZcUK`qafP`ihLtM2z8fUOY~GaKNJ> zFtkccF=}pV+|gj}aXXk&93eJUEdmVjg2GDjILf7<8EBLGzwGl!=}% z$QsN>k7h@He&+bYt<@~i7L!3%%+#OBii0V$l=rGj`U@gSK+Sc}{LrYRZ<8S_T?Wb1 zi1A(3+b4_Rr<1FvYcwU(mBq<}g5PfqkH(nLowfzurg-Q$@DC&Y0ST3$L**xq=g7#c z1`|S_(McZwn#3d9gNnq{Se*kaah=3StpyOiYVCCiDqGw^FW?`YGg=3a?G?OrPGbf>u z;A3N9<6z-r`M;9(NnXfjaDZhuy?Y}=_6^=uemv@yL(H-v|L3fmX*b#y@B0!fK`N_n zdFGJ|;t5`5_muy=Gy;GQD)VZ~=wwForf%0w$NPiEKRfLBIcST_=~!$al|)CS-;c-O z)`8W4X})Y<+}ot~vd_KnaKDq^z_Ib$ebrKns5>59-mvesz5k@w1EANC>zNI8n}*#B zU$VCK;~T_*4+P)=nPM=nyl4p1&ckJ$*;H<`p)Xv7+~tk$N|y3i6-Zj9c!F!Jt8CQn z#zaRa;6=yLu&yZgCgafZsNTL8r%e#)es!Z%6OO8oBEyA4hJwe37y4wdOc1(t@+(U2 zv%nCfO{Hzhlv&m20OISisVJj+?F10V#iP8k$mWWzYLt#eo!a2@Omk{rW`p;Is)pV2 z;6Q|}uFCOVHqAhG<4VsD%&g&Z3~;&e{iQ=36_FK>aF0?We+3VWzz@fq1!!uZ;w@8E zBP9#Upk_b?>g&oCTk%+#z+QWT$b+B&pb5^ z4T!iuj&z<+0XH`%%$mg9FXPwW^_Eh2!0V-QsqVCMORCtvf6ExL>XxY5)3V2IuueZu zZY(@=Mv2`&&5@e96CtvS1RgG_ruQ2l94!ODHpQ&B2-_{wu>tI~RG{iNMct<}-wxed zjs|uw-2C3((D7zx6~CMmyjBog+QX5#lX|Z|9NWT&0S>P8AQF6X{t){|r>FjZ{G2^q z`!{ZpJQt~9VerRE06PT8R9}~0smDdYy9p=SxbRwgc`V=GZ);oKd-d(mm7yP(*MD%e ze0VG`i00aVv2^Zi6Y@A`Zhvv9|F}5( zcNl854S?e(igxM!T3O~@p1Ju#mqS5cI9d;0tJpa;2%jB8Biv&AvJK#PFf`7_(b&U zjYo0{yYwUk{@&zT1m5Lwz#l&tG#?Y@V_UhC(AQHM6hSr}2BXcB(boiy%!HaFmPl%3 zaKbmK)PD6%SKZiMLewK2Z=Z888kVUWQ3CKlG@^T$FC|(hKK#$+M4R`Y8+Cp)j}9Fw zB>j8HRL@D1-q3rfTVW~Usg9jUuguRe5rL$#r@=5<3={jJG$>dG&EaQMzM!hMy>!xN z>`vo^A4cPdZg2_XkP9h|TbiM_O!IQ5`OlY${v;oIN9@BXsqWTPt{+v zx&=aw7J=^=9PrE3sW=c6|KU+?gfAs^jeMk_Pcu@~&k++|)USS!y5g4e6#}$#g#jgD zhOM!qt~V_bb=eYAXxXw{yFds~JyIaFHu4%nVr0b$4}kz2v1;=&`_HZKX`z3EtO)Xx z_%ef%@btlhb~ZAv$ua_3Sk=~-9c#lpSUr;2iF=mjjS*|j8W^9JRx=8NXtS4=nh8R5 zRVYO!7Llya|Ll;3aq0{}M5{AQXfCsuC{q=eLh3@Rf9SS}XeXxuyhq)yTc_bakkseI zHiBBTVp*RFo9IkSMyo~=u&U95n^u|8njQ522#O(CH|q2nSIXj<+DV(Wij9OxXwXa4 zteUk_m@1OC>qUTQdow-^g-IyL!E;f#=;$<%CN3=oAx7q;Vb!c2w`9f$h7vHNxwibD z44e#8#bSHVk;MZ3$NwKnb1pJBz+@~Mw<4u4!NlaEBde`wP)4>6COd7 zy}&_y)CS4>L9UJC#8u^S7Bh`E_D5?gxPTvvU`xL`F5(b zow&u{>7dN-SnQzeuV_8O%1JJhkrS${cDoHm%2gN`vJcBFm^hR6-%gr~_u3AEcFcO5 zq{cE{PTHew<74P2;yZ8nM@y&}21H&@PWvq23QJWyTGTrJ1aNR93JOCeGHEi+^{v4g z(bRvRf$GDrhJ7p7*bZhHjSu|$m}o?&Qtnqcg(ARcm-#h%S(uCj7d~krfQOVwO*_pD z7)wnx)WMh!zgG9grpF8S#{X9Vgw#9o$L!c$@AXz#N_^m37j}D&Wg?Es@Fr)wE{{!l zq2_j+*8L{920)CLJjhJArD+bl-K{5Di1=#M+F+27&fuF*|2>Umvk-vgJ<4zsg54;N zP=SNY<%=d0cx$|bl!43$225I8zzvglbbZQcF!1IY4w-!I59Ur!1Gfw%(cU}yi9 z=Wdz}q~#UUF9luN^aQ!Ar(EgM!9AJS(}DCROw1vf-qwo(WD1#&)A!E*;=!1v#k(Q? zKC;ZUL!Zy=FbRC!hDOggyZXHtuY4(vlmqJj{!|-3vXA%p{JX<rVC0# zIxF+Ch;oTa{8!Dgaqx1nv9pQuut-Vqim`I>a&SsXvhWCz2>ky_^#9-W9ac`>WEK=! z0A-r4)tWiZ_}2&x(sQ=-^clYHb1Z4=I4Wr$l z^r1-7l@Q9{NX?cI7=65omMQ{~K2b{wpbL%yt4!Lq340Ks?0h@k#F>RwKgOGEWvhXL zpQt5U8)|@JpjZ=gz#P_Th}hO~p~qbf^l{0aCBjO&!Hc@~QWfX!Or zsVnO$t_XtB+{IV94XK8@JtarT9eiE7E|s7;(H<=Km~YZLt82i*g@1xIc>}8(HSgcH7)VjdTmiCn|@Sto+{<2!FJ34e2k)W`hR!E2u9lvD(LT@IO3n4Ew+%T&84R za3d6iK;s7Fm;hxKsOMm37Eq)BK=3{a4+7O7Mg|o7J`4|BT;S0@1P`o2;L<)q2IL>c z^%euYdSI)}RDQG4LM8YaFG&tW7brTG<)C?(tHk)AWEk%r@Iq#rBs26(7o*V$4M=I- zskEZjG_O@&{Lmq)P$D_BP0ff{m5Sx^h=wYu5RJ1MJSs9}s;UywR=Fz%*n;n3M;diC ziYr_NqoYnyROtif(EaQ4$i$O(%#KB^9n%e~z2p<%W1SniYv~5*Q5Ngl+1CW^ri0_< zhC#ig5#Vmke=8Qds37vRgam(ddv10tJCT||U#PYT{tk*nNg&IU;zVF*A_R-P zSP_aY-$l$tX(zk>-}wPRX{azn+&T>3%HUDMa!?uGHU1nbA_aw(R7ET>WLY`cD~__{ zfup+_tIoIdz`G!6GF@txec&d;1%9pNq0OuSf~>*_4QP=o49TRcP=}?a)8QZJ!c{A;pDNC>4g&5#XwS6a z$VMOxJmt@%^_Jri$D?12FE#iqcXvJRe%yU}y7vPk2Z87I!u4C-B_=4S3NW5^Nzw28 zweiAi*I64QSXUin+8}hH)-`JNjl8F#>t8G@iQjnb&8Op1ulj@8Z#l4MnC^~RyEywm z)&{;c>|3M?nHTIU6kg!l8QZW-H%t2l*Dglhs4M3evR~NmQYyDMLHq{quLE+M)#qJ1 z{QGR){uLSPZ(jc{!W)rRUN6cUb?uLa)TTFC(-$S4j@z|9V}9!Q`ynPtORp)qE)J8L z9c+@e^mw+&+wGTbYm4?qzr0uKDjfFfVc#NVvDHtDKK36I~~Z z<=ZUJIQ58qyQpvUpD(el#$xhzJYw}Z8XrEVG{(p2eR%zqY5(4+2mR(;e@Zty9=IPb z_G7zNge8xNMyz%~;pzi_-g8~KqZtq$6Bbvs&*5=2>#qH}7rwhT&SPgSvpcO^y!Fki zi<%jJAB(!C2XBvgJ^i{Lt47%G#;W&>1{`e%3@*&GWpXz8YL` zn#1(!%+Hn2UzPVaB{%5l+B3d*R#f_WdE=~*YYBew(=Y2jEvel(>w9q0_Uzt(QGhVY z&?P26NkT*hH=g>>c#`nxDx4iDV>i8i3?2__*J9>7$;NQnxp)h*rs({k-ryl?$}})i z+_7X%e^oTpSj=RhOI}1y2l^M;&m+vq0JV?$wW|pqI-MsLU&9r5XUxdmt(ps$o^3zr zOoJ^gZ$k&}*UIC*{{D@zeZ%^WyzZ@_=^7@kJat0dE~e<^RDeuo0%2c4mYEjEN-D+y zM`oameWY#T%jlQ!3J;~gmxq41Iytl~bqs2GAFaz?mQxj3_@sHDW!p@PFVxmgz&+Km zjA1j-+aosGz8Ps_e`Om3_)FWmZV6}_>^hw6SNECcIg+hEFJ|`Q1B^G0m1eEc3>-K6 zE8@j@mvE!iBxzM7MI{VTFXD2Dq7arUR4RQ748t?1QkwD_WotMG3i5aQ%ngqN{?eF; zUua=6WllK90%)I|ywaZSQ#`7GoPq^mM{C6*LE#cnh?Z=j`JSZm*$&zq2E61|pk!u} z4q7+&)M^ELMi`rdM@T75id2KE^Tb~>9hS}2 zm%3apY;8+Fzwoiwqn#QsLIPJ^b7SOx)tL(f^@nRIFch{_Q1#nj*D^5!LWVEDA;V!k zSrBa^Q{d7pl3(8rKB4*A2NW^j$YOK1AQv8m;T*eD8PbnV z`V|@!#r9lUQZrKW#bc&Vu-VEe?+FUbJAy|c>x}}CzjF3ZgWcj_aLzisa=bhC8 z*9wzz>hGyXuT?ZK&0^J_EUg9~Pma<3o{d|(C7Ed}eAz#?UbDrZB}w?-kvlbKX9~OB z%;xDZb=uaV&?Su_$;u3@CDMe>)(CuC@Rfs%E)*ryEY!ig1WP_2;V+EqwXY?g=c}#y zD}?z2fpQDaSD@fW1}8=D$XL`23RL#li*=6eXLGBmiaZa%!6w}LhDD*D`N^UzX^AnC zUOA>6SiU;k*s)y-!I>7Z7+Jn7RE3v2h`Xcn#Xfa#zldM4C0HFiEy5e`d7vIE;A!5i z(4MU>Jelj(3V+jbZs9bsE%z_0-wSs>lC3D*d`L)k#fGFR<;2R_TxcHG9xPiyl}6!- zO4_Oh9;6rWYxc4Fn3D<@(kj7N#Hpfe4uBXXJzD;p$F6RsiF%Ez-k4)ntXR`zR9lYo=gi5>@WQg)3`3=0A4+9DEyq69$ zX!X~gK3&@$Ukaj_#S^9yE#H7@sdVwhrJDqfWzUqF7st%{w?VVd1QCWk1ZYgcpaD$8 zkM~cB_~&Hp$n6?RJ=Unc7*c}QwMoG3 z;tZD@VywVc8lOn&VRNXh6o(v?D}k2`K@}sP$d{2lZeL9rwg`A?LnG6()SYJBGsXq( zC$K3K18uaX$(U>$uxz-Fq7L0ja|fFiuv=Gt4?Z@At9 z7J;h3H?Wb#qK6K(2XF!hXEGRvzjVNJLEGEjMF<)g89(XK1 z4*%w464q*!oNWB{ua=jf9nejAE&CJ>uIYn>5M&S$s|$J@onF~|t?~Yme+y-s(u?W& z=)vxrz02Ua8TR`HVjOuYW;RkoGU2S6U@Qi{Xrt`kyF~M_LMcVI4u^kn9Hu^%3hQ;j z#?xvFB6BgT*u_lZpw9eIR57pBV26uw?yTM}!L8#-7n*~A+}8>EF@O-9KfeuDUelhx zvzcd+k+=gTjl43V^7|np#$_cUGUpcf30dyk?UUeANWVwRvlEA8nzQSnz>db zHRRGUaVA+PCQc-D@EGThn1}VDh{xI6=lw0&N0H#h+lDU3XEZRtYnolT*I z5tV|`n__|wO-yT0f%;O@nqrE2P9_HY?_1Z;H?3tO^PD&sDHD^^%N=)eXMr!>yxduf za^`DKo4>2Z#>$+TQ!~KF@$~wua&ONs)@2N#ufHe5w%?bY<+ZbNFHhUAo$Ke>ncwT{ zujiNPi}8)xyZO!p^n-}vIr4MM=Y`i9=maUu6Hk{(s3jqH!86*6Nw9+JM%qvP3YE*l z>|RMOYJxjKBAgXio3AZK;XvSWrA>{H@4eW_L1c*x+j5lfbcGB~QW2r5<3~#LtBZ4M zj$;*k?SOc9H#p^cX!GN6 z1C1)h?&e*;CuWC}%`zj6?CQk5Oc}$JC6dA;QuRPicgtzw4-{EnaUS=@VBU{50HUx` zWsF84$2edbR|X?ukHp#cQ~?|+Q3qQhnC7Ne_o(TlfSm_PIxG}+hRp?`C&bwUsIOO zCXjr&I2&HRr2Q|OwL>zZ8bS-q*6|$C;9IHcr(#cQB7#wNJ-`)89Dqndf{FaFV|kJ~ zLss8Ttmo@$qvpG7Ntj0_Hm+@VIk?xeV>t+EpnKn)yB#lFLUC@YQ3N*>^yrRbse^`A zA+W{;_uhp6`13%^a~&rHQmxu7a@N(SUv@|W8lSkXj{x>Xyo=X#5oHwu2{aA^Da|Dy zTha||6FInF9)RH9wPS}YGVcl!s0>tbG7q=0Sv#cU@e|=hue*G%{$T>$R0lCV;CAa8 zZ5}ZoUbpG4Re&e~D!-h_^CDTXkMAP_DZ*tT0+J^1m`VZBRV6`s7ppS$>~3H9k}-ht z=)@oa2ME~IpYp1(6+kP1mUEB+L!gc8f9OmkbTpF@0Yr%22N7alAKS*IH;$@-7T`MzjYtAvv*4FHrVZ1#Xc5CVA$mB$On zRcU>n*^iY*FQ|d<;xm7zqQMPfK@j4I=;O&p6!0!NV%-rzHKYb-pwuAc6q4w9rvC(e z@v44xEN(Qoe!KiS-_2R?nxKY;(cwB0%k;apC?Z5e-h)x@Ye0I8HbLFKA$=bS37!jMrLF6pvc+U4J zU}xbmVr(xI?idv?5ob#PT}ZiFfZCTgU^DT`n3Bm8_^%&$r*KFQY>Rp$_gP3j-{Y z2o|Us?en{8*5@Z=Xj`(9JMffq%m(R`GfAycAw%!47!i3mBbt_clI9w+IUg-SV4 zW4(95dU^M1+u2g9Y!sxn6gLud`<1OE+jS$bK5$0xM`)jxzqOU4lH1$heW&hi1Xd@T z?!hF-No&SbGMu{H*qZ2N2JgMuZ@`I%uCf0OY$cInwoPMw<3|lSzNJ5Vg^RzaBr^gi`UoLLALC^GwWJ(bYtGCs~b&K9B^1~Hlz>>`E$4$J7vIrgh zkLzmZW}C&FJZD@{jD;hFeE@G#>a?BUv=GJQTYggr0rxo|Xq;1w(5=IO8A!MF)cpAa zY+)v!6pdum`NWZsc;vpp$WSBxOZ@uwPi2)w&lGuZO2pqC#Favq?o#nrm(TlD(}_c} zRCdACbH?0mT=?71q&-qami#$-4g^j0F?OV@^O3Q zyRYA`QU6hREme``h4S$mlng;-o2xu{Lfr3tH_y zffzepd!uhqUHk`rv^$rzArd>BOq$bAt)l#Ca!04&yxhIv(r=YzNd{W0Z~i3M=sMI~ zPBNhFH~oa`sPI$OTWG4joZmSB8a?XVoLjAw5iQ|6S1&z=8UW9$z6A%@Wm&Vxfb*ot z(Q0P&5NGbAUsf6Q%vn_f!d;)|Lk=Dr@{N;@Xo-{}@y?d<{rex?6W9o$R|zD?D*LE>3w z2=Ww4Tlotj9%zSh@K@AA!4ivaPQH|ZKBVu*M}RzPpC^#W&UW4E?-pFcR@PWW$qJuu zt}Cb>C&sr?^6H%FLyayFKeocHKG|12LZys=yFG0kPbV|w`6Rm)h6eGlZn&gDNHbwN zT1`{jM}yQN9LRsyM3t_kvzbX#QqlP`UfTr`qcw8tx@q>Bq2I<|@w}4z47HgAffeZf z8(g7*I0Im`l{*F-S<_#!Y5-;5#B_39n%d$S0>Ic?*<(2yzqsh1W5Ny38S7p0RMcXB zn{vhSM%}R7N`mf7F?~uZcf1@dAg(hMnCB{!h1w`3ZyUvyp!x0OkAmYuUQSyHu>LEAAB9uqG53)X<2`1@&p z7S4=-dpv&UCV4avTm7VV`Y_?GOx!-Y<#~?(u}SJBEMj8?*CgGszTAg6X5{W2@6Bgc z#7-&(5t^da_D$TM;|CfuJ6Z%`M+8C1N}>IS=F7d#fd5_&#pd4AUQy}-Mt;%9{yLtDDs)al*rxpzxbHY z$TksWVEDJ=#FPg=52g!uzl^?ItuCTkj;kasCR+HsTwGlr55EAy#ShW&~ zo=!MS2k(a`JsoG6jlQ2QqZdO4uRB|rcV23lXLoYq_x@XQ{Bm`@26*^8KbMSeqpcAqyds zPxmD(saQalg#hZj2^5$c$aj{RmCH|t`HV-Y)P`~hxp$n z(!<08N_M&h#?DKPrS{icwWxYTGt;R4l{vJEDbsH|zrU{`pyez+BoubJ`{3l5`vF(u zA4mUzuo(lB`OtkCvQWqlX9PnDG@#mz{m0|N-5aCmH&(E+zhUtQSak!j#vynPwb;6k zn{|oPRsk$+%8I0pHX%2M9pv8}ybAJ~yeFQOG*)RL#wYDb1_3n`CNeav3^E@LItnf( zN)&_MExhJ~n)j4b#MWU-Fx8xMJ))=O6seu0!yD++E5@e}evNcgvnssQeP+oH6h9&H zO8#VJYh3*tU)-lQfGU73a9rLyWkgx7q^dy6V+9;doEMZ2RtlOg9So@TPlpgmm{?k{x?RD?b#a+{`VSNMn&TruG-K=@N zBNEug35X%KSQU3~M)1l8GN)S9aZqnQ;r7f@m0P2&p)Lc=U#0V`mH*+17aW0DE=Gz< zdgd)P#Gv5GssOnhAuiGL>?Xz@deEeS7&bgT&GcI}tP5a!Qyu@63K2~qm!=kg$j4-R z>X>FdjVC%$$953wWauV+n@_yrv`7_YAHbfsbv9;H+DBNR1%3RjlSQ8v5Jf4GT0aN% zyeOb)@;iwQ<`wl2yqaV0Pcpo0hzu(e!W7xym#Kl*+lqlu7QE4^nZC0r8Iy{x)!oOr z@wjAIpmlsSGR5z15cT{!oc-?xQyYiaa@?8+JI;EY&d29fc}vY^ZB<`qpz??%8?Ya| zR-!(9krII!GB=lPw*l>D;qP{;uOiQS9e*})+zni8dz7-ikk%EfW40Iu%XnTj#kJ5u zGYIK#JVwmOwS!cT70dbEk5;L69^7>@JXE!$SwBOaI-_~;3aalxX0n?@T&m&8lzS}@ z>nf#$_gFCMV>2Z$TSS-s4Lho>2jC7d!}O5EfMTBrX!Ond{%GGADa$G zO=fu&tZYH*F!dUW6_9jH7=6H@VX5@S5L$msP$H z6a;A8x_wl(fx1@dheCno0}9W@|3+-K&3WPSSIQnW)8;*`H_lbW=d%QY=B#q11K;3_ zLaVh9Yb>&+Z&i-N1ehgHmJ~-xkWPX?D3F{?QAkp7t;V1+laS?5lrs^H1JYBaHh4@@ zH|0T%IG$%~a_kNDZm+|RE@P)LubR~l2@IGZnx?}3-3&^4!Q=k|2ZBGRs{>3Q2B6-b zu##|}I}Ji~qhd=N;R*xDjUN6!?Lg6I=zuV%WY?HTB$uGEQZPobW;am`3PeC|`4qVk z@S86l=gMpR%p9V@j%Xtp++AsJI`qpx|5eY^jJvqC`@+DGR9Oz!&>xGHVOoKwRh3z* z)2R7Jac)U%MjIJ~5BRU^!)|(W&F7Sc?V&Nm)YT1Mybm$xrv(2r8er&fk}Slj!FAEl z^a(-#O;bH%;af#!{2q>?Plv6qr((3eZ~Pf;?VoFJi4Qc+3=Ui9mYZj)k0+?^P3U?1 zChLwX4Z;)its#5Fyi%^i$Lm)2CCRav=bi=1>uEyD&6G{r07S@Sa6K%l^*JOo?x?gx z?kmN*YM>w-nWAfO>go|Z>e$IVHX=A~vCftNqFQpm2gd2%L z0^&AAGWQrMdABmCSP{9{^i>sUOP$M0_CNTSb-2>#`oyz&cI!ahD})7p;yfL=_?~jR zar$_px@>nM0)5}{)k(4^RAJhtW^1Rz?<%CNaX;PJ@34D&gaUar4Ftkt&N9mlAbgNp zB~{e0qo_&Hk3TCp`fIc z`=Mz3Ap7REHU-6SukmLdH2Uk@v1pYJ4};`Pfn-zg7f8+?c&^OI&W^H+Q4Ya~dtzn< zYs^g#xxyls+G%q$#3}+Tij_JC4%U>NGcsM23Aq}tr}pJEzr?;OAp110KEA^RuN&4?OPakh z$!A2rVnD4F5Iyorac;5|3-NAN*<&!)oVH>8faQ4|vl632*E;0{fgt_0P{bGWb~p!r z!k{tOwwnXbi6aQL(At*ZFNAB{&66dQl#Wut(3z!+-QiIg!#>l}eMOJuGTH^XZab#& zmP!oy$jar045>}&DNfSLB9VL4TS>iLP5hOUDsnsH=GO~^U|BJWRIk}5lqKKV>XcI> zzzBimww^80jd5TC4O?hwf186eg=!_lYCTu;Aq+f%kq;f^W3VO8Zm&cWJ@+5J{y(!$ z%c)mUHD8dPu=NX>5!wEWq_zD}LM-Vg(4YF&oAOWz$XL}sxyS!L5)DdEDj6))9 zxkDPLIEu9@i7{#kwD<&#MprVag_dIz018DUVCgKLoi2Xo`+(f2ZI2{ugXPphg>+3F zsk6a=Im0fVEwthi@tL>Br6lT~T>VX_*LHBz8Kkv4LJ7YTw%|aJSP=z=#fGT-~MaC?&EjABO7Ce zmfq_5Mvw@!D-_!JMwFMd2ps1HfjEp2jjkPO+9@IOcO6km;f7Q^->p^6-N_lP-k7p{ zlbcQkgT@z{BBu-G3uxiG6L8hZ!eb#Os&xTHg`)Riin7&0-4)z~xgltZ$RuUMl1+mA zg-jl1V5Sp1X$Olq-;J3b$U)V#mudTlr$iW(g27~|xE ziTDsE{EHXwUWBRm#Nv9j-ntc5msQU(rbx-Ff>y-UZ(Oh$Wd{xiG5>4r6#3g~k}Gn` zmQ-)l2s9ZoKa4N9R}t@ecEkLc$@WXEZP2v}xY?+&g!tu!p&tbth`$djN}lZJXCgrm6m8n4i<8NF=Z zG5Qwg_y!Fwhkhf*I|tSbB`+UZ^tX7V*NQdhC~Q)!$+Et8NND{3Io<*=3_E)5c4eUP zM{G=IY1?7l57c7ZxI^erPHoLvm$n9(p>~^Q8$F%A$4VoLw=4$ggx3^ZsXV@TpVC22KHjCrDJ*$A1% zHtb=~UrpQn@qeHH%Z!Cxo|T@HHOy$hxH!@aCBbQdZC&~Q>KlZfOYJ)u#i{8Y;_-ib zYidPtwylXSXFR-PScHr94BE(>pU=ZCvXSzPk1{zw7tm=@hy44XO#&(7grs?VHhtKw zy07TaQG;SoIPeT4;m8@yOAribqoIn=1cZD%Urq}idU92Ye#C7=Qm_f#JN{n4+6sn$UM^8yTkCsnvICg%d-qp?E1y%XyKipt z;Zu44EpsP}l{r?C%AYAw92~xokLBd)MwVSYsm9pIZ5vtd; z`P*TBAVFd0l?Qew2sy^(Pg29r0dm9VZg$g#Q{fMGYA+^gLU=ROi{Q_@UOf30>F3oT zlHJ2G5*X17%#OhUJO@$fWP{dtf2G7iL^A@Oe~TEPE9alW1k)U%LX(@D?!=~oeMX7_ z8wr(%mZAbHoD@Y*$kZSBg2<+1cy{_OJBUB}iPHQ;<&#Pp!l>&4B_esZ=kw3t4Aq0_ zbE2i(qCz}4A_s+07)m}n^DweLCkXHW@^&3?$kPH%0U+W!m?KId0s*(?UDWg;WMXSt z$)YifK2nYzUyA&w8|&J^?C>MqvGH_qNq$aYEtE>6Gf!lIs$tfRc+WqP!4L0{bV8hkXO)d%xbx@x;%YrwL5qn9?;9;nPKmkPM2U|*_$;G%x z>Mo1P77DwTMLEcJl$Gw_YX8|O1bISAht2|YaiZByT3)CpCghGO%w*B0H|C5R3}=hY z(L+LsxlG4b8u>`6t$aG_M1j~C7(@uM+1wv=x`X2JwrLr^#O=~zkAZq1^8Nhy$RQ<1 zQJS{k7-Dp=GqLlWxu6&7+%1dXG3Q^W8`or*=gsT>=ck+5vY@%_4X6VOIoU26BK;Iz zr@x?yzFL&}+J(93RW@LVFDzFZ7QOizhz}a2D>CxgSmIc}_D+dK4?5W-D=?k6HTz(e z(vW+&G^74>B8Z@QTK^9yXV7PNad)^;xxf3`vB_GqKBNWjUQyRF(Sb2&D?H>%_wvJ} zbA;0w5CMm@jpmyVuMr=yRMI=BiM5wz0&_~=c3!`pB zV@r&TCTV(KmP!v3jT-ijancK0oNnD8O>1vq`&6(S#2u6W?uuc$b;+B;dX;{2l|=#I zh2QBIjGa67v>pH9E0&1jO@hWBM043muITAf z3+dA&*x?kuw2q0GRzWR6kdJm1_-9|C0J+TMvDeOQ?mTdTp!eNmH|xOf31-jH68ED| zh-?11&HW2jn%oOUoy|;2I==mkry;m~*&Y8;A81DwX;ubF362K_Ol#r zZ9I_8p#ysPVq<5=iSME`^_UX5igqMn-+J4NPggJ$T$^cYue41F&&spgOn$EZ;mUn& zA|V+Yvf#)iT&WR<4UoO~%R(!Pi@K=U*eoQQqP*X7uca@)x!YaLQrEj*em)=Fl%IQL zV6u1Tp2>GN?(<0Q92psr+J1xEbd8<=Uot`CgjEaWN5vm zLG}1KYQw$uh4#g+Q=h)1st{6zpz}?@gTzO=Wdh42Nx+IXyeFg94|@aC6MlzV^3&6) zFaph>l;9fbPIsE&3cHc;UK`T_HT|bJI$84A4i$n}1cxNxPK%3zM6HEG86e3x$3!a- zd@DOl1X8(NuwFXFVakuyscJxX;uf?XG)_v^6)#F-N))U}OvDa32%}*3mxfk}0f&~~ zqD2~#8WQP;9aa~qm+TY~bU1B*V4u#kBGoAGp86iK}bd5Ac8w4dRk!r%lKW-6w z4H1l^UrG&eWnH%hQY}TN=3xU$2BFIuKJ!JHZK|1LlJZ3r&O(aFW14N|Lif2@mo92J z!J>XgBTXP`d=#b?lKqB`f^Fx-yCxFQ*J;<}ggXUfc6qaB_IMH(V;pTbI=sySpPLqA z@+?u&%$yy=hl7LVeTPlzT9~od$MW+1w63wzN??kB-|7lvuwyMKH+4 znz}(KE*8;4*vK??nf8#1nz}_8iiC6<{g(bhh~tql?J6ARc5xzxm-W`9J$r7C{Bm0~ z-rWT{&cknNW8ZsgiNBtk2ZPsdw}1M8_jV3j#HJuUz5RUCZ#5FCx#@JTh5Gzs+`;^? zjy&1BB|RvE>1fJCfZC{xW8V@4tDeC4v29i#G92ISmMKqVxcTEIoi}_{3%8pKfjvqe(p`F7+5;`Fg9+Fn%h0BE6`tp|9qQ36S z@}n6=z`$RJPvOk-`9bmYTZiHMeeTb$XST!RsUNGpof+e!FZ{M9fqbD)*gu&Vqe9&| zy!<}3!ZUTh_1blt^=a)!{Rg-Uxz&dVRJ_GU>UbRK?AkPGq0H$Lz3QJ z-wq$)KcL4+5XpZbX2@v1j*wen%({i7uGRmXX6-FFCXG>)*%MK?Jhj=6lt2NX=U^qx zTZit-&?;8IJNiq{4ompvK&31E8KvM8m-qNup7bNcJ|#k2hc;n&uFp*L=zRz0=rC=+ zXHgvA4i?SDE&y_{m|fXQT&^0Cr9@y&EC8NPUg-S2?(3eF;~-2Dk&a&jQ+nL3=WnmV zP<@Fo{BunY@+)7#nXNAFvo0<$YeuQMHSej9VWhfRp93ZP2lNjQ8HhBHF7xm4;0XRCo2u31MyfcN=pyA7IW))UibhBqj(6tt>tu+FW^|=4?tT65ncO?k z1e#o;InowNap*cQLK>4Z)oORks8Fia3r##FlNu7?7S#X;!82K-g7Qaz0WrQ<#h66( zS3SaSM&?T8Y9yjfroq<%wuR8di5R{C)lmHN*@U=HDf#XQOY3~gNG6OljN0}F%3-!? zIXQ{uIzfbH$kJxwqsG69m`8`Vz`)?mr1G|pU_Rp<#chjy3%|RI974Sg+)Kck`ESBi zHv$E!(6b^;Sx{9Q9jInNjB?ZYud3N#14e*qc4ij=UF*4s+RvwoqqP0KKj-o=VO#|^ zy49caPwRMvBDYq)HsfLoZ+!Axlci`~_CiF^qZ_q6^8^G{ujQ3r(Xc!_Ha<#yxz)X5 z)2AKjSvkxKiYvBd7IGt+o1|L#cAXilRV^`ntR>{xN}k-pw>NCSx}OWLAbz+`3Se9x zHd!P@Og4c+pz6+6WFGxHC;mr%B`%NVKMn@+ZZT_<@g#hb%ZiGo9wj?tEHE90@$AC0 zUOG{ZQm(EDOz&k&Cao0= zWjCFzaTqc4-rHA`*vkc7PP|BYA1jX(e!sP}j%ap&a{TxOcyqY~kxNdZy3BB0cGfm7 zcNC*6GI6r!DovBNH0SXKU}D7TJ@Q~pq8;JMiD00};_ZQbX}wn=+sD7zz5H zg8ir9t&Wipf9mMiSXtS4Ie6(=*r-`psA=Jt6&-&{n7Wyh&`9vHv9NKlaI*ZrF0E30 zkWb)%cFodogI$Mh9UvrS*U72|T;K68#$Lh2u&Y8S~4LOzacu6bVx zjS4=!@#-FaTh+}s^}Z59;`sI2v-_3yyx|P=d+gZbb?F=ZV@fb`{CcyW{ z7M@&6>*Qm;W%ojg+9N0^5NjEuO+|zVhR%$@o(FEED`};YUCpQPL?LN{2jSsdSa6jg zlMx|xXx^$Uj~ZLnzml4-qLfx>(tM9Nbk(vcE$ph?$ddvb|lcO zqW(_RX0rqjqIKnh!dbzW+Iw#085(^|mt;U_v`61$aldz7JM?$A$0=Ne?U;q8D3EX;xcXjk zux0j zutIaTe!uP_qrE=!({QHgHhs3S!%iRWgjdDCPv5k5B5&H-M)j4bX`|-jNSyk;+@AP6 zNKbGYve-dhJ9~QiTFltx`ER!fu@}(r(m;)upF2cZKn3;FK_LgL!}D!B-G|V1oDW(TUfP*vhcV&{gM7 zN`)pICx^iGw9i_LX~3+jKu)R;Z2ZO%8EcLL4I!Y1LUGZH0TBlTWFu_E?sUn1y4pYL zZ;$PDppg~p{xve=gg+uJ*DXL!v-xm}&)p=rI26sYYKWyL~TZhMW%C9JL{w#)6OLmz|ik)N#W|DpU!O#fN)L_X<>lcDiYjsK~Ca`7`L=e5JR-fFM7|Fff6;z<`>@ zr^H>GqkFJi_+MNR?v$4bDqvK~wrG3@E@{r87xEEd0<#WNJ4NDb(X1 zIJ66Ge)SfSU*$m|Z#7ur8sPy<)>tqy*KDjtt48ueCE!c7Pvv%jZ$nv-7wU5iD)|~_ zC<*`R95d>rik4A4O7NQzCDdcLCIiG{H&lK>&*~mJ#F18`hzQr@&_TzO9+i|zzUGTc zey&B}8&HiF{APfD$Q~3>xXggU!hl}9evsIm7IB{${?<kL5G0e*+$RSA-#(_US{t`WM!ztO8TkiMRTtDzi^^) zR;)nL8MNw2j8z9CBr{{uuT zkDI69@zHo08P^iVtgZXQB$VXgxhP!p^y>7I7cJPHFkHH1rsn^*18K8t;* zf%K%6#g8cj7?@8dAN~vJWLO5?)*AGW7C5rjpD@CbxAKF_!FwN1o*M_@oX|#QR0^Ky zpsmqkJ5aM@&H5yyR%Gtm7T-vZw8ME6$DaXFs?B}nKuVq-o0Jv<3&eCl2O?$_?@;?J z8?}ZX0M5f&u=oDn8wpCO@88D3Nzyz|169JMHyi*gNwvyE{CAhp3O`x`%oKm~dli=G z?IkB!^y~MuEHfZs73;!ab@olnEdE>uAGC&!SIxzWHzl1$Gr7;A92m%gtPOg5Ka7Ml z&)hKA^Ec#WTpXCLaBMEwJ6USgQ*&~?h)u)TYWFUtgnUkyYBo_@c6_A!@BW$VWoVAm z&9eYiNokT(l_iv@jda$$L)CJ6aI95oIzJ^YC(6m(dSC0Nnd{#MOKV7b9o-Jo{0`&} z(>{t;;`E)AvZxqeOKKLnk@?*CK;c_)ErQ7M$zPr2g@g~B;fcDe7pU`fLR97b%hxXI zK77tf1}Dnh1aO&zO_cTi25;bK3B}6)NPGYm=Oms!FeEw*+6CT?r~?YS-twW{7Aw>_-F{IvhS^UB=SmFdOvWvkJ7Oq|C#z~ z?hHqbnC^rLT)2R)wi!d#aC&wT47%N&9ihN6onb3v36s%YQNC!nn(Le--p@K^Mze`^H14a+n12itw&ZEKCe!f zI$zLA2m+ld1er$h4X6;(Gbgz|zH5Oo%i5kd8AyL#t34N}+0wptfyc)8YHYQ|Cj$O-T(ema{k#Q7O+Oo9IO+WNe?X^Bh!6jE<_^m|JTLve_w4JEZwX~SUGvvlUY${ z0LnC3J8eyj@LTWi%>}gra7Z`|IqC_OFfsiz5oo?evB^15xRk#JG|t7azOnF+6nNZn zW@ZNip^@XubxWy%sqn?}+DP*mRthnAF(VMW&zC2Y?Wdo&@4cS0p11s@A$J_`r0`gk z--r^ejS0us5>RY)QZ=!^A;{XqYf^tB04dlqm`8dz4q%u^bmN@t)eza^oC*AWb#Qj1 zt@#G%gMUo$+o@dMakYZ+T+87!`KESr-&^i7oX+9J(zazBc0eQnlp-3S*1xg1On<+@wn6}rGVrkrsPF5 z&p`E~m2uV3D~>ZJ7a@72<8#pNVHO8UX~;(QJ%%&zU@Wobf9KHPA1_dQ(}(V5<2j@( z2vU7CJjf$`JQ*O#CU6SDxK5x`KoGAJssY%838(>-cAusbB0~^m9fDS$dmY@2Zk@Ma z8&P_@?8I)9%1#A*Ya0mz=ym{Pbd^c&zG0EANv!G2dxI|;w~WPp=`&`%GukGlb*IXI z$j6*YRaJJIs8WgIzy`HFVr6QJ^CJ?fq!K5>WuFJhaXl@q*rtYM;Vb4gfE#|G=#*ag z1V%@lqOA5sV%6kicc|+mFmB19)PUoO-cTkE@~9Rb%Kpp=&cBGdW8fIcQL#8MH=>!N zKn=Q5x+nn8DYp%hjRsd@1h4LB3*|z2BuA49)ko4-7$OcEj)qkFuobVEK1aPTir4Bi z?M`nex0X^zyRS0vzj+{h0gQXD z4Xy=r`gi@^4ESdo)>7bg0nrsiXF#3}vlYa(Nqi{sD2FHU8ZwY2!fplnrvT9ngiw>u z7)kHt3VB)(!Oe&eax@^0GVY`e`V4p%Ne^W{%y2x!T93 z11WFO8E-WL*9IUt1nBQ^=^VyrPCI5bGhK}OsTKd%l0Nzffsf>T1mQI9<|?hPOmCvxHTRzg5EnQi2!#5~U|S2Pd{T8-D(fiY z7$dI`dsOjxNMQ{S{w!i&!^~2+&p0r>g^{y9h)M8*kIT79EBLwhMlO-;p6w`lgXtUN zuJs<-qPN%P74hX_Ce6(c8gA}2FWoA-rGc-2<3iSv!wtWVEp9MV zm18!^4Rk-~d4VoZPy z^{*1~jegl4=V~mbZ68{4FzNTPtC8K0b-SMF?E4UL(Y1U1>_y&U_U{5s@;`Q$xpIr` zuUCus^YJc|eSPSI>93gfhl>8#yYImKUeJ%Ko{gUtvua)E z&UvdF5bdMA`u{oy=itV5w^@Hp=PEfb{$k?Vyt=5F;rFqqYkKhZnBUW*{aH1_ z*c+?fLyDFQGi}+99b}oo5}Y8l!u`5i$Z{+8ErR-trO#@v6o1_fEL|L?Pt#}GwKL}K zFRp;er{vDOd|k9_>6~@?;h*=VrPfw=ht8hI|DSoAMdthIH~m@VxeP50xl~nM{oS|# DpE2^p diff --git a/docs/equations/equations.tex b/docs/equations/equations.tex index 29f6120..93ac63d 100644 --- a/docs/equations/equations.tex +++ b/docs/equations/equations.tex @@ -327,10 +327,15 @@ \section{Orbital Rotation} \begin{equation} \begin{aligned} \exp(\hat{R}) &= 1+\hat{R}+\frac{1}{2!}\hat{R}^2+ \cdots=\hat{U}, \\ - \forall \hat{R} &= \sum_{r\mathchar"313E k}R_r^k(\hat{E}_r^k-\hat{E}_k^r), \bf{R}=-\bf{R}^{\dagger},\\ + \hat{R} &= \sum_{r\mathchar"313E k}R_r^k(\hat{E}_k^r-\hat{E}_r^k), \\ + \hat{U} &= \sum U_r^s\hat{E}_s^r, \\ + \bf{U} \bf{U}^\dagger &= \bf{I}, \forall \bf{R}=-\bf{R}^{\dagger},\\ \end{aligned} \end{equation} -In which $\hat{E}_r^k$ is the singlet excitation operator. $R_r^k$ is the element of matrix $\bf{R}$, here we let it be real, thus $\bf{R}$ matrix is an antisymmetric matrix, with $R_r^k=-R_k^r$. Mathemetically it can be proved that the transforming matrix $\bf{U}$ is unitary. +In which $\hat{E}_k^r$ is the singlet excitation operator $(\hat{a}_{r\alpha}^{\dagger}\hat{a}_{k\alpha}+\hat{a}_{r\beta}^{\dagger}\hat{a}_{k\beta} )$. +$R_r^k$ is the element of matrix $\bf{R}$, $U_r^s$ is the element of matrix $\bf{U}$, +here we let it be real, thus $\bf{R}$ matrix is an antisymmetric matrix, with $R_r^k=-R_k^r$. +Mathemetically it can be proved that the transforming matrix $\bf{U}$ is unitary. \section{MCSCF} The energy expectation value of the wavefunction is be given by @@ -342,40 +347,47 @@ \section{MCSCF} &= E_0+\bf{g}^T\bf{x} +\frac{1}{2} \bf{x}^T\bf{hx}+ \cdots.\\ \end{aligned} \end{equation} -Here, the orbital transformation parameters $\bf{R}$ is expressed as vector $\bf{x}$, the linear coefficients as gradient vector $\bf{g}$, the quadratic coefficients as matrix $\bf{h}$. When terms after the quadratic terms truncated, to minimize the energy expectation value, the Lagrangian equation as known as the Newton-Raphson equation is +Here, the orbital transformation parameters $\bf{R}$ is expressed as vector $\bf{x}$, +the linear coefficients as gradient vector $\bf{g}$, +the quadratic coefficients as matrix $\bf{h}$. When terms after the quadratic terms truncated, +to minimize the energy expectation value, the Lagrangian equation as known as the Newton-Raphson equation is \begin{equation} \frac{\partial}{\partial \bf{x}}(\bf{g}^T\bf{x}+\frac{1}{2}\bf{x}^T\bf{hx})= \bf{g}+\bf{hx} =0. \end{equation} In the end, expectation energy $E$ is calculated with transformed orbital coefficients and active orbital one- and two-particle density matrices \begin{equation} -E=\sum_{tu}{}^{c}F_t^uD_t^u+\frac{1}{2}\sum_{tuvw}v^{uw}_{tv}D_{tv}^{uw}+E_c+E_{nuc}, +E=\pre{^c}F_t^uD_t^u+\frac{1}{2}v^{uw}_{tv}D_{tv}^{uw}+E_c+E_{nuc}, \end{equation} with \begin{equation} \begin{aligned} - E_c=&\sum_j[h^j_j+{}^cF_j^j],\\ - {}^cF_r^s =& h^s_r+\sum_j[(2v^{sj}_{rj}-v^{js}_{rj})], + E_c=&h^j_j+\pre{^c}F_j^j,\\ + \pre{^c}F_r^s =& h^s_r+(2v^{sj}_{rj}-v^{js}_{rj}), \end{aligned} \end{equation} -$E_c$ is the closed shell electronic energy, $\bf{{}^cF}$ is the closed shell part of Fock matrix, and 1-particle density matrix $\bf{{}^1D}$ and symmetrized 2-particle density matrix $\bf{{}^2D}$ are defined as +$E_c$ is the closed shell electronic energy, $\bf{\pre{^c}F}$ is the closed shell part of Fock matrix, +and 1-particle density matrix $\bf{\pre{^1}D}$ and symmetrized 2-particle density matrix $\bf{\pre{^2}D}$ are defined as \begin{equation} \begin{aligned} - {}^1D_t^u =& \sum_{IJ} c_Ic_J<\Phi_I|\hat{E}_t^u|\Phi_J>,\\ - {}^2D_{tv}^{uw} =& \sum_{IJ} c_Ic_J<\Phi_I|\frac{1}{2}[\hat{E}_{tv}^{uw}+\hat{E}_{uv}^{tw}]|\Phi_J>, + \pre{^1}D_t^u =& c_Ic_J<\Phi_I|\hat{E}^t_u|\Phi_J>,\\ + \pre{^2}D_{tv}^{uw} =& c_Ic_J<\Phi_I|\frac{1}{2}[\hat{E}^{tv}_{uw}+\hat{E}^{uv}_{tw}]|\Phi_J>, \end{aligned} \end{equation} -with $\hat{E}_{tv}^{uw}$ as the 2-electron excitation operator. In order to simplify the expression, the ${}^1D_v^u$ is written as $D_v^u$, and ${}^2D_{tv}^{uw}$ is written as $D_{tv}^{uw}$ in follow. Here, the 4-index integral $v^{uw}_{tv}$ is calculated as the density fitted integrals, as mentioned in previous chapter, +with $\hat{E}_{tv}^{uw}$ as the 2-electron excitation operator. In order to simplify the expression, +the $\pre{^1}D_v^u$ is written as $D_v^u$, and $\pre{^2}D_{tv}^{uw}$ is written as $D_{tv}^{uw}$ in follow. +Here, the 4-index integral $v^{uw}_{tv}$ is calculated as the density fitted integrals, as mentioned in previous chapter, \begin{equation} \begin{aligned} v^{uw}_{tv} =& v^{uL}_t v^{wL}_v,\\ - v^{uL}_t =& v^{\nu L}_{\mu} C^t_{\mu} C^u_{\nu}.\\ + v^{uL}_t =& v^{\nu L}_{\mu} C_t^{\dagger \mu} C^u_{\nu}.\\ \end{aligned} \end{equation} Likewise, other four-index integrals in this chapter are calculated in the same way. \section{Augmented Hessian} -In order to make the coefficients transforming step smaller and more robust, a level-shift $\epsilon$ is introduced to control the step $\bf{x}$ \cite{augmentedHessian1981} +In order to make the coefficients transforming step smaller and more robust, +a level-shift $\epsilon$ is introduced to control the step $\bf{x}$ \cite{augmentedHessian1981} \begin{equation} \bf{g}+(\bf{h}+\epsilon \bf{I})\bf{x}=0, \end{equation} @@ -406,15 +418,18 @@ \section{Augmented Hessian} \begin{equation} \begin{aligned} A_r^i=&2F_r^i,\\ - A_r^u=&\sum_v {}^cF_r^v D_v^u + \sum_{tvw}v^{tw}_{rv}D_{tv}^{uw},\\ + A_r^u=& \pre{^c}F_r^v D_v^u + v^{tw}_{rv}D_{tv}^{uw},\\ A_r^a=&0,\\ \end{aligned} \end{equation} with \begin{equation} - F_r^s = {}^cF_r^s + \sum_{tu}D_t^u[v^{su}_{rt}-\frac{1}{2}v^{ts}_{ru}]. + F_r^s = \pre{^c}F_r^s + D_t^u[v^{su}_{rt}-\frac{1}{2}v^{ts}_{ru}], \end{equation} -Since matrix $\bf{g}$ is asymmetric, $g_{rk}=-g_{kr}$, and we don't need the internal rotation parts of doubly occupied orbitals and virtual orbitals, we exclude the redundant parts of $\bf{g}$ and $\bf{h}$. Thus $\bf{g}$ is a combination of only $[\bf{g}_t^j,\bf{g}_a^j,\bf{g}_t^u, \bf{g}_a^u ]$. +the $\bf{F}$ matrix denotes the generalized Fock matrix calculated with density matrices. +Since matrix $\bf{g}$ is asymmetric, $g_{rk}=-g_{kr}$, and we don't need the internal rotation parts of doubly occupied orbitals and virtual orbitals, +we exclude the redundant parts of $\bf{g}$ and $\bf{h}$. + Thus $\bf{g}$ is a combination of only $[\bf{g}_t^j,\bf{g}_a^j,\bf{g}_t^u, \bf{g}_a^u ]$. We search for the value of $\lambda$ with a combination method of linear search and logarithmic bisection search: \begin{equation} @@ -423,7 +438,8 @@ \section{Augmented Hessian} \lambda=&\exp{(\ln{small\lambda}+(\ln{big\lambda}-\ln{small\lambda}) * bisecdamp)}. \end{aligned} \end{equation} -If there are both tested smallest and biggest limits in one iteration search for $\lambda$, we adopt the linear search with the norm of both limit $\bf{x}$, otherwise, we use either the upper and lower boundaries value(by default set to be 1000 and 1) and the tested $\lambda$ to do the logarithmic bisection search. +If there are both tested smallest and biggest limits in one iteration search for $\lambda$, we adopt the linear search with the norm of both limit $\bf{x}$, +otherwise, we use either the upper and lower boundaries value(by default set to be 1000 and 1) and the tested $\lambda$ to do the logarithmic bisection search. \section{Hessian Approximation} @@ -437,33 +453,33 @@ \subsection{First Order Approximation} E^{(0)}=<0|\hat{H}^{eff}|0>, \end{equation} \begin{equation} -{}^{SCI}H_{rs}^{kl}=2. +\pre{^{SCI}}H_{rs}^{kl}=2. \end{equation} More specifically, \begin{equation} \begin{aligned} - {}^{SCI}H_{ab}^{ij} =& 4(\delta_{ij}F_a^b-\delta_{ab}F_i^j),\\ - {}^{SCI}H_{ab}^{iu} =& -2\delta_{ab}F_i^vD_v^u,\\ - {}^{SCI}H_{au}^{ij} =& \delta_{ij}(4F_a^u-2F_a^vD_v^u),\\ - {}^{SCI}H_{tb}^{iu} =& 0,\\ - {}^{SCI}H_{tu}^{ij} =& (2D_t^u-4\delta_{tu}) F_i^j\\ + \pre{^{SCI}}H_{ab}^{ij} =& 4(\delta_{ij}F_a^b-\delta_{ab}F_i^j),\\ + \pre{^{SCI}}H_{ab}^{iu} =& -2\delta_{ab}F_i^vD_v^u,\\ + \pre{^{SCI}}H_{au}^{ij} =& \delta_{ij}(4F_a^u-2F_a^vD_v^u),\\ + \pre{^{SCI}}H_{tb}^{iu} =& 0,\\ + \pre{^{SCI}}H_{tu}^{ij} =& (2D_t^u-4\delta_{tu}) F_i^j\\ &+2\delta_{ij}[2F_t^u-(D_{tv}^{uw}-D_t^uD_v^w)F_v^w\\ &-D_t^vF_v^u-F_t^vD_v^u],\\ - {}^{SCI}H_{ab}^{tu} =&2\delta_{ab}(D_{tv}^{uw}-D_t^uD_v^w)F_v^w + 2D_t^uF_a^b. + \pre{^{SCI}}H_{ab}^{tu} =&2\delta_{ab}(D_{tv}^{uw}-D_t^uD_v^w)F_v^w + 2D_t^uF_a^b. \end{aligned} \end{equation} \subsection{Second Order Approximation} In general, the second-order Hessian matrix elements are calculated as \begin{equation} - {}^{SO}H_{rs}^{kl} = (1-\tau_{rk})(1-\tau_{sl})[2G^{kl}_{rs}-\delta_{kl}(A_r^s+A_s^r)], + \pre{^{SO}}H_{rs}^{kl} = (1-\perm{rk})(1-\perm{sl})[2G^{kl}_{rs}-\delta_{kl}(A_r^s+A_s^r)], \end{equation} -in which $\tau_{rk}, \tau_{sl}$ is the permutation operator, matrices $\bf{G}$ are +matrices $\bf{G}$ are defined as \begin{equation} \begin{aligned} G^{ij}_{rs} =& 2[F_r^s\delta_{ij}+L^{ij}_{rs}],\\ G^{tj}_{rs} =& D_t^vL^{vj}_{rs} = G^{jt}_{sr},\\ -G^{tu}_{rs} =& {}^cF_r^sD_t^u + [v^{sw}_{rv}D_{tv}^{uw}+2v^{vw}_{rs}D_{tu}^{vw}],\\ +G^{tu}_{rs} =& \pre{^c}F_r^sD_t^u + [v^{sw}_{rv}D_{tv}^{uw}+2v^{vw}_{rs}D_{tu}^{vw}],\\ \end{aligned} \end{equation} where @@ -475,17 +491,17 @@ \subsection{Combined Second-Order and Super-CI Hessian Approximation} By default, the SO-SCI Hessian matrix \cite{kreplinMCSCF2020} is approximated as below: \begin{equation} \begin{aligned} -{}^{SO-SCI}H_{ab}^{ij} =& {}^{SCI}H_{ab}^{ij},\\ -{}^{SO-SCI}H_{ab}^{iu} =& {}^{SCI}H_{ab}^{iu},\\ -{}^{SO-SCI}H_{au}^{ij} =& {}^{SCI}H_{au}^{ij},\\ -{}^{SO-SCI}H_{tb}^{iu} =& {}^{SO}H_{tb}^{iu},\\ -{}^{SO-SCI}H_{tu}^{ij} =& {}^{SO}H_{tu}^{ij},\\ -{}^{SO-SCI}H_{ab}^{tu} =& {}^{SO}H_{ab}^{tu}.\\ +\pre{^{SO-SCI}}H_{ab}^{ij} =& \pre{^{SCI}}H_{ab}^{ij},\\ +\pre{^{SO-SCI}}H_{ab}^{iu} =& \pre{^{SCI}}H_{ab}^{iu},\\ +\pre{^{SO-SCI}}H_{au}^{ij} =& \pre{^{SCI}}H_{au}^{ij},\\ +\pre{^{SO-SCI}}H_{tb}^{iu} =& \pre{^{SO}}H_{tb}^{iu},\\ +\pre{^{SO-SCI}}H_{tu}^{ij} =& \pre{^{SO}}H_{tu}^{ij},\\ +\pre{^{SO-SCI}}H_{ab}^{tu} =& \pre{^{SO}}H_{ab}^{tu}.\\ \end{aligned} \end{equation} If the $\bf{SO\_SCI\_origin}$ option is set to be $false$, \begin{equation} - {}^{SO-SCI}H_{ab}^{tu} = {}^{SCI}H_{ab}^{tu}, + \pre{^{SO-SCI}}H_{ab}^{tu} = \pre{^{SCI}}H_{ab}^{tu}, \end{equation} and the rest blocks of Hessian matrix remain the same. From 31f217ed639d3ba67dc391791d2c2ad507c11108 Mon Sep 17 00:00:00 2001 From: Fangcheng Wu Date: Mon, 6 May 2024 14:41:37 +0200 Subject: [PATCH 05/44] all /pre done and dfmcscf fixed --- docs/equations/equations.pdf | Bin 348162 -> 348172 bytes docs/equations/equations.tex | 12 ++++++------ 2 files changed, 6 insertions(+), 6 deletions(-) diff --git a/docs/equations/equations.pdf b/docs/equations/equations.pdf index dd62457ca8bc73a79e6b77e549774883b9d6f8d9..be84153d56081555021682bc3ac373b8eaadf824 100644 GIT binary patch delta 4004 zcmajhXE+-Q+Xry5_hemA!Y0k@ZW44`izdUm4(~6ji*Ck>LZc+)dI@6;c4*Ip?%Y^e9T?f5i#_EKp zu=$)XQ&RR0+k|H*L(peeLFBcB*>Lep(Q=@kTV-6|1B1K=uIw37c{1tWr+mIN5moEN zA695ffv_W?k!_VrLPoijxkw`{kDh@^!%)~+skLhj!yAu1x-HTsCJ)j#ifL+P4x8ex zQ!%F3)Wz{Z)uCK`W}<5AR@^zn(q-_GVz;DT{-cifgq`YI*~W4~aE*?G%JQ$3YW&z0 zI;#!>dRRUA(%~|#llj9|7||ofAghQnXZoJtQ5A@={`t4$)f+Dd?rZGaWp^HSfhP+6 zF);P24Btdrkd}0@(i>nG=iBB-@;60jW~N4q*o9&2cTV^#p-wlSgIW7oB^JM%^jG5hd9iqN`UJ~Na4ZIc2N3ZbG@cE{yt-nqZ2b>%@-iMq7}qFclh^#ktH|j>7I`Xk<@rX zcy{WanOvEJJL03B^w<-jh_1EIK0<}Yhqk3_cH4ZY#eojY~=kjckpasacv({u`Ma4 z`kr0zsN+&hXML5kjknj!VBfc_#=ziJ3*QY8(dfPf{RszWWm8;*WLX*XFssFKC8W@1 z*!FtPgFC?zyE}Q4RHHZ|ICb|iX?mW{Xa7%Z*1NZaQG+mH$3kM^JzG)OO`rE2I09f=nDlt)^>L{KEg=G{}SGG^g&ex&qOa4H?Yn`Clt1<-nU*v24C*l zEwsrmLOI#3$ZTwYiRI{eobs1yz7akc^lO8l!`0JyUV0Os?J-oK5)3I?Q5E5dr@ksK zg~U%|^WL{GOdK80&SU1s;htO5QcR+r0Zw^cdNNKeAyswa=9JBi*LZY1nKrzda8P!{ zAYbZT8$b}N9M0s8^oWgU3o{jCycHD(`N;DlQnX)7+2YJ4g+oa-PpXWC#X2sFCyB?5 zq2;u2w+0%sW6lu|r{`dt2-Iel_%4J(BwAq`=Hbl%A&VI1NoaEYRBVLCY;zwh>Y}vo z?)WQz&LF`9C7#^d)%RGsecl#gK>SiPi`m7cEvsveAW6VoI3lIx?fDA8trL>cUOfmlI|-)8RGe%`y_M z-)S~DzjJthdz<48N;FV;$t>kAjPk`uKxy4NVM=I{XTx{Uj2!US9+-W)Z_#Esv0Et( z2pgk>DY|^k#GGWx%w2EIZ?jwQiDLPOeRm!R6eeGs_iw$?yb$7;cu6j%X6OO=XvVOp z;;ie*5fymi4OI>PQ8;z>Qu@7|xvd+)V`9(GN}ibhsh)64KsL*ZX=Ds`W`4&4k`bc| zoP3+rAD(=o2|5kmZ_90_wx>ctyn}4GjV4m$wf_LO2|npbl*^z!+~48`b6|ZRJC$l= zPlljhVc5+JuK2qESOZ+O^2bXQku`g~SPSj_{6-d0mc?FAneA&+K?6e+;-t?kE80El zqu-+-W6427$x|!wqNlU6gIT63rIE`5hpORc!9Ny>Yw zF(dtvYMmJT+$GFyQ&hA3VTm)%#T`~)#SQ{LM&}oekQ{qz|JDKl9>bnONzVd9cS+|G zMbkX3mFn6OW3!gr5&HCE+&>BqHIc6SYwM_P)peBrvK47@%})Ep27R<)RUP-XQ_yZR zQ`e0h{;t)4(X2LnM`(*me_*^0)PNr?Qm6WYk zfdn7LIvowyMxWy`SfXJ2Qu3uLNN`>}yPas;KE|^9T1hXbcCKNX=D3pw@Pxl}%73Gl z^UAOi5t8dRcG+g~^qS1^(_g1GpwG>U`8h`LXL7@QxzF6saNXpg-`?D)1(U8CSN2&h zaiQC+?DTZaHVXpCk=@DH1tysq`AMGd&Z(4V-2zG%3UyjQSn8|1r@LdF3#P^D$amB3H4`)_?{kipO zO{YhqQI!qBcg0~C&}g%jkmJj&;l=wyBkoLzLtX&Iq(XqSTK!;^NmRFxxV)Wtv_R|1 z)NXUn*Aoc*18W|5{P_>fzYpK>EM~2=#40Ve26Gve<+DQ*%=bzguZmcaaj^6+dAN{i z6GV5BuZjW~N%Qm=%Le<@z8TOR>xSsnzh0*piJio8QG?8CH$hO zW)3xk7y6R!OwG~VrgE>8WB$P0UpXh9s`*=$SMyZb{@+1}>72v;$jgCp=0H!QSj#NFr2gpqFP*1`8Gq&^AjZZPtV8B12{3lfZgt~1SOry^NQh>_Cq@i*k zC=?{g2r=?;(RT846_U_am4nJDKoy}%Fol0BZMv#7BvvzJxUQ}oOaTVh(uP4b6%ixveT?qEi>$Unt5-XNH>|^zabMPSW!=-dN zGb&6=GOAUBIL;+u8r{mN%B?ELCbMq9oW_$hpiYqld)2Ox?_MgcW7N&V{mx!P0oDjj zqlv54b`IBl6W6PK^UcAr>+x{M*68WW{SZ(j`){JwP=G!Q7RGFUr!5Un zEz+*-O=Wh=0?YXzYhy;Rir+5Nfl$noP#Uh$RB#^Y|Zj? z2z93|+eyY+*ZX#dZZxr%5wke_*2$XAGJR3+UD&FWsmVS?$22odaz+0JJb#CFNrhjy zl6Zn%mKsf6|B~nM3Zh>*ypwj}?k4JC99Uy`bHGr16kFwBmGR9ov$)DI8S+^vY;>m9^$CJ-Nas9Zo;-r+IWV8q&(>`+&qbhSYhX(h;XE5j^KbY4iMmQ z=42cL7RpdTP{;)|tw_LWlOt}f+=0^=N64>$bE)XSbBPZ2b;K6E&trD@?eVZAZeCtBq@aaV6iC@<=VQM@%gj+EYPkAEsl>&9#l?zL@nj^N1Fa*ol>A{S=6fDw&~_0%e+*_pm6~ZofQ|g%@tf zbAfCUyBKVy+;Bl28By;cyNo{#?anbFB=2#jlIvl!SB7^fX3CM>Op5x!6w@Z(xCWM| zhKI6JrG>4us=hK^P_T;e>BBS85-b>XE~HjbB%Q}x-!Sbrwt^c-#8<6N7P2g8V#88x(7T;BH6KqgI~H8od+n4{!4P?2ldz9hr5SFWC~mO{E$ zs<_RTidR$Gz5Z7(3faX~ONBKmrm3a7P0+1paIcyCJ?XZ3{KS8ctN5y#-;WYy;5FI+ z*zUO0%!%^pnQ>i6dk!F%RH!*Z=IEj|Qlbu&e{496)3M@0(d>MbR20fbjHP;}?uP-k zv&lF!DD6P66Pnr(m*M!iwi{_>7;y{AlpMCcLJeoxBuF+*EBk-Cg++6{qT1@EL8qx% zDi$d(qD?@@21%VnVCpkQIzEqk>+Wynmt;uzVnma-%7!b!>Vndgq5fmT|1$gRNf8eJ zj{yE+@1D=Kh@u1h+7O8ax27@)&;D0{yao{QU$R>!TMyPBtXr=wD4(qL7i0Uqw$lXS z6p|Hs_#Ja!0KmRr->bKsfNJ=^90J)0HwOO?LFyqA&+5NUD9vsv{i$@BwXFZ1qGrbI zb0yF2e-}A3!-*yT%RH3P)C0keV4r1sfbboff5i8g@3DQ4J!K9c9DbdLSL?%3Vk}7;@?_29JhMwp8{(}WxvmwVqe*gQ!Z#U&9_Xe zb^>bY3J7i*H5_deySEnsDE*(*3MezXUe<9M_wmwD)-J%6fyGt>_fM)zO}1^t;7u{L z?y;X!vp|06<-VQHRrWkmhfc;5`|<{V<4@bVQUKB6eWm+&BShUo!KHlDL#N-8H_&(@ zHmlI#jr&*qgJx;orb%ue3Es9zwilfIt=5XA+p(W!KnM_+6;Hxs6N649sKv+G=j%BVAJZ({s^Ji+B#%s3i9&Y6-S o`Gs`kpC(u?Ux&gx*V+266X!7CoOu%(AqIIUqnMbEi7w;+0Ed%@y#N3J delta 3995 zcmajYcQhLe+Xiq!5;Y>kuB|pL5o)vuBC2NXP3@=^dq%7pRn%&YQq-tXt9GsSp#-IN zs9mc@Yo%8E_IbZQ-ao(dJJ&haxz2sg{iKLFx`;Wd39v0djzDA}mql?_Xuo+)rmhRK zWh%Ysk<(Qjh~BLXPR`MFsIUz5TB47L8ld;nZ&HXA8TtByShk^TxT3j6NbtoFX^3TQ zU95L7=$6l~EA07dqc>1j1g$OpOy?FXE6>A{tp(c9uNxjzgAS z4VS!c5?--!ZlkOza9yL%fP5ex&c=?h)cm%Y@kA@D3ka(0$lkvHr{W@!%8{nJ!DVXb zylaqxKt`dTRc2+Dv-hz6LmQPc%nN71yVEdozNev*W|hcNF>TXLqb79q=R7ed+t z6W3Kk0OZ?Ez6@lk)z;aE0ltZmEzgjhR)QYak55-mf^fG~rPTVA3Tc)Hd5~pq3Adk1 zvC_hxu{e~{@Z2}7_Mg^f-#~bxFz;~2tY<_I z(C3H>nmonqss8>J)|s7U<9b#-W^`oz0#gSyUO9TzUvV4}m&pX`dN)no$=a4xeU!=- zsC-abi@Rf3Z~5Vu^!sEJL%a8+jhkjKvtaLsBlz)~eCbg@4_93eAQ$#oz@u+=fsp-8 zzSaVZ+T=IKq=m-`YaJq2O1SSMKuSmjMD&0+XmrShozgn{d%sn^k$S91b3%GKZ+|3u zzIr&&29=-lTbo!_nBN$+uh`wtOoeCiyS_Q?i7O4bPK%v)wr&o{^D1oe%IGcrVbud& z^xHozt5s8|_#hnl3w!nZyxnbwBn=MpxPP}!ZUK}MP$y?iTTMsmCGHdF%?jO?7Tr2t zMYT5If~gYrHixt>%vxP=3(Op0TU)z} ztIf81}l)y~Gqw=SysB5H&FA+Qecm$~DaptwFja$-Q91fKk+$Iba!KtiGv}4oS zzY=JH-|4B;?|Gnih=`>X5WIkj*9iVR+QPCQe3PAcpZ^z-F3yl5j1J_KV0gHM>-2~( zTQ2qh6JmUJ@{X(6cqm@=UkF9S__9HB2bH6~I;*i2CpDEK#PZbaC#v<&Zv5<;7*_(X z`Yk^VT}WhTb?k>lu!CQM()$JUA;ENe)jbx(c?)i|ZO*456e72BoL+YI&mH!!V5ZGa znpo@I!3)2|y#2t;BPQSAfa!SamYr2P$T> zo75LQ%z;4#uH}7^j52qu#pb4R3LSsE))HByCytdfYSeJD_&ZT4h6ry(Cf~c?Bb(Og zJ3rL!mQ*_erK?}4842fh7NT3dnqrk;@J*I7K(-!D9-99J*Vp&eC!^? z&5T@8XEw>BHgb-|Nc3Dk=Ll#D%Jbp`+6AM*W&pUGMeBU$d6c z1j(=NE~zH-^olT++SxZo$&z9Id1k3F!A)WZJT;tU7(HeA8&9h3KiNJ^_p&LFqv39d z!MHwCHVLthq3Op3@R5(UAN-zv;rGBlKrhv@z;P4V6>j?{gl#KXX3wYISIPQ#3&NW0 zxf?54%eK32Q+ENivL5SaP*_+i_B?PWHPEgSg|yP>z*MnDa}s-_;v2f(AOvA;RR@Ir zt9OCaOb5Gds<>yl=djvS-#=PS5#!v6r{1@|?-1?c=-qINRXh7qxOazOx&r*=s+wpO#4^sTu{yZndC^jbL_p)H;Ty^ppL7s|Neve6;zf1Sy z6Eqnu(?^XUw-+^E*Yp{OR+>u}=CgOnZl?%)NtQg+5_|etiRmNH_vHEl&_1eZPAJVC zk&aR8mC(io$PDdw-#!-X*HX0OziXbkumUwXfUno8CQ=_5J&7W8@s&i&-+#)W;qx`eNkbSL z1Tqnj*#hJwg}H?p%(+zw*!rpH+>Od7w)2%*M@BwCUeX`6^2FX?a2mIPBDd9T{7np* zKqNFuu*o{d;5&FVh~`rb|4d&U zNaDtfnium2%esUGORPBiG(HrYHz+G(O`DxIujU2(@Y*xxGBP&8uKj_V~!uJ(n|R^msMgP!Xk5L6GY=%?|w`Ark2T;sv)n;)vrhAeXtSb(>=eGB_V3j^eXUwtGWi2pZb636UQWl)C z#(eXT(4>4G{_?|JGNojPYCbfu(YB6e7j(sPKit1YsmZW==#ezL%WI*X9vrWhRqdMeh^dPpma#0O8Ptz^~`Nz-x>8ojSG2u-8 z2VE2htF6%EoANK$WmtqQo^)KZm`yqXOKO z4%AY<=&7DeKxozuww>0sKV_wfzcMCLoC6?&oZ9l4J|cT-krM5(%Gc<>RK&q_+j-;! zA8F72-B)l1eXnBG-Q%yj*&ds^_8QXorEY@~GNGb;57h9nlZF|=PX$Yl5FL#ywc)Q< zLW-UZ=4g(}^z1*!(#$j+H9Hki@>ke15?l&YfH$r5YFUgeTYXVx!(fvl4hb?@d%iK| zWQopZ4dEGlXdRmbfS^h-W>rHrQpAO@Xgx`(K zn+||mH<7YEs#&mkW0vxG;cL-+pKIY3d{1j0aA82u8>0!tGmN>eT%0I|&~Jgmddb)* z)$Q4qHEogpY)qDy3a>o|dLpGDLOlQ{bp`9|`~T5Ig+yb%{~F*NXQ?#X4X1N)CG zWqM zG0|fQH_g{u`$WgY@80hyijqqHTFW8<{`cx{`x!yj#wqZx zd|O^jU;nU+@}yNItNoOs_Sp?}E>$S{FBS5-kM(~U4(XGN?NO~#t)2t6MIZ_tNo&b# z$%LHy%WzfbrV0%A4$YRvD+mRQXgJ+UJg*?+1K;$L*D;Pope(Cqy}mKO-7539 ztDoLI9N^eVH3Ab=!EUl0mNg|FJ(xO3HMohxm!hc47gnU3XcJW?i4mWrZU@j=PJVs` z9_!W!;C^qlT++Kux)?q zR_IJxGDbXnJcp&b$0Ol hw|PIrQ2Y5iVEu!!&Mwq42ss&PIch;cl)fhQe*oDnX#D^H diff --git a/docs/equations/equations.tex b/docs/equations/equations.tex index 93ac63d..0fdc14a 100644 --- a/docs/equations/equations.tex +++ b/docs/equations/equations.tex @@ -1529,14 +1529,14 @@ \chapter{Two determinant coupled cluster} Terms we have added to ensure proper antisymmetry and which are not explicitly listed in Ref.\cite{szalay94} are coloured \green{green}. IAS terms, which are terms including the all internal singles, are coloured \brown{brown}. \begin{align} -R^i_a &= < {}^A\Phi^i_a |\op H_N e^{\op T_A} | {}^A \Phi >_C - \left( < {}^A\Phi^i_a | e^{\op T_B} | {}^B\Phi ><{}^B\Phi | \op H_N e^{\op T_A} | {}^A \Phi> \right)_C \NL - &\equiv < {}^A\Phi^i_a | \op H_N e^{\op T_A} | {}^A \Phi >_C + M^i_a W = 0, +R^i_a &= < \pre{^A}\Phi^i_a |\op H_N e^{\op T_A} | \pre{^A} \Phi >_C - \left( < \pre{^A}\Phi^i_a | e^{\op T_B} | \pre{^B}\Phi ><\pre{^B}\Phi | \op H_N e^{\op T_A} | \pre{^A} \Phi> \right)_C \NL + &\equiv < \pre{^A}\Phi^i_a | \op H_N e^{\op T_A} | \pre{^A} \Phi >_C + M^i_a W = 0, \end{align} \begin{align} -R^{ij}_{ab} &= <{}^A\Phi^{ij}_{ab} |\op H_N e^{\op T_A}| {}^A \Phi>_C - \left( <{}^A \Phi^{ij}_{ab} |e^{\op T_B}| {}^B \Phi><{}^B\Phi |\op H_N e^{\op T_A}| {}^A\Phi> \right)_C \NL - &-\ASop{ij}{ab} \Big[ <{}^A \Phi^i_a |e^{\op T_A}| {}^A\Phi> \left( <{}^A\Phi^j_b |e^{\op T_B}| {}^B\Phi> <{}^B\Phi |\op H_N e^{\op T_A}| {}^A\Phi> \right)_C \NL - &- \op R(ia) <{}^B \Phi^i_a |e^{\op T_B}| {}^B\Phi> \left( <{}^A\Phi^j_b |e^{\op T_B}| {}^B\Phi> <{}^B\Phi |\op H_N e^{\op T_A}| {}^A\Phi> \right)_C \Big] \NL - &\equiv <{}^A\Phi^{ij}_{ab} |\op H_N e^{\op T_A}| {}^A\Phi>_C + M^{ij}_{ab} W = 0, +R^{ij}_{ab} &= <\pre{^A}\Phi^{ij}_{ab} |\op H_N e^{\op T_A}| \pre{^A} \Phi>_C - \left( <\pre{^A} \Phi^{ij}_{ab} |e^{\op T_B}| \pre{^B} \Phi><\pre{^B}\Phi |\op H_N e^{\op T_A}| \pre{^A}\Phi> \right)_C \NL + &-\ASop{ij}{ab} \Big[ <\pre{^A} \Phi^i_a |e^{\op T_A}| \pre{^A}\Phi> \left( <\pre{^A}\Phi^j_b |e^{\op T_B}| \pre{^B}\Phi> <\pre{^B}\Phi |\op H_N e^{\op T_A}| \pre{^A}\Phi> \right)_C \NL + &- \op R(ia) <\pre{^B} \Phi^i_a |e^{\op T_B}| \pre{^B}\Phi> \left( <\pre{^A}\Phi^j_b |e^{\op T_B}| \pre{^B}\Phi> <\pre{^B}\Phi |\op H_N e^{\op T_A}| \pre{^A}\Phi> \right)_C \Big] \NL + &\equiv <\pre{^A}\Phi^{ij}_{ab} |\op H_N e^{\op T_A}| \pre{^A}\Phi>_C + M^{ij}_{ab} W = 0, \end{align} The operator $\op R(ia)$ excludes the active orbitals from the corresponding orbital spaces. The following intermediates are used: From 0aa76953c981402b38670136f0035d19bbf47c66 Mon Sep 17 00:00:00 2001 From: Daniel Kats Date: Tue, 28 May 2024 19:24:39 +0200 Subject: [PATCH 06/44] Set development version --- CHANGELOG.md | 10 ++++++++++ Project.toml | 2 +- src/ElemCo.jl | 2 +- 3 files changed, 12 insertions(+), 2 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 16e779d..86ffcd4 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,5 +1,15 @@ # Release notes +## Unreleased + +### Breaking + +### Changed + +### Added + +### Fixed + ## Version [v0.12.0] - 2024.05.28 ### Breaking diff --git a/Project.toml b/Project.toml index d4b7926..408a7d3 100644 --- a/Project.toml +++ b/Project.toml @@ -1,7 +1,7 @@ name = "ElemCo" uuid = "094d408e-8508-40f4-9646-a254980d91ac" authors = ["Daniel Kats and contributors"] -version = "0.12.0" +version = "0.12.0+" [deps] AtomsBase = "a963bdd2-2df7-4f54-a1ee-49d51e6be12a" diff --git a/src/ElemCo.jl b/src/ElemCo.jl index 8ed59ef..60e5cd1 100644 --- a/src/ElemCo.jl +++ b/src/ElemCo.jl @@ -81,7 +81,7 @@ export @transform_ints, @write_ints, @dfints, @freeze_orbs, @rotate_orbs, @show_ export @dfhf, @dfuhf, @cc, @dfcc, @bohf, @bouhf, @dfmcscf export @import_matrix -const __VERSION__ = "0.12.0" +const __VERSION__ = "0.12.0+" """ __init__() From 0f6fc20670e6272bf445433b583c7c31bdcea277 Mon Sep 17 00:00:00 2001 From: Daniel Kats Date: Fri, 7 Jun 2024 14:56:14 +0200 Subject: [PATCH 07/44] Add molden export The energies and occupations are not exported yet --- docs/make.jl | 3 +- docs/src/molden.md | 21 +++++ src/ElemCo.jl | 75 ++++++++++------ src/bohf.jl | 20 ++--- src/dfhf.jl | 6 +- src/dump.jl | 16 ++-- src/ecinfos.jl | 4 +- src/fockfactory.jl | 4 +- src/interfaces/interfaces.jl | 16 +++- src/interfaces/molden.jl | 160 +++++++++++++++++++++++++++++++++++ src/interfaces/molpro.jl | 10 +-- src/orbtools.jl | 5 +- src/system/basiscenter.jl | 25 +++++- src/system/basisset.jl | 23 ++++- src/utils.jl | 52 ++++++------ 15 files changed, 351 insertions(+), 89 deletions(-) create mode 100644 docs/src/molden.md create mode 100644 src/interfaces/molden.jl diff --git a/docs/make.jl b/docs/make.jl index 13cd565..61a6664 100644 --- a/docs/make.jl +++ b/docs/make.jl @@ -56,7 +56,8 @@ makedocs( "tensortools.md", "utils.md", "interfaces.md", - "molpro.md" + "molpro.md", + "molden.md" ], "release-notes.md", ], diff --git a/docs/src/molden.md b/docs/src/molden.md new file mode 100644 index 0000000..b6652c3 --- /dev/null +++ b/docs/src/molden.md @@ -0,0 +1,21 @@ +# Molden Interface + +```@docs +ElemCo.MoldenInterface +``` + +## Exported functions and types + +```@autodocs +Modules = [ElemCo.MoldenInterface] +Private = false +Order = [:function, :type, :macro, :constant] +``` + +## Internal functions and types + +```@autodocs +Modules = [ElemCo.MoldenInterface] +Public = false +Order = [:function, :type, :macro, :constant] +``` diff --git a/src/ElemCo.jl b/src/ElemCo.jl index 60e5cd1..599fbf2 100644 --- a/src/ElemCo.jl +++ b/src/ElemCo.jl @@ -39,6 +39,7 @@ include("dfdump.jl") include("dfmcscf.jl") include("interfaces/molpro.jl") +include("interfaces/molden.jl") include("interfaces/interfaces.jl") try @@ -76,10 +77,10 @@ using .Interfaces export @mainname, @print_input export @loadfile, @savefile, @copyfile -export @ECinit, @tryECinit, @set, @opt, @reset, @run, @method2string +export @ECinit, @tryECinit, @set, @opt, @reset, @run, @var2string export @transform_ints, @write_ints, @dfints, @freeze_orbs, @rotate_orbs, @show_orbs export @dfhf, @dfuhf, @cc, @dfcc, @bohf, @bouhf, @dfmcscf -export @import_matrix +export @import_matrix, @export_molden const __VERSION__ = "0.12.0+" @@ -178,8 +179,10 @@ orbs = @loadfile("C_Am") ``` """ macro loadfile(filename) + strfilename=replace("$filename", " " => "") return quote - load($(esc(:EC)), $(esc(filename))) + strfilename = @var2string($(esc(filename)), $(esc(strfilename))) + load($(esc(:EC)), strfilename) end end @@ -194,8 +197,10 @@ end """ macro savefile(filename, arr, kwargs...) ekwa = [esc(a) for a in kwargs] + strfilename=replace("$filename", " " => "") return quote - save!($(esc(:EC)), $(esc(filename)), $(esc(arr)); $(ekwa...)) + strfilename = @var2string($(esc(filename)), $(esc(strfilename))) + save!($(esc(:EC)), strfilename, $(esc(arr)); $(ekwa...)) end end @@ -209,8 +214,12 @@ end """ macro copyfile(from_file, to_file, kwargs...) ekwa = [esc(a) for a in kwargs] + strfrom=replace("$from_file", " " => "") + strto=replace("$to_file", " " => "") return quote - copy_file!($(esc(:EC)), $(esc(from_file)), $(esc(to_file)); $(ekwa...)) + strfrom = @var2string($(esc(from_file)), $(esc(strfrom))) + strto = @var2string($(esc(to_file)), $(esc(strto))) + copy_file!