diff --git a/NEWS.md b/NEWS.md index b7c4a42..4a98cc5 100644 --- a/NEWS.md +++ b/NEWS.md @@ -1,3 +1,9 @@ +# meteorits 0.1.1.9000 + +## Minor Improvements + +* Added CRAN downloads badge in `README.Rmd`. + # meteorits 0.1.1 ## Minor Improvements diff --git a/README.Rmd b/README.Rmd index e20386c..0df28e0 100755 --- a/README.Rmd +++ b/README.Rmd @@ -21,6 +21,7 @@ knitr::opts_chunk$set( [![Travis build status](https://travis-ci.org/fchamroukhi/MEteorits.svg?branch=master)](https://travis-ci.org/fchamroukhi/MEteorits) [![CRAN versions](https://www.r-pkg.org/badges/version/meteorits)](https://CRAN.R-project.org/package=meteorits) +[![CRAN logs](https://cranlogs.r-pkg.org/badges/meteorits)](https://CRAN.R-project.org/package=meteorits) MEteorits is an open source toolbox (available in R and Matlab) containing diff --git a/README.md b/README.md index a289020..117aae8 100644 --- a/README.md +++ b/README.md @@ -9,6 +9,8 @@ status](https://travis-ci.org/fchamroukhi/MEteorits.svg?branch=master)](https://travis-ci.org/fchamroukhi/MEteorits) [![CRAN versions](https://www.r-pkg.org/badges/version/meteorits)](https://CRAN.R-project.org/package=meteorits) +[![CRAN +logs](https://cranlogs.r-pkg.org/badges/meteorits)](https://CRAN.R-project.org/package=meteorits) MEteorits is an open source toolbox (available in R and Matlab) @@ -85,38 +87,37 @@ p <- 1 # Order of the polynomial regression (regressors/experts) q <- 1 # Order of the logistic regression (gating network) nmoe <- emNMoE(X = x, Y = y, K = K, p = p, q = q, verbose = TRUE) -#> EM NMoE: Iteration: 1 | log-likelihood: -850.659719240158 -#> EM NMoE: Iteration: 2 | log-likelihood: -850.524629010475 -#> EM NMoE: Iteration: 3 | log-likelihood: -850.430788051698 -#> EM NMoE: Iteration: 4 | log-likelihood: -850.283793706938 -#> EM NMoE: Iteration: 5 | log-likelihood: -849.97811162098 -#> EM NMoE: Iteration: 6 | log-likelihood: -849.309846170774 -#> EM NMoE: Iteration: 7 | log-likelihood: -847.853073877546 -#> EM NMoE: Iteration: 8 | log-likelihood: -844.760254765814 -#> EM NMoE: Iteration: 9 | log-likelihood: -838.538908952736 -#> EM NMoE: Iteration: 10 | log-likelihood: -827.124841419721 -#> EM NMoE: Iteration: 11 | log-likelihood: -809.002195790739 -#> EM NMoE: Iteration: 12 | log-likelihood: -786.082845509062 -#> EM NMoE: Iteration: 13 | log-likelihood: -765.697860048611 -#> EM NMoE: Iteration: 14 | log-likelihood: -753.84437315637 -#> EM NMoE: Iteration: 15 | log-likelihood: -748.545284749922 -#> EM NMoE: Iteration: 16 | log-likelihood: -746.181369709665 -#> EM NMoE: Iteration: 17 | log-likelihood: -745.062227019926 -#> EM NMoE: Iteration: 18 | log-likelihood: -744.517209155278 -#> EM NMoE: Iteration: 19 | log-likelihood: -744.248035626126 -#> EM NMoE: Iteration: 20 | log-likelihood: -744.113273238347 -#> EM NMoE: Iteration: 21 | log-likelihood: -744.04458797388 -#> EM NMoE: Iteration: 22 | log-likelihood: -744.008709857418 -#> EM NMoE: Iteration: 23 | log-likelihood: -743.989337491229 -#> EM NMoE: Iteration: 24 | log-likelihood: -743.978422442498 -#> EM NMoE: Iteration: 25 | log-likelihood: -743.971951246252 -#> EM NMoE: Iteration: 26 | log-likelihood: -743.967895060795 -#> EM NMoE: Iteration: 27 | log-likelihood: -743.965208755974 -#> EM NMoE: Iteration: 28 | log-likelihood: -743.963339864259 -#> EM NMoE: Iteration: 29 | log-likelihood: -743.961986174011 -#> EM NMoE: Iteration: 30 | log-likelihood: -743.960975097926 -#> EM NMoE: Iteration: 31 | log-likelihood: -743.960202991077 -#> EM NMoE: Iteration: 32 | log-likelihood: -743.959604173327 +#> EM NMoE: Iteration: 1 | log-likelihood: -809.706810650029 +#> EM NMoE: Iteration: 2 | log-likelihood: -809.442090250403 +#> EM NMoE: Iteration: 3 | log-likelihood: -808.852756811148 +#> EM NMoE: Iteration: 4 | log-likelihood: -807.387369287918 +#> EM NMoE: Iteration: 5 | log-likelihood: -803.803404913624 +#> EM NMoE: Iteration: 6 | log-likelihood: -795.586002509039 +#> EM NMoE: Iteration: 7 | log-likelihood: -779.101038601797 +#> EM NMoE: Iteration: 8 | log-likelihood: -752.947339798869 +#> EM NMoE: Iteration: 9 | log-likelihood: -723.277180356222 +#> EM NMoE: Iteration: 10 | log-likelihood: -700.214068128507 +#> EM NMoE: Iteration: 11 | log-likelihood: -687.850948104595 +#> EM NMoE: Iteration: 12 | log-likelihood: -682.555023512367 +#> EM NMoE: Iteration: 13 | log-likelihood: -680.204899081706 +#> EM NMoE: Iteration: 14 | log-likelihood: -679.033769002642 +#> EM NMoE: Iteration: 15 | log-likelihood: -678.405210015841 +#> EM NMoE: Iteration: 16 | log-likelihood: -678.054258475696 +#> EM NMoE: Iteration: 17 | log-likelihood: -677.853595138956 +#> EM NMoE: Iteration: 18 | log-likelihood: -677.73682703741 +#> EM NMoE: Iteration: 19 | log-likelihood: -677.66777562903 +#> EM NMoE: Iteration: 20 | log-likelihood: -677.626247937934 +#> EM NMoE: Iteration: 21 | log-likelihood: -677.600810250821 +#> EM NMoE: Iteration: 22 | log-likelihood: -677.584918737434 +#> EM NMoE: Iteration: 23 | log-likelihood: -677.574786964063 +#> EM NMoE: Iteration: 24 | log-likelihood: -677.568196149185 +#> EM NMoE: Iteration: 25 | log-likelihood: -677.563826399688 +#> EM NMoE: Iteration: 26 | log-likelihood: -677.560878727727 +#> EM NMoE: Iteration: 27 | log-likelihood: -677.558860023671 +#> EM NMoE: Iteration: 28 | log-likelihood: -677.557459664186 +#> EM NMoE: Iteration: 29 | log-likelihood: -677.556477895271 +#> EM NMoE: Iteration: 30 | log-likelihood: -677.555783673916 +#> EM NMoE: Iteration: 31 | log-likelihood: -677.555289432746 nmoe$summary() #> ------------------------------------------ @@ -125,24 +126,24 @@ nmoe$summary() #> #> NMoE model with K = 2 experts: #> -#> log-likelihood df AIC BIC ICL -#> -743.9596 8 -751.9596 -768.818 -827.3815 +#> log-likelihood df AIC BIC ICL +#> -677.5553 8 -685.5553 -702.4137 -760.6137 #> #> Clustering table (Number of observations in each expert): #> #> 1 2 -#> 292 208 +#> 268 232 #> #> Regression coefficients: #> #> Beta(k = 1) Beta(k = 2) -#> 1 0.01265767 -0.1734812 -#> X^1 2.26644322 -2.4105137 +#> 1 -0.1620135 0.08250916 +#> X^1 2.2161222 -2.65134465 #> #> Variances: #> #> Sigma2(k = 1) Sigma2(k = 2) -#> 1.103732 0.8591557 +#> 0.6812473 0.9282329 nmoe$plot() ``` @@ -161,61 +162,60 @@ p <- 1 # Order of the polynomial regression (regressors/experts) q <- 1 # Order of the logistic regression (gating network) nmoe <- emNMoE(X = x, Y = y, K = K, p = p, q = q, verbose = TRUE) -#> EM NMoE: Iteration: 1 | log-likelihood: 48.3988726040827 -#> EM NMoE: Iteration: 2 | log-likelihood: 48.9326207295142 -#> EM NMoE: Iteration: 3 | log-likelihood: 50.051039377426 -#> EM NMoE: Iteration: 4 | log-likelihood: 52.9250961462781 -#> EM NMoE: Iteration: 5 | log-likelihood: 59.1669854674966 -#> EM NMoE: Iteration: 6 | log-likelihood: 67.5520185593279 -#> EM NMoE: Iteration: 7 | log-likelihood: 73.0997722565129 -#> EM NMoE: Iteration: 8 | log-likelihood: 75.5728843281524 -#> EM NMoE: Iteration: 9 | log-likelihood: 77.1804335125676 -#> EM NMoE: Iteration: 10 | log-likelihood: 78.8228583260898 -#> EM NMoE: Iteration: 11 | log-likelihood: 80.7994256495649 -#> EM NMoE: Iteration: 12 | log-likelihood: 83.4327216902578 -#> EM NMoE: Iteration: 13 | log-likelihood: 87.167207159755 -#> EM NMoE: Iteration: 14 | log-likelihood: 91.7548816275664 -#> EM NMoE: Iteration: 15 | log-likelihood: 94.8386054468416 -#> EM NMoE: Iteration: 16 | log-likelihood: 95.8702965168198 -#> EM NMoE: Iteration: 17 | log-likelihood: 96.201217475001 -#> EM NMoE: Iteration: 18 | log-likelihood: 96.3427273583883 -#> EM NMoE: Iteration: 19 | log-likelihood: 96.4312445403178 -#> EM NMoE: Iteration: 20 | log-likelihood: 96.5068035716238 -#> EM NMoE: Iteration: 21 | log-likelihood: 96.5827848006443 -#> EM NMoE: Iteration: 22 | log-likelihood: 96.664497621724 -#> EM NMoE: Iteration: 23 | log-likelihood: 96.7544065779447 -#> EM NMoE: Iteration: 24 | log-likelihood: 96.8535649805854 -#> EM NMoE: Iteration: 25 | log-likelihood: 96.9618980067147 -#> EM NMoE: Iteration: 26 | log-likelihood: 97.0781807281132 -#> EM NMoE: Iteration: 27 | log-likelihood: 97.2000668915646 -#> EM NMoE: Iteration: 28 | log-likelihood: 97.3243471857001 -#> EM NMoE: Iteration: 29 | log-likelihood: 97.4475005220902 -#> EM NMoE: Iteration: 30 | log-likelihood: 97.566473896656 -#> EM NMoE: Iteration: 31 | log-likelihood: 97.6794841146006 -#> EM NMoE: Iteration: 32 | log-likelihood: 97.7865826549208 -#> EM NMoE: Iteration: 33 | log-likelihood: 97.8897593890552 -#> EM NMoE: Iteration: 34 | log-likelihood: 97.9924846700633 -#> EM NMoE: Iteration: 35 | log-likelihood: 98.0988320818964 -#> EM NMoE: Iteration: 36 | log-likelihood: 98.2124589670307 -#> EM NMoE: Iteration: 37 | log-likelihood: 98.3358032691223 -#> EM NMoE: Iteration: 38 | log-likelihood: 98.4698046243747 -#> EM NMoE: Iteration: 39 | log-likelihood: 98.6142554980094 -#> EM NMoE: Iteration: 40 | log-likelihood: 98.7685998935106 -#> EM NMoE: Iteration: 41 | log-likelihood: 98.9327260646186 -#> EM NMoE: Iteration: 42 | log-likelihood: 99.1075255399307 -#> EM NMoE: Iteration: 43 | log-likelihood: 99.2951330061669 -#> EM NMoE: Iteration: 44 | log-likelihood: 99.4990978545361 -#> EM NMoE: Iteration: 45 | log-likelihood: 99.724781385219 -#> EM NMoE: Iteration: 46 | log-likelihood: 99.9802114334364 -#> EM NMoE: Iteration: 47 | log-likelihood: 100.277506353508 -#> EM NMoE: Iteration: 48 | log-likelihood: 100.634603770888 -#> EM NMoE: Iteration: 49 | log-likelihood: 101.074685777405 -#> EM NMoE: Iteration: 50 | log-likelihood: 101.609342261681 -#> EM NMoE: Iteration: 51 | log-likelihood: 102.167518045425 -#> EM NMoE: Iteration: 52 | log-likelihood: 102.591482251134 -#> EM NMoE: Iteration: 53 | log-likelihood: 102.692086561759 -#> EM NMoE: Iteration: 54 | log-likelihood: 102.721983731666 -#> EM NMoE: Iteration: 55 | log-likelihood: 102.721991417921 +#> EM NMoE: Iteration: 1 | log-likelihood: 50.6432153456244 +#> EM NMoE: Iteration: 2 | log-likelihood: 53.934649108107 +#> EM NMoE: Iteration: 3 | log-likelihood: 60.6701497541516 +#> EM NMoE: Iteration: 4 | log-likelihood: 68.9876834981437 +#> EM NMoE: Iteration: 5 | log-likelihood: 74.1535330063919 +#> EM NMoE: Iteration: 6 | log-likelihood: 76.3689210150024 +#> EM NMoE: Iteration: 7 | log-likelihood: 77.8597911004522 +#> EM NMoE: Iteration: 8 | log-likelihood: 79.4627195649828 +#> EM NMoE: Iteration: 9 | log-likelihood: 81.4837858519191 +#> EM NMoE: Iteration: 10 | log-likelihood: 84.2932240458227 +#> EM NMoE: Iteration: 11 | log-likelihood: 88.3307671999169 +#> EM NMoE: Iteration: 12 | log-likelihood: 92.8592341186395 +#> EM NMoE: Iteration: 13 | log-likelihood: 95.2679963002817 +#> EM NMoE: Iteration: 14 | log-likelihood: 95.969626511667 +#> EM NMoE: Iteration: 15 | log-likelihood: 96.1994384324512 +#> EM NMoE: Iteration: 16 | log-likelihood: 96.3064683737163 +#> EM NMoE: Iteration: 17 | log-likelihood: 96.3800876391194 +#> EM NMoE: Iteration: 18 | log-likelihood: 96.4463383343654 +#> EM NMoE: Iteration: 19 | log-likelihood: 96.514119992817 +#> EM NMoE: Iteration: 20 | log-likelihood: 96.5872942455468 +#> EM NMoE: Iteration: 21 | log-likelihood: 96.668028488323 +#> EM NMoE: Iteration: 22 | log-likelihood: 96.757665343346 +#> EM NMoE: Iteration: 23 | log-likelihood: 96.8568152587353 +#> EM NMoE: Iteration: 24 | log-likelihood: 96.9651985426369 +#> EM NMoE: Iteration: 25 | log-likelihood: 97.0814715110024 +#> EM NMoE: Iteration: 