diff --git a/NEWS.md b/NEWS.md
index b7c4a42..4a98cc5 100644
--- a/NEWS.md
+++ b/NEWS.md
@@ -1,3 +1,9 @@
+# meteorits 0.1.1.9000
+
+## Minor Improvements
+
+* Added CRAN downloads badge in `README.Rmd`.
+
# meteorits 0.1.1
## Minor Improvements
diff --git a/README.Rmd b/README.Rmd
index e20386c..0df28e0 100755
--- a/README.Rmd
+++ b/README.Rmd
@@ -21,6 +21,7 @@ knitr::opts_chunk$set(
[](https://travis-ci.org/fchamroukhi/MEteorits)
[](https://CRAN.R-project.org/package=meteorits)
+[](https://CRAN.R-project.org/package=meteorits)
MEteorits is an open source toolbox (available in R and Matlab) containing
diff --git a/README.md b/README.md
index a289020..117aae8 100644
--- a/README.md
+++ b/README.md
@@ -9,6 +9,8 @@
status](https://travis-ci.org/fchamroukhi/MEteorits.svg?branch=master)](https://travis-ci.org/fchamroukhi/MEteorits)
[](https://CRAN.R-project.org/package=meteorits)
+[](https://CRAN.R-project.org/package=meteorits)
MEteorits is an open source toolbox (available in R and Matlab)
@@ -85,38 +87,37 @@ p <- 1 # Order of the polynomial regression (regressors/experts)
q <- 1 # Order of the logistic regression (gating network)
nmoe <- emNMoE(X = x, Y = y, K = K, p = p, q = q, verbose = TRUE)
-#> EM NMoE: Iteration: 1 | log-likelihood: -850.659719240158
-#> EM NMoE: Iteration: 2 | log-likelihood: -850.524629010475
-#> EM NMoE: Iteration: 3 | log-likelihood: -850.430788051698
-#> EM NMoE: Iteration: 4 | log-likelihood: -850.283793706938
-#> EM NMoE: Iteration: 5 | log-likelihood: -849.97811162098
-#> EM NMoE: Iteration: 6 | log-likelihood: -849.309846170774
-#> EM NMoE: Iteration: 7 | log-likelihood: -847.853073877546
-#> EM NMoE: Iteration: 8 | log-likelihood: -844.760254765814
-#> EM NMoE: Iteration: 9 | log-likelihood: -838.538908952736
-#> EM NMoE: Iteration: 10 | log-likelihood: -827.124841419721
-#> EM NMoE: Iteration: 11 | log-likelihood: -809.002195790739
-#> EM NMoE: Iteration: 12 | log-likelihood: -786.082845509062
-#> EM NMoE: Iteration: 13 | log-likelihood: -765.697860048611
-#> EM NMoE: Iteration: 14 | log-likelihood: -753.84437315637
-#> EM NMoE: Iteration: 15 | log-likelihood: -748.545284749922
-#> EM NMoE: Iteration: 16 | log-likelihood: -746.181369709665
-#> EM NMoE: Iteration: 17 | log-likelihood: -745.062227019926
-#> EM NMoE: Iteration: 18 | log-likelihood: -744.517209155278
-#> EM NMoE: Iteration: 19 | log-likelihood: -744.248035626126
-#> EM NMoE: Iteration: 20 | log-likelihood: -744.113273238347
-#> EM NMoE: Iteration: 21 | log-likelihood: -744.04458797388
-#> EM NMoE: Iteration: 22 | log-likelihood: -744.008709857418
-#> EM NMoE: Iteration: 23 | log-likelihood: -743.989337491229
-#> EM NMoE: Iteration: 24 | log-likelihood: -743.978422442498
-#> EM NMoE: Iteration: 25 | log-likelihood: -743.971951246252
-#> EM NMoE: Iteration: 26 | log-likelihood: -743.967895060795
-#> EM NMoE: Iteration: 27 | log-likelihood: -743.965208755974
-#> EM NMoE: Iteration: 28 | log-likelihood: -743.963339864259
-#> EM NMoE: Iteration: 29 | log-likelihood: -743.961986174011
-#> EM NMoE: Iteration: 30 | log-likelihood: -743.960975097926
-#> EM NMoE: Iteration: 31 | log-likelihood: -743.960202991077
-#> EM NMoE: Iteration: 32 | log-likelihood: -743.959604173327
+#> EM NMoE: Iteration: 1 | log-likelihood: -809.706810650029
+#> EM NMoE: Iteration: 2 | log-likelihood: -809.442090250403
+#> EM NMoE: Iteration: 3 | log-likelihood: -808.852756811148
+#> EM NMoE: Iteration: 4 | log-likelihood: -807.387369287918
+#> EM NMoE: Iteration: 5 | log-likelihood: -803.803404913624
+#> EM NMoE: Iteration: 6 | log-likelihood: -795.586002509039
+#> EM NMoE: Iteration: 7 | log-likelihood: -779.101038601797
+#> EM NMoE: Iteration: 8 | log-likelihood: -752.947339798869
+#> EM NMoE: Iteration: 9 | log-likelihood: -723.277180356222
+#> EM NMoE: Iteration: 10 | log-likelihood: -700.214068128507
+#> EM NMoE: Iteration: 11 | log-likelihood: -687.850948104595
+#> EM NMoE: Iteration: 12 | log-likelihood: -682.555023512367
+#> EM NMoE: Iteration: 13 | log-likelihood: -680.204899081706
+#> EM NMoE: Iteration: 14 | log-likelihood: -679.033769002642
+#> EM NMoE: Iteration: 15 | log-likelihood: -678.405210015841
+#> EM NMoE: Iteration: 16 | log-likelihood: -678.054258475696
+#> EM NMoE: Iteration: 17 | log-likelihood: -677.853595138956
+#> EM NMoE: Iteration: 18 | log-likelihood: -677.73682703741
+#> EM NMoE: Iteration: 19 | log-likelihood: -677.66777562903
+#> EM NMoE: Iteration: 20 | log-likelihood: -677.626247937934
+#> EM NMoE: Iteration: 21 | log-likelihood: -677.600810250821
+#> EM NMoE: Iteration: 22 | log-likelihood: -677.584918737434
+#> EM NMoE: Iteration: 23 | log-likelihood: -677.574786964063
+#> EM NMoE: Iteration: 24 | log-likelihood: -677.568196149185
+#> EM NMoE: Iteration: 25 | log-likelihood: -677.563826399688
+#> EM NMoE: Iteration: 26 | log-likelihood: -677.560878727727
+#> EM NMoE: Iteration: 27 | log-likelihood: -677.558860023671
+#> EM NMoE: Iteration: 28 | log-likelihood: -677.557459664186
+#> EM NMoE: Iteration: 29 | log-likelihood: -677.556477895271
+#> EM NMoE: Iteration: 30 | log-likelihood: -677.555783673916
+#> EM NMoE: Iteration: 31 | log-likelihood: -677.555289432746
nmoe$summary()
#> ------------------------------------------
@@ -125,24 +126,24 @@ nmoe$summary()
#>
#> NMoE model with K = 2 experts:
#>
-#> log-likelihood df AIC BIC ICL
-#> -743.9596 8 -751.9596 -768.818 -827.3815
+#> log-likelihood df AIC BIC ICL
+#> -677.5553 8 -685.5553 -702.4137 -760.6137
#>
#> Clustering table (Number of observations in each expert):
#>
#> 1 2
-#> 292 208
+#> 268 232
#>
#> Regression coefficients:
#>
#> Beta(k = 1) Beta(k = 2)
-#> 1 0.01265767 -0.1734812
-#> X^1 2.26644322 -2.4105137
+#> 1 -0.1620135 0.08250916
+#> X^1 2.2161222 -2.65134465
#>
#> Variances:
#>
#> Sigma2(k = 1) Sigma2(k = 2)
-#> 1.103732 0.8591557
+#> 0.6812473 0.9282329
nmoe$plot()
```
@@ -161,61 +162,60 @@ p <- 1 # Order of the polynomial regression (regressors/experts)
q <- 1 # Order of the logistic regression (gating network)
nmoe <- emNMoE(X = x, Y = y, K = K, p = p, q = q, verbose = TRUE)
-#> EM NMoE: Iteration: 1 | log-likelihood: 48.3988726040827
-#> EM NMoE: Iteration: 2 | log-likelihood: 48.9326207295142
-#> EM NMoE: Iteration: 3 | log-likelihood: 50.051039377426
-#> EM NMoE: Iteration: 4 | log-likelihood: 52.9250961462781
-#> EM NMoE: Iteration: 5 | log-likelihood: 59.1669854674966
-#> EM NMoE: Iteration: 6 | log-likelihood: 67.5520185593279
-#> EM NMoE: Iteration: 7 | log-likelihood: 73.0997722565129
-#> EM NMoE: Iteration: 8 | log-likelihood: 75.5728843281524
-#> EM NMoE: Iteration: 9 | log-likelihood: 77.1804335125676
-#> EM NMoE: Iteration: 10 | log-likelihood: 78.8228583260898