($(esc(:EC)), strfrom, strto; $(ekwa...)) end end @@ -353,37 +362,37 @@ macro run(method, kwargs...) end """ - @method2string(method, strmethod="") + @var2string(var, strvar="") - Return string representation of `method`. + Return string representation of `var`. - If `method` is a String variable, return the value of the variable. - Otherwise, return the string representation of `method` (or `strmethod` if provided). + If `var` is a String variable, return the value of the variable. + Otherwise, return the string representation of `var` (or `strvar` if provided). # Examples ```julia -julia> @method2string(CCSD) +julia> @var2string(CCSD) "CCSD" julia> CCSD = "UCCSD"; -julia> @method2string(CCSD) +julia> @var2string(CCSD) "UCCSD" ``` """ -macro method2string(method, strmethod="") - if strmethod == "" - strmethod = replace("$method", " " => "") +macro var2string(var, strvar="") + if strvar == "" + strvar = replace("$var", " " => "") end - varmethod = :($(esc(method))) + valvar = :($(esc(var))) return quote isvar = [false] - try @assert(typeof($(esc(method))) <: AbstractString) + try @assert(typeof($(esc(var))) <: AbstractString) isvar[1] = true catch end if isvar[1] - $varmethod + $valvar else - $(esc(strmethod)) + $(esc(strvar)) end end end @@ -467,7 +476,7 @@ macro cc(method, kwargs...) if kwarg_provided_in_macro(kwargs, :fcidump) return quote $(esc(:@tryECinit)) - strmethod = @method2string($(esc(method)), $(esc(strmethod))) + strmethod = @var2string($(esc(method)), $(esc(strmethod))) ccdriver($(esc(:EC)), strmethod; $(ekwa...)) end else @@ -476,7 +485,7 @@ macro cc(method, kwargs...) if !fd_exists($(esc(:EC)).fd) $(esc(:@dfints)) end - strmethod = @method2string($(esc(method)), $(esc(strmethod))) + strmethod = @var2string($(esc(method)), $(esc(strmethod))) ccdriver($(esc(:EC)), strmethod; fcidump="", $(ekwa...)) end end @@ -506,7 +515,7 @@ macro dfcc(method="svd-dcsd") strmethod=replace("$method", " " => "") return quote $(esc(:@tryECinit)) - strmethod = @method2string($(esc(method)), $(esc(strmethod))) + strmethod = @var2string($(esc(method)), $(esc(strmethod))) dfccdriver($(esc(:EC)), strmethod) end end @@ -573,7 +582,7 @@ macro transform_ints(type="") error("No FCIDump found.") end CMOr = load($(esc(:EC)), $(esc(:EC)).options.wf.orb) - strtype = @method2string($(esc(type)), $(esc(strtype))) + strtype = @var2string($(esc(type)), $(esc(strtype))) if strtype ∈ ["bo", "BO", "bi-orthogonal", "Bi-orthogonal", "biorth", "biorthogonal", "Biorthogonal"] CMOl = load($(esc(:EC)), $(esc(:EC)).options.wf.orb*$(esc(:EC)).options.wf.left) elseif strtype == "" @@ -670,16 +679,32 @@ macro show_orbs(range=nothing) end """ - @import_matrix(file) + @import_matrix(filename) Import matrix from file `file`. The type of the matrix is determined automatically. """ -macro import_matrix(file) +macro import_matrix(filename) + strfilename=replace("$filename", " " => "") return quote $(esc(:@tryECinit)) - import_matrix($(esc(:EC)), $(esc(file))) + strfilename = @var2string($(esc(filename)), $(esc(strfilename))) + import_matrix($(esc(:EC)), strfilename) end end + +""" + @export_molden(filename) + + Export current orbitals to Molden file `filename`. +""" +macro export_molden(filename) + strfilename=replace("$filename", " " => "") + return quote + strfilename = @var2string($(esc(filename)), $(esc(strfilename))) + export_molden_orbitals($(esc(:EC)), strfilename) + end +end + end #module diff --git a/src/bohf.jl b/src/bohf.jl index 6561363..4e770a2 100644 --- a/src/bohf.jl +++ b/src/bohf.jl @@ -22,7 +22,7 @@ export guess_boorb """ function left_from_right(cMOr) if is_unrestricted_MO(cMOr) - cMOl = Any[0.0, 0.0] + cMOl = AbstractArray[[], []] for ispin = 1:2 cMOl[ispin] = (inv(cMOr[ispin]))' end @@ -76,7 +76,7 @@ function guess_bo_hcore(EC::ECInfo, uhf) if !EC.fd.uhf spins = [:α, :α] end - CMOr_final = Any[0.0, 0.0] + CMOr_final = AbstractArray[[], []] else spins = [:α] end @@ -103,7 +103,7 @@ end function guess_bo_identity(EC::ECInfo, uhf) norb = length(EC.space[':']) if uhf - return Any[Matrix{Float64}(I, norb, norb), Matrix{Float64}(I, norb, norb)] + return AbstractArray[Matrix{Float64}(I, norb, norb), Matrix{Float64}(I, norb, norb)] else return Matrix{Float64}(I, norb, norb) end @@ -156,10 +156,10 @@ end function unrestricted_heatup(EC::ECInfo, cMOl, cMOr, temperature) SP = EC.space fock = gen_ufock(EC, cMOl, cMOr) - ϵ = Any[0.0, 0.0] - den4temp = Any[0.0, 0.0] - cMOr_out = Any[0.0, 0.0] - cMOl_out = Any[0.0, 0.0] + ϵ = AbstractArray[[], []] + den4temp = AbstractArray[[], []] + cMOr_out = AbstractArray[[], []] + cMOl_out = AbstractArray[[], []] for (ispin, sp) = enumerate(['o', 'O']) ϵ[ispin],cMOr_out[ispin] = eigen(fock[ispin]) rotate_eigenvectors_to_real!(cMOr_out[ispin], ϵ[ispin]) @@ -309,7 +309,7 @@ function bouhf(EC::ECInfo) # 1: alpha, 2: beta (cMOs can become complex(?)) cMOl, cMOr = guess_boorb(EC, EC.options.scf.guess, true) t1 = print_time(EC, t1, "guess orbitals", 2) - ϵ = Any[zeros(norb), zeros(norb)] + ϵ = AbstractArray[zeros(norb), zeros(norb)] hsmall = [integ1(EC.fd,:α), integ1(EC.fd,:β)] EHF = 0.0 previousEHF = 0.0 @@ -325,8 +325,8 @@ function bouhf(EC::ECInfo) for it=1:maxit fock = gen_ufock(EC, cMOl, cMOr) t1 = print_time(EC, t1, "generate Fock matrix", 2) - efhsmall = Any[0.0, 0.0] - Δfock = Any[zeros(norb,norb), zeros(norb,norb)] + efhsmall = Number[0.0, 0.0] + Δfock = AbstractArray[zeros(norb,norb), zeros(norb,norb)] var = 0.0 for (ispin, sp) = enumerate(['o', 'O']) den = gen_density_matrix(EC, cMOl[ispin], cMOr[ispin], SP[sp]) diff --git a/src/dfhf.jl b/src/dfhf.jl index 3e938d8..a42afcc 100644 --- a/src/dfhf.jl +++ b/src/dfhf.jl @@ -116,7 +116,7 @@ function dfuhf(EC::ECInfo) cMO = guess_orb(EC,guess) t1 = print_time(EC, t1, "guess orbitals", 2) if !is_unrestricted_MO(cMO) - cMO = Any[cMO, cMO] + cMO = Array{Float64}[cMO, cMO] end ϵ = [zeros(norb), zeros(norb)] hsmall = load(EC, "h_AA") @@ -134,8 +134,8 @@ function dfuhf(EC::ECInfo) fock = gen_dffock(EC,cMO) end t1 = print_time(EC, t1, "generate DF-Fock matrix", 2) - efhsmall = Any[0.0, 0.0] - Δfock = Any[zeros(norb,norb), zeros(norb,norb)] + efhsmall = Float64[0.0, 0.0] + Δfock = Array{Float64}[zeros(norb,norb), zeros(norb,norb)] var = 0.0 for (ispin, sp) = enumerate(['o', 'O']) den = gen_density_matrix(EC, cMO[ispin], cMO[ispin], SP[sp]) diff --git a/src/dump.jl b/src/dump.jl index de2fff6..01c94bd 100644 --- a/src/dump.jl +++ b/src/dump.jl @@ -51,7 +51,7 @@ Base.@kwdef mutable struct FDump """ core energy """ int0::Float64 = 0.0 """ header of fcidump file, a dictionary of arrays. """ - head::Dict = Dict() + head::Dict{String,AbstractArray} = Dict{String,AbstractArray}() """`⟨true⟩` use an upper triangular index for last two indices of 2e⁻ integrals.""" triang::Bool = true """`⟨false⟩` a convinience variable, has to coincide with `head["IUHF"][1] > 0`. """ @@ -59,17 +59,17 @@ Base.@kwdef mutable struct FDump end """ - FDump(int2::Array{Float64},int1::Array{Float64},int0::Float64,head::Dict) + FDump(int2::Array{Float64},int1::Array{Float64},int0::Float64,head::Dict{String,AbstractArray}) Spin-free fcidump """ -FDump(int2::Array{Float64},int1::Array{Float64},int0::Float64,head::Dict) = FDump(int2,[],[],[],int1,[],[],int0,head) +FDump(int2::Array{Float64},int1::Array{Float64},int0::Float64,head::Dict{String,AbstractArray}) = FDump(int2,[],[],[],int1,[],[],int0,head) """ - FDump(int2aa::Array{Float64},int2bb::Array{Float64},int2ab::Array{Float64},int1::Array{Float64},int0::Float64,head::Dict) + FDump(int2aa::Array{Float64},int2bb::Array{Float64},int2ab::Array{Float64},int1::Array{Float64},int0::Float64,head::Dict{String,AbstractArray}) Spin-polarized fcidump """ -FDump(int2aa::Array{Float64},int2bb::Array{Float64},int2ab::Array{Float64},int1a::Array{Float64},int1b::Array{Float64},int0::Float64,head::Dict) = FDump([],int2aa,int2bb,int2ab,[],int1a,int1b,int0,head) +FDump(int2aa::Array{Float64},int2bb::Array{Float64},int2ab::Array{Float64},int1a::Array{Float64},int1b::Array{Float64},int0::Float64,head::Dict{String,AbstractArray}) = FDump([],int2aa,int2bb,int2ab,[],int1a,int1b,int0,head) """ FDump(norb,nelec;ms2=0,isym=1,orbsym=[],uhf=false,simtra=false,triang=true) @@ -192,7 +192,7 @@ end """ function read_header(fdfile) # put some defaults... - head = Dict() + head = Dict{String,AbstractArray}() head["IUHF"] = [0] head["ST"] = [0] variable_name = "" @@ -478,12 +478,12 @@ function read_integrals!(fd::FDump, fdfile::IOStream) end """ - headvar(head::Dict, key::String) + headvar(head::Dict{String,AbstractArray}, key::String) Check header for `key`, return value if a list, or the element or nothing if not there. """ -function headvar(head::Dict, key::String) +function headvar(head::Dict{String,AbstractArray}, key::String) val = get(head, key, nothing) if isnothing(val) return val diff --git a/src/ecinfos.jl b/src/ecinfos.jl index e292d13..4265678 100644 --- a/src/ecinfos.jl +++ b/src/ecinfos.jl @@ -19,6 +19,8 @@ export isalphaspin, space4spin, spin4space, flipspin include("options.jl") +RangeOrVector = Union{UnitRange{Int},Vector{Int}} + """ ECInfo @@ -76,7 +78,7 @@ Base.@kwdef mutable struct ECInfo <: AbstractECInfo """ files::Dict{String,String} = Dict{String,String}() """ subspaces: 'o'ccupied, 'v'irtual, 'O'ccupied-β, 'V'irtual-β, ':'/'m'/'M' full MO. """ - space::Dict{Char,Any} = Dict{Char,Any}() + space::Dict{Char,RangeOrVector} = Dict{Char,RangeOrVector}() end """ diff --git a/src/fockfactory.jl b/src/fockfactory.jl index 87f5677..6a4bb07 100644 --- a/src/fockfactory.jl +++ b/src/fockfactory.jl @@ -261,7 +261,7 @@ function gen_unrestricted_dffock(EC::ECInfo, cMO::AbstractArray, bao, bfit) occa = EC.space['o'] occb = EC.space['O'] CMOo = [cMO[1][:,occa], cMO[2][:,occb]] - fock = Any[zeros(size(hsmall)), zeros(size(hsmall))] + fock = Array{Float64}[zeros(size(hsmall)), zeros(size(hsmall))] cL = zeros(size(PL,2)) for isp = 1:2 # loop over [α, β] @tensoropt begin @@ -314,7 +314,7 @@ function gen_unrestricted_dffock(EC::ECInfo, cMO::AbstractArray) occb = EC.space['O'] CMOo = [cMO[1][:,occa], cMO[2][:,occb]] hsmall = load(EC,"h_AA") - fock = Any[zeros(size(hsmall)), zeros(size(hsmall))] + fock = Array{Float64}[zeros(size(hsmall)), zeros(size(hsmall))] μνL = load(EC,"AAL") L = zeros(size(μνL,3)) for isp = 1:2 # loop over [α, β] diff --git a/src/interfaces/interfaces.jl b/src/interfaces/interfaces.jl index 5935a8a..bb6abe9 100644 --- a/src/interfaces/interfaces.jl +++ b/src/interfaces/interfaces.jl @@ -9,8 +9,9 @@ module Interfaces using ..ElemCo.Utils using ..ElemCo.ECInfos using ..ElemCo.MolproInterface: MolproInterface, is_matrop_file +using ..ElemCo.MoldenInterface: MoldenInterface, is_molden_file -export import_matrix +export import_matrix, export_molden_orbitals """ import_matrix(EC::ECInfo, filename::String) @@ -33,4 +34,17 @@ function import_matrix(EC::ECInfo, filename::String) end end +function export_matrix(EC::ECInfo, filename::String, mat::AbstractArray) + error("export_matrix not implemented yet") +end + +""" + export_molden_orbitals(EC::ECInfo, filename::String) + + Export the current orbitals to a Molden file. +""" +function export_molden_orbitals(EC::ECInfo, filename::String) + MoldenInterface.write_molden_orbitals(EC, filename) +end + end # module \ No newline at end of file diff --git a/src/interfaces/molden.jl b/src/interfaces/molden.jl new file mode 100644 index 0000000..dcb1cdc --- /dev/null +++ b/src/interfaces/molden.jl @@ -0,0 +1,160 @@ +""" +Molden interface + +This module provides an interface to Molden to read and write orbitals and other data. +""" +module MoldenInterface +using Unitful, UnitfulAtomic +using AtomsBase +using Printf +using ..ElemCo.Utils +using ..ElemCo.ECInfos +using ..ElemCo.MSystem +using ..ElemCo.BasisSets +using ..ElemCo.OrbTools + +export is_molden_file, write_molden_orbitals + +""" + MOLDEN2LIBCINT_PERMUTATION + + Permutation of the atomic orbitals from the Molden to the libcint order. +""" +const MOLDEN2LIBCINT_PERMUTATION = [ # Molden order: + [1], # s + [1,2,3], # p x,y,z + [5,3,1,2,4], # d 0, +1, -1 , +2, -2 (z^2, xz, yz, x^2-y^2, xy) + [7,5,3,1,2,4,6], # f 0, +1, -1, +2, -2, +3, -3 + [9,7,5,3,1,2,4,6,8], # g 0, +1, -1, +2, -2, +3, -3, +4, -4 + [11,9,7,5,3,1,2,4,6,8,10], # h 0, +1, -1, +2, -2, +3, -3, +4, -4, +5, -5 + [13,11,9,7,5,3,1,2,4,6,8,10,12] # i 0, +1, -1, +2, -2, +3, -3, +4, -4, +5, -5, +6, -6 + ] + +""" + MOLDEN2LIBCINT_PERMUTATION_CART + + Permutation of the atomic orbitals from the Molden to the libcint order for cartesian basis sets. +""" +const MOLDEN2LIBCINT_PERMUTATION_CART = [ # Molden order: + [1], # s + [1,2,3], # p x,y,z + [1,4,5,2,6,3], # d x²,y²,z²,xy,xz,yz + [1,5,6,4,10,7,2,9,8,3], # f x³,y³,z³,xy²,x²y,x²z,xz²,yz²,y²z,xyz + [1,4,5,10,13,11,6,14,15,8,2,7,12,9,3] # g x⁴,y⁴,z⁴,x³y,x³z,xy³,y³z,xz³,yz³,x²y²,x²z²,y²z²,x²yz,xy²z,xyz² + ] +""" + is_molden_file(filename::String) + + Check if the file `filename` is a Molden file. +""" +function is_molden_file(filename::String) + open(filename) do f + for line in eachline(f) + if occursin(r"^\s*\[Molden Format\]", line) + return true + end + end + end + return false +end + +""" + write_molden_orbitals(EC::ECInfo, filename::String) + + Write the current orbitals to a Molden file. +""" +function write_molden_orbitals(EC::ECInfo, filename::String) + basisset = generate_basis(EC, "ao") + order = ao_permutation(EC, true) + orbs = load_orbitals(EC) + open(filename, "w") do f + println(f, "[Molden Format]") + distunit = unit(EC.system[1].position[1]) + if distunit == u"bohr" + println(f, "[Atoms] AU") + else + distunit = u"angstrom" + println(f, "[Atoms] Angs") + end + for (iat,atom) in enumerate(EC.system) + coord = uconvert.(distunit, atom.position)/distunit + @printf(f, "%s %i %i %16.10f %16.10f %16.10f\n", + atomic_symbol(atom), iat, atomic_number(atom), coord[1], coord[2], coord[3]) + end + println(f, "[GTO]") + for ic in center_range(basisset) + println(f, " ", ic, " ", 0) + for ash in basisset.centers[ic].shells + for con in ash.subshells + println(f, " ", subshell_char(ash.l), " ", length(con.exprange)) + # normalize the coefficients + coefs = normalize_contraction(con, ash) + for (i, iex) in enumerate(con.exprange) + @printf(f, "%.10E %.10E\n", ash.exponents[iex], coefs[i]) + end + end + end + println(f) + end + println(f, "[MO]") + if !is_cartesian(basisset) + maxl = max_l(basisset) + maxl > 1 && println(f, "[5D]") + maxl > 2 && println(f, "[7F]") + maxl > 3 && println(f, "[9G]") + maxl > 4 && println(f, "[11H]") + maxl > 5 && println(f, "[13I]") + end + #TODO use correct energies and occupations + if is_unrestricted_MO(orbs) + energies = zeros(size(orbs[1],2)) + occupation = zeros(size(orbs[1],2)) + printmos(f, orbs[1], order, energies, occupation) + printmos(f, orbs[2], order, energies, occupation, "Beta") + else + energies = zeros(size(orbs,2)) + occupation = zeros(size(orbs,2)) + printmos(f, orbs, order, energies, occupation) + end + end +end + +""" + printmos(f, orbs, order, energies, occupation, spin="Alpha") + + Print the molecular orbital coefficients to a Molden file. +""" +function printmos(f, orbs, order, energies, occupation, spin="Alpha") + nmo = size(orbs,2) + for imo = 1:nmo + println(f, " Sym= ", imo, ".1") + println(f, " Ene= ", energies[imo]) + println(f, " Spin= ", spin) + println(f, " Occup= ", occupation[imo]) + for (i, iao) in enumerate(order) + @printf(f, "%i %.15f\n", i, orbs[iao,imo]) + end + end +end + +""" + ao_permutation(EC::ECInfo, back=false) + + Return the permutation of the atomic orbitals from the Molden to the libcint order + such that `μ(molden)[ao_permutation(EC)] = μ(libcint)`. + + If `back` is `true`, the permutation is for the libcint to Molden order. +""" +function ao_permutation(EC::ECInfo, back=false) + basisset = generate_basis(EC, "ao") + permutation = is_cartesian(basisset) ? MOLDEN2LIBCINT_PERMUTATION_CART : MOLDEN2LIBCINT_PERMUTATION + action = back ? invperm : identity + order = Int[] + for ash in basisset + for ish = 1:n_subshells(ash) + append!(order, action(permutation[ash.l+1]) .+ length(order)) + end + end + return order +end +end # module diff --git a/src/interfaces/molpro.jl b/src/interfaces/molpro.jl index 50d6a61..c3246f6 100644 --- a/src/interfaces/molpro.jl +++ b/src/interfaces/molpro.jl @@ -20,11 +20,11 @@ export read_matrop_matrix, import_overlap, import_orbitals const MOLPRO2LIBCINT_PERMUTATION = [ # Molpro order: [1], # s [1,2,3], # p x,y,z - [2,5,1,3,4], # d z^2, xy, xz, x^2-y^2, yz - [6,5,2,3,1,7,4], # f - [7,9,2,5,1,3,6,8,4], # g - [8,5,6,11,2,9,1,3,4,7,10], # h - [7,5,9,11,2,12,10,13,6,8,4,3,1] # i + [2,5,1,3,4], # d 0, -2, +1, +2, -1 (z^2, xy, xz, x^2-y^2, yz) + [6,5,2,3,1,7,4], # f +1, -1, 0, +3, -2, -3, +2 + [7,9,2,5,1,3,6,8,4], # g 0, -2, +1, +4, -1, +2, -4, +3, -3 + [8,5,6,11,2,9,1,3,4,7,10], # h +1, -1, +2, +3, -4, -3, +4, -5, 0, +5, -2 + [7,5,9,11,2,12,10,13,6,8,4,3,1] # i +6, -2, +5, +4, -5, +2, -6, +3, -4, 0, -3, -1, +1 ] """ diff --git a/src/orbtools.jl b/src/orbtools.jl index 1213105..dda46fd 100644 --- a/src/orbtools.jl +++ b/src/orbtools.jl @@ -72,6 +72,7 @@ function guess_orb(EC::ECInfo, guess::Symbol) return load(EC,EC.options.wf.orb) else error("unknown guess type") + return Float64[] end end @@ -114,12 +115,12 @@ function orbital_energies(EC::ECInfo, spincase::Symbol=:α) end """ - is_unrestricted_MO(cMO) + is_unrestricted_MO(cMO::AbstractArray) Return `true` if `cMO` is unrestricted MO coefficients of the form [CMOα, CMOβ]. """ -function is_unrestricted_MO(cMO) +function is_unrestricted_MO(cMO::AbstractArray) if ndims(cMO) == 1 return true elseif ndims(cMO) == 2 diff --git a/src/system/basiscenter.jl b/src/system/basiscenter.jl index dadc29b..af2e54e 100644 --- a/src/system/basiscenter.jl +++ b/src/system/basiscenter.jl @@ -151,7 +151,7 @@ function Base.show(io::IO, bc::BasisContraction) end function Base.show(io::IO, ashell::AbstractAngularShell) - print(io, SUBSHELLS_NAMES[ashell.l+1], ", ", ashell.element) + print(io, subshell_char(ashell.l), ", ", ashell.element) for exp in ashell.exponents print(io, ", ", exp) end @@ -306,6 +306,22 @@ end # DOUBLEFACTORIAL[l+1] = (2l+1)!! = 1*3*5*...*(2l+1) for s, p, d, f, g, h, i, k, l const DOUBLEFACTORIAL = [1, 3, 15, 105, 945, 10395, 135135, 2027025, 34459425] +""" + normalize_contraction(subshell::BasisContraction, ashell::AbstractAngularShell) + + Normalize the contraction coefficients in `subshell`. + + The subshell has to be part of the angular shell `ashell`. + Return the normalized contraction. +""" +function normalize_contraction(subshell::BasisContraction, ashell::AbstractAngularShell) + if isa(ashell, CartesianAngularShell) + return normalize_cartesian_contraction(subshell.coefs, ashell.exponents[subshell.exprange], ashell.l) + else + return normalize_spherical_contraction(subshell.coefs, ashell.exponents[subshell.exprange], ashell.l) + end +end + """ normalize_spherical_contraction(contraction, exponents, l) @@ -413,3 +429,10 @@ function set_id!(centers::AbstractArray{BasisCenter}, start_id) end return id end + +""" + subshell_char(l) + + Return the character for the subshell with angular momentum `l`. +""" +subshell_char(l::Int) = SUBSHELLS_NAMES[l+1] \ No newline at end of file diff --git a/src/system/basisset.jl b/src/system/basisset.jl index 1e33a54..d236a21 100644 --- a/src/system/basisset.jl +++ b/src/system/basisset.jl @@ -21,9 +21,11 @@ export BasisCenter, BasisSet export BasisContraction, AbstractAngularShell, SphericalAngularShell, CartesianAngularShell export shell_range, center_range, is_cartesian, combine export n_subshells, n_primitives, n_coefficients, n_angularshells, n_ao +export normalize_contraction export coefficients_1mat, n_coefficients_1mat export basis_name, generate_basis, guess_norb export ao_list, print_ao +export subshell_char, max_l export ILibcint5 @@ -131,24 +133,24 @@ function Base.show(io::IO, bs::BasisSet) end """ - shell_range(bs::BasisSet, i::Int) + shell_range(bs::BasisSet, i::Int=1) Return the range of angular shells for the `i`th basis set. The range is used to access the angular shells in the basis set, e.g., `bs[i] for i in shell_range(bs, 1)` gives the angular shells of the first basis set. """ -shell_range(bs::BasisSet, i::Int) = bs.shell_ranges[i] +shell_range(bs::BasisSet, i::Int=1) = bs.shell_ranges[i] """ - center_range(bs::BasisSet, i::Int) + center_range(bs::BasisSet, i::Int=1) Return the range of centers for the `i`th basis set. The range is used to access the centers in the basis set, e.g., `bs.centers[i] for i in center_range(bs, 1)` gives the centers of the first basis set. """ -center_range(bs::BasisSet, i::Int) = bs.center_ranges[i] +center_range(bs::BasisSet, i::Int=1) = bs.center_ranges[i] """ is_cartesian(bs::BasisSet) @@ -212,6 +214,19 @@ function generate_basis(ms::AbstractSystem, type="ao"; cartesian=false, basisset return BasisSet(array_of_centers, ILibcint5(array_of_centers)) end +""" + max_l(basis::BasisSet) + + Return the maximum angular momentum in the basis set. +""" +function max_l(basis::BasisSet) + maxl = 0 + for ash in basis + maxl = max(maxl, ash.l) + end + return maxl +end + """ n_angularshells(atoms::BasisSet) diff --git a/src/utils.jl b/src/utils.jl index d2d3ebc..9ca1e99 100644 --- a/src/utils.jl +++ b/src/utils.jl @@ -171,10 +171,10 @@ end If `len` is not given, the substring spans to the end of `string`. Example: - ```julia - julia> substr("λabδcd", 2, 3) - "abδ" - ``` +```julia +julia> substr("λabδcd", 2, 3) +"abδ" +``` """ function substr(string::AbstractString, start::Int, len::Int=-1) tail = length(string)-start-len+1 @@ -190,10 +190,10 @@ end Return substring of `string` defined by `range` (including unicode). Example: - ```julia - julia> substr("λabδcd", 2:4) - "abδ" - ``` +```julia +julia> substr("λabδcd", 2:4) +"abδ" +``` """ function substr(string::AbstractString, range::UnitRange{Int}) return substr(string, range.start, range.stop-range.start+1) @@ -212,7 +212,7 @@ end julia> buf = Array{Float64}(undef, 100000) julia> A = reshape_buf(buf, 10, 10, 20) # 10x10x20 tensor julia> B = reshape_buf(buf, 10, 10, 10, start=2001) # 10x10x10 tensor starting at 2001 -julia> B = rand(10,10,10) +julia> B .= rand(10,10,10) julia> C = rand(10,20) julia> @tensor A[i,j,k] = B[i,j,l] * C[l,k] ``` @@ -231,23 +231,23 @@ end the function is applied to the elements before comparison. # Example - ```julia - julia> argmaxN([1,2,3,4,5,6,7,8,9,10], 3) - 3-element Vector{Int64}: - 10 - 9 - 8 - julia> argmaxN([1,2,3,4,5,-6,-7,-8,-9,-10], 3; by=abs) - 3-element Vector{Int64}: - 10 - 9 - 8 - julia> argmaxN([1.0, 1.10, 1.112, -1.113, 1.09], 3; by=x->round(abs(x),digits=2)) - 3-element Vector{Int64}: - 3 - 4 - 2 - ``` +```julia +julia> argmaxN([1,2,3,4,5,6,7,8,9,10], 3) +3-element Vector{Int64}: + 10 + 9 + 8 +julia> argmaxN([1,2,3,4,5,-6,-7,-8,-9,-10], 3; by=abs) +3-element Vector{Int64}: + 10 + 9 + 8 +julia> argmaxN([1.0, 1.10, 1.112, -1.113, 1.09], 3; by=x->round(abs(x),digits=2)) +3-element Vector{Int64}: + 3 + 4 + 2 +``` """ function argmaxN(vals, N; by::Function=identity) perm = sortperm(vals[1:N]; by, rev=true) From d48bc1dfa9aaeadff99c8c0acaf7c2964b6c149c Mon Sep 17 00:00:00 2001 From: Daniel Kats Date: Fri, 7 Jun 2024 15:21:25 +0200 Subject: [PATCH 08/44] Remove normalization --- src/interfaces/molden.jl | 4 +--- 1 file changed, 1 insertion(+), 3 deletions(-) diff --git a/src/interfaces/molden.jl b/src/interfaces/molden.jl index dcb1cdc..636cfc8 100644 --- a/src/interfaces/molden.jl +++ b/src/interfaces/molden.jl @@ -87,10 +87,8 @@ function write_molden_orbitals(EC::ECInfo, filename::String) for ash in basisset.centers[ic].shells for con in ash.subshells println(f, " ", subshell_char(ash.l), " ", length(con.exprange)) - # normalize the coefficients - coefs = normalize_contraction(con, ash) for (i, iex) in enumerate(con.exprange) - @printf(f, "%.10E %.10E\n", ash.exponents[iex], coefs[i]) + @printf(f, "%.10E %.10E\n", ash.exponents[iex], con.coefs[i]) end end end From 8abc6022fff9bd9ead03ac3f646e9d85356949d7 Mon Sep 17 00:00:00 2001 From: Daniel Kats Date: Fri, 7 Jun 2024 15:27:41 +0200 Subject: [PATCH 09/44] Update changelog --- CHANGELOG.md | 2 ++ 1 file changed, 2 insertions(+) diff --git a/CHANGELOG.md b/CHANGELOG.md index 86ffcd4..68cfa81 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -8,6 +8,8 @@ ### Added +* Export of molden files (`@export_molden`). At the moment the orbital energies and occupations are not exported. + ### Fixed ## Version [v0.12.0] - 2024.05.28 From 161df22bd50585ff7e2ec18fe8919b3b627d673a Mon Sep 17 00:00:00 2001 From: Daniel Kats Date: Fri, 7 Jun 2024 19:01:40 +0200 Subject: [PATCH 10/44] Add type-stable load routines --- src/myio.jl | 34 ++++++++++++++++++++++++++++++++++ src/orbtools.jl | 14 +++++++------- src/system/basiscenter.jl | 6 +++++- src/system/parse_basis.jl | 4 ++-- src/tensortools.jl | 24 +++++++++++++++++++++++- 5 files changed, 71 insertions(+), 11 deletions(-) diff --git a/src/myio.jl b/src/myio.jl index a0f9ce1..7918a88 100644 --- a/src/myio.jl +++ b/src/myio.jl @@ -59,6 +59,40 @@ function miosave(fname::String,arrs::AbstractArray{T}...) where T close(io) end +""" + mioload(fname::String, ::Val{N}, T::Type=Float64) where {N} + + Type-stable load arrays from a file `fname`. + + Return an array of arrays. All arrays have the same type `T` and have `N` dimensions. +""" +function mioload(fname::String, ::Val{N}, T::Type=Float64) where {N} + io = open(fname) + # type of numbers + itype = read(io, Int) + if itype > length(Types) + error("Inconsistency in reading type of data!") + end + @assert T == Types[itype] "Inconsistency in reading type of data!" + arrs = Array{T,N}[] + # number of arrays in the file + narray = read(io, Int) + for ia in 1:narray + ndim = read(io, Int) + dims = Int[] + for idim in 1:ndim + append!(dims, read(io, Int)) + end + @assert N == length(dims) "Inconsistency in reading dimensions of data!" + push!(arrs, Array{T,N}(undef, (dims...))) + end + for ia in 1:narray + read!(io, arrs[ia]) + end + close(io) + return arrs +end + """ mioload(fname::String; array_of_arrays = false) diff --git a/src/orbtools.jl b/src/orbtools.jl index dda46fd..6337cb2 100644 --- a/src/orbtools.jl +++ b/src/orbtools.jl @@ -23,9 +23,9 @@ export rotate_orbs, rotate_orbs!, normalize_phase! Guess MO coefficients from core Hamiltonian. """ function guess_hcore(EC::ECInfo) - hsmall = load(EC,"h_AA") - sao = load(EC,"S_AA") - ϵ,cMO = eigen(Hermitian(hsmall),Hermitian(sao)) + hsmall = load(EC, "h_AA", Val(2)) + sao = load(EC, "S_AA", Val(2)) + ϵ, cMO = eigen(Hermitian(hsmall), Hermitian(sao)) return cMO end @@ -40,12 +40,12 @@ function guess_sad(EC::ECInfo) # minao = "sto-6g" bminao = generate_basis(EC, basisset=minao) bao = generate_basis(EC, "ao") - smin2ao = overlap(bminao,bao) + smin2ao = overlap(bminao, bao) smin = overlap(bminao) - eldist = electron_distribution(EC.system,minao) - sao = load(EC,"S_AA") + eldist = electron_distribution(EC.system, minao) + sao = load(EC, "S_AA", Val(2)) denao = smin2ao' * diagm(eldist./diag(smin)) * smin2ao - eigs,cMO = eigen(Hermitian(-denao),Hermitian(sao)) + eigs, cMO = eigen(Hermitian(-denao), Hermitian(sao)) return cMO end diff --git a/src/system/basiscenter.jl b/src/system/basiscenter.jl index af2e54e..46e5a25 100644 --- a/src/system/basiscenter.jl +++ b/src/system/basiscenter.jl @@ -1,4 +1,8 @@ +BVector = Vector{Float64} +# const MAXBSIZE = 40 +# BVector = SVector{MAXBSIZE, Float64} + """ BasisContraction{N, T} @@ -17,7 +21,7 @@ end Abstract type for angular shells, i.e, subshells with the same angular momentum. For general contracted basis sets, the angular shell is a collection of all subshells with the same l quantum number. - TODO For some other basis sets (e.g., the def2-family), the angular shell can be a + For some other basis sets (e.g., the def2-family), the angular shell can be a single subshell with a specific l quantum number. See [`SphericalAngularShell`](@ref) and [`CartesianAngularShell`](@ref). `id` is the index of the angular shell in the basis set. diff --git a/src/system/parse_basis.jl b/src/system/parse_basis.jl index d8bc89c..9ac1915 100644 --- a/src/system/parse_basis.jl +++ b/src/system/parse_basis.jl @@ -104,10 +104,10 @@ function read_basis_block(basisfile::AbstractString, atom::Atom) # search for `! $elem ....` reg_start = Regex("^!\\s$elem\\s+") reg_end = Regex("^\\s*[!}]\\s*") - basisblock = "" + basisblock::String = "" open(basisfile) do f elemfound = false - for line in eachline(f) + for line::String in eachline(f) if elemfound if occursin(reg_end, line) break diff --git a/src/tensortools.jl b/src/tensortools.jl index 819a13e..3262087 100644 --- a/src/tensortools.jl +++ b/src/tensortools.jl @@ -7,7 +7,7 @@ using ..ElemCo.ECInfos using ..ElemCo.FciDump using ..ElemCo.MIO -export save!, load, mmap, newmmap, closemmap +export save!, load, loads, mmap, newmmap, closemmap export ints1, ints2, detri_int2 export sqrtinvchol, invchol, rotate_eigenvectors_to_real!, svd_thr export get_spaceblocks @@ -33,6 +33,28 @@ function load(EC::ECInfo, fname::String) return mioload(joinpath(EC.scr, fname*EC.ext)) end +""" + load(EC::ECInfo, fname::String, ::Val{N}, T::Type=Float64 ) where {N} + + Type-stable load array from file `fname` in EC.scr directory. + + The type `T` and dimensions `N` are given explicitly. +""" +function load(EC::ECInfo, fname::String, ::Val{N}, T::Type=Float64) where {N} + return mioload(joinpath(EC.scr, fname*EC.ext), Val(N), T)[1] +end + +""" + loads(EC::ECInfo, fname::String, ::Val{N}, T::Type=Float64 ) where {N} + + Type-stable load arrays from file `fname` in EC.scr directory. + + The type `T` and dimensions `N` are given explicitly. +""" +function loads(EC::ECInfo, fname::String, ::Val{N}, T::Type=Float64) where {N} + return mioload(joinpath(EC.scr, fname*EC.ext), Val(N), T) +end + """ newmmap(EC::ECInfo, fname::String, Type, dims::Tuple{Vararg{Int}}; description="tmp") From e24cf06eb9ee66f5974cf327ad69501c1810d67c Mon Sep 17 00:00:00 2001 From: Daniel Kats Date: Sat, 8 Jun 2024 09:49:37 +0200 Subject: [PATCH 11/44] Replace SVector by BVector in BasisSet BVector at the moment is simply Vector{Float64} but later can be replaced e.g. by SVector{MAXBSIZE,Float64} --- src/system/basiscenter.jl | 23 +++++++++++------------ src/system/integrals_2e3idx.jl | 2 +- src/system/integrals_2idx.jl | 2 +- src/system/parse_basis.jl | 3 ++- 4 files changed, 15 insertions(+), 15 deletions(-) diff --git a/src/system/basiscenter.jl b/src/system/basiscenter.jl index 46e5a25..b62c59d 100644 --- a/src/system/basiscenter.jl +++ b/src/system/basiscenter.jl @@ -5,14 +5,14 @@ BVector = Vector{Float64} """ - BasisContraction{N, T} + BasisContraction - A basis contraction with `N` primitives and coefficients of type `T`. + A basis contraction. `exprange` is the range of primitives (from exponents in the angular shell). """ -struct BasisContraction{N, T} +struct BasisContraction exprange::UnitRange{Int} - coefs::SVector{N, T} + coefs::BVector end """ @@ -40,13 +40,13 @@ abstract type AbstractAngularShell end $(TYPEDFIELDS) """ -mutable struct SphericalAngularShell{N, T} <: AbstractAngularShell +mutable struct SphericalAngularShell <: AbstractAngularShell """ element symbol (e.g., "H")""" element::String """ angular momentum""" l::Int """ array of exponents""" - exponents::SVector{N, T} + exponents::BVector """ array of subshells (contractions)""" subshells::Vector{BasisContraction} """ index of the angular shell in the basis set""" @@ -65,13 +65,13 @@ end $(TYPEDFIELDS) """ -mutable struct CartesianAngularShell{N, T} <: AbstractAngularShell +mutable struct CartesianAngularShell <: AbstractAngularShell """ element symbol (e.g., "H")""" element::String """ angular momentum""" l::Int """ array of exponents""" - exponents::SVector{N, T} + exponents::BVector """ array of subshells (contractions)""" subshells::Vector{BasisContraction} """ index of the angular shell in the basis set""" @@ -384,11 +384,10 @@ end Return an angular shell of type [`SphericalAngularShell`](@ref) or [`CartesianAngularShell`](@ref). """ function generate_angularshell(elem, l, exponents; cartesian=false) - nprim = length(exponents) if cartesian - return CartesianAngularShell(elem, l, SVector{nprim}(exponents), BasisContraction[], 0) + return CartesianAngularShell(elem, l, exponents, BasisContraction[], 0) else - return SphericalAngularShell(elem, l, SVector{nprim}(exponents), BasisContraction[], 0) + return SphericalAngularShell(elem, l, exponents, BasisContraction[], 0) end end @@ -398,7 +397,7 @@ end Add a subshell to the angular shell. """ function add_subshell!(ashell::AbstractAngularShell, exprange, contraction) - push!(ashell.subshells, BasisContraction(exprange, SVector{length(contraction)}(contraction))) + push!(ashell.subshells, BasisContraction(exprange, BVector(contraction))) end function set_id!(ashell::AbstractAngularShell, id) diff --git a/src/system/integrals_2e3idx.jl b/src/system/integrals_2e3idx.jl index b306c73..e030ebe 100644 --- a/src/system/integrals_2e3idx.jl +++ b/src/system/integrals_2e3idx.jl @@ -37,7 +37,7 @@ for (jname_str, type, descr_str) in INTEGRAL_NAMES_2E3IDX @eval begin @doc $docstr function $jname(ash1ao::$TAS, ash2ao::$TAS, ashfit::$TAS, basis::BasisSet) - buf = Array{Float64}(undef, n_ao(ash1ao),n_ao(ash2ao),n_ao(ashfit)) + buf = Array{Float64,3}(undef, n_ao(ash1ao),n_ao(ash2ao),n_ao(ashfit)) $libname(buf, [ash1ao.id,ash2ao.id,ashfit.id], basis.lib) return buf end diff --git a/src/system/integrals_2idx.jl b/src/system/integrals_2idx.jl index 52a6871..9545c1a 100644 --- a/src/system/integrals_2idx.jl +++ b/src/system/integrals_2idx.jl @@ -37,7 +37,7 @@ for (jname_str, type, descr_str) in INTEGRAL_NAMES_2IDX @eval begin @doc $docstr function $jname(ash1::$TAS, ash2::$TAS, basis::BasisSet) - buf = Array{Float64}(undef, n_ao(ash1),n_ao(ash2)) + buf = Matrix{Float64}(undef, n_ao(ash1),n_ao(ash2)) $libname(buf, [ash1.id,ash2.id], basis.lib) return buf end diff --git a/src/system/parse_basis.jl b/src/system/parse_basis.jl index 9ac1915..6a139de 100644 --- a/src/system/parse_basis.jl +++ b/src/system/parse_basis.jl @@ -236,7 +236,8 @@ function parse_contraction(conline::AbstractString) # parse contraction coefficients contraction = strip.(split(conline, ",")) # parse exponent range - exprange = range(parse.(Int,split(contraction[2], "."))...) + start, stop = parse.(Int, split(contraction[2], ".")) + exprange = start:stop # remove contraction and exponent range and convert to Float64 contraction = parse.(Float64, contraction[3:end]) if length(contraction) != length(exprange) From 62ae9f7e93ae0057b2999d895a1cc1b868e1d00e Mon Sep 17 00:00:00 2001 From: Thomas Schraivogel Date: Mon, 10 Jun 2024 12:01:04 +0200 Subject: [PATCH 12/44] first (wrong) ccsdt q2 closed-shell implementation --- src/algo/uccsdt_doubles.jl | 66 ++++++ src/algo/uccsdt_singles.jl | 20 ++ src/algo/uccsdt_triples.jl | 417 +++++++++++++++++++++++++++++++++++++ src/cc.jl | 53 +++++ src/cctools.jl | 21 ++ 5 files changed, 577 insertions(+) diff --git a/src/algo/uccsdt_doubles.jl b/src/algo/uccsdt_doubles.jl index 6d16ca3..d80d0f3 100644 --- a/src/algo/uccsdt_doubles.jl +++ b/src/algo/uccsdt_doubles.jl @@ -205,3 +205,69 @@ d_oVvV = nothing @tensoropt R2ab[a,B,i,I] += fAB[B,A] * T2ab[a,A,i,I] @tensoropt R2ab[a,A,i,J] -= fIJ[I,J] * T2ab[a,A,i,I] end + +function ccsdt_doubles!(EC::ECInfo, R2, T2, T3, fij, fab, fai, fia) +d_vvvv = load(EC,"d_vvvv") +@tensoropt R2[c,d,i,j] += d_vvvv[c,d,a,b] * T2[a,b,i,j] +d_vvvv = nothing +d_vovv = load(EC,"d_vovv") +@tensoropt R2[d,c,j,k] -= d_vovv[c,i,b,a] * T3[d,a,b,i,j,k] +@tensoropt R2[c,d,j,k] -= d_vovv[c,i,b,a] * T3[d,a,b,i,k,j] +@tensoropt R2[d,c,j,k] -= d_vovv[c,i,a,b] * T3[a,b,d,i,k,j] +@tensoropt R2[c,d,j,k] -= d_vovv[c,i,a,b] * T3[a,b,d,i,j,k] +@tensoropt R2[d,c,j,k] += 2 * d_vovv[c,i,b,a] * T3[a,b,d,i,k,j] +@tensoropt R2[c,d,j,k] += 2 * d_vovv[c,i,b,a] * T3[a,b,d,i,j,k] +d_vovv = nothing +d_vvoo = load(EC,"d_vvoo") +@tensoropt R2[a,b,i,j] += d_vvoo[a,b,i,j] +d_vvoo = nothing +d_vovo = load(EC,"d_vovo") +@tensoropt R2[b,c,k,j] -= d_vovo[b,i,a,j] * T2[c,a,i,k] +@tensoropt R2[c,b,j,k] -= d_vovo[b,i,a,j] * T2[c,a,i,k] +@tensoropt R2[c,b,k,j] -= d_vovo[b,i,a,j] * T2[a,c,i,k] +@tensoropt R2[b,c,j,k] -= d_vovo[b,i,a,j] * T2[a,c,i,k] +d_vovo = nothing +d_voov = load(EC,"d_voov") +@tensoropt R2[c,b,k,j] -= d_voov[b,i,j,a] * T2[c,a,i,k] +@tensoropt R2[b,c,j,k] -= d_voov[b,i,j,a] * T2[c,a,i,k] +@tensoropt R2[c,b,k,j] += 2 * d_voov[b,i,j,a] * T2[a,c,i,k] +@tensoropt R2[b,c,j,k] += 2 * d_voov[b,i,j,a] * T2[a,c,i,k] +d_voov = nothing +d_oooo = load(EC,"d_oooo") +@tensoropt R2[a,b,k,l] += d_oooo[j,i,l,k] * T2[a,b,i,j] +d_oooo = nothing +d_oovo = load(EC,"d_oovo") +@tensoropt R2[b,c,l,k] += d_oovo[j,i,a,k] * T3[c,b,a,i,j,l] +@tensoropt R2[b,c,k,l] += d_oovo[j,i,a,k] * T3[b,c,a,i,j,l] +@tensoropt R2[b,c,l,k] += d_oovo[j,i,a,k] * T3[a,c,b,i,j,l] +@tensoropt R2[b,c,k,l] += d_oovo[j,i,a,k] * T3[a,b,c,i,j,l] +@tensoropt R2[b,c,l,k] -= 2 * d_oovo[j,i,a,k] * T3[c,a,b,i,j,l] +@tensoropt R2[b,c,k,l] -= 2 * d_oovo[j,i,a,k] * T3[b,a,c,i,j,l] +d_oovo = nothing +oovv = ints2(EC,"oovv") +@tensoropt R2[a,b,j,i] += oovv[l,k,c,d] * T2[a,c,k,i] * T2[d,b,j,l] +@tensoropt R2[b,a,j,i] += oovv[l,k,c,d] * T2[a,c,k,i] * T2[d,b,l,j] +@tensoropt R2[a,b,i,j] += oovv[l,k,c,d] * T2[a,c,k,i] * T2[d,b,l,j] +@tensoropt R2[a,b,i,j] += oovv[l,k,d,c] * T2[a,b,k,l] * T2[c,d,i,j] +@tensoropt R2[a,b,i,j] += oovv[l,k,d,c] * T2[a,c,k,i] * T2[b,d,l,j] +@tensoropt R2[a,b,j,i] += oovv[l,k,c,d] * T2[c,d,k,i] * T2[b,a,l,j] +@tensoropt R2[a,b,i,j] += oovv[l,k,c,d] * T2[c,d,k,i] * T2[a,b,l,j] +@tensoropt R2[b,a,i,j] += oovv[l,k,d,c] * T2[a,c,k,l] * T2[d,b,j,i] +@tensoropt R2[a,b,i,j] += oovv[l,k,d,c] * T2[a,c,k,l] * T2[d,b,i,j] +@tensoropt R2[a,b,i,j] -= 2 * oovv[l,k,c,d] * T2[c,a,k,i] * T2[d,b,l,j] +@tensoropt R2[b,a,j,i] -= 2 * oovv[l,k,d,c] * T2[c,a,k,i] * T2[b,d,l,j] +@tensoropt R2[a,b,i,j] -= 2 * oovv[l,k,d,c] * T2[c,a,k,i] * T2[b,d,l,j] +@tensoropt R2[a,b,j,i] -= 2 * oovv[l,k,d,c] * T2[c,d,k,i] * T2[b,a,l,j] +@tensoropt R2[a,b,i,j] -= 2 * oovv[l,k,d,c] * T2[c,d,k,i] * T2[a,b,l,j] +@tensoropt R2[b,a,i,j] -= 2 * oovv[l,k,d,c] * T2[c,a,k,l] * T2[d,b,j,i] +@tensoropt R2[a,b,i,j] -= 2 * oovv[l,k,d,c] * T2[c,a,k,l] * T2[d,b,i,j] +@tensoropt R2[a,b,i,j] += 4 * oovv[l,k,d,c] * T2[c,a,k,i] * T2[d,b,l,j] +oovv = nothing +@tensoropt R2[b,c,j,k] += 2 * fia[i,a] * T3[a,b,c,i,j,k] +@tensoropt R2[a,b,j,k] -= fij[i,j] * T2[a,b,i,k] +@tensoropt R2[a,b,k,j] -= fij[i,j] * T2[b,a,i,k] +@tensoropt R2[b,c,j,k] -= fia[i,a] * T3[b,a,c,i,j,k] +@tensoropt R2[b,c,j,k] -= fia[i,a] * T3[c,a,b,i,k,j] +@tensoropt R2[b,c,i,j] += fab[b,a] * T2[a,c,i,j] +@tensoropt R2[c,b,i,j] += fab[b,a] * T2[a,c,j,i] +end diff --git a/src/algo/uccsdt_singles.jl b/src/algo/uccsdt_singles.jl index 9cbf36f..80e6102 100644 --- a/src/algo/uccsdt_singles.jl +++ b/src/algo/uccsdt_singles.jl @@ -42,3 +42,23 @@ d_oVvV = nothing @tensoropt R1b[B,J] += fIA[I,A] * T2b[B,A,J,I] @tensoropt R1b[A,I] += fAI[A,I] end + +function ccsdt_singles!(EC::ECInfo, R1, T2, T3, fij, fab, fai, fia) +d_vovv = load(EC,"d_vovv") +@tensoropt R1[c,j] -= d_vovv[c,i,a,b] * T2[a,b,i,j] +@tensoropt R1[c,j] += 2 * d_vovv[c,i,b,a] * T2[a,b,i,j] +d_vovv = nothing +d_oovo = load(EC,"d_oovo") +@tensoropt R1[b,k] += d_oovo[j,i,a,k] * T2[a,b,i,j] +@tensoropt R1[b,k] -= 2 * d_oovo[j,i,a,k] * T2[b,a,i,j] +d_oovo = nothing +oovv = ints2(EC,"oovv") +@tensoropt R1[c,k] += oovv[j,i,b,a] * T3[c,a,b,i,j,k] +@tensoropt R1[c,k] -= oovv[j,i,a,b] * T3[a,b,c,i,j,k] +@tensoropt R1[c,k] -= 2 * oovv[j,i,b,a] * T3[a,c,b,i,j,k] +@tensoropt R1[c,k] += 2 * oovv[j,i,b,a] * T3[a,b,c,i,j,k] +oovv = nothing +@tensoropt R1[b,j] += 2 * fia[i,a] * T2[a,b,i,j] +@tensoropt R1[b,j] -= fia[i,a] * T2[b,a,i,j] +@tensoropt R1[a,i] += fai[a,i] +end diff --git a/src/algo/uccsdt_triples.jl b/src/algo/uccsdt_triples.jl index 0abc577..d9c8833 100644 --- a/src/algo/uccsdt_triples.jl +++ b/src/algo/uccsdt_triples.jl @@ -1256,3 +1256,420 @@ d_oVvV = nothing @tensoropt R3aab[a,b,A,j,k,I] += fij[i,j] * T3aab[a,b,A,k,i,I] @tensoropt R3aab[a,b,A,k,j,I] -= fij[i,j] * T3aab[a,b,A,k,i,I] end + +function ccsdt_triples!