26 | log-likelihood: 97.2032041950014 +#> EM NMoE: Iteration: 27 | log-likelihood: 97.327125847162 +#> EM NMoE: Iteration: 28 | log-likelihood: 97.4496781949017 +#> EM NMoE: Iteration: 29 | log-likelihood: 97.5678015059268 +#> EM NMoE: Iteration: 30 | log-likelihood: 97.6797400473156 +#> EM NMoE: Iteration: 31 | log-likelihood: 97.785604172513 +#> EM NMoE: Iteration: 32 | log-likelihood: 97.8874644819064 +#> EM NMoE: Iteration: 33 | log-likelihood: 97.9888835891911 +#> EM NMoE: Iteration: 34 | log-likelihood: 98.0940258913524 +#> EM NMoE: Iteration: 35 | log-likelihood: 98.2066267073865 +#> EM NMoE: Iteration: 36 | log-likelihood: 98.3291698309732 +#> EM NMoE: Iteration: 37 | log-likelihood: 98.4625894354259 +#> EM NMoE: Iteration: 38 | log-likelihood: 98.6066182698173 +#> EM NMoE: Iteration: 39 | log-likelihood: 98.7606060332526 +#> EM NMoE: Iteration: 40 | log-likelihood: 98.9243461022025 +#> EM NMoE: Iteration: 41 | log-likelihood: 99.0986530262074 +#> EM NMoE: Iteration: 42 | log-likelihood: 99.2856009487651 +#> EM NMoE: Iteration: 43 | log-likelihood: 99.488675773663 +#> EM NMoE: Iteration: 44 | log-likelihood: 99.7131452064343 +#> EM NMoE: Iteration: 45 | log-likelihood: 99.9668844369062 +#> EM NMoE: Iteration: 46 | log-likelihood: 100.261773573947 +#> EM NMoE: Iteration: 47 | log-likelihood: 100.615437531682 +#> EM NMoE: Iteration: 48 | log-likelihood: 101.050949808851 +#> EM NMoE: Iteration: 49 | log-likelihood: 101.581512353992 +#> EM NMoE: Iteration: 50 | log-likelihood: 102.142889167434 +#> EM NMoE: Iteration: 51 | log-likelihood: 102.576392562953 +#> EM NMoE: Iteration: 52 | log-likelihood: 102.691222666866 +#> EM NMoE: Iteration: 53 | log-likelihood: 102.721963174691 +#> EM NMoE: Iteration: 54 | log-likelihood: 102.721971347465 nmoe$summary() #> ------------------------------------------ @@ -225,7 +225,7 @@ nmoe$summary() #> NMoE model with K = 2 experts: #> #> log-likelihood df AIC BIC ICL -#> 102.722 8 94.72199 83.07137 83.17998 +#> 102.722 8 94.72197 83.07135 83.17815 #> #> Clustering table (Number of observations in each expert): #> @@ -235,13 +235,13 @@ nmoe$summary() #> Regression coefficients: #> #> Beta(k = 1) Beta(k = 2) -#> 1 -42.36252836 -12.667270814 -#> X^1 0.02149289 0.006474796 +#> 1 -42.36218611 -12.667281991 +#> X^1 0.02149272 0.006474802 #> #> Variances: #> #> Sigma2(k = 1) Sigma2(k = 2) -#> 0.01193084 0.01352335 +#> 0.011931 0.01352343 nmoe$plot() ``` @@ -274,36 +274,35 @@ p <- 1 # Order of the polynomial regression (regressors/experts) q <- 1 # Order of the logistic regression (gating network) tmoe <- emTMoE(X = x, Y = y, K = K, p = p, q = q, verbose = TRUE) -#> EM - tMoE: Iteration: 1 | log-likelihood: -552.125213974242 -#> EM - tMoE: Iteration: 2 | log-likelihood: -547.987183857056 -#> EM - tMoE: Iteration: 3 | log-likelihood: -546.40733469181 -#> EM - tMoE: Iteration: 4 | log-likelihood: -544.898386695277 -#> EM - tMoE: Iteration: 5 | log-likelihood: -543.502686575021 -#> EM - tMoE: Iteration: 6 | log-likelihood: -542.283105674398 -#> EM - tMoE: Iteration: 7 | log-likelihood: -541.266467232123 -#> EM - tMoE: Iteration: 8 | log-likelihood: -540.450661063362 -#> EM - tMoE: Iteration: 9 | log-likelihood: -539.815711994686 -#> EM - tMoE: Iteration: 10 | log-likelihood: -539.333458769544 -#> EM - tMoE: Iteration: 11 | log-likelihood: -538.974215771526 -#> EM - tMoE: Iteration: 12 | log-likelihood: -538.710672092328 -#> EM - tMoE: Iteration: 13 | log-likelihood: -538.519646653311 -#> EM - tMoE: Iteration: 14 | log-likelihood: -538.38248504553 -#> EM - tMoE: Iteration: 15 | log-likelihood: -538.284724625379 -#> EM - tMoE: Iteration: 16 | log-likelihood: -538.215449987784 -#> EM - tMoE: Iteration: 17 | log-likelihood: -538.166584335222 -#> EM - tMoE: Iteration: 18 | log-likelihood: -538.132238929576 -#> EM - tMoE: Iteration: 19 | log-likelihood: -538.108167974741 -#> EM - tMoE: Iteration: 20 | log-likelihood: -538.09133618607 -#> EM - tMoE: Iteration: 21 | log-likelihood: -538.07958783267 -#> EM - tMoE: Iteration: 22 | log-likelihood: -538.071399628517 -#> EM - tMoE: Iteration: 23 | log-likelihood: -538.065699459315 -#> EM - tMoE: Iteration: 24 | log-likelihood: -538.061735113966 -#> EM - tMoE: Iteration: 25 | log-likelihood: -538.058980140461 -#> EM - tMoE: Iteration: 26 | log-likelihood: -538.05706681974 -#> EM - tMoE: Iteration: 27 | log-likelihood: -538.055738714103 -#> EM - tMoE: Iteration: 28 | log-likelihood: -538.054817220152 -#> EM - tMoE: Iteration: 29 | log-likelihood: -538.054178073834 -#> EM - tMoE: Iteration: 30 | log-likelihood: -538.053734891082 +#> EM - tMoE: Iteration: 1 | log-likelihood: -511.796749974532 +#> EM - tMoE: Iteration: 2 | log-likelihood: -510.3107406311 +#> EM - tMoE: Iteration: 3 | log-likelihood: -509.912809848235 +#> EM - tMoE: Iteration: 4 | log-likelihood: -509.537358561964 +#> EM - tMoE: Iteration: 5 | log-likelihood: -509.188177260593 +#> EM - tMoE: Iteration: 6 | log-likelihood: -508.875273121335 +#> EM - tMoE: Iteration: 7 | log-likelihood: -508.604291722729 +#> EM - tMoE: Iteration: 8 | log-likelihood: -508.376624857194 +#> EM - tMoE: Iteration: 9 | log-likelihood: -508.190325164907 +#> EM - tMoE: Iteration: 10 | log-likelihood: -508.041274611462 +#> EM - tMoE: Iteration: 11 | log-likelihood: -507.924274800282 +#> EM - tMoE: Iteration: 12 | log-likelihood: -507.833886045062 +#> EM - tMoE: Iteration: 13 | log-likelihood: -507.764975577989 +#> EM - tMoE: Iteration: 14 | log-likelihood: -507.713013717814 +#> EM - tMoE: Iteration: 15 | log-likelihood: -507.674186179779 +#> EM - tMoE: Iteration: 16 | log-likelihood: -507.645389796845 +#> EM - tMoE: Iteration: 17 | log-likelihood: -507.624164803072 +#> EM - tMoE: Iteration: 18 | log-likelihood: -507.608600184335 +#> EM - tMoE: Iteration: 19 | log-likelihood: -507.597234407864 +#> EM - tMoE: Iteration: 20 | log-likelihood: -507.58896352802 +#> EM - tMoE: Iteration: 21 | log-likelihood: -507.5829619525 +#> EM - tMoE: Iteration: 22 | log-likelihood: -507.578617186637 +#> EM - tMoE: Iteration: 23 | log-likelihood: -507.575477773876 +#> EM - tMoE: Iteration: 24 | log-likelihood: -507.573212714482 +#> EM - tMoE: Iteration: 25 | log-likelihood: -507.571580377022 +#> EM - tMoE: Iteration: 26 | log-likelihood: -507.570404998184 +#> EM - tMoE: Iteration: 27 | log-likelihood: -507.569559103405 +#> EM - tMoE: Iteration: 28 | log-likelihood: -507.568950465063 +#> EM - tMoE: Iteration: 29 | log-likelihood: -507.568512491032 tmoe$summary() #> ------------------------------------- @@ -313,7 +312,7 @@ tmoe$summary() #> tMoE model with K = 2 experts: #> #> log-likelihood df AIC BIC ICL -#> -538.0537 10 -548.0537 -569.1268 -569.1248 +#> -507.5685 10 -517.5685 -538.6416 -538.6463 #> #> Clustering table (Number of observations in each expert): #> @@ -323,13 +322,13 @@ tmoe$summary() #> Regression coefficients: #> #> Beta(k = 1) Beta(k = 2) -#> 1 0.1725939 -0.08414846 -#> X^1 2.7387008 -2.33997997 +#> 1 0.1460788 0.1217012 +#> X^1 2.7009774 -2.5532779 #> #> Variances: #> #> Sigma2(k = 1) Sigma2(k = 2) -#> 0.2727009 0.4847398 +#> 0.2974055 0.4646762 tmoe$plot() ``` @@ -349,43 +348,33 @@ p <- 2 # Order of the polynomial regression (regressors/experts) q <- 1 # Order of the logistic regression (gating network) tmoe <- emTMoE(X = x, Y = y, K = K, p = p, q = q, verbose = TRUE) -#> EM - tMoE: Iteration: 1 | log-likelihood: -605.266571357791 -#> EM - tMoE: Iteration: 2 | log-likelihood: -599.044701698548 -#> EM - tMoE: Iteration: 3 | log-likelihood: -595.501279714269 -#> EM - tMoE: Iteration: 4 | log-likelihood: -593.009530361222 -#> EM - tMoE: Iteration: 5 | log-likelihood: -590.714969153092 -#> EM - tMoE: Iteration: 6 | log-likelihood: -587.897449166264 -#> EM - tMoE: Iteration: 7 | log-likelihood: -583.582012360803 -#> EM - tMoE: Iteration: 8 | log-likelihood: -578.122132426342 -#> EM - tMoE: Iteration: 9 | log-likelihood: -573.081475929554 -#> EM - tMoE: Iteration: 10 | log-likelihood: -570.74014908355 -#> EM - tMoE: Iteration: 11 | log-likelihood: -569.7657737772 -#> EM - tMoE: Iteration: 12 | log-likelihood: -568.885074316649 -#> EM - tMoE: Iteration: 13 | log-likelihood: -568.011955227929 -#> EM - tMoE: Iteration: 14 | log-likelihood: -567.159312820848 -#> EM - tMoE: Iteration: 15 | log-likelihood: -566.350991948378 -#> EM - tMoE: Iteration: 16 | log-likelihood: -565.616862268021 -#> EM - tMoE: Iteration: 17 | log-likelihood: -564.990448386782 -#> EM - tMoE: Iteration: 18 | log-likelihood: -564.496384022067 -#> EM - tMoE: Iteration: 19 | log-likelihood: -564.13571445338 -#> EM - tMoE: Iteration: 20 | log-likelihood: -563.887578265863 -#> EM - tMoE: Iteration: 21 | log-likelihood: -563.72301337972 -#> EM - tMoE: Iteration: 22 | log-likelihood: -563.61586828125 -#> EM - tMoE: Iteration: 23 | log-likelihood: -563.546554999698 -#> EM - tMoE: Iteration: 24 | log-likelihood: -563.501679965445 -#> EM - tMoE: Iteration: 25 | log-likelihood: -563.472480239373 -#> EM - tMoE: Iteration: 26 | log-likelihood: -563.453334332534 -#> EM - tMoE: Iteration: 27 | log-likelihood: -563.440660583559 -#> EM - tMoE: Iteration: 28 | log-likelihood: -563.43217720637 -#> EM - tMoE: Iteration: 29 | log-likelihood: -563.426425658754 -#> EM - tMoE: Iteration: 30 | log-likelihood: -563.422468915477 -#> EM - tMoE: Iteration: 31 | log-likelihood: -563.41970146878 -#> EM - tMoE: Iteration: 32 | log-likelihood: -563.417729585165 -#> EM - tMoE: Iteration: 33 | log-likelihood: -563.416295552506 -#> EM - tMoE: Iteration: 34 | log-likelihood: -563.415229512982 -#> EM - tMoE: Iteration: 35 | log-likelihood: -563.414418669214 -#> EM - tMoE: Iteration: 36 | log-likelihood: -563.413787491396 -#> EM - tMoE: Iteration: 37 | log-likelihood: -563.413284930069 +#> EM - tMoE: Iteration: 1 | log-likelihood: -594.554792082464 +#> EM - tMoE: Iteration: 2 | log-likelihood: -583.302955759072 +#> EM - tMoE: Iteration: 3 | log-likelihood: -578.292340897525 +#> EM - tMoE: Iteration: 4 | log-likelihood: -575.357409690206 +#> EM - tMoE: Iteration: 5 | log-likelihood: -573.401056800228 +#> EM - tMoE: Iteration: 6 | log-likelihood: -571.744054768806 +#> EM - tMoE: Iteration: 7 | log-likelihood: -569.136161930618 +#> EM - tMoE: Iteration: 8 | log-likelihood: -564.112283927706 +#> EM - tMoE: Iteration: 9 | log-likelihood: -559.722060181244 +#> EM - tMoE: Iteration: 10 | log-likelihood: -557.301099054472 +#> EM - tMoE: Iteration: 11 | log-likelihood: -554.83754622596 +#> EM - tMoE: Iteration: 12 | log-likelihood: -553.251636169726 +#> EM - tMoE: Iteration: 13 | log-likelihood: -552.594047630798 +#> EM - tMoE: Iteration: 14 | log-likelihood: -552.137380727804 +#> EM - tMoE: Iteration: 15 | log-likelihood: -551.773084065302 +#> EM - tMoE: Iteration: 16 | log-likelihood: -551.562703767913 +#> EM - tMoE: Iteration: 17 | log-likelihood: -551.480319490202 +#> EM - tMoE: Iteration: 18 | log-likelihood: -551.449597088406 +#> EM - tMoE: Iteration: 19 | log-likelihood: -551.435398277139 +#> EM - tMoE: Iteration: 20 | log-likelihood: -551.427556692329 +#> EM - tMoE: Iteration: 21 | log-likelihood: -551.42279183321 +#> EM - tMoE: Iteration: 22 | log-likelihood: -551.419783414396 +#> EM - tMoE: Iteration: 23 | log-likelihood: -551.417798841385 +#> EM - tMoE: Iteration: 24 | log-likelihood: -551.41644326963 +#> EM - tMoE: Iteration: 25 | log-likelihood: -551.415484460335 +#> EM - tMoE: Iteration: 26 | log-likelihood: -551.41478442124 +#> EM - tMoE: Iteration: 27 | log-likelihood: -551.41425984316 tmoe$summary() #> ------------------------------------- @@ -395,24 +384,24 @@ tmoe$summary() #> tMoE model with K = 4 experts: #> #> log-likelihood df AIC BIC ICL -#> -563.4133 26 -589.4133 -626.9878 -626.9753 +#> -551.4143 26 -577.4143 -614.9888 -614.9855 #> #> Clustering table (Number of observations in each expert): #> #> 1 2 3 4 -#> 28 36 32 37 +#> 28 37 31 37 #> #> Regression coefficients: #> -#> Beta(k = 1) Beta(k = 2) Beta(k = 3) Beta(k = 4) -#> 1 -1.037712416 1774.38349 -1434.398457 292.6068438 -#> X^1 -0.111685768 -189.85966 84.930824 -12.1664690 -#> X^2 -0.007693142 4.74843 -1.205771 0.1248612 +#> Beta(k = 1) Beta(k = 2) Beta(k = 3) Beta(k = 4) +#> 1 -1.53687875 1174.996409 -1806.449666 341.6895146 +#> X^1 0.02911007 -124.107064 111.188095 -14.2528609 +#> X^2 -0.01747138 2.977398 -1.664968 0.1466402 #> #> Variances: #> #> Sigma2(k = 1) Sigma2(k = 2) Sigma2(k = 3) Sigma2(k = 4) -#> 1.585304 30.88009 588.3835 572.0153 +#> 0.9642408 333.5289 571.8198 307.2462 tmoe$plot() ``` @@ -446,116 +435,138 @@ p <- 1 # Order of the polynomial regression (regressors/experts) q <- 1 # Order of the logistic regression (gating network) snmoe <- emSNMoE(X = x, Y = y, K = K, p = p, q = q, verbose = TRUE) -#> EM - SNMoE: Iteration: 1 | log-likelihood: -624.23502477139 -#> EM - SNMoE: Iteration: 2 | log-likelihood: -506.408654239152 -#> EM - SNMoE: Iteration: 3 | log-likelihood: -501.732792195309 -#> EM - SNMoE: Iteration: 4 | log-likelihood: -500.859509544961 -#> EM - SNMoE: Iteration: 5 | log-likelihood: -500.597208229948 -#> EM - SNMoE: Iteration: 6 | log-likelihood: -500.433113585124 -#> EM - SNMoE: Iteration: 7 | log-likelihood: -500.281152659166 -#> EM - SNMoE: Iteration: 8 | log-likelihood: -500.133110076618 -#> EM - SNMoE: Iteration: 9 | log-likelihood: -499.99191573382 -#> EM - SNMoE: Iteration: 10 | log-likelihood: -499.859975065605 -#> EM - SNMoE: Iteration: 11 | log-likelihood: -499.738162701963 -#> EM - SNMoE: Iteration: 12 | log-likelihood: -499.626441124172 -#> EM - SNMoE: Iteration: 13 | log-likelihood: -499.524203019735 -#> EM - SNMoE: Iteration: 14 | log-likelihood: -499.430767562131 -#> EM - SNMoE: Iteration: 15 | log-likelihood: -499.345391721334 -#> EM - SNMoE: Iteration: 16 | log-likelihood: -499.267327179952 -#> EM - SNMoE: Iteration: 17 | log-likelihood: -499.195801598347 -#> EM - SNMoE: Iteration: 18 | log-likelihood: -499.130253804223 -#> EM - SNMoE: Iteration: 19 | log-likelihood: -499.070132602352 -#> EM - SNMoE: Iteration: 20 | log-likelihood: -499.014947707728 -#> EM - SNMoE: Iteration: 21 | log-likelihood: -498.964221084507 -#> EM - SNMoE: Iteration: 22 | log-likelihood: -498.917518912217 -#> EM - SNMoE: Iteration: 23 | log-likelihood: -498.874538031141 -#> EM - SNMoE: Iteration: 24 | log-likelihood: -498.834888076035 -#> EM - SNMoE: Iteration: 25 | log-likelihood: -498.7983021104 -#> EM - SNMoE: Iteration: 26 | log-likelihood: -498.764480641263 -#> EM - SNMoE: Iteration: 27 | log-likelihood: -498.733202141712 -#> EM - SNMoE: Iteration: 28 | log-likelihood: -498.704238852666 -#> EM - SNMoE: Iteration: 29 | log-likelihood: -498.677392482473 -#> EM - SNMoE: Iteration: 30 | log-likelihood: -498.652491791682 -#> EM - SNMoE: Iteration: 31 | log-likelihood: -498.629390755752 -#> EM - SNMoE: Iteration: 32 | log-likelihood: -498.607918269276 -#> EM - SNMoE: Iteration: 33 | log-likelihood: -498.587910911632 -#> EM - SNMoE: Iteration: 34 | log-likelihood: -498.569277705623 -#> EM - SNMoE: Iteration: 35 | log-likelihood: -498.55190826306 -#> EM - SNMoE: Iteration: 36 | log-likelihood: -498.535687200215 -#> EM - SNMoE: Iteration: 37 | log-likelihood: -498.520537677872 -#> EM - SNMoE: Iteration: 38 | log-likelihood: -498.506416782001 -#> EM - SNMoE: Iteration: 39 | log-likelihood: -498.49320047472 -#> EM - SNMoE: Iteration: 40 | log-likelihood: -498.480827889945 -#> EM - SNMoE: Iteration: 41 | log-likelihood: -498.469228245683 -#> EM - SNMoE: Iteration: 42 | log-likelihood: -498.458344857453 -#> EM - SNMoE: Iteration: 43 | log-likelihood: -498.448123845995 -#> EM - SNMoE: Iteration: 44 | log-likelihood: -498.438545657271 -#> EM - SNMoE: Iteration: 45 | log-likelihood: -498.429540998034 -#> EM - SNMoE: Iteration: 46 | log-likelihood: -498.421074031024 -#> EM - SNMoE: Iteration: 47 | log-likelihood: -498.41311296707 -#> EM - SNMoE: Iteration: 48 | log-likelihood: -498.405605264825 -#> EM - SNMoE: Iteration: 49 | log-likelihood: -498.398521521705 -#> EM - SNMoE: Iteration: 50 | log-likelihood: -498.391844793288 -#> EM - SNMoE: Iteration: 51 | log-likelihood: -498.38552887206 -#> EM - SNMoE: Iteration: 52 | log-likelihood: -498.379572728608 -#> EM - SNMoE: Iteration: 53 | log-likelihood: -498.37396103451 -#> EM - SNMoE: Iteration: 54 | log-likelihood: -498.36866047334 -#> EM - SNMoE: Iteration: 55 | log-likelihood: -498.363644517078 -#> EM - SNMoE: Iteration: 56 | log-likelihood: -498.358892274563 -#> EM - SNMoE: Iteration: 57 | log-likelihood: -498.354380407258 -#> EM - SNMoE: Iteration: 58 | log-likelihood: -498.350094791915 -#> EM - SNMoE: Iteration: 59 | log-likelihood: -498.34602480772 -#> EM - SNMoE: Iteration: 60 | log-likelihood: -498.3421684725 -#> EM - SNMoE: Iteration: 61 | log-likelihood: -498.338506556813 -#> EM - SNMoE: Iteration: 62 | log-likelihood: -498.33503223395 -#> EM - SNMoE: Iteration: 63 | log-likelihood: -498.331713804265 -#> EM - SNMoE: Iteration: 64 | log-likelihood: -498.328571094787 -#> EM - SNMoE: Iteration: 65 | log-likelihood: -498.325590361659 -#> EM - SNMoE: Iteration: 66 | log-likelihood: -498.322755553246 -#> EM - SNMoE: Iteration: 67 | log-likelihood: -498.320046428647 -#> EM - SNMoE: Iteration: 68 | log-likelihood: -498.317443740077 -#> EM - SNMoE: Iteration: 69 | log-likelihood: -498.314960477939 -#> EM - SNMoE: Iteration: 70 | log-likelihood: -498.312594638119 -#> EM - SNMoE: Iteration: 71 | log-likelihood: -498.310343053809 -#> EM - SNMoE: Iteration: 72 | log-likelihood: -498.308196455546 -#> EM - SNMoE: Iteration: 73 | log-likelihood: -498.306147088082 -#> EM - SNMoE: Iteration: 74 | log-likelihood: -498.304192065459 -#> EM - SNMoE: Iteration: 75 | log-likelihood: -498.302317083505 -#> EM - SNMoE: Iteration: 76 | log-likelihood: -498.300526286387 -#> EM - SNMoE: Iteration: 77 | log-likelihood: -498.298822583771 -#> EM - SNMoE: Iteration: 78 | log-likelihood: -498.297194394597 -#> EM - SNMoE: Iteration: 79 | log-likelihood: -498.295624150138 -#> EM - SNMoE: Iteration: 80 | log-likelihood: -498.294116793465 -#> EM - SNMoE: Iteration: 81 | log-likelihood: -498.292667126523 -#> EM - SNMoE: Iteration: 82 | log-likelihood: -498.291273946415 -#> EM - SNMoE: Iteration: 83 | log-likelihood: -498.289934769731 -#> EM - SNMoE: Iteration: 84 | log-likelihood: -498.28864214422 -#> EM - SNMoE: Iteration: 85 | log-likelihood: -498.287406098769 -#> EM - SNMoE: Iteration: 86 | log-likelihood: -498.286223595463 -#> EM - SNMoE: Iteration: 87 | log-likelihood: -498.28508616981 -#> EM - SNMoE: Iteration: 88 | log-likelihood: -498.283997340883 -#> EM - SNMoE: Iteration: 89 | log-likelihood: -498.282950283835 -#> EM - SNMoE: Iteration: 90 | log-likelihood: -498.281940546453 -#> EM - SNMoE: Iteration: 91 | log-likelihood: -498.280971375546 -#> EM - SNMoE: Iteration: 92 | log-likelihood: -498.28003834533 -#> EM - SNMoE: Iteration: 93 | log-likelihood: -498.279136372523 -#> EM - SNMoE: Iteration: 94 | log-likelihood: -498.278266652903 -#> EM - SNMoE: Iteration: 95 | log-likelihood: -498.277436244929 -#> EM - SNMoE: Iteration: 96 | log-likelihood: -498.27663442817 -#> EM - SNMoE: Iteration: 97 | log-likelihood: -498.275865623848 -#> EM - SNMoE: Iteration: 98 | log-likelihood: -498.275123197331 -#> EM - SNMoE: Iteration: 99 | log-likelihood: -498.274404273745 -#> EM - SNMoE: Iteration: 100 | log-likelihood: -498.273705295173 -#> EM - SNMoE: Iteration: 101 | log-likelihood: -498.273034134751 -#> EM - SNMoE: Iteration: 102 | log-likelihood: -498.272385781012 -#> EM - SNMoE: Iteration: 103 | log-likelihood: -498.271755604265 -#> EM - SNMoE: Iteration: 104 | log-likelihood: -498.271148680279 -#> EM - SNMoE: Iteration: 105 | log-likelihood: -498.270561891543 -#> EM - SNMoE: Iteration: 106 | log-likelihood: -498.269995057457 -#> EM - SNMoE: Iteration: 107 | log-likelihood: -498.269443948584 -#> EM - SNMoE: Iteration: 108 | log-likelihood: -498.268911556956 -#> EM - SNMoE: Iteration: 109 | log-likelihood: -498.268399011873 -#> EM - SNMoE: Iteration: 110 | log-likelihood: -498.267901191242 +#> EM - SNMoE: Iteration: 1 | log-likelihood: -631.309036318284 +#> EM - SNMoE: Iteration: 2 | log-likelihood: -537.252636784745 +#> EM - SNMoE: Iteration: 3 | log-likelihood: -532.917080153521 +#> EM - SNMoE: Iteration: 4 | log-likelihood: -531.703042239986 +#> EM - SNMoE: Iteration: 5 | log-likelihood: -531.1711410093 +#> EM - SNMoE: Iteration: 6 | log-likelihood: -530.814493267482 +#> EM - SNMoE: Iteration: 7 | log-likelihood: -530.508339347582 +#> EM - SNMoE: Iteration: 8 | log-likelihood: -530.218466379583 +#> EM - SNMoE: Iteration: 9 | log-likelihood: -529.933967336988 +#> EM - SNMoE: Iteration: 10 | log-likelihood: -529.650837824693 +#> EM - SNMoE: Iteration: 11 | log-likelihood: -529.367357898818 +#> EM - SNMoE: Iteration: 12 | log-likelihood: -529.082627260304 +#> EM - SNMoE: Iteration: 13 | log-likelihood: -528.796455422429 +#> EM - SNMoE: Iteration: 14 | log-likelihood: -528.508969085963 +#> EM - SNMoE: Iteration: 15 | log-likelihood: -528.220433402732 +#> EM - SNMoE: Iteration: 16 | log-likelihood: -527.93134698678 +#> EM - SNMoE: Iteration: 17 | log-likelihood: -527.642314756036 +#> EM - SNMoE: Iteration: 18 | log-likelihood: -527.354005979265 +#> EM - SNMoE: Iteration: 19 | log-likelihood: -527.067098501214 +#> EM - SNMoE: Iteration: 20 | log-likelihood: -526.782329168682 +#> EM - SNMoE: Iteration: 21 | log-likelihood: -526.500371331609 +#> EM - SNMoE: Iteration: 22 | log-likelihood: -526.221977442859 +#> EM - SNMoE: Iteration: 23 | log-likelihood: -525.947606946605 +#> EM - SNMoE: Iteration: 24 | log-likelihood: -525.677880997808 +#> EM - SNMoE: Iteration: 25 | log-likelihood: -525.413360688199 +#> EM - SNMoE: Iteration: 26 | log-likelihood: -525.154517638292 +#> EM - SNMoE: Iteration: 27 | log-likelihood: -524.901707284626 +#> EM - SNMoE: Iteration: 28 | log-likelihood: -524.655277657396 +#> EM - SNMoE: Iteration: 29 | log-likelihood: -524.415555933881 +#> EM - SNMoE: Iteration: 30 | log-likelihood: -524.182742163388 +#> EM - SNMoE: Iteration: 31 | log-likelihood: -523.956920280081 +#> EM - SNMoE: Iteration: 32 | log-likelihood: -523.738308043729 +#> EM - SNMoE: Iteration: 33 | log-likelihood: -523.526981404845 +#> EM - SNMoE: Iteration: 34 | log-likelihood: -523.32296202017 +#> EM - SNMoE: Iteration: 35 | log-likelihood: -523.126260102853 +#> EM - SNMoE: Iteration: 36 | log-likelihood: -522.936861275025 +#> EM - SNMoE: Iteration: 37 | log-likelihood: -522.754692108266 +#> EM - SNMoE: Iteration: 38 | log-likelihood: -522.579741333715 +#> EM - SNMoE: Iteration: 39 | log-likelihood: -522.411831140534 +#> EM - SNMoE: Iteration: 40 | log-likelihood: -522.250863099239 +#> EM - SNMoE: Iteration: 41 | log-likelihood: -522.096722252837 +#> EM - SNMoE: Iteration: 42 | log-likelihood: -521.949288385349 +#> EM - SNMoE: Iteration: 