-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimitate.py
44 lines (32 loc) · 1.6 KB
/
imitate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from stable_baselines3 import PPO
from stable_baselines3.common.callbacks import BaseCallback
from stable_baselines3.common.env_util import make_vec_env
from env import HumanoidEnv
from agent import ActorCriticPolicy
class TensorboardCallback(BaseCallback):
def __init__(self, verbose=0):
super().__init__(verbose)
def _on_step(self) -> bool:
self.logger.record('reward/pose', self.locals['infos'][0]['reward_pose'])
self.logger.record('reward/velocity', self.locals['infos'][0]['reward_vel'])
self.logger.record('reward/end', self.locals['infos'][0]['reward_end'])
self.logger.record('reward/center', self.locals['infos'][0]['reward_center'])
return True
if __name__ == '__main__':
env = HumanoidEnv(data_path='data/ACCAD', frame_skip=1, render_mode="human")
from gymnasium.utils.env_checker import check_env
check_env(env.unwrapped)
from stable_baselines3.common.env_checker import check_env
check_env(env)
model = PPO(policy=ActorCriticPolicy, env=env, n_steps=2**14, batch_size=256, n_epochs=8,
gamma=0.95, tensorboard_log='./log/ppo_imitate_tensorboard', verbose=1)
model.learn(total_timesteps=100_000, callback=TensorboardCallback(), progress_bar=True)
model.save('agent_imitate')
model = PPO.load('agent_imitate')
vec_env = model.get_env() if model.get_env() else make_vec_env(lambda: env)
obs = vec_env.reset()
for i in range(1000):
action, _states = model.predict(obs, deterministic=True)
obs, reward, done, info = vec_env.step(action)
vec_env.render('human')
env.close()