(EC::ECInfo, R3, T2, T3, fij, fab, fai, fia) +d_vvvv = load(EC,"d_vvvv") +@tensoropt R3[e,c,d,i,j,k] += d_vvvv[c,d,a,b] * T3[a,e,b,j,i,k] +@tensoropt R3[c,d,e,i,j,k] -= d_vvvv[c,d,a,b] * T3[a,e,b,j,i,k] +@tensoropt R3[e,c,d,i,j,k] -= d_vvvv[d,c,a,b] * T3[a,e,b,i,j,k] +@tensoropt R3[c,e,d,i,j,k] -= d_vvvv[d,c,a,b] * T3[a,e,b,i,k,j] +@tensoropt R3[c,e,d,i,j,k] += d_vvvv[c,d,a,b] * T3[a,e,b,i,j,k] +@tensoropt R3[c,d,e,i,j,k] += d_vvvv[c,d,a,b] * T3[a,e,b,i,k,j] +d_vvvv = nothing +d_vvvo = load(EC,"d_vvvo") +@tensoropt R3[d,b,c,j,k,i] += d_vvvo[b,c,a,i] * T2[a,d,k,j] +@tensoropt R3[b,d,c,j,k,i] += d_vvvo[b,c,a,i] * T2[a,d,j,k] +@tensoropt R3[b,c,d,j,k,i] -= d_vvvo[b,c,a,i] * T2[a,d,k,j] +@tensoropt R3[d,b,c,j,k,i] -= d_vvvo[c,b,a,i] * T2[a,d,j,k] +@tensoropt R3[d,b,c,j,i,k] += d_vvvo[c,b,a,i] * T2[a,d,k,j] +@tensoropt R3[b,c,d,j,i,k] += d_vvvo[b,c,a,i] * T2[a,d,j,k] +@tensoropt R3[b,c,d,j,i,k] -= d_vvvo[c,b,a,i] * T2[a,d,k,j] +@tensoropt R3[b,d,c,j,i,k] -= d_vvvo[c,b,a,i] * T2[a,d,j,k] +@tensoropt R3[d,b,c,i,j,k] -= d_vvvo[b,c,a,i] * T2[a,d,k,j] +@tensoropt R3[b,d,c,i,j,k] -= d_vvvo[b,c,a,i] * T2[a,d,j,k] +@tensoropt R3[b,d,c,i,j,k] += d_vvvo[c,b,a,i] * T2[a,d,k,j] +@tensoropt R3[b,c,d,i,j,k] += d_vvvo[c,b,a,i] * T2[a,d,j,k] +d_vvvo = nothing +d_vovv = load(EC,"d_vovv") +@tensoropt R3[b,a,c,j,i,k] += d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,k,j] +@tensoropt R3[a,b,c,j,k,i] += d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,k,j] +@tensoropt R3[c,b,a,j,i,k] -= d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,k,j] +@tensoropt R3[c,a,b,j,k,i] -= d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,k,j] +@tensoropt R3[b,c,a,i,j,k] -= d_vovv[a,l,e,d] * T2[c,b,l,i] * T2[d,e,j,k] +@tensoropt R3[b,c,a,j,i,k] -= d_vovv[a,l,e,d] * T2[b,c,l,i] * T2[d,e,j,k] +@tensoropt R3[b,a,c,i,j,k] += d_vovv[a,l,e,d] * T2[b,c,l,i] * T2[d,e,j,k] +@tensoropt R3[b,a,c,j,i,k] += d_vovv[a,l,e,d] * T2[c,b,l,i] * T2[d,e,j,k] +@tensoropt R3[b,a,c,i,j,k] -= d_vovv[a,l,e,d] * T2[c,b,l,i] * T2[d,e,k,j] +@tensoropt R3[b,a,c,j,k,i] -= d_vovv[a,l,e,d] * T2[b,c,l,i] * T2[d,e,j,k] +@tensoropt R3[a,b,c,i,j,k] += d_vovv[a,l,e,d] * T2[b,c,l,i] * T2[d,e,k,j] +@tensoropt R3[a,b,c,j,k,i] += d_vovv[a,l,e,d] * T2[c,b,l,i] * T2[d,e,j,k] +@tensoropt R3[b,c,a,j,i,k] += d_vovv[a,l,e,d] * T2[c,b,l,i] * T2[d,e,k,j] +@tensoropt R3[b,c,a,j,k,i] += d_vovv[a,l,e,d] * T2[b,c,l,i] * T2[d,e,k,j] +@tensoropt R3[a,b,c,j,i,k] -= d_vovv[a,l,e,d] * T2[c,b,l,i] * T2[d,e,k,j] +@tensoropt R3[a,b,c,j,k,i] -= d_vovv[a,l,e,d] * T2[b,c,l,i] * T2[d,e,k,j] +@tensoropt R3[c,b,a,j,k,i] -= d_vovv[a,l,d,e] * T2[b,d,l,i] * T2[e,c,k,j] +@tensoropt R3[b,c,a,j,k,i] -= d_vovv[a,l,d,e] * T2[b,d,l,i] * T2[e,c,j,k] +@tensoropt R3[b,a,c,j,k,i] += d_vovv[a,l,d,e] * T2[b,d,l,i] * T2[e,c,k,j] +@tensoropt R3[c,a,b,j,k,i] += d_vovv[a,l,d,e] * T2[b,d,l,i] * T2[e,c,j,k] +@tensoropt R3[c,a,b,j,i,k] -= d_vovv[a,l,d,e] * T2[b,d,l,i] * T2[e,c,k,j] +@tensoropt R3[b,a,c,j,i,k] -= d_vovv[a,l,d,e] * T2[b,d,l,i] * T2[e,c,j,k] +@tensoropt R3[a,b,c,j,i,k] += d_vovv[a,l,d,e] * T2[b,d,l,i] * T2[e,c,k,j] +@tensoropt R3[a,c,b,j,i,k] += d_vovv[a,l,d,e] * T2[b,d,l,i] * T2[e,c,j,k] +@tensoropt R3[c,b,a,i,j,k] += d_vovv[a,l,d,e] * T2[b,d,l,i] * T2[e,c,k,j] +@tensoropt R3[b,c,a,i,j,k] += d_vovv[a,l,d,e] * T2[b,d,l,i] * T2[e,c,j,k] +@tensoropt R3[a,c,b,i,j,k] -= d_vovv[a,l,d,e] * T2[b,d,l,i] * T2[e,c,k,j] +@tensoropt R3[a,b,c,i,j,k] -= d_vovv[a,l,d,e] * T2[b,d,l,i] * T2[e,c,j,k] +@tensoropt R3[b,c,a,i,j,k] -= d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,k,j] +@tensoropt R3[c,a,b,i,j,k] += d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,k,j] +@tensoropt R3[b,a,c,i,j,k] -= d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,j,k] +@tensoropt R3[a,c,b,i,j,k] += d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,j,k] +@tensoropt R3[c,b,a,j,k,i] += d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,j,k] +@tensoropt R3[b,c,a,j,i,k] += d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,j,k] +@tensoropt R3[a,c,b,j,k,i] -= d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,j,k] +@tensoropt R3[a,b,c,j,i,k] -= d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,j,k] +@tensoropt R3[c,b,a,j,i,k] -= d_vovv[a,l,e,d] * T2[b,d,l,i] * T2[e,c,k,j] +@tensoropt R3[b,c,a,i,j,k] -= d_vovv[a,l,e,d] * T2[b,d,l,i] * T2[e,c,k,j] +@tensoropt R3[b,a,c,j,i,k] += d_vovv[a,l,e,d] * T2[b,d,l,i] * T2[e,c,k,j] +@tensoropt R3[c,a,b,i,j,k] += d_vovv[a,l,e,d] * T2[b,d,l,i] * T2[e,c,k,j] +@tensoropt R3[c,a,b,j,k,i] -= d_vovv[a,l,e,d] * T2[b,d,l,i] * T2[e,c,k,j] +@tensoropt R3[b,a,c,i,j,k] -= d_vovv[a,l,e,d] * T2[b,d,l,i] * T2[e,c,j,k] +@tensoropt R3[a,b,c,j,k,i] += d_vovv[a,l,e,d] * T2[b,d,l,i] * T2[e,c,k,j] +@tensoropt R3[a,c,b,i,j,k] += d_vovv[a,l,e,d] * T2[b,d,l,i] * T2[e,c,j,k] +@tensoropt R3[c,b,a,j,k,i] += d_vovv[a,l,e,d] * T2[b,d,l,i] * T2[e,c,j,k] +@tensoropt R3[b,c,a,j,i,k] += d_vovv[a,l,e,d] * T2[b,d,l,i] * T2[e,c,j,k] +@tensoropt R3[a,c,b,j,k,i] -= d_vovv[a,l,e,d] * T2[b,d,l,i] * T2[e,c,j,k] +@tensoropt R3[a,b,c,j,i,k] -= d_vovv[a,l,e,d] * T2[b,d,l,i] * T2[e,c,j,k] +@tensoropt R3[b,a,c,j,i,k] -= 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,k,j] +@tensoropt R3[a,b,c,j,k,i] -= 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,k,j] +@tensoropt R3[c,b,a,j,i,k] += 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,k,j] +@tensoropt R3[c,a,b,j,k,i] += 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,k,j] +@tensoropt R3[b,c,a,i,j,k] += 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,k,j] +@tensoropt R3[c,a,b,i,j,k] -= 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,k,j] +@tensoropt R3[b,a,c,i,j,k] += 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,j,k] +@tensoropt R3[a,c,b,i,j,k] -= 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,j,k] +@tensoropt R3[c,b,a,j,k,i] -= 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,j,k] +@tensoropt R3[b,c,a,j,i,k] -= 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,j,k] +@tensoropt R3[a,c,b,j,k,i] += 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,j,k] +@tensoropt R3[a,b,c,j,i,k] += 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,j,k] +d_vovv = nothing +d_vovo = load(EC,"d_vovo") +@tensoropt R3[c,b,d,k,l,j] -= d_vovo[b,i,a,j] * T3[d,a,c,i,l,k] +@tensoropt R3[b,c,d,k,l,j] -= d_vovo[b,i,a,j] * T3[d,a,c,i,k,l] +@tensoropt R3[b,c,d,k,l,j] += d_vovo[b,i,a,j] * T3[c,a,d,i,l,k] +@tensoropt R3[c,d,b,k,l,j] += d_vovo[b,i,a,j] * T3[d,a,c,i,k,l] +@tensoropt R3[c,d,b,k,j,l] -= d_vovo[b,i,a,j] * T3[d,a,c,i,l,k] +@tensoropt R3[b,c,d,k,j,l] -= d_vovo[b,i,a,j] * T3[c,a,d,i,k,l] +@tensoropt R3[c,b,d,k,j,l] += d_vovo[b,i,a,j] * T3[c,a,d,i,l,k] +@tensoropt R3[c,d,b,k,j,l] += d_vovo[b,i,a,j] * T3[c,a,d,i,k,l] +@tensoropt R3[c,b,d,j,k,l] += d_vovo[b,i,a,j] * T3[d,a,c,i,l,k] +@tensoropt R3[b,c,d,j,k,l] += d_vovo[b,i,a,j] * T3[d,a,c,i,k,l] +@tensoropt R3[c,d,b,j,k,l] -= d_vovo[b,i,a,j] * T3[c,a,d,i,l,k] +@tensoropt R3[c,b,d,j,k,l] -= d_vovo[b,i,a,j] * T3[c,a,d,i,k,l] +@tensoropt R3[c,d,b,k,l,j] -= d_vovo[b,i,a,j] * T3[a,c,d,i,k,l] +@tensoropt R3[c,b,d,k,l,j] += d_vovo[b,i,a,j] * T3[a,d,c,i,k,l] +@tensoropt R3[c,b,d,k,j,l] -= d_vovo[b,i,a,j] * T3[a,c,d,i,k,l] +@tensoropt R3[b,c,d,k,j,l] += d_vovo[b,i,a,j] * T3[a,d,c,i,k,l] +@tensoropt R3[c,d,b,j,k,l] += d_vovo[b,i,a,j] * T3[a,c,d,i,k,l] +@tensoropt R3[b,c,d,j,k,l] -= d_vovo[b,i,a,j] * T3[a,c,d,i,k,l] +d_vovo = nothing +d_voov = load(EC,"d_voov") +@tensoropt R3[c,d,b,k,l,j] -= d_voov[b,i,j,a] * T3[d,a,c,i,l,k] +@tensoropt R3[c,d,b,k,l,j] -= d_voov[b,i,j,a] * T3[c,a,d,i,k,l] +@tensoropt R3[c,b,d,k,l,j] += d_voov[b,i,j,a] * T3[c,a,d,i,l,k] +@tensoropt R3[c,b,d,k,l,j] += d_voov[b,i,j,a] * T3[d,a,c,i,k,l] +@tensoropt R3[c,b,d,k,j,l] -= d_voov[b,i,j,a] * T3[d,a,c,i,l,k] +@tensoropt R3[c,b,d,k,j,l] -= d_voov[b,i,j,a] * T3[c,a,d,i,k,l] +@tensoropt R3[b,c,d,k,j,l] += d_voov[b,i,j,a] * T3[c,a,d,i,l,k] +@tensoropt R3[b,c,d,k,j,l] += d_voov[b,i,j,a] * T3[d,a,c,i,k,l] +@tensoropt R3[c,d,b,j,k,l] += d_voov[b,i,j,a] * T3[d,a,c,i,l,k] +@tensoropt R3[c,d,b,j,k,l] += d_voov[b,i,j,a] * T3[c,a,d,i,k,l] +@tensoropt R3[b,c,d,j,k,l] -= d_voov[b,i,j,a] * T3[d,a,c,i,l,k] +@tensoropt R3[b,c,d,j,k,l] -= d_voov[b,i,j,a] * T3[c,a,d,i,k,l] +@tensoropt R3[c,d,b,k,l,j] += 2 * d_voov[b,i,j,a] * T3[a,c,d,i,k,l] +@tensoropt R3[c,b,d,k,l,j] -= 2 * d_voov[b,i,j,a] * T3[a,d,c,i,k,l] +@tensoropt R3[c,b,d,k,j,l] += 2 * d_voov[b,i,j,a] * T3[a,c,d,i,k,l] +@tensoropt R3[b,c,d,k,j,l] -= 2 * d_voov[b,i,j,a] * T3[a,d,c,i,k,l] +@tensoropt R3[c,d,b,j,k,l] -= 2 * d_voov[b,i,j,a] * T3[a,c,d,i,k,l] +@tensoropt R3[b,c,d,j,k,l] += 2 * d_voov[b,i,j,a] * T3[a,c,d,i,k,l] +d_voov = nothing +d_vooo = load(EC,"d_vooo") +@tensoropt R3[b,a,c,l,j,k] -= d_vooo[a,i,j,k] * T2[c,b,i,l] +@tensoropt R3[a,b,c,j,l,k] -= d_vooo[a,i,j,k] * T2[c,b,i,l] +@tensoropt R3[a,b,c,l,j,k] += d_vooo[a,i,j,k] * T2[b,c,i,l] +@tensoropt R3[b,c,a,j,l,k] += d_vooo[a,i,j,k] * T2[c,b,i,l] +@tensoropt R3[b,c,a,l,j,k] -= d_vooo[a,i,k,j] * T2[c,b,i,l] +@tensoropt R3[a,b,c,j,k,l] -= d_vooo[a,i,j,k] * T2[b,c,i,l] +@tensoropt R3[b,a,c,l,j,k] += d_vooo[a,i,k,j] * T2[b,c,i,l] +@tensoropt R3[b,c,a,j,k,l] += d_vooo[a,i,j,k] * T2[b,c,i,l] +@tensoropt R3[b,a,c,j,l,k] += d_vooo[a,i,k,j] * T2[c,b,i,l] +@tensoropt R3[a,b,c,j,k,l] += d_vooo[a,i,k,j] * T2[c,b,i,l] +@tensoropt R3[b,c,a,j,l,k] -= d_vooo[a,i,k,j] * T2[b,c,i,l] +@tensoropt R3[b,a,c,j,k,l] -= d_vooo[a,i,k,j] * T2[b,c,i,l] +d_vooo = nothing +d_oooo = load(EC,"d_oooo") +@tensoropt R3[a,b,c,m,k,l] += d_oooo[j,i,l,k] * T3[b,c,a,i,j,m] +@tensoropt R3[a,b,c,m,k,l] -= d_oooo[j,i,l,k] * T3[a,b,c,i,j,m] +@tensoropt R3[a,b,c,k,m,l] -= d_oooo[j,i,l,k] * T3[c,b,a,i,j,m] +@tensoropt R3[a,b,c,k,l,m] -= d_oooo[j,i,l,k] * T3[c,a,b,i,j,m] +@tensoropt R3[a,b,c,k,m,l] += d_oooo[j,i,l,k] * T3[a,c,b,i,j,m] +@tensoropt R3[a,b,c,k,l,m] += d_oooo[j,i,l,k] * T3[a,b,c,i,j,m] +d_oooo = nothing +d_oovo = load(EC,"d_oovo") +@tensoropt R3[a,b,c,k,j,i] -= d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[b,c,m,k] +@tensoropt R3[b,a,c,k,i,j] -= d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[b,c,m,k] +@tensoropt R3[b,a,c,k,j,i] += d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[c,b,m,k] +@tensoropt R3[b,c,a,k,i,j] += d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[c,b,m,k] +@tensoropt R3[c,a,b,k,j,i] += d_oovo[m,l,d,i] * T2[b,a,l,j] * T2[c,d,m,k] +@tensoropt R3[a,c,b,j,k,i] += d_oovo[m,l,d,i] * T2[b,a,l,j] * T2[c,d,m,k] +@tensoropt R3[a,b,c,k,j,i] -= d_oovo[m,l,d,i] * T2[b,a,l,j] * T2[c,d,m,k] +@tensoropt R3[c,a,b,j,k,i] -= d_oovo[m,l,d,i] * T2[a,b,l,j] * T2[c,d,m,k] +@tensoropt R3[c,a,b,k,i,j] += d_oovo[m,l,d,i] * T2[a,b,l,j] * T2[c,d,m,k] +@tensoropt R3[a,b,c,j,i,k] += d_oovo[m,l,d,i] * T2[b,a,l,j] * T2[c,d,m,k] +@tensoropt R3[a,b,c,k,i,j] -= d_oovo[m,l,d,i] * T2[a,b,l,j] * T2[c,d,m,k] +@tensoropt R3[a,c,b,j,i,k] -= d_oovo[m,l,d,i] * T2[a,b,l,j] * T2[c,d,m,k] +@tensoropt R3[c,a,b,i,k,j] -= d_oovo[m,l,d,i] * T2[b,a,l,j] * T2[c,d,m,k] +@tensoropt R3[a,c,b,i,j,k] -= d_oovo[m,l,d,i] * T2[b,a,l,j] * T2[c,d,m,k] +@tensoropt R3[a,c,b,i,k,j] += d_oovo[m,l,d,i] * T2[a,b,l,j] * T2[c,d,m,k] +@tensoropt R3[a,b,c,i,j,k] += d_oovo[m,l,d,i] * T2[a,b,l,j] * T2[c,d,m,k] +@tensoropt R3[b,c,a,k,j,i] += d_oovo[m,l,d,i] * T2[a,d,l,j] * T2[c,b,m,k] +@tensoropt R3[b,c,a,j,k,i] += d_oovo[m,l,d,i] * T2[a,d,l,j] * T2[b,c,m,k] +@tensoropt R3[b,a,c,k,j,i] -= d_oovo[m,l,d,i] * T2[a,d,l,j] * T2[b,c,m,k] +@tensoropt R3[b,a,c,j,k,i] -= d_oovo[m,l,d,i] * T2[a,d,l,j] * T2[c,b,m,k] +@tensoropt R3[b,a,c,k,i,j] += d_oovo[m,l,d,i] * T2[a,d,l,j] * T2[c,b,m,k] +@tensoropt R3[b,a,c,j,i,k] += d_oovo[m,l,d,i] * T2[a,d,l,j] * T2[b,c,m,k] +@tensoropt R3[a,b,c,k,i,j] -= d_oovo[m,l,d,i] * T2[a,d,l,j] * T2[b,c,m,k] +@tensoropt R3[a,b,c,j,i,k] -= d_oovo[m,l,d,i] * T2[a,d,l,j] * T2[c,b,m,k] +@tensoropt R3[b,c,a,i,k,j] -= d_oovo[m,l,d,i] * T2[a,d,l,j] * T2[c,b,m,k] +@tensoropt R3[b,c,a,i,j,k] -= d_oovo[m,l,d,i] * T2[a,d,l,j] * T2[b,c,m,k] +@tensoropt R3[a,b,c,i,k,j] += d_oovo[m,l,d,i] * T2[a,d,l,j] * T2[c,b,m,k] +@tensoropt R3[a,b,c,i,j,k] += d_oovo[m,l,d,i] * T2[a,d,l,j] * T2[b,c,m,k] +@tensoropt R3[a,b,c,j,k,i] += d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[c,b,m,k] +@tensoropt R3[b,c,a,j,k,i] -= d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[c,b,m,k] +@tensoropt R3[a,b,c,j,i,k] += d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[b,c,m,k] +@tensoropt R3[b,c,a,j,i,k] -= d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[b,c,m,k] +@tensoropt R3[b,a,c,i,k,j] -= d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[c,b,m,k] +@tensoropt R3[a,b,c,i,j,k] -= d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[c,b,m,k] +@tensoropt R3[b,c,a,i,k,j] += d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[b,c,m,k] +@tensoropt R3[b,a,c,i,j,k] += d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[b,c,m,k] +@tensoropt R3[c,a,b,j,k,i] += d_oovo[m,l,d,i] * T2[b,a,l,m] * T2[d,c,k,j] +@tensoropt R3[a,c,b,j,k,i] += d_oovo[m,l,d,i] * T2[b,a,l,m] * T2[d,c,j,k] +@tensoropt R3[a,b,c,j,k,i] -= d_oovo[m,l,d,i] * T2[b,a,l,m] * T2[d,c,k,j] +@tensoropt R3[c,a,b,j,k,i] -= d_oovo[m,l,d,i] * T2[a,b,l,m] * T2[d,c,j,k] +@tensoropt R3[c,a,b,j,i,k] += d_oovo[m,l,d,i] * T2[a,b,l,m] * T2[d,c,k,j] +@tensoropt R3[a,b,c,j,i,k] += d_oovo[m,l,d,i] * T2[b,a,l,m] * T2[d,c,j,k] +@tensoropt R3[a,b,c,j,i,k] -= d_oovo[m,l,d,i] * T2[a,b,l,m] * T2[d,c,k,j] +@tensoropt R3[a,c,b,j,i,k] -= d_oovo[m,l,d,i] * T2[a,b,l,m] * T2[d,c,j,k] +@tensoropt R3[c,a,b,i,j,k] -= d_oovo[m,l,d,i] * T2[b,a,l,m] * T2[d,c,k,j] +@tensoropt R3[a,c,b,i,j,k] -= d_oovo[m,l,d,i] * T2[b,a,l,m] * T2[d,c,j,k] +@tensoropt R3[a,c,b,i,j,k] += d_oovo[m,l,d,i] * T2[a,b,l,m] * T2[d,c,k,j] +@tensoropt R3[a,b,c,i,j,k] += d_oovo[m,l,d,i] * T2[a,b,l,m] * T2[d,c,j,k] +@tensoropt R3[a,b,c,k,j,i] += 2 * d_oovo[m,l,d,i] * T2[b,a,l,j] * T2[d,c,m,k] +@tensoropt R3[a,b,c,k,i,j] += 2 * d_oovo[m,l,d,i] * T2[a,b,l,j] * T2[d,c,m,k] +@tensoropt R3[c,a,b,k,j,i] -= 2 * d_oovo[m,l,d,i] * T2[b,a,l,j] * T2[d,c,m,k] +@tensoropt R3[c,a,b,k,i,j] -= 2 * d_oovo[m,l,d,i] * T2[a,b,l,j] * T2[d,c,m,k] +@tensoropt R3[a,c,b,j,k,i] -= 2 * d_oovo[m,l,d,i] * T2[b,a,l,j] * T2[d,c,m,k] +@tensoropt R3[c,a,b,j,k,i] += 2 * d_oovo[m,l,d,i] * T2[a,b,l,j] * T2[d,c,m,k] +@tensoropt R3[a,b,c,j,i,k] -= 2 * d_oovo[m,l,d,i] * T2[b,a,l,j] * T2[d,c,m,k] +@tensoropt R3[a,c,b,j,i,k] += 2 * d_oovo[m,l,d,i] * T2[a,b,l,j] * T2[d,c,m,k] +@tensoropt R3[c,a,b,i,k,j] += 2 * d_oovo[m,l,d,i] * T2[b,a,l,j] * T2[d,c,m,k] +@tensoropt R3[a,c,b,i,j,k] += 2 * d_oovo[m,l,d,i] * T2[b,a,l,j] * T2[d,c,m,k] +@tensoropt R3[a,c,b,i,k,j] -= 2 * d_oovo[m,l,d,i] * T2[a,b,l,j] * T2[d,c,m,k] +@tensoropt R3[a,b,c,i,j,k] -= 2 * d_oovo[m,l,d,i] * T2[a,b,l,j] * T2[d,c,m,k] +d_oovo = nothing +oovv = ints2(EC,"oovv") +@tensoropt R3[b,a,c,k,i,j] += oovv[m,l,e,d] * T2[d,a,j,i] * T3[c,b,e,l,m,k] +@tensoropt R3[a,b,c,i,k,j] += oovv[m,l,e,d] * T2[d,a,j,i] * T3[c,b,e,l,m,k] +@tensoropt R3[a,b,c,k,i,j] -= oovv[m,l,e,d] * T2[d,a,j,i] * T3[b,c,e,l,m,k] +@tensoropt R3[b,c,a,i,k,j] -= oovv[m,l,e,d] * T2[d,a,j,i] * T3[c,b,e,l,m,k] +@tensoropt R3[b,c,a,k,i,j] += oovv[m,l,e,d] * T2[d,a,i,j] * T3[c,b,e,l,m,k] +@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[d,a,j,i] * T3[b,c,e,l,m,k] +@tensoropt R3[b,a,c,k,i,j] -= oovv[m,l,e,d] * T2[d,a,i,j] * T3[b,c,e,l,m,k] +@tensoropt R3[b,c,a,i,j,k] -= oovv[m,l,e,d] * T2[d,a,j,i] * T3[b,c,e,l,m,k] +@tensoropt R3[b,a,c,i,k,j] -= oovv[m,l,e,d] * T2[d,a,i,j] * T3[c,b,e,l,m,k] +@tensoropt R3[a,b,c,i,j,k] -= oovv[m,l,e,d] * T2[d,a,i,j] * T3[c,b,e,l,m,k] +@tensoropt R3[b,c,a,i,k,j] += oovv[m,l,e,d] * T2[d,a,i,j] * T3[b,c,e,l,m,k] +@tensoropt R3[b,a,c,i,j,k] += oovv[m,l,e,d] * T2[d,a,i,j] * T3[b,c,e,l,m,k] +@tensoropt R3[b,a,c,k,i,j] += oovv[m,l,e,d] * T2[d,a,j,i] * T3[e,c,b,l,m,k] +@tensoropt R3[a,b,c,i,k,j] += oovv[m,l,e,d] * T2[d,a,j,i] * T3[e,c,b,l,m,k] +@tensoropt R3[a,b,c,k,i,j] -= oovv[m,l,e,d] * T2[d,a,j,i] * T3[e,b,c,l,m,k] +@tensoropt R3[b,c,a,i,k,j] -= oovv[m,l,e,d] * T2[d,a,j,i] * T3[e,c,b,l,m,k] +@tensoropt R3[b,c,a,k,i,j] += oovv[m,l,e,d] * T2[d,a,i,j] * T3[e,c,b,l,m,k] +@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[d,a,j,i] * T3[e,b,c,l,m,k] +@tensoropt R3[b,a,c,k,i,j] -= oovv[m,l,e,d] * T2[d,a,i,j] * T3[e,b,c,l,m,k] +@tensoropt R3[b,c,a,i,j,k] -= oovv[m,l,e,d] * T2[d,a,j,i] * T3[e,b,c,l,m,k] +@tensoropt R3[b,a,c,i,k,j] -= oovv[m,l,e,d] * T2[d,a,i,j] * T3[e,c,b,l,m,k] +@tensoropt R3[a,b,c,i,j,k] -= oovv[m,l,e,d] * T2[d,a,i,j] * T3[e,c,b,l,m,k] +@tensoropt R3[b,c,a,i,k,j] += oovv[m,l,e,d] * T2[d,a,i,j] * T3[e,b,c,l,m,k] +@tensoropt R3[b,a,c,i,j,k] += oovv[m,l,e,d] * T2[d,a,i,j] * T3[e,b,c,l,m,k] +@tensoropt R3[a,b,c,k,i,j] += oovv[m,l,e,d] * T2[d,e,i,j] * T3[b,c,a,l,m,k] +@tensoropt R3[a,b,c,k,i,j] -= oovv[m,l,e,d] * T2[d,e,i,j] * T3[a,b,c,l,m,k] +@tensoropt R3[a,b,c,i,k,j] -= oovv[m,l,e,d] * T2[d,e,i,j] * T3[c,b,a,l,m,k] +@tensoropt R3[a,b,c,i,j,k] -= oovv[m,l,e,d] * T2[d,e,i,j] * T3[c,a,b,l,m,k] +@tensoropt R3[a,b,c,i,k,j] += oovv[m,l,e,d] * T2[d,e,i,j] * T3[a,c,b,l,m,k] +@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[d,e,i,j] * T3[a,b,c,l,m,k] +@tensoropt R3[c,a,b,j,i,k] += oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,c,e,k,m,j] +@tensoropt R3[a,c,b,i,j,k] += oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,c,e,k,m,j] +@tensoropt R3[a,b,c,j,i,k] -= oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,c,e,k,m,j] +@tensoropt R3[c,a,b,i,j,k] -= oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,c,e,k,m,j] +@tensoropt R3[c,a,b,j,k,i] += oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,c,e,k,m,j] +@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,c,e,j,m,k] +@tensoropt R3[a,b,c,j,k,i] -= oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,c,e,k,m,j] +@tensoropt R3[a,c,b,i,j,k] -= oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,c,e,j,m,k] +@tensoropt R3[c,a,b,j,k,i] -= oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,c,e,j,m,k] +@tensoropt R3[a,c,b,j,i,k] -= oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,c,e,j,m,k] +@tensoropt R3[a,c,b,j,k,i] += oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,c,e,j,m,k] +@tensoropt R3[a,b,c,j,i,k] += oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,c,e,j,m,k] +@tensoropt R3[b,c,a,j,i,k] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,c,b,k,m,j] +@tensoropt R3[b,c,a,i,j,k] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,b,c,k,m,j] +@tensoropt R3[b,a,c,j,i,k] -= oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,b,c,k,m,j] +@tensoropt R3[b,a,c,i,j,k] -= oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,c,b,k,m,j] +@tensoropt R3[b,a,c,j,k,i] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,c,b,k,m,j] +@tensoropt R3[b,a,c,i,j,k] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,b,c,j,m,k] +@tensoropt R3[a,b,c,j,k,i] -= oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,b,c,k,m,j] +@tensoropt R3[a,b,c,i,j,k] -= oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,c,b,j,m,k] +@tensoropt R3[b,c,a,j,k,i] -= oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,c,b,j,m,k] +@tensoropt R3[b,c,a,j,i,k] -= oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,b,c,j,m,k] +@tensoropt R3[a,b,c,j,k,i] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,c,b,j,m,k] +@tensoropt R3[a,b,c,j,i,k] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,b,c,j,m,k] +@tensoropt R3[b,c,a,j,k,i] += oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,c,b,k,m,j] +@tensoropt R3[b,c,a,j,k,i] += oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,b,c,j,m,k] +@tensoropt R3[b,a,c,j,k,i] -= oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,b,c,k,m,j] +@tensoropt R3[b,a,c,j,k,i] -= oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,c,b,j,m,k] +@tensoropt R3[b,a,c,j,i,k] += oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,c,b,k,m,j] +@tensoropt R3[b,a,c,j,i,k] += oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,b,c,j,m,k] +@tensoropt R3[a,b,c,j,i,k] -= oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,b,c,k,m,j] +@tensoropt R3[a,b,c,j,i,k] -= oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,c,b,j,m,k] +@tensoropt R3[b,c,a,i,j,k] -= oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,c,b,k,m,j] +@tensoropt R3[b,c,a,i,j,k] -= oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,b,c,j,m,k] +@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,c,b,k,m,j] +@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,b,c,j,m,k] +@tensoropt R3[c,a,b,j,i,k] += oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,m,k,j] +@tensoropt R3[a,c,b,i,j,k] += oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,m,k,j] +@tensoropt R3[a,b,c,j,i,k] -= oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,m,k,j] +@tensoropt R3[c,a,b,i,j,k] -= oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,m,k,j] +@tensoropt R3[c,a,b,j,k,i] += oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,m,k,j] +@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,m,j,k] +@tensoropt R3[a,b,c,j,k,i] -= oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,m,k,j] +@tensoropt R3[a,c,b,i,j,k] -= oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,m,j,k] +@tensoropt R3[c,a,b,j,k,i] -= oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,m,j,k] +@tensoropt R3[a,c,b,j,i,k] -= oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,m,j,k] +@tensoropt R3[a,c,b,j,k,i] += oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,m,j,k] +@tensoropt R3[a,b,c,j,i,k] += oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,m,j,k] +@tensoropt R3[b,c,a,j,k,i] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,b,c,m,j,k] +@tensoropt R3[b,a,c,j,k,i] -= oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,c,b,m,j,k] +@tensoropt R3[b,a,c,j,i,k] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,b,c,m,j,k] +@tensoropt R3[a,b,c,j,i,k] -= oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,c,b,m,j,k] +@tensoropt R3[b,c,a,i,j,k] -= oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,b,c,m,j,k] +@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,b,c,m,j,k] +@tensoropt R3[c,a,b,i,j,k] += oovv[m,l,e,d] * T2[a,b,l,m] * T3[d,e,c,j,k,i] +@tensoropt R3[a,b,c,i,j,k] -= oovv[m,l,e,d] * T2[a,b,l,m] * T3[d,e,c,j,k,i] +@tensoropt R3[c,a,b,i,j,k] -= oovv[m,l,e,d] * T2[b,a,l,m] * T3[d,e,c,i,k,j] +@tensoropt R3[a,c,b,i,j,k] -= oovv[m,l,e,d] * T2[b,a,l,m] * T3[d,e,c,i,j,k] +@tensoropt R3[a,c,b,i,j,k] += oovv[m,l,e,d] * T2[a,b,l,m] * T3[d,e,c,i,k,j] +@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[a,b,l,m] * T3[d,e,c,i,j,k] +@tensoropt R3[b,c,a,j,k,i] += oovv[m,l,e,d] * T2[a,d,l,i] * T3[c,e,b,m,k,j] +@tensoropt R3[b,c,a,j,k,i] += oovv[m,l,e,d] * T2[a,d,l,i] * T3[b,e,c,m,j,k] +@tensoropt R3[b,a,c,j,k,i] -= oovv[m,l,e,d] * T2[a,d,l,i] * T3[b,e,c,m,k,j] +@tensoropt R3[b,a,c,j,k,i] -= oovv[m,l,e,d] * T2[a,d,l,i] * T3[c,e,b,m,j,k] +@tensoropt R3[b,a,c,j,i,k] += oovv[m,l,e,d] * T2[a,d,l,i] * T3[c,e,b,m,k,j] +@tensoropt R3[b,a,c,j,i,k] += oovv[m,l,e,d] * T2[a,d,l,i] * T3[b,e,c,m,j,k] +@tensoropt R3[a,b,c,j,i,k] -= oovv[m,l,e,d] * T2[a,d,l,i] * T3[b,e,c,m,k,j] +@tensoropt R3[a,b,c,j,i,k] -= oovv[m,l,e,d] * T2[a,d,l,i] * T3[c,e,b,m,j,k] +@tensoropt R3[b,c,a,i,j,k] -= oovv[m,l,e,d] * T2[a,d,l,i] * T3[c,e,b,m,k,j] +@tensoropt R3[b,c,a,i,j,k] -= oovv[m,l,e,d] * T2[a,d,l,i] * T3[b,e,c,m,j,k] +@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[a,d,l,i] * T3[c,e,b,m,k,j] +@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[a,d,l,i] * T3[b,e,c,m,j,k] +@tensoropt R3[a,b,c,j,k,i] += oovv[m,l,d,e] * T2[d,e,l,i] * T3[c,a,b,m,j,k] +@tensoropt R3[a,b,c,j,k,i] -= oovv[m,l,d,e] * T2[d,e,l,i] * T3[b,c,a,m,j,k] +@tensoropt R3[a,b,c,j,i,k] += oovv[m,l,d,e] * T2[d,e,l,i] * T3[b,a,c,m,j,k] +@tensoropt R3[a,b,c,j,i,k] -= oovv[m,l,d,e] * T2[d,e,l,i] * T3[a,c,b,m,j,k] +@tensoropt R3[a,b,c,i,j,k] -= oovv[m,l,d,e] * T2[d,e,l,i] * T3[c,a,b,m,j,k] +@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,d,e] * T2[d,e,l,i] * T3[a,b,c,m,j,k] +@tensoropt R3[b,c,a,i,j,k] += oovv[m,l,e,d] * T2[a,d,l,m] * T3[e,b,c,k,i,j] +@tensoropt R3[b,a,c,i,j,k] -= oovv[m,l,e,d] * T2[a,d,l,m] * T3[e,c,b,k,i,j] +@tensoropt R3[b,a,c,i,j,k] += oovv[m,l,e,d] * T2[a,d,l,m] * T3[e,b,c,j,i,k] +@tensoropt R3[a,b,c,i,j,k] -= oovv[m,l,e,d] * T2[a,d,l,m] * T3[e,c,b,j,i,k] +@tensoropt R3[b,c,a,i,j,k] -= oovv[m,l,e,d] * T2[a,d,l,m] * T3[e,b,c,i,j,k] +@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[a,d,l,m] * T3[e,b,c,i,j,k] +@tensoropt R3[b,a,c,k,i,j] -= 2 * oovv[m,l,e,d] * T2[d,a,j,i] * T3[c,e,b,l,m,k] +@tensoropt R3[a,b,c,i,k,j] -= 2 * oovv[m,l,e,d] * T2[d,a,j,i] * T3[c,e,b,l,m,k] +@tensoropt R3[a,b,c,k,i,j] += 2 * oovv[m,l,e,d] * T2[d,a,j,i] * T3[b,e,c,l,m,k] +@tensoropt R3[b,c,a,i,k,j] += 2 * oovv[m,l,e,d] * T2[d,a,j,i] * T3[c,e,b,l,m,k] +@tensoropt R3[b,c,a,k,i,j] -= 2 * oovv[m,l,e,d] * T2[d,a,i,j] * T3[c,e,b,l,m,k] +@tensoropt R3[a,b,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[d,a,j,i] * T3[b,e,c,l,m,k] +@tensoropt R3[b,a,c,k,i,j] += 2 * oovv[m,l,e,d] * T2[d,a,i,j] * T3[b,e,c,l,m,k] +@tensoropt R3[b,c,a,i,j,k] += 2 * oovv[m,l,e,d] * T2[d,a,j,i] * T3[b,e,c,l,m,k] +@tensoropt R3[b,a,c,i,k,j] += 2 * oovv[m,l,e,d] * T2[d,a,i,j] * T3[c,e,b,l,m,k] +@tensoropt R3[a,b,c,i,j,k] += 2 * oovv[m,l,e,d] * T2[d,a,i,j] * T3[c,e,b,l,m,k] +@tensoropt R3[b,c,a,i,k,j] -= 2 * oovv[m,l,e,d] * T2[d,a,i,j] * T3[b,e,c,l,m,k] +@tensoropt R3[b,a,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[d,a,i,j] * T3[b,e,c,l,m,k] +@tensoropt R3[c,a,b,j,i,k] -= 2 * oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,k,m,j] +@tensoropt R3[a,c,b,i,j,k] -= 2 * oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,k,m,j] +@tensoropt R3[a,b,c,j,i,k] += 2 * oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,k,m,j] +@tensoropt R3[c,a,b,i,j,k] += 2 * oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,k,m,j] +@tensoropt R3[c,a,b,j,k,i] -= 2 * oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,k,m,j] +@tensoropt R3[a,b,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,j,m,k] +@tensoropt R3[a,b,c,j,k,i] += 2 * oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,k,m,j] +@tensoropt R3[a,c,b,i,j,k] += 2 * oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,j,m,k] +@tensoropt R3[c,a,b,j,k,i] += 2 * oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,j,m,k] +@tensoropt R3[a,c,b,j,i,k] += 2 * oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,j,m,k] +@tensoropt R3[a,c,b,j,k,i] -= 2 * oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,j,m,k] +@tensoropt R3[a,b,c,j,i,k] -= 2 * oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,j,m,k] +@tensoropt R3[b,c,a,j,k,i] -= 2 * oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,b,c,m,j,k] +@tensoropt R3[b,a,c,j,k,i] += 2 * oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,c,b,m,j,k] +@tensoropt R3[b,a,c,j,i,k] -= 2 * oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,b,c,m,j,k] +@tensoropt R3[a,b,c,j,i,k] += 2 * oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,c,b,m,j,k] +@tensoropt R3[b,c,a,i,j,k] += 2 * oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,b,c,m,j,k] +@tensoropt R3[a,b,c,i,j,k] -= 2 * oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,b,c,m,j,k] +@tensoropt R3[b,c,a,j,k,i] -= 2 * oovv[m,l,e,d] * T2[a,d,l,i] * T3[e,b,c,m,j,k] +@tensoropt R3[b,a,c,j,k,i] += 2 * oovv[m,l,e,d] * T2[a,d,l,i] * T3[e,c,b,m,j,k] +@tensoropt R3[b,a,c,j,i,k] -= 2 * oovv[m,l,e,d] * T2[a,d,l,i] * T3[e,b,c,m,j,k] +@tensoropt R3[a,b,c,j,i,k] += 2 * oovv[m,l,e,d] * T2[a,d,l,i] * T3[e,c,b,m,j,k] +@tensoropt R3[b,c,a,i,j,k] += 2 * oovv[m,l,e,d] * T2[a,d,l,i] * T3[e,b,c,m,j,k] +@tensoropt R3[a,b,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[a,d,l,i] * T3[e,b,c,m,j,k] +@tensoropt R3[b,c,a,j,k,i] -= 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[c,e,b,m,k,j] +@tensoropt R3[b,c,a,j,k,i] -= 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[b,e,c,m,j,k] +@tensoropt R3[b,a,c,j,k,i] += 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[b,e,c,m,k,j] +@tensoropt R3[b,a,c,j,k,i] += 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[c,e,b,m,j,k] +@tensoropt R3[b,a,c,j,i,k] -= 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[c,e,b,m,k,j] +@tensoropt R3[b,a,c,j,i,k] -= 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[b,e,c,m,j,k] +@tensoropt R3[a,b,c,j,i,k] += 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[b,e,c,m,k,j] +@tensoropt R3[a,b,c,j,i,k] += 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[c,e,b,m,j,k] +@tensoropt R3[b,c,a,i,j,k] += 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[c,e,b,m,k,j] +@tensoropt R3[b,c,a,i,j,k] += 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[b,e,c,m,j,k] +@tensoropt R3[a,b,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[c,e,b,m,k,j] +@tensoropt R3[a,b,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[b,e,c,m,j,k] +@tensoropt R3[a,b,c,j,k,i] -= 2 * oovv[m,l,e,d] * T2[d,e,l,i] * T3[c,a,b,m,j,k] +@tensoropt R3[a,b,c,j,k,i] += 2 * oovv[m,l,e,d] * T2[d,e,l,i] * T3[b,c,a,m,j,k] +@tensoropt R3[a,b,c,j,i,k] -= 2 * oovv[m,l,e,d] * T2[d,e,l,i] * T3[b,a,c,m,j,k] +@tensoropt R3[a,b,c,j,i,k] += 2 * oovv[m,l,e,d] * T2[d,e,l,i] * T3[a,c,b,m,j,k] +@tensoropt R3[a,b,c,i,j,k] += 2 * oovv[m,l,e,d] * T2[d,e,l,i] * T3[c,a,b,m,j,k] +@tensoropt R3[a,b,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[d,e,l,i] * T3[a,b,c,m,j,k] +@tensoropt R3[b,c,a,i,j,k] -= 2 * oovv[m,l,e,d] * T2[d,a,l,m] * T3[e,b,c,k,i,j] +@tensoropt R3[b,a,c,i,j,k] += 2 * oovv[m,l,e,d] * T2[d,a,l,m] * T3[e,c,b,k,i,j] +@tensoropt R3[b,a,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[d,a,l,m] * T3[e,b,c,j,i,k] +@tensoropt R3[a,b,c,i,j,k] += 2 * oovv[m,l,e,d] * T2[d,a,l,m] * T3[e,c,b,j,i,k] +@tensoropt R3[b,c,a,i,j,k] += 2 * oovv[m,l,e,d] * T2[d,a,l,m] * T3[e,b,c,i,j,k] +@tensoropt R3[a,b,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[d,a,l,m] * T3[e,b,c,i,j,k] +@tensoropt R3[b,c,a,j,k,i] += 4 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[e,b,c,m,j,k] +@tensoropt R3[b,a,c,j,k,i] -= 4 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[e,c,b,m,j,k] +@tensoropt R3[b,a,c,j,i,k] += 4 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[e,b,c,m,j,k] +@tensoropt R3[a,b,c,j,i,k] -= 4 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[e,c,b,m,j,k] +@tensoropt R3[b,c,a,i,j,k] -= 4 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[e,b,c,m,j,k] +@tensoropt R3[a,b,c,i,j,k] += 4 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[e,b,c,m,j,k] +oovv = nothing +@tensoropt R3[a,b,c,j,k,l] -= fij[i,j] * T3[a,b,c,i,k,l] +@tensoropt R3[a,b,c,j,k,l] += fij[i,j] * T3[c,a,b,i,k,l] +@tensoropt R3[a,b,c,k,j,l] += fij[i,j] * T3[a,c,b,i,k,l] +@tensoropt R3[a,b,c,k,j,l] -= fij[i,j] * T3[b,a,c,i,k,l] +@tensoropt R3[a,b,c,k,l,j] += fij[i,j] * T3[b,c,a,i,k,l] +@tensoropt R3[a,b,c,k,l,j] -= fij[i,j] * T3[c,a,b,i,k,l] +@tensoropt R3[a,b,c,j,i,k] -= fia[l,d] * T2[a,b,l,i] * T2[d,c,j,k] +@tensoropt R3[a,c,b,j,k,i] -= fia[l,d] * T2[a,b,l,i] * T2[d,c,j,k] +@tensoropt R3[a,c,b,j,i,k] += fia[l,d] * T2[b,a,l,i] * T2[d,c,j,k] +@tensoropt R3[c,a,b,j,k,i] += fia[l,d] * T2[b,a,l,i] * T2[d,c,j,k] +@tensoropt R3[a,c,b,i,j,k] += fia[l,d] * T2[a,b,l,i] * T2[d,c,j,k] +@tensoropt R3[a,b,c,i,j,k] -= fia[l,d] * T2[b,a,l,i] * T2[d,c,j,k] +@tensoropt R3[c,a,b,i,j,k] += fia[l,d] * T2[a,b,l,i] * T2[d,c,k,j] +@tensoropt R3[a,c,b,i,j,k] -= fia[l,d] * T2[b,a,l,i] * T2[d,c,k,j] +@tensoropt R3[c,a,b,j,k,i] -= fia[l,d] * T2[a,b,l,i] * T2[d,c,k,j] +@tensoropt R3[c,a,b,j,i,k] -= fia[l,d] * T2[b,a,l,i] * T2[d,c,k,j] +@tensoropt R3[a,b,c,j,k,i] += fia[l,d] * T2[a,b,l,i] * T2[d,c,k,j] +@tensoropt R3[a,b,c,j,i,k] += fia[l,d] * T2[b,a,l,i] * T2[d,c,k,j] +@tensoropt R3[b,c,d,i,j,k] += fab[b,a] * T3[a,c,d,i,j,k] +@tensoropt R3[c,d,b,i,j,k] -= fab[b,a] * T3[a,c,d,i,j,k] +@tensoropt R3[b,c,d,i,j,k] -= fab[b,a] * T3[a,d,c,j,i,k] +@tensoropt R3[c,b,d,i,j,k] += fab[b,a] * T3[a,c,d,j,i,k] +@tensoropt R3[c,b,d,i,j,k] -= fab[b,a] * T3[a,d,c,k,i,j] +@tensoropt R3[c,d,b,i,j,k] += fab[b,a] * T3[a,c,d,k,i,j] +end diff --git a/src/cc.jl b/src/cc.jl index 109e3ee..8908e9d 100644 --- a/src/cc.jl +++ b/src/cc.jl @@ -1634,6 +1634,59 @@ function calc_cc_resid(EC::ECInfo, T1a, T1b, T2a, T2b, T2ab, T3a, T3b, T3aab, T3 return R1a, R1b, R2a, R2b, R2ab, R3a, R3b, R3aab, R3abb end +""" + calc_cc_resid(EC::ECInfo, T1, T2, T3; dc=false, tworef=false, fixref=false) + + Calculate CCSDT or DC-CCSDT residual. +""" +function calc_cc_resid(EC::ECInfo, T1, T2, T3; dc=false, tworef=false, fixref=false) + EC.options.cc.use_kext = false + EC.options.cc.calc_d_vvvv = true + EC.options.cc.calc_d_vvvo = true + EC.options.cc.calc_d_vovv = true + EC.options.cc.calc_d_vvoo = true + EC.options.cc.triangular_kext = false + + t1 = time_ns() + SP = EC.space + nocc = n_occ_orbs(EC) + nvirt = n_virt_orbs(EC) + if ndims(T1) == 2 + calc_dressed_ints(EC,T1) + t1 = print_time(EC,t1,"dressing",2) + else + pseudo_dressed_ints(EC,true) + end + + R1 = zeros(nvirt,nocc) + + dfock = load(EC,"df_mm") + + fij = dfock[SP['o'],SP['o']] + fab = dfock[SP['v'],SP['v']] + fai = dfock[SP['v'],SP['o']] + fia = dfock[SP['o'],SP['v']] + + if length(T1) > 0 + ccsdt_singles!(EC, R1, T2, T3, fij, fab, fai, fia) + t1 = print_time(EC,t1,"ccsdt singles",2) + end + + R2 = zeros(nvirt, nvirt, nocc, nocc) + ccsdt_doubles!(EC, R2, T2, T3, fij, fab, fai, fia) + t1 = print_time(EC,t1,"ccsdt doubles",2) + + R3 = zeros(nvirt, nvirt, nvirt, nocc, nocc, nocc) + # if dc + # dcccsdt_triples!(EC, R3a, R3b, R3aab, R3abb, T2a, T2b, T2ab, T3a, T3b, T3aab, T3abb, fij, fab, fIJ, fAB, fai, fAI, fia, fIA) + # else + ccsdt_triples!(EC, R3, T2, T3, fij, fab, fai, fia) + # end + t1 = print_time(EC,t1,"ccsdt triples",2) + + return R1, R2, R3 +end + """ oss_active_orbitals(EC::ECInfo) diff --git a/src/cctools.jl b/src/cctools.jl index b696c44..5b0b960 100644 --- a/src/cctools.jl +++ b/src/cctools.jl @@ -302,6 +302,15 @@ function update_triples!(EC::ECInfo, T3a, T3b, T3aab, T3abb, R3a, R3b, R3aab, R3 T3abb .+= update_triples(EC, R3abb; spincase=:αββ) end +""" + update_triples!(EC::ECInfo, T3, R3) + + Update triples amplitudes in `T3`, with `R3`. +""" +function update_triples!(EC::ECInfo, T3, R3) + T3 .+= update_triples(EC, R3) +end + """ update_triples(EC::ECInfo, R3; spincase::Symbol=:α, antisymmetrize=false, use_shift=true) @@ -479,6 +488,18 @@ function calc_triples_norm(T3aaa, T3bbb, T3abb, T3aab) return NormT3 end +""" + calc_triples_norm(T3) + + Calculate squared norm of triples amplitudes. +""" +function calc_triples_norm(T3) + @tensoropt begin + NormT3 = 0.125*(T3[a,b,c,i,j,k]*T3[a,b,c,i,j,k]) + end + return NormT3 +end + """ calc_contra_doubles_norm(T2a, T2b, T2ab) From 2a8e0f8e41dde3c3a5901dff893de662e61dbe05 Mon Sep 17 00:00:00 2001 From: Thomas Schraivogel Date: Tue, 11 Jun 2024 11:00:24 +0200 Subject: [PATCH 13/44] CCSDT energy correct --- src/algo/uccsdt_doubles.jl | 1 + src/algo/uccsdt_singles.jl | 1 + src/algo/uccsdt_triples.jl | 200 +------------------------------------ 3 files changed, 4 insertions(+), 198 deletions(-) diff --git a/src/algo/uccsdt_doubles.jl b/src/algo/uccsdt_doubles.jl index d80d0f3..722eac4 100644 --- a/src/algo/uccsdt_doubles.jl +++ b/src/algo/uccsdt_doubles.jl @@ -207,6 +207,7 @@ d_oVvV = nothing end function ccsdt_doubles!(EC::ECInfo, R2, T2, T3, fij, fab, fai, fia) +#bracd d_vvvv = load(EC,"d_vvvv") @tensoropt R2[c,d,i,j] += d_vvvv[c,d,a,b] * T2[a,b,i,j] d_vvvv = nothing diff --git a/src/algo/uccsdt_singles.jl b/src/algo/uccsdt_singles.jl index 80e6102..c49e451 100644 --- a/src/algo/uccsdt_singles.jl +++ b/src/algo/uccsdt_singles.jl @@ -44,6 +44,7 @@ d_oVvV = nothing end function ccsdt_singles!(EC::ECInfo, R1, T2, T3, fij, fab, fai, fia) +# bracs d_vovv = load(EC,"d_vovv") @tensoropt R1[c,j] -= d_vovv[c,i,a,b] * T2[a,b,i,j] @tensoropt R1[c,j] += 2 * d_vovv[c,i,b,a] * T2[a,b,i,j] diff --git a/src/algo/uccsdt_triples.jl b/src/algo/uccsdt_triples.jl index d9c8833..ad810b2 100644 --- a/src/algo/uccsdt_triples.jl +++ b/src/algo/uccsdt_triples.jl @@ -1258,418 +1258,222 @@ d_oVvV = nothing end function ccsdt_triples!(EC::ECInfo, R3, T2, T3, fij, fab, fai, fia) +#bract +#act,divide=$(1 - \Perm{abc}{cab})$ d_vvvv = load(EC,"d_vvvv") @tensoropt R3[e,c,d,i,j,k] += d_vvvv[c,d,a,b] * T3[a,e,b,j,i,k] -@tensoropt R3[c,d,e,i,j,k] -= d_vvvv[c,d,a,b] * T3[a,e,b,j,i,k] -@tensoropt R3[e,c,d,i,j,k] -= d_vvvv[d,c,a,b] * T3[a,e,b,i,j,k] -@tensoropt R3[c,e,d,i,j,k] -= d_vvvv[d,c,a,b] * T3[a,e,b,i,k,j] @tensoropt R3[c,e,d,i,j,k] += d_vvvv[c,d,a,b] * T3[a,e,b,i,j,k] @tensoropt R3[c,d,e,i,j,k] += d_vvvv[c,d,a,b] * T3[a,e,b,i,k,j] d_vvvv = nothing d_vvvo = load(EC,"d_vvvo") @tensoropt R3[d,b,c,j,k,i] += d_vvvo[b,c,a,i] * T2[a,d,k,j] @tensoropt R3[b,d,c,j,k,i] += d_vvvo[b,c,a,i] * T2[a,d,j,k] -@tensoropt R3[b,c,d,j,k,i] -= d_vvvo[b,c,a,i] * T2[a,d,k,j] -@tensoropt R3[d,b,c,j,k,i] -= d_vvvo[c,b,a,i] * T2[a,d,j,k] @tensoropt R3[d,b,c,j,i,k] += d_vvvo[c,b,a,i] * T2[a,d,k,j] @tensoropt R3[b,c,d,j,i,k] += d_vvvo[b,c,a,i] * T2[a,d,j,k] -@tensoropt R3[b,c,d,j,i,k] -= d_vvvo[c,b,a,i] * T2[a,d,k,j] -@tensoropt R3[b,d,c,j,i,k] -= d_vvvo[c,b,a,i] * T2[a,d,j,k] -@tensoropt R3[d,b,c,i,j,k] -= d_vvvo[b,c,a,i] * T2[a,d,k,j] -@tensoropt R3[b,d,c,i,j,k] -= d_vvvo[b,c,a,i] * T2[a,d,j,k] @tensoropt R3[b,d,c,i,j,k] += d_vvvo[c,b,a,i] * T2[a,d,k,j] @tensoropt R3[b,c,d,i,j,k] += d_vvvo[c,b,a,i] * T2[a,d,j,k] d_vvvo = nothing d_vovv = load(EC,"d_vovv") -@tensoropt R3[b,a,c,j,i,k] += d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,k,j] -@tensoropt R3[a,b,c,j,k,i] += d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,k,j] @tensoropt R3[c,b,a,j,i,k] -= d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,k,j] @tensoropt R3[c,a,b,j,k,i] -= d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,k,j] @tensoropt R3[b,c,a,i,j,k] -= d_vovv[a,l,e,d] * T2[c,b,l,i] * T2[d,e,j,k] @tensoropt R3[b,c,a,j,i,k] -= d_vovv[a,l,e,d] * T2[b,c,l,i] * T2[d,e,j,k] -@tensoropt R3[b,a,c,i,j,k] += d_vovv[a,l,e,d] * T2[b,c,l,i] * T2[d,e,j,k] -@tensoropt R3[b,a,c,j,i,k] += d_vovv[a,l,e,d] * T2[c,b,l,i] * T2[d,e,j,k] @tensoropt R3[b,a,c,i,j,k] -= d_vovv[a,l,e,d] * T2[c,b,l,i] * T2[d,e,k,j] @tensoropt R3[b,a,c,j,k,i] -= d_vovv[a,l,e,d] * T2[b,c,l,i] * T2[d,e,j,k] -@tensoropt R3[a,b,c,i,j,k] += d_vovv[a,l,e,d] * T2[b,c,l,i] * T2[d,e,k,j] -@tensoropt R3[a,b,c,j,k,i] += d_vovv[a,l,e,d] * T2[c,b,l,i] * T2[d,e,j,k] -@tensoropt R3[b,c,a,j,i,k] += d_vovv[a,l,e,d] * T2[c,b,l,i] * T2[d,e,k,j] -@tensoropt R3[b,c,a,j,k,i] += d_vovv[a,l,e,d] * T2[b,c,l,i] * T2[d,e,k,j] @tensoropt R3[a,b,c,j,i,k] -= d_vovv[a,l,e,d] * T2[c,b,l,i] * T2[d,e,k,j] @tensoropt R3[a,b,c,j,k,i] -= d_vovv[a,l,e,d] * T2[b,c,l,i] * T2[d,e,k,j] @tensoropt R3[c,b,a,j,k,i] -= d_vovv[a,l,d,e] * T2[b,d,l,i] * T2[e,c,k,j] @tensoropt R3[b,c,a,j,k,i] -= d_vovv[a,l,d,e] * T2[b,d,l,i] * T2[e,c,j,k] -@tensoropt R3[b,a,c,j,k,i] += d_vovv[a,l,d,e] * T2[b,d,l,i] * T2[e,c,k,j] -@tensoropt R3[c,a,b,j,k,i] += d_vovv[a,l,d,e] * T2[b,d,l,i] * T2[e,c,j,k] @tensoropt R3[c,a,b,j,i,k] -= d_vovv[a,l,d,e] * T2[b,d,l,i] * T2[e,c,k,j] @tensoropt R3[b,a,c,j,i,k] -= d_vovv[a,l,d,e] * T2[b,d,l,i] * T2[e,c,j,k] -@tensoropt R3[a,b,c,j,i,k] += d_vovv[a,l,d,e] * T2[b,d,l,i] * T2[e,c,k,j] -@tensoropt R3[a,c,b,j,i,k] += d_vovv[a,l,d,e] * T2[b,d,l,i] * T2[e,c,j,k] -@tensoropt R3[c,b,a,i,j,k] += d_vovv[a,l,d,e] * T2[b,d,l,i] * T2[e,c,k,j] -@tensoropt R3[b,c,a,i,j,k] += d_vovv[a,l,d,e] * T2[b,d,l,i] * T2[e,c,j,k] @tensoropt R3[a,c,b,i,j,k] -= d_vovv[a,l,d,e] * T2[b,d,l,i] * T2[e,c,k,j] @tensoropt R3[a,b,c,i,j,k] -= d_vovv[a,l,d,e] * T2[b,d,l,i] * T2[e,c,j,k] @tensoropt R3[b,c,a,i,j,k] -= d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,k,j] -@tensoropt R3[c,a,b,i,j,k] += d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,k,j] @tensoropt R3[b,a,c,i,j,k] -= d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,j,k] -@tensoropt R3[a,c,b,i,j,k] += d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,j,k] -@tensoropt R3[c,b,a,j,k,i] += d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,j,k] -@tensoropt R3[b,c,a,j,i,k] += d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,j,k] @tensoropt R3[a,c,b,j,k,i] -= d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,j,k] @tensoropt R3[a,b,c,j,i,k] -= d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,j,k] @tensoropt R3[c,b,a,j,i,k] -= d_vovv[a,l,e,d] * T2[b,d,l,i] * T2[e,c,k,j] @tensoropt R3[b,c,a,i,j,k] -= d_vovv[a,l,e,d] * T2[b,d,l,i] * T2[e,c,k,j] -@tensoropt R3[b,a,c,j,i,k] += d_vovv[a,l,e,d] * T2[b,d,l,i] * T2[e,c,k,j] -@tensoropt R3[c,a,b,i,j,k] += d_vovv[a,l,e,d] * T2[b,d,l,i] * T2[e,c,k,j] @tensoropt R3[c,a,b,j,k,i] -= d_vovv[a,l,e,d] * T2[b,d,l,i] * T2[e,c,k,j] @tensoropt R3[b,a,c,i,j,k] -= d_vovv[a,l,e,d] * T2[b,d,l,i] * T2[e,c,j,k] -@tensoropt R3[a,b,c,j,k,i] += d_vovv[a,l,e,d] * T2[b,d,l,i] * T2[e,c,k,j] -@tensoropt R3[a,c,b,i,j,k] += d_vovv[a,l,e,d] * T2[b,d,l,i] * T2[e,c,j,k] -@tensoropt R3[c,b,a,j,k,i] += d_vovv[a,l,e,d] * T2[b,d,l,i] * T2[e,c,j,k] -@tensoropt R3[b,c,a,j,i,k] += d_vovv[a,l,e,d] * T2[b,d,l,i] * T2[e,c,j,k] @tensoropt R3[a,c,b,j,k,i] -= d_vovv[a,l,e,d] * T2[b,d,l,i] * T2[e,c,j,k] @tensoropt R3[a,b,c,j,i,k] -= d_vovv[a,l,e,d] * T2[b,d,l,i] * T2[e,c,j,k] -@tensoropt R3[b,a,c,j,i,k] -= 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,k,j] -@tensoropt R3[a,b,c,j,k,i] -= 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,k,j] @tensoropt R3[c,b,a,j,i,k] += 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,k,j] @tensoropt R3[c,a,b,j,k,i] += 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,k,j] @tensoropt R3[b,c,a,i,j,k] += 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,k,j] -@tensoropt R3[c,a,b,i,j,k] -= 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,k,j] @tensoropt R3[b,a,c,i,j,k] += 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,j,k] -@tensoropt R3[a,c,b,i,j,k] -= 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,j,k] -@tensoropt R3[c,b,a,j,k,i] -= 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,j,k] -@tensoropt R3[b,c,a,j,i,k] -= 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,j,k] @tensoropt R3[a,c,b,j,k,i] += 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,j,k] @tensoropt R3[a,b,c,j,i,k] += 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,j,k] d_vovv = nothing d_vovo = load(EC,"d_vovo") @tensoropt R3[c,b,d,k,l,j] -= d_vovo[b,i,a,j] * T3[d,a,c,i,l,k] @tensoropt R3[b,c,d,k,l,j] -= d_vovo[b,i,a,j] * T3[d,a,c,i,k,l] -@tensoropt R3[b,c,d,k,l,j] += d_vovo[b,i,a,j] * T3[c,a,d,i,l,k] -@tensoropt R3[c,d,b,k,l,j] += d_vovo[b,i,a,j] * T3[d,a,c,i,k,l] @tensoropt R3[c,d,b,k,j,l] -= d_vovo[b,i,a,j] * T3[d,a,c,i,l,k] @tensoropt R3[b,c,d,k,j,l] -= d_vovo[b,i,a,j] * T3[c,a,d,i,k,l] -@tensoropt R3[c,b,d,k,j,l] += d_vovo[b,i,a,j] * T3[c,a,d,i,l,k] -@tensoropt R3[c,d,b,k,j,l] += d_vovo[b,i,a,j] * T3[c,a,d,i,k,l] -@tensoropt R3[c,b,d,j,k,l] += d_vovo[b,i,a,j] * T3[d,a,c,i,l,k] -@tensoropt R3[b,c,d,j,k,l] += d_vovo[b,i,a,j] * T3[d,a,c,i,k,l] @tensoropt R3[c,d,b,j,k,l] -= d_vovo[b,i,a,j] * T3[c,a,d,i,l,k] @tensoropt R3[c,b,d,j,k,l] -= d_vovo[b,i,a,j] * T3[c,a,d,i,k,l] @tensoropt R3[c,d,b,k,l,j] -= d_vovo[b,i,a,j] * T3[a,c,d,i,k,l] -@tensoropt R3[c,b,d,k,l,j] += d_vovo[b,i,a,j] * T3[a,d,c,i,k,l] @tensoropt R3[c,b,d,k,j,l] -= d_vovo[b,i,a,j] * T3[a,c,d,i,k,l] -@tensoropt R3[b,c,d,k,j,l] += d_vovo[b,i,a,j] * T3[a,d,c,i,k,l] -@tensoropt R3[c,d,b,j,k,l] += d_vovo[b,i,a,j] * T3[a,c,d,i,k,l] @tensoropt R3[b,c,d,j,k,l] -= d_vovo[b,i,a,j] * T3[a,c,d,i,k,l] d_vovo = nothing d_voov = load(EC,"d_voov") @tensoropt R3[c,d,b,k,l,j] -= d_voov[b,i,j,a] * T3[d,a,c,i,l,k] @tensoropt R3[c,d,b,k,l,j] -= d_voov[b,i,j,a] * T3[c,a,d,i,k,l] -@tensoropt R3[c,b,d,k,l,j] += d_voov[b,i,j,a] * T3[c,a,d,i,l,k] -@tensoropt R3[c,b,d,k,l,j] += d_voov[b,i,j,a] * T3[d,a,c,i,k,l] @tensoropt R3[c,b,d,k,j,l] -= d_voov[b,i,j,a] * T3[d,a,c,i,l,k] @tensoropt R3[c,b,d,k,j,l] -= d_voov[b,i,j,a] * T3[c,a,d,i,k,l] -@tensoropt R3[b,c,d,k,j,l] += d_voov[b,i,j,a] * T3[c,a,d,i,l,k] -@tensoropt R3[b,c,d,k,j,l] += d_voov[b,i,j,a] * T3[d,a,c,i,k,l] -@tensoropt R3[c,d,b,j,k,l] += d_voov[b,i,j,a] * T3[d,a,c,i,l,k] -@tensoropt R3[c,d,b,j,k,l] += d_voov[b,i,j,a] * T3[c,a,d,i,k,l] @tensoropt R3[b,c,d,j,k,l] -= d_voov[b,i,j,a] * T3[d,a,c,i,l,k] @tensoropt R3[b,c,d,j,k,l] -= d_voov[b,i,j,a] * T3[c,a,d,i,k,l] @tensoropt R3[c,d,b,k,l,j] += 2 * d_voov[b,i,j,a] * T3[a,c,d,i,k,l] -@tensoropt R3[c,b,d,k,l,j] -= 2 * d_voov[b,i,j,a] * T3[a,d,c,i,k,l] @tensoropt R3[c,b,d,k,j,l] += 2 * d_voov[b,i,j,a] * T3[a,c,d,i,k,l] -@tensoropt R3[b,c,d,k,j,l] -= 2 * d_voov[b,i,j,a] * T3[a,d,c,i,k,l] -@tensoropt R3[c,d,b,j,k,l] -= 2 * d_voov[b,i,j,a] * T3[a,c,d,i,k,l] @tensoropt R3[b,c,d,j,k,l] += 2 * d_voov[b,i,j,a] * T3[a,c,d,i,k,l] d_voov = nothing d_vooo = load(EC,"d_vooo") @tensoropt R3[b,a,c,l,j,k] -= d_vooo[a,i,j,k] * T2[c,b,i,l] @tensoropt R3[a,b,c,j,l,k] -= d_vooo[a,i,j,k] * T2[c,b,i,l] -@tensoropt R3[a,b,c,l,j,k] += d_vooo[a,i,j,k] * T2[b,c,i,l] -@tensoropt R3[b,c,a,j,l,k] += d_vooo[a,i,j,k] * T2[c,b,i,l] @tensoropt R3[b,c,a,l,j,k] -= d_vooo[a,i,k,j] * T2[c,b,i,l] @tensoropt R3[a,b,c,j,k,l] -= d_vooo[a,i,j,k] * T2[b,c,i,l] -@tensoropt R3[b,a,c,l,j,k] += d_vooo[a,i,k,j] * T2[b,c,i,l] -@tensoropt R3[b,c,a,j,k,l] += d_vooo[a,i,j,k] * T2[b,c,i,l] -@tensoropt R3[b,a,c,j,l,k] += d_vooo[a,i,k,j] * T2[c,b,i,l] -@tensoropt R3[a,b,c,j,k,l] += d_vooo[a,i,k,j] * T2[c,b,i,l] @tensoropt R3[b,c,a,j,l,k] -= d_vooo[a,i,k,j] * T2[b,c,i,l] @tensoropt R3[b,a,c,j,k,l] -= d_vooo[a,i,k,j] * T2[b,c,i,l] d_vooo = nothing d_oooo = load(EC,"d_oooo") @tensoropt R3[a,b,c,m,k,l] += d_oooo[j,i,l,k] * T3[b,c,a,i,j,m] -@tensoropt R3[a,b,c,m,k,l] -= d_oooo[j,i,l,k] * T3[a,b,c,i,j,m] -@tensoropt R3[a,b,c,k,m,l] -= d_oooo[j,i,l,k] * T3[c,b,a,i,j,m] -@tensoropt R3[a,b,c,k,l,m] -= d_oooo[j,i,l,k] * T3[c,a,b,i,j,m] @tensoropt R3[a,b,c,k,m,l] += d_oooo[j,i,l,k] * T3[a,c,b,i,j,m] @tensoropt R3[a,b,c,k,l,m] += d_oooo[j,i,l,k] * T3[a,b,c,i,j,m] d_oooo = nothing d_oovo = load(EC,"d_oovo") -@tensoropt R3[a,b,c,k,j,i] -= d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[b,c,m,k] -@tensoropt R3[b,a,c,k,i,j] -= d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[b,c,m,k] @tensoropt R3[b,a,c,k,j,i] += d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[c,b,m,k] @tensoropt R3[b,c,a,k,i,j] += d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[c,b,m,k] @tensoropt R3[c,a,b,k,j,i] += d_oovo[m,l,d,i] * T2[b,a,l,j] * T2[c,d,m,k] @tensoropt R3[a,c,b,j,k,i] += d_oovo[m,l,d,i] * T2[b,a,l,j] * T2[c,d,m,k] -@tensoropt R3[a,b,c,k,j,i] -= d_oovo[m,l,d,i] * T2[b,a,l,j] * T2[c,d,m,k] -@tensoropt R3[c,a,b,j,k,i] -= d_oovo[m,l,d,i] * T2[a,b,l,j] * T2[c,d,m,k] @tensoropt R3[c,a,b,k,i,j] += d_oovo[m,l,d,i] * T2[a,b,l,j] * T2[c,d,m,k] @tensoropt R3[a,b,c,j,i,k] += d_oovo[m,l,d,i] * T2[b,a,l,j] * T2[c,d,m,k] -@tensoropt R3[a,b,c,k,i,j] -= d_oovo[m,l,d,i] * T2[a,b,l,j] * T2[c,d,m,k] -@tensoropt R3[a,c,b,j,i,k] -= d_oovo[m,l,d,i] * T2[a,b,l,j] * T2[c,d,m,k] -@tensoropt R3[c,a,b,i,k,j] -= d_oovo[m,l,d,i] * T2[b,a,l,j] * T2[c,d,m,k] -@tensoropt R3[a,c,b,i,j,k] -= d_oovo[m,l,d,i] * T2[b,a,l,j] * T2[c,d,m,k] @tensoropt R3[a,c,b,i,k,j] += d_oovo[m,l,d,i] * T2[a,b,l,j] * T2[c,d,m,k] @tensoropt