43 | log-likelihood: -521.808368200773 +#> EM - SNMoE: Iteration: 44 | log-likelihood: -521.673781503988 +#> EM - SNMoE: Iteration: 45 | log-likelihood: -521.545415355624 +#> EM - SNMoE: Iteration: 46 | log-likelihood: -521.423129238641 +#> EM - SNMoE: Iteration: 47 | log-likelihood: -521.306666897177 +#> EM - SNMoE: Iteration: 48 | log-likelihood: -521.195846237171 +#> EM - SNMoE: Iteration: 49 | log-likelihood: -521.090509815711 +#> EM - SNMoE: Iteration: 50 | log-likelihood: -520.990492422228 +#> EM - SNMoE: Iteration: 51 | log-likelihood: -520.895581256893 +#> EM - SNMoE: Iteration: 52 | log-likelihood: -520.805587138507 +#> EM - SNMoE: Iteration: 53 | log-likelihood: -520.720322121167 +#> EM - SNMoE: Iteration: 54 | log-likelihood: -520.639636853218 +#> EM - SNMoE: Iteration: 55 | log-likelihood: -520.563323534687 +#> EM - SNMoE: Iteration: 56 | log-likelihood: -520.491199906309 +#> EM - SNMoE: Iteration: 57 | log-likelihood: -520.42309042302 +#> EM - SNMoE: Iteration: 58 | log-likelihood: -520.358814864216 +#> EM - SNMoE: Iteration: 59 | log-likelihood: -520.298200188454 +#> EM - SNMoE: Iteration: 60 | log-likelihood: -520.241068369625 +#> EM - SNMoE: Iteration: 61 | log-likelihood: -520.187252049961 +#> EM - SNMoE: Iteration: 62 | log-likelihood: -520.136659884325 +#> EM - SNMoE: Iteration: 63 | log-likelihood: -520.089074763469 +#> EM - SNMoE: Iteration: 64 | log-likelihood: -520.044344708013 +#> EM - SNMoE: Iteration: 65 | log-likelihood: -520.002314895737 +#> EM - SNMoE: Iteration: 66 | log-likelihood: -519.96284459272 +#> EM - SNMoE: Iteration: 67 | log-likelihood: -519.925799118801 +#> EM - SNMoE: Iteration: 68 | log-likelihood: -519.891050423917 +#> EM - SNMoE: Iteration: 69 | log-likelihood: -519.858483464306 +#> EM - SNMoE: Iteration: 70 | log-likelihood: -519.827959088607 +#> EM - SNMoE: Iteration: 71 | log-likelihood: -519.799364667304 +#> EM - SNMoE: Iteration: 72 | log-likelihood: -519.77256333263 +#> EM - SNMoE: Iteration: 73 | log-likelihood: -519.74750334494 +#> EM - SNMoE: Iteration: 74 | log-likelihood: -519.724042697972 +#> EM - SNMoE: Iteration: 75 | log-likelihood: -519.702099286162 +#> EM - SNMoE: Iteration: 76 | log-likelihood: -519.681567463672 +#> EM - SNMoE: Iteration: 77 | log-likelihood: -519.662378960166 +#> EM - SNMoE: Iteration: 78 | log-likelihood: -519.644442375396 +#> EM - SNMoE: Iteration: 79 | log-likelihood: -519.62768083651 +#> EM - SNMoE: Iteration: 80 | log-likelihood: -519.612021156047 +#> EM - SNMoE: Iteration: 81 | log-likelihood: -519.597401707085 +#> EM - SNMoE: Iteration: 82 | log-likelihood: -519.583741251167 +#> EM - SNMoE: Iteration: 83 | log-likelihood: -519.570986072888 +#> EM - SNMoE: Iteration: 84 | log-likelihood: -519.559077525864 +#> EM - SNMoE: Iteration: 85 | log-likelihood: -519.547979907515 +#> EM - SNMoE: Iteration: 86 | log-likelihood: -519.53760883324 +#> EM - SNMoE: Iteration: 87 | log-likelihood: -519.527929570053 +#> EM - SNMoE: Iteration: 88 | log-likelihood: -519.51889536959 +#> EM - SNMoE: Iteration: 89 | log-likelihood: -519.51046340298 +#> EM - SNMoE: Iteration: 90 | log-likelihood: -519.502598095163 +#> EM - SNMoE: Iteration: 91 | log-likelihood: -519.495262081533 +#> EM - SNMoE: Iteration: 92 | log-likelihood: -519.488412765177 +#> EM - SNMoE: Iteration: 93 | log-likelihood: -519.4820227045 +#> EM - SNMoE: Iteration: 94 | log-likelihood: -519.476058860464 +#> EM - SNMoE: Iteration: 95 | log-likelihood: -519.470493415188 +#> EM - SNMoE: Iteration: 96 | log-likelihood: -519.465336864985 +#> EM - SNMoE: Iteration: 97 | log-likelihood: -519.460475275808 +#> EM - SNMoE: Iteration: 98 | log-likelihood: -519.455932791559 +#> EM - SNMoE: Iteration: 99 | log-likelihood: -519.451688949145 +#> EM - SNMoE: Iteration: 100 | log-likelihood: -519.447724174288 +#> EM - SNMoE: Iteration: 101 | log-likelihood: -519.444019655969 +#> EM - SNMoE: Iteration: 102 | log-likelihood: -519.440557693364 +#> EM - SNMoE: Iteration: 103 | log-likelihood: -519.437321600411 +#> EM - SNMoE: Iteration: 104 | log-likelihood: -519.434295710852 +#> EM - SNMoE: Iteration: 105 | log-likelihood: -519.431465509687 +#> EM - SNMoE: Iteration: 106 | log-likelihood: -519.428817709875 +#> EM - SNMoE: Iteration: 107 | log-likelihood: -519.426340146422 +#> EM - SNMoE: Iteration: 108 | log-likelihood: -519.424021548017 +#> EM - SNMoE: Iteration: 109 | log-likelihood: -519.421851341056 +#> EM - SNMoE: Iteration: 110 | log-likelihood: -519.419819581921 +#> EM - SNMoE: Iteration: 111 | log-likelihood: -519.417916919703 +#> EM - SNMoE: Iteration: 112 | log-likelihood: -519.41613491089 +#> EM - SNMoE: Iteration: 113 | log-likelihood: -519.414465937502 +#> EM - SNMoE: Iteration: 114 | log-likelihood: -519.4129022627 +#> EM - SNMoE: Iteration: 115 | log-likelihood: -519.411436872827 +#> EM - SNMoE: Iteration: 116 | log-likelihood: -519.410062762453 +#> EM - SNMoE: Iteration: 117 | log-likelihood: -519.40877335535 +#> EM - SNMoE: Iteration: 118 | log-likelihood: -519.407563613529 +#> EM - SNMoE: Iteration: 119 | log-likelihood: -519.406428456552 +#> EM - SNMoE: Iteration: 120 | log-likelihood: -519.405357137863 +#> EM - SNMoE: Iteration: 121 | log-likelihood: -519.40435129624 +#> EM - SNMoE: Iteration: 122 | log-likelihood: -519.403405510927 +#> EM - SNMoE: Iteration: 123 | log-likelihood: -519.402514965295 +#> EM - SNMoE: Iteration: 124 | log-likelihood: -519.401680534394 +#> EM - SNMoE: Iteration: 125 | log-likelihood: -519.400898552185 +#> EM - SNMoE: Iteration: 126 | log-likelihood: -519.400164106511 +#> EM - SNMoE: Iteration: 127 | log-likelihood: -519.399470618852 +#> EM - SNMoE: Iteration: 128 | log-likelihood: -519.398819973594 +#> EM - SNMoE: Iteration: 129 | log-likelihood: -519.398208199004 +#> EM - SNMoE: Iteration: 130 | log-likelihood: -519.397633636504 +#> EM - SNMoE: Iteration: 131 | log-likelihood: -519.397092754912 +#> EM - SNMoE: Iteration: 132 | log-likelihood: -519.396581854022 snmoe$summary() #> ----------------------------------------------- @@ -565,7 +576,7 @@ snmoe$summary() #> SNMoE model with K = 2 experts: #> #> log-likelihood df AIC BIC ICL -#> -498.2679 10 -508.2679 -529.3409 -529.3804 +#> -519.3966 10 -529.3966 -550.4696 -550.5454 #> #> Clustering table (Number of observations in each expert): #> @@ -575,13 +586,13 @@ snmoe$summary() #> Regression coefficients: #> #> Beta(k = 1) Beta(k = 2) -#> 1 0.9709634 1.021977 -#> X^1 2.6703213 -2.736127 +#> 1 1.056898 0.09250734 +#> X^1 2.738163 -2.77424777 #> #> Variances: #> #> Sigma2(k = 1) Sigma2(k = 2) -#> 0.4324076 0.4345685 +#> 0.4776785 1.28622 snmoe$plot() ``` @@ -600,193 +611,44 @@ p <- 1 # Order of the polynomial regression (regressors/experts) q <- 1 # Order of the logistic regression (gating network) snmoe <- emSNMoE(X = x, Y = y, K = K, p = p, q = q, verbose = TRUE) -#> EM - SNMoE: Iteration: 1 | log-likelihood: 62.292138332677 -#> EM - SNMoE: Iteration: 2 | log-likelihood: 87.9145425373437 -#> EM - SNMoE: Iteration: 3 | log-likelihood: 89.0086739618696 -#> EM - SNMoE: Iteration: 4 | log-likelihood: 89.3937914630249 -#> EM - SNMoE: Iteration: 5 | log-likelihood: 89.6535757640902 -#> EM - SNMoE: Iteration: 6 | log-likelihood: 89.8306729565452 -#> EM - SNMoE: Iteration: 7 | log-likelihood: 89.9327809726066 -#> EM - SNMoE: Iteration: 8 | log-likelihood: 89.9900101339138 -#> EM - SNMoE: Iteration: 9 | log-likelihood: 90.0239748570575 -#> EM - SNMoE: Iteration: 10 | log-likelihood: 90.0475270018937 -#> EM - SNMoE: Iteration: 11 | log-likelihood: 90.0668977115359 -#> EM - SNMoE: Iteration: 12 | log-likelihood: 90.0840572217388 -#> EM - SNMoE: Iteration: 13 | log-likelihood: 90.0996801870063 -#> EM - SNMoE: Iteration: 14 | log-likelihood: 90.114322139282 -#> EM - SNMoE: Iteration: 15 | log-likelihood: 90.1282969436904 -#> EM - SNMoE: Iteration: 16 | log-likelihood: 90.1417415969409 -#> EM - SNMoE: Iteration: 17 | log-likelihood: 90.1547229730222 -#> EM - SNMoE: Iteration: 18 | log-likelihood: 90.1672833715162 -#> EM - SNMoE: Iteration: 19 | log-likelihood: 90.1794404195207 -#> EM - SNMoE: Iteration: 20 | log-likelihood: 90.1912239923447 -#> EM - SNMoE: Iteration: 21 | log-likelihood: 90.2026508363525 -#> EM - SNMoE: Iteration: 22 | log-likelihood: 90.2137384324658 -#> EM - SNMoE: Iteration: 23 | log-likelihood: 90.2245065555815 -#> EM - SNMoE: Iteration: 24 | log-likelihood: 90.2349750729752 -#> EM - SNMoE: Iteration: 25 | log-likelihood: 90.2452036384708 -#> EM - SNMoE: Iteration: 26 | log-likelihood: 90.255194718755 -#> EM - SNMoE: Iteration: 27 | log-likelihood: 90.2649308422496 -#> EM - SNMoE: Iteration: 28 | log-likelihood: 90.2744302834456 -#> EM - SNMoE: Iteration: 29 | log-likelihood: 90.2837106908074 -#> EM - SNMoE: Iteration: 30 | log-likelihood: 90.2928990112787 -#> EM - SNMoE: Iteration: 31 | log-likelihood: 90.3016166594444 -#> EM - SNMoE: Iteration: 32 | log-likelihood: 90.3102947751805 -#> EM - SNMoE: Iteration: 33 | log-likelihood: 90.318900466279 -#> EM - SNMoE: Iteration: 34 | log-likelihood: 90.3274306744404 -#> EM - SNMoE: Iteration: 35 | log-likelihood: 90.3358671627185 -#> EM - SNMoE: Iteration: 36 | log-likelihood: 90.3443859982734 -#> EM - SNMoE: Iteration: 37 | log-likelihood: 90.3526959594068 -#> EM - SNMoE: Iteration: 38 | log-likelihood: 90.3609977875098 -#> EM - SNMoE: Iteration: 39 | log-likelihood: 90.3692807155406 -#> EM - SNMoE: Iteration: 40 | log-likelihood: 90.3774653899762 -#> EM - SNMoE: Iteration: 41 | log-likelihood: 90.3856183967777 -#> EM - SNMoE: Iteration: 42 | log-likelihood: 90.393720562392 -#> EM - SNMoE: Iteration: 43 | log-likelihood: 90.4017868140956 -#> EM - SNMoE: Iteration: 44 | log-likelihood: 90.4098062308868 -#> EM - SNMoE: Iteration: 45 | log-likelihood: 90.4177820881849 -#> EM - SNMoE: Iteration: 46 | log-likelihood: 90.4257087087515 -#> EM - SNMoE: Iteration: 47 | log-likelihood: 90.4335795968909 -#> EM - SNMoE: Iteration: 48 | log-likelihood: 90.4413904823497 -#> EM - SNMoE: Iteration: 49 | log-likelihood: 90.4491411451583 -#> EM - SNMoE: Iteration: 50 | log-likelihood: 90.4568177335901 -#> EM - SNMoE: Iteration: 51 | log-likelihood: 90.4644226598137 -#> EM - SNMoE: Iteration: 52 | log-likelihood: 90.4719514584366 -#> EM - SNMoE: Iteration: 53 | log-likelihood: 90.479401028492 -#> EM - SNMoE: Iteration: 54 | log-likelihood: 90.4867728675382 -#> EM - SNMoE: Iteration: 55 | log-likelihood: 90.4940408877717 -#> EM - SNMoE: Iteration: 56 | log-likelihood: 90.5012509412612 -#> EM - SNMoE: Iteration: 57 | log-likelihood: 90.5083684584508 -#> EM - SNMoE: Iteration: 58 | log-likelihood: 90.5154189149307 -#> EM - SNMoE: Iteration: 59 | log-likelihood: 90.5223930629885 -#> EM - SNMoE: Iteration: 60 | log-likelihood: 90.5292946631728 -#> EM - SNMoE: Iteration: 61 | log-likelihood: 90.5361177953662 -#> EM - SNMoE: Iteration: 62 | log-likelihood: 90.5428708142414 -#> EM - SNMoE: Iteration: 63 | log-likelihood: 90.5495499096576 -#> EM - SNMoE: Iteration: 64 | log-likelihood: 90.5561559212972 -#> EM - SNMoE: Iteration: 65 | log-likelihood: 90.5626843501471 -#> EM - SNMoE: Iteration: 66 | log-likelihood: 90.5691420841755 -#> EM - SNMoE: Iteration: 67 | log-likelihood: 90.5755235491849 -#> EM - SNMoE: Iteration: 68 | log-likelihood: 90.5818282391941 -#> EM - SNMoE: Iteration: 69 | log-likelihood: 90.588057662454 -#> EM - SNMoE: Iteration: 70 | log-likelihood: 90.5942112112893 -#> EM - SNMoE: Iteration: 71 | log-likelihood: 90.6002904111158 -#> EM - SNMoE: Iteration: 72 | log-likelihood: 90.6062951042856 -#> EM - SNMoE: Iteration: 73 | log-likelihood: 90.6122217992879 -#> EM - SNMoE: Iteration: 74 | log-likelihood: 90.6180722178595 -#> EM - SNMoE: Iteration: 75 | log-likelihood: 90.6238454668585 -#> EM - SNMoE: Iteration: 76 | log-likelihood: 90.6295405360689 -#> EM - SNMoE: Iteration: 77 | log-likelihood: 90.6351564394961 -#> EM - SNMoE: Iteration: 78 | log-likelihood: 90.6406924459854 -#> EM - SNMoE: Iteration: 79 | log-likelihood: 90.6461477415273 -#> EM - SNMoE: Iteration: 80 | log-likelihood: 90.6515164371587 -#> EM - SNMoE: Iteration: 81 | log-likelihood: 90.6568037706302 -#> EM - SNMoE: Iteration: 82 | log-likelihood: 90.6620091052585 -#> EM - SNMoE: Iteration: 83 | log-likelihood: 90.667130410317 -#> EM - SNMoE: Iteration: 84 | log-likelihood: 90.6721658072011 -#> EM - SNMoE: Iteration: 85 | log-likelihood: 90.6771148463352 -#> EM - SNMoE: Iteration: 86 | log-likelihood: 90.681975635394 -#> EM - SNMoE: Iteration: 87 | log-likelihood: 90.6867485519895 -#> EM - SNMoE: Iteration: 88 | log-likelihood: 90.6914280877635 -#> EM - SNMoE: Iteration: 89 | log-likelihood: 90.6960216984873 -#> EM - SNMoE: Iteration: 90 | log-likelihood: 90.700522990832 -#> EM - SNMoE: Iteration: 91 | log-likelihood: 90.7049253352189 -#> EM - SNMoE: Iteration: 92 | log-likelihood: 90.709224577687 -#> EM - SNMoE: Iteration: 93 | log-likelihood: 90.7134204651541 -#> EM - SNMoE: Iteration: 94 | log-likelihood: 90.7175128344209 -#> EM - SNMoE: Iteration: 95 | log-likelihood: 90.7215671817578 -#> EM - SNMoE: Iteration: 96 | log-likelihood: 90.7252765782458 -#> EM - SNMoE: Iteration: 97 | log-likelihood: 90.7291598798633 -#> EM - SNMoE: Iteration: 98 | log-likelihood: 90.7327071459299 -#> EM - SNMoE: Iteration: 99 | log-likelihood: 90.7361862704723 -#> EM - SNMoE: Iteration: 100 | log-likelihood: 90.7395673235959 -#> EM - SNMoE: Iteration: 101 | log-likelihood: 90.7428509976105 -#> EM - SNMoE: Iteration: 102 | log-likelihood: 90.7460719415064 -#> EM - SNMoE: Iteration: 103 | log-likelihood: 90.749148330663 -#> EM - SNMoE: Iteration: 104 | log-likelihood: 90.7521504284841 -#> EM - SNMoE: Iteration: 105 | log-likelihood: 90.7550452978402 -#> EM - SNMoE: Iteration: 106 | log-likelihood: 90.7578330083901 -#> EM - SNMoE: Iteration: 107 | log-likelihood: 90.7605218349915 -#> EM - SNMoE: Iteration: 108 | log-likelihood: 90.7631207727075 -#> EM - SNMoE: Iteration: 109 | log-likelihood: 90.7656309322501 -#> EM - SNMoE: Iteration: 110 | log-likelihood: 90.7681987652464 -#> EM - SNMoE: Iteration: 111 | log-likelihood: 90.7705554083849 -#> EM - SNMoE: Iteration: 112 | log-likelihood: 90.7727831095643 -#> EM - SNMoE: Iteration: 113 | log-likelihood: 90.7749301181656 -#> EM - SNMoE: Iteration: 114 | log-likelihood: 90.7770198273515 -#> EM - SNMoE: Iteration: 115 | log-likelihood: 90.7790073891405 -#> EM - SNMoE: Iteration: 116 | log-likelihood: 90.7809308289703 -#> EM - SNMoE: Iteration: 117 | log-likelihood: 90.7827763625305 -#> EM - SNMoE: Iteration: 118 | log-likelihood: 90.7845439068696 -#> EM - SNMoE: Iteration: 119 | log-likelihood: 90.7862393745289 -#> EM - SNMoE: Iteration: 120 | log-likelihood: 90.7878675208113 -#> EM - SNMoE: Iteration: 121 | log-likelihood: 90.7894302838505 -#> EM - SNMoE: Iteration: 122 | log-likelihood: 90.7909296453262 -#> EM - SNMoE: Iteration: 123 | log-likelihood: 90.7923678843603 -#> EM - SNMoE: Iteration: 124 | log-likelihood: 90.7938593408333 -#> EM - SNMoE: Iteration: 125 | log-likelihood: 90.7951720999987 -#> EM - SNMoE: Iteration: 126 | log-likelihood: 90.7964313348435 -#> EM - SNMoE: Iteration: 127 | log-likelihood: 90.7976391837204 -#> EM - SNMoE: Iteration: 128 | log-likelihood: 90.7987952062374 -#> EM - SNMoE: Iteration: 129 | log-likelihood: 90.7999014144276 -#> EM - SNMoE: Iteration: 130 | log-likelihood: 90.8009598238791 -#> EM - SNMoE: Iteration: 131 | log-likelihood: 90.8019888206512 -#> EM - SNMoE: Iteration: 132 | log-likelihood: 90.8029562142312 -#> EM - SNMoE: Iteration: 133 | log-likelihood: 90.8038899405207 -#> EM - SNMoE: Iteration: 134 | log-likelihood: 90.8047809346196 -#> EM - SNMoE: Iteration: 135 | log-likelihood: 90.8056288697112 -#> EM - SNMoE: Iteration: 136 | log-likelihood: 90.8064365102508 -#> EM - SNMoE: Iteration: 137 | log-likelihood: 90.8072083975976 -#> EM - SNMoE: Iteration: 138 | log-likelihood: 90.8079459623392 -#> EM - SNMoE: Iteration: 139 | log-likelihood: 90.8086504624255 -#> EM - SNMoE: Iteration: 140 | log-likelihood: 90.8093228982677 -#> EM - SNMoE: Iteration: 141 | log-likelihood: 90.8099654751608 -#> EM - SNMoE: Iteration: 142 | log-likelihood: 90.8106446102449 -#> EM - SNMoE: Iteration: 143 | log-likelihood: 90.8112306380695 -#> EM - SNMoE: Iteration: 144 | log-likelihood: 90.8117910134191 -#> EM - SNMoE: Iteration: 145 | log-likelihood: 90.8123264869821 -#> EM - SNMoE: Iteration: 146 | log-likelihood: 90.8128353064792 -#> EM - SNMoE: Iteration: 147 | log-likelihood: 90.813320758887 -#> EM - SNMoE: Iteration: 148 | log-likelihood: 90.8137841377893 -#> EM - SNMoE: Iteration: 149 | log-likelihood: 90.8142266707801 -#> EM - SNMoE: Iteration: 150 | log-likelihood: 90.8146593536573 -#> EM - SNMoE: Iteration: 151 | log-likelihood: 90.8150625412625 -#> EM - SNMoE: Iteration: 152 | log-likelihood: 90.8154579266665 -#> EM - SNMoE: Iteration: 153 | log-likelihood: 90.8158258545648 -#> EM - SNMoE: Iteration: 154 | log-likelihood: 90.8161773354621 -#> EM - SNMoE: Iteration: 155 | log-likelihood: 90.8165130292432 -#> EM - SNMoE: Iteration: 156 | log-likelihood: 90.8168339082089 -#> EM - SNMoE: Iteration: 157 | log-likelihood: 90.8171408598141 -#> EM - SNMoE: Iteration: 158 | log-likelihood: 90.8174343507612 -#> EM - SNMoE: Iteration: 159 | log-likelihood: 90.8177150405841 -#> EM - SNMoE: Iteration: 160 | log-likelihood: 90.8179829474516 -#> EM - SNMoE: Iteration: 161 | log-likelihood: 90.8182386605315 -#> EM - SNMoE: Iteration: 162 | log-likelihood: 90.8185290095565 -#> EM - SNMoE: Iteration: 163 | log-likelihood: 90.818718303285 -#> EM - SNMoE: Iteration: 164 | log-likelihood: 90.8189892103138 -#> EM - SNMoE: Iteration: 165 | log-likelihood: 90.8192039239698 -#> EM - SNMoE: Iteration: 166 | log-likelihood: 90.8193641478361 -#> EM - SNMoE: Iteration: 167 | log-likelihood: 90.8196070442012 -#> EM - SNMoE: Iteration: 168 | log-likelihood: 90.8197949331449 -#> EM - SNMoE: Iteration: 169 | log-likelihood: 90.81997483171 -#> EM - SNMoE: Iteration: 170 | log-likelihood: 90.8201473016286 -#> EM - SNMoE: Iteration: 171 | log-likelihood: 90.8203136768737 -#> EM - SNMoE: Iteration: 172 | log-likelihood: 90.8204744695155 -#> EM - SNMoE: Iteration: 173 | log-likelihood: 90.820628259348 -#> EM - SNMoE: Iteration: 174 | log-likelihood: 90.8207754470074 -#> EM - SNMoE: Iteration: 175 | log-likelihood: 90.8209167839697 -#> EM - SNMoE: Iteration: 176 | log-likelihood: 90.8210525848093 -#> EM - SNMoE: Iteration: 177 | log-likelihood: 90.8211826587277 -#> EM - SNMoE: Iteration: 178 | log-likelihood: 90.8213073953412 -#> EM - SNMoE: Iteration: 179 | log-likelihood: 90.8214281260729 -#> EM - SNMoE: Iteration: 180 | log-likelihood: 90.8215444184688 -#> EM - SNMoE: Iteration: 181 | log-likelihood: 90.821656408958 -#> EM - SNMoE: Iteration: 182 | log-likelihood: 90.8217642942328 -#> EM - SNMoE: Iteration: 183 | log-likelihood: 90.8218682729254 -#> EM - SNMoE: Iteration: 184 | log-likelihood: 90.8219689323786 -#> EM - SNMoE: Iteration: 185 | log-likelihood: 90.8220661409908 -#> EM - SNMoE: Iteration: 186 | log-likelihood: 90.8221825393501 -#> EM - SNMoE: Iteration: 187 | log-likelihood: 90.8222726222892 +#> EM - SNMoE: Iteration: 1 | log-likelihood: 75.6582267640552 +#> EM - SNMoE: Iteration: 2 | log-likelihood: 87.5506009066281 +#> EM - SNMoE: Iteration: 3 | log-likelihood: 88.8080286154849 +#> EM - SNMoE: Iteration: 4 | log-likelihood: 89.1077515059606 +#> EM - SNMoE: Iteration: 5 | log-likelihood: 89.329753019168 +#> EM - SNMoE: Iteration: 6 | log-likelihood: 89.5469789751687 +#> EM - SNMoE: Iteration: 7 | log-likelihood: 89.697275319303 +#> EM - SNMoE: Iteration: 8 | log-likelihood: 89.7820968154708 +#> EM - SNMoE: Iteration: 9 | log-likelihood: 89.8270945728553 +#> EM - SNMoE: Iteration: 10 | log-likelihood: 89.8522823286919 +#> EM - SNMoE: Iteration: 11 | log-likelihood: 89.8690413856779 +#> EM - SNMoE: Iteration: 12 | log-likelihood: 89.8823842200577 +#> EM - SNMoE: Iteration: 13 | log-likelihood: 89.893711335446 +#> EM - SNMoE: Iteration: 14 | log-likelihood: 89.903651007628 +#> EM - SNMoE: Iteration: 15 | log-likelihood: 89.9126919526382 +#> EM - SNMoE: Iteration: 16 | log-likelihood: 89.9210534477009 +#> EM - SNMoE: Iteration: 17 | log-likelihood: 89.9287996641882 +#> EM - SNMoE: Iteration: 18 | log-likelihood: 89.9359421699094 +#> EM - SNMoE: Iteration: 19 | log-likelihood: 89.9424784760293 +#> EM - SNMoE: Iteration: 20 | log-likelihood: 89.9484058745788 +#> EM - SNMoE: Iteration: 21 | log-likelihood: 89.9537266360716 +#> EM - SNMoE: Iteration: 22 | log-likelihood: 89.958612102315 +#> EM - SNMoE: Iteration: 23 | log-likelihood: 89.9629445037021 +#> EM - SNMoE: Iteration: 24 | log-likelihood: 89.9666778358523 +#> EM - SNMoE: Iteration: 25 | log-likelihood: 89.9698373326217 +#> EM - SNMoE: Iteration: 26 | log-likelihood: 89.9724223286294 +#> EM - SNMoE: Iteration: 27 | log-likelihood: 89.9741838443145 +#> EM - SNMoE: Iteration: 28 | log-likelihood: 89.9763727182534 +#> EM - SNMoE: Iteration: 29 | log-likelihood: 89.9769284082082 +#> EM - SNMoE: Iteration: 30 | log-likelihood: 89.9777832354772 +#> EM - SNMoE: Iteration: 31 | log-likelihood: 89.9783880081162 +#> EM - SNMoE: Iteration: 32 | log-likelihood: 89.9788726718781 +#> EM - SNMoE: Iteration: 33 | log-likelihood: 89.979612939516 +#> EM - SNMoE: Iteration: 34 | log-likelihood: 89.9799560042027 +#> EM - SNMoE: Iteration: 35 | log-likelihood: 89.9800683243663 +#> EM - SNMoE: Iteration: 36 | log-likelihood: 89.980320341829 +#> EM - SNMoE: Iteration: 37 | log-likelihood: 89.9804747778964 +#> EM - SNMoE: Iteration: 38 | log-likelihood: 89.9805125106536 snmoe$summary() #> ----------------------------------------------- @@ -795,24 +657,24 @@ snmoe$summary() #> #> SNMoE model with K = 2 experts: #> -#> log-likelihood df AIC BIC ICL -#> 90.82227 10 80.82227 66.259 66.16274 +#> log-likelihood df AIC BIC ICL +#> 89.98051 10 79.98051 65.41724 65.30907 #> #> Clustering table (Number of observations in each expert): #> #> 1 2 -#> 69 67 +#> 70 66 #> #> Regression coefficients: #> #> Beta(k = 1) Beta(k = 2) -#> 1 -14.217412214 -32.63731250 -#> X^1 0.007303448 0.01668922 +#> 1 -14.190861693 -33.78223673 +#> X^1 0.007245948 0.01719786 #> #> Variances: #> #> Sigma2(k = 1) Sigma2(k = 2) -#> 0.01492812 0.03739716 +#> 0.0171769 0.01724323 snmoe$plot() ``` @@ -847,172 +709,81 @@ p <- 1 # Order of the polynomial regression (regressors/experts) q <- 1 # Order of the logistic regression (gating network) stmoe <- emStMoE(X = x, Y = y, K = K, p = p, q = q, verbose = TRUE) -#> EM - StMoE: Iteration: 1 | log-likelihood: -440.883552325807 -#> EM - StMoE: Iteration: 2 | log-likelihood: -375.041451068938 -#> EM - StMoE: Iteration: 3 | log-likelihood: -362.870294323756 -#> EM - StMoE: Iteration: 4 | log-likelihood: -353.094409813433 -#> EM - StMoE: Iteration: 