-#> EM NMoE: Iteration: 11 | log-likelihood: 80.7994256495649
-#> EM NMoE: Iteration: 12 | log-likelihood: 83.4327216902578
-#> EM NMoE: Iteration: 13 | log-likelihood: 87.167207159755
-#> EM NMoE: Iteration: 14 | log-likelihood: 91.7548816275664
-#> EM NMoE: Iteration: 15 | log-likelihood: 94.8386054468416
-#> EM NMoE: Iteration: 16 | log-likelihood: 95.8702965168198
-#> EM NMoE: Iteration: 17 | log-likelihood: 96.201217475001
-#> EM NMoE: Iteration: 18 | log-likelihood: 96.3427273583883
-#> EM NMoE: Iteration: 19 | log-likelihood: 96.4312445403178
-#> EM NMoE: Iteration: 20 | log-likelihood: 96.5068035716238
-#> EM NMoE: Iteration: 21 | log-likelihood: 96.5827848006443
-#> EM NMoE: Iteration: 22 | log-likelihood: 96.664497621724
-#> EM NMoE: Iteration: 23 | log-likelihood: 96.7544065779447
-#> EM NMoE: Iteration: 24 | log-likelihood: 96.8535649805854
-#> EM NMoE: Iteration: 25 | log-likelihood: 96.9618980067147
-#> EM NMoE: Iteration: 26 | log-likelihood: 97.0781807281132
-#> EM NMoE: Iteration: 27 | log-likelihood: 97.2000668915646
-#> EM NMoE: Iteration: 28 | log-likelihood: 97.3243471857001
-#> EM NMoE: Iteration: 29 | log-likelihood: 97.4475005220902
-#> EM NMoE: Iteration: 30 | log-likelihood: 97.566473896656
-#> EM NMoE: Iteration: 31 | log-likelihood: 97.6794841146006
-#> EM NMoE: Iteration: 32 | log-likelihood: 97.7865826549208
-#> EM NMoE: Iteration: 33 | log-likelihood: 97.8897593890552
-#> EM NMoE: Iteration: 34 | log-likelihood: 97.9924846700633
-#> EM NMoE: Iteration: 35 | log-likelihood: 98.0988320818964
-#> EM NMoE: Iteration: 36 | log-likelihood: 98.2124589670307
-#> EM NMoE: Iteration: 37 | log-likelihood: 98.3358032691223
-#> EM NMoE: Iteration: 38 | log-likelihood: 98.4698046243747
-#> EM NMoE: Iteration: 39 | log-likelihood: 98.6142554980094
-#> EM NMoE: Iteration: 40 | log-likelihood: 98.7685998935106
-#> EM NMoE: Iteration: 41 | log-likelihood: 98.9327260646186
-#> EM NMoE: Iteration: 42 | log-likelihood: 99.1075255399307
-#> EM NMoE: Iteration: 43 | log-likelihood: 99.2951330061669
-#> EM NMoE: Iteration: 44 | log-likelihood: 99.4990978545361
-#> EM NMoE: Iteration: 45 | log-likelihood: 99.724781385219
-#> EM NMoE: Iteration: 46 | log-likelihood: 99.9802114334364
-#> EM NMoE: Iteration: 47 | log-likelihood: 100.277506353508
-#> EM NMoE: Iteration: 48 | log-likelihood: 100.634603770888
-#> EM NMoE: Iteration: 49 | log-likelihood: 101.074685777405
-#> EM NMoE: Iteration: 50 | log-likelihood: 101.609342261681
-#> EM NMoE: Iteration: 51 | log-likelihood: 102.167518045425
-#> EM NMoE: Iteration: 52 | log-likelihood: 102.591482251134
-#> EM NMoE: Iteration: 53 | log-likelihood: 102.692086561759
-#> EM NMoE: Iteration: 54 | log-likelihood: 102.721983731666
-#> EM NMoE: Iteration: 55 | log-likelihood: 102.721991417921
+#> EM NMoE: Iteration: 1 | log-likelihood: 50.6432153456244
+#> EM NMoE: Iteration: 2 | log-likelihood: 53.934649108107
+#> EM NMoE: Iteration: 3 | log-likelihood: 60.6701497541516
+#> EM NMoE: Iteration: 4 | log-likelihood: 68.9876834981437
+#> EM NMoE: Iteration: 5 | log-likelihood: 74.1535330063919
+#> EM NMoE: Iteration: 6 | log-likelihood: 76.3689210150024
+#> EM NMoE: Iteration: 7 | log-likelihood: 77.8597911004522
+#> EM NMoE: Iteration: 8 | log-likelihood: 79.4627195649828
+#> EM NMoE: Iteration: 9 | log-likelihood: 81.4837858519191
+#> EM NMoE: Iteration: 10 | log-likelihood: 84.2932240458227
+#> EM NMoE: Iteration: 11 | log-likelihood: 88.3307671999169
+#> EM NMoE: Iteration: 12 | log-likelihood: 92.8592341186395
+#> EM NMoE: Iteration: 13 | log-likelihood: 95.2679963002817
+#> EM NMoE: Iteration: 14 | log-likelihood: 95.969626511667
+#> EM NMoE: Iteration: 15 | log-likelihood: 96.1994384324512
+#> EM NMoE: Iteration: 16 | log-likelihood: 96.3064683737163
+#> EM NMoE: Iteration: 17 | log-likelihood: 96.3800876391194
+#> EM NMoE: Iteration: 18 | log-likelihood: 96.4463383343654
+#> EM NMoE: Iteration: 19 | log-likelihood: 96.514119992817
+#> EM NMoE: Iteration: 20 | log-likelihood: 96.5872942455468
+#> EM NMoE: Iteration: 21 | log-likelihood: 96.668028488323
+#> EM NMoE: Iteration: 22 | log-likelihood: 96.757665343346
+#> EM NMoE: Iteration: 23 | log-likelihood: 96.8568152587353
+#> EM NMoE: Iteration: 24 | log-likelihood: 96.9651985426369
+#> EM NMoE: Iteration: 25 | log-likelihood: 97.0814715110024
+#> EM NMoE: Iteration: 26 | log-likelihood: 97.2032041950014
+#> EM NMoE: Iteration: 27 | log-likelihood: 97.327125847162
+#> EM NMoE: Iteration: 28 | log-likelihood: 97.4496781949017
+#> EM NMoE: Iteration: 29 | log-likelihood: 97.5678015059268
+#> EM NMoE: Iteration: 30 | log-likelihood: 97.6797400473156
+#> EM NMoE: Iteration: 31 | log-likelihood: 97.785604172513
+#> EM NMoE: Iteration: 32 | log-likelihood: 97.8874644819064
+#> EM NMoE: Iteration: 33 | log-likelihood: 97.9888835891911
+#> EM NMoE: Iteration: 34 | log-likelihood: 98.0940258913524
+#> EM NMoE: Iteration: 35 | log-likelihood: 98.2066267073865
+#> EM NMoE: Iteration: 36 | log-likelihood: 98.3291698309732
+#> EM NMoE: Iteration: 37 | log-likelihood: 98.4625894354259
+#> EM NMoE: Iteration: 38 | log-likelihood: 98.6066182698173
+#> EM NMoE: Iteration: 39 | log-likelihood: 98.7606060332526
+#> EM NMoE: Iteration: 40 | log-likelihood: 98.9243461022025
+#> EM NMoE: Iteration: 41 | log-likelihood: 99.0986530262074
+#> EM NMoE: Iteration: 42 | log-likelihood: 99.2856009487651
+#> EM NMoE: Iteration: 43 | log-likelihood: 99.488675773663
+#> EM NMoE: Iteration: 44 | log-likelihood: 99.7131452064343
+#> EM NMoE: Iteration: 45 | log-likelihood: 99.9668844369062
+#> EM NMoE: Iteration: 46 | log-likelihood: 100.261773573947
+#> EM NMoE: Iteration: 47 | log-likelihood: 100.615437531682
+#> EM NMoE: Iteration: 48 | log-likelihood: 101.050949808851
+#> EM NMoE: Iteration: 49 | log-likelihood: 101.581512353992
+#> EM NMoE: Iteration: 50 | log-likelihood: 102.142889167434
+#> EM NMoE: Iteration: 51 | log-likelihood: 102.576392562953
+#> EM NMoE: Iteration: 52 | log-likelihood: 102.691222666866
+#> EM NMoE: Iteration: 53 | log-likelihood: 102.721963174691
+#> EM NMoE: Iteration: 54 | log-likelihood: 102.721971347465
nmoe$summary()
#> ------------------------------------------
@@ -225,7 +225,7 @@ nmoe$summary()
#> NMoE model with K = 2 experts:
#>
#> log-likelihood df AIC BIC ICL
-#> 102.722 8 94.72199 83.07137 83.17998
+#> 102.722 8 94.72197 83.07135 83.17815
#>
#> Clustering table (Number of observations in each expert):
#>
@@ -235,13 +235,13 @@ nmoe$summary()
#> Regression coefficients:
#>
#> Beta(k = 1) Beta(k = 2)
-#> 1 -42.36252836 -12.667270814
-#> X^1 0.02149289 0.006474796
+#> 1 -42.36218611 -12.667281991