R3[a,b,c,i,j,k] += d_oovo[m,l,d,i] * T2[a,b,l,j] * T2[c,d,m,k] @tensoropt R3[b,c,a,k,j,i] += d_oovo[m,l,d,i] * T2[a,d,l,j] * T2[c,b,m,k] @tensoropt R3[b,c,a,j,k,i] += d_oovo[m,l,d,i] * T2[a,d,l,j] * T2[b,c,m,k] -@tensoropt R3[b,a,c,k,j,i] -= d_oovo[m,l,d,i] * T2[a,d,l,j] * T2[b,c,m,k] -@tensoropt R3[b,a,c,j,k,i] -= d_oovo[m,l,d,i] * T2[a,d,l,j] * T2[c,b,m,k] @tensoropt R3[b,a,c,k,i,j] += d_oovo[m,l,d,i] * T2[a,d,l,j] * T2[c,b,m,k] @tensoropt R3[b,a,c,j,i,k] += d_oovo[m,l,d,i] * T2[a,d,l,j] * T2[b,c,m,k] -@tensoropt R3[a,b,c,k,i,j] -= d_oovo[m,l,d,i] * T2[a,d,l,j] * T2[b,c,m,k] -@tensoropt R3[a,b,c,j,i,k] -= d_oovo[m,l,d,i] * T2[a,d,l,j] * T2[c,b,m,k] -@tensoropt R3[b,c,a,i,k,j] -= d_oovo[m,l,d,i] * T2[a,d,l,j] * T2[c,b,m,k] -@tensoropt R3[b,c,a,i,j,k] -= d_oovo[m,l,d,i] * T2[a,d,l,j] * T2[b,c,m,k] @tensoropt R3[a,b,c,i,k,j] += d_oovo[m,l,d,i] * T2[a,d,l,j] * T2[c,b,m,k] @tensoropt R3[a,b,c,i,j,k] += d_oovo[m,l,d,i] * T2[a,d,l,j] * T2[b,c,m,k] @tensoropt R3[a,b,c,j,k,i] += d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[c,b,m,k] -@tensoropt R3[b,c,a,j,k,i] -= d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[c,b,m,k] @tensoropt R3[a,b,c,j,i,k] += d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[b,c,m,k] -@tensoropt R3[b,c,a,j,i,k] -= d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[b,c,m,k] -@tensoropt R3[b,a,c,i,k,j] -= d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[c,b,m,k] -@tensoropt R3[a,b,c,i,j,k] -= d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[c,b,m,k] @tensoropt R3[b,c,a,i,k,j] += d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[b,c,m,k] @tensoropt R3[b,a,c,i,j,k] += d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[b,c,m,k] @tensoropt R3[c,a,b,j,k,i] += d_oovo[m,l,d,i] * T2[b,a,l,m] * T2[d,c,k,j] @tensoropt R3[a,c,b,j,k,i] += d_oovo[m,l,d,i] * T2[b,a,l,m] * T2[d,c,j,k] -@tensoropt R3[a,b,c,j,k,i] -= d_oovo[m,l,d,i] * T2[b,a,l,m] * T2[d,c,k,j] -@tensoropt R3[c,a,b,j,k,i] -= d_oovo[m,l,d,i] * T2[a,b,l,m] * T2[d,c,j,k] @tensoropt R3[c,a,b,j,i,k] += d_oovo[m,l,d,i] * T2[a,b,l,m] * T2[d,c,k,j] @tensoropt R3[a,b,c,j,i,k] += d_oovo[m,l,d,i] * T2[b,a,l,m] * T2[d,c,j,k] -@tensoropt R3[a,b,c,j,i,k] -= d_oovo[m,l,d,i] * T2[a,b,l,m] * T2[d,c,k,j] -@tensoropt R3[a,c,b,j,i,k] -= d_oovo[m,l,d,i] * T2[a,b,l,m] * T2[d,c,j,k] -@tensoropt R3[c,a,b,i,j,k] -= d_oovo[m,l,d,i] * T2[b,a,l,m] * T2[d,c,k,j] -@tensoropt R3[a,c,b,i,j,k] -= d_oovo[m,l,d,i] * T2[b,a,l,m] * T2[d,c,j,k] @tensoropt R3[a,c,b,i,j,k] += d_oovo[m,l,d,i] * T2[a,b,l,m] * T2[d,c,k,j] @tensoropt R3[a,b,c,i,j,k] += d_oovo[m,l,d,i] * T2[a,b,l,m] * T2[d,c,j,k] -@tensoropt R3[a,b,c,k,j,i] += 2 * d_oovo[m,l,d,i] * T2[b,a,l,j] * T2[d,c,m,k] -@tensoropt R3[a,b,c,k,i,j] += 2 * d_oovo[m,l,d,i] * T2[a,b,l,j] * T2[d,c,m,k] @tensoropt R3[c,a,b,k,j,i] -= 2 * d_oovo[m,l,d,i] * T2[b,a,l,j] * T2[d,c,m,k] @tensoropt R3[c,a,b,k,i,j] -= 2 * d_oovo[m,l,d,i] * T2[a,b,l,j] * T2[d,c,m,k] @tensoropt R3[a,c,b,j,k,i] -= 2 * d_oovo[m,l,d,i] * T2[b,a,l,j] * T2[d,c,m,k] -@tensoropt R3[c,a,b,j,k,i] += 2 * d_oovo[m,l,d,i] * T2[a,b,l,j] * T2[d,c,m,k] @tensoropt R3[a,b,c,j,i,k] -= 2 * d_oovo[m,l,d,i] * T2[b,a,l,j] * T2[d,c,m,k] -@tensoropt R3[a,c,b,j,i,k] += 2 * d_oovo[m,l,d,i] * T2[a,b,l,j] * T2[d,c,m,k] -@tensoropt R3[c,a,b,i,k,j] += 2 * d_oovo[m,l,d,i] * T2[b,a,l,j] * T2[d,c,m,k] -@tensoropt R3[a,c,b,i,j,k] += 2 * d_oovo[m,l,d,i] * T2[b,a,l,j] * T2[d,c,m,k] @tensoropt R3[a,c,b,i,k,j] -= 2 * d_oovo[m,l,d,i] * T2[a,b,l,j] * T2[d,c,m,k] @tensoropt R3[a,b,c,i,j,k] -= 2 * d_oovo[m,l,d,i] * T2[a,b,l,j] * T2[d,c,m,k] d_oovo = nothing oovv = ints2(EC,"oovv") @tensoropt R3[b,a,c,k,i,j] += oovv[m,l,e,d] * T2[d,a,j,i] * T3[c,b,e,l,m,k] @tensoropt R3[a,b,c,i,k,j] += oovv[m,l,e,d] * T2[d,a,j,i] * T3[c,b,e,l,m,k] -@tensoropt R3[a,b,c,k,i,j] -= oovv[m,l,e,d] * T2[d,a,j,i] * T3[b,c,e,l,m,k] -@tensoropt R3[b,c,a,i,k,j] -= oovv[m,l,e,d] * T2[d,a,j,i] * T3[c,b,e,l,m,k] @tensoropt R3[b,c,a,k,i,j] += oovv[m,l,e,d] * T2[d,a,i,j] * T3[c,b,e,l,m,k] @tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[d,a,j,i] * T3[b,c,e,l,m,k] -@tensoropt R3[b,a,c,k,i,j] -= oovv[m,l,e,d] * T2[d,a,i,j] * T3[b,c,e,l,m,k] -@tensoropt R3[b,c,a,i,j,k] -= oovv[m,l,e,d] * T2[d,a,j,i] * T3[b,c,e,l,m,k] -@tensoropt R3[b,a,c,i,k,j] -= oovv[m,l,e,d] * T2[d,a,i,j] * T3[c,b,e,l,m,k] -@tensoropt R3[a,b,c,i,j,k] -= oovv[m,l,e,d] * T2[d,a,i,j] * T3[c,b,e,l,m,k] @tensoropt R3[b,c,a,i,k,j] += oovv[m,l,e,d] * T2[d,a,i,j] * T3[b,c,e,l,m,k] @tensoropt R3[b,a,c,i,j,k] += oovv[m,l,e,d] * T2[d,a,i,j] * T3[b,c,e,l,m,k] @tensoropt R3[b,a,c,k,i,j] += oovv[m,l,e,d] * T2[d,a,j,i] * T3[e,c,b,l,m,k] @tensoropt R3[a,b,c,i,k,j] += oovv[m,l,e,d] * T2[d,a,j,i] * T3[e,c,b,l,m,k] -@tensoropt R3[a,b,c,k,i,j] -= oovv[m,l,e,d] * T2[d,a,j,i] * T3[e,b,c,l,m,k] -@tensoropt R3[b,c,a,i,k,j] -= oovv[m,l,e,d] * T2[d,a,j,i] * T3[e,c,b,l,m,k] @tensoropt R3[b,c,a,k,i,j] += oovv[m,l,e,d] * T2[d,a,i,j] * T3[e,c,b,l,m,k] @tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[d,a,j,i] * T3[e,b,c,l,m,k] -@tensoropt R3[b,a,c,k,i,j] -= oovv[m,l,e,d] * T2[d,a,i,j] * T3[e,b,c,l,m,k] -@tensoropt R3[b,c,a,i,j,k] -= oovv[m,l,e,d] * T2[d,a,j,i] * T3[e,b,c,l,m,k] -@tensoropt R3[b,a,c,i,k,j] -= oovv[m,l,e,d] * T2[d,a,i,j] * T3[e,c,b,l,m,k] -@tensoropt R3[a,b,c,i,j,k] -= oovv[m,l,e,d] * T2[d,a,i,j] * T3[e,c,b,l,m,k] @tensoropt R3[b,c,a,i,k,j] += oovv[m,l,e,d] * T2[d,a,i,j] * T3[e,b,c,l,m,k] @tensoropt R3[b,a,c,i,j,k] += oovv[m,l,e,d] * T2[d,a,i,j] * T3[e,b,c,l,m,k] @tensoropt R3[a,b,c,k,i,j] += oovv[m,l,e,d] * T2[d,e,i,j] * T3[b,c,a,l,m,k] -@tensoropt R3[a,b,c,k,i,j] -= oovv[m,l,e,d] * T2[d,e,i,j] * T3[a,b,c,l,m,k] -@tensoropt R3[a,b,c,i,k,j] -= oovv[m,l,e,d] * T2[d,e,i,j] * T3[c,b,a,l,m,k] -@tensoropt R3[a,b,c,i,j,k] -= oovv[m,l,e,d] * T2[d,e,i,j] * T3[c,a,b,l,m,k] @tensoropt R3[a,b,c,i,k,j] += oovv[m,l,e,d] * T2[d,e,i,j] * T3[a,c,b,l,m,k] @tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[d,e,i,j] * T3[a,b,c,l,m,k] @tensoropt R3[c,a,b,j,i,k] += oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,c,e,k,m,j] @tensoropt R3[a,c,b,i,j,k] += oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,c,e,k,m,j] -@tensoropt R3[a,b,c,j,i,k] -= oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,c,e,k,m,j] -@tensoropt R3[c,a,b,i,j,k] -= oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,c,e,k,m,j] @tensoropt R3[c,a,b,j,k,i] += oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,c,e,k,m,j] @tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,c,e,j,m,k] -@tensoropt R3[a,b,c,j,k,i] -= oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,c,e,k,m,j] -@tensoropt R3[a,c,b,i,j,k] -= oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,c,e,j,m,k] -@tensoropt R3[c,a,b,j,k,i] -= oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,c,e,j,m,k] -@tensoropt R3[a,c,b,j,i,k] -= oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,c,e,j,m,k] @tensoropt R3[a,c,b,j,k,i] += oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,c,e,j,m,k] @tensoropt R3[a,b,c,j,i,k] += oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,c,e,j,m,k] @tensoropt R3[b,c,a,j,i,k] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,c,b,k,m,j] @tensoropt R3[b,c,a,i,j,k] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,b,c,k,m,j] -@tensoropt R3[b,a,c,j,i,k] -= oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,b,c,k,m,j] -@tensoropt R3[b,a,c,i,j,k] -= oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,c,b,k,m,j] @tensoropt R3[b,a,c,j,k,i] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,c,b,k,m,j] @tensoropt R3[b,a,c,i,j,k] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,b,c,j,m,k] -@tensoropt R3[a,b,c,j,k,i] -= oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,b,c,k,m,j] -@tensoropt R3[a,b,c,i,j,k] -= oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,c,b,j,m,k] -@tensoropt R3[b,c,a,j,k,i] -= oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,c,b,j,m,k] -@tensoropt R3[b,c,a,j,i,k] -= oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,b,c,j,m,k] @tensoropt R3[a,b,c,j,k,i] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,c,b,j,m,k] @tensoropt R3[a,b,c,j,i,k] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,b,c,j,m,k] @tensoropt R3[b,c,a,j,k,i] += oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,c,b,k,m,j] @tensoropt R3[b,c,a,j,k,i] += oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,b,c,j,m,k] -@tensoropt R3[b,a,c,j,k,i] -= oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,b,c,k,m,j] -@tensoropt R3[b,a,c,j,k,i] -= oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,c,b,j,m,k] @tensoropt R3[b,a,c,j,i,k] += oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,c,b,k,m,j] @tensoropt R3[b,a,c,j,i,k] += oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,b,c,j,m,k] -@tensoropt R3[a,b,c,j,i,k] -= oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,b,c,k,m,j] -@tensoropt R3[a,b,c,j,i,k] -= oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,c,b,j,m,k] -@tensoropt R3[b,c,a,i,j,k] -= oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,c,b,k,m,j] -@tensoropt R3[b,c,a,i,j,k] -= oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,b,c,j,m,k] @tensoropt R3[a,b,c,i,j,k] += oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,c,b,k,m,j] @tensoropt R3[a,b,c,i,j,k] += oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,b,c,j,m,k] @tensoropt R3[c,a,b,j,i,k] += oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,m,k,j] @tensoropt R3[a,c,b,i,j,k] += oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,m,k,j] -@tensoropt R3[a,b,c,j,i,k] -= oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,m,k,j] -@tensoropt R3[c,a,b,i,j,k] -= oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,m,k,j] @tensoropt R3[c,a,b,j,k,i] += oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,m,k,j] @tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,m,j,k] -@tensoropt R3[a,b,c,j,k,i] -= oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,m,k,j] -@tensoropt R3[a,c,b,i,j,k] -= oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,m,j,k] -@tensoropt R3[c,a,b,j,k,i] -= oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,m,j,k] -@tensoropt R3[a,c,b,j,i,k] -= oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,m,j,k] @tensoropt R3[a,c,b,j,k,i] += oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,m,j,k] @tensoropt R3[a,b,c,j,i,k] += oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,m,j,k] @tensoropt R3[b,c,a,j,k,i] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,b,c,m,j,k] -@tensoropt R3[b,a,c,j,k,i] -= oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,c,b,m,j,k] @tensoropt R3[b,a,c,j,i,k] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,b,c,m,j,k] -@tensoropt R3[a,b,c,j,i,k] -= oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,c,b,m,j,k] -@tensoropt R3[b,c,a,i,j,k] -= oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,b,c,m,j,k] @tensoropt R3[a,b,c,i,j,k] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,b,c,m,j,k] @tensoropt R3[c,a,b,i,j,k] += oovv[m,l,e,d] * T2[a,b,l,m] * T3[d,e,c,j,k,i] -@tensoropt R3[a,b,c,i,j,k] -= oovv[m,l,e,d] * T2[a,b,l,m] * T3[d,e,c,j,k,i] -@tensoropt R3[c,a,b,i,j,k] -= oovv[m,l,e,d] * T2[b,a,l,m] * T3[d,e,c,i,k,j] -@tensoropt R3[a,c,b,i,j,k] -= oovv[m,l,e,d] * T2[b,a,l,m] * T3[d,e,c,i,j,k] @tensoropt R3[a,c,b,i,j,k] += oovv[m,l,e,d] * T2[a,b,l,m] * T3[d,e,c,i,k,j] @tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[a,b,l,m] * T3[d,e,c,i,j,k] @tensoropt R3[b,c,a,j,k,i] += oovv[m,l,e,d] * T2[a,d,l,i] * T3[c,e,b,m,k,j] @tensoropt R3[b,c,a,j,k,i] += oovv[m,l,e,d] * T2[a,d,l,i] * T3[b,e,c,m,j,k] -@tensoropt R3[b,a,c,j,k,i] -= oovv[m,l,e,d] * T2[a,d,l,i] * T3[b,e,c,m,k,j] -@tensoropt R3[b,a,c,j,k,i] -= oovv[m,l,e,d] * T2[a,d,l,i] * T3[c,e,b,m,j,k] @tensoropt R3[b,a,c,j,i,k] += oovv[m,l,e,d] * T2[a,d,l,i] * T3[c,e,b,m,k,j] @tensoropt R3[b,a,c,j,i,k] += oovv[m,l,e,d] * T2[a,d,l,i] * T3[b,e,c,m,j,k] -@tensoropt R3[a,b,c,j,i,k] -= oovv[m,l,e,d] * T2[a,d,l,i] * T3[b,e,c,m,k,j] -@tensoropt R3[a,b,c,j,i,k] -= oovv[m,l,e,d] * T2[a,d,l,i] * T3[c,e,b,m,j,k] -@tensoropt R3[b,c,a,i,j,k] -= oovv[m,l,e,d] * T2[a,d,l,i] * T3[c,e,b,m,k,j] -@tensoropt R3[b,c,a,i,j,k] -= oovv[m,l,e,d] * T2[a,d,l,i] * T3[b,e,c,m,j,k] @tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[a,d,l,i] * T3[c,e,b,m,k,j] @tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[a,d,l,i] * T3[b,e,c,m,j,k] @tensoropt R3[a,b,c,j,k,i] += oovv[m,l,d,e] * T2[d,e,l,i] * T3[c,a,b,m,j,k] -@tensoropt R3[a,b,c,j,k,i] -= oovv[m,l,d,e] * T2[d,e,l,i] * T3[b,c,a,m,j,k] @tensoropt R3[a,b,c,j,i,k] += oovv[m,l,d,e] * T2[d,e,l,i] * T3[b,a,c,m,j,k] -@tensoropt R3[a,b,c,j,i,k] -= oovv[m,l,d,e] * T2[d,e,l,i] * T3[a,c,b,m,j,k] -@tensoropt R3[a,b,c,i,j,k] -= oovv[m,l,d,e] * T2[d,e,l,i] * T3[c,a,b,m,j,k] @tensoropt R3[a,b,c,i,j,k] += oovv[m,l,d,e] * T2[d,e,l,i] * T3[a,b,c,m,j,k] @tensoropt R3[b,c,a,i,j,k] += oovv[m,l,e,d] * T2[a,d,l,m] * T3[e,b,c,k,i,j] -@tensoropt R3[b,a,c,i,j,k] -= oovv[m,l,e,d] * T2[a,d,l,m] * T3[e,c,b,k,i,j] @tensoropt R3[b,a,c,i,j,k] += oovv[m,l,e,d] * T2[a,d,l,m] * T3[e,b,c,j,i,k] -@tensoropt R3[a,b,c,i,j,k] -= oovv[m,l,e,d] * T2[a,d,l,m] * T3[e,c,b,j,i,k] -@tensoropt R3[b,c,a,i,j,k] -= oovv[m,l,e,d] * T2[a,d,l,m] * T3[e,b,c,i,j,k] @tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[a,d,l,m] * T3[e,b,c,i,j,k] @tensoropt R3[b,a,c,k,i,j] -= 2 * oovv[m,l,e,d] * T2[d,a,j,i] * T3[c,e,b,l,m,k] @tensoropt R3[a,b,c,i,k,j] -= 2 * oovv[m,l,e,d] * T2[d,a,j,i] * T3[c,e,b,l,m,k] -@tensoropt R3[a,b,c,k,i,j] += 2 * oovv[m,l,e,d] * T2[d,a,j,i] * T3[b,e,c,l,m,k] -@tensoropt R3[b,c,a,i,k,j] += 2 * oovv[m,l,e,d] * T2[d,a,j,i] * T3[c,e,b,l,m,k] @tensoropt R3[b,c,a,k,i,j] -= 2 * oovv[m,l,e,d] * T2[d,a,i,j] * T3[c,e,b,l,m,k] @tensoropt R3[a,b,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[d,a,j,i] * T3[b,e,c,l,m,k] -@tensoropt R3[b,a,c,k,i,j] += 2 * oovv[m,l,e,d] * T2[d,a,i,j] * T3[b,e,c,l,m,k] -@tensoropt R3[b,c,a,i,j,k] += 2 * oovv[m,l,e,d] * T2[d,a,j,i] * T3[b,e,c,l,m,k] -@tensoropt R3[b,a,c,i,k,j] += 2 * oovv[m,l,e,d] * T2[d,a,i,j] * T3[c,e,b,l,m,k] -@tensoropt R3[a,b,c,i,j,k] += 2 * oovv[m,l,e,d] * T2[d,a,i,j] * T3[c,e,b,l,m,k] @tensoropt R3[b,c,a,i,k,j] -= 2 * oovv[m,l,e,d] * T2[d,a,i,j] * T3[b,e,c,l,m,k] @tensoropt R3[b,a,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[d,a,i,j] * T3[b,e,c,l,m,k] @tensoropt R3[c,a,b,j,i,k] -= 2 * oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,k,m,j] @tensoropt R3[a,c,b,i,j,k] -= 2 * oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,k,m,j] -@tensoropt R3[a,b,c,j,i,k] += 2 * oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,k,m,j] -@tensoropt R3[c,a,b,i,j,k] += 2 * oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,k,m,j] @tensoropt R3[c,a,b,j,k,i] -= 2 * oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,k,m,j] @tensoropt R3[a,b,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,j,m,k] -@tensoropt R3[a,b,c,j,k,i] += 2 * oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,k,m,j] -@tensoropt R3[a,c,b,i,j,k] += 2 * oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,j,m,k] -@tensoropt R3[c,a,b,j,k,i] += 2 * oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,j,m,k] -@tensoropt R3[a,c,b,j,i,k] += 2 * oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,j,m,k] @tensoropt R3[a,c,b,j,k,i] -= 2 * oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,j,m,k] @tensoropt R3[a,b,c,j,i,k] -= 2 * oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,j,m,k] @tensoropt R3[b,c,a,j,k,i] -= 2 * oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,b,c,m,j,k] -@tensoropt R3[b,a,c,j,k,i] += 2 * oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,c,b,m,j,k] @tensoropt R3[b,a,c,j,i,k] -= 2 * oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,b,c,m,j,k] -@tensoropt R3[a,b,c,j,i,k] += 2 * oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,c,b,m,j,k] -@tensoropt R3[b,c,a,i,j,k] += 2 * oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,b,c,m,j,k] @tensoropt R3[a,b,c,i,j,k] -= 2 * oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,b,c,m,j,k] @tensoropt R3[b,c,a,j,k,i] -= 2 * oovv[m,l,e,d] * T2[a,d,l,i] * T3[e,b,c,m,j,k] -@tensoropt R3[b,a,c,j,k,i] += 2 * oovv[m,l,e,d] * T2[a,d,l,i] * T3[e,c,b,m,j,k] @tensoropt R3[b,a,c,j,i,k] -= 2 * oovv[m,l,e,d] * T2[a,d,l,i] * T3[e,b,c,m,j,k] -@tensoropt R3[a,b,c,j,i,k] += 2 * oovv[m,l,e,d] * T2[a,d,l,i] * T3[e,c,b,m,j,k] -@tensoropt R3[b,c,a,i,j,k] += 2 * oovv[m,l,e,d] * T2[a,d,l,i] * T3[e,b,c,m,j,k] @tensoropt R3[a,b,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[a,d,l,i] * T3[e,b,c,m,j,k] @tensoropt R3[b,c,a,j,k,i] -= 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[c,e,b,m,k,j] @tensoropt R3[b,c,a,j,k,i] -= 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[b,e,c,m,j,k] -@tensoropt R3[b,a,c,j,k,i] += 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[b,e,c,m,k,j] -@tensoropt R3[b,a,c,j,k,i] += 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[c,e,b,m,j,k] @tensoropt R3[b,a,c,j,i,k] -= 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[c,e,b,m,k,j] @tensoropt R3[b,a,c,j,i,k] -= 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[b,e,c,m,j,k] -@tensoropt R3[a,b,c,j,i,k] += 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[b,e,c,m,k,j] -@tensoropt R3[a,b,c,j,i,k] += 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[c,e,b,m,j,k] -@tensoropt R3[b,c,a,i,j,k] += 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[c,e,b,m,k,j] -@tensoropt R3[b,c,a,i,j,k] += 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[b,e,c,m,j,k] @tensoropt R3[a,b,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[c,e,b,m,k,j] @tensoropt R3[a,b,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[b,e,c,m,j,k] @tensoropt R3[a,b,c,j,k,i] -= 2 * oovv[m,l,e,d] * T2[d,e,l,i] * T3[c,a,b,m,j,k] -@tensoropt R3[a,b,c,j,k,i] += 2 * oovv[m,l,e,d] * T2[d,e,l,i] * T3[b,c,a,m,j,k] @tensoropt R3[a,b,c,j,i,k] -= 2 * oovv[m,l,e,d] * T2[d,e,l,i] * T3[b,a,c,m,j,k] -@tensoropt R3[a,b,c,j,i,k] += 2 * oovv[m,l,e,d] * T2[d,e,l,i] * T3[a,c,b,m,j,k] -@tensoropt R3[a,b,c,i,j,k] += 2 * oovv[m,l,e,d] * T2[d,e,l,i] * T3[c,a,b,m,j,k] @tensoropt R3[a,b,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[d,e,l,i] * T3[a,b,c,m,j,k] @tensoropt R3[b,c,a,i,j,k] -= 2 * oovv[m,l,e,d] * T2[d,a,l,m] * T3[e,b,c,k,i,j] -@tensoropt R3[b,a,c,i,j,k] += 2 * oovv[m,l,e,d] * T2[d,a,l,m] * T3[e,c,b,k,i,j] @tensoropt R3[b,a,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[d,a,l,m] * T3[e,b,c,j,i,k] -@tensoropt R3[a,b,c,i,j,k] += 2 * oovv[m,l,e,d] * T2[d,a,l,m] * T3[e,c,b,j,i,k] -@tensoropt R3[b,c,a,i,j,k] += 2 * oovv[m,l,e,d] * T2[d,a,l,m] * T3[e,b,c,i,j,k] @tensoropt R3[a,b,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[d,a,l,m] * T3[e,b,c,i,j,k] @tensoropt R3[b,c,a,j,k,i] += 4 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[e,b,c,m,j,k] -@tensoropt R3[b,a,c,j,k,i] -= 4 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[e,c,b,m,j,k] @tensoropt R3[b,a,c,j,i,k] += 4 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[e,b,c,m,j,k] -@tensoropt R3[a,b,c,j,i,k] -= 4 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[e,c,b,m,j,k] -@tensoropt R3[b,c,a,i,j,k] -= 4 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[e,b,c,m,j,k] @tensoropt R3[a,b,c,i,j,k] += 4 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[e,b,c,m,j,k] oovv = nothing @tensoropt R3[a,b,c,j,k,l] -= fij[i,j] * T3[a,b,c,i,k,l] -@tensoropt R3[a,b,c,j,k,l] += fij[i,j] * T3[c,a,b,i,k,l] -@tensoropt R3[a,b,c,k,j,l] += fij[i,j] * T3[a,c,b,i,k,l] @tensoropt R3[a,b,c,k,j,l] -= fij[i,j] * T3[b,a,c,i,k,l] -@tensoropt R3[a,b,c,k,l,j] += fij[i,j] * T3[b,c,a,i,k,l] @tensoropt R3[a,b,c,k,l,j] -= fij[i,j] * T3[c,a,b,i,k,l] @tensoropt R3[a,b,c,j,i,k] -= fia[l,d] * T2[a,b,l,i] * T2[d,c,j,k] @tensoropt R3[a,c,b,j,k,i] -= fia[l,d] * T2[a,b,l,i] * T2[d,c,j,k] -@tensoropt R3[a,c,b,j,i,k] += fia[l,d] * T2[b,a,l,i] * T2[d,c,j,k] -@tensoropt R3[c,a,b,j,k,i] += fia[l,d] * T2[b,a,l,i] * T2[d,c,j,k] -@tensoropt R3[a,c,b,i,j,k] += fia[l,d] * T2[a,b,l,i] * T2[d,c,j,k] @tensoropt R3[a,b,c,i,j,k] -= fia[l,d] * T2[b,a,l,i] * T2[d,c,j,k] -@tensoropt R3[c,a,b,i,j,k] += fia[l,d] * T2[a,b,l,i] * T2[d,c,k,j] @tensoropt R3[a,c,b,i,j,k] -= fia[l,d] * T2[b,a,l,i] * T2[d,c,k,j] @tensoropt R3[c,a,b,j,k,i] -= fia[l,d] * T2[a,b,l,i] * T2[d,c,k,j] @tensoropt R3[c,a,b,j,i,k] -= fia[l,d] * T2[b,a,l,i] * T2[d,c,k,j] -@tensoropt R3[a,b,c,j,k,i] += fia[l,d] * T2[a,b,l,i] * T2[d,c,k,j] -@tensoropt R3[a,b,c,j,i,k] += fia[l,d] * T2[b,a,l,i] * T2[d,c,k,j] @tensoropt R3[b,c,d,i,j,k] += fab[b,a] * T3[a,c,d,i,j,k] -@tensoropt R3[c,d,b,i,j,k] -= fab[b,a] * T3[a,c,d,i,j,k] -@tensoropt R3[b,c,d,i,j,k] -= fab[b,a] * T3[a,d,c,j,i,k] @tensoropt R3[c,b,d,i,j,k] += fab[b,a] * T3[a,c,d,j,i,k] -@tensoropt R3[c,b,d,i,j,k] -= fab[b,a] * T3[a,d,c,k,i,j] @tensoropt R3[c,d,b,i,j,k] += fab[b,a] * T3[a,c,d,k,i,j] end From 14434a4e6135fa9de3eb00d8bfd4c9ee4e3b1021 Mon Sep 17 00:00:00 2001 From: Thomas Schraivogel Date: Wed, 12 Jun 2024 14:28:41 +0200 Subject: [PATCH 14/44] first (wrong) dc-ccsdt implementation. Have to change prefactors in Q2 --- src/algo/udcccsdt_triples.jl | 219 +++++++++++++++++++++++++++++++++++ src/cc.jl | 8 +- 2 files changed, 223 insertions(+), 4 deletions(-) diff --git a/src/algo/udcccsdt_triples.jl b/src/algo/udcccsdt_triples.jl index a78882f..585de4e 100644 --- a/src/algo/udcccsdt_triples.jl +++ b/src/algo/udcccsdt_triples.jl @@ -1176,3 +1176,222 @@ d_oVvV = nothing @tensoropt R3aab[a,b,A,j,k,I] += fij[i,j] * T3aab[a,b,A,k,i,I] @tensoropt R3aab[a,b,A,k,j,I] -= fij[i,j] * T3aab[a,b,A,k,i,I] end + +function dcccsdt_triples!(EC::ECInfo, R3, T2, T3, fij, fab, fai, fia) +d_vvvv = load(EC,"d_vvvv") +@tensoropt R3[e,c,d,i,j,k] += d_vvvv[c,d,a,b] * T3[a,e,b,j,i,k] +@tensoropt R3[c,e,d,i,j,k] += d_vvvv[c,d,a,b] * T3[a,e,b,i,j,k] +@tensoropt R3[c,d,e,i,j,k] += d_vvvv[c,d,a,b] * T3[a,e,b,i,k,j] +d_vvvv = nothing +d_vvvo = load(EC,"d_vvvo") +@tensoropt R3[d,b,c,j,k,i] += d_vvvo[b,c,a,i] * T2[a,d,k,j] +@tensoropt R3[b,d,c,j,k,i] += d_vvvo[b,c,a,i] * T2[a,d,j,k] +@tensoropt R3[d,b,c,j,i,k] += d_vvvo[c,b,a,i] * T2[a,d,k,j] +@tensoropt R3[b,c,d,j,i,k] += d_vvvo[b,c,a,i] * T2[a,d,j,k] +@tensoropt R3[b,d,c,i,j,k] += d_vvvo[c,b,a,i] * T2[a,d,k,j] +@tensoropt R3[b,c,d,i,j,k] += d_vvvo[c,b,a,i] * T2[a,d,j,k] +d_vvvo = nothing +d_vovv = load(EC,"d_vovv") +@tensoropt R3[c,b,a,j,i,k] -= d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,k,j] +@tensoropt R3[c,a,b,j,k,i] -= d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,k,j] +@tensoropt R3[b,c,a,i,j,k] -= d_vovv[a,l,e,d] * T2[c,b,l,i] * T2[d,e,j,k] +@tensoropt R3[b,c,a,j,i,k] -= d_vovv[a,l,e,d] * T2[b,c,l,i] * T2[d,e,j,k] +@tensoropt R3[b,a,c,i,j,k] -= d_vovv[a,l,e,d] * T2[c,b,l,i] * T2[d,e,k,j] +@tensoropt R3[b,a,c,j,k,i] -= d_vovv[a,l,e,d] * T2[b,c,l,i] * T2[d,e,j,k] +@tensoropt R3[a,b,c,j,i,k] -= d_vovv[a,l,e,d] * T2[c,b,l,i] * T2[d,e,k,j] +@tensoropt R3[a,b,c,j,k,i] -= d_vovv[a,l,e,d] * T2[b,c,l,i] * T2[d,e,k,j] +@tensoropt R3[c,b,a,j,k,i] -= d_vovv[a,l,d,e] * T2[b,d,l,i] * T2[e,c,k,j] +@tensoropt R3[b,c,a,j,k,i] -= d_vovv[a,l,d,e] * T2[b,d,l,i] * T2[e,c,j,k] +@tensoropt R3[c,a,b,j,i,k] -= d_vovv[a,l,d,e] * T2[b,d,l,i] * T2[e,c,k,j] +@tensoropt R3[b,a,c,j,i,k] -= d_vovv[a,l,d,e] * T2[b,d,l,i] * T2[e,c,j,k] +@tensoropt R3[a,c,b,i,j,k] -= d_vovv[a,l,d,e] * T2[b,d,l,i] * T2[e,c,k,j] +@tensoropt R3[a,b,c,i,j,k] -= d_vovv[a,l,d,e] * T2[b,d,l,i] * T2[e,c,j,k] +@tensoropt R3[b,c,a,i,j,k] -= d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,k,j] +@tensoropt R3[b,a,c,i,j,k] -= d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,j,k] +@tensoropt R3[a,c,b,j,k,i] -= d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,j,k] +@tensoropt R3[a,b,c,j,i,k] -= d_vovv[a,l,d,e] * T2[d,b,l,i] * T2[e,c,j,k] +@tensoropt R3[c,b,a,j,i,k] -= d_vovv[a,l,e,d] * T2[b,d,l,i] * T2[e,c,k,j] +@tensoropt R3[b,c,a,i,j,k] -= d_vovv[a,l,e,d] * T2[b,d,l,i] * T2[e,c,k,j] +@tensoropt R3[c,a,b,j,k,i] -= d_vovv[a,l,e,d] * T2[b,d,l,i] * T2[e,c,k,j] +@tensoropt R3[b,a,c,i,j,k] -= d_vovv[a,l,e,d] * T2[b,d,l,i] * T2[e,c,j,k] +@tensoropt R3[a,c,b,j,k,i] -= d_vovv[a,l,e,d] * T2[b,d,l,i] * T2[e,c,j,k] +@tensoropt R3[a,b,c,j,i,k] -= d_vovv[a,l,e,d] * T2[b,d,l,i] * T2[e,c,j,k] +@tensoropt R3[c,b,a,j,i,k] += 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,k,j] +@tensoropt R3[c,a,b,j,k,i] += 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,k,j] +@tensoropt R3[b,c,a,i,j,k] += 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,k,j] +@tensoropt R3[b,a,c,i,j,k] += 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,j,k] +@tensoropt R3[a,c,b,j,k,i] += 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,j,k] +@tensoropt R3[a,b,c,j,i,k] += 2 * d_vovv[a,l,e,d] * T2[d,b,l,i] * T2[e,c,j,k] +d_vovv = nothing +d_vovo = load(EC,"d_vovo") +@tensoropt R3[c,b,d,k,l,j] -= d_vovo[b,i,a,j] * T3[d,a,c,i,l,k] +@tensoropt R3[b,c,d,k,l,j] -= d_vovo[b,i,a,j] * T3[d,a,c,i,k,l] +@tensoropt R3[c,d,b,k,j,l] -= d_vovo[b,i,a,j] * T3[d,a,c,i,l,k] +@tensoropt R3[b,c,d,k,j,l] -= d_vovo[b,i,a,j] * T3[c,a,d,i,k,l] +@tensoropt R3[c,d,b,j,k,l] -= d_vovo[b,i,a,j] * T3[c,a,d,i,l,k] +@tensoropt R3[c,b,d,j,k,l] -= d_vovo[b,i,a,j] * T3[c,a,d,i,k,l] +@tensoropt R3[c,d,b,k,l,j] -= d_vovo[b,i,a,j] * T3[a,c,d,i,k,l] +@tensoropt R3[c,b,d,k,j,l] -= d_vovo[b,i,a,j] * T3[a,c,d,i,k,l] +@tensoropt R3[b,c,d,j,k,l] -= d_vovo[b,i,a,j] * T3[a,c,d,i,k,l] +d_vovo = nothing +d_voov = load(EC,"d_voov") +@tensoropt R3[c,d,b,k,l,j] -= d_voov[b,i,j,a] * T3[d,a,c,i,l,k] +@tensoropt R3[c,d,b,k,l,j] -= d_voov[b,i,j,a] * T3[c,a,d,i,k,l] +@tensoropt R3[c,b,d,k,j,l] -= d_voov[b,i,j,a] * T3[d,a,c,i,l,k] +@tensoropt R3[c,b,d,k,j,l] -= d_voov[b,i,j,a] * T3[c,a,d,i,k,l] +@tensoropt R3[b,c,d,j,k,l] -= d_voov[b,i,j,a] * T3[d,a,c,i,l,k] +@tensoropt R3[b,c,d,j,k,l] -= d_voov[b,i,j,a] * T3[c,a,d,i,k,l] +@tensoropt R3[c,d,b,k,l,j] += 2 * d_voov[b,i,j,a] * T3[a,c,d,i,k,l] +@tensoropt R3[c,b,d,k,j,l] += 2 * d_voov[b,i,j,a] * T3[a,c,d,i,k,l] +@tensoropt R3[b,c,d,j,k,l] += 2 * d_voov[b,i,j,a] * T3[a,c,d,i,k,l] +d_voov = nothing +d_vooo = load(EC,"d_vooo") +@tensoropt R3[b,a,c,l,j,k] -= d_vooo[a,i,j,k] * T2[c,b,i,l] +@tensoropt R3[a,b,c,j,l,k] -= d_vooo[a,i,j,k] * T2[c,b,i,l] +@tensoropt R3[b,c,a,l,j,k] -= d_vooo[a,i,k,j] * T2[c,b,i,l] +@tensoropt R3[a,b,c,j,k,l] -= d_vooo[a,i,j,k] * T2[b,c,i,l] +@tensoropt R3[b,c,a,j,l,k] -= d_vooo[a,i,k,j] * T2[b,c,i,l] +@tensoropt R3[b,a,c,j,k,l] -= d_vooo[a,i,k,j] * T2[b,c,i,l] +d_vooo = nothing +d_oooo = load(EC,"d_oooo") +@tensoropt R3[a,b,c,m,k,l] += d_oooo[j,i,l,k] * T3[b,c,a,i,j,m] +@tensoropt R3[a,b,c,k,m,l] += d_oooo[j,i,l,k] * T3[a,c,b,i,j,m] +@tensoropt R3[a,b,c,k,l,m] += d_oooo[j,i,l,k] * T3[a,b,c,i,j,m] +d_oooo = nothing +d_oovo = load(EC,"d_oovo") +@tensoropt R3[b,a,c,k,j,i] += d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[c,b,m,k] +@tensoropt R3[b,c,a,k,i,j] += d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[c,b,m,k] +@tensoropt R3[c,a,b,k,j,i] += d_oovo[m,l,d,i] * T2[b,a,l,j] * T2[c,d,m,k] +@tensoropt R3[a,c,b,j,k,i] += d_oovo[m,l,d,i] * T2[b,a,l,j] * T2[c,d,m,k] +@tensoropt R3[c,a,b,k,i,j] += d_oovo[m,l,d,i] * T2[a,b,l,j] * T2[c,d,m,k] +@tensoropt R3[a,b,c,j,i,k] += d_oovo[m,l,d,i] * T2[b,a,l,j] * T2[c,d,m,k] +@tensoropt R3[a,c,b,i,k,j] += d_oovo[m,l,d,i] * T2[a,b,l,j] * T2[c,d,m,k] +@tensoropt R3[a,b,c,i,j,k] += d_oovo[m,l,d,i] * T2[a,b,l,j] * T2[c,d,m,k] +@tensoropt R3[b,c,a,k,j,i] += d_oovo[m,l,d,i] * T2[a,d,l,j] * T2[c,b,m,k] +@tensoropt R3[b,c,a,j,k,i] += d_oovo[m,l,d,i] * T2[a,d,l,j] * T2[b,c,m,k] +@tensoropt R3[b,a,c,k,i,j] += d_oovo[m,l,d,i] * T2[a,d,l,j] * T2[c,b,m,k] +@tensoropt R3[b,a,c,j,i,k] += d_oovo[m,l,d,i] * T2[a,d,l,j] * T2[b,c,m,k] +@tensoropt R3[a,b,c,i,k,j] += d_oovo[m,l,d,i] * T2[a,d,l,j] * T2[c,b,m,k] +@tensoropt R3[a,b,c,i,j,k] += d_oovo[m,l,d,i] * T2[a,d,l,j] * T2[b,c,m,k] +@tensoropt R3[a,b,c,j,k,i] += d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[c,b,m,k] +@tensoropt R3[a,b,c,j,i,k] += d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[b,c,m,k] +@tensoropt R3[b,c,a,i,k,j] += d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[b,c,m,k] +@tensoropt R3[b,a,c,i,j,k] += d_oovo[m,l,d,i] * T2[d,a,l,j] * T2[b,c,m,k] +@tensoropt R3[c,a,b,j,k,i] += d_oovo[m,l,d,i] * T2[b,a,l,m] * T2[d,c,k,j] +@tensoropt R3[a,c,b,j,k,i] += d_oovo[m,l,d,i] * T2[b,a,l,m] * T2[d,c,j,k] +@tensoropt R3[c,a,b,j,i,k] += d_oovo[m,l,d,i] * T2[a,b,l,m] * T2[d,c,k,j] +@tensoropt R3[a,b,c,j,i,k] += d_oovo[m,l,d,i] * T2[b,a,l,m] * T2[d,c,j,k] +@tensoropt R3[a,c,b,i,j,k] += d_oovo[m,l,d,i] * T2[a,b,l,m] * T2[d,c,k,j] +@tensoropt R3[a,b,c,i,j,k] += d_oovo[m,l,d,i] * T2[a,b,l,m] * T2[d,c,j,k] +@tensoropt R3[c,a,b,k,j,i] -= 2 * d_oovo[m,l,d,i] * T2[b,a,l,j] * T2[d,c,m,k] +@tensoropt R3[c,a,b,k,i,j] -= 2 * d_oovo[m,l,d,i] * T2[a,b,l,j] * T2[d,c,m,k] +@tensoropt R3[a,c,b,j,k,i] -= 2 * d_oovo[m,l,d,i] * T2[b,a,l,j] * T2[d,c,m,k] +@tensoropt R3[a,b,c,j,i,k] -= 2 * d_oovo[m,l,d,i] * T2[b,a,l,j] * T2[d,c,m,k] +@tensoropt R3[a,c,b,i,k,j] -= 2 * d_oovo[m,l,d,i] * T2[a,b,l,j] * T2[d,c,m,k] +@tensoropt R3[a,b,c,i,j,k] -= 2 * d_oovo[m,l,d,i] * T2[a,b,l,j] * T2[d,c,m,k] +d_oovo = nothing +oovv = ints2(EC,"oovv") +@tensoropt R3[b,a,c,k,i,j] += oovv[m,l,e,d] * T2[d,a,j,i] * T3[c,b,e,l,m,k] +@tensoropt R3[a,b,c,i,k,j] += oovv[m,l,e,d] * T2[d,a,j,i] * T3[c,b,e,l,m,k] +@tensoropt R3[b,c,a,k,i,j] += oovv[m,l,e,d] * T2[d,a,i,j] * T3[c,b,e,l,m,k] +@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[d,a,j,i] * T3[b,c,e,l,m,k] +@tensoropt R3[b,c,a,i,k,j] += oovv[m,l,e,d] * T2[d,a,i,j] * T3[b,c,e,l,m,k] +@tensoropt R3[b,a,c,i,j,k] += oovv[m,l,e,d] * T2[d,a,i,j] * T3[b,c,e,l,m,k] +@tensoropt R3[b,a,c,k,i,j] += oovv[m,l,e,d] * T2[d,a,j,i] * T3[e,c,b,l,m,k] +@tensoropt R3[a,b,c,i,k,j] += oovv[m,l,e,d] * T2[d,a,j,i] * T3[e,c,b,l,m,k] +@tensoropt R3[b,c,a,k,i,j] += oovv[m,l,e,d] * T2[d,a,i,j] * T3[e,c,b,l,m,k] +@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[d,a,j,i] * T3[e,b,c,l,m,k] +@tensoropt R3[b,c,a,i,k,j] += oovv[m,l,e,d] * T2[d,a,i,j] * T3[e,b,c,l,m,k] +@tensoropt R3[b,a,c,i,j,k] += oovv[m,l,e,d] * T2[d,a,i,j] * T3[e,b,c,l,m,k] +@tensoropt R3[a,b,c,k,i,j] += oovv[m,l,e,d] * T2[d,e,i,j] * T3[b,c,a,l,m,k] +@tensoropt R3[a,b,c,i,k,j] += oovv[m,l,e,d] * T2[d,e,i,j] * T3[a,c,b,l,m,k] +@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[d,e,i,j] * T3[a,b,c,l,m,k] +@tensoropt R3[c,a,b,j,i,k] += oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,c,e,k,m,j] +@tensoropt R3[a,c,b,i,j,k] += oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,c,e,k,m,j] +@tensoropt R3[c,a,b,j,k,i] += oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,c,e,k,m,j] +@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,c,e,j,m,k] +@tensoropt R3[a,c,b,j,k,i] += oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,c,e,j,m,k] +@tensoropt R3[a,b,c,j,i,k] += oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,c,e,j,m,k] +@tensoropt R3[b,c,a,j,i,k] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,c,b,k,m,j] +@tensoropt R3[b,c,a,i,j,k] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,b,c,k,m,j] +@tensoropt R3[b,a,c,j,k,i] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,c,b,k,m,j] +@tensoropt R3[b,a,c,i,j,k] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,b,c,j,m,k] +@tensoropt R3[a,b,c,j,k,i] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,c,b,j,m,k] +@tensoropt R3[a,b,c,j,i,k] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,b,c,j,m,k] +@tensoropt R3[b,c,a,j,k,i] += oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,c,b,k,m,j] +@tensoropt R3[b,c,a,j,k,i] += oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,b,c,j,m,k] +@tensoropt R3[b,a,c,j,i,k] += oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,c,b,k,m,j] +@tensoropt R3[b,a,c,j,i,k] += oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,b,c,j,m,k] +@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,c,b,k,m,j] +@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,b,c,j,m,k] +@tensoropt R3[c,a,b,j,i,k] += oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,m,k,j] +@tensoropt R3[a,c,b,i,j,k] += oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,m,k,j] +@tensoropt R3[c,a,b,j,k,i] += oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,m,k,j] +@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,m,j,k] +@tensoropt R3[a,c,b,j,k,i] += oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,m,j,k] +@tensoropt R3[a,b,c,j,i,k] += oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,m,j,k] +@tensoropt R3[b,c,a,j,k,i] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,b,c,m,j,k] +@tensoropt R3[b,a,c,j,i,k] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,b,c,m,j,k] +@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,d,e] * T2[a,d,l,i] * T3[e,b,c,m,j,k] +@tensoropt R3[c,a,b,i,j,k] += oovv[m,l,e,d] * T2[a,b,l,m] * T3[d,e,c,j,k,i] +@tensoropt R3[a,c,b,i,j,k] += oovv[m,l,e,d] * T2[a,b,l,m] * T3[d,e,c,i,k,j] +@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[a,b,l,m] * T3[d,e,c,i,j,k] +@tensoropt R3[b,c,a,j,k,i] += oovv[m,l,e,d] * T2[a,d,l,i] * T3[c,e,b,m,k,j] +@tensoropt R3[b,c,a,j,k,i] += oovv[m,l,e,d] * T2[a,d,l,i] * T3[b,e,c,m,j,k] +@tensoropt R3[b,a,c,j,i,k] += oovv[m,l,e,d] * T2[a,d,l,i] * T3[c,e,b,m,k,j] +@tensoropt R3[b,a,c,j,i,k] += oovv[m,l,e,d] * T2[a,d,l,i] * T3[b,e,c,m,j,k] +@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[a,d,l,i] * T3[c,e,b,m,k,j] +@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[a,d,l,i] * T3[b,e,c,m,j,k] +@tensoropt R3[a,b,c,j,k,i] += oovv[m,l,d,e] * T2[d,e,l,i] * T3[c,a,b,m,j,k] +@tensoropt R3[a,b,c,j,i,k] += oovv[m,l,d,e] * T2[d,e,l,i] * T3[b,a,c,m,j,k] +@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,d,e] * T2[d,e,l,i] * T3[a,b,c,m,j,k] +@tensoropt R3[b,c,a,i,j,k] += oovv[m,l,e,d] * T2[a,d,l,m] * T3[e,b,c,k,i,j] +@tensoropt R3[b,a,c,i,j,k] += oovv[m,l,e,d] * T2[a,d,l,m] * T3[e,b,c,j,i,k] +@tensoropt R3[a,b,c,i,j,k] += oovv[m,l,e,d] * T2[a,d,l,m] * T3[e,b,c,i,j,k] +@tensoropt R3[b,a,c,k,i,j] -= 2 * oovv[m,l,e,d] * T2[d,a,j,i] * T3[c,e,b,l,m,k] +@tensoropt R3[a,b,c,i,k,j] -= 2 * oovv[m,l,e,d] * T2[d,a,j,i] * T3[c,e,b,l,m,k] +@tensoropt R3[b,c,a,k,i,j] -= 2 * oovv[m,l,e,d] * T2[d,a,i,j] * T3[c,e,b,l,m,k] +@tensoropt R3[a,b,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[d,a,j,i] * T3[b,e,c,l,m,k] +@tensoropt R3[b,c,a,i,k,j] -= 2 * oovv[m,l,e,d] * T2[d,a,i,j] * T3[b,e,c,l,m,k] +@tensoropt R3[b,a,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[d,a,i,j] * T3[b,e,c,l,m,k] +@tensoropt R3[c,a,b,j,i,k] -= 2 * oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,k,m,j] +@tensoropt R3[a,c,b,i,j,k] -= 2 * oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,k,m,j] +@tensoropt R3[c,a,b,j,k,i] -= 2 * oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,k,m,j] +@tensoropt R3[a,b,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[b,a,l,i] * T3[d,e,c,j,m,k] +@tensoropt R3[a,c,b,j,k,i] -= 2 * oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,j,m,k] +@tensoropt R3[a,b,c,j,i,k] -= 2 * oovv[m,l,e,d] * T2[a,b,l,i] * T3[d,e,c,j,m,k] +@tensoropt R3[b,c,a,j,k,i] -= 2 * oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,b,c,m,j,k] +@tensoropt R3[b,a,c,j,i,k] -= 2 * oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,b,c,m,j,k] +@tensoropt R3[a,b,c,i,j,k] -= 2 * oovv[m,l,d,e] * T2[d,a,l,i] * T3[e,b,c,m,j,k] +@tensoropt R3[b,c,a,j,k,i] -= 2 * oovv[m,l,e,d] * T2[a,d,l,i] * T3[e,b,c,m,j,k] +@tensoropt R3[b,a,c,j,i,k] -= 2 * oovv[m,l,e,d] * T2[a,d,l,i] * T3[e,b,c,m,j,k] +@tensoropt R3[a,b,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[a,d,l,i] * T3[e,b,c,m,j,k] +@tensoropt R3[b,c,a,j,k,i] -= 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[c,e,b,m,k,j] +@tensoropt R3[b,c,a,j,k,i] -= 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[b,e,c,m,j,k] +@tensoropt R3[b,a,c,j,i,k] -= 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[c,e,b,m,k,j] +@tensoropt R3[b,a,c,j,i,k] -= 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[b,e,c,m,j,k] +@tensoropt R3[a,b,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[c,e,b,m,k,j] +@tensoropt R3[a,b,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[b,e,c,m,j,k] +@tensoropt R3[a,b,c,j,k,i] -= 2 * oovv[m,l,e,d] * T2[d,e,l,i] * T3[c,a,b,m,j,k] +@tensoropt R3[a,b,c,j,i,k] -= 2 * oovv[m,l,e,d] * T2[d,e,l,i] * T3[b,a,c,m,j,k] +@tensoropt R3[a,b,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[d,e,l,i] * T3[a,b,c,m,j,k] +@tensoropt R3[b,c,a,i,j,k] -= 2 * oovv[m,l,e,d] * T2[d,a,l,m] * T3[e,b,c,k,i,j] +@tensoropt R3[b,a,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[d,a,l,m] * T3[e,b,c,j,i,k] +@tensoropt R3[a,b,c,i,j,k] -= 2 * oovv[m,l,e,d] * T2[d,a,l,m] * T3[e,b,c,i,j,k] +@tensoropt R3[b,c,a,j,k,i] += 4 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[e,b,c,m,j,k] +@tensoropt R3[b,a,c,j,i,k] += 4 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[e,b,c,m,j,k] +@tensoropt R3[a,b,c,i,j,k] += 4 * oovv[m,l,e,d] * T2[d,a,l,i] * T3[e,b,c,m,j,k] +oovv = nothing +@tensoropt R3[a,b,c,j,k,l] -= fij[i,j] * T3[a,b,c,i,k,l] +@tensoropt R3[a,b,c,k,j,l] -= fij[i,j] * T3[b,a,c,i,k,l] +@tensoropt R3[a,b,c,k,l,j] -= fij[i,j] * T3[c,a,b,i,k,l] +@tensoropt R3[a,b,c,j,i,k] -= fia[l,d] * T2[a,b,l,i] * T2[d,c,j,k] +@tensoropt R3[a,c,b,j,k,i] -= fia[l,d] * T2[a,b,l,i] * T2[d,c,j,k] +@tensoropt R3[a,b,c,i,j,k] -= fia[l,d] * T2[b,a,l,i] * T2[d,c,j,k] +@tensoropt R3[a,c,b,i,j,k] -= fia[l,d] * T2[b,a,l,i] * T2[d,c,k,j] +@tensoropt R3[c,a,b,j,k,i] -= fia[l,d] * T2[a,b,l,i] * T2[d,c,k,j] +@tensoropt R3[c,a,b,j,i,k] -= fia[l,d] * T2[b,a,l,i] * T2[d,c,k,j] +@tensoropt R3[b,c,d,i,j,k] += fab[b,a] * T3[a,c,d,i,j,k] +@tensoropt R3[c,b,d,i,j,k] += fab[b,a] * T3[a,c,d,j,i,k] +@tensoropt R3[c,d,b,i,j,k] += fab[b,a] * T3[a,c,d,k,i,j] +end diff --git a/src/cc.jl b/src/cc.jl index 8908e9d..434801c 100644 --- a/src/cc.jl +++ b/src/cc.jl @@ -1677,11 +1677,11 @@ function calc_cc_resid(EC::ECInfo, T1, T2, T3; dc=false, tworef=false, fixref=fa t1 = print_time(EC,t1,"ccsdt doubles",2) R3 = zeros(nvirt, nvirt, nvirt, nocc, nocc, nocc) - # if dc - # dcccsdt_triples!(EC, R3a, R3b, R3aab, R3abb, T2a, T2b, T2ab, T3a, T3b, T3aab, T3abb, fij, fab, fIJ, fAB, fai, fAI, fia, fIA) - # else + if dc + dcccsdt_triples!(EC, R3, T2, T3, fij, fab, fai, fia) + else ccsdt_triples!(EC, R3, T2, T3, fij, fab, fai, fia) - # end + end t1 = print_time(EC,t1,"ccsdt triples",2) return R1, R2, R3 From eaa3085310d59585ba0d4ea2eb12c557a10959dd Mon Sep 17 00:00:00 2001 From: Daniel Kats Date: Thu, 13 Jun 2024 11:35:51 +0200 Subject: [PATCH 15/44] Make DF-HF and DIIS type stable A new structure `MOs` for orbital coefficients is introduced. --- src/ElemCo.jl | 3 + src/bohf.jl | 147 ++++++++++---------- src/cc.jl | 4 +- src/cc_lagrange.jl | 2 +- src/ccdriver.jl | 3 +- src/dfcc.jl | 2 +- src/dfdump.jl | 10 +- src/dfhf.jl | 32 +++-- src/dfmcscf.jl | 2 +- src/dftools.jl | 39 +++--- src/diis.jl | 52 +++++-- src/ecinfos.jl | 32 +++-- src/fockfactory.jl | 108 +++++---------- src/interfaces/molden.jl | 11 +- src/myio.jl | 40 +++++- src/orbtools.jl | 64 ++++----- src/system/basiscenter.jl | 159 ++++++++------------- src/system/basisset.jl | 33 +++-- src/system/elements.jl | 244 +++++++++++++++++---------------- src/system/integrals_2e3idx.jl | 16 +-- src/system/integrals_2idx.jl | 18 +-- src/system/intlibs.jl | 6 +- src/system/msystem.jl | 8 +- src/system/parse_basis.jl | 32 ++--- src/tensortools.jl | 73 +++++++--- src/wavefunctions.jl | 95 +++++++++++++ 26 files changed, 679 insertions(+), 556 deletions(-) create mode 100644 src/wavefunctions.jl diff --git a/src/ElemCo.jl b/src/ElemCo.jl index 599fbf2..3a0a907 100644 --- a/src/ElemCo.jl +++ b/src/ElemCo.jl @@ -16,6 +16,8 @@ include("system/msystem.jl") include("system/basisset.jl") include("system/integrals.jl") +include("wavefunctions.jl") + include("ecinfos.jl") include("ecmethods.jl") include("tensortools.jl") @@ -54,6 +56,7 @@ using Dates using TensorOperations using .Utils using .ECInfos +using .Wavefunctions using .ECMethods using .TensorTools using .FockFactory diff --git a/src/bohf.jl b/src/bohf.jl index 4e770a2..6038abe 100644 --- a/src/bohf.jl +++ b/src/bohf.jl @@ -7,6 +7,7 @@ using ..ElemCo.Utils using ..ElemCo.Constants using ..ElemCo.ECInfos using ..ElemCo.TensorTools +using ..ElemCo.Wavefunctions using ..ElemCo.FciDump using ..ElemCo.OrbTools using ..ElemCo.FockFactory @@ -16,18 +17,19 @@ export bohf, bouhf export guess_boorb """ - left_from_right(cMOr) + left_from_right(cMOr::MOs) Calculate left BO-MO coefficients from right BO-MO coefficients. """ -function left_from_right(cMOr) - if is_unrestricted_MO(cMOr) - cMOl = AbstractArray[[], []] +function left_from_right(cMOr::MOs) + if is_restricted_MO(cMOr) + cMOl = MOs((inv(cMOr[1]))') + restrict!(cMOl) + else + cMOl = MOs() for ispin = 1:2 cMOl[ispin] = (inv(cMOr[ispin]))' end - else - cMOl = (inv(cMOr))' end return cMOl end @@ -56,7 +58,7 @@ function guess_boorb(EC::ECInfo, guess::Symbol, uhf=false) elseif guess == :GWH || guess == :gwh cMOr = guess_bo_gwh(EC, uhf) elseif guess == :ORB || guess == :orb - cMOr = load(EC,EC.options.wf.orb) + cMOr = load_orbitals(EC, EC.options.wf.orb) else error("Unknown guess for MO coefficients: ", guess) end @@ -71,27 +73,25 @@ end Guess BO-MO coefficients (right) from core Hamiltonian. """ function guess_bo_hcore(EC::ECInfo, uhf) + CMOr_final = MOs() if uhf spins = [:α, :β] if !EC.fd.uhf spins = [:α, :α] end - CMOr_final = AbstractArray[[], []] else spins = [:α] end isp = 1 for spin in spins hsmall = integ1(EC.fd, spin) - ϵ,cMOr = eigen(hsmall) - rotate_eigenvectors_to_real!(cMOr,ϵ) - if uhf - CMOr_final[isp] = real.(cMOr) - else - CMOr_final = real.(cMOr) - end + ϵ, cMOr = eigen(hsmall) + cMOr_final[isp], ϵ = rotate_eigenvectors_to_real(cMOr, ϵ) isp += 1 end + if !uhf + restrict!(CMOr_final) + end return CMOr_final end @@ -103,76 +103,77 @@ end function guess_bo_identity(EC::ECInfo, uhf) norb = length(EC.space[':']) if uhf - return AbstractArray[Matrix{Float64}(I, norb, norb), Matrix{Float64}(I, norb, norb)] + return MOs(Matrix{Float64}(I, norb, norb), Matrix{Float64}(I, norb, norb)) else - return Matrix{Float64}(I, norb, norb) + return MOs(Matrix{Float64}(I, norb, norb)) end end function guess_bo_gwh(EC::ECInfo, uhf) error("not implemented yet") + return MOs() end """ - heatup(EC::ECInfo, cMOl, cMOr, temperature) + heatup(EC::ECInfo, cMOl::MOs, cMOr::MOs, temperature) Heat up BO-MO coefficients to `temperature` according to Fermi-Dirac. - Returns new BO-MO coefficients `cMOl, cMOr` + Returns new BO-MO coefficients `cMOl::MOs, cMOr::MOs` """ -function heatup(EC::ECInfo, cMOl, cMOr, temperature) +function heatup(EC::ECInfo, cMOl::MOs, cMOr::MOs, temperature) if temperature < 1.e-10 return cMOl, cMOr end println("Heating up starting guess to ", temperature, " K") - if is_unrestricted_MO(cMOr) - return unrestricted_heatup(EC, cMOl, cMOr, temperature) - else + if is_restricted_MO(cMOr) return closed_shell_heatup(EC, cMOl, cMOr, temperature) + else + return unrestricted_heatup(EC, cMOl, cMOr, temperature) end end """ - closed_shell_heatup(EC::ECInfo, cMOl, cMOr, temperature) + closed_shell_heatup(EC::ECInfo, cMOl::MOs, cMOr::MOs, temperature) Heat up closed-shell BO-MO coefficients to `temperature` according to Fermi-Dirac. """ -function closed_shell_heatup(EC::ECInfo, cMOl, cMOr, temperature) - fock = gen_fock(EC, cMOl, cMOr) - ϵ,cMOr = eigen(fock) - rotate_eigenvectors_to_real!