5 | log-likelihood: -345.084704974844 -#> EM - StMoE: Iteration: 6 | log-likelihood: -338.385721447189 -#> EM - StMoE: Iteration: 7 | log-likelihood: -332.711434207247 -#> EM - StMoE: Iteration: 8 | log-likelihood: -327.869250919329 -#> EM - StMoE: Iteration: 9 | log-likelihood: -323.722486281363 -#> EM - StMoE: Iteration: 10 | log-likelihood: -320.174322569213 -#> EM - StMoE: Iteration: 11 | log-likelihood: -317.145317584615 -#> EM - StMoE: Iteration: 12 | log-likelihood: -314.564125534049 -#> EM - StMoE: Iteration: 13 | log-likelihood: -312.365799387958 -#> EM - StMoE: Iteration: 14 | log-likelihood: -310.494816434848 -#> EM - StMoE: Iteration: 15 | log-likelihood: -308.90734115717 -#> EM - StMoE: Iteration: 16 | log-likelihood: -307.562662018129 -#> EM - StMoE: Iteration: 17 | log-likelihood: -306.431863696511 -#> EM - StMoE: Iteration: 18 | log-likelihood: -305.491159408921 -#> EM - StMoE: Iteration: 19 | log-likelihood: -304.713201844797 -#> EM - StMoE: Iteration: 20 | log-likelihood: -304.076291722324 -#> EM - StMoE: Iteration: 21 | log-likelihood: -303.556264095577 -#> EM - StMoE: Iteration: 22 | log-likelihood: -303.133105733088 -#> EM - StMoE: Iteration: 23 | log-likelihood: -302.788962131677 -#> EM - StMoE: Iteration: 24 | log-likelihood: -302.510214757931 -#> EM - StMoE: Iteration: 25 | log-likelihood: -302.284355856085 -#> EM - StMoE: Iteration: 26 | log-likelihood: -302.102709492201 -#> EM - StMoE: Iteration: 27 | log-likelihood: -301.952229413618 -#> EM - StMoE: Iteration: 28 | log-likelihood: -301.828306594261 -#> EM - StMoE: Iteration: 29 | log-likelihood: -301.727844905847 -#> EM - StMoE: Iteration: 30 | log-likelihood: -301.648397641675 -#> EM - StMoE: Iteration: 31 | log-likelihood: -301.587551566133 -#> EM - StMoE: Iteration: 32 | log-likelihood: -301.543221465035 -#> EM - StMoE: Iteration: 33 | log-likelihood: -301.513271473494 -#> EM - StMoE: Iteration: 34 | log-likelihood: -301.493057761561 -#> EM - StMoE: Iteration: 35 | log-likelihood: -301.479539851439 -#> EM - StMoE: Iteration: 36 | log-likelihood: -301.472848664551 -#> EM - StMoE: Iteration: 37 | log-likelihood: -301.470938151252 -#> EM - StMoE: Iteration: 38 | log-likelihood: -301.473915142384 -#> EM - StMoE: Iteration: 39 | log-likelihood: -301.482189626534 -#> EM - StMoE: Iteration: 40 | log-likelihood: -301.492724445284 -#> EM - StMoE: Iteration: 41 | log-likelihood: -301.504430808141 -#> EM - StMoE: Iteration: 42 | log-likelihood: -301.520362479513 -#> EM - StMoE: Iteration: 43 | log-likelihood: -301.537844646926 -#> EM - StMoE: Iteration: 44 | log-likelihood: -301.558557865998 -#> EM - StMoE: Iteration: 45 | log-likelihood: -301.580326531981 -#> EM - StMoE: Iteration: 46 | log-likelihood: -301.6019097139 -#> EM - StMoE: Iteration: 47 | log-likelihood: -301.622978880623 -#> EM - StMoE: Iteration: 48 | log-likelihood: -301.643425685362 -#> EM - StMoE: Iteration: 49 | log-likelihood: -301.663097097178 -#> EM - StMoE: Iteration: 50 | log-likelihood: -301.682215354801 -#> EM - StMoE: Iteration: 51 | log-likelihood: -301.70079024187 -#> EM - StMoE: Iteration: 52 | log-likelihood: -301.719757725239 -#> EM - StMoE: Iteration: 53 | log-likelihood: -301.739381113304 -#> EM - StMoE: Iteration: 54 | log-likelihood: -301.759540649247 -#> EM - StMoE: Iteration: 55 | log-likelihood: -301.779249480904 -#> EM - StMoE: Iteration: 56 | log-likelihood: -301.797911724126 -#> EM - StMoE: Iteration: 57 | log-likelihood: -301.81623977499 -#> EM - StMoE: Iteration: 58 | log-likelihood: -301.833272923682 -#> EM - StMoE: Iteration: 59 | log-likelihood: -301.849360112204 -#> EM - StMoE: Iteration: 60 | log-likelihood: -301.864650313966 -#> EM - StMoE: Iteration: 61 | log-likelihood: -301.879219103222 -#> EM - StMoE: Iteration: 62 | log-likelihood: -301.893072095918 -#> EM - StMoE: Iteration: 63 | log-likelihood: -301.906573460693 -#> EM - StMoE: Iteration: 64 | log-likelihood: -301.919762960663 -#> EM - StMoE: Iteration: 65 | log-likelihood: -301.932522405111 -#> EM - StMoE: Iteration: 66 | log-likelihood: -301.945156344736 -#> EM - StMoE: Iteration: 67 | log-likelihood: -301.957387126573 -#> EM - StMoE: Iteration: 68 | log-likelihood: -301.969115554813 -#> EM - StMoE: Iteration: 69 | log-likelihood: -301.98037510572 -#> EM - StMoE: Iteration: 70 | log-likelihood: -301.991617754184 -#> EM - StMoE: Iteration: 71 | log-likelihood: -302.002560717356 -#> EM - StMoE: Iteration: 72 | log-likelihood: -302.013087192795 -#> EM - StMoE: Iteration: 73 | log-likelihood: -302.023158356658 -#> EM - StMoE: Iteration: 74 | log-likelihood: -302.033353078519 -#> EM - StMoE: Iteration: 75 | log-likelihood: -302.043205904383 -#> EM - StMoE: Iteration: 76 | log-likelihood: -302.052643511154 -#> EM - StMoE: Iteration: 77 | log-likelihood: -302.061810797848 -#> EM - StMoE: Iteration: 78 | log-likelihood: -302.070902764504 -#> EM - StMoE: Iteration: 79 | log-likelihood: -302.07973925995 -#> EM - StMoE: Iteration: 80 | log-likelihood: -302.088242899838 -#> EM - StMoE: Iteration: 81 | log-likelihood: -302.096388313632 -#> EM - StMoE: Iteration: 82 | log-likelihood: -302.104175694891 -#> EM - StMoE: Iteration: 83 | log-likelihood: -302.111617068742 -#> EM - StMoE: Iteration: 84 | log-likelihood: -302.118925441493 -#> EM - StMoE: Iteration: 85 | log-likelihood: -302.125457707218 -#> EM - StMoE: Iteration: 86 | log-likelihood: -302.13197004521 -#> EM - StMoE: Iteration: 87 | log-likelihood: -302.138129224314 -#> EM - StMoE: Iteration: 88 | log-likelihood: -302.144160520975 -#> EM - StMoE: Iteration: 89 | log-likelihood: -302.149916599427 -#> EM - StMoE: Iteration: 90 | log-likelihood: -302.155426446231 -#> EM - StMoE: Iteration: 91 | log-likelihood: -302.160714471348 -#> EM - StMoE: Iteration: 92 | log-likelihood: -302.165802591342 -#> EM - StMoE: Iteration: 93 | log-likelihood: -302.170710814011 -#> EM - StMoE: Iteration: 94 | log-likelihood: -302.175457223439 -#> EM - StMoE: Iteration: 95 | log-likelihood: -302.180057795817 -#> EM - StMoE: Iteration: 96 | log-likelihood: -302.184526236955 -#> EM - StMoE: Iteration: 97 | log-likelihood: -302.188117253055 -#> EM - StMoE: Iteration: 98 | log-likelihood: -302.191944047832 -#> EM - StMoE: Iteration: 99 | log-likelihood: -302.195764719166 -#> EM - StMoE: Iteration: 100 | log-likelihood: -302.199416754305 -#> EM - StMoE: Iteration: 101 | log-likelihood: -302.202913987336 -#> EM - StMoE: Iteration: 102 | log-likelihood: -302.206266279947 -#> EM - StMoE: Iteration: 103 | log-likelihood: -302.209481287433 -#> EM - StMoE: Iteration: 104 | log-likelihood: -302.21256540455 -#> EM - StMoE: Iteration: 105 | log-likelihood: -302.215524201826 -#> EM - StMoE: Iteration: 106 | log-likelihood: -302.21844028189 -#> EM - StMoE: Iteration: 107 | log-likelihood: -302.221347360257 -#> EM - StMoE: Iteration: 108 | log-likelihood: -302.224198487454 -#> EM - StMoE: Iteration: 109 | log-likelihood: -302.226968823771 -#> EM - StMoE: Iteration: 110 | log-likelihood: -302.22964637945 -#> EM - StMoE: Iteration: 111 | log-likelihood: -302.232226540156 -#> EM - StMoE: Iteration: 112 | log-likelihood: -302.234708840608 -#> EM - StMoE: Iteration: 113 | log-likelihood: -302.237095073969 -#> EM - StMoE: Iteration: 114 | log-likelihood: -302.239388193955 -#> EM - StMoE: Iteration: 115 | log-likelihood: -302.241591686042 -#> EM - StMoE: Iteration: 116 | log-likelihood: -302.243709214893 -#> EM - StMoE: Iteration: 117 | log-likelihood: -302.245744433168 -#> EM - StMoE: Iteration: 118 | log-likelihood: -302.247700883553 -#> EM - StMoE: Iteration: 119 | log-likelihood: -302.24958195369 -#> EM - StMoE: Iteration: 120 | log-likelihood: -302.251390860385 -#> EM - StMoE: Iteration: 121 | log-likelihood: -302.253130649339 -#> EM - StMoE: Iteration: 122 | log-likelihood: -302.254804202543 -#> EM - StMoE: Iteration: 123 | log-likelihood: -302.256414248943 -#> EM - StMoE: Iteration: 124 | log-likelihood: -302.257963375992 -#> EM - StMoE: Iteration: 125 | log-likelihood: -302.25945404088 -#> EM - StMoE: Iteration: 126 | log-likelihood: -302.260888580875 -#> EM - StMoE: Iteration: 127 | log-likelihood: -302.262269222598 -#> EM - StMoE: Iteration: 128 | log-likelihood: -302.263598090208 -#> EM - StMoE: Iteration: 129 | log-likelihood: -302.264877212588 -#> EM - StMoE: Iteration: 130 | log-likelihood: -302.266108529644 -#> EM - StMoE: Iteration: 131 | log-likelihood: -302.26729389785 -#> EM - StMoE: Iteration: 132 | log-likelihood: -302.268435095155 -#> EM - StMoE: Iteration: 133 | log-likelihood: -302.269533825348 -#> EM - StMoE: Iteration: 134 | log-likelihood: -302.270591721985 -#> EM - StMoE: Iteration: 135 | log-likelihood: -302.271610351937 -#> EM - StMoE: Iteration: 136 | log-likelihood: -302.272591218634 -#> EM - StMoE: Iteration: 137 | log-likelihood: -302.273535765038 -#> EM - StMoE: Iteration: 138 | log-likelihood: -302.274445376409 -#> EM - StMoE: Iteration: 139 | log-likelihood: -302.276048594329 -#> EM - StMoE: Iteration: 140 | log-likelihood: -302.277295858768 -#> EM - StMoE: Iteration: 141 | log-likelihood: -302.278329251585 -#> EM - StMoE: Iteration: 142 | log-likelihood: -302.27922826416 -#> EM - StMoE: Iteration: 143 | log-likelihood: -302.280037968947 -#> EM - StMoE: Iteration: 144 | log-likelihood: -302.280784391465 -#> EM - StMoE: Iteration: 145 | log-likelihood: -302.28148293074 -#> EM - StMoE: Iteration: 146 | log-likelihood: -302.282142994437 -#> EM - StMoE: Iteration: 147 | log-likelihood: -302.282770566065 -#> EM - StMoE: Iteration: 148 | log-likelihood: -302.283369637877 -#> EM - StMoE: Iteration: 149 | log-likelihood: -302.283943018484 -#> EM - StMoE: Iteration: 150 | log-likelihood: -302.284492793652 -#> EM - StMoE: Iteration: 151 | log-likelihood: -302.285020593249 -#> EM - StMoE: Iteration: 152 | log-likelihood: -302.285527748826 -#> EM - StMoE: Iteration: 153 | log-likelihood: -302.286015388739 -#> EM - StMoE: Iteration: 154 | log-likelihood: -302.286484497098 -#> EM - StMoE: Iteration: 155 | log-likelihood: -302.286935951393 -#> EM - StMoE: Iteration: 156 | log-likelihood: -302.287370547269 -#> EM - StMoE: Iteration: 157 | log-likelihood: -302.287789015395 -#> EM - StMoE: Iteration: 158 | log-likelihood: -302.288192033309 -#> EM - StMoE: Iteration: 159 | log-likelihood: -302.288580234002 -#> EM - StMoE: Iteration: 160 | log-likelihood: -302.288954212308 -#> EM - StMoE: Iteration: 161 | log-likelihood: -302.28931452978 -#> EM - StMoE: Iteration: 162 | log-likelihood: -302.289661718499 -#> EM - StMoE: Iteration: 163 | log-likelihood: -302.289996284107 -#> EM - StMoE: Iteration: 164 | log-likelihood: -302.290318708259 -#> EM - StMoE: Iteration: 165 | log-likelihood: -302.290629450648 -#> EM - StMoE: Iteration: 166 | log-likelihood: -302.290928950694 +#> EM - StMoE: Iteration: 1 | log-likelihood: -370.726750513745 +#> EM - StMoE: Iteration: 2 | log-likelihood: -341.192546514273 +#> EM - StMoE: Iteration: 3 | log-likelihood: -329.085781379873 +#> EM - StMoE: Iteration: 4 | log-likelihood: -323.871742557316 +#> EM - StMoE: Iteration: 5 | log-likelihood: -320.914075401737 +#> EM - StMoE: Iteration: 6 | log-likelihood: -318.939500521666 +#> EM - StMoE: Iteration: 7 | log-likelihood: -317.233506074405 +#> EM - StMoE: Iteration: 8 | log-likelihood: -315.350600501805 +#> EM - StMoE: Iteration: 9 | log-likelihood: -312.982352570411 +#> EM - StMoE: Iteration: 10 | log-likelihood: -309.931503956206 +#> EM - StMoE: Iteration: 11 | log-likelihood: -306.182624326178 +#> EM - StMoE: Iteration: 12 | log-likelihood: -301.920963379431 +#> EM - StMoE: Iteration: 13 | log-likelihood: -297.475855851536 +#> EM - StMoE: Iteration: 14 | log-likelihood: -293.180807902264 +#> EM - StMoE: Iteration: 15 | log-likelihood: -289.269523609631 +#> EM - StMoE: Iteration: 16 | log-likelihood: -285.851021856506 +#> EM - StMoE: Iteration: 17 | log-likelihood: -282.937428542089 +#> EM - StMoE: Iteration: 18 | log-likelihood: -280.484548212553 +#> EM - StMoE: Iteration: 19 | log-likelihood: -278.430299627705 +#> EM - StMoE: Iteration: 20 | log-likelihood: -276.701583635741 +#> EM - StMoE: Iteration: 21 | log-likelihood: -275.23510650157 +#> EM - StMoE: Iteration: 22 | log-likelihood: -273.976046055447 +#> EM - StMoE: Iteration: 23 | log-likelihood: -272.875088586673 +#> EM - StMoE: Iteration: 24 | log-likelihood: -271.891182155167 +#> EM - StMoE: Iteration: 25 | log-likelihood: -270.989590901097 +#> EM - StMoE: Iteration: 26 | log-likelihood: -270.142463780709 +#> EM - StMoE: Iteration: 27 | log-likelihood: -269.326043191357 +#> EM - StMoE: Iteration: 28 | log-likelihood: -268.520669614896 +#> EM - StMoE: Iteration: 29 | log-likelihood: -267.718525247743 +#> EM - StMoE: Iteration: 30 | log-likelihood: -266.914433053862 +#> EM - StMoE: Iteration: 31 | log-likelihood: -266.111243863019 +#> EM - StMoE: Iteration: 32 | log-likelihood: -265.313221476057 +#> EM - StMoE: Iteration: 33 | log-likelihood: -264.526690891787 +#> EM - StMoE: Iteration: 34 | log-likelihood: -263.75624425922 +#> EM - StMoE: Iteration: 35 | log-likelihood: -263.01001436157 +#> EM - StMoE: Iteration: 36 | log-likelihood: -262.289637286734 +#> EM - StMoE: Iteration: 37 | log-likelihood: -261.607364812145 +#> EM - StMoE: Iteration: 38 | log-likelihood: -260.963612856337 +#> EM - StMoE: Iteration: 39 | log-likelihood: -260.362020161207 +#> EM - StMoE: Iteration: 40 | log-likelihood: -259.807479377133 +#> EM - StMoE: Iteration: 41 | log-likelihood: -259.294751978309 +#> EM - StMoE: Iteration: 42 | log-likelihood: -258.823929923216 +#> EM - StMoE: Iteration: 43 | log-likelihood: -258.393864732422 +#> EM - StMoE: Iteration: 44 | log-likelihood: -258.003583888492 +#> EM - StMoE: Iteration: 45 | log-likelihood: -257.651663760473 +#> EM - StMoE: Iteration: 46 | log-likelihood: -257.336473657702 +#> EM - StMoE: Iteration: 47 | log-likelihood: -257.053719743825 +#> EM - StMoE: Iteration: 48 | log-likelihood: -256.800315380835 +#> EM - StMoE: Iteration: 49 | log-likelihood: -256.574930491759 +#> EM - StMoE: Iteration: 50 | log-likelihood: -256.375231949913 +#> EM - StMoE: Iteration: 51 | log-likelihood: -256.202157051131 +#> EM - StMoE: Iteration: 52 | log-likelihood: -256.051653014697 +#> EM - StMoE: Iteration: 53 | log-likelihood: -255.919749562333 +#> EM - StMoE: Iteration: 54 | log-likelihood: -255.805927749667 +#> EM - StMoE: Iteration: 55 | log-likelihood: -255.706492867034 +#> EM - StMoE: Iteration: 56 | log-likelihood: -255.618724055303 +#> EM - StMoE: Iteration: 57 | log-likelihood: -255.54144944194 +#> EM - StMoE: Iteration: 58 | log-likelihood: -255.473122006403 +#> EM - StMoE: Iteration: 59 | log-likelihood: -255.413654295168 +#> EM - StMoE: Iteration: 60 | log-likelihood: -255.363004199483 +#> EM - StMoE: Iteration: 61 | log-likelihood: -255.319582824904 +#> EM - StMoE: Iteration: 62 | log-likelihood: -255.282198769895 +#> EM - StMoE: Iteration: 63 | log-likelihood: -255.249941110261 +#> EM - StMoE: Iteration: 64 | log-likelihood: -255.22274913182 +#> EM - StMoE: Iteration: 65 | log-likelihood: -255.200812034839 +#> EM - StMoE: Iteration: 66 | log-likelihood: -255.1827230173 +#> EM - StMoE: Iteration: 67 | log-likelihood: -255.167717740071 +#> EM - StMoE: Iteration: 68 | log-likelihood: -255.156061184902 +#> EM - StMoE: Iteration: 69 | log-likelihood: -255.147002502619 +#> EM - StMoE: Iteration: 70 | log-likelihood: -255.140155018189 +#> EM - StMoE: Iteration: 71 | log-likelihood: -255.135121688847 +#> EM - StMoE: Iteration: 72 | log-likelihood: -255.131604303183 +#> EM - StMoE: Iteration: 73 | log-likelihood: -255.129369013648 +#> EM - StMoE: Iteration: 74 | log-likelihood: -255.128220393441 +#> EM - StMoE: Iteration: 75 | log-likelihood: -255.128009161635 stmoe$summary() #> ------------------------------------------ @@ -1021,8 +792,8 @@ stmoe$summary() #> #> StMoE model with K = 2 experts: #> -#> log-likelihood df AIC BIC ICL -#> -302.2909 12 -314.2909 -339.5786 -339.576 +#> log-likelihood df AIC BIC ICL +#> -255.128 12 -267.128 -292.4157 -292.4248 #> #> Clustering table (Number of observations in each expert): #> @@ -1032,24 +803,18 @@ stmoe$summary() #> Regression coefficients: #> #> Beta(k = 1) Beta(k = 2) -#> 1 0.06643398 -0.02736487 -#> X^1 2.57061178 -2.64710637 +#> 1 -0.04373447 -0.03343631 +#> X^1 2.56882321 -2.59525820 #> #> Variances: #> #> Sigma2(k = 1) Sigma2(k = 2) -#> 0.1031365 0.6024446 +#> 0.6109932 0.3072589 stmoe$plot() ``` - - - #> Warning in sqrt(stat$Vary): production de NaN - - #> Warning in sqrt(stat$Vary): production de NaN - - + ``` r # Applicartion to a real data set @@ -1064,98 +829,40 @@ p <- 2 # Order of the polynomial regression (regressors/experts) q <- 1 # Order of the logistic regression (gating network) stmoe <- emStMoE(X = x, Y = y, K = K, p = p, q = q, verbose = TRUE) -#> EM - StMoE: Iteration: 1 | log-likelihood: -599.970868260844 -#> EM - StMoE: Iteration: 2 | log-likelihood: -584.761753783483 -#> EM - StMoE: Iteration: 3 | log-likelihood: -584.739108683906 -#> EM - StMoE: Iteration: 4 | log-likelihood: -583.152667091195 -#> EM - StMoE: Iteration: 5 | log-likelihood: -577.01758775371 -#> EM - StMoE: Iteration: 6 | log-likelihood: -570.545320839571 -#> EM - StMoE: Iteration: 7 | log-likelihood: -566.102216660141 -#> EM - StMoE: Iteration: 8 | log-likelihood: -564.005208184307 -#> EM - StMoE: Iteration: 9 | log-likelihood: -563.473769874151 -#> EM - StMoE: Iteration: 10 | log-likelihood: -563.371015164243 -#> EM - StMoE: Iteration: 11 | log-likelihood: -563.325639042004 -#> EM - StMoE: Iteration: 12 | log-likelihood: -563.260956368371 -#> EM - StMoE: Iteration: 13 | log-likelihood: -563.160103139318 -#> EM - StMoE: Iteration: 14 | log-likelihood: -563.036208961213 -#> EM - StMoE: Iteration: 15 | log-likelihood: -562.929568309038 -#> EM - StMoE: Iteration: 16 | log-likelihood: -562.873926288988 -#> EM - StMoE: Iteration: 17 | log-likelihood: -562.863056340075 -#> EM - StMoE: Iteration: 18 | log-likelihood: -562.872058840866 -#> EM - StMoE: Iteration: 19 | log-likelihood: -562.884298969276 -#> EM - StMoE: Iteration: 20 | log-likelihood: -562.892257042228 -#> EM - StMoE: Iteration: 21 | log-likelihood: -562.893400819209 -#> EM - StMoE: Iteration: 22 | log-likelihood: -562.886326886739 -#> EM - StMoE: Iteration: 23 | log-likelihood: -562.869734547993 -#> EM - StMoE: Iteration: 24 | log-likelihood: -562.843373338597 -#> EM - StMoE: Iteration: 25 | log-likelihood: -562.806530223593 -#> EM - StMoE: Iteration: 26 | log-likelihood: -562.759209213378 -#> EM - StMoE: Iteration: 27 | log-likelihood: -562.701759556614 -#> EM - StMoE: Iteration: 28 | log-likelihood: -562.637851562422 -#> EM - StMoE: Iteration: 29 | log-likelihood: -562.578679951567 -#> EM - StMoE: Iteration: 30 | log-likelihood: -562.544706088763 -#> EM - StMoE: Iteration: 31 | log-likelihood: -562.547659760017 -#> EM - StMoE: Iteration: 32 | log-likelihood: -562.573594841724 -#> EM - StMoE: Iteration: 33 | log-likelihood: -562.606224655412 -#> EM - StMoE: Iteration: 34 | log-likelihood: -562.639170956927 -#> EM - StMoE: Iteration: 35 | log-likelihood: -562.670887429489 -#> EM - StMoE: Iteration: 36 | log-likelihood: -562.700977889776 -#> EM - StMoE: Iteration: 37 | log-likelihood: -562.729333904045 -#> EM - StMoE: Iteration: 38 | log-likelihood: -562.75594302018 -#> EM - StMoE: Iteration: 39 | log-likelihood: -562.780915483106 -#> EM - StMoE: Iteration: 40 | log-likelihood: -562.804273764516 -#> EM - StMoE: Iteration: 41 | log-likelihood: -562.826081748726 -#> EM - StMoE: Iteration: 42 | log-likelihood: -562.846465069854 -#> EM - StMoE: Iteration: 43 | log-likelihood: -562.865494990344 -#> EM - StMoE: Iteration: 44 | log-likelihood: -562.883363535599 -#> EM - StMoE: Iteration: 45 | log-likelihood: -562.899766649106 -#> EM - StMoE: Iteration: 46 | log-likelihood: -562.915105887419 -#> EM - StMoE: Iteration: 47 | log-likelihood: -562.929369415829 -#> EM - StMoE: Iteration: 48 | log-likelihood: -562.942618350082 -#> EM - StMoE: Iteration: 49 | log-likelihood: -562.954914681938 -#> EM - StMoE: Iteration: 50 | log-likelihood: -562.966324704433 -#> EM - StMoE: Iteration: 51 | log-likelihood: -562.976892924208 -#> EM - StMoE: Iteration: 52 | log-likelihood: -562.986679129858 -#> EM - StMoE: Iteration: 53 | log-likelihood: -562.995698141401 -#> EM - StMoE: Iteration: 54 | log-likelihood: -563.004199322622 -#> EM - StMoE: Iteration: 55 | log-likelihood: -563.011948719677 -#> EM - StMoE: Iteration: 56 | log-likelihood: -563.019092394262 -#> EM - StMoE: Iteration: 57 | log-likelihood: -563.025788220585 -#> EM - StMoE: Iteration: 58 | log-likelihood: -563.032130750582 -#> EM - StMoE: Iteration: 59 | log-likelihood: -563.038101658285 -#> EM - StMoE: Iteration: 60 | log-likelihood: -563.043686700587 -#> EM - StMoE: Iteration: 61 | log-likelihood: -563.048913316641 -#> EM - StMoE: Iteration: 62 | log-likelihood: -563.053800034428 -#> EM - StMoE: Iteration: 63 | log-likelihood: -563.058367081312 -#> EM - StMoE: Iteration: 64 | log-likelihood: -563.062634411041 -#> EM - StMoE: Iteration: 65 | log-likelihood: -563.066621029848 -#> EM - StMoE: Iteration: 66 | log-likelihood: -563.070344865861 -#> EM - StMoE: Iteration: 67 | log-likelihood: -563.073822774497 -#> EM - StMoE: Iteration: 68 | log-likelihood: -563.077068884576 -#> EM - StMoE: Iteration: 69 | log-likelihood: -563.080101318079 -#> EM - StMoE: Iteration: 70 | log-likelihood: -563.082932976016 -#> EM - StMoE: Iteration: 71 | log-likelihood: -563.085576456654 -#> EM - StMoE: Iteration: 72 | log-likelihood: -563.088043769262 -#> EM - StMoE: Iteration: 73 | log-likelihood: -563.090354748117 -#> EM - StMoE: Iteration: 74 | log-likelihood: -563.092543476789 -#> EM - StMoE: Iteration: 75 | log-likelihood: -563.094432674549 -#> EM - StMoE: Iteration: 76 | log-likelihood: -563.09630477819 -#> EM - StMoE: Iteration: 77 | log-likelihood: -563.098074257544 -#> EM - StMoE: Iteration: 78 | log-likelihood: -563.099724441976 -#> EM - StMoE: Iteration: 79 | log-likelihood: -563.101258071476 -#> EM - StMoE: Iteration: 80 | log-likelihood: -563.102682505525 -#> EM - StMoE: Iteration: 81 | log-likelihood: -563.104005588245 -#> EM - StMoE: Iteration: 82 | log-likelihood: -563.105234621045 -#> EM - StMoE: Iteration: 83 | log-likelihood: -563.106376189189 -#> EM - StMoE: Iteration: 84 | log-likelihood: -563.107436197855 -#> EM - StMoE: Iteration: 85 | log-likelihood: -563.108419942485 -#> EM - StMoE: Iteration: 86 | log-likelihood: -563.109332171131 -#> EM - StMoE: Iteration: 87 | log-likelihood: -563.110177132063 -#> EM - StMoE: Iteration: 88 | log-likelihood: -563.11095860863 -#> EM - StMoE: Iteration: 89 | log-likelihood: -563.11167994535 -#> EM - StMoE: Iteration: 90 | log-likelihood: -563.112344067246 -#> EM - StMoE: Iteration: 