+#> X^1 0.02149272 0.006474802
#>
#> Variances:
#>
#> Sigma2(k = 1) Sigma2(k = 2)
-#> 0.01193084 0.01352335
+#> 0.011931 0.01352343
nmoe$plot()
```
@@ -274,36 +274,35 @@ p <- 1 # Order of the polynomial regression (regressors/experts)
q <- 1 # Order of the logistic regression (gating network)
tmoe <- emTMoE(X = x, Y = y, K = K, p = p, q = q, verbose = TRUE)
-#> EM - tMoE: Iteration: 1 | log-likelihood: -552.125213974242
-#> EM - tMoE: Iteration: 2 | log-likelihood: -547.987183857056
-#> EM - tMoE: Iteration: 3 | log-likelihood: -546.40733469181
-#> EM - tMoE: Iteration: 4 | log-likelihood: -544.898386695277
-#> EM - tMoE: Iteration: 5 | log-likelihood: -543.502686575021
-#> EM - tMoE: Iteration: 6 | log-likelihood: -542.283105674398
-#> EM - tMoE: Iteration: 7 | log-likelihood: -541.266467232123
-#> EM - tMoE: Iteration: 8 | log-likelihood: -540.450661063362
-#> EM - tMoE: Iteration: 9 | log-likelihood: -539.815711994686
-#> EM - tMoE: Iteration: 10 | log-likelihood: -539.333458769544
-#> EM - tMoE: Iteration: 11 | log-likelihood: -538.974215771526
-#> EM - tMoE: Iteration: 12 | log-likelihood: -538.710672092328
-#> EM - tMoE: Iteration: 13 | log-likelihood: -538.519646653311
-#> EM - tMoE: Iteration: 14 | log-likelihood: -538.38248504553
-#> EM - tMoE: Iteration: 15 | log-likelihood: -538.284724625379
-#> EM - tMoE: Iteration: 16 | log-likelihood: -538.215449987784
-#> EM - tMoE: Iteration: 17 | log-likelihood: -538.166584335222
-#> EM - tMoE: Iteration: 18 | log-likelihood: -538.132238929576
-#> EM - tMoE: Iteration: 19 | log-likelihood: -538.108167974741
-#> EM - tMoE: Iteration: 20 | log-likelihood: -538.09133618607
-#> EM - tMoE: Iteration: 21 | log-likelihood: -538.07958783267
-#> EM - tMoE: Iteration: 22 | log-likelihood: -538.071399628517
-#> EM - tMoE: Iteration: 23 | log-likelihood: -538.065699459315
-#> EM - tMoE: Iteration: 24 | log-likelihood: -538.061735113966
-#> EM - tMoE: Iteration: 25 | log-likelihood: -538.058980140461
-#> EM - tMoE: Iteration: 26 | log-likelihood: -538.05706681974
-#> EM - tMoE: Iteration: 27 | log-likelihood: -538.055738714103
-#> EM - tMoE: Iteration: 28 | log-likelihood: -538.054817220152
-#> EM - tMoE: Iteration: 29 | log-likelihood: -538.054178073834
-#> EM - tMoE: Iteration: 30 | log-likelihood: -538.053734891082
+#> EM - tMoE: Iteration: 1 | log-likelihood: -511.796749974532
+#> EM - tMoE: Iteration: 2 | log-likelihood: -510.3107406311
+#> EM - tMoE: Iteration: 3 | log-likelihood: -509.912809848235
+#> EM - tMoE: Iteration: 4 | log-likelihood: -509.537358561964
+#> EM - tMoE: Iteration: 5 | log-likelihood: -509.188177260593
+#> EM - tMoE: Iteration: 6 | log-likelihood: -508.875273121335
+#> EM - tMoE: Iteration: 7 | log-likelihood: -508.604291722729
+#> EM - tMoE: Iteration: 8 | log-likelihood: -508.376624857194
+#> EM - tMoE: Iteration: 9 | log-likelihood: -508.190325164907
+#> EM - tMoE: Iteration: 10 | log-likelihood: -508.041274611462
+#> EM - tMoE: Iteration: 11 | log-likelihood: -507.924274800282
+#> EM - tMoE: Iteration: 12 | log-likelihood: -507.833886045062
+#> EM - tMoE: Iteration: 13 | log-likelihood: -507.764975577989
+#> EM - tMoE: Iteration: 14 | log-likelihood: -507.713013717814
+#> EM - tMoE: Iteration: 15 | log-likelihood: -507.674186179779
+#> EM - tMoE: Iteration: 16 | log-likelihood: -507.645389796845
+#> EM - tMoE: Iteration: 17 | log-likelihood: -507.624164803072
+#> EM - tMoE: Iteration: 18 | log-likelihood: -507.608600184335
+#> EM - tMoE: Iteration: 19 | log-likelihood: -507.597234407864
+#> EM - tMoE: Iteration: 20 | log-likelihood: -507.58896352802
+#> EM - tMoE: Iteration: 21 | log-likelihood: -507.5829619525
+#> EM - tMoE: Iteration: 22 | log-likelihood: -507.578617186637
+#> EM - tMoE: Iteration: 23 | log-likelihood: -507.575477773876
+#> EM - tMoE: Iteration: 24 | log-likelihood: -507.573212714482
+#> EM - tMoE: Iteration: 25 | log-likelihood: -507.571580377022
+#> EM - tMoE: Iteration: 26 | log-likelihood: -507.570404998184
+#> EM - tMoE: Iteration: 27 | log-likelihood: -507.569559103405
+#> EM - tMoE: Iteration: 28 | log-likelihood: -507.568950465063
+#> EM - tMoE: Iteration: 29 | log-likelihood: -507.568512491032
tmoe$summary()
#> -------------------------------------
@@ -313,7 +312,7 @@ tmoe$summary()
#> tMoE model with K = 2 experts:
#>
#> log-likelihood df AIC BIC ICL
-#> -538.0537 10 -548.0537 -569.1268 -569.1248
+#> -507.5685 10 -517.5685 -538.6416 -538.6463
#>
#> Clustering table (Number of observations in each expert):
#>
@@ -323,13 +322,13 @@ tmoe$summary()
#> Regression coefficients:
#>
#> Beta(k = 1) Beta(k = 2)
-#> 1 0.1725939 -0.08414846
-#> X^1 2.7387008 -2.33997997
+#> 1 0.1460788 0.1217012
+#> X^1 2.7009774 -2.5532779
#>
#> Variances:
#>
#> Sigma2(k = 1) Sigma2(k = 2)
-#> 0.2727009 0.4847398
+#> 0.2974055 0.4646762
tmoe$plot()
```
@@ -349,43 +348,33 @@ p <- 2 # Order of the polynomial regression (regressors/experts)
q <- 1 # Order of the logistic regression (gating network)
tmoe <- emTMoE(X = x, Y = y, K = K, p = p, q = q, verbose = TRUE)
-#> EM - tMoE: Iteration: 1 | log-likelihood: -605.266571357791
-#> EM - tMoE: Iteration: 2 | log-likelihood: -599.044701698548
-#> EM - tMoE: Iteration: 3 | log-likelihood: -595.501279714269
-#> EM - tMoE: Iteration: 4 | log-likelihood: -593.009530361222
-#> EM - tMoE: Iteration: 5 | log-likelihood: -590.714969153092
-#> EM - tMoE: Iteration: 6 | log-likelihood: -587.897449166264
-#> EM - tMoE: Iteration: 7 | log-likelihood: -583.582012360803
-#> EM - tMoE: Iteration: 8 | log-likelihood: -578.122132426342
-#> EM - tMoE: Iteration: 9 | log-likelihood: -573.081475929554
-#> EM - tMoE: Iteration: 10 | log-likelihood: -570.74014908355
-#> EM - tMoE: Iteration: 11 | log-likelihood: -569.7657737772
-#> EM - tMoE: Iteration: 12 | log-likelihood: -568.885074316649
-#> EM - tMoE: Iteration: 13 | log-likelihood: -568.011955227929
-#> EM - tMoE: Iteration: 14 | log-likelihood: -567.159312820848
-#> EM - tMoE: Iteration: 15 | log-likelihood: -566.350991948378
-#> EM - tMoE: Iteration: 16 | log-likelihood: -565.616862268021
-#> EM - tMoE: Iteration: 17 | log-likelihood: -564.990448386782
-#> EM - tMoE: Iteration: 18 | log-likelihood: -564.496384022067
-#> EM - tMoE: Iteration: 19 | log-likelihood: -564.13571445338
-#> EM - tMoE: Iteration: 20 | log-likelihood: -563.887578265863
-#> EM - tMoE: Iteration: 21 | log-likelihood: -563.72301337972
-#> EM - tMoE: Iteration: 22 | log-likelihood: -563.61586828125
-#> EM - tMoE: Iteration: 23 | log-likelihood: -563.546554999698
-#> EM - tMoE: Iteration: 24 | log-likelihood: -563.501679965445
-#> EM - tMoE: Iteration: 25 | log-likelihood: -563.472480239373