(cMOr, ϵ) - cMOr = real.(cMOr) +function closed_shell_heatup(EC::ECInfo, cMOl::MOs, cMOr::MOs, temperature) + fock = gen_fock(EC, cMOl[1], cMOr[1]) + ϵ, cMOr_new = eigen(fock) + cMOr[1], ϵ = rotate_eigenvectors_to_real(cMOr_new, ϵ) nocc = n_occ_orbs(EC) nelec = 2*nocc - den4temp = density4temperature(EC, ϵ, cMOr, nocc, nelec, temperature) + den4temp = density4temperature(EC, ϵ, cMOr[1], nocc, nelec, temperature) fock = gen_fock(EC, den4temp) - ϵ,cMOr = eigen(fock) - rotate_eigenvectors_to_real!(cMOr, ϵ) - cMOr = real.(cMOr) + ϵ, cMOr_new = eigen(fock) + cMOr[1], ϵ = rotate_eigenvectors_to_real(cMOr_new, ϵ) cMOl = left_from_right(cMOr) return cMOl, cMOr end -function unrestricted_heatup(EC::ECInfo, cMOl, cMOr, temperature) +""" + unrestricted_heatup(EC::ECInfo, cMOl::MOs, cMOr::MOs, temperature) + + Heat up unrestricted BO-MO coefficients to `temperature` according to Fermi-Dirac. +""" +function unrestricted_heatup(EC::ECInfo, cMOl::MOs, cMOr::MOs, temperature) SP = EC.space fock = gen_ufock(EC, cMOl, cMOr) - ϵ = AbstractArray[[], []] den4temp = AbstractArray[[], []] - cMOr_out = AbstractArray[[], []] - cMOl_out = AbstractArray[[], []] + cMOr_out = MOs() + cMOl_out = MOs() for (ispin, sp) = enumerate(['o', 'O']) - ϵ[ispin],cMOr_out[ispin] = eigen(fock[ispin]) - rotate_eigenvectors_to_real!(cMOr_out[ispin], ϵ[ispin]) - cMOr_out[ispin] = real.(cMOr_out[ispin]) + ϵ, cMOr_new = eigen(fock[ispin]) + cMOr_out[ispin], ϵ = rotate_eigenvectors_to_real(cMOr_new, ϵ) nocc = length(SP[sp]) nelec = nocc - den4temp[ispin] = density4temperature(EC, ϵ[ispin], cMOr_out[ispin], nocc, nelec, temperature) + den4temp[ispin] = density4temperature(EC, ϵ, cMOr_out[ispin], nocc, nelec, temperature) end fock = gen_ufock(EC, den4temp) for (ispin, sp) = enumerate(['o', 'O']) - ϵ[ispin],cMOr_out[ispin] = eigen(fock[ispin]) - rotate_eigenvectors_to_real!(cMOr_out[ispin], ϵ[ispin]) - cMOr_out[ispin] = real.(cMOr_out[ispin]) + ϵ, cMOr_new = eigen(fock[ispin]) + cMOr_out[ispin], ϵ = rotate_eigenvectors_to_real(cMOr_new, ϵ) cMOl_out[ispin] = left_from_right(cMOr_out[ispin]) end return cMOl_out, cMOr_out @@ -237,16 +238,16 @@ function bohf(EC::ECInfo) flush(stdout) t0 = time_ns() for it=1:maxit - fock = gen_fock(EC, cMOl, cMOr) + fock = gen_fock(EC, cMOl[1], cMOr[1]) t1 = print_time(EC, t1, "generate Fock matrix", 2) - den = gen_density_matrix(EC, cMOl, cMOr, SP['o']) + den = gen_density_matrix(EC, cMOl[1], cMOr[1], SP['o']) fhsmall = fock + hsmall @tensoropt efhsmall = den[p,q]*fhsmall[p,q] EHF = efhsmall + Enuc ΔE = EHF - previousEHF previousEHF = EHF Δfock = den'*fock - fock*den' - var = sum(abs2,Δfock) + var = sum(abs2, Δfock) tt = (time_ns() - t0)/10^9 if pseudo @printf "%12.8f %10.2e %8.2f \n" EHF var tt @@ -261,28 +262,27 @@ function bohf(EC::ECInfo) if pseudo occ = SP['o'] vir = SP['v'] - ϵ = zeros(Complex{Float64}, norb) - cMOr = zeros(Complex{Float64}, norb, norb) - ϵ[occ],cMOr[occ,occ] = eigen(fock[occ,occ]) - ϵ[vir],cMOr[vir,vir] = eigen(fock[vir,vir]) + ϵ_new = zeros(Complex{Float64}, norb) + cMOr_new = zeros(Complex{Float64}, norb, norb) + ϵ_new[occ],cMOr_new[occ,occ] = eigen(fock[occ,occ]) + ϵ_new[vir],cMOr_new[vir,vir] = eigen(fock[vir,vir]) else - fock, = perform(diis,[fock],[Δfock]) + perform!(diis, [fock], [Δfock]) t1 = print_time(EC, t1, "DIIS", 2) - ϵ,cMOr = eigen(fock) + ϵ_new, cMOr_new = eigen(fock) end t1 = print_time(EC, t1, "diagonalize Fock matrix", 2) - cMOl = (inv(cMOr))' + cMOr[1], ϵ = rotate_eigenvectors_to_real(cMOr_new, ϵ_new) + restrict!(cMOr) + cMOl[1] = (inv(cMOr[1]))' + restrict!(cMOl) # display(ϵ) end - # check MOs to be real - rotate_eigenvectors_to_real!(cMOr,ϵ) - cMOr = real.(cMOr) - cMOl = (inv(cMOr))' println("BO-HF energy: ", EHF) flush(stdout) delete_temporary_files!(EC) - save!(EC, EC.options.wf.orb, cMOr, description="BOHF right orbitals") - save!(EC, EC.options.wf.orb*EC.options.wf.left, cMOl, description="BOHF left orbitals") + save!(EC, EC.options.wf.orb, cMOr[1], description="BOHF right orbitals") + save!(EC, EC.options.wf.orb*EC.options.wf.left, cMOl[1], description="BOHF left orbitals") return EHF end @@ -309,8 +309,10 @@ function bouhf(EC::ECInfo) # 1: alpha, 2: beta (cMOs can become complex(?)) cMOl, cMOr = guess_boorb(EC, EC.options.scf.guess, true) t1 = print_time(EC, t1, "guess orbitals", 2) - ϵ = AbstractArray[zeros(norb), zeros(norb)] - hsmall = [integ1(EC.fd,:α), integ1(EC.fd,:β)] + ϵ= Vector{Float64}[zeros(norb), zeros(norb)] + hsmall = Matrix{Float64}[integ1(EC.fd,:α), integ1(EC.fd,:β)] + efhsmall::Vector{Float64} = [0.0, 0.0] + Δfock = Matrix{Float64}[zeros(norb,norb), zeros(norb,norb)] EHF = 0.0 previousEHF = 0.0 if pseudo @@ -325,8 +327,6 @@ function bouhf(EC::ECInfo) for it=1:maxit fock = gen_ufock(EC, cMOl, cMOr) t1 = print_time(EC, t1, "generate Fock matrix", 2) - efhsmall = Number[0.0, 0.0] - Δfock = AbstractArray[zeros(norb,norb), zeros(norb,norb)] var = 0.0 for (ispin, sp) = enumerate(['o', 'O']) den = gen_density_matrix(EC, cMOl[ispin], cMOr[ispin], SP[sp]) @@ -351,31 +351,26 @@ function bouhf(EC::ECInfo) end t1 = print_time(EC, t1, "HF residual", 2) if !pseudo - fock = perform(diis, fock, Δfock) + perform!(diis, fock, Δfock) t1 = print_time(EC, t1, "DIIS", 2) end for (ispin, ov) = enumerate(["ov", "OV"]) if pseudo occ = SP[ov[1]] vir = SP[ov[2]] - ϵ[ispin] = zeros(Complex{Float64}, norb) - cMOr[ispin] = zeros(Complex{Float64}, norb, norb) - ϵ[ispin][occ],cMOr[ispin][occ,occ] = eigen(fock[ispin][occ,occ]) - ϵ[ispin][vir],cMOr[ispin][vir,vir] = eigen(fock[ispin][vir,vir]) + ϵ_new = zeros(ComplexF64, norb) + cMOr_new = zeros(ComplexF64, norb, norb) + ϵ_new[occ], cMOr_new[occ,occ] = eigen(fock[ispin][occ,occ]) + ϵ_new[vir], cMOr_new[vir,vir] = eigen(fock[ispin][vir,vir]) else - ϵ[ispin],cMOr[ispin] = eigen(fock[ispin]) + ϵ_new, cMOr_new = eigen(fock[ispin]) end + cMOr[ispin], ϵ[ispin] = rotate_eigenvectors_to_real(cMOr_new, ϵ_new) cMOl[ispin] = (inv(cMOr[ispin]))' end t1 = print_time(EC, t1, "diagonalize Fock matrix", 2) # display(ϵ) end - # check MOs to be real - for ispin = 1:2 - rotate_eigenvectors_to_real!(cMOr[ispin],ϵ[ispin]) - cMOr[ispin] = real.(cMOr[ispin]) - cMOl[ispin] = (inv(cMOr[ispin]))' - end println("BO-UHF energy: ", EHF) flush(stdout) delete_temporary_files!(EC) diff --git a/src/cc.jl b/src/cc.jl index 109e3ee..a184b45 100644 --- a/src/cc.jl +++ b/src/cc.jl @@ -2026,7 +2026,7 @@ function calc_cc(EC::ECInfo, method::ECMethod) if restrict spin_project!(EC, Amps...) end - Amps = perform(diis, Amps, Res) + perform!(diis, Amps, Res) save_current_doubles(EC, Amps[doubles]...) En2 = calc_doubles_energy(EC, Amps[doubles]...) En = En2.E @@ -2131,7 +2131,7 @@ function calc_ccsdt(EC::ECInfo, useT3=false, cc3=false) T1 += update_singles(EC, R1) T2 += update_doubles(EC, R2) T3 += update_deco_triples(EC, R3) - T1, T2, T3 = perform(diis, [T1,T2,T3], [R1,R2,R3]) + perform!(diis, [T1,T2,T3], [R1,R2,R3]) save!(EC, "T_XXX", T3) En1 = calc_singles_energy(EC, T1) En2 = calc_doubles_energy(EC, T2) diff --git a/src/cc_lagrange.jl b/src/cc_lagrange.jl index 06b28c0..403929b 100644 --- a/src/cc_lagrange.jl +++ b/src/cc_lagrange.jl @@ -1191,7 +1191,7 @@ function calc_lm_cc(EC::ECInfo, method::ECMethod) NormR1 = calc_contra_singles_norm(Res[singles]...) update_singles!(EC, LMs[singles]..., Res[singles]...) end - LMs = perform(diis, LMs, Res) + perform!(diis, LMs, Res) if do_sing save_current_singles(EC, LMs[singles]..., prefix="U") end diff --git a/src/ccdriver.jl b/src/ccdriver.jl index 96295c6..9db8e04 100644 --- a/src/ccdriver.jl +++ b/src/ccdriver.jl @@ -8,6 +8,7 @@ using Printf using ..ElemCo.Utils using ..ElemCo.ECInfos using ..ElemCo.ECMethods +using ..ElemCo.Wavefunctions using ..ElemCo.TensorTools using ..ElemCo.DFTools using ..ElemCo.CCTools @@ -382,7 +383,7 @@ end function eval_df_mo_integrals(EC::ECInfo, energies::NamedTuple) t1 = time_ns() cMO = load_orbitals(EC, EC.options.wf.orb) - unrestricted = is_unrestricted_MO(cMO) + unrestricted = !is_restricted_MO(cMO) ERef = generate_DF_integrals(EC, cMO) t1 = print_time(EC, t1, "generate DF integrals", 2) cMO = nothing diff --git a/src/dfcc.jl b/src/dfcc.jl index 92d52c4..2176467 100644 --- a/src/dfcc.jl +++ b/src/dfcc.jl @@ -970,7 +970,7 @@ function calc_svd_dc(EC::ECInfo, method::ECMethod) end T2 += update_deco_doubles(EC, R2) t1 = print_time(EC,t1,"update amplitudes",2) - T1, T2 = perform(diis, [T1,T2], [R1,R2]) + perform!(diis, [T1,T2], [R1,R2]) t1 = print_time(EC,t1,"DIIS",2) En2 = calc_deco_doubles_energy(EC, T2) En = En2.E diff --git a/src/dfdump.jl b/src/dfdump.jl index 97901e1..05b1cbd 100644 --- a/src/dfdump.jl +++ b/src/dfdump.jl @@ -3,6 +3,7 @@ module DfDump using LinearAlgebra, TensorOperations using ..ElemCo.ECInfos using ..ElemCo.BasisSets +using ..ElemCo.Wavefunctions using ..ElemCo.Integrals using ..ElemCo.OrbTools using ..ElemCo.MSystem @@ -154,7 +155,7 @@ function generate_integrals(EC::ECInfo, fdump::FDump, cMOa, cMOb, full_spaces) space_save = save_space(EC) restore_space!(EC, full_spaces) generate_AO_DF_integrals(EC, "jkfit"; save3idx=false) - fock_jkfit = gen_dffock(EC, [cMOa, cMOb], bao, jkfit) + fock_jkfit = gen_dffock(EC, MOs(cMOa, cMOb), bao, jkfit) restore_space!(EC, space_save) fock_jkfitMOa = cMOa' * fock_jkfit[1] * cMOa fock_jkfitMOb = cMOb' * fock_jkfit[2] * cMOb @@ -184,8 +185,7 @@ function dfdump(EC::ECInfo) error("Only density-fitted integrals implemented") end cMO = load_orbitals(EC) - norbs = is_unrestricted_MO(cMO) ? size(cMO[1],2) : size(cMO,2) - + norbs = size(cMO,2) space_save = save_space(EC) ncore_orbs = freeze_core!(EC, EC.options.wf.core, EC.options.wf.freeze_nocc) nfrozvirt = freeze_nvirt!(EC, EC.options.wf.freeze_nvirt) @@ -194,11 +194,11 @@ function dfdump(EC::ECInfo) norbs -= ncore_orbs + nfrozvirt ms2 = EC.options.wf.ms2 ms2 = (ms2 < 0) ? mod(nelec,2) : ms2 - fdump = FDump(norbs, nelec; ms2=ms2, uhf=is_unrestricted_MO(cMO)) + fdump = FDump(norbs, nelec; ms2=ms2, uhf=!is_restricted_MO(cMO)) if fdump.uhf generate_integrals(EC, fdump, cMO[1][:,1:end-nfrozvirt], cMO[2][:,1:end-nfrozvirt], space_save) else - generate_integrals(EC, fdump, cMO[:,1:end-nfrozvirt], space_save) + generate_integrals(EC, fdump, cMO[1][:,1:end-nfrozvirt], space_save) end restore_space!(EC, space_save) if length(dumpfile) > 0 diff --git a/src/dfhf.jl b/src/dfhf.jl index a42afcc..f76f4a7 100644 --- a/src/dfhf.jl +++ b/src/dfhf.jl @@ -4,6 +4,7 @@ using ..ElemCo.Utils using ..ElemCo.ECInfos using ..ElemCo.Integrals using ..ElemCo.MSystem +using ..ElemCo.Wavefunctions using ..ElemCo.OrbTools using ..ElemCo.DFTools using ..ElemCo.FockFactory @@ -37,12 +38,13 @@ function dfhf(EC::ECInfo) bfit = generate_basis(EC, "jkfit") end t1 = print_time(EC, t1, "generate AO-DF integrals", 2) - cMO = guess_orb(EC,guess) + cMO = guess_orb(EC, guess) t1 = print_time(EC, t1, "guess orbitals", 2) - @assert !is_unrestricted_MO(cMO) "DF-HF only implemented for closed-shell" + @assert is_restricted_MO(cMO) "DF-HF only implemented for closed-shell" + cMO = cMO.α ϵ = zeros(norb) - hsmall = load(EC, "h_AA") - sao = load(EC, "S_AA") + hsmall = load(EC, "h_AA", Val(2)) + sao = load(EC, "S_AA", Val(2)) # display(sao) EHF = 0.0 previousEHF = 0.0 @@ -51,9 +53,9 @@ function dfhf(EC::ECInfo) t0 = time_ns() for it=1:EC.options.scf.maxit if direct - fock = gen_dffock(EC,cMO,bao,bfit) + fock = gen_dffock(EC, cMO, bao, bfit) else - fock = gen_dffock(EC,cMO) + fock = gen_dffock(EC, cMO) end t1 = print_time(EC, t1, "generate DF-Fock matrix", 2) cMO2 = cMO[:,SP['o']] @@ -73,10 +75,12 @@ function dfhf(EC::ECInfo) break end t1 = print_time(EC, t1, "HF residual", 2) - fock, = perform(diis,[fock],[Δfock]) + perform!(diis, [fock], [Δfock]) t1 = print_time(EC, t1, "DIIS", 2) # use Hermitian to ensure real eigenvalues and normalized orbitals - ϵ,cMO = eigen(Hermitian(fock),Hermitian(sao)) + ϵ_new, cMO_new = eigen(Hermitian(fock),Hermitian(sao)) + ϵ .= ϵ_new + cMO .= cMO_new t1 = print_time(EC, t1, "diagonalize Fock matrix", 2) # display(ϵ) end @@ -113,11 +117,9 @@ function dfuhf(EC::ECInfo) bfit = generate_basis(EC, "jkfit") end t1 = print_time(EC, t1, "generate AO-DF integrals", 2) - cMO = guess_orb(EC,guess) + cMO = guess_orb(EC, guess) t1 = print_time(EC, t1, "guess orbitals", 2) - if !is_unrestricted_MO(cMO) - cMO = Array{Float64}[cMO, cMO] - end + unrestrict!(cMO) ϵ = [zeros(norb), zeros(norb)] hsmall = load(EC, "h_AA") sao = load(EC, "S_AA") @@ -129,9 +131,9 @@ function dfuhf(EC::ECInfo) t0 = time_ns() for it=1:EC.options.scf.maxit if direct - fock = gen_dffock(EC,cMO,bao,bfit) + fock = gen_dffock(EC, cMO, bao, bfit) else - fock = gen_dffock(EC,cMO) + fock = gen_dffock(EC, cMO) end t1 = print_time(EC, t1, "generate DF-Fock matrix", 2) efhsmall = Float64[0.0, 0.0] @@ -155,7 +157,7 @@ function dfuhf(EC::ECInfo) break end t1 = print_time(EC, t1, "HF residual", 2) - fock = perform(diis, fock, Δfock) + perform!(diis, fock, Δfock) t1 = print_time(EC, t1, "DIIS", 2) for ispin = 1:2 # use Hermitian to ensure real eigenvalues and normalized orbitals diff --git a/src/dfmcscf.jl b/src/dfmcscf.jl index 8d0f09f..489d672 100644 --- a/src/dfmcscf.jl +++ b/src/dfmcscf.jl @@ -899,7 +899,7 @@ function dfmcscf(EC::ECInfo; direct=false) end # cMO and density matrices initialization - cMO = guess_orb(EC,guess) + cMO = guess_orb(EC,guess).α D1, D2 = denMatCreate(EC) # macro loop parameters initialisation diff --git a/src/dftools.jl b/src/dftools.jl index defde61..419252e 100644 --- a/src/dftools.jl +++ b/src/dftools.jl @@ -6,6 +6,7 @@ using LinearAlgebra, TensorOperations # using TSVD using IterativeSolvers using ..ElemCo.ECInfos +using ..ElemCo.Wavefunctions using ..ElemCo.Integrals using ..ElemCo.MSystem using ..ElemCo.FockFactory @@ -14,7 +15,7 @@ using ..ElemCo.TensorTools export get_auxblks, generate_AO_DF_integrals, generate_DF_integrals """ - get_auxblks(naux, maxblocksize=128, strict=false) + get_auxblks(naux::Int, maxblocksize::Int=128, strict=false) Generate ranges for block indices for auxiliary basis (for loop over blocks). @@ -22,20 +23,25 @@ export get_auxblks, generate_AO_DF_integrals, generate_DF_integrals Otherwise the actual block size will be as close as possible to `blocksize` such that the resulting blocks are of similar size. """ -function get_auxblks(naux, maxblocksize=128, strict=false) +function get_auxblks(naux::Int, maxblocksize::Int=128, strict=false) nauxblks = naux ÷ maxblocksize if nauxblks*maxblocksize < naux nauxblks += 1 end + auxblks = Vector{UnitRange{Int}}(undef, nauxblks) if strict - auxblks = [ (i-1)*maxblocksize+1 : ((i == nauxblks) ? naux : i*maxblocksize) for i in 1:nauxblks ] + for i in 1:nauxblks + start = (i-1)*maxblocksize+1 + stop = (i == nauxblks) ? naux : i*maxblocksize + auxblks[i] = start:stop + end else blocksize = naux ÷ nauxblks n_largeblks = mod(naux, nauxblks) - auxblks = [ (i-1)*(blocksize+1)+1 : i*(blocksize+1) for i in 1:n_largeblks ] + auxblks[1:n_largeblks] = [ (i-1)*(blocksize+1)+1 : i*(blocksize+1) for i in 1:n_largeblks ] start = n_largeblks*(blocksize+1)+1 for i = n_largeblks+1:nauxblks - push!(auxblks, start:start+blocksize-1) + auxblks[i] = start:start+blocksize-1 start += blocksize end end @@ -75,21 +81,22 @@ function generate_AO_DF_integrals(EC::ECInfo, fitbasis="mpfit"; save3idx=true) end """ - generate_3idx_integrals(EC::ECInfo, cMO, fitbasis="mpfit") + generate_3idx_integrals(EC::ECInfo, cMO::MOs, fitbasis="mpfit") Generate ``v_p^{qL}`` with ``v_{pr}^{qs} = v_p^{qL} δ_{LL'} v_r^{sL'}`` and store in file `mmL`. """ -function generate_3idx_integrals(EC::ECInfo, cMO, fitbasis="mpfit") - @assert ndims(cMO) == 2 "unrestricted not implemented yet" +function generate_3idx_integrals(EC::ECInfo, cMO::MOs, fitbasis="mpfit") + @assert is_restricted_MO(cMO) "unrestricted not implemented yet" + cMO1 = cMO[1] bao = generate_basis(EC, "ao") bfit = generate_basis(EC, fitbasis) PQ = eri_2e2idx(bfit) M = sqrtinvchol(PQ, tol = EC.options.cholesky.thred, verbose = true) μνP = eri_2e3idx(bao,bfit) - nm = size(cMO,2) + nm = size(cMO1,2) nL = size(M,2) mmLfile, mmL = newmmap(EC, "mmL", Float64, (nm,nm,nL)) LBlks = get_auxblks(nL) @@ -97,13 +104,13 @@ function generate_3idx_integrals(EC::ECInfo, cMO, fitbasis="mpfit") V_M = @view M[:,L] V_mmL = @view mmL[:,:,L] @tensoropt μνL[μ,ν,L] := μνP[μ,ν,P] * V_M[P,L] - @tensoropt V_mmL[p,q,L] = cMO[μ,p] * μνL[μ,ν,L] * cMO[ν,q] + @tensoropt V_mmL[p,q,L] = cMO1[μ,p] * μνL[μ,ν,L] * cMO1[ν,q] end closemmap(EC, mmLfile, mmL) end """ - generate_DF_integrals(EC::ECInfo, cMO) + generate_DF_integrals(EC::ECInfo, cMO::MOs) Generate ``v_p^{qL}`` and ``f_p^q`` with ``v_{pr}^{qs} = v_p^{qL} δ_{LL'} v_r^{sL'}``. @@ -113,8 +120,8 @@ end Return reference energy (calculated using `jkfit` fitting basis). """ -function generate_DF_integrals(EC::ECInfo, cMO) - @assert ndims(cMO) == 2 "unrestricted not implemented yet" +function generate_DF_integrals(EC::ECInfo, cMO::MOs) + @assert is_restricted_MO(cMO) "unrestricted not implemented yet" if !system_exists(EC.system) error("Molecular system not specified!") end @@ -122,15 +129,15 @@ function generate_DF_integrals(EC::ECInfo, cMO) generate_AO_DF_integrals(EC, "jkfit"; save3idx=false) bao = generate_basis(EC, "ao") bfit = generate_basis(EC, "jkfit") - fock = gen_dffock(EC, cMO, bao, bfit) - fock_MO = cMO' * fock * cMO + fock = gen_dffock(EC, cMO[1], bao, bfit) + fock_MO = cMO[1]' * fock * cMO[1] save!(EC,"f_mm",fock_MO) eps = diag(fock_MO) println("Occupied orbital energies: ", eps[EC.space['o']]) save!(EC, "e_m", eps) save!(EC, "e_M", eps) occ = EC.space['o'] - hsmall = cMO' * load(EC,"h_AA") * cMO + hsmall = cMO[1]' * load(EC,"h_AA") * cMO[1] EHF = sum(eps[occ]) + sum(diag(hsmall)[occ]) + nuclear_repulsion(EC.system) # calculate 3-index integrals generate_3idx_integrals(EC, cMO, "mpfit") diff --git a/src/diis.jl b/src/diis.jl index 7fb30d3..e100f92 100644 --- a/src/diis.jl +++ b/src/diis.jl @@ -1,12 +1,29 @@ """ DIIS module for iterative solvers + + This module provides the DIIS (Direct Inversion in the Iterative Subspace) method for iterative solvers. + + The DIIS method is used to accelerate the convergence of iterative solvers by combining + previous solutions to the problem to minimize the residual. + The vectors and residuals are stored in files as `Vector{Vector{Float64}}`. + +# Usage +```julia +diis = Diis(EC) +for it = 1:maxit + # compute Vec = [Vec1,Vec2,...] and Res = [Res1,Res2,...] + # ... + perform!(diis, Vec, Res) + # ... +end + """ module DIIS using LinearAlgebra using ..ElemCo.MIO using ..ElemCo.ECInfos -export Diis, perform +export Diis, perform! """ DIIS object @@ -19,17 +36,17 @@ mutable struct Diis """ use CROP-DIIS instead of the standard DIIS """ cropdiis::Bool """ files for DIIS vectors """ - ampfiles::Array{String} + ampfiles::Vector{String} """ files for DIIS residuals """ - resfiles::Array{String} + resfiles::Vector{String} """ square weights for DIIS residuals components """ - weights::Array{Float64} + weights::Vector{Float64} """ next vector to be replaced """ next::Int """ number of DIIS vectors """ nDim::Int """ B matrix """ - bmat::Array{Float64} + bmat::Matrix{Float64} """ Diis(EC::ECInfo, weights = Float64[]; maxdiis::Int = EC.options.diis.maxdiis, resthr::Float64 = EC.options.diis.resthr) @@ -57,7 +74,7 @@ end Save vectors to file (replacing previous vectors at position `ipos`). """ function saveamps(diis::Diis, vecs, ipos) - miosave(diis.ampfiles[ipos],vecs...) + miosave(diis.ampfiles[ipos], vecs...) end """ @@ -72,16 +89,16 @@ end """ loadvecs(file) - Load vectors from file. + Load vectors from file as `Vector{Vector{Float64}}`. """ function loadvecs(file) - return mioload(file, array_of_arrays = true) + return mioload(file, Val(1)) end """ loadamps(diis::Diis, ipos) - Load vectors from file at position `ipos`. + Load vectors from file at position `ipos` as `Vector{Vector{Float64}}`. """ function loadamps(diis::Diis, ipos) return loadvecs(diis.ampfiles[ipos]) @@ -90,7 +107,7 @@ end """ loadres(diis::Diis, ipos) - Load residuals from file at position `ipos`. + Load residuals from file at position `ipos` as `Vector{Vector{Float64}}`. """ function loadres(diis::Diis, ipos) return loadvecs(diis.resfiles[ipos]) @@ -162,11 +179,14 @@ function update_Bmat(diis::Diis, nDim, Res, ithis) end """ - perform(diis::Diis, Amps, Res) + perform!(diis::Diis, Amps, Res) Perform DIIS. + + `Amps` is an array of vectors and `Res` is an array of residuals. + The vectors `Amps` will be replaced by the DIIS optimized vectors. """ -function perform(diis::Diis, Amps, Res) +function perform!(diis::Diis, Amps, Res) if diis.nDim < diis.maxdiis diis.nDim += 1 end @@ -214,10 +234,14 @@ function perform(diis::Diis, Amps, Res) # println("DIIS: ", thisResDot, " -> ", optres2) Opt = combine(diis, diis.ampfiles, coeffs) saveamps(diis, Opt, ithis) - return Opt else - return combine(diis, diis.ampfiles, coeffs) + Opt = combine(diis, diis.ampfiles, coeffs) + end + # replace Amps with Opt vectors keeping the shape of Amps + for i in eachindex(Amps) + Amps[i][:] = Opt[i] end + return Amps end end diff --git a/src/ecinfos.jl b/src/ecinfos.jl index 4265678..5a77812 100644 --- a/src/ecinfos.jl +++ b/src/ecinfos.jl @@ -38,7 +38,7 @@ Base.@kwdef mutable struct ECInfo <: AbstractECInfo """ options. """ options::Options = Options() """ molecular system. """ - system::AbstractSystem = FlexibleSystem(Atom[], infinite_box(3), fill(DirichletZero(), 3)) + system::FlexibleSystem = FlexibleSystem(Atom[], infinite_box(3), fill(DirichletZero(), 3)) """ fcidump. """ fd::FDump = FDump() """ information about (temporary) files. @@ -143,7 +143,7 @@ function setup_space!(EC::ECInfo, norb, nelec, ms2, orbsym) occb = EC.options.wf.occb SP = EC.space println("Number of orbitals: ", norb) - SP['o'], SP['v'], SP['O'], SP['V'] = get_occvirt(EC, occa, occb, norb, nelec; ms2, orbsym) + SP['o'], SP['v'], SP['O'], SP['V'] = get_occvirt(occa, occb, norb, nelec; ms2, orbsym, EC.options.wf.ignore_error) SP['d'] = intersect(SP['o'], SP['O']) SP['s'] = setdiff(SP['o'], SP['d']) SP['S'] = setdiff(SP['O'], SP['d']) @@ -535,7 +535,7 @@ function parse_orbstring(orbs::String; orbsym=Vector{Int}()) if first(orbs1) == ':' orbs1 = "1"*orbs1 end - orblist=Vector{Int}() + orblist=Int[] for range in filter(!isempty, split(orbs1,';')) if first(range) == ':' sym = filter(!isempty, split(range[2:end],'.'))[2] @@ -544,13 +544,13 @@ function parse_orbstring(orbs::String; orbsym=Vector{Int}()) firstlast = filter(!isempty, split(range,':')) if length(firstlast) == 1 # add the orbital - orblist=push!(orblist, symorb2orb(firstlast[1],symoffset)) + push!(orblist, symorb2orb(firstlast[1],symoffset)) else length(firstlast) == 2 || error("Someting wrong in range $range in orbstring $orbs") firstorb = symorb2orb(firstlast[1],symoffset) lastorb = symorb2orb(firstlast[2],symoffset) # add the range - orblist=vcat(orblist,[firstorb:lastorb]...) + append!(orblist, [firstorb:lastorb;]) end end allunique(orblist) || error("Repeated orbitals found in orbstring $orbs") @@ -559,12 +559,12 @@ function parse_orbstring(orbs::String; orbsym=Vector{Int}()) end """ - symorb2orb(symorb::SubString, symoffset::Vector{Int}) + symorb2orb(symorb::AbstractString, symoffset::Vector{Int}) Convert a symorb (like 1.3 [orb.sym]) to an orbital number. If no sym given, just return the orbital number converted to Int. """ -function symorb2orb(symorb::SubString, symoffset::Vector{Int}) +function symorb2orb(symorb::AbstractString, symoffset::Vector{Int}) if occursin(".",symorb) orb, sym = filter(!isempty, split(symorb,'.')) @assert(parse(Int,sym) <= length(symoffset),"Symmetry label $sym larger than maximum of orbsym vector.") @@ -577,28 +577,30 @@ function symorb2orb(symorb::SubString, symoffset::Vector{Int}) end """ - get_occvirt(EC::ECInfo, occas::String, occbs::String, norb, nelec; ms2=0, orbsym=Vector{Int}) + get_occvirt(occas::String, occbs::String, norb, nelec; ms2=0, orbsym=Vector{Int}, ignore_error=false) Use a +/- string to specify the occupation. If `occbs`=="-", the occupation from `occas` is used (closed-shell). If both are "-", the occupation is deduced from `nelec` and `ms2`. The optional argument `orbsym` is a vector with length norb of orbital symmetries (1 to 8) for each orbital. """ -function get_occvirt(EC::ECInfo, occas::String, occbs::String, norb, nelec; ms2=0, orbsym=Vector{Int}()) +function get_occvirt(occas::String, occbs::String, norb::Int, nelec::Int; ms2=0, orbsym=Vector{Int}(), ignore_error=false) @assert(isodd(ms2) == isodd(nelec), "Inconsistency in ms2 (2*S) and number of electrons.") + occa = Int[] + occb = Int[] if occas != "-" - occa = parse_orbstring(occas; orbsym) + append!(occa, parse_orbstring(occas; orbsym)) if occbs == "-" # copy occa to occb - occb = deepcopy(occa) + append!(occb, occa) else - occb = parse_orbstring(occbs; orbsym) + append!(occb, parse_orbstring(occbs; orbsym)) end - if length(occa)+length(occb) != nelec && !EC.options.wf.ignore_error + if length(occa)+length(occb) != nelec && !ignore_error error("Inconsistency in OCCA ($occas) and OCCB ($occbs) definitions and the number of electrons ($nelec). Use ignore_error wf option to ignore.") end else - occa = [1:(nelec+ms2)÷2;] - occb = [1:(nelec-ms2)÷2;] + append!(occa, [1:(nelec+ms2)÷2;]) + append!(occb, [1:(nelec-ms2)÷2;]) end virta = [ i for i in 1:norb if i ∉ occa ] virtb = [ i for i in 1:norb if i ∉ occb ] diff --git a/src/fockfactory.jl b/src/fockfactory.jl index 6a4bb07..dd267bc 100644 --- a/src/fockfactory.jl +++ b/src/fockfactory.jl @@ -10,6 +10,7 @@ using LinearAlgebra using TensorOperations using ..ElemCo.ECInfos using ..ElemCo.TensorTools +using ..ElemCo.Wavefunctions using ..ElemCo.FciDump using ..ElemCo.Integrals using ..ElemCo.OrbTools @@ -59,12 +60,12 @@ function gen_fock(EC::ECInfo, spincase::Symbol) end """ - gen_density_matrix(EC::ECInfo, CMOl::AbstractArray, CMOr::AbstractArray, occvec) + gen_density_matrix(EC::ECInfo, CMOl::Matrix, CMOr::Matrix, occvec) Generate ``D_{μν}=C^l_{μi} C^r_{νi}`` with ``i`` defined by `occvec`. Only real part of ``D_{μν}`` is kept. """ -function gen_density_matrix(EC::ECInfo, CMOl::AbstractArray, CMOr::AbstractArray, occvec) +function gen_density_matrix(EC::ECInfo, CMOl::Matrix, CMOr::Matrix, occvec) CMOlo = CMOl[:,occvec] CMOro = CMOr[:,occvec] @tensoropt den[r,s] := CMOlo[r,i]*CMOro[s,i] @@ -77,12 +78,12 @@ function gen_density_matrix(EC::ECInfo, CMOl::AbstractArray, CMOr::AbstractArray end """ - gen_frac_density_matrix(EC::ECInfo, CMOl::AbstractArray, CMOr::AbstractArray, occupation) + gen_frac_density_matrix(EC::ECInfo, CMOl::Matrix, CMOr::Matrix, occupation) Generate ``D_{μν}=C^l_{μi} C^r_{νi} n_i`` with ``n_i`` provided in `occupation`. Only real part of ``D_{μν}`` is kept. """ -function gen_frac_density_matrix(EC::ECInfo, CMOl::AbstractArray, CMOr::AbstractArray, occupation) +function gen_frac_density_matrix(EC::ECInfo, CMOl::Matrix, CMOr::Matrix, occupation) @assert length(occupation) == size(CMOr,2) "Wrong occupation vector length!" CMOrn = CMOr .* occupation' @tensoropt den[r,s] := CMOl[r,i]*CMOrn[s,i] @@ -95,11 +96,11 @@ function gen_frac_density_matrix(EC::ECInfo, CMOl::AbstractArray, CMOr::Abstract end """ - gen_fock(EC::ECInfo, den::AbstractArray) + gen_fock(EC::ECInfo, den::Matrix) Calculate closed-shell fock matrix from FCIDump integrals and density matrix `den`. """ -function gen_fock(EC::ECInfo, den::AbstractArray) +function gen_fock(EC::ECInfo, den::Matrix) @tensoropt begin fock[p,q] := integ1(EC.fd,:α)[p,q] fock[p,q] += ints2(EC,"::::",:α)[p,r,q,s] * den[r,s] @@ -109,11 +110,11 @@ function gen_fock(EC::ECInfo, den::AbstractArray) end """ - gen_fock(EC::ECInfo, CMOl::AbstractArray, CMOr::AbstractArray) + gen_fock(EC::ECInfo, CMOl::Matrix, CMOr::Matrix) Calculate closed-shell fock matrix from FCIDump integrals and orbitals `CMOl`, `CMOr`. """ -function gen_fock(EC::ECInfo, CMOl::AbstractArray, CMOr::AbstractArray) +function gen_fock(EC::ECInfo, CMOl::Matrix, CMOr::Matrix) @assert EC.space['o'] == EC.space['O'] # closed-shell occ2 = EC.space['o'] den = gen_density_matrix(EC, CMOl, CMOr, occ2) @@ -126,13 +127,13 @@ function gen_fock(EC::ECInfo, CMOl::AbstractArray, CMOr::AbstractArray) end """ - gen_fock(EC::ECInfo, spincase::Symbol, CMOl::AbstractArray, CMOr::AbstractArray) + gen_fock(EC::ECInfo, spincase::Symbol, CMOl::Matrix, CMOr::Matrix) Calculate UHF fock matrix from FCIDump integrals for `spincase`∈{`:α`,`:β`} and orbitals `CMOl`, `CMOr` and orbitals for the opposite-spin `CMOlOS` and `CMOrOS`. """ -function gen_fock(EC::ECInfo, spincase::Symbol, CMOl::AbstractArray, CMOr::AbstractArray, - CMOlOS::AbstractArray, CMOrOS::AbstractArray) +function gen_fock(EC::ECInfo, spincase::Symbol, CMOl::Matrix, CMOr::Matrix, + CMOlOS::Matrix, CMOrOS::Matrix) if spincase == :α denOS = gen_density_matrix(EC, CMOlOS, CMOrOS, EC.space['O']) @tensoropt fock[p,q] := ints2(EC,"::::",:αβ)[p,r,q,s]*denOS[r,s] @@ -151,13 +152,13 @@ function gen_fock(EC::ECInfo, spincase::Symbol, CMOl::AbstractArray, CMOr::Abstr end """ - gen_fock(EC::ECInfo, spincase::Symbol, den::AbstractArray, denOS::AbstractArray) + gen_fock(EC::ECInfo, spincase::Symbol, den::Matrix, denOS::Matrix) Calculate UHF fock matrix from FCIDump integrals and density matrices `den` (for `spincase`) and `denOS` (opposite spin to `spincase`). """ function gen_fock(EC::ECInfo, spincase::Symbol, - den::AbstractArray, denOS::AbstractArray) + den::Matrix, denOS::Matrix) if spincase == :α @tensoropt fock[p,q] := ints2(EC,"::::",:αβ)[p,r,q,s]*denOS[r,s] else @@ -171,14 +172,15 @@ function gen_fock(EC::ECInfo, spincase::Symbol, end """ - gen_ufock(EC::ECInfo, CMOl::AbstractArray, CMOr::AbstractArray) + gen_ufock(EC::ECInfo, CMOl::MOs, CMOr::MOs) Calculate UHF fock matrix from FCIDump integrals and orbitals `cMOl`, `cMOr` with `cMOl[1]` and `cMOr[1]` - α-MO transformation coefficients and `cMOl[2]` and `cMOr[2]` - β-MO transformation coefficients. """ -function gen_ufock(EC::ECInfo, cMOl::AbstractArray, cMOr::AbstractArray) - return [gen_fock(EC, :α, cMOl[1], cMOr[1], cMOl[2], cMOr[2]), gen_fock(EC, :β, cMOl[2], cMOr[2], cMOl[1], cMOr[1])] +function gen_ufock(EC::ECInfo, cMOl::MOs, cMOr::MOs) + return Matrix{Float64}[gen_fock(EC, :α, cMOl[1], cMOr[1], cMOl[2], cMOr[2]), + gen_fock(EC, :β, cMOl[2], cMOr[2], cMOl[1], cMOr[1])] end """ @@ -187,51 +189,18 @@ end Calculate UHF fock matrix from FCIDump integrals and density matrix `den`. """ function gen_ufock(EC::ECInfo, den::AbstractArray) - return [gen_fock(EC, :α, den[1], den[2]), gen_fock(EC, :β, den[2], den[1])] -end - - -""" - gen_dffock(EC::ECInfo, cMO::AbstractArray, bao, bfit) - - Compute DF-HF Fock matrix (integral direct) in AO basis. - - If cMO is unrestricted, α and β Fock matrices will be returned. -""" -function gen_dffock(EC::ECInfo, cMO::AbstractArray, bao, bfit) - if is_unrestricted_MO(cMO) - return gen_unrestricted_dffock(EC, cMO, bao, bfit) - else - return gen_closed_shell_dffock(EC, cMO, bao, bfit) - end -end - -""" - gen_dffock(EC::ECInfo, cMO::AbstractArray) - - Compute DF-HF Fock matrix in AO basis - (using precalculated Cholesky-decomposed integrals). - - If cMO is unrestricted, α and β Fock matrices will be returned. -""" -function gen_dffock(EC::ECInfo, cMO::AbstractArray) - if is_unrestricted_MO(cMO) - return gen_unrestricted_dffock(EC, cMO) - else - return gen_closed_shell_dffock(EC, cMO) - end + return Matrix{Float64}[gen_fock(EC, :α, den[1], den[2]), gen_fock(EC, :β, den[2], den[1])] end """ - gen_closed_shell_dffock(EC::ECInfo, cMO::AbstractArray, bao, bfit) + gen_dffock(EC::ECInfo, cMO::Matrix{Float64}, bao, bfit) Compute closed-shell DF-HF Fock matrix (integral direct) in AO basis. """ -function gen_closed_shell_dffock(EC::ECInfo, cMO::AbstractArray, bao, bfit) - @assert !is_unrestricted_MO(cMO) "Restricted orbitals only!" +function gen_dffock(EC::ECInfo, cMO::Matrix{Float64}, bao, bfit) μνP = eri_2e3idx(bao,bfit) - PL = load(EC,"C_PL") - hsmall = load(EC,"h_AA") + PL = load2idx(EC, "C_PL") + hsmall = load2idx(EC, "h_AA") # println(size(Ppq)) @assert EC.space['o'] == EC.space['O'] "Closed-shell only!" occ2 = EC.space['o'] @@ -248,20 +217,19 @@ function gen_closed_shell_dffock(EC::ECInfo, cMO::AbstractArray, bao, bfit) end """ - gen_unrestricted_dffock(EC::ECInfo, cMO::AbstractArray, bao, bfit) + gen_dffock(EC::ECInfo, cMO::MOs, bao, bfit) Compute unrestricted DF-HF Fock matrices [Fα, Fβ] in AO basis (integral direct). """ -function gen_unrestricted_dffock(EC::ECInfo, cMO::AbstractArray, bao, bfit) - @assert is_unrestricted_MO(cMO) "Unrestricted orbitals only!" +function gen_dffock(EC::ECInfo, cMO::MOs, bao, bfit) μνP = eri_2e3idx(bao,bfit) - PL = load(EC,"C_PL") - hsmall = load(EC,"h_AA") + PL = load2idx(EC,"C_PL") + hsmall = load2idx(EC,"h_AA") # println(size(Ppq)) occa = EC.space['o'] occb = EC.space['O'] - CMOo = [cMO[1][:,occa], cMO[2][:,occb]] - fock = Array{Float64}[zeros(size(hsmall)), zeros(size(hsmall))] + CMOo = Matrix{Float64}[cMO[1][:,occa], cMO[2][:,occb]] + fock = Matrix{Float64}[zeros(size(hsmall)), zeros(size(hsmall))] cL = zeros(size(PL,2)) for isp = 1:2 # loop over [α, β] @tensoropt begin @@ -281,18 +249,17 @@ function gen_unrestricted_dffock(EC::ECInfo, cMO::AbstractArray, bao, bfit) end """ - gen_closed_shell_dffock(EC::ECInfo, cMO::AbstractArray) + gen_dffock(EC::ECInfo, cMO::Matrix{Float64}) Compute closed-shell DF-HF Fock matrix in AO basis (using precalculated Cholesky-decomposed integrals). """ -function gen_closed_shell_dffock(EC::ECInfo, cMO::AbstractArray) - @assert !is_unrestricted_MO(cMO) "Restricted orbitals only!" +function gen_dffock(EC::ECInfo, cMO::Matrix{Float64}) @assert EC.space['o'] == EC.space['O'] "Closed-shell only!" occ2 = EC.space['o'] CMO2 = cMO[:,occ2] - μνL = load(EC,"AAL") - hsmall = load(EC,"h_AA") + μνL = load3idx(EC,"AAL") + hsmall = load2idx(EC,"h_AA") @tensoropt begin μjL[p,j,L] := μνL[p,q,L] * CMO2[q,j] L[L] := μjL[p,j,L] * CMO2[p,j] @@ -303,19 +270,18 @@ function gen_closed_shell_dffock(EC::ECInfo, cMO::AbstractArray) end """ - gen_unrestricted_dffock(EC::ECInfo, cMO::AbstractArray) + gen_dffock(EC::ECInfo, cMO::MOs) Compute unrestricted DF-HF Fock matrices [Fα, Fβ] in AO basis (using precalculated Cholesky-decomposed integrals). """ -function gen_unrestricted_dffock(EC::ECInfo, cMO::AbstractArray) - @assert is_unrestricted_MO(cMO) "Unrestricted orbitals only!" +function gen_dffock(EC::ECInfo, cMO::MOs) occa = EC.space['o'] occb = EC.space['O'] CMOo = [cMO[1][:,occa], cMO[2][:,occb]] - hsmall = load(EC,"h_AA") + hsmall = load2idx(EC,"h_AA") fock = Array{Float64}[zeros(size(hsmall)), zeros(size(hsmall))] - μνL = load(EC,"AAL") + μνL = load3idx(EC,"AAL") L = zeros(size(μνL,3)) for isp = 1:2 # loop over [α, β] @tensoropt begin diff --git a/src/interfaces/molden.jl b/src/interfaces/molden.jl index 636cfc8..4de1a75 100644 --- a/src/interfaces/molden.jl +++ b/src/interfaces/molden.jl @@ -11,6 +11,7 @@ using ..ElemCo.Utils using ..ElemCo.ECInfos using ..ElemCo.MSystem using ..ElemCo.BasisSets +using ..ElemCo.Wavefunctions using ..ElemCo.OrbTools export is_molden_file, write_molden_orbitals @@ -104,15 +105,15 @@ function write_molden_orbitals(EC::ECInfo, filename::String) maxl > 5 && println(f, "[13I]") end #TODO use correct energies and occupations - if is_unrestricted_MO(orbs) + if is_restricted_MO(orbs) + energies = zeros(size(orbs,2)) + occupation = zeros(size(orbs,2)) + printmos(f, orbs, order, energies, occupation) + else energies = zeros(size(orbs[1],2)) occupation = zeros(size(orbs[1],2)) printmos(f, orbs[1], order, energies, occupation) printmos(f, orbs[2], order, energies, occupation, "Beta") - else - energies = zeros(size(orbs,2)) - occupation = zeros(size(orbs,2)) - printmos(f, orbs, order, energies, occupation) end end end diff --git a/src/myio.jl b/src/myio.jl index 7918a88..fcc1929 100644 --- a/src/myio.jl +++ b/src/myio.jl @@ -65,6 +65,7 @@ end Type-stable load arrays from a file `fname`. Return an array of arrays. All arrays have the same type `T` and have `N` dimensions. + For `N = 1`, return vectors even if the original array was a multi-dimensional array. """ function mioload(fname::String, ::Val{N}, T::Type=Float64) where {N} io = open(fname) @@ -80,10 +81,18 @@ function mioload(fname::String, ::Val{N}, T::Type=Float64) where {N} for ia in 1:narray ndim = read(io, Int) dims = Int[] - for idim in 1:ndim - append!(dims, read(io, Int)) + if N == 1 + len = 1 + for idim in 1:ndim + len *= read(io, Int) + end + append!(dims, len) + else + @assert N == ndim "Inconsistency in reading dimensions of data!" + for idim in 1:ndim + append!(dims, read(io, Int)) + end end - @assert N == length(dims) "Inconsistency in reading dimensions of data!" push!(arrs, Array{T,N}(undef, (dims...))) end for ia in 1:narray @@ -148,6 +157,31 @@ function mionewmmap(fname::String, Type, dims::Tuple{Vararg{Int}}) return io, mmap(io, Array{Type,length(dims)}, dims) end +# for N = 1:6 +# docstr = """ +# mionewmmap(fname::String, Type, dims::NTuple{$N, Int}) + +# Create a new memory-map file for writing (overwrites existing file). +# Return a pointer to the file and the mmaped array. +# """ +# @eval begin +# @doc $docstr +# function mionewmmap(fname::String, Type, dims::NTuple{$N, Int}) +# io = open(fname, "w+") +# # store type of numbers +# write(io, JuliaT2Int[Type]) +# # number of arrays in the file (1 for mmaps) +# write(io, 1) +# # store dimensions of the arrays +# write(io, length(dims)) +# for dim in dims +# write(io, dim) +# end +# return io, mmap(io, Array{Type,$N}, dims) +# end +# end +# end + """ mioclosemmap(io::IO, array::AbstractArray) diff --git a/src/orbtools.jl b/src/orbtools.jl index 6337cb2..ad49cec 100644 --- a/src/orbtools.jl +++ b/src/orbtools.jl @@ -12,8 +12,9 @@ using ..ElemCo.BasisSets using ..ElemCo.Integrals using ..ElemCo.MSystem using ..ElemCo.TensorTools +using ..ElemCo.Wavefunctions -export guess_orb, load_orbitals, orbital_energies, is_unrestricted_MO +export guess_orb, load_orbitals, orbital_energies export show_orbitals export rotate_orbs, rotate_orbs!, normalize_phase! @@ -26,7 +27,7 @@ function guess_hcore(EC::ECInfo) hsmall = load(EC, "h_AA", Val(2)) sao = load(EC, "S_AA", Val(2)) ϵ, cMO = eigen(Hermitian(hsmall), Hermitian(sao)) - return cMO + return MOs(cMO) end """ @@ -46,11 +47,12 @@ function guess_sad(EC::ECInfo) sao = load(EC, "S_AA", Val(2)) denao = smin2ao' * diagm(eldist./diag(smin)) * smin2ao eigs, cMO = eigen(Hermitian(-denao), Hermitian(sao)) - return cMO + return MOs(cMO) end function guess_gwh(EC::ECInfo) error("not implemented yet") + return MOs() end """ @@ -69,10 +71,11 @@ function guess_orb(EC::ECInfo, guess::Symbol) elseif guess == :GWH || guess == :gwh return guess_gwh(EC) elseif guess == :ORB || guess == :orb - return load(EC,EC.options.wf.orb) + orbs = load_all(EC, EC.options.wf.orb, Val(2)) + return MOs(orbs...) else error("unknown guess type") - return Float64[] + return MOs() end end @@ -84,6 +87,8 @@ end - from file `orbsfile` if not empty - from file [`WfOptions.orb`](@ref ECInfos.WfOptions) if not empty - error if all files are empty + + Returns `::MOs`. """ function load_orbitals(EC::ECInfo, orbsfile::String="") if !isempty(strip(orbsfile)) @@ -93,7 +98,7 @@ function load_orbitals(EC::ECInfo, orbsfile::String="") else error("no orbitals found") end - return load(EC, orbsfile) + return MOs(load_all(EC, orbsfile, Val(2))...) end """ @@ -114,23 +119,6 @@ function orbital_energies(EC::ECInfo, spincase::Symbol=:α) return ϵo, ϵv end -""" - is_unrestricted_MO(cMO::AbstractArray) - - Return `true` if `cMO` is unrestricted MO coefficients of the form - [CMOα, CMOβ]. -""" -function is_unrestricted_MO(cMO::AbstractArray) - if ndims(cMO) == 1 - return true - elseif ndims(cMO) == 2 - return false - else - error("Wrong number of dimensions in cMO: ", ndims(cMO)) - end -end - - """ rotate_orbs(EC::ECInfo, orb1, orb2, angle=90; spin::Symbol=:α) @@ -140,30 +128,28 @@ end function rotate_orbs(EC::ECInfo, orb1, orb2, angle=90; spin::Symbol=:α) cMO = load_orbitals(EC) descr = file_description(EC, EC.options.wf.orb) - if is_unrestricted_MO(cMO) - isp = (spin == :α) ? 1 : 2 - cMOrot = cMO[isp] + if is_restricted_MO(cMO) + cMOrot = cMO[1] else - cMOrot = cMO + cMOrot = cMO[spin] end rotate_orbs!(cMOrot, orb1, orb2, angle) descr *= " rot$(orb1)&$(orb2)by$(angle)" - if is_unrestricted_MO(cMO) - save!(EC, EC.options.wf.orb, cMO..., description=descr) + if is_restricted_MO(cMO) + save!(EC, EC.options.wf.orb, cMO[1], description=descr) else - save!(EC, EC.options.wf.orb, cMO, description=descr) + save!(EC, EC.options.wf.orb, cMO..., description=descr) end end """ - rotate_orbs!(cMO::AbstractArray, orb1, orb2, angle=90) + rotate_orbs!(cMO::Matrix, orb1, orb2, angle=90) Rotate orbitals `orb1` and `orb2` from `cMO` by `angle` degrees. `cMO` is a matrix of MO coefficients. """ -function rotate_orbs!(cMO::AbstractArray, orb1, orb2, angle=90) - @assert ndims(cMO) == 2 "Wrong number of dimensions in cMO: $(ndims(cMO))" +function rotate_orbs!