91 | log-likelihood: -563.112953493273 -#> EM - StMoE: Iteration: 92 | log-likelihood: -563.113510345457 +#> EM - StMoE: Iteration: 1 | log-likelihood: -592.004336622621 +#> EM - StMoE: Iteration: 2 | log-likelihood: -585.916900610996 +#> EM - StMoE: Iteration: 3 | log-likelihood: -583.076094509161 +#> EM - StMoE: Iteration: 4 | log-likelihood: -582.35303957367 +#> EM - StMoE: Iteration: 5 | log-likelihood: -581.734074076419 +#> EM - StMoE: Iteration: 6 | log-likelihood: -579.595449281258 +#> EM - StMoE: Iteration: 7 | log-likelihood: -575.42344389975 +#> EM - StMoE: Iteration: 8 | log-likelihood: -567.664506233259 +#> EM - StMoE: Iteration: 9 | log-likelihood: -562.744630287675 +#> EM - StMoE: Iteration: 10 | log-likelihood: -559.883103523731 +#> EM - StMoE: Iteration: 11 | log-likelihood: -558.5958354343 +#> EM - StMoE: Iteration: 12 | log-likelihood: -557.957404163152 +#> EM - StMoE: Iteration: 13 | log-likelihood: -557.580087963646 +#> EM - StMoE: Iteration: 14 | log-likelihood: -557.380380786243 +#> EM - StMoE: Iteration: 15 | log-likelihood: -557.254189800172 +#> EM - StMoE: Iteration: 16 | log-likelihood: -557.15021434204 +#> EM - StMoE: Iteration: 17 | log-likelihood: -557.055670910678 +#> EM - StMoE: Iteration: 18 | log-likelihood: -556.965014162961 +#> EM - StMoE: Iteration: 19 | log-likelihood: -556.875501292633 +#> EM - StMoE: Iteration: 20 | log-likelihood: -556.78537227562 +#> EM - StMoE: Iteration: 21 | log-likelihood: -556.693406619935 +#> EM - StMoE: Iteration: 22 | log-likelihood: -556.598768102611 +#> EM - StMoE: Iteration: 23 | log-likelihood: -556.500831004615 +#> EM - StMoE: Iteration: 24 | log-likelihood: -556.399708827442 +#> EM - StMoE: Iteration: 25 | log-likelihood: -556.297492762027 +#> EM - StMoE: Iteration: 26 | log-likelihood: -556.20141494444 +#> EM - StMoE: Iteration: 27 | log-likelihood: -556.126170836946 +#> EM - StMoE: Iteration: 28 | log-likelihood: -556.083951793487 +#> EM - StMoE: Iteration: 29 | log-likelihood: -556.067066602711 +#> EM - StMoE: Iteration: 30 | log-likelihood: -556.060627935558 +#> EM - StMoE: Iteration: 31 | log-likelihood: -556.057569070043 +#> EM - StMoE: Iteration: 32 | log-likelihood: -556.055860006502 +#> EM - StMoE: Iteration: 33 | log-likelihood: -556.054981626471 +#> EM - StMoE: Iteration: 34 | log-likelihood: -556.054660968923 stmoe$summary() #> ------------------------------------------ @@ -1164,8 +871,8 @@ stmoe$summary() #> #> StMoE model with K = 4 experts: #> -#> log-likelihood df AIC BIC ICL -#> -563.1135 30 -593.1135 -636.4687 -636.4969 +#> log-likelihood df AIC BIC ICL +#> -556.0547 30 -586.0547 -629.4099 -629.406 #> #> Clustering table (Number of observations in each expert): #> @@ -1174,15 +881,15 @@ stmoe$summary() #> #> Regression coefficients: #> -#> Beta(k = 1) Beta(k = 2) Beta(k = 3) Beta(k = 4) -#> 1 -3.52358475 996.077085 -1616.483001 134.35786999 -#> X^1 0.88184631 -104.419255 95.549943 -6.74970173 -#> X^2 -0.08184845 2.446371 -1.386852 0.07092188 +#> Beta(k = 1) Beta(k = 2) Beta(k = 3) Beta(k = 4) +#> 1 -3.64134439 1271.108412 -1831.574242 319.1508761 +#> X^1 0.92120299 -137.891056 113.065461 -13.2640845 +#> X^2 -0.08468105 3.367926 -1.698854 0.1361425 #> #> Variances: #> #> Sigma2(k = 1) Sigma2(k = 2) Sigma2(k = 3) Sigma2(k = 4) -#> 14.09186 448.3051 1404.488 1385.116 +#> 14.72618 1002.282 545.9523 425.1502 stmoe$plot() ``` @@ -1213,8 +920,9 @@ T-Distribution.” *Neural Networks - Elsevier* 79: 20–36.
Chamroukhi, F. 2016b. “Skew-Normal Mixture of Experts.” In *The -International Joint Conference on Neural Networks (IJCNN)*. Vancouver, -Canada. . +International Joint Conference on Neural Networks (IJCNN)*, 3000–3007. +Vancouver, Canada. +.
diff --git a/man/figures/README-unnamed-chunk-10-1.png b/man/figures/README-unnamed-chunk-10-1.png index f553fe5..f159c83 100644 Binary files a/man/figures/README-unnamed-chunk-10-1.png and b/man/figures/README-unnamed-chunk-10-1.png differ diff --git a/man/figures/README-unnamed-chunk-10-2.png b/man/figures/README-unnamed-chunk-10-2.png index 488e7ae..fbc533a 100644 Binary files a/man/figures/README-unnamed-chunk-10-2.png and b/man/figures/README-unnamed-chunk-10-2.png differ diff --git a/man/figures/README-unnamed-chunk-10-3.png b/man/figures/README-unnamed-chunk-10-3.png index 67238f1..9c668e2 100644 Binary files a/man/figures/README-unnamed-chunk-10-3.png and b/man/figures/README-unnamed-chunk-10-3.png differ diff --git a/man/figures/README-unnamed-chunk-10-4.png b/man/figures/README-unnamed-chunk-10-4.png index eb4a7f9..e91e6b3 100644 Binary files a/man/figures/README-unnamed-chunk-10-4.png and b/man/figures/README-unnamed-chunk-10-4.png differ diff --git a/man/figures/README-unnamed-chunk-11-1.png b/man/figures/README-unnamed-chunk-11-1.png index 7556151..17b6c36 100644 Binary files a/man/figures/README-unnamed-chunk-11-1.png and b/man/figures/README-unnamed-chunk-11-1.png differ diff --git a/man/figures/README-unnamed-chunk-11-2.png b/man/figures/README-unnamed-chunk-11-2.png index 21c2ee0..f91eaa1 100644 Binary files a/man/figures/README-unnamed-chunk-11-2.png and b/man/figures/README-unnamed-chunk-11-2.png differ diff --git a/man/figures/README-unnamed-chunk-11-3.png b/man/figures/README-unnamed-chunk-11-3.png index c37e343..1ad31f9 100644 Binary files a/man/figures/README-unnamed-chunk-11-3.png and b/man/figures/README-unnamed-chunk-11-3.png differ diff --git a/man/figures/README-unnamed-chunk-11-4.png b/man/figures/README-unnamed-chunk-11-4.png index c444473..957d103 100644 Binary files a/man/figures/README-unnamed-chunk-11-4.png and b/man/figures/README-unnamed-chunk-11-4.png differ diff --git a/man/figures/README-unnamed-chunk-12-1.png b/man/figures/README-unnamed-chunk-12-1.png index 84cb91f..974bba6 100644 Binary files a/man/figures/README-unnamed-chunk-12-1.png and b/man/figures/README-unnamed-chunk-12-1.png differ diff --git a/man/figures/README-unnamed-chunk-12-2.png b/man/figures/README-unnamed-chunk-12-2.png index f73f8bf..1f8bcd9 100644 Binary files a/man/figures/README-unnamed-chunk-12-2.png and b/man/figures/README-unnamed-chunk-12-2.png differ diff --git a/man/figures/README-unnamed-chunk-12-3.png b/man/figures/README-unnamed-chunk-12-3.png index 467248c..3c546b3 100644 Binary files a/man/figures/README-unnamed-chunk-12-3.png and b/man/figures/README-unnamed-chunk-12-3.png differ diff --git a/man/figures/README-unnamed-chunk-12-4.png b/man/figures/README-unnamed-chunk-12-4.png index 857e2d6..d370e47 100644 Binary files a/man/figures/README-unnamed-chunk-12-4.png and b/man/figures/README-unnamed-chunk-12-4.png differ diff --git a/man/figures/README-unnamed-chunk-13-1.png b/man/figures/README-unnamed-chunk-13-1.png index 0963c64..0040a84 100644 Binary files a/man/figures/README-unnamed-chunk-13-1.png and b/man/figures/README-unnamed-chunk-13-1.png differ diff --git a/man/figures/README-unnamed-chunk-13-2.png b/man/figures/README-unnamed-chunk-13-2.png index 18a7942..c8c7399 100644 Binary files a/man/figures/README-unnamed-chunk-13-2.png and b/man/figures/README-unnamed-chunk-13-2.png differ diff --git a/man/figures/README-unnamed-chunk-13-3.png b/man/figures/README-unnamed-chunk-13-3.png index 5060544..2165994 100644 Binary files a/man/figures/README-unnamed-chunk-13-3.png and b/man/figures/README-unnamed-chunk-13-3.png differ diff --git a/man/figures/README-unnamed-chunk-13-4.png b/man/figures/README-unnamed-chunk-13-4.png index 2dd4918..92c3181 100644 Binary files a/man/figures/README-unnamed-chunk-13-4.png and b/man/figures/README-unnamed-chunk-13-4.png differ diff --git a/man/figures/README-unnamed-chunk-6-1.png b/man/figures/README-unnamed-chunk-6-1.png index 002b75a..d27f1e6 100644 Binary files a/man/figures/README-unnamed-chunk-6-1.png and b/man/figures/README-unnamed-chunk-6-1.png differ diff --git a/man/figures/README-unnamed-chunk-6-2.png b/man/figures/README-unnamed-chunk-6-2.png index 5a547ba..0baf717 100644 Binary files a/man/figures/README-unnamed-chunk-6-2.png and b/man/figures/README-unnamed-chunk-6-2.png differ diff --git a/man/figures/README-unnamed-chunk-6-3.png b/man/figures/README-unnamed-chunk-6-3.png index da726ed..a079ee1 100644 Binary files a/man/figures/README-unnamed-chunk-6-3.png and b/man/figures/README-unnamed-chunk-6-3.png differ diff --git a/man/figures/README-unnamed-chunk-6-4.png b/man/figures/README-unnamed-chunk-6-4.png index d39914e..7403731 100644 Binary files a/man/figures/README-unnamed-chunk-6-4.png and b/man/figures/README-unnamed-chunk-6-4.png differ diff --git a/man/figures/README-unnamed-chunk-7-1.png b/man/figures/README-unnamed-chunk-7-1.png index 47fadca..fd56608 100644 Binary files a/man/figures/README-unnamed-chunk-7-1.png and b/man/figures/README-unnamed-chunk-7-1.png differ diff --git a/man/figures/README-unnamed-chunk-7-2.png b/man/figures/README-unnamed-chunk-7-2.png index 0017447..c8e4808 100644 Binary files a/man/figures/README-unnamed-chunk-7-2.png and b/man/figures/README-unnamed-chunk-7-2.png differ diff --git a/man/figures/README-unnamed-chunk-7-3.png b/man/figures/README-unnamed-chunk-7-3.png index 9c83469..52e5a6b 100644 Binary files a/man/figures/README-unnamed-chunk-7-3.png and b/man/figures/README-unnamed-chunk-7-3.png differ diff --git a/man/figures/README-unnamed-chunk-7-4.png b/man/figures/README-unnamed-chunk-7-4.png index 942d4ba..74fa544 100644 Binary files a/man/figures/README-unnamed-chunk-7-4.png and b/man/figures/README-unnamed-chunk-7-4.png differ diff --git a/man/figures/README-unnamed-chunk-8-1.png b/man/figures/README-unnamed-chunk-8-1.png index 1ed20e6..9f346fd 100644 Binary files a/man/figures/README-unnamed-chunk-8-1.png and b/man/figures/README-unnamed-chunk-8-1.png differ diff --git a/man/figures/README-unnamed-chunk-8-2.png b/man/figures/README-unnamed-chunk-8-2.png index d532163..b9654d4 100644 Binary files a/man/figures/README-unnamed-chunk-8-2.png and b/man/figures/README-unnamed-chunk-8-2.png differ diff --git a/man/figures/README-unnamed-chunk-8-3.png b/man/figures/README-unnamed-chunk-8-3.png index c18161a..f4858da 100644 Binary files a/man/figures/README-unnamed-chunk-8-3.png and b/man/figures/README-unnamed-chunk-8-3.png differ diff --git a/man/figures/README-unnamed-chunk-8-4.png b/man/figures/README-unnamed-chunk-8-4.png index ffff741..93bcfa8 100644 Binary files a/man/figures/README-unnamed-chunk-8-4.png and b/man/figures/README-unnamed-chunk-8-4.png differ diff --git a/man/figures/README-unnamed-chunk-9-1.png b/man/figures/README-unnamed-chunk-9-1.png index 048f28b..6f1e325 100644 Binary files a/man/figures/README-unnamed-chunk-9-1.png and b/man/figures/README-unnamed-chunk-9-1.png differ diff --git a/man/figures/README-unnamed-chunk-9-2.png b/man/figures/README-unnamed-chunk-9-2.png index 465ff13..dfa02b9 100644 Binary files a/man/figures/README-unnamed-chunk-9-2.png and b/man/figures/README-unnamed-chunk-9-2.png differ diff --git a/man/figures/README-unnamed-chunk-9-3.png b/man/figures/README-unnamed-chunk-9-3.png index afc5ef9..375a2a7 100644 Binary files a/man/figures/README-unnamed-chunk-9-3.png and b/man/figures/README-unnamed-chunk-9-3.png differ diff --git a/man/figures/README-unnamed-chunk-9-4.png b/man/figures/README-unnamed-chunk-9-4.png index 1b9fd5a..3371ddb 100644 Binary files a/man/figures/README-unnamed-chunk-9-4.png and b/man/figures/README-unnamed-chunk-9-4.png differ