-#> EM - tMoE: Iteration: 26 | log-likelihood: -563.453334332534
-#> EM - tMoE: Iteration: 27 | log-likelihood: -563.440660583559
-#> EM - tMoE: Iteration: 28 | log-likelihood: -563.43217720637
-#> EM - tMoE: Iteration: 29 | log-likelihood: -563.426425658754
-#> EM - tMoE: Iteration: 30 | log-likelihood: -563.422468915477
-#> EM - tMoE: Iteration: 31 | log-likelihood: -563.41970146878
-#> EM - tMoE: Iteration: 32 | log-likelihood: -563.417729585165
-#> EM - tMoE: Iteration: 33 | log-likelihood: -563.416295552506
-#> EM - tMoE: Iteration: 34 | log-likelihood: -563.415229512982
-#> EM - tMoE: Iteration: 35 | log-likelihood: -563.414418669214
-#> EM - tMoE: Iteration: 36 | log-likelihood: -563.413787491396
-#> EM - tMoE: Iteration: 37 | log-likelihood: -563.413284930069
+#> EM - tMoE: Iteration: 1 | log-likelihood: -594.554792082464
+#> EM - tMoE: Iteration: 2 | log-likelihood: -583.302955759072
+#> EM - tMoE: Iteration: 3 | log-likelihood: -578.292340897525
+#> EM - tMoE: Iteration: 4 | log-likelihood: -575.357409690206
+#> EM - tMoE: Iteration: 5 | log-likelihood: -573.401056800228
+#> EM - tMoE: Iteration: 6 | log-likelihood: -571.744054768806
+#> EM - tMoE: Iteration: 7 | log-likelihood: -569.136161930618
+#> EM - tMoE: Iteration: 8 | log-likelihood: -564.112283927706
+#> EM - tMoE: Iteration: 9 | log-likelihood: -559.722060181244
+#> EM - tMoE: Iteration: 10 | log-likelihood: -557.301099054472
+#> EM - tMoE: Iteration: 11 | log-likelihood: -554.83754622596
+#> EM - tMoE: Iteration: 12 | log-likelihood: -553.251636169726
+#> EM - tMoE: Iteration: 13 | log-likelihood: -552.594047630798
+#> EM - tMoE: Iteration: 14 | log-likelihood: -552.137380727804
+#> EM - tMoE: Iteration: 15 | log-likelihood: -551.773084065302
+#> EM - tMoE: Iteration: 16 | log-likelihood: -551.562703767913
+#> EM - tMoE: Iteration: 17 | log-likelihood: -551.480319490202
+#> EM - tMoE: Iteration: 18 | log-likelihood: -551.449597088406
+#> EM - tMoE: Iteration: 19 | log-likelihood: -551.435398277139
+#> EM - tMoE: Iteration: 20 | log-likelihood: -551.427556692329
+#> EM - tMoE: Iteration: 21 | log-likelihood: -551.42279183321
+#> EM - tMoE: Iteration: 22 | log-likelihood: -551.419783414396
+#> EM - tMoE: Iteration: 23 | log-likelihood: -551.417798841385
+#> EM - tMoE: Iteration: 24 | log-likelihood: -551.41644326963
+#> EM - tMoE: Iteration: 25 | log-likelihood: -551.415484460335
+#> EM - tMoE: Iteration: 26 | log-likelihood: -551.41478442124
+#> EM - tMoE: Iteration: 27 | log-likelihood: -551.41425984316
tmoe$summary()
#> -------------------------------------
@@ -395,24 +384,24 @@ tmoe$summary()
#> tMoE model with K = 4 experts:
#>
#> log-likelihood df AIC BIC ICL
-#> -563.4133 26 -589.4133 -626.9878 -626.9753
+#> -551.4143 26 -577.4143 -614.9888 -614.9855
#>
#> Clustering table (Number of observations in each expert):
#>
#> 1 2 3 4
-#> 28 36 32 37
+#> 28 37 31 37
#>
#> Regression coefficients:
#>
-#> Beta(k = 1) Beta(k = 2) Beta(k = 3) Beta(k = 4)
-#> 1 -1.037712416 1774.38349 -1434.398457 292.6068438
-#> X^1 -0.111685768 -189.85966 84.930824 -12.1664690
-#> X^2 -0.007693142 4.74843 -1.205771 0.1248612
+#> Beta(k = 1) Beta(k = 2) Beta(k = 3) Beta(k = 4)
+#> 1 -1.53687875 1174.996409 -1806.449666 341.6895146
+#> X^1 0.02911007 -124.107064 111.188095 -14.2528609
+#> X^2 -0.01747138 2.977398 -1.664968 0.1466402
#>
#> Variances:
#>
#> Sigma2(k = 1) Sigma2(k = 2) Sigma2(k = 3) Sigma2(k = 4)
-#> 1.585304 30.88009 588.3835 572.0153
+#> 0.9642408 333.5289 571.8198 307.2462
tmoe$plot()
```
@@ -446,116 +435,138 @@ p <- 1 # Order of the polynomial regression (regressors/experts)
q <- 1 # Order of the logistic regression (gating network)
snmoe <- emSNMoE(X = x, Y = y, K = K, p = p, q = q, verbose = TRUE)
-#> EM - SNMoE: Iteration: 1 | log-likelihood: -624.23502477139
-#> EM - SNMoE: Iteration: 2 | log-likelihood: -506.408654239152
-#> EM - SNMoE: Iteration: 3 | log-likelihood: -501.732792195309
-#> EM - SNMoE: Iteration: 4 | log-likelihood: -500.859509544961
-#> EM - SNMoE: Iteration: 5 | log-likelihood: -500.597208229948
-#> EM - SNMoE: Iteration: 6 | log-likelihood: -500.433113585124
-#> EM - SNMoE: Iteration: 7 | log-likelihood: -500.281152659166
-#> EM - SNMoE: Iteration: 8 | log-likelihood: -500.133110076618
-#> EM - SNMoE: Iteration: 9 | log-likelihood: -499.99191573382
-#> EM - SNMoE: Iteration: 10 | log-likelihood: -499.859975065605
-#> EM - SNMoE: Iteration: 11 | log-likelihood: -499.738162701963
-#> EM - SNMoE: Iteration: 12 | log-likelihood: -499.626441124172
-#> EM - SNMoE: Iteration: 13 | log-likelihood: -499.524203019735
-#> EM - SNMoE: Iteration: 14 | log-likelihood: -499.430767562131
-#> EM - SNMoE: Iteration: 15 | log-likelihood: -499.345391721334
-#> EM - SNMoE: Iteration: 16 | log-likelihood: -499.267327179952
-#> EM - SNMoE: Iteration: 17 | log-likelihood: -499.195801598347
-#> EM - SNMoE: Iteration: 18 | log-likelihood: -499.130253804223
-#> EM - SNMoE: Iteration: 19 | log-likelihood: -499.070132602352
-#> EM - SNMoE: Iteration: 20 | log-likelihood: -499.014947707728
-#> EM - SNMoE: Iteration: 21 | log-likelihood: -498.964221084507
-#> EM - SNMoE: Iteration: 22 | log-likelihood: -498.917518912217
-#> EM - SNMoE: Iteration: 23 | log-likelihood: -498.874538031141
-#> EM - SNMoE: Iteration: 24 | log-likelihood: -498.834888076035
-#> EM - SNMoE: Iteration: 25 | log-likelihood: -498.7983021104
-#> EM - SNMoE: Iteration: 26 | log-likelihood: -498.764480641263
-#> EM - SNMoE: Iteration: 27 | log-likelihood: -498.733202141712
-#> EM - SNMoE: Iteration: 28 | log-likelihood: -498.704238852666
-#> EM - SNMoE: Iteration: 29 | log-likelihood: -498.677392482473
-#> EM - SNMoE: Iteration: 30 | log-likelihood: -498.652491791682
-#> EM - SNMoE: Iteration: 31 | log-likelihood: -498.629390755752
-#> EM - SNMoE: Iteration: 32 | log-likelihood: -498.607918269276
-#> EM - SNMoE: Iteration: 33 | log-likelihood: -498.587910911632
-#> EM - SNMoE: Iteration: 34 | log-likelihood: -498.569277705623
-#> EM - SNMoE: Iteration: 35 | log-likelihood: -498.55190826306
-#> EM - SNMoE: Iteration: 36 | log-likelihood: -498.535687200215
-#> EM - SNMoE: Iteration: 37 | log-likelihood: -498.520537677872
-#> EM - SNMoE: Iteration: 38 | log-likelihood: -498.506416782001
-#> EM - SNMoE: Iteration: 39 | log-likelihood: -498.49320047472
-#> EM - SNMoE: Iteration: 40 | log-likelihood: -498.480827889945
-#> EM - SNMoE: Iteration: 41 | log-likelihood: -498.469228245683
-#> EM - SNMoE: Iteration: 42 | log-likelihood: -498.458344857453
-#> EM - SNMoE: Iteration: 43 | log-likelihood: -498.448123845995
-#> EM - SNMoE: Iteration: 44 | log-likelihood: -498.438545657271
-#> EM - SNMoE: Iteration: 45 | log-likelihood: -498.429540998034