(cMO::Matrix, orb1, orb2, angle=90) if orb1 > size(cMO,2) || orb2 > size(cMO,2) error("orbital index out of range") end @@ -186,27 +172,27 @@ function show_orbitals(EC::ECInfo, range=nothing) cMO = load_orbitals(EC) descr = file_description(EC, EC.options.wf.orb) if isnothing(range) - range = 1:size(cMO,2) + range = 1:size(cMO, 2) end println(range," orbitals from $descr") - if is_unrestricted_MO(cMO) + if is_restricted_MO(cMO) + show_orbitals(EC, cMO[1], basis, range) + else println("Alpha orbitals:") show_orbitals(EC, cMO[1], basis, range) println("Beta orbitals:") show_orbitals(EC, cMO[2], basis, range) - else - show_orbitals(EC, cMO, basis, range) end end """ - show_orbitals(EC::ECInfo, cMO::AbstractArray, basis::BasisSet, range=1:size(cMO,2) + show_orbitals(EC::ECInfo, cMO::Matrix, basis::BasisSet, range=1:size(cMO,2) Print the MO coefficients in `cMO` with respect to the atomic orbitals in `basis`. `range` is a range of molecular orbitals to be printed. """ -function show_orbitals(EC::ECInfo, cMO::AbstractArray, basis::BasisSet, range=1:size(cMO,2)) +function show_orbitals(EC::ECInfo, cMO::Matrix, basis::BasisSet, range=1:size(cMO,2)) aos = ao_list(basis) nao = length(aos) nmo = size(cMO,2) diff --git a/src/system/basiscenter.jl b/src/system/basiscenter.jl index b62c59d..8f88eb3 100644 --- a/src/system/basiscenter.jl +++ b/src/system/basiscenter.jl @@ -16,47 +16,9 @@ struct BasisContraction end """ - AbstractAngularShell + AngularShell - Abstract type for angular shells, i.e, subshells with the same angular momentum. - For general contracted basis sets, the angular shell is a collection of all subshells - with the same l quantum number. - For some other basis sets (e.g., the def2-family), the angular shell can be a - single subshell with a specific l quantum number. - See [`SphericalAngularShell`](@ref) and [`CartesianAngularShell`](@ref). - `id` is the index of the angular shell in the basis set. -""" -abstract type AbstractAngularShell end - -""" - SphericalAngularShell - - Type for spherical angular shells, i.e, subshells with the same angular momentum. - For general contracted basis sets, the angular shell is a collection of all subshells - with the same l quantum number. - For some other basis sets (e.g., the def2-family), the angular shell can be a - single subshell with a specific l quantum number. - `id` is the index of the angular shell in the basis set. - - $(TYPEDFIELDS) -""" -mutable struct SphericalAngularShell <: AbstractAngularShell - """ element symbol (e.g., "H")""" - element::String - """ angular momentum""" - l::Int - """ array of exponents""" - exponents::BVector - """ array of subshells (contractions)""" - subshells::Vector{BasisContraction} - """ index of the angular shell in the basis set""" - id::Int -end - -""" - CartesianAngularShell - - Type for cartesian angular shells, i.e, subshells with the same angular momentum. + Type for angular shells, i.e, subshells with the same angular momentum. For general contracted basis sets, the angular shell is a collection of all subshells with the same l quantum number. For some other basis sets (e.g., the def2-family), the angular shell can be a @@ -65,7 +27,7 @@ end $(TYPEDFIELDS) """ -mutable struct CartesianAngularShell <: AbstractAngularShell +mutable struct AngularShell """ element symbol (e.g., "H")""" element::String """ angular momentum""" @@ -95,7 +57,7 @@ struct BasisCenter """ name of the basis set (e.g., "cc-pVDZ")""" basis::String """ array of angular shells""" - shells::Vector{AbstractAngularShell} + shells::Vector{AngularShell} end function BasisCenter(atom::Atom, basis="", basisfunctions=[]) @@ -115,15 +77,15 @@ function Base.length(bc::BasisContraction) return length(bc.coefs) end -function Base.getindex(ashell::AbstractAngularShell, i::Int) +function Base.getindex(ashell::AngularShell, i::Int) return ashell.subshells[i] end -function Base.setindex!(ashell::AbstractAngularShell, val, i::Int) +function Base.setindex!(ashell::AngularShell, val, i::Int) ashell.subshells[i] = val end -function Base.length(ashell::AbstractAngularShell) +function Base.length(ashell::AngularShell) return length(ashell.subshells) end @@ -154,7 +116,7 @@ function Base.show(io::IO, bc::BasisContraction) end end -function Base.show(io::IO, ashell::AbstractAngularShell) +function Base.show(io::IO, ashell::AngularShell) print(io, subshell_char(ashell.l), ", ", ashell.element) for exp in ashell.exponents print(io, ", ", exp) @@ -165,7 +127,7 @@ function Base.show(io::IO, ashell::AbstractAngularShell) end end -function Base.show(io::IO, ashs::Vector{<:AbstractAngularShell}) +function Base.show(io::IO, ashs::Vector{<:AngularShell}) for ashell in ashs println(io, ashell) end @@ -181,11 +143,11 @@ end angularshells(cen::BasisCenter) = cen.shells """ - n_subshells(ashell::AbstractAngularShell) + n_subshells(ashell::AngularShell) Return the number of subshells in the angular shell. """ -n_subshells(ashell::AbstractAngularShell) = length(ashell.subshells) +n_subshells(ashell::AngularShell) = length(ashell.subshells) """ n_primitives(subshell::BasisContraction) @@ -195,11 +157,11 @@ n_subshells(ashell::AbstractAngularShell) = length(ashell.subshells) n_primitives(subshell::BasisContraction) = length(subshell.exprange) """ - n_primitives(ashell::AbstractAngularShell) + n_primitives(ashell::AngularShell) Return the total number of primitives in the angular shell. """ -n_primitives(ashell::AbstractAngularShell) = length(ashell.exponents) +n_primitives(ashell::AngularShell) = length(ashell.exponents) """ n_coefficients(subshell::BasisContraction) @@ -209,41 +171,34 @@ n_primitives(ashell::AbstractAngularShell) = length(ashell.exponents) n_coefficients(subshell::BasisContraction) = length(subshell.coefs) """ - n_coefficients(ashell::AbstractAngularShell) + n_coefficients(ashell::AngularShell) Return the total number of coefficients in the angular shell. """ -n_coefficients(ashell::AbstractAngularShell) = sum(n_coefficients, ashell.subshells) +n_coefficients(ashell::AngularShell) = sum(n_coefficients, ashell.subshells) """ - n_coefficients_1mat(ashell::AbstractAngularShell) + n_coefficients_1mat(ashell::AngularShell) Return the number of coefficients in the angular shell for a single contraction matrix. The missing coefficients will be set to zero. """ -n_coefficients_1mat(ashell::AbstractAngularShell) = n_primitives(ashell) * n_subshells(ashell) +n_coefficients_1mat(ashell::AngularShell) = n_primitives(ashell) * n_subshells(ashell) """ - n_ao4subshell(ashell::SphericalAngularShell) + n_ao4subshell(ashell::AngularShell, cartesian::Bool) Return the number of atomic orbitals for the subshell. """ -n_ao4subshell(ashell::SphericalAngularShell) = 2*ashell.l + 1 +n_ao4subshell(ashell::AngularShell, cartesian::Bool) = cartesian ? (ashell.l + 1)*(ashell.l + 2) ÷ 2 : 2*ashell.l + 1 """ - n_ao4subshell(ashell::CartesianAngularShell) - - Return the number of atomic orbitals for the subshell. -""" -n_ao4subshell(ashell::CartesianAngularShell) = (ashell.l + 1)*(ashell.l + 2) ÷ 2 - -""" - n_ao(ashell::AbstractAngularShell) + n_ao(ashell::AngularShell, cartesian::Bool) Return the number of atomic orbitals in the angular shell. """ -n_ao(ashell::AbstractAngularShell) = n_ao4subshell(ashell) * n_subshells(ashell) +n_ao(ashell::AngularShell, cartesian::Bool) = n_ao4subshell(ashell, cartesian) * n_subshells(ashell) """ n_angularshells(atom::BasisCenter) @@ -260,7 +215,12 @@ end Return the number of subshells in the basis set for `atom`. """ function n_subshells(atom::BasisCenter) - return sum(n_subshells, atom.shells) + # return sum(n_subshells, atom.shells) + n = 0 + for ashell in atom.shells + n += n_subshells(ashell) + end + return n end """ @@ -269,40 +229,41 @@ end Return the number of primitives in the basis set for `atom`. """ function n_primitives(atom::BasisCenter) - return sum(n_primitives, atom.shells) + # return sum(n_primitives, atom.shells) + n = 0 + for ashell in atom.shells + n += n_primitives(ashell) + end + return n end """ - n_ao(atom::BasisCenter) + n_ao(atom::BasisCenter, cartesian::Bool) Return the number of atomic orbitals in the basis set for `atom`. """ -function n_ao(atom::BasisCenter) - return sum(n_ao, atom.shells) +function n_ao(atom::BasisCenter, cartesian::Bool) + # return sum(x->n_ao(x, cartesian), atom.shells) + n = 0 + for ashell in atom.shells + n += n_ao(ashell, cartesian) + end + return n end """ - coefficients_1mat(ashell::AbstractAngularShell) + coefficients_1mat(ashell::AngularShell, cartesian::Bool) Return a single contraction matrix of the coefficients in the angular shell (nprimitives × nsubshells). The contractions are normalized. The missing coefficients are set to zero in the matrix. """ -function coefficients_1mat end - -function coefficients_1mat(ashell::CartesianAngularShell) - coefs = zeros(n_primitives(ashell), n_subshells(ashell)) - for (i, subshell) in enumerate(ashell.subshells) - coefs[subshell.exprange, i] .= normalize_cartesian_contraction(subshell.coefs, ashell.exponents[subshell.exprange], ashell.l) - end - return coefs -end - -function coefficients_1mat(ashell::SphericalAngularShell) +function coefficients_1mat(ashell::AngularShell, cartesian::Bool) coefs = zeros(n_primitives(ashell), n_subshells(ashell)) + normalize = cartesian ? normalize_cartesian_contraction : normalize_spherical_contraction for (i, subshell) in enumerate(ashell.subshells) - coefs[subshell.exprange, i] .= normalize_spherical_contraction(subshell.coefs, ashell.exponents[subshell.exprange], ashell.l) + coefs[subshell.exprange, i] .= normalize(subshell.coefs, ashell.exponents[subshell.exprange], ashell.l) end return coefs end @@ -311,15 +272,15 @@ end const DOUBLEFACTORIAL = [1, 3, 15, 105, 945, 10395, 135135, 2027025, 34459425] """ - normalize_contraction(subshell::BasisContraction, ashell::AbstractAngularShell) + normalize_contraction(subshell::BasisContraction, ashell::AngularShell, cartesian::Bool) Normalize the contraction coefficients in `subshell`. The subshell has to be part of the angular shell `ashell`. Return the normalized contraction. """ -function normalize_contraction(subshell::BasisContraction, ashell::AbstractAngularShell) - if isa(ashell, CartesianAngularShell) +function normalize_contraction(subshell::BasisContraction, ashell::AngularShell, cartesian::Bool) + if cartesian return normalize_cartesian_contraction(subshell.coefs, ashell.exponents[subshell.exprange], ashell.l) else return normalize_spherical_contraction(subshell.coefs, ashell.exponents[subshell.exprange], ashell.l) @@ -377,40 +338,36 @@ function normalize_cartesian_contraction(contraction, exponents, l) end """ - generate_angularshell(elem, l, exponents; cartesian=false) + generate_angularshell(elem, l, exponents) Generate an angular shell with angular momentum `l` and exponents. The contractions have to be added later. - Return an angular shell of type [`SphericalAngularShell`](@ref) or [`CartesianAngularShell`](@ref). + Return an angular shell of type [`AngularShell`](@ref). """ -function generate_angularshell(elem, l, exponents; cartesian=false) - if cartesian - return CartesianAngularShell(elem, l, exponents, BasisContraction[], 0) - else - return SphericalAngularShell(elem, l, exponents, BasisContraction[], 0) - end +function generate_angularshell(elem, l, exponents) + return AngularShell(elem, l, exponents, BasisContraction[], 0) end """ - add_subshell!(ashell::AbstractAngularShell, exprange, contraction) + add_subshell!(ashell::AngularShell, exprange, contraction) Add a subshell to the angular shell. """ -function add_subshell!(ashell::AbstractAngularShell, exprange, contraction) - push!(ashell.subshells, BasisContraction(exprange, BVector(contraction))) +function add_subshell!(ashell::AngularShell, exprange, contraction) + push!(ashell.subshells, BasisContraction(exprange, contraction)) end -function set_id!(ashell::AbstractAngularShell, id) +function set_id!(ashell::AngularShell, id) ashell.id = id end """ - set_id!(ashells::AbstractArray{AbstractAngularShell}, start_id) + set_id!(ashells::AbstractArray{AngularShell}, start_id) Set the id for each angular shell in the array. Return the next id. """ -function set_id!(ashells::AbstractArray{AbstractAngularShell}, start_id) +function set_id!(ashells::AbstractArray{AngularShell}, start_id) id = start_id for ashell in ashells set_id!(ashell, id) diff --git a/src/system/basisset.jl b/src/system/basisset.jl index d236a21..d39fd2f 100644 --- a/src/system/basisset.jl +++ b/src/system/basisset.jl @@ -18,7 +18,7 @@ using ..ElemCo.MSystem using ..ElemCo.AbstractEC export BasisCenter, BasisSet -export BasisContraction, AbstractAngularShell, SphericalAngularShell, CartesianAngularShell +export BasisContraction, AngularShell export shell_range, center_range, is_cartesian, combine export n_subshells, n_primitives, n_coefficients, n_angularshells, n_ao export normalize_contraction @@ -50,20 +50,22 @@ struct BasisSet center_ranges::Vector{UnitRange{Int}} """ angular shell ranges for each basis sets in a combined set.""" shell_ranges::Vector{UnitRange{Int}} + """ cartesian basis set """ + cartesian::Bool """ infos for integral library.""" lib::AbstractILib end -function BasisSet(centers::Vector{BasisCenter}, lib::AbstractILib) +function BasisSet(centers::Vector{BasisCenter}, cartesian::Bool, lib::AbstractILib) shell_indices = [CartesianIndex(i, j) for (i,c) in enumerate(centers) for j in 1:n_angularshells(c)] center_ranges = [1:length(centers)] shell_ranges = [1:length(shell_indices)] - return BasisSet(centers, shell_indices, center_ranges, shell_ranges, lib) + return BasisSet(centers, shell_indices, center_ranges, shell_ranges, cartesian, lib) end -function BasisSet(centers::Vector{BasisCenter}, center_ranges, shell_ranges, lib::AbstractILib) +function BasisSet(centers::Vector{BasisCenter}, center_ranges, shell_ranges, cartesian::Bool, lib::AbstractILib) shell_indices = [CartesianIndex(i, j) for (i,c) in enumerate(centers) for j in 1:n_angularshells(c)] - return BasisSet(centers, shell_indices, center_ranges, shell_ranges, lib) + return BasisSet(centers, shell_indices, center_ranges, shell_ranges, cartesian, lib) end """ @@ -123,7 +125,8 @@ function combine(bs1::BasisSet, bs2::BasisSet) set_id!(centers, 1) center_ranges = vcat(bs1.center_ranges, [r .+ length(bs1.centers) for r in bs2.center_ranges]) shell_ranges = vcat(bs1.shell_ranges, [r .+ length(bs1.shell_indices) for r in bs2.shell_ranges]) - return BasisSet(centers, center_ranges, shell_ranges, ILibcint5(centers)) + cartesian = bs1.cartesian && bs2.cartesian + return BasisSet(centers, center_ranges, shell_ranges, cartesian, ILibcint5(centers, cartesian)) end function Base.show(io::IO, bs::BasisSet) @@ -157,7 +160,7 @@ center_range(bs::BasisSet, i::Int=1) = bs.center_ranges[i] Check if the basis set is Cartesian. """ -is_cartesian(bs::BasisSet) = bs[1] isa CartesianAngularShell +is_cartesian(bs::BasisSet) = bs.cartesian """ basis_name(atoms, type="ao") @@ -183,7 +186,7 @@ end If `basisset` is provided, it is used as the basis set. """ function generate_basis(EC::AbstractECInfo, type="ao"; basisset::AbstractString="") - return generate_basis(EC.system, type; EC.options.int.cartesian, basisset) + return generate_basis(EC.system, type; cartesian=EC.options.int.cartesian, basisset=basisset) end """ @@ -195,7 +198,7 @@ end `type` can be `"ao"`, `"mpfit"` or `"jkfit"`. If `basisset` is provided, it is used as the basis set. """ -function generate_basis(ms::AbstractSystem, type="ao"; cartesian=false, basisset::AbstractString="") +function generate_basis(ms::AbstractSystem, type="ao"; cartesian::Bool=false, basisset::AbstractString="") array_of_centers = BasisCenter[] id = 1 for atom in ms @@ -207,11 +210,11 @@ function generate_basis(ms::AbstractSystem, type="ao"; cartesian=false, basisset basisname = guess_basis_name(atom, type) end end - basisfunctions = parse_basis(basisname, atom; cartesian) + basisfunctions = parse_basis(basisname, atom) id = set_id!(basisfunctions, id) push!(array_of_centers, BasisCenter(atom, basisname, basisfunctions)) end - return BasisSet(array_of_centers, ILibcint5(array_of_centers)) + return BasisSet(array_of_centers, cartesian, ILibcint5(array_of_centers, cartesian)) end """ @@ -256,8 +259,8 @@ n_primitives(atoms) = sum(n_primitives, atoms) Return the number of atomic orbitals in the basis set. """ -n_ao(atoms::BasisSet) = sum(n_ao, atoms.centers) -n_ao(atoms) = sum(n_ao, atoms) +n_ao(atoms::BasisSet) = sum(x->n_ao(x, atoms.cartesian), atoms.centers) +n_ao(atoms, cartesian) = sum(x->n_ao(x, cartesian), atoms) """ @@ -268,19 +271,19 @@ n_ao(atoms) = sum(n_ao, atoms) For a combined basis set, use `ibas` to select the basis set. """ function ao_list(basis::BasisSet, ibas=1) - out = AbstractAtomicOrbital[] if is_cartesian(basis) AtomicOrbital = CartesianAtomicOrbital else AtomicOrbital = SphericalAtomicOrbital end + out = AtomicOrbital[] nnumber = zeros(Int, length(SUBSHELL2L)) for ic in center_range(basis, ibas) nnumber .= 0 for ash in basis.centers[ic].shells for (isubshell, con) in enumerate(ash.subshells) nnumber[ash.l+1] += 1 - for iao in 1:n_ao4subshell(ash) + for iao in 1:n_ao4subshell(ash, basis.cartesian) ml = iao - 1 - ash.l push!(out, AtomicOrbital(ic, ash.id, isubshell, nnumber[ash.l+1], ash.l, ml)) end diff --git a/src/system/elements.jl b/src/system/elements.jl index 431d782..b5e035b 100644 --- a/src/system/elements.jl +++ b/src/system/elements.jl @@ -12,125 +12,125 @@ export SUBSHELLS_NAMES, SUBSHELL2L, ncoreorbs, electron_distribution4element Elements with corresponding atomic numbers, atomic masses, name, electron configuration, large core, small core (w/o semi-core). """ -const ELEMENTS = Dict( - "H" => [1, 1.00784, "Hydrogen" , "1s^1" , "" , ""] , - "HE" => [2, 4.00260, "Helium" , "1s^2" , "" , ""], - "LI" => [3, 6.938 , "Lithium" , "[HE]2s^1" , "[HE]" , "[HE]"], - "BE" => [4, 9.01218, "Beryllium" , "[HE]2s^2" , "[HE]" , "[HE]"], - "B" => [5, 10.806 , "Boron" , "[HE]2s^2 2p^1" , "[HE]" , "[HE]"], - "C" => [6, 12.0096 , "Carbon" , "[HE]2s^2 2p^2" , "[HE]" , "[HE]"], - "N" => [7, 14.00643, "Nitrogen" , "[HE]2s^2 2p^3" , "[HE]" , "[HE]"], - "O" => [8, 15.99903, "Oxygen" , "[HE]2s^2 2p^4" , "[HE]" , "[HE]"], - "F" => [9, 18.99840, "Fluorine" , "[HE]2s^2 2p^5" , "[HE]" , "[HE]"], - "NE" => [10, 20.1797 , "Neon" , "[HE]2s^2 2p^6" , "[HE]" , "[HE]"], - "NA" => [11, 22.98977, "Sodium" , "[NE]3s^1" , "[NE]" , "[NE]"], - "MG" => [12, 24.304 , "Magnesium" , "[NE]3s^2" , "[NE]" , "[NE]"], - "AL" => [13, 26.9815 , "Aluminum" , "[NE]3s^2 3p^1" , "[NE]" , "[NE]"], - "SI" => [14, 28.0855 , "Silicon" , "[NE]3s^2 3p^2" , "[NE]" , "[NE]"], - "P" => [15, 30.97376, "Phosphorus" , "[NE]3s^2 3p^3" , "[NE]" , "[NE]"], - "S" => [16, 32.065 , "Sulfur" , "[NE]3s^2 3p^4" , "[NE]" , "[NE]"], - "CL" => [17, 35.453 , "Chlorine" , "[NE]3s^2 3p^5" , "[NE]" , "[NE]"], - "AR" => [18, 39.948 , "Argon" , "[NE]3s^2 3p^6" , "[NE]" , "[NE]"], - "K" => [19, 39.0983 , "Potassium" , "[AR]4s^1" , "[AR]" , "[AR]"], - "CA" => [20, 40.078 , "Calcium" , "[AR]4s^2" , "[AR]" , "[AR]"], - "SC" => [21, 44.9559 , "Scandium" , "[AR]3d^1 4s^2" , "[AR]" , "[NE]"], - "TI" => [22, 47.867 , "Titanium" , "[AR]3d^2 4s^2" , "[AR]" , "[NE]"], - "V" => [23, 50.9415 , "Vanadium" , "[AR]3d^3 4s^2" , "[AR]" , "[NE]"], - "CR" => [24, 51.9961 , "Chromium" , "[AR]3d^5 4s^1" , "[AR]" , "[NE]"], - "MN" => [25, 54.9380 , "Manganese" , "[AR]3d^5 4s^2" , "[AR]" , "[NE]"], - "FE" => [26, 55.845 , "Iron" , "[AR]3d^6 4s^2" , "[AR]" , "[NE]"], - "CO" => [27, 58.9332 , "Cobalt" , "[AR]3d^7 4s^1" , "[AR]" , "[NE]"], - "NI" => [28, 58.6934 , "Nickel" , "[AR]3d^8 4s^2" , "[AR]" , "[NE]"], - "CU" => [29, 63.546 , "Copper" , "[AR]3d^10 4s^1" , "[AR]3d^10" , "[NE]"], - "ZN" => [30, 65.38 , "Zinc" , "[AR]3d^10 4s^2" , "[AR]3d^10" , "[AR]3d^10"], - "GA" => [31, 69.723 , "Gallium" , "[AR]3d^10 4s^2 4p^1" , "[AR]3d^10" , "[AR]3d^10"], - "GE" => [32, 72.64 , "Germanium" , "[AR]3d^10 4s^2 4p^2" , "[AR]3d^10" , "[AR]3d^10"], - "AS" => [33, 74.9216 , "Arsenic" , "[AR]3d^10 4s^2 4p^3" , "[AR]3d^10" , "[AR]3d^10"], - "SE" => [34, 78.96 , "Selenium" , "[AR]3d^10 4s^2 4p^4" , "[AR]3d^10" , "[AR]3d^10"], - "BR" => [35, 79.904 , "Bromine" , "[AR]3d^10 4s^2 4p^5" , "[AR]3d^10" , "[AR]3d^10"], - "KR" => [36, 83.80 , "Krypton" , "[AR]3d^10 4s^2 4p^6" , "[AR]3d^10" , "[AR]3d^10"], - "RB" => [37, 85.4678 , "Rubidium" , "[KR]5s^1" , "[KR]" , "[KR]"], - "SR" => [38, 87.62 , "Strontium" , "[KR]5s^2" , "[KR]" , "[KR]"], - "Y" => [39, 88.9059 , "Yttrium" , "[KR]4d^1 5s^2" , "[KR]" , "[AR]"], - "ZR" => [40, 91.224 , "Zirconium" , "[KR]4d^2 5s^2" , "[KR]" , "[AR]"], - "NB" => [41, 92.9064 , "Niobium" , "[KR]4d^4 5s^1" , "[KR]" , "[AR]"], - "MO" => [42, 95.94 , "Molybdenum" , "[KR]4d^5 5s^1" , "[KR]" , "[AR]"], - "TC" => [43, 98.0 , "Technetium" , "[KR]4d^5 5s^2" , "[KR]" , "[AR]"], - "RU" => [44, 101.07 , "Ruthenium" , "[KR]4d^7 5s^1" , "[KR]" , "[AR]"], - "RH" => [45, 102.9055, "Rhodium" , "[KR]4d^8 5s^1" , "[KR]" , "[AR]"], - "PD" => [46, 106.42 , "Palladium" , "[KR]4d^10" , "[KR]" , "[AR]"], - "AG" => [47, 107.8682, "Silver" , "[KR]4d^10 5s^1" , "[PD]" , "[AR]"], - "CD" => [48, 112.411 , "Cadmium" , "[KR]4d^10 5s^2" , "[PD]" , "[PD]"], - "IN" => [49, 114.818 , "Indium" , "[KR]4d^10 5s^2 5p^1" , "[PD]" , "[PD]"], - "SN" => [50, 118.710 , "Tin" , "[KR]4d^10 5s^2 5p^2" , "[PD]" , "[PD]"], - "SB" => [51, 121.760 , "Antimony" , "[KR]4d^10 5s^2 5p^3" , "[PD]" , "[PD]"], - "TE" => [52, 127.60 , "Tellurium" , "[KR]4d^10 5s^2 5p^4" , "[PD]" , "[PD]"], - "I" => [53, 126.9045, "Iodine" , "[KR]4d^10 5s^2 5p^5" , "[PD]" , "[PD]"], - "XE" => [54, 131.29 , "Xenon" , "[KR]4d^10 5s^2 5p^6" , "[PD]" , "[PD]"], - "CS" => [55, 132.9054, "Caesium" , "[XE]6s^1" , "[XE]" , "[XE]"], - "BA" => [56, 137.327 , "Barium" , "[XE]6s^2" , "[XE]" , "[XE]"], - "LA" => [57, 138.9055, "Lanthanum" , "[XE]5d^1 6s^2" , "[XE]" , "[KR]"], - "CE" => [58, 140.116 , "Cerium" , "[XE]4f^1 5d^1 6s^2" , "[XE]" , "[KR]"], - "PR" => [59, 140.9077,"Praseodymium", "[XE]4f^3 6s^2" , "[XE]" , "[KR]"], - "ND" => [60, 144.24 , "Neodymium" , "[XE]4f^4 6s^2" , "[XE]" , "[KR]"], - "PM" => [61, 145.0 , "Promethium" , "[XE]4f^5 6s^2" , "[XE]" , "[KR]"], - "SM" => [62, 150.36 , "Samarium" , "[XE]4f^6 6s^2" , "[XE]" , "[KR]"], - "EU" => [63, 151.964 , "Europium" , "[XE]4f^7 6s^2" , "[XE]" , "[KR]"], - "GD" => [64, 157.25 , "Gadolinium" , "[XE]4f^7 5d^1 6s^2" , "[XE]" , "[KR]"], - "TB" => [65, 158.9254, "Terbium" , "[XE]4f^9 6s^2" , "[XE]" , "[KR]"], - "DY" => [66, 162.50 , "Dysprosium" , "[XE]4f^10 6s^2" , "[XE]" , "[KR]"], - "HO" => [67, 164.9304, "Holmium" , "[XE]4f^11 6s^2" , "[XE]" , "[KR]"], - "ER" => [68, 167.26 , "Erbium" , "[XE]4f^12 6s^2" , "[XE]" , "[KR]"], - "TM" => [69, 168.9342, "Thulium" , "[XE]4f^13 6s^2" , "[XE]" , "[KR]"], - "YB" => [70, 173.04 , "Ytterbium" , "[XE]4f^14 6s^2" , "[XE]4f^14" , "[KR]"], - "LU" => [71, 174.967 , "Lutetium" , "[XE]4f^14 5d^1 6s^2" , "[XE]4f^14" , "[KR]"], - "HF" => [72, 178.49 , "Hafnium" , "[XE]4f^14 5d^2 6s^2" , "[XE]4f^14" , "[KR]"], - "TA" => [73, 180.9479, "Tantalum" , "[XE]4f^14 5d^3 6s^2" , "[XE]4f^14" , "[KR]"], - "W" => [74, 183.84 , "Tungsten" , "[XE]4f^14 5d^4 6s^2" , "[XE]4f^14" , "[KR]"], - "RE" => [75, 186.207 , "Rhenium" , "[XE]4f^14 5d^5 6s^2" , "[XE]4f^14" , "[KR]"], - "OS" => [76, 190.23 , "Osmium" , "[XE]4f^14 5d^6 6s^2" , "[XE]4f^14" , "[KR]"], - "IR" => [77, 192.217 , "Iridium" , "[XE]4f^14 5d^7 6s^2" , "[XE]4f^14" , "[KR]"], - "PT" => [78, 195.078 , "Platinum" , "[XE]4f^14 5d^9 6s^1" , "[XE]4f^14" , "[KR]"], - "AU" => [79, 196.9665, "Gold" , "[XE]4f^14 5d^10 6s^1", "[XE]4f^14 5d^10", "[KR]"], - "HG" => [80, 200.59 , "Mercury" , "[XE]4f^14 5d^10 6s^2", "[XE]4f^14 5d^10", "[KR]"], - "TL" => [81, 204.3833, "Thallium" , "[XE]4f^14 5d^10 6s^2 6p^1", "[XE]4f^14 5d^10", "[KR]"], - "PB" => [82, 207.2 , "Lead" , "[XE]4f^14 5d^10 6s^2 6p^2", "[XE]4f^14 5d^10", "[KR]"], - "BI" => [83, 208.9804, "Bismuth" , "[XE]4f^14 5d^10 6s^2 6p^3", "[XE]4f^14 5d^10", "[KR]"], - "PO" => [84, 209.0 , "Polonium" , "[XE]4f^14 5d^10 6s^2 6p^4", "[XE]4f^14 5d^10", "[KR]"], - "AT" => [85, 210.0 , "Astatine" , "[XE]4f^14 5d^10 6s^2 6p^5", "[XE]4f^14 5d^10", "[KR]"], - "RN" => [86, 222.0 , "Radon" , "[XE]4f^14 5d^10 6s^2 6p^6", "[XE]4f^14 5d^10", "[KR]"], - "FR" => [87, 223.0 , "Francium" , "[RN]7s^1" , "[RN]" , "[RN]"], - "RA" => [88, 226.0 , "Radium" , "[RN]7s^2" , "[RN]" , "[RN]"], - "AC" => [89, 227.0 , "Actinium" , "[RN]6d^1 7s^2" , "[RN]" , "[XE]"], - "TH" => [90, 232.0381, "Thorium" , "[RN]6d^2 7s^2" , "[RN]" , "[XE]"], - "PA" => [91, 231.0359,"Protactinium", "[RN]5f^2 6d^1 7s^2" , "[RN]" , "[XE]"], - "U" => [92, 238.0289, "Uranium" , "[RN]5f^3 6d^1 7s^2" , "[RN]" , "[XE]"], - "NP" => [93, 237.0 , "Neptunium" , "[RN]5f^4 6d^1 7s^2" , "[RN]" , "[XE]"], - "PU" => [94, 244.0 , "Plutonium" , "[RN]5f^6 7s^2" , "[RN]" , "[XE]"], - "AM" => [95, 243.0 , "Americium" , "[RN]5f^7 7s^2" , "[RN]" , "[XE]"], - "CM" => [96, 247.0 , "Curium" , "[RN]5f^7 6d^1 7s^2" , "[RN]" , "[XE]"], - "BK" => [97, 247.0 , "Berkelium" , "[RN]5f^9 7s^2" , "[RN]" , "[XE]"], - "CF" => [98, 251.0 , "Californium", "[RN]5f^10 7s^2" , "[RN]" , "[XE]"], - "ES" => [99, 252.0 , "Einsteinium", "[RN]5f^11 7s^2" , "[RN]" , "[XE]"], - "FM" =>[100, 257.0 , "Fermium" , "[RN]5f^12 7s^2" , "[RN]" , "[XE]"], - "MD" =>[101, 258.0 , "Mendelevium", "[RN]5f^13 7s^2" , "[RN]" , "[XE]"], - "NO" =>[102, 259.0 , "Nobelium" , "[RN]5f^14 7s^2" , "[RN]5f^14" , "[XE]"], - "LR" =>[103, 262.0 , "Lawrencium" , "[RN]5f^14 7s^2 7p^1" , "[RN]5f^14" , "[XE]"], - "RF" =>[104, 261.0 ,"Rutherfordium", "[RN]5f^14 6d^2 7s^2", "[RN]5f^14" , "[XE]"], - "DB" =>[105, 262.0 , "Dubnium" , "[RN]5f^14 6d^3 7s^2" , "[RN]5f^14" , "[XE]"], - "SG" =>[106, 266.0 , "Seaborgium" , "[RN]5f^14 6d^4 7s^2" , "[RN]5f^14" , "[XE]"], - "BH" =>[107, 264.0 , "Bohrium" , "[RN]5f^14 6d^5 7s^2" , "[RN]5f^14" , "[XE]"], - "HS" =>[108, 277.0 , "Hassium" , "[RN]5f^14 6d^6 7s^2" , "[RN]5f^14" , "[XE]"], - "MT" =>[109, 268.0 , "Meitnerium" , "[RN]5f^14 6d^7 7s^2" , "[RN]5f^14" , "[XE]"], - "DS" =>[110, 281.0 ,"Darmstadtium", "[RN]5f^14 6d^9 7s^1" , "[RN]5f^14" , "[XE]"], - "RG" =>[111, 272.0 , "Roentgenium", "[RN]5f^14 6d^10 7s^1", "[RN]5f^14 6d^10", "[XE]"], - "CN" =>[112, 285.0 , "Copernicium", "[RN]5f^14 6d^10 7s^2", "[RN]5f^14 6d^10", "[XE]"], - "NH" =>[113, 284.0 , "Nihonium" , "[RN]5f^14 6d^10 7s^2 7p^1", "[RN]5f^14 6d^10", "[XE]"], - "FL" =>[114, 289.0 , "Flerovium" , "[RN]5f^14 6d^10 7s^2 7p^2", "[RN]5f^14 6d^10", "[XE]"], - "MC" =>[115, 288.0 , "Moscovium" , "[RN]5f^14 6d^10 7s^2 7p^3", "[RN]5f^14 6d^10", "[XE]"], - "LV" =>[116, 293.0 , "Livermorium", "[RN]5f^14 6d^10 7s^2 7p^4", "[RN]5f^14 6d^10", "[XE]"], - "TS" =>[117, 294.0 , "Tennessine" , "[RN]5f^14 6d^10 7s^2 7p^5", "[RN]5f^14 6d^10", "[XE]"], - "OG" =>[118, 294.0 , "Oganesson" , "[RN]5f^14 6d^10 7s^2 7p^6", "[RN]5f^14 6d^10", "[XE]"] +const ELEMENTS::Dict{String,Tuple{Int,Float64,String,String,String,String}} = Dict( + "H" => (1, 1.00784, "Hydrogen" , "1s^1" , "" , "") , + "HE" => (2, 4.00260, "Helium" , "1s^2" , "" , ""), + "LI" => (3, 6.938 , "Lithium" , "[HE]2s^1" , "[HE]" , "[HE]"), + "BE" => (4, 9.01218, "Beryllium" , "[HE]2s^2" , "[HE]" , "[HE]"), + "B" => (5, 10.806 , "Boron" , "[HE]2s^2 2p^1" , "[HE]" , "[HE]"), + "C" => (6, 12.0096 , "Carbon" , "[HE]2s^2 2p^2" , "[HE]" , "[HE]"), + "N" => (7, 14.00643, "Nitrogen" , "[HE]2s^2 2p^3" , "[HE]" , "[HE]"), + "O" => (8, 15.99903, "Oxygen" , "[HE]2s^2 2p^4" , "[HE]" , "[HE]"), + "F" => (9, 18.99840, "Fluorine" , "[HE]2s^2 2p^5" , "[HE]" , "[HE]"), + "NE" => (10, 20.1797 , "Neon" , "[HE]2s^2 2p^6" , "[HE]" , "[HE]"), + "NA" => (11, 22.98977, "Sodium" , "[NE]3s^1" , "[NE]" , "[NE]"), + "MG" => (12, 24.304 , "Magnesium" , "[NE]3s^2" , "[NE]" , "[NE]"), + "AL" => (13, 26.9815 , "Aluminum" , "[NE]3s^2 3p^1" , "[NE]" , "[NE]"), + "SI" => (14, 28.0855 , "Silicon" , "[NE]3s^2 3p^2" , "[NE]" , "[NE]"), + "P" => (15, 30.97376, "Phosphorus" , "[NE]3s^2 3p^3" , "[NE]" , "[NE]"), + "S" => (16, 32.065 , "Sulfur" , "[NE]3s^2 3p^4" , "[NE]" , "[NE]"), + "CL" => (17, 35.453 , "Chlorine" , "[NE]3s^2 3p^5" , "[NE]" , "[NE]"), + "AR" => (18, 39.948 , "Argon" , "[NE]3s^2 3p^6" , "[NE]" , "[NE]"), + "K" => (19, 39.0983 , "Potassium" , "[AR]4s^1" , "[AR]" , "[AR]"), + "CA" => (20, 40.078 , "Calcium" , "[AR]4s^2" , "[AR]" , "[AR]"), + "SC" => (21, 44.9559 , "Scandium" , "[AR]3d^1 4s^2" , "[AR]" , "[NE]"), + "TI" => (22, 47.867 , "Titanium" , "[AR]3d^2 4s^2" , "[AR]" , "[NE]"), + "V" => (23, 50.9415 , "Vanadium" , "[AR]3d^3 4s^2" , "[AR]" , "[NE]"), + "CR" => (24, 51.9961 , "Chromium" , "[AR]3d^5 4s^1" , "[AR]" , "[NE]"), + "MN" => (25, 54.9380 , "Manganese" , "[AR]3d^5 4s^2" , "[AR]" , "[NE]"), + "FE" => (26, 55.845 , "Iron" , "[AR]3d^6 4s^2" , "[AR]" , "[NE]"), + "CO" => (27, 58.9332 , "Cobalt" , "[AR]3d^7 4s^1" , "[AR]" , "[NE]"), + "NI" => (28, 58.6934 , "Nickel" , "[AR]3d^8 4s^2" , "[AR]" , "[NE]"), + "CU" => (29, 63.546 , "Copper" , "[AR]3d^10 4s^1" , "[AR]3d^10" , "[NE]"), + "ZN" => (30, 65.38 , "Zinc" , "[AR]3d^10 4s^2" , "[AR]3d^10" , "[AR]3d^10"), + "GA" => (31, 69.723 , "Gallium" , "[AR]3d^10 4s^2 4p^1" , "[AR]3d^10" , "[AR]3d^10"), + "GE" => (32, 72.64 , "Germanium" , "[AR]3d^10 4s^2 4p^2" , "[AR]3d^10" , "[AR]3d^10"), + "AS" => (33, 74.9216 , "Arsenic" , "[AR]3d^10 4s^2 4p^3" , "[AR]3d^10" , "[AR]3d^10"), + "SE" => (34, 78.96 , "Selenium" , "[AR]3d^10 4s^2 4p^4" , "[AR]3d^10" , "[AR]3d^10"), + "BR" => (35, 79.904 , "Bromine" , "[AR]3d^10 4s^2 4p^5" , "[AR]3d^10" , "[AR]3d^10"), + "KR" => (36, 83.80 , "Krypton" , "[AR]3d^10 4s^2 4p^6" , "[AR]3d^10" , "[AR]3d^10"), + "RB" => (37, 85.4678 , "Rubidium" , "[KR]5s^1" , "[KR]" , "[KR]"), + "SR" => (38, 87.62 , "Strontium" , "[KR]5s^2" , "[KR]" , "[KR]"), + "Y" => (39, 88.9059 , "Yttrium" , "[KR]4d^1 5s^2" , "[KR]" , "[AR]"), + "ZR" => (40, 91.224 , "Zirconium" , "[KR]4d^2 5s^2" , "[KR]" , "[AR]"), + "NB" => (41, 92.9064 , "Niobium" , "[KR]4d^4 5s^1" , "[KR]" , "[AR]"), + "MO" => (42, 95.94 , "Molybdenum" , "[KR]4d^5 5s^1" , "[KR]" , "[AR]"), + "TC" => (43, 98.0 , "Technetium" , "[KR]4d^5 5s^2" , "[KR]" , "[AR]"), + "RU" => (44, 101.07 , "Ruthenium" , "[KR]4d^7 5s^1" , "[KR]" , "[AR]"), + "RH" => (45, 102.9055, "Rhodium" , "[KR]4d^8 5s^1" , "[KR]" , "[AR]"), + "PD" => (46, 106.42 , "Palladium" , "[KR]4d^10" , "[KR]" , "[AR]"), + "AG" => (47, 107.8682, "Silver" , "[KR]4d^10 5s^1" , "[PD]" , "[AR]"), + "CD" => (48, 112.411 , "Cadmium" , "[KR]4d^10 5s^2" , "[PD]" , "[PD]"), + "IN" => (49, 114.818 , "Indium" , "[KR]4d^10 5s^2 5p^1" , "[PD]" , "[PD]"), + "SN" => (50, 118.710 , "Tin" , "[KR]4d^10 5s^2 5p^2" , "[PD]" , "[PD]"), + "SB" => (51, 121.760 , "Antimony" , "[KR]4d^10 5s^2 5p^3" , "[PD]" , "[PD]"), + "TE" => (52, 127.60 , "Tellurium" , "[KR]4d^10 5s^2 5p^4" , "[PD]" , "[PD]"), + "I" => (53, 126.9045, "Iodine" , "[KR]4d^10 5s^2 5p^5" , "[PD]" , "[PD]"), + "XE" => (54, 131.29 , "Xenon" , "[KR]4d^10 5s^2 5p^6" , "[PD]" , "[PD]"), + "CS" => (55, 132.9054, "Caesium" , "[XE]6s^1" , "[XE]" , "[XE]"), + "BA" => (56, 137.327 , "Barium" , "[XE]6s^2" , "[XE]" , "[XE]"), + "LA" => (57, 138.9055, "Lanthanum" , "[XE]5d^1 6s^2" , "[XE]" , "[KR]"), + "CE" => (58, 140.116 , "Cerium" , "[XE]4f^1 5d^1 6s^2" , "[XE]" , "[KR]"), + "PR" => (59, 140.9077,"Praseodymium", "[XE]4f^3 6s^2" , "[XE]" , "[KR]"), + "ND" => (60, 144.24 , "Neodymium" , "[XE]4f^4 6s^2" , "[XE]" , "[KR]"), + "PM" => (61, 145.0 , "Promethium" , "[XE]4f^5 6s^2" , "[XE]" , "[KR]"), + "SM" => (62, 150.36 , "Samarium" , "[XE]4f^6 6s^2" , "[XE]" , "[KR]"), + "EU" => (63, 151.964 , "Europium" , "[XE]4f^7 6s^2" , "[XE]" , "[KR]"), + "GD" => (64, 157.25 , "Gadolinium" , "[XE]4f^7 5d^1 6s^2" , "[XE]" , "[KR]"), + "TB" => (65, 158.9254, "Terbium" , "[XE]4f^9 6s^2" , "[XE]" , "[KR]"), + "DY" => (66, 162.50 , "Dysprosium" , "[XE]4f^10 6s^2" , "[XE]" , "[KR]"), + "HO" => (67, 164.9304, "Holmium" , "[XE]4f^11 6s^2" , "[XE]" , "[KR]"), + "ER" => (68, 167.26 , "Erbium" , "[XE]4f^12 6s^2" , "[XE]" , "[KR]"), + "TM" => (69, 168.9342, "Thulium" , "[XE]4f^13 6s^2" , "[XE]" , "[KR]"), + "YB" => (70, 173.04 , "Ytterbium" , "[XE]4f^14 6s^2" , "[XE]4f^14" , "[KR]"), + "LU" => (71, 174.967 , "Lutetium" , "[XE]4f^14 5d^1 6s^2" , "[XE]4f^14" , "[KR]"), + "HF" => (72, 178.49 , "Hafnium" , "[XE]4f^14 5d^2 6s^2" , "[XE]4f^14" , "[KR]"), + "TA" => (73, 180.9479, "Tantalum" , "[XE]4f^14 5d^3 6s^2" , "[XE]4f^14" , "[KR]"), + "W" => (74, 183.84 , "Tungsten" , "[XE]4f^14 5d^4 6s^2" , "[XE]4f^14" , "[KR]"), + "RE" => (75, 186.207 , "Rhenium" , "[XE]4f^14 5d^5 6s^2" , "[XE]4f^14" , "[KR]"), + "OS" => (76, 190.23 , "Osmium" , "[XE]4f^14 5d^6 6s^2" , "[XE]4f^14" , "[KR]"), + "IR" => (77, 192.217 , "Iridium" , "[XE]4f^14 5d^7 6s^2" , "[XE]4f^14" , "[KR]"), + "PT" => (78, 195.078 , "Platinum" , "[XE]4f^14 5d^9 6s^1" , "[XE]4f^14" , "[KR]"), + "AU" => (79, 196.9665, "Gold" , "[XE]4f^14 5d^10 6s^1", "[XE]4f^14 5d^10", "[KR]"), + "HG" => (80, 200.59 , "Mercury" , "[XE]4f^14 5d^10 6s^2", "[XE]4f^14 5d^10", "[KR]"), + "TL" => (81, 204.3833, "Thallium" , "[XE]4f^14 5d^10 6s^2 6p^1", "[XE]4f^14 5d^10", "[KR]"), + "PB" => (82, 207.2 , "Lead" , "[XE]4f^14 5d^10 6s^2 6p^2", "[XE]4f^14 5d^10", "[KR]"), + "BI" => (83, 208.9804, "Bismuth" , "[XE]4f^14 5d^10 6s^2 6p^3", "[XE]4f^14 5d^10", "[KR]"), + "PO" => (84, 209.0 , "Polonium" , "[XE]4f^14 5d^10 6s^2 6p^4", "[XE]4f^14 5d^10", "[KR]"), + "AT" => (85, 210.0 , "Astatine" , "[XE]4f^14 5d^10 6s^2 6p^5", "[XE]4f^14 5d^10", "[KR]"), + "RN" => (86, 222.0 , "Radon" , "[XE]4f^14 5d^10 6s^2 6p^6", "[XE]4f^14 5d^10", "[KR]"), + "FR" => (87, 223.0 , "Francium" , "[RN]7s^1" , "[RN]" , "[RN]"), + "RA" => (88, 226.0 , "Radium" , "[RN]7s^2" , "[RN]" , "[RN]"), + "AC" => (89, 227.0 , "Actinium" , "[RN]6d^1 7s^2" , "[RN]" , "[XE]"), + "TH" => (90, 232.0381, "Thorium" , "[RN]6d^2 7s^2" , "[RN]" , "[XE]"), + "PA" => (91, 231.0359,"Protactinium", "[RN]5f^2 6d^1 7s^2" , "[RN]" , "[XE]"), + "U" => (92, 238.0289, "Uranium" , "[RN]5f^3 6d^1 7s^2" , "[RN]" , "[XE]"), + "NP" => (93, 237.0 , "Neptunium" , "[RN]5f^4 6d^1 7s^2" , "[RN]" , "[XE]"), + "PU" => (94, 244.0 , "Plutonium" , "[RN]5f^6 7s^2" , "[RN]" , "[XE]"), + "AM" => (95, 243.0 , "Americium" , "[RN]5f^7 7s^2" , "[RN]" , "[XE]"), + "CM" => (96, 247.0 , "Curium" , "[RN]5f^7 6d^1 7s^2" , "[RN]" , "[XE]"), + "BK" => (97, 247.0 , "Berkelium" , "[RN]5f^9 7s^2" , "[RN]" , "[XE]"), + "CF" => (98, 251.0 , "Californium", "[RN]5f^10 7s^2" , "[RN]" , "[XE]"), + "ES" => (99, 252.0 , "Einsteinium", "[RN]5f^11 7s^2" , "[RN]" , "[XE]"), + "FM" =>(100, 257.0 , "Fermium" , "[RN]5f^12 7s^2" , "[RN]" , "[XE]"), + "MD" =>(101, 258.0 , "Mendelevium", "[RN]5f^13 7s^2" , "[RN]" , "[XE]"), + "NO" =>(102, 259.0 , "Nobelium" , "[RN]5f^14 7s^2" , "[RN]5f^14" , "[XE]"), + "LR" =>(103, 262.0 , "Lawrencium" , "[RN]5f^14 7s^2 7p^1" , "[RN]5f^14" , "[XE]"), + "RF" =>(104, 261.0 ,"Rutherfordium", "[RN]5f^14 6d^2 7s^2", "[RN]5f^14" , "[XE]"), + "DB" =>(105, 262.0 , "Dubnium" , "[RN]5f^14 6d^3 7s^2" , "[RN]5f^14" , "[XE]"), + "SG" =>(106, 266.0 , "Seaborgium" , "[RN]5f^14 6d^4 7s^2" , "[RN]5f^14" , "[XE]"), + "BH" =>(107, 264.0 , "Bohrium" , "[RN]5f^14 6d^5 7s^2" , "[RN]5f^14" , "[XE]"), + "HS" =>(108, 277.0 , "Hassium" , "[RN]5f^14 6d^6 7s^2" , "[RN]5f^14" , "[XE]"), + "MT" =>(109, 268.0 , "Meitnerium" , "[RN]5f^14 6d^7 7s^2" , "[RN]5f^14" , "[XE]"), + "DS" =>(110, 281.0 ,"Darmstadtium", "[RN]5f^14 6d^9 7s^1" , "[RN]5f^14" , "[XE]"), + "RG" =>(111, 272.0 , "Roentgenium", "[RN]5f^14 6d^10 7s^1", "[RN]5f^14 6d^10", "[XE]"), + "CN" =>(112, 285.0 , "Copernicium", "[RN]5f^14 6d^10 7s^2", "[RN]5f^14 6d^10", "[XE]"), + "NH" =>(113, 284.0 , "Nihonium" , "[RN]5f^14 6d^10 7s^2 7p^1", "[RN]5f^14 6d^10", "[XE]"), + "FL" =>(114, 289.0 , "Flerovium" , "[RN]5f^14 6d^10 7s^2 7p^2", "[RN]5f^14 6d^10", "[XE]"), + "MC" =>(115, 288.0 , "Moscovium" , "[RN]5f^14 6d^10 7s^2 7p^3", "[RN]5f^14 6d^10", "[XE]"), + "LV" =>(116, 293.0 , "Livermorium", "[RN]5f^14 6d^10 7s^2 7p^4", "[RN]5f^14 6d^10", "[XE]"), + "TS" =>(117, 294.0 , "Tennessine" , "[RN]5f^14 6d^10 7s^2 7p^5", "[RN]5f^14 6d^10", "[XE]"), + "OG" =>(118, 294.0 , "Oganesson" , "[RN]5f^14 6d^10 7s^2 7p^6", "[RN]5f^14 6d^10", "[XE]") ) """ @@ -196,7 +196,11 @@ function parse_electron_configuration(e::AbstractString) end econf = e while econf[1] == '[' - el_core = econf[2:findfirst(']', econf)-1] + end_core = findfirst(']', econf) + if isnothing(end_core) + error("missing ']' in the electron configuration string") + end + el_core = econf[2:end_core-1] econf = replace(econf, "[$el_core]" => ELEMENTS[el_core][4]*" ") end shells = split(econf) diff --git a/src/system/integrals_2e3idx.jl b/src/system/integrals_2e3idx.jl index e030ebe..ad4cfc0 100644 --- a/src/system/integrals_2e3idx.jl +++ b/src/system/integrals_2e3idx.jl @@ -10,18 +10,18 @@ for (jname_str, type, descr_str) in INTEGRAL_NAMES_2E3IDX jname = Symbol(jname_str) jname_ex = Symbol(jname_str*"!") descr = Symbol(descr_str) - for (TAS, suffix) in ((SphericalAngularShell, "sph"), (CartesianAngularShell, "cart")) + for (suffix, cartesian) in (("sph", false), ("cart", true)) jname_sfx = Symbol(jname_str*"_$(suffix)") jname_sfx_ex = Symbol(jname_str*"_$(suffix)!") libname = Symbol("cint3c2e$(type)$(suffix)!") docstr = """ - $jname(ash1ao::$TAS, ash2ao::$TAS, ashfit::$TAS, basis::BasisSet) + $jname_sfx(ash1ao::AngularShell, ash2ao::AngularShell, ashfit::AngularShell, basis::BasisSet) Compute the $descr integral ``v_{a_1}^{a_2 P}`` for given angular shells. `basis` has to contain ao and fit bases. """ docstr_ex = """ - $jname_ex(out, ash1ao::$TAS, ash2ao::$TAS, ashfit::$TAS, basis::BasisSet) + $jname_ex(out, ash1ao::AngularShell, ash2ao::AngularShell, ashfit::AngularShell, basis::BasisSet) Compute the $descr integral ``v_{a_1}^{a_2 P}`` for given angular shells. `basis` has to contain ao and fit bases. @@ -36,14 +36,14 @@ for (jname_str, type, descr_str) in INTEGRAL_NAMES_2E3IDX """ @eval begin @doc $docstr - function $jname(ash1ao::$TAS, ash2ao::$TAS, ashfit::$TAS, basis::BasisSet) - buf = Array{Float64,3}(undef, n_ao(ash1ao),n_ao(ash2ao),n_ao(ashfit)) + function $jname_sfx(ash1ao::AngularShell, ash2ao::AngularShell, ashfit::AngularShell, basis::BasisSet) + buf = Array{Float64,3}(undef, n_ao(ash1ao,$cartesian),n_ao(ash2ao,$cartesian),n_ao(ashfit,$cartesian)) $libname(buf, [ash1ao.id,ash2ao.id,ashfit.id], basis.lib) return buf end @doc $docstr_ex - function $jname_ex(out, ash1ao::$TAS, ash2ao::$TAS, ashfit::$TAS, basis::BasisSet) + function $jname_sfx_ex(out, ash1ao::AngularShell, ash2ao::AngularShell, ashfit::AngularShell, basis::BasisSet) $libname(out, [ash1ao.id,ash2ao.id,ashfit.id], basis.lib) end @@ -98,8 +98,8 @@ end function calc_2e3idx!(out, callback::Function, ao_basis::BasisSet, fit_basis::BasisSet) # Number of orbitals per shell - nao4sh = n_ao.(ao_basis) - nfit4sh = n_ao.(fit_basis) + nao4sh = n_ao.(ao_basis, ao_basis.cartesian) + nfit4sh = n_ao.(fit_basis, fit_basis.cartesian) nao_max = maximum(nao4sh) nfit_max = maximum(nfit4sh) diff --git a/src/system/integrals_2idx.jl b/src/system/integrals_2idx.jl index 9545c1a..66f2b11 100644 --- a/src/system/integrals_2idx.jl +++ b/src/system/integrals_2idx.jl @@ -13,17 +13,17 @@ for (jname_str, type, descr_str) in INTEGRAL_NAMES_2IDX jname = Symbol(jname_str) jname_ex = Symbol(jname_str*"!") descr = Symbol(descr_str) - for (TAS, suffix) in ((SphericalAngularShell, "sph"), (CartesianAngularShell, "cart")) + for (suffix,cartesian) in (("sph",false), ("cart",true)) jname_sfx = Symbol(jname_str*"_$(suffix)") jname_sfx_ex = Symbol(jname_str*"_$(suffix)!") libname = Symbol("cint$(type)_$(suffix)!") docstr = """ - $jname(ash1::$TAS, ash2::$TAS, basis::BasisSet) + $jname_sfx(ash1::AngularShell, ash2::AngularShell, basis::BasisSet) Compute the $descr integral between two angular shells. """ docstr_ex = """ - $jname_ex(out, ash1::$TAS, ash2::$TAS, basis::BasisSet) + $jname_ex(out, ash1::AngularShell, ash2::AngularShell, basis::BasisSet) Compute the $descr integral between two angular shells. The result is stored in `out`. @@ -36,14 +36,14 @@ for (jname_str, type, descr_str) in INTEGRAL_NAMES_2IDX """ @eval begin @doc $docstr - function $jname(ash1::$TAS, ash2::$TAS, basis::BasisSet) - buf = Matrix{Float64}(undef, n_ao(ash1),n_ao(ash2)) + function $jname_sfx(ash1::AngularShell, ash2::AngularShell, basis::BasisSet) + buf = Matrix{Float64}(undef, n_ao(ash1,$cartesian),n_ao(ash2,$cartesian)) $libname(buf, [ash1.id,ash2.id], basis.lib) return buf end @doc $docstr_ex - function $jname_ex(out, ash1::$TAS, ash2::$TAS, basis::BasisSet) + function $jname_sfx_ex(out, ash1::AngularShell, ash2::AngularShell, basis::BasisSet) $libname(out, [ash1.id,ash2.id], basis.lib) end @@ -112,7 +112,7 @@ end function calc_1e!(out, callback::Function, bs::BasisSet) # Number of AOs per shell - nao4sh = n_ao.(bs) + nao4sh = n_ao.(bs, bs.cartesian) nao_max = maximum(nao4sh) # Offset list for each shell, used to map shell index to AO index @@ -153,8 +153,8 @@ end function calc_1e!(out, callback::Function, bs1::BasisSet, bs2::BasisSet) # Number of AOs per shell - nao4sh1 = n_ao.(bs1) - nao4sh2 = n_ao.(bs2) + nao4sh1 = n_ao.(bs1, bs1.cartesian) + nao4sh2 = n_ao.(bs2, bs2.cartesian) nao_max1 = maximum(nao4sh1) nao_max2 = maximum(nao4sh2) diff --git a/src/system/intlibs.jl b/src/system/intlibs.jl index 2029189..ac64471 100644 --- a/src/system/intlibs.jl +++ b/src/system/intlibs.jl @@ -23,11 +23,11 @@ end Base.show(io::IO, ilib::ILibcint5) = print(io, "libcint v5") """ - ILibcint5(atoms::Vector{BasisCenter}) + ILibcint5(atoms::Vector{BasisCenter}, cartesian::Bool) Prepare the infos for Libcint5 integral library. """ -function ILibcint5(atoms::Vector{BasisCenter}) +function ILibcint5(atoms::Vector{BasisCenter}, cartesian::Bool) ATM_SLOTS = 6 BAS_SLOTS = 8 @@ -79,7 +79,7 @@ function ILibcint5(atoms::Vector{BasisCenter}) off += nprim # Seventh is the env index address for contraction coeff lc_bas[7 + BAS_SLOTS*ib] = off - env[off+1:off+ncoefs] .= coefficients_1mat(ashell)[:] + env[off+1:off+ncoefs] .= coefficients_1mat(ashell, cartesian)[:] off += ncoefs # Eigth, nothing ib += 1 diff --git a/src/system/msystem.jl b/src/system/msystem.jl index c9f0040..341d79a 100644 --- a/src/system/msystem.jl +++ b/src/system/msystem.jl @@ -247,7 +247,8 @@ end Check whether the system is not empty. """ function system_exists(ms::AbstractSystem) - return length(ms) > 0 + n::Int = length(ms.particles) + return n > 0 end """ @@ -285,8 +286,9 @@ end Calculate nuclear repulsion energy. """ function nuclear_repulsion(ms::AbstractSystem) - enuc = 0.0 - for i = 2:length(ms) + enuc::Float64 = 0.0 + ncenter::Int = length(ms.particles) + for i = 2:ncenter at1 = ms[i] if is_dummy(at1) continue diff --git a/src/system/parse_basis.jl b/src/system/parse_basis.jl index 6a139de..2e14e43 100644 --- a/src/system/parse_basis.jl +++ b/src/system/parse_basis.jl @@ -1,16 +1,16 @@ const BASIS_LIB = joinpath(@__DIR__, "..", "..", "lib", "basis_sets") """ - parse_basis(basis_name::String, atom::Atom; cartesian=false) + parse_basis(basis_name::String, atom::Atom) Search and parse the basis set for a given atom. - Return a list of subshells `AbstractSubShell`. + Return a list of angular shells [`AngularShell`](@ref). """ -function parse_basis(basis_name::String, atom::Atom; cartesian=false) +function parse_basis(basis_name::String, atom::Atom) basisfile = basis_file(basis_name) basisblock = read_basis_block(basisfile, atom) - return parse_basis_block(basisblock, atom; cartesian) + return parse_basis_block(basisblock, atom) end """ @@ -126,11 +126,11 @@ function read_basis_block(basisfile::AbstractString, atom::Atom) end """ - parse_basis_block(basisblock::AbstractString, atom::Atom; cartesian=false) + parse_basis_block(basisblock::AbstractString, atom::Atom) Parse the basis block for a given atom. - Return a list of angular shells [`AbstractAngularShell`](@ref). + Return a list of angular shells [`AngularShell`](@ref). The basis block is in the Molpro format: - `!` comments - `s,p,d,f,g,h` angular momentum @@ -158,12 +158,12 @@ p, H , 0.8000000 c, 1.1, 1.0000000 ``` """ -function parse_basis_block(basisblock::AbstractString, atom::Atom; cartesian=false) +function parse_basis_block(basisblock::AbstractString, atom::Atom) elem = element_SYMBOL(atom) # search for ` s, $elem , 13...` reg_exp = Regex("^\\s*[$SUBSHELLS_NAMES]\\s*,\\s*$elem\\s*,") reg_con = Regex("^\\s*c,\\s*") - ashells = AbstractAngularShell[] # cartesian ? CartesianAngularShell[] : SphericalAngularShell[] + ashells = AngularShell[] for line in split(basisblock, "\n") #remove comments ` abc !...