-#> EM - SNMoE: Iteration: 46 | log-likelihood: -498.421074031024
-#> EM - SNMoE: Iteration: 47 | log-likelihood: -498.41311296707
-#> EM - SNMoE: Iteration: 48 | log-likelihood: -498.405605264825
-#> EM - SNMoE: Iteration: 49 | log-likelihood: -498.398521521705
-#> EM - SNMoE: Iteration: 50 | log-likelihood: -498.391844793288
-#> EM - SNMoE: Iteration: 51 | log-likelihood: -498.38552887206
-#> EM - SNMoE: Iteration: 52 | log-likelihood: -498.379572728608
-#> EM - SNMoE: Iteration: 53 | log-likelihood: -498.37396103451
-#> EM - SNMoE: Iteration: 54 | log-likelihood: -498.36866047334
-#> EM - SNMoE: Iteration: 55 | log-likelihood: -498.363644517078
-#> EM - SNMoE: Iteration: 56 | log-likelihood: -498.358892274563
-#> EM - SNMoE: Iteration: 57 | log-likelihood: -498.354380407258
-#> EM - SNMoE: Iteration: 58 | log-likelihood: -498.350094791915
-#> EM - SNMoE: Iteration: 59 | log-likelihood: -498.34602480772
-#> EM - SNMoE: Iteration: 60 | log-likelihood: -498.3421684725
-#> EM - SNMoE: Iteration: 61 | log-likelihood: -498.338506556813
-#> EM - SNMoE: Iteration: 62 | log-likelihood: -498.33503223395
-#> EM - SNMoE: Iteration: 63 | log-likelihood: -498.331713804265
-#> EM - SNMoE: Iteration: 64 | log-likelihood: -498.328571094787
-#> EM - SNMoE: Iteration: 65 | log-likelihood: -498.325590361659
-#> EM - SNMoE: Iteration: 66 | log-likelihood: -498.322755553246
-#> EM - SNMoE: Iteration: 67 | log-likelihood: -498.320046428647
-#> EM - SNMoE: Iteration: 68 | log-likelihood: -498.317443740077
-#> EM - SNMoE: Iteration: 69 | log-likelihood: -498.314960477939
-#> EM - SNMoE: Iteration: 70 | log-likelihood: -498.312594638119
-#> EM - SNMoE: Iteration: 71 | log-likelihood: -498.310343053809
-#> EM - SNMoE: Iteration: 72 | log-likelihood: -498.308196455546
-#> EM - SNMoE: Iteration: 73 | log-likelihood: -498.306147088082
-#> EM - SNMoE: Iteration: 74 | log-likelihood: -498.304192065459
-#> EM - SNMoE: Iteration: 75 | log-likelihood: -498.302317083505
-#> EM - SNMoE: Iteration: 76 | log-likelihood: -498.300526286387
-#> EM - SNMoE: Iteration: 77 | log-likelihood: -498.298822583771
-#> EM - SNMoE: Iteration: 78 | log-likelihood: -498.297194394597
-#> EM - SNMoE: Iteration: 79 | log-likelihood: -498.295624150138
-#> EM - SNMoE: Iteration: 80 | log-likelihood: -498.294116793465
-#> EM - SNMoE: Iteration: 81 | log-likelihood: -498.292667126523
-#> EM - SNMoE: Iteration: 82 | log-likelihood: -498.291273946415
-#> EM - SNMoE: Iteration: 83 | log-likelihood: -498.289934769731
-#> EM - SNMoE: Iteration: 84 | log-likelihood: -498.28864214422
-#> EM - SNMoE: Iteration: 85 | log-likelihood: -498.287406098769
-#> EM - SNMoE: Iteration: 86 | log-likelihood: -498.286223595463
-#> EM - SNMoE: Iteration: 87 | log-likelihood: -498.28508616981
-#> EM - SNMoE: Iteration: 88 | log-likelihood: -498.283997340883
-#> EM - SNMoE: Iteration: 89 | log-likelihood: -498.282950283835
-#> EM - SNMoE: Iteration: 90 | log-likelihood: -498.281940546453
-#> EM - SNMoE: Iteration: 91 | log-likelihood: -498.280971375546
-#> EM - SNMoE: Iteration: 92 | log-likelihood: -498.28003834533
-#> EM - SNMoE: Iteration: 93 | log-likelihood: -498.279136372523
-#> EM - SNMoE: Iteration: 94 | log-likelihood: -498.278266652903
-#> EM - SNMoE: Iteration: 95 | log-likelihood: -498.277436244929
-#> EM - SNMoE: Iteration: 96 | log-likelihood: -498.27663442817
-#> EM - SNMoE: Iteration: 97 | log-likelihood: -498.275865623848
-#> EM - SNMoE: Iteration: 98 | log-likelihood: -498.275123197331
-#> EM - SNMoE: Iteration: 99 | log-likelihood: -498.274404273745
-#> EM - SNMoE: Iteration: 100 | log-likelihood: -498.273705295173
-#> EM - SNMoE: Iteration: 101 | log-likelihood: -498.273034134751
-#> EM - SNMoE: Iteration: 102 | log-likelihood: -498.272385781012
-#> EM - SNMoE: Iteration: 103 | log-likelihood: -498.271755604265
-#> EM - SNMoE: Iteration: 104 | log-likelihood: -498.271148680279
-#> EM - SNMoE: Iteration: 105 | log-likelihood: -498.270561891543
-#> EM - SNMoE: Iteration: 106 | log-likelihood: -498.269995057457
-#> EM - SNMoE: Iteration: 107 | log-likelihood: -498.269443948584
-#> EM - SNMoE: Iteration: 108 | log-likelihood: -498.268911556956
-#> EM - SNMoE: Iteration: 109 | log-likelihood: -498.268399011873
-#> EM - SNMoE: Iteration: 110 | log-likelihood: -498.267901191242
+#> EM - SNMoE: Iteration: 1 | log-likelihood: -631.309036318284
+#> EM - SNMoE: Iteration: 2 | log-likelihood: -537.252636784745
+#> EM - SNMoE: Iteration: 3 | log-likelihood: -532.917080153521
+#> EM - SNMoE: Iteration: 4 | log-likelihood: -531.703042239986
+#> EM - SNMoE: Iteration: 5 | log-likelihood: -531.1711410093
+#> EM - SNMoE: Iteration: 6 | log-likelihood: -530.814493267482
+#> EM - SNMoE: Iteration: 7 | log-likelihood: -530.508339347582
+#> EM - SNMoE: Iteration: 8 | log-likelihood: -530.218466379583
+#> EM - SNMoE: Iteration: 9 | log-likelihood: -529.933967336988
+#> EM - SNMoE: Iteration: 10 | log-likelihood: -529.650837824693
+#> EM - SNMoE: Iteration: 11 | log-likelihood: -529.367357898818
+#> EM - SNMoE: Iteration: 12 | log-likelihood: -529.082627260304
+#> EM - SNMoE: Iteration: 13 | log-likelihood: -528.796455422429
+#> EM - SNMoE: Iteration: 14 | log-likelihood: -528.508969085963
+#> EM - SNMoE: Iteration: 15 | log-likelihood: -528.220433402732
+#> EM - SNMoE: Iteration: 16 | log-likelihood: -527.93134698678
+#> EM - SNMoE: Iteration: 17 | log-likelihood: -527.642314756036
+#> EM - SNMoE: Iteration: 18 | log-likelihood: -527.354005979265
+#> EM - SNMoE: Iteration: 19 | log-likelihood: -527.067098501214
+#> EM - SNMoE: Iteration: 20 | log-likelihood: -526.782329168682
+#> EM - SNMoE: Iteration: 21 | log-likelihood: -526.500371331609
+#> EM - SNMoE: Iteration: 22 | log-likelihood: -526.221977442859
+#> EM - SNMoE: Iteration: 23 | log-likelihood: -525.947606946605
+#> EM - SNMoE: Iteration: 24 | log-likelihood: -525.677880997808
+#> EM - SNMoE: Iteration: 25 | log-likelihood: -525.413360688199
+#> EM - SNMoE: Iteration: 26 | log-likelihood: -525.154517638292
+#> EM - SNMoE: Iteration: 27 | log-likelihood: -524.901707284626
+#> EM - SNMoE: Iteration: 28 | log-likelihood: -524.655277657396
+#> EM - SNMoE: Iteration: 29 | log-likelihood: -524.415555933881
+#> EM - SNMoE: Iteration: 30 | log-likelihood: -524.182742163388
+#> EM - SNMoE: Iteration: 31 | log-likelihood: -523.956920280081
+#> EM - SNMoE: Iteration: 32 | log-likelihood: -523.738308043729
+#> EM - SNMoE: Iteration: 33 | log-likelihood: -523.526981404845
+#> EM - SNMoE: Iteration: 34 | log-likelihood: -523.32296202017
+#> EM - SNMoE: Iteration: 35 | log-likelihood: -523.126260102853
+#> EM - SNMoE: Iteration: 36 | log-likelihood: -522.936861275025
+#> EM - SNMoE: Iteration: 37 | log-likelihood: -522.754692108266
+#> EM - SNMoE: Iteration: 38 | log-likelihood: -522.579741333715
+#> EM - SNMoE: Iteration: 39 | log-likelihood: -522.411831140534
+#> EM - SNMoE: Iteration: 40 | log-likelihood: -522.250863099239
+#> EM - SNMoE: Iteration: 41 | log-likelihood: -522.096722252837
+#> EM - SNMoE: Iteration: 42 | log-likelihood: -521.949288385349
+#> EM - SNMoE: Iteration: 43 | log-likelihood: -521.808368200773
+#> EM - SNMoE: Iteration: 44 | log-likelihood: -521.673781503988
+#> EM - SNMoE: Iteration: 45 | log-likelihood: -521.545415355624
+#> EM - SNMoE: Iteration: 46 | log-likelihood: -521.423129238641
+#> EM - SNMoE: Iteration: 47 | log-likelihood: -521.306666897177
+#> EM - SNMoE: Iteration: 48 | log-likelihood: -521.195846237171
+#> EM - SNMoE: Iteration: 49 | log-likelihood: -521.090509815711
+#> EM - SNMoE: Iteration: 50 | log-likelihood: -520.990492422228
+#> EM - SNMoE: Iteration: 51 | log-likelihood: -520.895581256893
+#> EM - SNMoE: Iteration: 52 | log-likelihood: -520.805587138507
+#> EM - SNMoE: Iteration: 53 | log-likelihood: -520.720322121167
+#> EM - SNMoE: Iteration: 54 | log-likelihood: -520.639636853218
+#> EM - SNMoE: Iteration: 55 | log-likelihood: -520.563323534687
+#> EM - SNMoE: Iteration: 56 | log-likelihood: -520.491199906309
+#> EM - SNMoE: Iteration: 57 | log-likelihood: -520.42309042302
+#> EM - SNMoE: Iteration: 58 | log-likelihood: -520.358814864216
+#> EM - SNMoE: Iteration: 59 | log-likelihood: -520.298200188454
+#> EM - SNMoE: Iteration: 60 | log-likelihood: -520.241068369625
+#> EM - SNMoE: Iteration: 61 | log-likelihood: -520.187252049961
+#> EM - SNMoE: Iteration: 62 | log-likelihood: -520.136659884325
+#> EM - SNMoE: Iteration: 63 | log-likelihood: -520.089074763469
+#> EM - SNMoE: Iteration: 64 | log-likelihood: -520.044344708013
+#> EM - SNMoE: Iteration: 65 | log-likelihood: -520.002314895737
+#> EM - SNMoE: Iteration: 66 | log-likelihood: -519.96284459272
+#> EM - SNMoE: Iteration: 67 | log-likelihood: -519.925799118801
+#> EM - SNMoE: Iteration: 68 | log-likelihood: -519.891050423917
+#> EM - SNMoE: Iteration: 69 | log-likelihood: -519.858483464306
+#> EM - SNMoE: Iteration: 70 | log-likelihood: -519.827959088607
+#> EM - SNMoE: Iteration: 71 | log-likelihood: -519.799364667304
+#> EM - SNMoE: Iteration: 72 | log-likelihood: -519.77256333263
+#> EM - SNMoE: Iteration: 73 | log-likelihood: -519.74750334494
+#> EM - SNMoE: Iteration: 74 | log-likelihood: -519.724042697972
+#> EM - SNMoE: Iteration: 75 | log-likelihood: -519.702099286162
+#> EM - SNMoE: Iteration: 76 | log-likelihood: -519.681567463672
+#> EM - SNMoE: Iteration: 77 | log-likelihood: -519.662378960166
+#> EM - SNMoE: Iteration: 78 | log-likelihood: -519.644442375396
+#> EM - SNMoE: Iteration: 79 | log-likelihood: -519.62768083651
+#> EM - SNMoE: Iteration: 80 | log-likelihood: -519.612021156047
+#> EM - SNMoE: Iteration: 81 | log-likelihood: -519.597401707085
+#> EM - SNMoE: Iteration: 82 | log-likelihood: -519.583741251167
+#> EM - SNMoE: Iteration: 83 | log-likelihood: -519.570986072888
+#> EM - SNMoE: Iteration: 84 | log-likelihood: -519.559077525864
+#> EM - SNMoE: Iteration: 85 | log-likelihood: -519.547979907515
+#> EM - SNMoE: Iteration: 86 | log-likelihood: -519.53760883324
+#> EM - SNMoE: Iteration: 87 | log-likelihood: -519.527929570053
+#> EM - SNMoE: Iteration: 88 | log-likelihood: -519.51889536959
+#> EM - SNMoE: Iteration: 89 | log-likelihood: -519.51046340298
+#> EM - SNMoE: Iteration: 90 | log-likelihood: -519.502598095163
+#> EM - SNMoE: Iteration: 91 | log-likelihood: -519.495262081533
+#> EM - SNMoE: Iteration: 92 | log-likelihood: -519.488412765177
+#> EM - SNMoE: Iteration: 93 | log-likelihood: -519.4820227045
+#> EM - SNMoE: Iteration: 94 | log-likelihood: -519.476058860464
+#> EM - SNMoE: Iteration: 95 | log-likelihood: -519.470493415188
+#> EM - SNMoE: Iteration: 96 | log-likelihood: -519.465336864985
+#> EM - SNMoE: Iteration: 97 | log-likelihood: -519.460475275808
+#> EM - SNMoE: Iteration: 98 | log-likelihood: -519.455932791559
+#> EM - SNMoE: Iteration: 99 | log-likelihood: -519.451688949145
+#> EM - SNMoE: Iteration: 100 | log-likelihood: -519.447724174288
+#> EM - SNMoE: Iteration: 101 | log-likelihood: -519.444019655969
+#> EM - SNMoE: Iteration: 102 | log-likelihood: -519.440557693364
+#> EM - SNMoE: Iteration: 103 | log-likelihood: -519.437321600411
+#> EM - SNMoE: Iteration: 104 | log-likelihood: -519.434295710852
+#> EM - SNMoE: Iteration: 105 | log-likelihood: -519.431465509687
+#> EM - SNMoE: Iteration: 106 | log-likelihood: -519.428817709875
+#> EM - SNMoE: Iteration: 107 | log-likelihood: -519.426340146422
+#> EM - SNMoE: Iteration: 108 | log-likelihood: -519.424021548017
+#> EM - SNMoE: Iteration: 109 | log-likelihood: -519.421851341056
+#> EM - SNMoE: Iteration: 110 | log-likelihood: -519.419819581921
+#> EM - SNMoE: Iteration: 111 | log-likelihood: -519.417916919703
+#> EM - SNMoE: Iteration: 112 | log-likelihood: -519.41613491089
+#> EM - SNMoE: Iteration: 113 | log-likelihood: -519.414465937502
+#> EM - SNMoE: Iteration: 114 | log-likelihood: -519.4129022627
+#> EM - SNMoE: Iteration: 115 | log-likelihood: -519.411436872827
+#> EM - SNMoE: Iteration: 116 | log-likelihood: -519.410062762453
+#> EM - SNMoE: Iteration: 117 | log-likelihood: -519.40877335535
+#> EM - SNMoE: Iteration: 118 | log-likelihood: -519.407563613529
+#> EM - SNMoE: Iteration: 119 | log-likelihood: -519.406428456552
+#> EM - SNMoE: Iteration: 120 | log-likelihood: -519.405357137863
+#> EM - SNMoE: Iteration: 121 | log-likelihood: -519.40435129624
+#> EM - SNMoE: Iteration: 122 | log-likelihood: -519.403405510927
+#> EM - SNMoE: Iteration: 123 | log-likelihood: -519.402514965295
+#> EM - SNMoE: Iteration: 124 | log-likelihood: -519.401680534394
+#> EM - SNMoE: Iteration: 125 | log-likelihood: -519.400898552185
+#> EM - SNMoE: Iteration: 126 | log-likelihood: -519.400164106511
+#> EM - SNMoE: Iteration: 127 | log-likelihood: -519.399470618852
+#> EM - SNMoE: Iteration: 128 | log-likelihood: -519.398819973594
+#> EM - SNMoE: Iteration: 129 | log-likelihood: -519.398208199004
+#> EM - SNMoE: Iteration: 130 | log-likelihood: -519.397633636504
+#> EM - SNMoE: Iteration: 131 | log-likelihood: -519.397092754912
+#> EM - SNMoE: Iteration: 132 | log-likelihood: -519.396581854022
snmoe$summary()
#> -----------------------------------------------
@@ -565,7 +576,7 @@ snmoe$summary()
#> SNMoE model with K = 2 experts:
#>
#> log-likelihood df AIC BIC ICL
-#> -498.2679 10 -508.2679 -529.3409 -529.3804
+#> -519.3966 10 -529.3966 -550.4696 -550.5454
#>