` -> `abc` line = strip(replace(line, r"!.*" => "")) @@ -174,7 +174,7 @@ function parse_basis_block(basisblock::AbstractString, atom::Atom; cartesian=fal expline = occursin(reg_exp, line) if expline # parse exponents - push!(ashells, generate_angularshell(elem, parse_exponents(line)...; cartesian)) + push!(ashells, generate_angularshell(elem, parse_exponents(line)...)) else conline = occursin(reg_con, line) if conline @@ -194,9 +194,9 @@ function parse_basis_block(basisblock::AbstractString, atom::Atom; cartesian=fal end end # split angular shells if necessary - ashells_split = AbstractAngularShell[] + ashells_split = AngularShell[] for ashell in ashells - append!(ashells_split, split_angular_shell(ashell; cartesian)) + append!(ashells_split, split_angular_shell(ashell)) end return ashells_split end @@ -248,18 +248,18 @@ function parse_contraction(conline::AbstractString) end """ - split_angular_shell(ashell::AbstractAngularShell; cartesian=false) + split_angular_shell(ashell::AngularShell) If the ranges of exponents do not overlap, split the angular shell into separate angular shells for each subshell. The shells are kept together only if one is a subset of the other. """ -function split_angular_shell(ashell::AbstractAngularShell; cartesian=false) +function split_angular_shell(ashell::AngularShell) ers = [sh.exprange for sh in ashell.subshells] # intersection matrix for ranges of exponents (true if one is a subset of the other) imat = [length(intersect(r1, r2)) == min(length(r1),length(r2)) for r1 in ers, r2 in ers] # find ranges of block-diagonal blocks in the intersection matrix - blocks = UnitRange[] + blocks = UnitRange{Int}[] start = 1 for i in 1:length(ers) if !any(imat[start:i,i+1:end]) @@ -268,11 +268,11 @@ function split_angular_shell(ashell::AbstractAngularShell; cartesian=false) end end # split the angular shell - ashells = AbstractAngularShell[] + ashells = AngularShell[] for block in blocks # total exponent range for this block totexprange = minimum(ers[block]).start:maximum(ers[block]).stop - push!(ashells, generate_angularshell(ashell.element, ashell.l, ashell.exponents[totexprange]; cartesian)) + push!(ashells, generate_angularshell(ashell.element, ashell.l, ashell.exponents[totexprange] )) for i in block exprange = subspace_in_space(ashell.subshells[i].exprange, totexprange) add_subshell!(last(ashells), exprange, ashell.subshells[i].coefs) diff --git a/src/tensortools.jl b/src/tensortools.jl index 3262087..fc4d071 100644 --- a/src/tensortools.jl +++ b/src/tensortools.jl @@ -7,9 +7,11 @@ using ..ElemCo.ECInfos using ..ElemCo.FciDump using ..ElemCo.MIO -export save!, load, loads, mmap, newmmap, closemmap +export save!, load, load_all, mmap, newmmap, closemmap +export load1idx, load2idx, load3idx, load4idx, load5idx, load6idx +export load1idx_all, load2idx_all, load3idx_all, load4idx_all, load5idx_all, load6idx_all export ints1, ints2, detri_int2 -export sqrtinvchol, invchol, rotate_eigenvectors_to_real!, svd_thr +export sqrtinvchol, invchol, rotate_eigenvectors_to_real, svd_thr export get_spaceblocks export print_nonzeros @@ -38,23 +40,37 @@ end Type-stable load array from file `fname` in EC.scr directory. - The type `T` and dimensions `N` are given explicitly. + The type `T` and number of dimensions `N` are given explicitly. """ function load(EC::ECInfo, fname::String, ::Val{N}, T::Type=Float64) where {N} return mioload(joinpath(EC.scr, fname*EC.ext), Val(N), T)[1] end """ - loads(EC::ECInfo, fname::String, ::Val{N}, T::Type=Float64 ) where {N} + load_all(EC::ECInfo, fname::String, ::Val{N}, T::Type=Float64 ) where {N} Type-stable load arrays from file `fname` in EC.scr directory. - The type `T` and dimensions `N` are given explicitly. + The type `T` and number of dimensions `N` are given explicitly (have to be the same for all arrays). + Return an array of arrays. """ -function loads(EC::ECInfo, fname::String, ::Val{N}, T::Type=Float64) where {N} +function load_all(EC::ECInfo, fname::String, ::Val{N}, T::Type=Float64) where {N} return mioload(joinpath(EC.scr, fname*EC.ext), Val(N), T) end +for N in 1:6 + loadN = Symbol("load$(N)idx") + loadNall = Symbol("load$(N)idx_all") + @eval begin + function $loadN(EC::ECInfo, fname::String, T::Type=Float64) + return load(EC, fname, Val($N), T) + end + function $loadNall(EC::ECInfo, fname::String, T::Type=Float64) + return load_all(EC, fname, Val($N), T) + end + end +end + """ newmmap(EC::ECInfo, fname::String, Type, dims::Tuple{Vararg{Int}}; description="tmp") @@ -67,6 +83,24 @@ function newmmap(EC::ECInfo, fname::String, Type, dims::Tuple{Vararg{Int}}; desc return mionewmmap(joinpath(EC.scr, fname*EC.ext), Type, dims) end +# for N = 1:6 +# docstr = """ +# newmmap(EC::ECInfo, fname::String, Type, dims::NTuple{$N, Int}; description="tmp") + +# Create a new memory-map file for writing (overwrites existing file). +# Add file to `EC.files` with `description`. +# Return a pointer to the file and the mmaped array. +# """ +# @eval begin +# @doc $docstr +# function newmmap(EC::ECInfo, fname::String, Type, dims::NTuple{$N, Int}; description="tmp") +# add_file!(EC, fname, description; overwrite=true) +# return mionewmmap(joinpath(EC.scr, fname*EC.ext), Type, dims) +# end +# end +# end + + """ closemmap(EC::ECInfo, file, array) @@ -222,12 +256,16 @@ function invchol(A::AbstractMatrix; tol = 1e-8, verbose = false) end """ - rotate_eigenvectors_to_real!(evecs::AbstractMatrix, evals::AbstractVector) + rotate_eigenvectors_to_real(evecs::AbstractMatrix, evals::AbstractVector) - In-place transform complex eigenvectors of a real matrix to a real space + Transform complex eigenvectors of a real matrix to a real space such that they block-diagonalize the matrix. + + Return the eigenvectors and "eigenvalues" (the diagonal of the matrix) in the real space. """ -function rotate_eigenvectors_to_real!(evecs::AbstractMatrix, evals::AbstractVector) +function rotate_eigenvectors_to_real(evecs::AbstractMatrix, evals::AbstractVector) + evecs_real::Matrix{Float64} = real.(evecs) + evals_real::Vector{Float64} = real.(evals) npairs = 0 skip = false for i in eachindex(evals) @@ -238,13 +276,11 @@ function rotate_eigenvectors_to_real!(evecs::AbstractMatrix, evals::AbstractVect if abs(imag(evals[i])) > 0.0 println("complex: ",evals[i], " ",i) if evals[i] == conj(evals[i+1]) - evecs[:,i] = real.(evecs[:,i]) - @assert evecs[:,i] == real.(evecs[:,i+1]) - evecs[:,i+1] = imag.(evecs[:,i+1]) - normalize!(evecs[:,i]) - normalize!(evecs[:,i+1]) - evals[i] = real(evals[i]) - evals[i+1] = real(evals[i+1]) + @assert evecs_real[:,i] == real.(evecs[:,i+1]) + evecs_real[:,i+1] = imag.(evecs[:,i+1]) + normalize!(evecs_real[:,i]) + normalize!(evecs_real[:,i+1]) + evals_real[i+1] = real(evals[i+1]) npairs += 1 skip = true else @@ -255,6 +291,11 @@ function rotate_eigenvectors_to_real!(evecs::AbstractMatrix, evals::AbstractVect if npairs > 0 println("$npairs eigenvector pairs rotated to the real space") end + return evecs_real, evals_real +end + +function rotate_eigenvectors_to_real(evecs::Matrix{Float64}, evals::Vector{Float64}) + return evecs, evals end """ diff --git a/src/wavefunctions.jl b/src/wavefunctions.jl new file mode 100644 index 0000000..b6f28a0 --- /dev/null +++ b/src/wavefunctions.jl @@ -0,0 +1,95 @@ +module Wavefunctions +using ..ElemCo.BasisSets +export MOs, is_restricted_MO, unrestrict!, restrict! + +""" + MOs + +A type to store the molecular orbitals of a system. + +The molecular orbitals are stored in a matrix, where each column is a molecular orbital. +The first matrix is the alpha molecular orbitals, and the second matrix is the beta molecular orbitals. +If the molecular orbitals are restricted, the beta molecular orbitals refer to the alpha molecular orbitals. +""" +mutable struct MOs + α::Matrix{Float64} + β::Matrix{Float64} + function MOs(cmo::AbstractMatrix{Float64}, cmo2::AbstractMatrix{Float64}) + return new(cmo, cmo2) + end + function MOs(cmo::AbstractMatrix{Float64}=zeros(0,0)) + return new(cmo, cmo) + end + function MOs(cmos::Tuple{Matrix{Float64}, Matrix{Float64}}) + return new(cmos[1], cmos[2]) + end +end + + +Base.length(mos::MOs) = length(mos.α) + +Base.size(mos::MOs) = size(mos.α) + +Base.size(mos::MOs, i::Int) = size(mos.α, i) + +Base.getindex(mos::MOs, spincase::Symbol) = getfield(mos, spincase) + +Base.getindex(mos::MOs, i::Int) = getfield(mos, i) + +function Base.setindex!(mos::MOs, cMO::AbstractMatrix{Float64}, spincase::Symbol) + if cMO isa Matrix{Float64} + return setfield!(mos, spincase, cMO) + else + return setfield!(mos, spincase, copy(cMO)) + end +end + +function Base.setindex!(mos::MOs, cMO::AbstractMatrix{Float64}, i::Int) + if cMO isa Matrix{Float64} + setfield!(mos, i, cMO) + else + setfield!(mos, i, copy(cMO)) + end +end + +Base.iterate(mos::MOs, state=1) = state > 2 ? nothing : (mos[state], state+1) + +Base.Tuple(mos::MOs) = (mos.α, mos.β) + +""" + is_restricted_MO(cMO::MOs) + +Check if the molecular orbitals are restricted. +""" +is_restricted_MO(cMO::MOs) = cMO.α === cMO.β + +""" + unrestrict!(cMO::MOs) + +Unrestrict the molecular orbitals. +""" +function unrestrict!(cMO::MOs) + if is_restricted_MO(cMO) + cMO.β = copy(cMO.α) + end + return cMO +end + +""" + restrict!(cMO::MOs) + +Restrict the molecular orbitals (β = α). +""" +function restrict!(cMO::MOs) + cMO.β = cMO.α + return cMO +end + +struct Orbitals + cMO::MOs + basis::BasisSet +end + + + +end #module \ No newline at end of file From 2e445f313d493b45e245f0258e4853886a6744b8 Mon Sep 17 00:00:00 2001 From: Daniel Kats Date: Thu, 13 Jun 2024 12:49:14 +0200 Subject: [PATCH 16/44] Make df-uhf type stable --- src/dfhf.jl | 6 +++--- src/fockfactory.jl | 2 +- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/src/dfhf.jl b/src/dfhf.jl index f76f4a7..ecdc40f 100644 --- a/src/dfhf.jl +++ b/src/dfhf.jl @@ -121,8 +121,8 @@ function dfuhf(EC::ECInfo) t1 = print_time(EC, t1, "guess orbitals", 2) unrestrict!(cMO) ϵ = [zeros(norb), zeros(norb)] - hsmall = load(EC, "h_AA") - sao = load(EC, "S_AA") + hsmall = load2idx(EC, "h_AA") + sao = load2idx(EC, "S_AA") # display(sao) EHF = 0.0 previousEHF = 0.0 @@ -137,7 +137,7 @@ function dfuhf(EC::ECInfo) end t1 = print_time(EC, t1, "generate DF-Fock matrix", 2) efhsmall = Float64[0.0, 0.0] - Δfock = Array{Float64}[zeros(norb,norb), zeros(norb,norb)] + Δfock = Matrix{Float64}[zeros(norb,norb), zeros(norb,norb)] var = 0.0 for (ispin, sp) = enumerate(['o', 'O']) den = gen_density_matrix(EC, cMO[ispin], cMO[ispin], SP[sp]) diff --git a/src/fockfactory.jl b/src/fockfactory.jl index dd267bc..9b8a4ff 100644 --- a/src/fockfactory.jl +++ b/src/fockfactory.jl @@ -280,7 +280,7 @@ function gen_dffock(EC::ECInfo, cMO::MOs) occb = EC.space['O'] CMOo = [cMO[1][:,occa], cMO[2][:,occb]] hsmall = load2idx(EC,"h_AA") - fock = Array{Float64}[zeros(size(hsmall)), zeros(size(hsmall))] + fock = Matrix{Float64}[zeros(size(hsmall)), zeros(size(hsmall))] μνL = load3idx(EC,"AAL") L = zeros(size(μνL,3)) for isp = 1:2 # loop over [α, β] From cbb245a5334790e7e51d1fbcf47598a01a5725fc Mon Sep 17 00:00:00 2001 From: Daniel Kats Date: Thu, 13 Jun 2024 14:02:20 +0200 Subject: [PATCH 17/44] Make integral part and diis type stable --- src/diis.jl | 11 +++++++++-- src/system/basisset.jl | 4 ++-- src/system/integrals_2e3idx.jl | 4 ++-- src/system/integrals_2idx.jl | 6 +++--- 4 files changed, 16 insertions(+), 9 deletions(-) diff --git a/src/diis.jl b/src/diis.jl index e100f92..184bf07 100644 --- a/src/diis.jl +++ b/src/diis.jl @@ -119,9 +119,16 @@ end Combine vectors from files with coefficients. """ function combine(diis::Diis, vecfiles, coeffs) - outvecs = coeffs[1] * loadvecs(vecfiles[1]) + outvecs = loadvecs(vecfiles[1]) + for v in outvecs + v .*= coeffs[1] + end for i in 2:diis.nDim - outvecs += coeffs[i] * loadvecs(vecfiles[i]) + vect = loadvecs(vecfiles[i]) + coef = coeffs[i] + for j in eachindex(vect) + outvecs[j] .+= coef * vect[j] + end end return outvecs end diff --git a/src/system/basisset.jl b/src/system/basisset.jl index d39fd2f..35fdcfe 100644 --- a/src/system/basisset.jl +++ b/src/system/basisset.jl @@ -52,8 +52,8 @@ struct BasisSet shell_ranges::Vector{UnitRange{Int}} """ cartesian basis set """ cartesian::Bool - """ infos for integral library.""" - lib::AbstractILib + """ infos for integral library (at the moment only libcint5 is possible).""" + lib::ILibcint5 end function BasisSet(centers::Vector{BasisCenter}, cartesian::Bool, lib::AbstractILib) diff --git a/src/system/integrals_2e3idx.jl b/src/system/integrals_2e3idx.jl index ad4cfc0..a66e81b 100644 --- a/src/system/integrals_2e3idx.jl +++ b/src/system/integrals_2e3idx.jl @@ -98,8 +98,8 @@ end function calc_2e3idx!(out, callback::Function, ao_basis::BasisSet, fit_basis::BasisSet) # Number of orbitals per shell - nao4sh = n_ao.(ao_basis, ao_basis.cartesian) - nfit4sh = n_ao.(fit_basis, fit_basis.cartesian) + nao4sh = Int[n_ao(ash, ao_basis.cartesian) for ash in ao_basis] + nfit4sh = Int[n_ao(ash, fit_basis.cartesian) for ash in fit_basis] nao_max = maximum(nao4sh) nfit_max = maximum(nfit4sh) diff --git a/src/system/integrals_2idx.jl b/src/system/integrals_2idx.jl index 66f2b11..d5a0038 100644 --- a/src/system/integrals_2idx.jl +++ b/src/system/integrals_2idx.jl @@ -112,7 +112,7 @@ end function calc_1e!(out, callback::Function, bs::BasisSet) # Number of AOs per shell - nao4sh = n_ao.(bs, bs.cartesian) + nao4sh = Int[n_ao(ash, bs.cartesian) for ash in bs] nao_max = maximum(nao4sh) # Offset list for each shell, used to map shell index to AO index @@ -153,8 +153,8 @@ end function calc_1e!(out, callback::Function, bs1::BasisSet, bs2::BasisSet) # Number of AOs per shell - nao4sh1 = n_ao.(bs1, bs1.cartesian) - nao4sh2 = n_ao.(bs2, bs2.cartesian) + nao4sh1 = Int[n_ao(ash, bs1.cartesian) for ash in bs1] + nao4sh2 = Int[n_ao(ash, bs2.cartesian) for ash in bs2] nao_max1 = maximum(nao4sh1) nao_max2 = maximum(nao4sh2) From 0cfd39220a0b99f06fc13249339704f48f8481b2 Mon Sep 17 00:00:00 2001 From: Daniel Kats Date: Fri, 14 Jun 2024 15:21:54 +0200 Subject: [PATCH 18/44] Make dfdump routines type stable QMTensors.SpinMatrix type is introduced for spin-aware quantities --- CHANGELOG.md | 6 ++ src/ElemCo.jl | 2 + src/bohf.jl | 32 +++--- src/cc_triples.jl | 2 +- src/ccdriver.jl | 3 +- src/dfcc.jl | 20 ++-- src/dfdump.jl | 214 ++++++++++++++++++++++++++------------- src/dfhf.jl | 3 +- src/dftools.jl | 15 +-- src/dump.jl | 163 +++++++++++++++++++++-------- src/fockfactory.jl | 58 ++++++----- src/interfaces/molden.jl | 3 +- src/myio.jl | 42 +++----- src/orbtools.jl | 19 ++-- src/qmtensors.jl | 12 +++ src/spinmatrix.jl | 166 ++++++++++++++++++++++++++++++ src/system/elements.jl | 2 +- src/system/msystem.jl | 2 +- src/tensortools.jl | 38 +++---- src/utils.jl | 17 +++- src/wavefunctions.jl | 89 +--------------- 21 files changed, 577 insertions(+), 331 deletions(-) create mode 100644 src/qmtensors.jl create mode 100644 src/spinmatrix.jl diff --git a/CHANGELOG.md b/CHANGELOG.md index 68cfa81..8126307 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -4,11 +4,17 @@ ### Breaking +* `DIIS.perform` has been changed to `DIIS.perform!` in order to allow to read the vectors and residuals as `Vector{}`. +* the signature of `newmmap` function has changed (the type specification is now the last argument and defaults to `Float64`. + ### Changed +* `dfdump` stores the MO integrals internally in npy files. + ### Added * Export of molden files (`@export_molden`). At the moment the orbital energies and occupations are not exported. +* `QMTensors.SpinMatrix` struct for one-electron matrices (e.g., MO coefficients) ### Fixed diff --git a/src/ElemCo.jl b/src/ElemCo.jl index 3a0a907..78d7c3f 100644 --- a/src/ElemCo.jl +++ b/src/ElemCo.jl @@ -10,6 +10,7 @@ include("utils.jl") include("constants.jl") include("myio.jl") include("mnpy.jl") +include("qmtensors.jl") include("dump.jl") include("system/elements.jl") include("system/msystem.jl") @@ -56,6 +57,7 @@ using Dates using TensorOperations using .Utils using .ECInfos +using .QMTensors using .Wavefunctions using .ECMethods using .TensorTools diff --git a/src/bohf.jl b/src/bohf.jl index 6038abe..278d0a0 100644 --- a/src/bohf.jl +++ b/src/bohf.jl @@ -6,8 +6,8 @@ using LinearAlgebra, TensorOperations, Printf using ..ElemCo.Utils using ..ElemCo.Constants using ..ElemCo.ECInfos +using ..ElemCo.QMTensors using ..ElemCo.TensorTools -using ..ElemCo.Wavefunctions using ..ElemCo.FciDump using ..ElemCo.OrbTools using ..ElemCo.FockFactory @@ -21,12 +21,12 @@ export guess_boorb Calculate left BO-MO coefficients from right BO-MO coefficients. """ -function left_from_right(cMOr::MOs) - if is_restricted_MO(cMOr) - cMOl = MOs((inv(cMOr[1]))') +function left_from_right(cMOr::SpinMatrix{T}) where {T} + if is_restricted(cMOr) + cMOl = SpinMatrix((inv(cMOr[1]))') restrict!(cMOl) else - cMOl = MOs() + cMOl = SpinMatrix{T}() for ispin = 1:2 cMOl[ispin] = (inv(cMOr[ispin]))' end @@ -73,7 +73,7 @@ end Guess BO-MO coefficients (right) from core Hamiltonian. """ function guess_bo_hcore(EC::ECInfo, uhf) - CMOr_final = MOs() + CMOr_final = SpinMatrix() if uhf spins = [:α, :β] if !EC.fd.uhf @@ -103,15 +103,15 @@ end function guess_bo_identity(EC::ECInfo, uhf) norb = length(EC.space[':']) if uhf - return MOs(Matrix{Float64}(I, norb, norb), Matrix{Float64}(I, norb, norb)) + return SpinMatrix(Matrix{Float64}(I, norb, norb), Matrix{Float64}(I, norb, norb)) else - return MOs(Matrix{Float64}(I, norb, norb)) + return SpinMatrix(Matrix{Float64}(I, norb, norb)) end end function guess_bo_gwh(EC::ECInfo, uhf) error("not implemented yet") - return MOs() + return SpinMatrix() end """ @@ -121,12 +121,12 @@ end Returns new BO-MO coefficients `cMOl::MOs, cMOr::MOs` """ -function heatup(EC::ECInfo, cMOl::MOs, cMOr::MOs, temperature) +function heatup(EC::ECInfo, cMOl::SpinMatrix, cMOr::SpinMatrix, temperature) if temperature < 1.e-10 return cMOl, cMOr end println("Heating up starting guess to ", temperature, " K") - if is_restricted_MO(cMOr) + if is_restricted(cMOr) return closed_shell_heatup(EC, cMOl, cMOr, temperature) else return unrestricted_heatup(EC, cMOl, cMOr, temperature) @@ -138,7 +138,7 @@ end Heat up closed-shell BO-MO coefficients to `temperature` according to Fermi-Dirac. """ -function closed_shell_heatup(EC::ECInfo, cMOl::MOs, cMOr::MOs, temperature) +function closed_shell_heatup(EC::ECInfo, cMOl::SpinMatrix, cMOr::SpinMatrix, temperature) fock = gen_fock(EC, cMOl[1], cMOr[1]) ϵ, cMOr_new = eigen(fock) cMOr[1], ϵ = rotate_eigenvectors_to_real(cMOr_new, ϵ) @@ -157,12 +157,12 @@ end Heat up unrestricted BO-MO coefficients to `temperature` according to Fermi-Dirac. """ -function unrestricted_heatup(EC::ECInfo, cMOl::MOs, cMOr::MOs, temperature) +function unrestricted_heatup(EC::ECInfo, cMOl::SpinMatrix, cMOr::SpinMatrix, temperature) SP = EC.space fock = gen_ufock(EC, cMOl, cMOr) - den4temp = AbstractArray[[], []] - cMOr_out = MOs() - cMOl_out = MOs() + den4temp = FSpinMatrix() + cMOr_out = FSpinMatrix() + cMOl_out = FSpinMatrix() for (ispin, sp) = enumerate(['o', 'O']) ϵ, cMOr_new = eigen(fock[ispin]) cMOr_out[ispin], ϵ = rotate_eigenvectors_to_real(cMOr_new, ϵ) diff --git a/src/cc_triples.jl b/src/cc_triples.jl index 2e83369..13b5d58 100644 --- a/src/cc_triples.jl +++ b/src/cc_triples.jl @@ -56,7 +56,7 @@ function calc_pertT_closed_shell(EC::ECInfo; save_t3=false) IntX = zeros(nvir,nocc) IntY = zeros(nvir,nocc) if save_t3 - t3file, T3 = newmmap(EC,"T_vvvooo",Float64,(nvir,nvir,nvir,uppertriangular(nocc,nocc,nocc))) + t3file, T3 = newmmap(EC,"T_vvvooo",(nvir,nvir,nvir,uppertriangular(nocc,nocc,nocc))) end for k = 1:nocc for j = 1:k diff --git a/src/ccdriver.jl b/src/ccdriver.jl index 9db8e04..8128d4c 100644 --- a/src/ccdriver.jl +++ b/src/ccdriver.jl @@ -8,6 +8,7 @@ using Printf using ..ElemCo.Utils using ..ElemCo.ECInfos using ..ElemCo.ECMethods +using ..ElemCo.QMTensors using ..ElemCo.Wavefunctions using ..ElemCo.TensorTools using ..ElemCo.DFTools @@ -383,7 +384,7 @@ end function eval_df_mo_integrals(EC::ECInfo, energies::NamedTuple) t1 = time_ns() cMO = load_orbitals(EC, EC.options.wf.orb) - unrestricted = !is_restricted_MO(cMO) + unrestricted = !is_restricted(cMO) ERef = generate_DF_integrals(EC, cMO) t1 = print_time(EC, t1, "generate DF integrals", 2) cMO = nothing diff --git a/src/dfcc.jl b/src/dfcc.jl index 2176467..2c77e65 100644 --- a/src/dfcc.jl +++ b/src/dfcc.jl @@ -73,7 +73,7 @@ function gen_vₓˣᴸ(EC::ECInfo) nL = size(mmL, 3) nX = size(UvoX, 3) # create mmap for the v_X^{X'L} intermediate - vXXLfile, v_XXL = newmmap(EC, "X^XL", Float64, (nX,nX,nL)) + vXXLfile, v_XXL = newmmap(EC, "X^XL", (nX,nX,nL)) LBlks = get_auxblks(nL) XBlks = get_auxblks(nX) for L in LBlks @@ -212,10 +212,10 @@ function calc_dressed_3idx(EC::ECInfo, T1) nocc = length(SP['o']) nvirt = length(SP['v']) # create mmaps for dressed integrals - ovLfile, ovL = newmmap(EC, "d_ovL", Float64, (nocc,nvirt,nL)) - voLfile, voL = newmmap(EC, "d_voL", Float64, (nvirt,nocc,nL)) - ooLfile, ooL = newmmap(EC, "d_ooL", Float64, (nocc,nocc,nL)) - vvLfile, vvL = newmmap(EC, "d_vvL", Float64, (nvirt,nvirt,nL)) + ovLfile, ovL = newmmap(EC, "d_ovL", (nocc,nvirt,nL)) + voLfile, voL = newmmap(EC, "d_voL", (nvirt,nocc,nL)) + ooLfile, ooL = newmmap(EC, "d_ooL", (nocc,nocc,nL)) + vvLfile, vvL = newmmap(EC, "d_vvL", (nvirt,nvirt,nL)) LBlks = get_auxblks(nL) for L in LBlks @@ -252,10 +252,10 @@ function save_pseudodressed_3idx(EC::ECInfo) nocc = length(SP['o']) nvirt = length(SP['v']) # create mmaps for dressed integrals - ovLfile, ovL = newmmap(EC,"d_ovL",Float64,(nocc,nvirt,nL)) - voLfile, voL = newmmap(EC,"d_voL",Float64,(nvirt,nocc,nL)) - ooLfile, ooL = newmmap(EC,"d_ooL",Float64,(nocc,nocc,nL)) - vvLfile, vvL = newmmap(EC,"d_vvL",Float64,(nvirt,nvirt,nL)) + ovLfile, ovL = newmmap(EC, "d_ovL", (nocc,nvirt,nL)) + voLfile, voL = newmmap(EC, "d_voL", (nvirt,nocc,nL)) + ooLfile, ooL = newmmap(EC, "d_ooL", (nocc,nocc,nL)) + vvLfile, vvL = newmmap(EC, "d_vvL", (nvirt,nvirt,nL)) LBlks = get_auxblks(nL) for L in LBlks @@ -790,7 +790,7 @@ function calc_svd_dcsd_residual(EC::ECInfo, T1, T2) end XBigBlks = get_auxblks(nX, 512) XXLfile, XXL = mmap(EC, "X^XL") - d_XXLfile, d_XXL = newmmap(EC, "d_X^XL", Float64, (nX,nX,nL)) + d_XXLfile, d_XXL = newmmap(EC, "d_X^XL", (nX,nX,nL)) for X in XBigBlks V_UvoX = @view UvoX[:,:,X] # ``U_{iX}^{jY} = U^{†c}_{iX} U^{jY}_{c}`` diff --git a/src/dfdump.jl b/src/dfdump.jl index 05b1cbd..dc107eb 100644 --- a/src/dfdump.jl +++ b/src/dfdump.jl @@ -3,6 +3,7 @@ module DfDump using LinearAlgebra, TensorOperations using ..ElemCo.ECInfos using ..ElemCo.BasisSets +using ..ElemCo.QMTensors using ..ElemCo.Wavefunctions using ..ElemCo.Integrals using ..ElemCo.OrbTools @@ -16,7 +17,7 @@ using ..ElemCo.Utils export dfdump """ - generate_integrals(EC::ECInfo, fdump::FDump, cMO, full_spaces) + generate_integrals(EC::ECInfo, fdump::FDump, cMO::Matrix, full_spaces) Generate `int2`, `int1` and `int0` integrals for fcidump using density fitting. @@ -24,8 +25,8 @@ export dfdump used for `int1` and `int0` integrals. `full_spaces` is a dictionary with spaces without frozen orbitals. """ -function generate_integrals(EC::ECInfo, fdump::FDump, cMO, full_spaces) - @assert !fdump.uhf "Use generate_integrals(EC, fdump, cMOa, cMOb, full_spaces) for UHF" +function generate_integrals(EC::ECInfo, fdump::FDump, cMO::Matrix, full_spaces) + @assert !fdump.uhf "Use generate_integrals(EC, fdump, cMO::SpinMatrix, full_spaces) for UHF" bao = generate_basis(EC, "ao") bfit = generate_basis(EC, "mpfit") jkfit = generate_basis(EC, "jkfit") @@ -35,24 +36,50 @@ function generate_integrals(EC::ECInfo, fdump::FDump, cMO, full_spaces) PQ = eri_2e2idx(bfit) M = sqrtinvchol(PQ, tol = EC.options.cholesky.thred, verbose = true) PQ = nothing - μνP = eri_2e3idx(bao,bfit) - @tensoropt μνL[p,q,L] := μνP[p,q,P] * M[P,L] - μνP = nothing - M = nothing + μνP = eri_2e3idx(bao, bfit) cMOval = cMO[:,wocore] - @tensoropt pqL[p,q,L] := cMOval[μ,p] * μνL[μ,ν,L] * cMOval[ν,q] - μνL = nothing @assert fdump.triang # store only upper triangle - # = sum_L pqL[p,q,L] * pqL[r,s,L] + nao = size(cMO, 1) norbs = length(wocore) println("norbs: ", norbs) - fdump.int2 = zeros(norbs,norbs,(norbs+1)*norbs÷2) - Threads.@threads for s = 1:size(pqL,1) - q = 1:s # only upper triangle - Iq = uppertriangular_range(s) - @tensoropt fdump.int2[:,:,Iq][p,r,q] = pqL[:,q,:][p,q,L] * pqL[:,s,:][r,L] + filename2 = int2_npy_filename(fdump) + int2_file, int2 = newmmap(EC, filename2, (norbs,norbs,(norbs+1)*norbs÷2), description="int2") + nL = size(M,2) + LBlks = get_auxblks(nL) + maxL = maximum(length, LBlks) + bufAAL = create_buf(nao^2*maxL) + bufmmL = create_buf(norbs^2*maxL) + first = true + for L in LBlks + nL = length(L) + V_M = @view M[:,L] + AAL = reshape_buf(bufAAL, nao, nao, nL) + mmL = reshape_buf(bufmmL, norbs, norbs, nL) + @tensoropt begin + AAL[p,q,L] = μνP[p,q,P] * V_M[P,L] + mmL[p,q,L] = cMOval[μ,p] * AAL[μ,ν,L] * cMOval[ν,q] + end + # = sum_L pqL[p,q,L] * pqL[r,s,L] + if first + for s = 1:norbs + q = 1:s # only upper triangle + Iq = uppertriangular_range(s) + @tensoropt int2[:,:,Iq][p,r,q] = mmL[:,q,:][p,q,L] * mmL[:,s,:][r,L] + end + else + for s = 1:norbs + q = 1:s # only upper triangle + Iq = uppertriangular_range(s) + @tensoropt int2[:,:,Iq][p,r,q] += mmL[:,q,:][p,q,L] * mmL[:,s,:][r,L] + end + end + first = false end - pqL = nothing + bufAAL = bufmmL = nothing + μνP = nothing + M = nothing + flushmmap(EC, int2) + fdump.int2 = int2 hAO = kinetic(bao) + nuclear(bao) cMO2 = cMO[:,full_spaces['o']] @@ -63,18 +90,21 @@ function generate_integrals(EC::ECInfo, fdump::FDump, cMO, full_spaces) @assert core_orbs == 1:ncore_orbs "Only simple 1:ncore_orbs core orbitals implemented" spo = EC.space['o'] .- ncore_orbs @tensoropt begin - fock[p,q] := 2.0*detri_int2(fdump.int2, norbs, spm, spo, spm, spo)[p,i,q,i] - fock[p,q] -= detri_int2(fdump.int2, norbs, spm, spo, spo, spm)[p,i,i,q] + fock[p,q] := 2.0*detri_int2(int2, norbs, spm, spo, spm, spo)[p,i,q,i] + fock[p,q] -= detri_int2(int2, norbs, spm, spo, spo, spm)[p,i,i,q] end space_save = save_space(EC) restore_space!(EC, full_spaces) - generate_AO_DF_integrals(EC, "jkfit"; save3idx=false) + Enuc = generate_AO_DF_integrals(EC, "jkfit"; save3idx=false) fock_jkfit = gen_dffock(EC, cMO, bao, jkfit) restore_space!(EC, space_save) fock_jkfitMO = cMO' * fock_jkfit * cMO - fdump.int1 = fock_jkfitMO[wocore,wocore] - fock - Enuc = nuclear_repulsion(EC.system) - fdump.int0 = Enuc + hii + sum(diag(fock_jkfitMO)[core_orbs]) - sum(diag(fdump.int1)[spo]) + filename1 = int1_npy_filename(fdump) + int1_file, int1 = newmmap(EC, filename1, (norbs,norbs), description="int1") + int1 .= fock_jkfitMO[wocore,wocore] - fock + flushmmap(EC, int1) + fdump.int1 = int1 + fdump.int0 = Enuc + hii + sum(diag(fock_jkfitMO)[core_orbs]) - sum(diag(int1)[spo]) # reference energy eRef = Enuc + hii + sum(diag(fock_jkfitMO)[full_spaces['o']]) @@ -82,7 +112,7 @@ function generate_integrals(EC::ECInfo, fdump::FDump, cMO, full_spaces) end """ - generate_integrals(EC::ECInfo, fdump::FDump, cMOa, cMOb, full_spaces) + generate_integrals(EC::ECInfo, fdump::FDump, cMO::SpinMatrix, full_spaces) Generate `int2aa`, `int2bb`, `int2ab`, `int1a`, `int1b` and `int0` integrals for fcidump using density fitting. @@ -90,53 +120,90 @@ end used for `int1` and `int0` integrals. `full_spaces` is a dictionary with spaces without frozen orbitals. """ -function generate_integrals(EC::ECInfo, fdump::FDump, cMOa, cMOb, full_spaces) +function generate_integrals(EC::ECInfo, fdump::FDump, cMO::SpinMatrix, full_spaces) @assert fdump.uhf "Use generate_integrals(EC, fdump, cMO, full_spaces) for RHF" - @assert size(cMOa) == size(cMOb) "cMOa and cMOb must have the same size" + @assert size(cMO.α) == size(cMO.β) "cMO.α and cMO.β must have the same size" bao = generate_basis(EC, "ao") bfit = generate_basis(EC, "mpfit") jkfit = generate_basis(EC, "jkfit") core_orbs = setdiff(full_spaces['o'], EC.space['o']) @assert core_orbs == setdiff(full_spaces['O'], EC.space['O']) "Core space must be the same for α and β orbitals" - wocore = setdiff(1:size(cMOa,2), core_orbs) + wocore = setdiff(1:size(cMO, 2), core_orbs) PQ = eri_2e2idx(bfit) M = sqrtinvchol(PQ, tol = EC.options.cholesky.thred, verbose = true) PQ = nothing - μνP = eri_2e3idx(bao,bfit) - @tensoropt μνL[p,q,L] := μνP[p,q,P] * M[P,L] - μνP = nothing - M = nothing - - cMOaval = cMOa[:,wocore] - cMObval = cMOb[:,wocore] - @tensoropt pqLa[p,q,L] := cMOaval[μ,p] * μνL[μ,ν,L] * cMOaval[ν,q] - @tensoropt pqLb[p,q,L] := cMObval[μ,p] * μνL[μ,ν,L] * cMObval[ν,q] - μνL = nothing + μνP = eri_2e3idx(bao, bfit) + cMOaval = cMO[1][:,wocore] + cMObval = cMO[2][:,wocore] @assert fdump.triang # store only upper triangle for same-spin integrals - # = sum_L pqL[p,q,L] * pqL[r,s,L] + nao = size(cMO, 1) norbs = length(wocore) println("norbs: ", norbs) - @tensoropt fdump.int2ab[p,r,q,s] := pqLa[p,q,L] * pqLb[r,s,L] - fdump.int2aa = zeros(norbs,norbs,(norbs+1)*norbs÷2) - Threads.@threads for s = 1:size(pqLa,1) - q = 1:s # only upper triangle - Iq = uppertriangular_range(s) - @tensoropt fdump.int2aa[:,:,Iq][p,r,q] = pqLa[:,q,:][p,q,L] * pqLa[:,s,:][r,L] - end - pqLa = nothing - fdump.int2bb = zeros(norbs,norbs,(norbs+1)*norbs÷2) - Threads.@threads for s = 1:size(pqLb,1) - q = 1:s # only upper triangle - Iq = uppertriangular_range(s) - @tensoropt fdump.int2bb[:,:,Iq][p,r,q] = pqLb[:,q,:][p,q,L] * pqLb[:,s,:][r,L] + filename2ab = int2_npy_filename(fdump, :αβ) + int2ab_file, int2ab = newmmap(EC, filename2ab, (norbs,norbs,norbs,norbs), description="int2ab") + filename2aa = int2_npy_filename(fdump, :α) + int2aa_file, int2aa = newmmap(EC, filename2aa, (norbs,norbs,(norbs+1)*norbs÷2), description="int2aa") + filename2bb = int2_npy_filename(fdump, :β) + int2bb_file, int2bb = newmmap(EC, filename2bb, (norbs,norbs,(norbs+1)*norbs÷2), description="int2bb") + nL = size(M,2) + LBlks = get_auxblks(nL) + maxL = maximum(length, LBlks) + bufAAL = create_buf(nao^2*maxL) + bufmmL = create_buf(norbs^2*maxL) + bufMML = create_buf(norbs^2*maxL) + first = true + for L in LBlks + nL = length(L) + V_M = @view M[:,L] + AAL = reshape_buf(bufAAL, nao, nao, nL) + mmL = reshape_buf(bufmmL, norbs, norbs, nL) + MML = reshape_buf(bufMML, norbs, norbs, nL) + @tensoropt begin + AAL[p,q,L] = μνP[p,q,P] * V_M[P,L] + mmL[p,q,L] = cMOaval[μ,p] * AAL[μ,ν,L] * cMOaval[ν,q] + MML[p,q,L] = cMObval[μ,p] * AAL[μ,ν,L] * cMObval[ν,q] + end + # = sum_L pqL[p,q,L] * pqL[r,s,L] + if first + for s = 1:norbs + MML_s = MML[:,s,:] + q = 1:s # only upper triangle + Iq = uppertriangular_range(s) + @tensoropt begin + int2ab[:,:,:,s][p,r,q] = mmL[p,q,L] * MML_s[r,L] + int2aa[:,:,Iq][p,r,q] = mmL[:,q,:][p,q,L] * mmL[:,s,:][r,L] + int2bb[:,:,Iq][p,r,q] = MML[:,q,:][p,q,L] * MML_s[r,L] + end + end + else + for s = 1:norbs + MML_s = MML[:,s,:] + q = 1:s # only upper triangle + Iq = uppertriangular_range(s) + @tensoropt begin + int2ab[:,:,:,s][p,r,q] += mmL[p,q,L] * MML_s[r,L] + int2aa[:,:,Iq][p,r,q] += mmL[:,q,:][p,q,L] * mmL[:,s,:][r,L] + int2bb[:,:,Iq][p,r,q] += MML[:,q,:][p,q,L] * MML_s[r,L] + end + end + end + first = false end - pqLb = nothing + bufAAL = bufmmL = bufMML = nothing + μνP = nothing + M = nothing + flushmmap(EC, int2ab) + flushmmap(EC, int2aa) + flushmmap(EC, int2bb) + fdump.int2ab = int2ab + fdump.int2aa = int2aa + fdump.int2bb = int2bb hAO = kinetic(bao) + nuclear(bao) - cMOao = cMOa[:,full_spaces['o']] + cMOao = cMO[1][:,full_spaces['o']] @tensoropt haii = cMOao[μ,i] * hAO[μ,ν] * cMOao[ν,i] - cMObo = cMOb[:,full_spaces['O']] + cMObo = cMO[2][:,full_spaces['O']] @tensoropt hbii = cMObo[μ,i] * hAO[μ,ν] * cMObo[ν,i] # fock matrix from fdump.int2aa, fdump.int2bb, fdump.int2ab ncore_orbs = length(core_orbs) @@ -145,25 +212,32 @@ function generate_integrals(EC::ECInfo, fdump::FDump, cMOa, cMOb, full_spaces) spo = EC.space['o'] .- ncore_orbs spO = EC.space['O'] .- ncore_orbs @tensoropt begin - focka[p,q] := detri_int2(fdump.int2aa, norbs, spm, spo, spm, spo)[p,i,q,i] - focka[p,q] += fdump.int2ab[spm,spO,spm,spO][p,I,q,I] - focka[p,q] -= detri_int2(fdump.int2aa, norbs, spm, spo, spo, spm)[p,i,i,q] - fockb[p,q] := detri_int2(fdump.int2bb, norbs, spm, spO, spm, spO)[p,I,q,I] - fockb[p,q] += fdump.int2ab[spo,spm,spo,spm][i,p,i,q] - fockb[p,q] -= detri_int2(fdump.int2bb, norbs, spm, spO, spO, spm)[p,I,I,q] + focka[p,q] := detri_int2(int2aa, norbs, spm, spo, spm, spo)[p,i,q,i] + focka[p,q] += int2ab[spm,spO,spm,spO][p,I,q,I] + focka[p,q] -= detri_int2(int2aa, norbs, spm, spo, spo, spm)[p,i,i,q] + fockb[p,q] := detri_int2(int2bb, norbs, spm, spO, spm, spO)[p,I,q,I] + fockb[p,q] += int2ab[spo,spm,spo,spm][i,p,i,q] + fockb[p,q] -= detri_int2(int2bb, norbs, spm, spO, spO, spm)[p,I,I,q] end space_save = save_space(EC) restore_space!(EC, full_spaces) - generate_AO_DF_integrals(EC, "jkfit"; save3idx=false) - fock_jkfit = gen_dffock(EC, MOs(cMOa, cMOb), bao, jkfit) + Enuc = generate_AO_DF_integrals(EC, "jkfit"; save3idx=false) + fock_jkfit = gen_dffock(EC, cMO, bao, jkfit) restore_space!(EC, space_save) - fock_jkfitMOa = cMOa' * fock_jkfit[1] * cMOa - fock_jkfitMOb = cMOb' * fock_jkfit[2] * cMOb - fdump.int1a = fock_jkfitMOa[wocore,wocore] - focka - fdump.int1b = fock_jkfitMOb[wocore,wocore] - fockb - Enuc = nuclear_repulsion(EC.system) - fdump.int0 = Enuc + 0.5*(haii + sum(diag(fock_jkfitMOa)[core_orbs]) - sum(diag(fdump.int1a)[spo]) - + hbii + sum(diag(fock_jkfitMOb)[core_orbs]) - sum(diag(fdump.int1b)[spO])) + fock_jkfitMOa = cMO[1]' * fock_jkfit[1] * cMO[1] + fock_jkfitMOb = cMO[2]' * fock_jkfit[2] * cMO[2] + filename1a = int1_npy_filename(fdump, :α) + int1a_file, int1a = newmmap(EC, filename1a, (norbs,norbs), description="int1a") + filename1b = int1_npy_filename(fdump, :β) + int1b_file, int1b = newmmap(EC, filename1b, (norbs,norbs), description="int1b") + int1a .= fock_jkfitMOa[wocore,wocore] - focka + int1b .= fock_jkfitMOb[wocore,wocore] - fockb + flushmmap(EC, int1a) + flushmmap(EC, int1b) + fdump.int1a = int1a + fdump.int1b = int1b + fdump.int0 = Enuc + 0.5*(haii + sum(diag(fock_jkfitMOa)[core_orbs]) - sum(diag(int1a)[spo]) + + hbii + sum(diag(fock_jkfitMOb)[core_orbs]) - sum(diag(int1b)[spO])) # reference energy eRef = Enuc + 0.5*(haii + sum(diag(fock_jkfitMOa)[full_spaces['o']]) @@ -194,9 +268,9 @@ function dfdump(EC::ECInfo) norbs -= ncore_orbs + nfrozvirt ms2 = EC.options.wf.ms2 ms2 = (ms2 < 0) ? mod(nelec,2) : ms2 - fdump = FDump(norbs, nelec; ms2=ms2, uhf=!is_restricted_MO(cMO)) + fdump = FDump(norbs, nelec; ms2=ms2, uhf=!is_restricted(cMO)) if fdump.uhf - generate_integrals(EC, fdump, cMO[1][:,1:end-nfrozvirt], cMO[2][:,1:end-nfrozvirt], space_save) + generate_integrals(EC, fdump, cMO[:,1:end-nfrozvirt], space_save) else generate_integrals(EC, fdump, cMO[1][:,1:end-nfrozvirt], space_save) end diff --git a/src/dfhf.jl b/src/dfhf.jl index ecdc40f..1b08ba8 100644 --- a/src/dfhf.jl +++ b/src/dfhf.jl @@ -4,6 +4,7 @@ using ..ElemCo.Utils using ..ElemCo.ECInfos using ..ElemCo.Integrals using ..ElemCo.MSystem +using ..ElemCo.QMTensors using ..ElemCo.Wavefunctions using ..ElemCo.OrbTools using ..ElemCo.DFTools @@ -40,7 +41,7 @@ function dfhf(EC::ECInfo) t1 = print_time(EC, t1, "generate AO-DF integrals", 2) cMO = guess_orb(EC, guess) t1 = print_time(EC, t1, "guess orbitals", 2) - @assert is_restricted_MO(cMO) "DF-HF only implemented for closed-shell" + @assert is_restricted(cMO) "DF-HF only implemented for closed-shell" cMO = cMO.α ϵ = zeros(norb) hsmall = load(EC, "h_AA", Val(2)) diff --git a/src/dftools.jl b/src/dftools.jl index 419252e..3bbd7f0 100644 --- a/src/dftools.jl +++ b/src/dftools.jl @@ -6,6 +6,7 @@ using LinearAlgebra, TensorOperations # using TSVD using IterativeSolvers using ..ElemCo.ECInfos +using ..ElemCo.QMTensors using ..ElemCo.Wavefunctions using ..ElemCo.Integrals using ..ElemCo.MSystem @@ -54,6 +55,8 @@ end Generate AO integrals using DF + Cholesky. If save3idx is true, save Cholesky-decomposed 3-index integrals, otherwise save pseudo-square-root-inverse Cholesky decomposition. + + Return nuclear repulsion energy. """ function generate_AO_DF_integrals(EC::ECInfo, fitbasis="mpfit"; save3idx=true) bao = generate_basis(EC, "ao") @@ -66,7 +69,7 @@ function generate_AO_DF_integrals(EC::ECInfo, fitbasis="mpfit"; save3idx=true) AAP = eri_2e3idx(bao,bfit) nA = size(AAP,1) nL = size(M,2) - AALfile, AAL = newmmap(EC, "AAL", Float64, (nA,nA,nL)) + AALfile, AAL = newmmap(EC, "AAL", (nA,nA,nL)) LBlks = get_auxblks(nL) for L in LBlks V_M = @view M[:,L] @@ -87,8 +90,8 @@ end ``v_{pr}^{qs} = v_p^{qL} δ_{LL'} v_r^{sL'}`` and store in file `mmL`. """ -function generate_3idx_integrals(EC::ECInfo, cMO::MOs, fitbasis="mpfit") - @assert is_restricted_MO(cMO) "unrestricted not implemented yet" +function generate_3idx_integrals(EC::ECInfo, cMO::SpinMatrix, fitbasis="mpfit") + @assert is_restricted(cMO) "unrestricted not implemented yet" cMO1 = cMO[1] bao = generate_basis(EC, "ao") bfit = generate_basis(EC, fitbasis) @@ -98,7 +101,7 @@ function generate_3idx_integrals(EC::ECInfo, cMO::MOs, fitbasis="mpfit") μνP = eri_2e3idx(bao,bfit) nm = size(cMO1,2) nL = size(M,2) - mmLfile, mmL = newmmap(EC, "mmL", Float64, (nm,nm,nL)) + mmLfile, mmL = newmmap(EC, "mmL", (nm,nm,nL)) LBlks = get_auxblks(nL) for L in LBlks V_M = @view M[:,L] @@ -120,8 +123,8 @@ end Return reference energy (calculated using `jkfit` fitting basis). """ -function generate_DF_integrals(EC::ECInfo, cMO::MOs) - @assert is_restricted_MO(cMO) "unrestricted not implemented yet" +function generate_DF_integrals(EC::ECInfo, cMO::SpinMatrix) + @assert is_restricted(cMO) "unrestricted not implemented yet" if !system_exists(EC.system) error("Molecular system not specified!") end diff --git a/src/dump.jl b/src/dump.jl index 01c94bd..9209d61 100644 --- a/src/dump.jl +++ b/src/dump.jl @@ -16,6 +16,7 @@ using ..ElemCo.MNPY export FDump, fd_exists, read_fcidump, write_fcidump, transform_fcidump export headvar, integ1, integ2, uppertriangular, uppertriangular_range export reorder_orbs_int2, modify_header! +export int1_npy_filename, int2_npy_filename # optional variables which won't be written if =0 const FDUMP_OPTIONAL=["IUHF", "ST", "III"] @@ -528,9 +529,9 @@ end """ function write_fcidump(fd::FDump, fcidump::String, tol=1e-12) println("Write fcidump $fcidump"...) - fdf = open(fcidump,"w") - write_header(fd,fdf) - write_integrals(fd,fdf,tol) + fdf = open(fcidump, "w") + write_header(fd, fdf) + write_integrals(fd, fdf, tol) close(fdf) end @@ -578,7 +579,7 @@ end Write integrals to fdf file. """ function write_integrals(fd::FDump, fdf, tol) - simtra = (headvar(fd, "ST") > 0) + simtra::Bool = (headvar(fd, "ST") > 0) if !fd.uhf write_integrals2(fd.int2, fdf, tol, fd.triang, simtra) write_integrals1(fd.int1, fdf, tol, simtra) @@ -603,60 +604,63 @@ end Write 2-e integrals to fdf file. """ function write_integrals2(int2, fdf, tol, triang, simtra) - norb = size(int2,1) + write_integrals2_ = simtra ? write_integrals2_simtra : write_integrals2_normal if triang inds = (p,q,r,s) -> CartesianIndex(p,q,uppertriangular(r,s)) indslow = (p,q,r,s) -> CartesianIndex(q,p,uppertriangular(s,r)) + write_integrals2_(int2, inds, indslow, fdf, tol) else inds = (p,q,r,s) -> CartesianIndex(p,q,r,s) - indslow = (p,q,r,s) -> CartesianIndex(p,q,r,s) + write_integrals2_(int2, inds, inds, fdf, tol) end - if simtra - for p = 1:norb - for q = 1:norb - for r = 1:p-1 - # lower triangle (q>s) - for s = 1:q-1 - val = int2[indslow(p,r,q,s)] - if abs(val) > tol - print_int_value(fdf,val,p,q,r,s) - end - end - # upper triangle (q<=s) - for s = q:norb - val = int2[inds(p,r,q,s)] - if abs(val) > tol - print_int_value(fdf,val,p,q,r,s) - end +end +function write_integrals2_simtra(int2, inds, indslow, fdf, tol) + norb = size(int2,1) + for p = 1:norb + for q = 1:norb + for r = 1:p-1 + # lower triangle (q>s) + for s = 1:q-1 + val = int2[indslow(p,r,q,s)] + if abs(val) > tol + print_int_value(fdf, val, p, q, r, s) end end - # r==p case - r = p - for s = 1:q - val = int2[indslow(p,r,q,s)] + # upper triangle (q<=s) + for s = q:norb + val = int2[inds(p,r,q,s)] if abs(val) > tol - print_int_value(fdf,val,p,q,r,s) + print_int_value(fdf, val, p, q, r, s) end end end + # r==p case + r = p + for s = 1:q + val = int2[indslow(p,r,q,s)] + if abs(val) > tol + print_int_value(fdf, val, p, q, r, s) + end + end end - else - # normal case - for p in 1:norb - for q in 1:p - for r in 1:p - for s in 1:r - if r*(r-1)/2+s <= p*(p-1)/2+q - if s < q - # lower triangle - val = int2[indslow(p,r,q,s)] - else - # upper triangle - val = int2[inds(p,r,q,s)] - end - if abs(val) > tol - print_int_value(fdf,val,p,q,r,s) - end + end +end +function write_integrals2_normal(int2, inds, indslow, fdf, tol) + norb = size(int2,1) + for p in 1:norb + for q in 1:p + for r in 1:p + for s in 1:r + if r*(r-1)/2+s <= p*(p-1)/2+q + if s < q + # lower triangle + val = int2[indslow(p,r,q,s)] + else + # upper triangle + val = int2[inds(p,r,q,s)] + end + if abs(val) > tol + print_int_value(fdf,val,p,q,r,s) end end end @@ -664,6 +668,7 @@ function write_integrals2(int2, fdf, tol, triang, simtra) end end end + function write_integrals2ab(int2, fdf, tol, simtra) norb = size(int2,1) if simtra @@ -876,4 +881,72 @@ function reorder_orbs_int2(int2::AbstractArray, orbs) return int2t end +""" + int1_npy_filename(fd::FDump, spincase::Symbol=:α) + + Return filename for 1-e integrals in npy format. + `spincase` can be `:α` or `:β` for UHF fcidump. +""" +function int1_npy_filename(fd::FDump, spincase::Symbol=:α) + if !fd.uhf + file = headvar(fd, "NPY1") + if isnothing(file) + file = "int1.npy" + # fd.head["NPY1"] = [file] + end + else + if spincase == :α + file = headvar(fd, "NPY1A") + if isnothing(file) + file = "int1a.npy" + # fd.head["NPY1A"] = [file] + end + else + file = headvar(fd, "NPY1B") + if isnothing(file) + file = "int1b.npy" + # fd.head["NPY1B"] = [file] + end + end + end + return file::String +end + +""" + int2_npy_filename(fd::FDump, spincase::Symbol=:α) + + Return filename for 2-e integrals in npy format. + `spincase` can be `:α`, `:β` or `:αβ` for UHF fcidump. +""" +function int2_npy_filename(fd::FDump, spincase::Symbol=:α) + if !fd.uhf + file = headvar(fd, "NPY2") + if isnothing(file) + file = "int2.npy" + # fd.head["NPY2"] = [file] + end + else + if spincase == :α + file = headvar(fd, "NPY2AA") + if isnothing(file) + file = "int2aa.npy" + # fd.head["NPY2AA"] = [file] + end + elseif spincase == :β + file = headvar(fd, "NPY2BB") + if isnothing(file) + file = "int2bb.npy" + # fd.head["NPY2BB"] = [file] + end + else + file = headvar(fd, "NPY2AB") + if isnothing(file) + file = "int2ab.npy" + # fd.head["NPY2AB"] = [file] + end + end + end + return file::String +end + end #module diff --git a/src/fockfactory.jl b/src/fockfactory.jl index 9b8a4ff..0dd07c0 100644 --- a/src/fockfactory.jl +++ b/src/fockfactory.jl @@ -9,6 +9,7 @@ using LinearAlgebra #BLAS.set_num_threads(1) using TensorOperations using ..ElemCo.ECInfos +using ..ElemCo.QMTensors using ..ElemCo.TensorTools using ..ElemCo.Wavefunctions using ..ElemCo.FciDump @@ -178,18 +179,19 @@ end with `cMOl[1]` and `cMOr[1]` - α-MO transformation coefficients and `cMOl[2]` and `cMOr[2]` - β-MO transformation coefficients. """ -function gen_ufock(EC::ECInfo, cMOl::MOs, cMOr::MOs) - return Matrix{Float64}[gen_fock(EC, :α, cMOl[1], cMOr[1], cMOl[2], cMOr[2]), - gen_fock(EC, :β, cMOl[2], cMOr[2], cMOl[1], cMOr[1])] +function gen_ufock(EC::ECInfo, cMOl::SpinMatrix, cMOr::SpinMatrix) + return SpinMatrix(gen_fock(EC, :α, cMOl.