#> Clustering table (Number of observations in each expert):
#>
@@ -575,13 +586,13 @@ snmoe$summary()
#> Regression coefficients:
#>
#> Beta(k = 1) Beta(k = 2)
-#> 1 0.9709634 1.021977
-#> X^1 2.6703213 -2.736127
+#> 1 1.056898 0.09250734
+#> X^1 2.738163 -2.77424777
#>
#> Variances:
#>
#> Sigma2(k = 1) Sigma2(k = 2)
-#> 0.4324076 0.4345685
+#> 0.4776785 1.28622
snmoe$plot()
```
@@ -600,193 +611,44 @@ p <- 1 # Order of the polynomial regression (regressors/experts)
q <- 1 # Order of the logistic regression (gating network)
snmoe <- emSNMoE(X = x, Y = y, K = K, p = p, q = q, verbose = TRUE)
-#> EM - SNMoE: Iteration: 1 | log-likelihood: 62.292138332677
-#> EM - SNMoE: Iteration: 2 | log-likelihood: 87.9145425373437
-#> EM - SNMoE: Iteration: 3 | log-likelihood: 89.0086739618696
-#> EM - SNMoE: Iteration: 4 | log-likelihood: 89.3937914630249
-#> EM - SNMoE: Iteration: 5 | log-likelihood: 89.6535757640902
-#> EM - SNMoE: Iteration: 6 | log-likelihood: 89.8306729565452
-#> EM - SNMoE: Iteration: 7 | log-likelihood: 89.9327809726066
-#> EM - SNMoE: Iteration: 8 | log-likelihood: 89.9900101339138
-#> EM - SNMoE: Iteration: 9 | log-likelihood: 90.0239748570575
-#> EM - SNMoE: Iteration: 10 | log-likelihood: 90.0475270018937
-#> EM - SNMoE: Iteration: 11 | log-likelihood: 90.0668977115359
-#> EM - SNMoE: Iteration: 12 | log-likelihood: 90.0840572217388
-#> EM - SNMoE: Iteration: 13 | log-likelihood: 90.0996801870063
-#> EM - SNMoE: Iteration: 14 | log-likelihood: 90.114322139282
-#> EM - SNMoE: Iteration: 15 | log-likelihood: 90.1282969436904
-#> EM - SNMoE: Iteration: 16 | log-likelihood: 90.1417415969409
-#> EM - SNMoE: Iteration: 17 | log-likelihood: 90.1547229730222
-#> EM - SNMoE: Iteration: 18 | log-likelihood: 90.1672833715162
-#> EM - SNMoE: Iteration: 19 | log-likelihood: 90.1794404195207
-#> EM - SNMoE: Iteration: 20 | log-likelihood: 90.1912239923447
-#> EM - SNMoE: Iteration: 21 | log-likelihood: 90.2026508363525
-#> EM - SNMoE: Iteration: 22 | log-likelihood: 90.2137384324658
-#> EM - SNMoE: Iteration: 23 | log-likelihood: 90.2245065555815
-#> EM - SNMoE: Iteration: 24 | log-likelihood: 90.2349750729752
-#> EM - SNMoE: Iteration: 25 | log-likelihood: 90.2452036384708
-#> EM - SNMoE: Iteration: 26 | log-likelihood: 90.255194718755
-#> EM - SNMoE: Iteration: 27 | log-likelihood: 90.2649308422496
-#> EM - SNMoE: Iteration: 28 | log-likelihood: 90.2744302834456
-#> EM - SNMoE: Iteration: 29 | log-likelihood: 90.2837106908074
-#> EM - SNMoE: Iteration: 30 | log-likelihood: 90.2928990112787
-#> EM - SNMoE: Iteration: 31 | log-likelihood: 90.3016166594444
-#> EM - SNMoE: Iteration: 32 | log-likelihood: 90.3102947751805
-#> EM - SNMoE: Iteration: 33 | log-likelihood: 90.318900466279
-#> EM - SNMoE: Iteration: 34 | log-likelihood: 90.3274306744404
-#> EM - SNMoE: Iteration: 35 | log-likelihood: 90.3358671627185
-#> EM - SNMoE: Iteration: 36 | log-likelihood: 90.3443859982734
-#> EM - SNMoE: Iteration: 37 | log-likelihood: 90.3526959594068
-#> EM - SNMoE: Iteration: 38 | log-likelihood: 90.3609977875098
-#> EM - SNMoE: Iteration: 39 | log-likelihood: 90.3692807155406
-#> EM - SNMoE: Iteration: 40 | log-likelihood: 90.3774653899762
-#> EM - SNMoE: Iteration: 41 | log-likelihood: 90.3856183967777
-#> EM - SNMoE: Iteration: 42 | log-likelihood: 90.393720562392
-#> EM - SNMoE: Iteration: 43 | log-likelihood: 90.4017868140956
-#> EM - SNMoE: Iteration: 44 | log-likelihood: 90.4098062308868
-#> EM - SNMoE: Iteration: 45 | log-likelihood: 90.4177820881849
-#> EM - SNMoE: Iteration: 46 | log-likelihood: 90.4257087087515
-#> EM - SNMoE: Iteration: 47 | log-likelihood: 90.4335795968909
-#> EM - SNMoE: Iteration: 48 | log-likelihood: 90.4413904823497
-#> EM - SNMoE: Iteration: 49 | log-likelihood: 90.4491411451583
-#> EM - SNMoE: Iteration: 50 | log-likelihood: 90.4568177335901
-#> EM - SNMoE: Iteration: 51 | log-likelihood: 90.4644226598137
-#> EM - SNMoE: Iteration: 52 | log-likelihood: 90.4719514584366
-#> EM - SNMoE: Iteration: 53 | log-likelihood: 90.479401028492
-#> EM - SNMoE: Iteration: 54 | log-likelihood: 90.4867728675382
-#> EM - SNMoE: Iteration: 55 | log-likelihood: 90.4940408877717
-#> EM - SNMoE: Iteration: 56 | log-likelihood: 90.5012509412612
-#> EM - SNMoE: Iteration: 57 | log-likelihood: 90.5083684584508
-#> EM - SNMoE: Iteration: 58 | log-likelihood: 90.5154189149307
-#> EM - SNMoE: Iteration: 59 | log-likelihood: 90.5223930629885
-#> EM - SNMoE: Iteration: 60 | log-likelihood: 90.5292946631728
-#> EM - SNMoE: Iteration: 61 | log-likelihood: 90.5361177953662
-#> EM - SNMoE: Iteration: 62 | log-likelihood: 90.5428708142414
-#> EM - SNMoE: Iteration: 63 | log-likelihood: 90.5495499096576
-#> EM - SNMoE: Iteration: 64 | log-likelihood: 90.5561559212972
-#> EM - SNMoE: Iteration: 65 | log-likelihood: 90.5626843501471
-#> EM - SNMoE: Iteration: 66 | log-likelihood: 90.5691420841755
-#> EM - SNMoE: Iteration: 67 | log-likelihood: 90.5755235491849
-#> EM - SNMoE: Iteration: 68 | log-likelihood: 90.5818282391941
-#> EM - SNMoE: Iteration: 69 | log-likelihood: 90.588057662454
-#> EM - SNMoE: Iteration: 70 | log-likelihood: 90.5942112112893
-#> EM - SNMoE: Iteration: 71 | log-likelihood: 90.6002904111158
-#> EM - SNMoE: Iteration: 72 | log-likelihood: 90.6062951042856
-#> EM - SNMoE: Iteration: 73 | log-likelihood: 90.6122217992879
-#> EM - SNMoE: Iteration: 74 | log-likelihood: 90.6180722178595
-#> EM - SNMoE: Iteration: 75 | log-likelihood: 90.6238454668585
-#> EM - SNMoE: Iteration: 76 | log-likelihood: 90.6295405360689
-#> EM - SNMoE: Iteration: 77 | log-likelihood: 90.6351564394961
-#> EM - SNMoE: Iteration: 78 | log-likelihood: 90.6406924459854
-#> EM - SNMoE: Iteration: 79 | log-likelihood: 90.6461477415273
-#> EM - SNMoE: Iteration: 80 | log-likelihood: 90.6515164371587
-#> EM - SNMoE: Iteration: 81 | log-likelihood: 90.6568037706302
-#> EM - SNMoE: Iteration: 82 | log-likelihood: 90.6620091052585
-#> EM - SNMoE: Iteration: 83 | log-likelihood: 90.667130410317
-#> EM - SNMoE: Iteration: 84 | log-likelihood: 90.6721658072011
-#> EM - SNMoE: Iteration: 85 | log-likelihood: 90.6771148463352
-#> EM - SNMoE: Iteration: 86 | log-likelihood: 90.681975635394
-#> EM - SNMoE: Iteration: 87 | log-likelihood: 90.6867485519895
-#> EM - SNMoE: Iteration: 88 | log-likelihood: 90.6914280877635
-#> EM - SNMoE: Iteration: 89 | log-likelihood: 90.6960216984873
-#> EM - SNMoE: Iteration: 90 | log-likelihood: 90.700522990832
-#> EM - SNMoE: Iteration: 91 | log-likelihood: 90.7049253352189
-#> EM - SNMoE: Iteration: 92 | log-likelihood: 90.709224577687
-#> EM - SNMoE: Iteration: 93 | log-likelihood: 90.7134204651541
-#> EM - SNMoE: Iteration: 94 | log-likelihood: 90.7175128344209