α, cMOr.α, cMOl.β, cMOr.β), + gen_fock(EC, :β, cMOl.β, cMOr.β, cMOl.α, cMOr.α)) end """ - gen_ufock(EC::ECInfo, den::AbstractArray) + gen_ufock(EC::ECInfo, den::SpinMatrix) Calculate UHF fock matrix from FCIDump integrals and density matrix `den`. """ -function gen_ufock(EC::ECInfo, den::AbstractArray) - return Matrix{Float64}[gen_fock(EC, :α, den[1], den[2]), gen_fock(EC, :β, den[2], den[1])] +function gen_ufock(EC::ECInfo, den::SpinMatrix) + return SpinMatrix(gen_fock(EC, :α, den.α, den.β), + gen_fock(EC, :β, den.β, den.α)) end """ @@ -198,7 +200,7 @@ end Compute closed-shell DF-HF Fock matrix (integral direct) in AO basis. """ function gen_dffock(EC::ECInfo, cMO::Matrix{Float64}, bao, bfit) - μνP = eri_2e3idx(bao,bfit) + AAP = eri_2e3idx(bao,bfit) PL = load2idx(EC, "C_PL") hsmall = load2idx(EC, "h_AA") # println(size(Ppq)) @@ -206,12 +208,12 @@ function gen_dffock(EC::ECInfo, cMO::Matrix{Float64}, bao, bfit) occ2 = EC.space['o'] CMO2 = cMO[:,occ2] @tensoropt begin - μjP[p,j,P] := μνP[p,q,P] * CMO2[q,j] - cμjL[p,j,L] := μjP[p,j,P] * PL[P,L] - cL[L] := cμjL[p,j,L] * CMO2[p,j] - fock[p,q] := hsmall[p,q] - cμjL[p,j,L]*cμjL[q,j,L] + AoP[p,j,P] := AAP[p,q,P] * CMO2[q,j] + c_AoL[p,j,L] := AoP[p,j,P] * PL[P,L] + cL[L] := c_AoL[p,j,L] * CMO2[p,j] + fock[p,q] := hsmall[p,q] - c_AoL[p,j,L]*c_AoL[q,j,L] cP[P] := cL[L] * PL[P,L] - fock[p,q] += 2.0*cP[P]*μνP[p,q,P] + fock[p,q] += 2.0*cP[P]*AAP[p,q,P] end return fock end @@ -219,29 +221,30 @@ end """ gen_dffock(EC::ECInfo, cMO::MOs, bao, bfit) - Compute unrestricted DF-HF Fock matrices [Fα, Fβ] in AO basis (integral direct). + Compute unrestricted DF-HF Fock matrices `SpinMatrix(Fα, Fβ)` in AO basis (integral direct). """ -function gen_dffock(EC::ECInfo, cMO::MOs, bao, bfit) - μνP = eri_2e3idx(bao,bfit) - PL = load2idx(EC,"C_PL") - hsmall = load2idx(EC,"h_AA") +function gen_dffock(EC::ECInfo, cMO::SpinMatrix, bao, bfit) + AAP = eri_2e3idx(bao, bfit) + PL = load2idx(EC, "C_PL") + hsmall = load2idx(EC, "h_AA") # println(size(Ppq)) occa = EC.space['o'] occb = EC.space['O'] - CMOo = Matrix{Float64}[cMO[1][:,occa], cMO[2][:,occb]] - fock = Matrix{Float64}[zeros(size(hsmall)), zeros(size(hsmall))] + CMOo = SpinMatrix(cMO[1][:,occa], cMO[2][:,occb]) + fock = SpinMatrix(hsmall) + unrestrict!(fock) cL = zeros(size(PL,2)) for isp = 1:2 # loop over [α, β] @tensoropt begin - μjP[p,j,P] := μνP[p,q,P] * CMOo[isp][q,j] - cμjL[p,j,L] := μjP[p,j,P] * PL[P,L] - cL[L] += cμjL[p,j,L] * CMOo[isp][p,j] - fock[isp][p,q] := hsmall[p,q] - cμjL[p,j,L]*cμjL[q,j,L] + AoP[p,j,P] := AAP[p,q,P] * CMOo[isp][q,j] + c_AoL[p,j,L] := AoP[p,j,P] * PL[P,L] + cL[L] += c_AoL[p,j,L] * CMOo[isp][p,j] + fock[isp][p,q] -= c_AoL[p,j,L]*c_AoL[q,j,L] end end @tensoropt begin cP[P] := cL[L] * PL[P,L] - coulfock[p,q] := cP[P] * μνP[p,q,P] + coulfock[p,q] := cP[P] * AAP[p,q,P] end fock[1] += coulfock fock[2] += coulfock @@ -275,18 +278,19 @@ end Compute unrestricted DF-HF Fock matrices [Fα, Fβ] in AO basis (using precalculated Cholesky-decomposed integrals). """ -function gen_dffock(EC::ECInfo, cMO::MOs) +function gen_dffock(EC::ECInfo, cMO::SpinMatrix) occa = EC.space['o'] occb = EC.space['O'] CMOo = [cMO[1][:,occa], cMO[2][:,occb]] hsmall = load2idx(EC,"h_AA") - fock = Matrix{Float64}[zeros(size(hsmall)), zeros(size(hsmall))] + fock = SpinMatrix(hsmall) + unrestrict!(fock) μνL = load3idx(EC,"AAL") L = zeros(size(μνL,3)) for isp = 1:2 # loop over [α, β] @tensoropt begin μjL[p,j,L] := μνL[p,q,L] * CMOo[isp][q,j] - fock[isp][p,q] := hsmall[p,q] - μjL[p,j,L]*μjL[q,j,L] + fock[isp][p,q] -= μjL[p,j,L]*μjL[q,j,L] L[L] += μjL[p,j,L] * CMOo[isp][p,j] end end diff --git a/src/interfaces/molden.jl b/src/interfaces/molden.jl index 4de1a75..082e409 100644 --- a/src/interfaces/molden.jl +++ b/src/interfaces/molden.jl @@ -9,6 +9,7 @@ using AtomsBase using Printf using ..ElemCo.Utils using ..ElemCo.ECInfos +using ..ElemCo.QMTensors using ..ElemCo.MSystem using ..ElemCo.BasisSets using ..ElemCo.Wavefunctions @@ -105,7 +106,7 @@ function write_molden_orbitals(EC::ECInfo, filename::String) maxl > 5 && println(f, "[13I]") end #TODO use correct energies and occupations - if is_restricted_MO(orbs) + if is_restricted(orbs) energies = zeros(size(orbs,2)) occupation = zeros(size(orbs,2)) printmos(f, orbs, order, energies, occupation) diff --git a/src/myio.jl b/src/myio.jl index fcc1929..97ec6c9 100644 --- a/src/myio.jl +++ b/src/myio.jl @@ -7,7 +7,7 @@ module MIO using Mmap -export miosave, mioload, miommap, mionewmmap, mioclosemmap +export miosave, mioload, miommap, mionewmmap, mioclosemmap, mioflushmmap const Types = [ Bool, @@ -138,12 +138,12 @@ function mioload(fname::String; array_of_arrays=false) end """ - mionewmmap(fname::String, Type, dims::Tuple{Vararg{Int}}) + mionewmmap(fname::String, dims::Tuple{Vararg{Int}}, Type=Float64) Create a new memory-map file for writing (overwrites existing file). Return a pointer to the file and the mmaped array. """ -function mionewmmap(fname::String, Type, dims::Tuple{Vararg{Int}}) +function mionewmmap(fname::String, dims::NTuple{N, Int}, Type=Float64) where {N} io = open(fname, "w+") # store type of numbers write(io, JuliaT2Int[Type]) @@ -154,34 +154,9 @@ function mionewmmap(fname::String, Type, dims::Tuple{Vararg{Int}}) for dim in dims write(io, dim) end - return io, mmap(io, Array{Type,length(dims)}, dims) + return io, mmap(io, Array{Type,N}, dims) end -# for N = 1:6 -# docstr = """ -# mionewmmap(fname::String, Type, dims::NTuple{$N, Int}) - -# Create a new memory-map file for writing (overwrites existing file). -# Return a pointer to the file and the mmaped array. -# """ -# @eval begin -# @doc $docstr -# function mionewmmap(fname::String, Type, dims::NTuple{$N, Int}) -# io = open(fname, "w+") -# # store type of numbers -# write(io, JuliaT2Int[Type]) -# # number of arrays in the file (1 for mmaps) -# write(io, 1) -# # store dimensions of the arrays -# write(io, length(dims)) -# for dim in dims -# write(io, dim) -# end -# return io, mmap(io, Array{Type,$N}, dims) -# end -# end -# end - """ mioclosemmap(io::IO, array::AbstractArray) @@ -192,6 +167,15 @@ function mioclosemmap(io::IO, array::AbstractArray) close(io) end +""" + mioflushmmap(io::IO, array::AbstractArray) + + Flush memory-map file to disk. +""" +function mioflushmmap(array::AbstractArray) + Mmap.sync!(array) +end + """ miommap(fname::String) diff --git a/src/orbtools.jl b/src/orbtools.jl index ad49cec..7064b56 100644 --- a/src/orbtools.jl +++ b/src/orbtools.jl @@ -11,6 +11,7 @@ using ..ElemCo.ECInfos using ..ElemCo.BasisSets using ..ElemCo.Integrals using ..ElemCo.MSystem +using ..ElemCo.QMTensors using ..ElemCo.TensorTools using ..ElemCo.Wavefunctions @@ -27,7 +28,7 @@ function guess_hcore(EC::ECInfo) hsmall = load(EC, "h_AA", Val(2)) sao = load(EC, "S_AA", Val(2)) ϵ, cMO = eigen(Hermitian(hsmall), Hermitian(sao)) - return MOs(cMO) + return SpinMatrix(cMO) end """ @@ -47,12 +48,12 @@ function guess_sad(EC::ECInfo) sao = load(EC, "S_AA", Val(2)) denao = smin2ao' * diagm(eldist./diag(smin)) * smin2ao eigs, cMO = eigen(Hermitian(-denao), Hermitian(sao)) - return MOs(cMO) + return SpinMatrix(cMO) end function guess_gwh(EC::ECInfo) error("not implemented yet") - return MOs() + return SpinMatrix() end """ @@ -72,10 +73,10 @@ function guess_orb(EC::ECInfo, guess::Symbol) return guess_gwh(EC) elseif guess == :ORB || guess == :orb orbs = load_all(EC, EC.options.wf.orb, Val(2)) - return MOs(orbs...) + return SpinMatrix(orbs...) else error("unknown guess type") - return MOs() + return SpinMatrix() end end @@ -98,7 +99,7 @@ function load_orbitals(EC::ECInfo, orbsfile::String="") else error("no orbitals found") end - return MOs(load_all(EC, orbsfile, Val(2))...) + return SpinMatrix(load_all(EC, orbsfile, Val(2))...) end """ @@ -128,14 +129,14 @@ end function rotate_orbs(EC::ECInfo, orb1, orb2, angle=90; spin::Symbol=:α) cMO = load_orbitals(EC) descr = file_description(EC, EC.options.wf.orb) - if is_restricted_MO(cMO) + if is_restricted(cMO) cMOrot = cMO[1] else cMOrot = cMO[spin] end rotate_orbs!(cMOrot, orb1, orb2, angle) descr *= " rot$(orb1)&$(orb2)by$(angle)" - if is_restricted_MO(cMO) + if is_restricted(cMO) save!(EC, EC.options.wf.orb, cMO[1], description=descr) else save!(EC, EC.options.wf.orb, cMO..., description=descr) @@ -175,7 +176,7 @@ function show_orbitals(EC::ECInfo, range=nothing) range = 1:size(cMO, 2) end println(range," orbitals from $descr") - if is_restricted_MO(cMO) + if is_restricted(cMO) show_orbitals(EC, cMO[1], basis, range) else println("Alpha orbitals:") diff --git a/src/qmtensors.jl b/src/qmtensors.jl new file mode 100644 index 0000000..a1041c3 --- /dev/null +++ b/src/qmtensors.jl @@ -0,0 +1,12 @@ +""" +QMTensors module + +This module provides definitions for useful quantum-mechanical tensors. +""" +module QMTensors +# from spinmatrix +export SpinMatrix, FSpinMatrix, CSpinMatrix, is_restricted, unrestrict!, restrict! + +include("spinmatrix.jl") + +end #module \ No newline at end of file diff --git a/src/spinmatrix.jl b/src/spinmatrix.jl new file mode 100644 index 0000000..f717fa3 --- /dev/null +++ b/src/spinmatrix.jl @@ -0,0 +1,166 @@ +""" + SpinMatrix + +A type to store a one-electron matrix (spin aware). + +The first matrix corresponds to the alpha electron, and the second matrix is beta. +If the matrix is restricted, the beta matrix refers to the alpha matrix. +""" +mutable struct SpinMatrix{T<:Number} + α::Matrix{T} + β::Matrix{T} + function SpinMatrix(mat1::AbstractMatrix{Ty}, mat2::AbstractMatrix{Ty}) where {Ty} + return new{Ty}(mat1, mat2) + end + function SpinMatrix(mat::AbstractMatrix{Ty}) where {Ty} + return new{Ty}(mat, mat) + end + function SpinMatrix{Ty}() where {Ty} + return new{Ty}(zeros(Ty,0,0), zeros(Ty,0,0)) + end + function SpinMatrix(mats::Tuple{Matrix{Ty}, Matrix{Ty}}) where {Ty} + return new{Ty}(mats[1], mats[2]) + end +end + +FSpinMatrix = SpinMatrix{Float64} +CSpinMatrix = SpinMatrix{ComplexF64} + + +function Base.length(mat::SpinMatrix) + @assert length(mat.α) == length(mat.β) + length(mat.α) +end + +function Base.size(mat::SpinMatrix) + @assert size(mat.α) == size(mat.β) + size(mat.α) +end + +function Base.size(mat::SpinMatrix, i::Int) + @assert size(mat.α, i) == size(mat.β, i) + size(mat.α, i) +end + +Base.getindex(mat::SpinMatrix, spincase::Symbol) = getfield(mat, spincase) + +Base.getindex(mat::SpinMatrix, i::Int) = getfield(mat, i) + +function Base.setindex!(smat::SpinMatrix{T}, mat::AbstractMatrix{T}, spincase::Symbol) where {T} + if mat isa Matrix{T} + return setfield!(smat, spincase, mat) + else + return setfield!(smat, spincase, copy(mat)) + end +end + +function Base.setindex!(smat::SpinMatrix{T}, mat::AbstractMatrix{T}, i::Int) where {T} + if mat isa Matrix{T} + setfield!(smat, i, mat) + else + setfield!(smat, i, copy(mat)) + end +end + +function Base.getindex(mat::SpinMatrix, I, J) + if is_restricted(mat) + return SpinMatrix(mat.α[I,J]) + else + return SpinMatrix(mat.α[I,J], mat.β[I,J]) + end +end + +function Base.setindex!(mat::SpinMatrix, val::SpinMatrix, I, J) + setindex!(mat.α, val.α, I, J) + if !is_restricted(mat) || !is_restricted(val) + setindex!(mat.β, val.β, I, J) + end +end + +function Base.setindex!(mat::SpinMatrix, val, I, J) + setindex!(mat.α, val, I, J) + if !is_restricted(mat) + setindex!(mat.β, val, I, J) + end +end + +function Base.axes(mat::SpinMatrix) + @assert axes(mat.α) == axes(mat.β) + axes(mat.α) +end + +function Base.axes(mat::SpinMatrix, i::Int) + @assert axes(mat.α, i) == axes(mat.β, i) + axes(mat.α, i) +end + +Base.iterate(mat::SpinMatrix, state=1) = state > 2 ? nothing : (mat[state], state+1) + +Base.eltype(mat::SpinMatrix) = eltype(mat.α) + +Base.copy(mat::SpinMatrix) = SpinMatrix(copy(mat.α), copy(mat.β)) + +Base.copy!(mat::SpinMatrix, mat2::SpinMatrix) = (copy!(mat.α, mat2.α); copy!(mat.β, mat2.β)) + +function Base.show(io::IO, mat::SpinMatrix) + println(io, "SpinMatrix{$(eltype(mat))}") + if is_restricted(mat) + show(io, mat.α) + else + println(io, "Alpha:") + show(io, mat.α) + println(io, "\nBeta:") + show(io, mat.β) + end +end + +function Base.show(io::IO, mime::MIME"text/plain", mat::SpinMatrix) + println(io, "SpinMatrix{$(eltype(mat))}") + if is_restricted(mat) + show(io, mime, mat.α) + else + println(io, "Alpha:") + show(io, mime, mat.α) + println(io, "\nBeta:") + show(io, mime, mat.β) + end +end + +Base.zero(mat::SpinMatrix) = is_restricted(mat) ? SpinMatrix(zero(mat.α)) : SpinMatrix(zero(mat.α), zero(mat.β)) + +Base.one(mat::SpinMatrix) = is_restricted(mat) ? SpinMatrix(one(mat.α)) : SpinMatrix(one(mat.α), one(mat.β)) + +Base.keys(mat::SpinMatrix) = (1, 2) + +Base.values(mat::SpinMatrix) = (mat.α, mat.β) + +Base.Tuple(mat::SpinMatrix) = (mat.α, mat.β) + +""" + is_restricted(mat::SpinMatrix) + +Check if the spin-matrix is restricted (i.e, β === α). +""" +is_restricted(mat::SpinMatrix) = mat.α === mat.β + +""" + unrestrict!(mat::SpinMatrix) + +Unrestrict the spin matrix. +""" +function unrestrict!(mat::SpinMatrix) + if is_restricted(mat) + mat.β = copy(mat.α) + end + return mat +end + +""" + restrict!(mat::SpinMatrix) + +Restrict the molecular orbitals (β = α). +""" +function restrict!(mat::SpinMatrix) + mat.β = mat.α + return mat +end \ No newline at end of file diff --git a/src/system/elements.jl b/src/system/elements.jl index b5e035b..6f198e4 100644 --- a/src/system/elements.jl +++ b/src/system/elements.jl @@ -233,7 +233,7 @@ function ncoreorbs(elem::AbstractString, coretype::Symbol=:large) else error("unknown coretype $coretype") end - subshells = parse_electron_configuration(ELEMENTS[elem][ic]) + subshells = parse_electron_configuration(ELEMENTS[elem][ic]::String) return sum([n_orbitals_in_subshell(sh.l) for sh in subshells]) end diff --git a/src/system/msystem.jl b/src/system/msystem.jl index 341d79a..6873ba6 100644 --- a/src/system/msystem.jl +++ b/src/system/msystem.jl @@ -367,7 +367,7 @@ end `coretype` as in [`Elements.ncoreorbs`](@ref Elements.ncoreorbs). """ function guess_ncore(ms::AbstractSystem, coretype::Symbol=:large) - return sum([ncoreorbs(element_SYMBOL(at),coretype) for at in ms if !is_dummy(at)]) + return sum(Int[ncoreorbs(element_SYMBOL(at),coretype) for at in ms if !is_dummy(at)]) end """ diff --git a/src/tensortools.jl b/src/tensortools.jl index fc4d071..95c7261 100644 --- a/src/tensortools.jl +++ b/src/tensortools.jl @@ -7,7 +7,7 @@ using ..ElemCo.ECInfos using ..ElemCo.FciDump using ..ElemCo.MIO -export save!, load, load_all, mmap, newmmap, closemmap +export save!, load, load_all, mmap, newmmap, closemmap, flushmmap export load1idx, load2idx, load3idx, load4idx, load5idx, load6idx export load1idx_all, load2idx_all, load3idx_all, load4idx_all, load5idx_all, load6idx_all export ints1, ints2, detri_int2 @@ -15,6 +15,7 @@ export sqrtinvchol, invchol, rotate_eigenvectors_to_real, svd_thr export get_spaceblocks export print_nonzeros + """ save!(EC::ECInfo, fname::String, a::AbstractArray...; description="tmp", overwrite=true) @@ -72,35 +73,17 @@ for N in 1:6 end """ - newmmap(EC::ECInfo, fname::String, Type, dims::Tuple{Vararg{Int}}; description="tmp") + newmmap(EC::ECInfo, fname::String, dims::Tuple{Vararg{Int}}, Type=Float64; description="tmp") Create a new memory-map file for writing (overwrites existing file). Add file to `EC.files` with `description`. Return a pointer to the file and the mmaped array. """ -function newmmap(EC::ECInfo, fname::String, Type, dims::Tuple{Vararg{Int}}; description="tmp") +function newmmap(EC::ECInfo, fname::String, dims::NTuple{N,Int}, Type=Float64; description="tmp") where {N} add_file!(EC, fname, description; overwrite=true) - return mionewmmap(joinpath(EC.scr, fname*EC.ext), Type, dims) + return mionewmmap(joinpath(EC.scr, fname*EC.ext), dims, Type) end -# for N = 1:6 -# docstr = """ -# newmmap(EC::ECInfo, fname::String, Type, dims::NTuple{$N, Int}; description="tmp") - -# Create a new memory-map file for writing (overwrites existing file). -# Add file to `EC.files` with `description`. -# Return a pointer to the file and the mmaped array. -# """ -# @eval begin -# @doc $docstr -# function newmmap(EC::ECInfo, fname::String, Type, dims::NTuple{$N, Int}; description="tmp") -# add_file!(EC, fname, description; overwrite=true) -# return mionewmmap(joinpath(EC.scr, fname*EC.ext), Type, dims) -# end -# end -# end - - """ closemmap(EC::ECInfo, file, array) @@ -110,6 +93,15 @@ function closemmap(EC::ECInfo, file, array) mioclosemmap(file, array) end +""" + flushmmap(EC::ECInfo, array) + + Flush memory-map array to disk. +""" +function flushmmap(EC::ECInfo, array) + mioflushmmap(array) +end + """ mmap(EC::ECInfo, fname::String) @@ -209,7 +201,7 @@ end """ function detri_int2(allint2, norb, sp1, sp2, sp3, sp4) @assert ndims(allint2) == 3 - out = Array{Float64}(undef,length(sp1),length(sp2),length(sp3),length(sp4)) + out = Array{Float64,4}(undef,length(sp1),length(sp2),length(sp3),length(sp4)) cio, maski = triinds(norb, sp3, sp4) out[:,:,cio] = allint2[sp1,sp2,maski] cio, maski = triinds(norb, sp4, sp3, true) diff --git a/src/utils.jl b/src/utils.jl index 9ca1e99..76df133 100644 --- a/src/utils.jl +++ b/src/utils.jl @@ -6,7 +6,7 @@ using ..ElemCo.AbstractEC export mainname, print_time, draw_line, draw_wiggly_line, print_info, draw_endline, kwarg_provided_in_macro export subspace_in_space, argmaxN -export substr, reshape_buf +export substr, reshape_buf, create_buf export amdmkl """ @@ -200,7 +200,16 @@ function substr(string::AbstractString, range::UnitRange{Int}) end """ - reshape_buf(buf::Array, dims...; start=1) + create_buf(len::Int, T=Float64) + + Create a buffer of length `len` of type `T`. +""" +function create_buf(len::Int, T=Float64) + return Vector{T}(undef, len) +end + +""" + reshape_buf(buf::Vector{T}, dims...; start=1) Reshape (part of) a buffer to given dimensions (without copying), starting at `start`. @@ -209,7 +218,7 @@ end # Example ```julia -julia> buf = Array{Float64}(undef, 100000) +julia> buf = Vector{Float64}(undef, 100000) julia> A = reshape_buf(buf, 10, 10, 20) # 10x10x20 tensor julia> B = reshape_buf(buf, 10, 10, 10, start=2001) # 10x10x10 tensor starting at 2001 julia> B .= rand(10,10,10) @@ -217,7 +226,7 @@ julia> C = rand(10,20) julia> @tensor A[i,j,k] = B[i,j,l] * C[l,k] ``` """ -function reshape_buf(buf::Array, dims...; start=1) +function reshape_buf(buf::Vector{T}, dims...; start=1) where {T} return reshape(view(buf, 1:prod(dims)), dims) end diff --git a/src/wavefunctions.jl b/src/wavefunctions.jl index b6f28a0..1ff8b32 100644 --- a/src/wavefunctions.jl +++ b/src/wavefunctions.jl @@ -1,92 +1,9 @@ module Wavefunctions +using ..ElemCo.QMTensors using ..ElemCo.BasisSets -export MOs, is_restricted_MO, unrestrict!, restrict! -""" - MOs - -A type to store the molecular orbitals of a system. - -The molecular orbitals are stored in a matrix, where each column is a molecular orbital. -The first matrix is the alpha molecular orbitals, and the second matrix is the beta molecular orbitals. -If the molecular orbitals are restricted, the beta molecular orbitals refer to the alpha molecular orbitals. -""" -mutable struct MOs - α::Matrix{Float64} - β::Matrix{Float64} - function MOs(cmo::AbstractMatrix{Float64}, cmo2::AbstractMatrix{Float64}) - return new(cmo, cmo2) - end - function MOs(cmo::AbstractMatrix{Float64}=zeros(0,0)) - return new(cmo, cmo) - end - function MOs(cmos::Tuple{Matrix{Float64}, Matrix{Float64}}) - return new(cmos[1], cmos[2]) - end -end - - -Base.length(mos::MOs) = length(mos.α) - -Base.size(mos::MOs) = size(mos.α) - -Base.size(mos::MOs, i::Int) = size(mos.α, i) - -Base.getindex(mos::MOs, spincase::Symbol) = getfield(mos, spincase) - -Base.getindex(mos::MOs, i::Int) = getfield(mos, i) - -function Base.setindex!(mos::MOs, cMO::AbstractMatrix{Float64}, spincase::Symbol) - if cMO isa Matrix{Float64} - return setfield!(mos, spincase, cMO) - else - return setfield!(mos, spincase, copy(cMO)) - end -end - -function Base.setindex!(mos::MOs, cMO::AbstractMatrix{Float64}, i::Int) - if cMO isa Matrix{Float64} - setfield!(mos, i, cMO) - else - setfield!(mos, i, copy(cMO)) - end -end - -Base.iterate(mos::MOs, state=1) = state > 2 ? nothing : (mos[state], state+1) - -Base.Tuple(mos::MOs) = (mos.α, mos.β) - -""" - is_restricted_MO(cMO::MOs) - -Check if the molecular orbitals are restricted. -""" -is_restricted_MO(cMO::MOs) = cMO.α === cMO.β - -""" - unrestrict!(cMO::MOs) - -Unrestrict the molecular orbitals. -""" -function unrestrict!(cMO::MOs) - if is_restricted_MO(cMO) - cMO.β = copy(cMO.α) - end - return cMO -end - -""" - restrict!(cMO::MOs) - -Restrict the molecular orbitals (β = α). -""" -function restrict!(cMO::MOs) - cMO.β = cMO.α - return cMO -end - -struct Orbitals - cMO::MOs +struct Orbitals{T<:Number} + cMO::SpinMatrix{T} basis::BasisSet end From 6afc7e46e4288d6e5667df0dea900c06593aa8eb Mon Sep 17 00:00:00 2001 From: Fangcheng Wu Date: Sat, 15 Jun 2024 16:19:51 +0200 Subject: [PATCH 19/44] delta format modified --- docs/equations/equations.pdf | Bin 348172 -> 348136 bytes docs/equations/equations.tex | 30 +++++++++++++++--------------- 2 files changed, 15 insertions(+), 15 deletions(-) diff --git a/docs/equations/equations.pdf b/docs/equations/equations.pdf index be84153d56081555021682bc3ac373b8eaadf824..1b75f83f9940b974f0294d3b112c45218a88334a 100644 GIT binary patch delta 18973 zcmV(%K;plQpcUw!6_6&E@iYZ0e}z!XPQx$|yyq+SXiJUpt{+XW^np~4MB;!rSj0_( zQb(i>-;b?D2#Es+%j4OZosl*4py8p?|J?U&b$2igkXGK4gZ2byjB<#Ok7|6TI(QNL zk0soODP3i4G>MQp23?$oPw6uAGevQlX8GD4^Wx3##pJYFdz*84Y09)4T^;^ z_s`>9kSNj+M}9tr+qKjIBve@lwQsRmyRSaa_k4?EM-dM^irFC{~=CI{ts~8HBVDq5> zpd{zlZ_fkZ3^*VuTi)8kUL+74&h&KmeEoG#qsh$#O@2K2>-6N?bEzj77n*Z2nO;vM zDwGftso_7Nlj+suefGoOUj1Ww_VzR@?O>$5lSe=er~%Fi#R)3ev+JDL6c zm&;Ryv+2bTKfgJ@`0=q?gq8DCCsX6_Qz&+RnOXL?mo6c0b(2scvRPyP%k1N7eM(gJuyP;W zYvJZJ4{yqccD>5q&hBoTwI5Xe0g`VglUda`t#T1+e-$%Y5W*&)`$ACZr1;+I_H26c z#|Z`r!3-0EQNbCWNGuDb)MUOqdH)-lT)~&HiGoQrd9Xv56HE(D6g(~_?@s>d{3>3w zpA3mYXca69BS|TAH7lr8Fim zOjF?oe@#=<$bu*h-nJc<6iZtl^s9Z7ng|nklpr}$UI93vbs-B(k5RfPB;f;{N9%P{ zg(@f31wjQQ)Zk-6IkG@ne}-~yliC4~=Ms170gGXCf>ic0H7P-0Vl}YbP}^Ln{n`dl z5WV?Fqyi=DUaFTPMq{M6D@q-x&JcFQUy|#z^fMq=o2rQ8jML`D`)YEM@?dPK1Z5 zz4cN7q&3&;dg;DW*}DF{YG(`oJAvLV%dL z@nP>Wt^YNPevPo61cPu|63HS#UZ-}2e+mR)D;U)}Nl-!I1cZ`o(#VZqK7)cHIJhA$ z%5hwjAP1cY2Jr#WeYnUA#c7O-u^8P{lotZC02hZ!0SII|#L4@FQiO%`&^iyDQs7v} z=DAPU2V4bX78;0rnSml#aZ4sG^e}?c6!tu{(au>h;ED%$5{aS!@PzSEsabRaf8zDP zngsB6J8FD6a%edoEw|dt)9eS#DZ>@NOX>lFriN1&AvPaFY)_OeI;Pf?pif~?4&G7n zlwBm1CSmDl3olcv0*av?&~KBTE2)CxB7{G7A3A=j;2Rvg+Z6y&J)s2>1FJ>ONP!Wt zXT`uBSvw5e6?hn;5mKSR-zC<_e0lL_t`JAKaFy~%ybeAYQ}K8PE#BTN6ef= z{^eHQkpdkS0Jt4+kwAcNAgB{!4?`NGKrfGO%N9lBeF9dH@F$ zk_2N;+MQ2?Mu0_L$JFV9%lYpBM zo}DV3y+~vmSc9JtgBFyk_~gZ@L7{+w5i(1#j@Yb~+z9BNBjIm*sSSU0FW1-Z z&AF*zI66BwO!A|9ZJFdFfADdJ#g@+!A_}fp%x7`PN+s!8skE$AQa@KpD-_59QdTQE zW^a*JD4Yl7w4x(+uoK*+=#y*5pJDmt({fq1pqje+v-IysBs0yfjOLCN+h{>>5{ga6 z#Fj^j-G|~?-HB8}YQaFRRq3@)H3TN$32`>jBuSUFCmt}6D)v=*f3Y}*7fV7y&UF~+ z=Ls=5L}e8n?29z|NKGcY$N#`wKc$cuxVDVux=q&cg3JibhRBBiv3qfna(N zf}#@wT$RDr3>yN+f0O)wAT1g8D}WAa?b1ZW5rhsu!}#)Is@_<)M=FU!0ATucY` z`mP{3$h6zn+kr`!Tp_(_$i9K@7zFE#)D=k9ZF_Uj#|~ zGu;1ZNE((=RlxykV2^^RkQU2CW=_R+!7eigAG8X5W^48Qe`QUqd<$98ZMOy>NMiPaOuTrL3Y3btnK}Pxwl3-`&(Jt3tHWIJ`7@cwYn-F-G|EERFpUM zY>|cr0i4d(HiIl3(fBWG$$AlLqS8Dt5W|PWqvUw5D zvGjK}fB>bxVX6G>GyueXwchwUYMTz<&hFZ>ev!U)f+#~NXv~C8bxa9e9$P}+p@xi+ zr`5`i6XbGKkdbl|S2~nqyyO(D@?hb6bgBFFZ57NX!==7+zX$K+5Pl79=j2KE7J&fD z34o)$f9~)hjr4QsTyzngNI0uJp^&~5M#PBvX{3@L+$e$Ksw`z;!S7Q-C>mBAy5$Vg z3PMdekP5!f4NyTa2SJ3Eks!nJFilh$F`<3acwht+M-`%rd)&#ncI4UKo6lbE~ zG+r;4)kk{?`%pC&G0o*G;7jcuuh*Nphs`0PfAp_BDD|*qCUl75+g)mZQ`-TWDKlLS zf9}ULv!$=!x%*y#EO)i5a8_*VOQviM!4$TROi2h>r8feg5KtRTc=l>@V^EIT79c}$ zIK+jf@f|ut4I+d21?lQUmRVulGb?zs%nF;L;K%OX8h3?Kc<64!w^!lHU4;{r*}9v* ze@d@bH|__Pf>~YMxlzq>wpetlxx$@UZe9Bo>huNLa>}Hi=jJ@tgEC#`;X<=WfUJIeZevEX>M*sDD z-wtM8)Hf6N@bF}-h805RrbGni~d%Vq~mAJj6_7V)1!%iT;z zYFT}ml6N?(sg^}bPV-5k3c~5&+~W|XsV&bL(nPy93YT`L?f`-AZhPr&e@3E@+J@Az z6!^McFOx6~W>Laki%Y^{$Q$G#F&+OnmVVUfsG-Cl8?p_q0Z$Nv9#;-SgX;VDr#WY? z%s8mQLu!jT#vwwZ{LZJ(W6@@=Xn!y#Upjv2=3KphBNDHjDpdXGBb zdoUTiz+4R3M+Ciwe9)+bfBZIa6iumw4`T8F!MPf;kDW_a6!kNB1Cdb+5l}(T!CocH z-%|2jmq96Si5Y~1Uq-3h-Ub%&Bq8dA5FgXzFmCS&yRzY*Oov=J)p&b#FjA+-wyiIQ z2$FyZN^B>YtAapoStcO@xEq!O9mIVS5S~COK_Nb{L|9R8Ze-~(>!xz_HunH<{ zN%MfCyM}|_(Z`GwUF%fGH(@Esqf1XR($?q>|M6YK)q!rbcmb11M7_Jd+{EAub0Z1V zi1H_R>E>7kj5bF^a0TH|%cFV?*-^cQG@R>xt0{h1QvgLYx~4v^Wn?qfGIF2Ris^tm zs!f+XsruHAmR?=wL)-mW!Apv#@A+^Gz|MYzCJ8Szh$9sL3_qNWL-vlwaa3Gy`EJ)f)6;&j{NZMg!U%cr410(nkdcM!NlL%ER0XdT~5Ga#dRSkc$5sN#(X7Z3t z?9`n!>DKD(?xfinTB2<>vgAsXo%Yx7IRJP81?sYH+CC)a1q42v`voGSn-LkkIr+!r z*OzB+&&Tlg^5SxG z_HN=nJHI%4`}*|b#1?hqj8Bc{!fYsv2aLftu;78;7^_bICOX&tZmesABORDZ% zRH{@7Ga6HsYGd5sb3am#bed^GabT7*!bc*_xN?KmI0(K=6_bCXu})3K+>2EVbC$w) z3~v3`FCt4&kqT?>j(ZDU?T7wG1f1ljr?o88s zKHbdos{X_psCtccS>b2Dc0QXHYcR2bk>v7}CgoyUxUGYc6BN{1Sew@c9N9b1QkrG; z#%>1oo+*D*4=LBUCQtJ9uXlF^!gv;Ap#g~ytT%5UP!fnP(fa6&cO~jm6a#EV0q}P4 zi>Nw^lxMV+idq#zY+wj8a~!l!mU9DkoNC=g_6!IlbdoP-j#7`vxWZk}mW#htc*&AQ zQTPE?YVe|5;LxgAE%Ld0vRYPoRW29q?jHD@uPT4ff#tQg-{69&&>_cX%gxmsr6uFF z*iAS0rIjsww7No>sq*>SJ+Nr;;-Oqs8(iKGvtyp&ZPx4rUlpIH^UciOFfaG;bXCkY zi&^gW;U2Z1?TptkDHPTz=-pxn5=9${LcEcQ7z3}`2*7P@9t~!+nI`qtLK2V(=1J(S z#pHh$cd=PV*8!6Ofy5rXhKjD*aHf(R{{SOIfqvtqUMSN zC8X*tu2o>HGawa+vC?kP&$XGR1_Z^VvJTm*n1To(h6F2ZYAgLbh67xb5c^SpN^%oJ zp< zudxcLlXa1=rYLH+?*4jdt*ok5R)MpZBFX0)f7>W%7}jx_Qr7XeOb*CA*Nysl2bNi> z$Hk{humyLhRjuITYw#nt&PdJNK-2_$F)tT@-(CBi=%k)=;Rnx`H`c_!YGZE^6;FSO z6g?kUPMuO+mFr^KYF$gAucM9(;s@}ipmT(%y}PHP@uk*5S&EP#?88_k=DS2H+o0!D zT*xxr_^rAR4f9M~MrHlyQC>b?5o&rif7& zOn>Xmj-YNd-RUsBj&H-Pfod>6OpO!-vPAC88W>Sl9)rB0M>QrPU(h26iBqHZh@<|? zh~qG4LDHn!3pD!!INS4Yuq=pjC+~XhjXHw`v0MS1P=f9^I&> zm&Fo1Y1qMJq5RDHkD(ERJ@Gyn_4 zg+h=}XWu>{mXU;50C~JCx&VJSE408^V1+4&hCIMsh~&yz)+KsyJEU0K#1yZs78l@i zA*Q7m=GzY!{w?tN1_ryEd5Ipsv?&YRmJ9cHx$vu$70$D&a~zz!cW<0zICHUj1evq_gGsT0nWp{rr1Sd^G37|qFk2g6|cIIEWzyUvKfVnNfhiMU$@WSQ zT#~j@P$Qcy+jX1}5pab@hIE3c)P|(-u(KP^rmX;gB2$Q4VQB&(X9f|8PYPgS&^5|r z@=dW`mpM+NW%Ba=eziR1H2GZKIUQ=If>Z-5CT=Q7SGA_iR4IS;lbx3<)Kr}6{c2{} zI6P}e8=MuyqfRjEoC723T7Q_&GVtPZbMF|s8o#>m>F#|6;{RLT(j>PF!z;fq@OkmU z*YeSitZqi`;)gdUu%-;l{E!trb2FEIzQ^0rE2#~|4bVh7w<>CC{5K{ZV@Mykw11d4 zsNcjZ*@^`f_2PdT2}_des5EKo&AVlKU&KT(G)>uq@S_1%y3|V&O_fu#gl7M6hfX z4wQ^*i!kt(TsC1f?^hR006j94QQ07Hl1#V+tTGiiUP-70J<5tE7SJ_D0G>smNb z;|@qXEH!N;@pIf=qJng|^F`HTyLQV0N<<-Y7)1}?W*HBuI;0v94s08+o^a@naCCPH zh7GifW6|At0{hV=gc~Y(bvo80xfsyQ3^Ii7mJg$&t47ajrO24*_p3Nb)aHF%*BY1agx$`MljrN|%j)8W7+%a{lYdp0c^@IMCX7jU&uJ{vQL-TN=zf&0=!j z?}>Hfem##(1twhW6@0lfm7t8Ktlw5Mv9=nDooB#z%a!-?Yac^SvAOUQp<)V|!mrrs ze->jB#PAfEnWeI>H2ls=(*ty|tFt}k81=HJb79KYk z-tab2{f4)R+BZ3bm@ZKd%E6zWiCGSuK48kk zj+=jE!>2b6E5fjN2-fkzf3koCQSHN!MwId9j|7OFH4Zz_vS|;rgo`}HX{DKtb(lf{ zBO1Wi925OTPrm5WghcfYeeAZT zo1ybkdE6T-!w)(cbfh{xP0sT#Bj++E=ly?9hGr@x$gs6#yR9u(_H5IDwWWWUwXF`d zwqyuUn}J4m3V8@MPtbaOkk*@hT3_wa`ub1~svFxIA`MEH6Jfnax~h2a!o9l5W7JJN z-Fx-n_PtjXR|X@p5bgoWFs%9=E*=*Hjg_(oc*ouLfp6`^IjK`c54YlG$cnQgtoVNi zHsns^QC4v?WEHEYTkvl4i0tL$9u=tZJ`U=@!$1v1X?c7Ie;}HD3aNIQ`@?+7<550E zr<96AeF{Iy+dmG;N|f?rDj{=L{@i7K-1dpomtFhva3u8^XI=ZUTR-$3{dgGC4-q%H zySBTV`g$vVIbgSK{34Gb>ApC9JAQxB-9TesV=nuR|- zIW#_bVj^=G^$*(f)lnH4tRaFmqUG95K+I-F3eVC7CEKjStDqU&R&X<8e`SBs^n{u3 z311e|rER4@y(xU*`>_7k5WYLx^n}-TrSZ})0#DlJHjKN&^A_&s5qMk7i@RchXE&;~ z?=#nB=k6~jY#(_YV+cu+@QkKH1s$6A1LXm&*zeezq21p&4EJVK*TMMS4DvMEJHSSE z?11C<(F2#8Ck1?J~V5h6`+Hd0O z%m?{QhFQE-U!`FTahMM|)VqEPdI}v(^SF1FzDgnY)4BkP zPqxc_zba%$Ay`EatmC<+l(L_Re~kZ5&a~yrXxmtUbtgP*pRuO(*BlI0ssEl$PW}h5 z>!wnZRAMOtI5m@ji79_sOIO=Q6yEz+Xepm$Ci8wIrwal$IEO-uokb6@Fjyo?0aHJK z{`=n1NVX)8Y)qiE8!XWEz2AM#cLx%Ei%7KJ`aEcT=xQ5Limj9^8eB!1V53x|EqpQ_ z4Mx#vynC?o+n{sOMvR(R;5JfJ#e1EjesAyx>h=bM&YpXx<6nQj9<~jQ2ff|nqi%2i z>&Z^rF!=TOXy?#>yWctNB6!>H^#`4!f&W^!*E!s4pAWu#=n7H>BP_>4D8QQGpu`Ea zNRB>2#e2jl)>3+@o8fGdUM5qo5EPXaDr}4`^zDaiQh|jQg~)J{v=L`29wldlirZx5 ze%0}?P_HV%W7vOc9U;cSjHwurI@0ixP$y?G<02B+a_xoEA5IF4B8`n@{*M!gj*X{5 zkl?SS5p#d=!oRT75F%FD< zc!v>z{Fw+DtU1j?5%O1KVRXbXQF%$e3pxu?QM7ROFaUo8o|OEVz#Axzvb*OY92_%v z$YFf)j#>pE7=+be$;1|=G5h(_2w}9C5?Nr}3jm=6GFw4%U!;sPSwS-k8Ia%zFT-fc zN6iM}DsFI@lLnU=rj&1V8N>vWwdP+R{2y&3jrXqxXBzB=dU+JdhhV@wKoshjKPmYt zkL>)}$ya~XNK{fwF|oRA=Q89BL=^@hDv34C4_?;w%=w`ded^l%SPTo z1R0CN6H{UW#Y9RqUxNdXA(>^59~Q%m*+8o98-^9-&vE@>>3cQ4v-^hgOlcYLo&`~9 ztf<(^d*8C_La^-Hl@KUqwhuwg;z}Im4Xxn@Z^?hy6KD5|A_6heDmz*WlV?N{ffR}1s0M0oi92f9X58o4@6TzqxOfB@9BOl^P^HQxpzZyrS8xX8IAQ00)>zdeuHk+!! z1^_koLQx2|-V02ZQJoP&8cN0u*KO*v8PQ^fuYxfz3C7W$f?QR>lz5L1PZ~Z|H1q5y zKRbUuh8vw@xfon|MY5tIJrfp~3zbPP3zWlvP{=1;&SHpk#_3XW8=CkiPWA7iMzQf|47g(GGm}%2^ zl0N!hPxGb15yy$!EZoBhtQV)Ts_q+ZWMt~nX}$&A-8oI;HatJ3px3Vl%B=^Pz=dnB zIJwRw9zKSqn^qWTAp>9Y!xorg1O%g6Sb ze2V`_i*A?C#ulAzYEiX)LXU&k2?UM33ihVvT$fDi_!Y}&Gl%K?w!OJ|+?KAtYP|^? zYEg@g+lzMbP{k>=&9vQ^$`^*dawj5f8G2JHU8DU!+L8zEXv$NHZa6u0_0E6v?b>oS zZ#*Iz+OoJwk?S@Q3E(M>gobs4SN0Je*pS_=c`ntv^8DG6_`vl&r`V{)cHYlo(drCZ zf3+NEcg&pvktXgwn;T3Ci!N_kr{^RZ!AsbZF}Egq$V6{|%Sq~VT}S=a@BUvQRcn+9 z5Rsq@LP&CiZlzeY3Z4p3_9A~)r7xt4)$t_#mIgN?kkZTlXpHZ&4XU!FOp{q2)Up3` zONoht7ZK2ft~PURkPJ#-%ei(JMxZBTpFz!-#hv^6P-`pT&S1vvIO25~6nWtjceXt# z)`V|7abe4*CQPB|zwSX(gR6B{U_xR_ZSAf>1bUk(EJ!g@Zb!@R&PqCSl1%g3ynq$i zt;&~fQT}u4|2V$#Vx{d}`G4;{`sYb#rCN19!!xT=m5;ixWFyG~A(am+5&;;4`-(crEC zO4U`46DrZwl<`y?1p>SP5)}VRazp{c6g(yy$VPvmiaYjWla(QtF#uKkB;oZ6Ia+x_ z)gCjRn=U1(<6w^iv;?%*Q9N>G(E*$v=xGO>_fOg7vr&5RQ)5@UK2qM0E$A%#Y` zkl4;xaiRdngcCDH%uYlwRm@bR$b>PrD5L@=ib=vcPLio9xRY#_f)TRGgMO0L?qGy$ z`au&&F&jccFhdFWLQy9S<0_j#NY-}VcvF8P1cDYSkf#+#Qx8*C!Adh$Q`OWnh!(p8 zafz#gxfE*vv3M`H>e&gHYHS5n>?Od0*s4XBjAop~C62ayiW8$S{vz8;2`5G;yCW1P zoB~eNmY7{qTfzi+*?5s5rr=Q~9Kkf0Jyj!Gdt%E1FUi4(1_(@*jTSCrr6;dmO{RZu z+y~MEU;D*PfBo%uGn?076jxs=xyAk6-N(u6*9XCH3SVHDTD&=64|}~_Y}~6?ZhCDl z3R|^rU5hyuKU`o52qxNI07B{U2~0^a)x!nUfjzbtumz<@Y37fqJi_3Hu*-vJypy-0 zq0sc_)$;bH*|-mG`tzG>H+|pyvvGg_>-zrRuMHl|{%j`GE9l)UHfy+au-7NkUz+vu zes$Zd+i1|<`lfwD`&N=KhaOd;Q~l@p&@+e!2S8tlAO7$LZVYyXh4!FvpLk<1HqKpyGc6jH8UB zwsFW;GHR>Ont=PRU6LC&{bBij>9C;R+|DA39bmA^AY4%CLigzUbEG*nXhKorWK+qznn&hOWwThQ6s_8)@w+kyZIlt z^TnpChPhOF#FIa?v5psVn`ySNA=FnnuCLdTvVYP@aWdMr^2?ijL7AQdjN+1P! zgk#>W$!RDDj~r#Wz|+v=5IntFdcf)zB$U(OglXkAGx&;-F#v{SOZl<-TxduQNOo1A zi(D9^vegJY9I(2Ps28Jp(W@WVP}r1mQNXHYFJRSlVZcKD(FUrjmj!<+YA+tWkHKZZ z)HQ<{2-RG&M}g2PCgq^_t?}Y~x$x{SiUNH-KxL4vwjPkJBw++htHVI^s4}1k?M8u` z$47xK7KI&xj%9GHOB@0RK`=)d!NnJ;r@@agBZ^0nF(8=X(_%&t9|E5STYZpGvY}$} zyMmwG$}08{4!RYJm_UEetOJg^RnL<;zI>)9p+evFB&(;-@T4c}S)D(Y96jtnia3PT zg0L6{uxN;UTN{IXG9jgM>^2V8!q#b|cD=LUjO)P#)UCy?Cp<$IK7?kEbwT zH#9ZK?1-v3YUbxh{^LaKhxDhwy&K=VeC<&5TvpOPE9qIRWTt%n;1{B=KT18Vdj;!a4l?sc@+P>--k`qrFfMI_hf2dLiaA5Yt( z0@S$+&a$`QTm7E9;2k4z9BtvX9+G^JLL-gW?tN;1F=1o@eC zoEE6^5iImHmXv?n1WAQ_KBJTEyLvBh^oqP*(&~kjF2k^r%=IGb#JESDNEgP67+$hj z<%G`5wnU&nyHAs>N3?E1y~cc^DZKyl3p8v#y=~U(`D}r@cefI=ou|<(?_!N$Q9yIH zqn-w1V6W&tKwHmgKyXC0W>^fsJb*UL~w1Oml$l-h7WKNuH=gZea8NUZ+Q#rOpcF{CqLCo(kLXJbmKs(s(^#<#HFO2y; zXYY9Asm-Z=0ywf$b*@WG-E(Ql7rL~hmvrd}`-fUV#^O^Q6N*asdagq}Do7mC){CRWaM z2#k_YYMWWBlrvb{rQ_ILji;P(E;sXj<(Dt5{L+hZGnz&1n_^AgKGGmH_-xz+MM^rw z&DmXMee-p;S~nah?lLn!qvp#zzOy-iRpg9%h;3c0MLV_6n~3S@P%YU5myAWQkACQ& zWn2dm?b~#CW;=3pAEUDgcP{k`?NhHli+UyPQZH{O$lFhETMhmLzGG55vsQ^OGXpg> zGM52F0V;ppliRitf4{#%(5NX2Z8@@Z*6EzMe|;AK zNdX{8f+BT3yLs?fM?vIbu^+$1?t*CYa)Ks*zxdnL#phqke1dV7b515#FD4RYN{ETf z;eSFWSIf!s>63pv{^9DYpDt&Vh$+u5XHt;qlP7=Ap4uyqzc(M`^y%@^cRzgl&DGCO zzdDZi_3EFWf6b8lERw@#N`Vyfm|qa0c9>5RCK)2K9QD=yWP0_@zrTMLyDO$L zQ?eS5g&uT)iYZTKjNwdCIhj$MNzU!4-QH4qce~!cw6i(9S{2k#_x6HkC|Bj(7mMF6 zVeEhEk3)9_=34=uw#q^6o%o)Tp z%qAqmh?bNQ5xEx-&w#TtXXH{3g9QQx!{mQd#+9;P{1$l(%Q(Ra&p{dX9u&VF>VKmcH2r8oB`7UKat4h2Mk)CqU`pIy!fA&y3Rx5as;d``@x zoWMCr;siy)qw%_w0|tr)yr85YYaMwE$s|$}tI{0|mt1qC8u;3d62!BAnIv#K0la?@ z)%{S6X%f~5c#CO9iW~kXCR#HDHh^|%m4Y=DLZ(bprA|{h(*$dmQB2?q7*H}`p!}kU z1Ycm7DVpqGPV9%D{(ez2iW$%WYb#4pi!d#R+wyLnC0HUn*c8bJYl_Y-GB7Wc`yz7= zHdnqm)J2{VaDo_AvT||+H;4=MRk44GX(GjblQHf08BAlu5|O^=pO_a|{@goF|YYxf;FtHf)Hs-fP#^EO#D)S0Wqd12c ztV*5R{_cunQzE{35Xo{FKAv(*cdB#29pGy&Xo)ig-@o`$l0}G z4mX(R{0MN&;YJ^^@$Lj8BwTQ1v_;K%%oK&oE~Mk!doTLgrpc|GbWbzEMMDILsWZ!~ z$Rok*DScyf6o+09WWM9fDbatqdQ9~|=?O}wThkJ45(e(tIVc?>x?Ym~JWL;WGT&-NYT1i@w2*$Y!i;~tU z9;oQ8#R2Q2LlxD%PTEe>AzJA#6L=A`g*ehO@iwIe?UI^Aj`)eOMWD0TLI^%el&?qx zLbM{%26a{R^mw&U*5rS9^+aP8!VgTa2S0XE>;Zz8AuvX#VGsG~Z%uBC_(JbddGSSD zr@-VAYGXe(!j7fG4n_ zN8mKi;d2h95kY-OS6~`PtjoTu(jL>D3mF$V1J)}ahR)LqokZJ0|stPtojD4io312_vV5OBkgeOGUtbW)rQ z+eZr5iJrbrVK9GA5b>4IKnN1GnGz)K9#Q4^3iE*UB~0gFEc>Q&a0)(d-^Ewt^n7M2 zLLMH?2H2MjqK&-){z)>^{$Y}1J*Uex#9&J#z4WjUG! zPRzNBGb$H8qrQkDAqa;BNFYRJyt0EF@r+RT9~XbZK|n$YOjVGKs4{$gwX*#M>#c4V zIIQ+>R?GGLP+Wa`H@DZ$#r^&9o3{;E12ZqLIiSP9qeS;*py_SXc6~{X{~VQh zv^;-}&lxcupEC`Bm_tJiLcrqZ+u=!RjrjTBH6nJrE#uJ zp@rbiOw$TMhfVf+;AEX=yzW{1tE&`rCY1F}gr*i>&%JtQPfOzB%$UDNkoK7CrpMgI zT>v4T@B1veVd3owJ#JDA>ewNU;^tLCPzuhf+Ac6LfS#I6490(s zPvE#|$0x0Jy)MA@Li&BvtoiubD(V94YU{mNRT;MjB0lFh zF~OV}W&`J(z*-1QPyq!X{KU8ufuA1~pA`s&A}%S9fZ`}FiEgKLbc8&pX27$Qi-rtE zysKICUI3GdncyJ7gmJ&JfVQNNZux(}gA(~sjFOgoCrw>Q_k>Y`0tu4VNRv{~Ftg(8 zQa41~AFM-bl29_Pgpy&UCJ_+gR)+sS$iscacPA)t-VG?U0`nvVW?YRYcEy4vWXn?) z%mTE^T_^aL!RV|}f!W8#%mDd8V3kR(GbY^R@6S^NjR6tlZV|MBSQ<?CdI z%)5xQ5uy7M68+u@F#TM$77;fZ6q_i~9T8%6JPWL$#)Nw1I!QT@cu|zM*OW?7RSe~% ztK+p$DybH#iLW)mS2UAYBQQ`$p7(909KF&5=BLt%N#*I~!u8rYU9^Ailq}SomF#p@ zELSF`9>ZCIegQaSDb5Pv9w+GxR#ZAnQIqsS28tTCGhuz$kY8|`wkh*2et3oS(#w4) z8~Ly|AM?>Hhwl>(lW5WObDtO%7DxGYKfQ{hVm&k?b@88Qk?SoRJSPumL7EGXC`~&w zB+p^eaBGH5)z7F0V6=a<+J|jF{{B*7df`@5OA{{fXPhtsYiqh{t8p(P)M;xeqLDh0 zqMJlrjxK7zDWVaR=U&HBUh7z5&LOHKSj8GzV<1HBzK6gl-7Cz%ZxGA}`JU=tJkL;R zTS>g;A8AXcl@Fh2g4;_WQ$m(4W$|h$!)7#E+-^ zbGX|Mt*<`eCCU6^4nnIHWF-4b8V?}yVOi}^SuF3}056&h@H}3og7Q3;p-ni))KA(* zO>=1*ds}AJVwth_YmAYMP&v>r+gni#OjIAET_(K?dz>4#wcOOITM^-ZTIcbt^BL%> zO3lySv0JmxGRc2D;~bfWKS@lc)h#1uPMs0amXb1ItzlJFjzJB}1BiIWGJHA1nDFVd zoAq|KU)>(|>&3woic3D--N65Ny4uceU#&J9dr=?U|M}BrPohWiBU3Go%Y2BbTh~X7 z+=jO&ih+m|HC^p**Sl?z5rAoV=g!-TKSrsGAx69bgfGlzxv|qN} ztBR*h5xu5=cYTj`LW0X&y7v2V2M`k~mU}Bp4 z??iY$ebhMCJP@Ps2ftcp4iU9(5HQRrbo!fZIlpy5?rq6Yeff9uzJ&5^3#;;73%b3b z;84}oP`rvkOt-s(nb;SxG9rac+I6P4Zlv(uhCqKC%rw>5z%fJTsrChdHBDV*Rb4`X z{78g^o>HF_d8FgZn3V&_h`=5Kc0BIZn)gY}IG!F~ED;c|k43_km2%h&WEv|;-kX>H z29QcD(h<);*+WEJb`Eb#`RD*7b%34j3sUa8gYOGLv+X3y(CwF~FgMAD#LP zz>M{JOwhW|T`lbw)@f>&XPlGlc{hosp^eET&)BOVxidFeXgoSYoz2 z4XT)hFZzEY3;ILg^7W;g`Tk%(83^W%uHc0E)|qoKZn4?ju9hYAjo)-<;=#q@?q+|z zDxxQ;4?U7Tqjvl2^#Sl*w9S$M@HnP$<^`*+d$1`tZV8ngsz6aSBPwZu6eTsvw%pxa zZ{8bqGuPg&_XmKU_Kzc-GYY7+g3><01QFA`S3K}gP<+>mVlMLpiuLQXHt!4K>b#~z znU-3Q*?N}c`?&1yXT>CoS;O^mqFH|<46Ryjf5DWwqVN}c*~)?joLUwt93EJt827Y4 zLC&@gz|5JLHd+vS7I-Ng*0?RpF5eO&zg*j3YHREorGfQNiDT*UigDkkylN9iRGe65aV&H#qDu0{W z485>PKY#|Lr=$IQrr*ncxeo&^;8;Xfpc!$hhr9y!2$rwsjik#S%$Mh8K41>6f)ePo zX`EpN#;3m-S%MLWd-daXmcawE5`34CQUH-UQDEZL3?ZW71Jql*=o{?dkK*V)z*FG)!@8|pF=?G z4vEZZYqOwEkU67#YvX@c0}u_+&B1dja`uq>_#CXe!9LPyd}Z;O2+?0+x{k7`pWDM4 zj;si5lHxUKk5jF4gAa*pc?MJJ-SZuUETUxw@1h-ipaBMWclV!3u&7w?ftgA=Hwcua z6|PeC<^Q0F{{ytrI1~zHZe(+Ga%Ev{3T19&Z(?c+Gcz?HFd(zf&Rt#tH8PVi5Ga4W zSzV7?xea~yuh3)rB8y+51OyB0CQVzQ1%gc;whi*&CPq8h$vB-4bhp30hu6;59^3bh z$3}n|Si0twDDsdzl-WxviM=HO7fnRV`@ojhj>p$3el2k#p|7u zSDtZ~)Jnx%Q?qz(so|e{O(sDF)EH;EY0&m|B}joPY&i5#D6?)I4Dx z4{!#lP=fG8DPC$A81^JAqu55U3!6fiv7SSJfhI5ZsCc*%E3(ja2;1sB2K3EUywZMf-ss+#z_`OnSff%UN z`b>cC%3*UjtOhOwVNf+*hf3ALkBw6G00!2of%QOW?Q38sFR-<=hQWXEdQVQwvllOB z^LM{~S*H2-H#e*M+5GLpKkkS5U#@O`p3Q$)-F{l$zK@73ALf6W|9Sor6T)OR|8e>8 zKD}4cT(Of|%LS)X=4>#$SI=HMr3-73vrrQdzLx?kphEk1u)UcX#@ z{<65ex?9~)@BI7p-FJU8{5?l48YaJ~}AlxN*zAO7lu%25yFOrA8GM=b#p&h6_u})zWeOaqKsInU z(19Ejt~)#pPC%K-r^=fkXf*%44C|V-91`kA<15E@es+p}Gg_~(O6#5s(jWL6v zu~bI35m!lLFa|S-F?Jy#kv-WG8Ac+^7|Aj>ku}6*m+bqJE6YvBGPVX6jV&4xw}jku z-R_I~;{W3Re4g*~{LXWJzvuhnoEPW3_}RXP-VQL^D8!2!?3WYTWG_yUhK2HnBd4Nl zvrd9U`haQYWZ_ACB*lg;?Bczf?p!+e`AwT95@K_}rvTm*VfE8g386V0D8~oo&Z{RZ zHj^n~{`HIYZ^y4+qK?j)%tEIs<4FPbb(^trpP#tDSuZs9Bih;P6!dJiLM@_KSo<>w zKSpqz(hQH};l9^S{`v}Ojy~CwxxR8X*&TZp2R}E-$2lHlGawUYth;4Ud>DAIy@j;L z-;ma~5?dpC z2eQ;N6QB3L$GY>EktrXr0isCLmQYIIS?x#Q1xu5dA2v(%GS;M9N-~DSvOa|JtsCy+z; zEV$7ZMX_!w>kV5f&wQjeb$WceL6JW3fO=ACG-#4{!Gb$r%Nonb+<;Vg6{%arXAFfo zWp%ZlQnzDRzSpTm{pGxXT*y9eQKl!)NQ@zDON2JUNQ1c7yvvr`?Ol=hIb-t+FqIvy z-dl8Q08jD)cW?Y9o(e-(Z*Ap9!gO_ST#DnsePJj>pOEmVVDY#n`t>tmO)N1CjTFl~ zzOBz~GBQ8fsfTavRV>`ovHQ!xe)^`m6LRLjqsLm})qEZJQ8lFjZ<;bvJZifuFjmVX z9`L%6<}>7g@k?>wPt(x!et&nXBB^HQrjZUy?$=4oM--2B%QcnieciS^YFg7JN=|M< z+E8)iU%B;%%haaQ7d^2w!)pofw^kj=&is|uJ4=zQITDOXb!~U4l9RJd1;a!iy9v42 z2%_C+r)jI-9iMm8?$2nk5n1;b2v#2B#!W?IQ~#iB1;G9tJbe6X`>{|1jrEon>5rMZ z54)4NqevKe#H%Y!;zd6If-VYEahqtskvNY8JQ7#)CK{v(;#F5cD{H7}pfxg8G(lqj zh0V5_pcSaK8Xki}p$za?eXJT*RRwFLfmgv|l#NskjPR=JYU(=D+W+^8GepVUGr*hZ zBdwx_!Tg*YvSFevF4@+mzar<_r&6XoR$dWd&P?61@dJH+-0Y8*oGF z+v0iBxVBr_NE1k6Jnb%ZtE%k{&&PsxB>PMvQieySmWS&gvU5J-?)++KRQ|}pVV)rV zZf`Awl&1$<#mkYaocDceCIJlWw3^$z`@^6<0<7#xKoz?#Jvc0yJ7f z_?hHuL2><+p7MccN!iz<<{GSF-?Uuhcu!ab+AvAWJDkud|MYaJF}v`|!y@cTCCWln z^$7`G8t!ayC-^eu8w%Sg{|Dq+|77xbX%oeNS*%}0eEJTYwo}}=&MLiOPa*V!LQNZSsZJ%g3pUCX<+)_tO8u6 zMhH&^KY-%&;26#%N|Z7O_?4h2Se7L!3L<&9NtlyOl|d!12!WirT%}$7m}A4_dX_{M zC=M~z;^I_IZ!{ekaVYbdjOLRNv;@wPd8zd*RL^;X(k|_u+)ti6zXT)?c0ZIdMCA4c znO;NMs-+_)kmIAES?RN5GVYtH8Q@7XIwm|JUZ!+~|0+2hH{fAoeZR>!Hr9ek3h|am z3}!*}D?zrF^7%y(s%7C%R14}<8>t>}Uct2BVIO8*ajaJEQ_eJrkuys`{P9a<61kd`WgJ}BO#}%A>inCG9S8XYV zZYuVi85B?4RYdcaU4>;8_p)@4Y*-`H282zG#SNd62rSzEwJ^l1zB#>+ zA~mE*8mr;oGjrt-;Y1MrBkj)>4n2vVbbzfiTs_`8mwVF^WizXRCq`0!ukHN@agOJh ze+j~pG>yfK#a;_DJD-tYa1MX3@2=}9CQBwuT7U;(++D&)nRn0mXo-bKETxA6|Fb$e zZ5ML1O3400u8Z`|ZtzgayK%>InA@bL**=%PBu>!y2wiB+PuI%>mw*ZzJc~Sw-vA%v zq1g7sCF&BDo_Udl!U?YG9&aQWizZ9U2?B-;ZYU*ut7YUEX4kgxAix*9z_{I$zLnQg z)0w{&OD*)pdH2Z>XY20pBb`UR|}7lD;gK%g?OowTs;_?}i^O3m-A^ch$Tt@4>!RN9T{dnX0kds)#1SAy+* zz8U?Si{ci`D4G-i+e3b;;CyrlwSx|U%<4f3^9ZYb|LEdSh%GEL-4Dz+F^^yns&Tt8 zkme_mDXo!A+e;uU=^i=!lS`oJmuOksy*s+19RGG2P0E??@>4d3fzRb)5AK(*vX6e0 zr;?G1`2b>YYuipe&O*UYxwM-8AtR`*(`o3SBVE8r$;*E^U=JP;dAs3%7tLUzdl2z% Ukf#?!6|IiKq9Af|hDWR5-)edd=l}o! delta 19002 zcmV(^K-ItKpB0Rt6_6$YIhWz#1Sx-oP)ke1Fc7}?SIjYiZOlv_+g{aOLGfh3gX|&L zY`4;FvAZky?@bsH!Gnj8FY~>IXy`%1U8VoIuS0dUH4Ttf-jjo{2Q)@GM94=qK94$h z5u5i*JP-49lC{w!;?yzd(lUHVmnT0giv7IEUAWJ|?eAc6TCKg!y&O5FsRndR?Nw~AM0{e zys?xhr8v7bbJ%jSRSX45u=!9xP?YoQx90(H1{{!7EZ_Dbfxuv<(cSa)*FB8~w*x%* z;q0H2vu`hy84!Yu5OgrP87PdjlmlhpKV^f-_29$s`yXHbYjXZ>G^RukIU0>6k;6CV zZ{J^kPX05#xSUMR-`Hnr`17w0ukT)uG=-nPynTJ;-+q67buosg z?=Rm^&fiY_YZsU2S8qnYPk#FLg5y{iZW!WRf~-ysZO5G9ApBt5JRUQGln{PUeOJJ& zh7JGROs}hHUC#W^x~LXwd&!4&wOP)lBLeq-u3wDC4C7(F@{bnfvRuHE@~fv_jfBM_f&uK5-7TbEY9KW01->p|+Q1K^7zMD)9%eB|4kg-;O z31^5>J^MSb*uR+gQNLk6J?NWwN7-pFCgC@CuX%wQ`fVb_2WyLbi2g7RL- zuOs_eOTK73bHkSk5r&!(@OQK$7r0kcE!03)fmE!_(ygfSV&5L6Ma4g z1aMlg<`{Eo5Z45@q(TB*(v7;byIAP3=Y;_Xa&RSO27v6q08zOuFR9z=Vg2*0j10;4 zE6TN>ayFgMHuEU}r59ma)^|ZFfVB0^s#^F*dbq0oDC_Awyl3$gBmzMC4HG#li{%L9 zt=E2<>GIltI8hQDNCiX;9yFbQ)#Za79=h_72AqirRtq%v6sdJ0KMy6_Du_wI#CMPgP7$VaCA{eoM{32aYW&qpK zB5qH{kf-_~Pk|h4AUQxkW``h8AT3x5d8ru9R7@aAcm#PFrEn8N;6p|!(jj%MlWn6E z*s-Zn9e-fCZf1GT0+v$oiZAnjI7<*CB*j_LhqHm+I!w#0sX(97ViVkB^zc`R<4RMobn*$W za;pON;1-7OvQDX(hMgc~*ij!FR;l3$iSF$SfSDOEgk{HSi8C_bG5lGPYfsh&x%LI_ z23Cx9EbzI}z&?ZsU@V7a=3ZuXSY|ee2Ce(hw#pL|CjE|o7hi7WJt^>U0f3PK zgNOw920}5VZZl+|kb+)hn`HIjpmAmlEOPxZ!NJIml}&kCYnl!m*cf5W$(sF%aSw2q z9hW{yqK~67(2n&8_$RgzBR;fE{d@CF%9VhECbb4G{+|BXBeWY__a z(cm#;5RGz7&X~Y|A`MWp`D*Pro3Z*D6L3E=Ear1Rte69*tX4~#Hro+_Q$kk%B9kK! z1Aay=S}>;5otF}Nq#?kKqhS|46qFK^a8M_?70_QN!r!%0Th`}qu5SFD3tM^cBy?u^ z-zR_D@xMo4(VWN~3#C*dp?S(eNz5e`ZMmd!TvD+xS57N`jKlWUPAev2JzcFZ*bmxk z#U$)tFSsk&ro^80!t(3Si$zg`YO3y2+yod6Nj|$u zj`XvP7y_byvQ9SkWgdN$NjCOrbN!Sbj3uFMDzuG>2=-tTMo;bw7Li?o&h&JZyiMi<& zv(Af&!LCWE;P;%507Kf5&|XX;Pj<-Dc0eB}?RG#x%jI?P=zo;{XrZ{Rrt>@|NMLiW&KM;ahw8nV&kFV4v z1mT4Nd!#mI>Qf5i>eRyc9xddYKCMi4njlxbg7j3Hgf_7p{ne&um94|=-lh7^0*q4e zQZN1c;GF{EuBGgPKIt?f5@d_NvGzq^*Kc*`t1zsN{P; zO5(I2%XnPt`#7s=O6iRK#Z`?S`2StrIOX_GnD*!0*VG2d0v z`x{&2>5VP<%uZ+|XnNjia_6m)#TuB{-jyC+vida4_JN(~?Y0cj`Bu~4#M5`|1o&H34XN4&Nd5w-ESFtmJX}iysd06+d*5|cCg(+pEnl4J13L0Lz}gWKsH;X zco*wwPfLt~lmK?9VElkf5!)u0Q*yTlaJS$3I`>G-)F)Zy&lGr%^&9$l6NHsQQ05ehtxMp`>HmoUK7a+!- zX-1RvXxV-NH%GP1jYIrr&~h`=iCWfQrsO@&YRhDalJk6$YD5L=?0XWUG;?)1OPW~I zLE+Qx-0>gK-Cgs4+ig$u(Yuh^mjd5Zt3?)u!7N(36LCd(3VEG8B&Fk@`qGaoA2qb> zWJ9haHR1`f)08S;XjFLrZZsC$*B3kGcSvoCfLt0d>wtH`j7A*pnzj>hy6c|vOTNq1 zWCX-Z+bqKc>!<^RD~%=M*c?y?JO`7(4I*TheI(Fp$p=e+YRB&~ThW$EL?ji`xB{RyGo#NmNG`~hyn#9;-<{c6Vv3a}kjGbBq4(Y>r^+T>q`LSDAK!>se54RsC8`PMUOUb#`}>>-QW0q(}ixUZvp2u}`tsOvxPAZb zHAYjo5aXe5Ggg#>gY&u%n=R54~Et2 zpE>KaX<`OL2LD^@hn|LUW?)EaD8peX;ZzJHNrm=9s_srb+O3QQiT6 zHLJw%I<_ZDs8mflR-O(@M2Bx>j1EN%Z!zvej1ECKTm&-iB4lVnZHu$ZnheR)4m*ZC zt%y-A9blYD%A3@Dq?E?UW`Z!qfQz)ke-v{VJsBN+Jwk@T=z$O^Foz9{RD|nvFupnZ z@QDs4@baet5N7P)-VMD0HdrO#YC1SS`j=PF_JZ|XLJ|s^>(=BkUKtpd0%aUIvp2uW z<#v9p;-HtxHre&5Pk1$kp2xWfC=#{0f24{^!X*4exJ zP+|D*i+|jlX`D^Rt7%qNpE&bWt+6ah{OtF}XXAVc23B&KoEOI|nT>P5bue)t_95C1 zsapg`_6{InX*`L?OMAi8u$ZS_9xZHje=_ zT2DiQwNMl=!2=6}wHRIFe=b(b=sI9BAdJ{SuVu2SHiGLU!#^O5`OPu6$we^>;>Cx+ z8#iV?L&@RQhp4#%+b30*Sw^>vb;=mRSQ|g+b7iZU1)x}>s(`JGDToASD6rDDveM6E zbbyPJau*dGCKJNOs4%dK4AP8If%B`TuXs2WtVzYHkBTTSG=Z=Ge?lU%7?!$3d#z-zR1?m^;OYFznHN}U7_6Zd zgeuwbf5q4<)J3t(f5&T$TeIhfs1t+O0X!+j8dUGxI;-u0^G%K$&3F%kl$g_!M6E;B zFL8LKrgm80BJhF;4m?`ZVJ&a6=``Znz(6u(HwD=yNf8M^?f5_NS$!UrQ=)7gMU)FC z&($&-zjIBvX!vM|*xcOTRZFP&62cj+o+aAkb4#qXtuVmNe;s8ms8A}zVceZ&i>o}w zU9kCUH+BGbqj^q4=v83bP8XN~!vo2Xh6t9bt?2@%nh46;2}6f#TtT8>1`rDqYj(iV z{B7XaFIhmE(mM%F{{qQ&92+dlMKj@g9?Ut11+hv2lF*VJWO2aoL2UNz7B95ZqUkK^ z+rihE8ty0;f8=1||L zYY);Mx;5=osH10H8i8rFNu!9m3!;Tw?;1SKB)hqd>NaG!X=F{^^$Ru6e~3;4WC2_l zga=jb9Wr4R$%G}aC%B?B@UhZJi~<&zdl*On{Dn*|f1G8VqwjV@@}X0sr!B7fS%Eiko26WNtZlTq84OLEdlNLpne)XxV9wp!I#t89SIabNdAr{!!Q+rhbb8iy`vcScD7Zqa+I)hL)WxImn6nwnk~IK8kr@Q7ur!5uGlhsGqysQ9=o;fH z`7vKEiwq|*DtUQ(yOsm8E+D#F5Kr^Ny_6{mW?m^d-^ zf6v-o_kvY{Qt<-JjvX`@G2~f<*W~( zgpYn?aW(K4zrHzwHC4O15BbnDKXVc0yT2}ilDa_L0#B58tFq$8|6=eMLhc}x`@@4l z{V`s`*1T0p&o7a&G`WnT$vAJ`tj~w)f0gFlVlr3w1W@M3{U@?I$kDjHuqr9J{Tg+L z65Ddfeh0oUTz~EXQu0EH!7N1#xSwjVBl(NK?^6Uf87C% zhoyEMNqmmGOH`1Cbe>c_HjB2r#fd110!Fd@w^_tPss^iiz=8b&-T{YcfTOunFl?Y* z0;}!b6S$AgA>7c(tK*@e$ytwPrjQ{tx4a)8eHnUMDMiX}6Uhib3&&I#>0C*iafB*fkr(G^PY-w%0#?j6|9%2AGOM{tbX$<$>W>^FF z%V}&XFyVS9@YU8-f^kNg1wIFR8|$Yb?1BJ(o-cxzUxpZRj9rC~l*ut<3cq8A|5;2( z5I`6TI-k0|b(Dr}Q5w0g(llz{#pjm3fWu0|o9v=bRV1>#>NLr|niNZke`-{+n2z?6 zApGzp2HB)%vk8m7t1)b^7XC$_ug+pPu|$Hak2b5fVSVqNRs7sYivj0*>`X>F7GY=B zS=lDOyEcSUi#9~d-AOg?c!0J^XWSRlh8Q?$^#F95z06aE&Q+f^??ERg3Nl;n1hge? zXr05@ud2f1F;&Bhog*3BP2p+-CTxo-Oo_HFnEY8PvR8_Aw~N*dNQ=E7z2jI_fBSe(-?1w7XbUPV zo^5+N*tg`~Z$Qgk2DFNVX&*uBEHS!K#fTKH`h$_&pYJHRbBH#o-pJzWSktNpxCW0} z=_=ZJf!fA*#xakymt{Qg5LO(nZSv1^NO2xPK%~-+LD~)a?eU9!Nc=L?DL^S;sVY&0 zK1*C=27Kw0+2s$sf6o=DgY4X@&vlo5Hd*X-mXf(Kbfd4{FS8w}uIRn*h4o!e=|Y?R zBWishHM?|7Z#@^gpOaj%?fpJVVKxcb#7dO&LoC$jG&FFk2oTJG;g?e_fYIQw?dqST|jHXu6)~blL}B)CTHG9nR+N8kmXMkTVH@4fHI?TzM7 z(*5A+mhOj+bU#q2(ds<5iepCze~BJx6z&|(A@OLde`B)Y5NPXgQ25tFs7J+<5n6Q| zx<7j0T6SrSXARg(svY#3xI&9wIn(|I*G9pUar=bD?FLnw2Hi;BtZ;ARY;DkA##D(I zqc(q|M|b}`4^NP={eGUu529cZp}~jcD{KqS2eq>rv-LU)u