-#> EM - SNMoE: Iteration: 95 | log-likelihood: 90.7215671817578
-#> EM - SNMoE: Iteration: 96 | log-likelihood: 90.7252765782458
-#> EM - SNMoE: Iteration: 97 | log-likelihood: 90.7291598798633
-#> EM - SNMoE: Iteration: 98 | log-likelihood: 90.7327071459299
-#> EM - SNMoE: Iteration: 99 | log-likelihood: 90.7361862704723
-#> EM - SNMoE: Iteration: 100 | log-likelihood: 90.7395673235959
-#> EM - SNMoE: Iteration: 101 | log-likelihood: 90.7428509976105
-#> EM - SNMoE: Iteration: 102 | log-likelihood: 90.7460719415064
-#> EM - SNMoE: Iteration: 103 | log-likelihood: 90.749148330663
-#> EM - SNMoE: Iteration: 104 | log-likelihood: 90.7521504284841
-#> EM - SNMoE: Iteration: 105 | log-likelihood: 90.7550452978402
-#> EM - SNMoE: Iteration: 106 | log-likelihood: 90.7578330083901
-#> EM - SNMoE: Iteration: 107 | log-likelihood: 90.7605218349915
-#> EM - SNMoE: Iteration: 108 | log-likelihood: 90.7631207727075
-#> EM - SNMoE: Iteration: 109 | log-likelihood: 90.7656309322501
-#> EM - SNMoE: Iteration: 110 | log-likelihood: 90.7681987652464
-#> EM - SNMoE: Iteration: 111 | log-likelihood: 90.7705554083849
-#> EM - SNMoE: Iteration: 112 | log-likelihood: 90.7727831095643
-#> EM - SNMoE: Iteration: 113 | log-likelihood: 90.7749301181656
-#> EM - SNMoE: Iteration: 114 | log-likelihood: 90.7770198273515
-#> EM - SNMoE: Iteration: 115 | log-likelihood: 90.7790073891405
-#> EM - SNMoE: Iteration: 116 | log-likelihood: 90.7809308289703
-#> EM - SNMoE: Iteration: 117 | log-likelihood: 90.7827763625305
-#> EM - SNMoE: Iteration: 118 | log-likelihood: 90.7845439068696
-#> EM - SNMoE: Iteration: 119 | log-likelihood: 90.7862393745289
-#> EM - SNMoE: Iteration: 120 | log-likelihood: 90.7878675208113
-#> EM - SNMoE: Iteration: 121 | log-likelihood: 90.7894302838505
-#> EM - SNMoE: Iteration: 122 | log-likelihood: 90.7909296453262
-#> EM - SNMoE: Iteration: 123 | log-likelihood: 90.7923678843603
-#> EM - SNMoE: Iteration: 124 | log-likelihood: 90.7938593408333
-#> EM - SNMoE: Iteration: 125 | log-likelihood: 90.7951720999987
-#> EM - SNMoE: Iteration: 126 | log-likelihood: 90.7964313348435
-#> EM - SNMoE: Iteration: 127 | log-likelihood: 90.7976391837204
-#> EM - SNMoE: Iteration: 128 | log-likelihood: 90.7987952062374
-#> EM - SNMoE: Iteration: 129 | log-likelihood: 90.7999014144276
-#> EM - SNMoE: Iteration: 130 | log-likelihood: 90.8009598238791
-#> EM - SNMoE: Iteration: 131 | log-likelihood: 90.8019888206512
-#> EM - SNMoE: Iteration: 132 | log-likelihood: 90.8029562142312
-#> EM - SNMoE: Iteration: 133 | log-likelihood: 90.8038899405207
-#> EM - SNMoE: Iteration: 134 | log-likelihood: 90.8047809346196
-#> EM - SNMoE: Iteration: 135 | log-likelihood: 90.8056288697112
-#> EM - SNMoE: Iteration: 136 | log-likelihood: 90.8064365102508
-#> EM - SNMoE: Iteration: 137 | log-likelihood: 90.8072083975976
-#> EM - SNMoE: Iteration: 138 | log-likelihood: 90.8079459623392
-#> EM - SNMoE: Iteration: 139 | log-likelihood: 90.8086504624255
-#> EM - SNMoE: Iteration: 140 | log-likelihood: 90.8093228982677
-#> EM - SNMoE: Iteration: 141 | log-likelihood: 90.8099654751608
-#> EM - SNMoE: Iteration: 142 | log-likelihood: 90.8106446102449
-#> EM - SNMoE: Iteration: 143 | log-likelihood: 90.8112306380695
-#> EM - SNMoE: Iteration: 144 | log-likelihood: 90.8117910134191
-#> EM - SNMoE: Iteration: 145 | log-likelihood: 90.8123264869821
-#> EM - SNMoE: Iteration: 146 | log-likelihood: 90.8128353064792
-#> EM - SNMoE: Iteration: 147 | log-likelihood: 90.813320758887
-#> EM - SNMoE: Iteration: 148 | log-likelihood: 90.8137841377893
-#> EM - SNMoE: Iteration: 149 | log-likelihood: 90.8142266707801
-#> EM - SNMoE: Iteration: 150 | log-likelihood: 90.8146593536573
-#> EM - SNMoE: Iteration: 151 | log-likelihood: 90.8150625412625
-#> EM - SNMoE: Iteration: 152 | log-likelihood: 90.8154579266665
-#> EM - SNMoE: Iteration: 153 | log-likelihood: 90.8158258545648
-#> EM - SNMoE: Iteration: 154 | log-likelihood: 90.8161773354621
-#> EM - SNMoE: Iteration: 155 | log-likelihood: 90.8165130292432
-#> EM - SNMoE: Iteration: 156 | log-likelihood: 90.8168339082089
-#> EM - SNMoE: Iteration: 157 | log-likelihood: 90.8171408598141
-#> EM - SNMoE: Iteration: 158 | log-likelihood: 90.8174343507612
-#> EM - SNMoE: Iteration: 159 | log-likelihood: 90.8177150405841
-#> EM - SNMoE: Iteration: 160 | log-likelihood: 90.8179829474516
-#> EM - SNMoE: Iteration: 161 | log-likelihood: 90.8182386605315
-#> EM - SNMoE: Iteration: 162 | log-likelihood: 90.8185290095565
-#> EM - SNMoE: Iteration: 163 | log-likelihood: 90.818718303285
-#> EM - SNMoE: Iteration: 164 | log-likelihood: 90.8189892103138
-#> EM - SNMoE: Iteration: 165 | log-likelihood: 90.8192039239698
-#> EM - SNMoE: Iteration: 166 | log-likelihood: 90.8193641478361
-#> EM - SNMoE: Iteration: 167 | log-likelihood: 90.8196070442012
-#> EM - SNMoE: Iteration: 168 | log-likelihood: 90.8197949331449
-#> EM - SNMoE: Iteration: 169 | log-likelihood: 90.81997483171
-#> EM - SNMoE: Iteration: 170 | log-likelihood: 90.8201473016286
-#> EM - SNMoE: Iteration: 171 | log-likelihood: 90.8203136768737
-#> EM - SNMoE: Iteration: 172 | log-likelihood: 90.8204744695155
-#> EM - SNMoE: Iteration: 173 | log-likelihood: 90.820628259348
-#> EM - SNMoE: Iteration: 174 | log-likelihood: 90.8207754470074
-#> EM - SNMoE: Iteration: 175 | log-likelihood: 90.8209167839697
-#> EM - SNMoE: Iteration: 176 | log-likelihood: 90.8210525848093
-#> EM - SNMoE: Iteration: 177 | log-likelihood: 90.8211826587277
-#> EM - SNMoE: Iteration: 178 | log-likelihood: 90.8213073953412
-#> EM - SNMoE: Iteration: 179 | log-likelihood: 90.8214281260729
-#> EM - SNMoE: Iteration: 180 | log-likelihood: 90.8215444184688
-#> EM - SNMoE: Iteration: 181 | log-likelihood: 90.821656408958
-#> EM - SNMoE: Iteration: 182 | log-likelihood: 90.8217642942328
-#> EM - SNMoE: Iteration: 183 | log-likelihood: 90.8218682729254
-#> EM - SNMoE: Iteration: 184 | log-likelihood: 90.8219689323786
-#> EM - SNMoE: Iteration: 185 | log-likelihood: 90.8220661409908
-#> EM - SNMoE: Iteration: 186 | log-likelihood: 90.8221825393501
-#> EM - SNMoE: Iteration: 187 | log-likelihood: 90.8222726222892
+#> EM - SNMoE: Iteration: 1 | log-likelihood: 75.6582267640552
+#> EM - SNMoE: Iteration: 2 | log-likelihood: 87.5506009066281
+#> EM - SNMoE: Iteration: 3 | log-likelihood: 88.8080286154849
+#> EM - SNMoE: Iteration: 4 | log-likelihood: 89.1077515059606
+#> EM - SNMoE: Iteration: 5 | log-likelihood: 89.329753019168
+#> EM - SNMoE: Iteration: 6 | log-likelihood: 89.5469789751687
+#> EM - SNMoE: Iteration: 7 | log-likelihood: 89.697275319303
+#> EM - SNMoE: Iteration: 8 | log-likelihood: 89.7820968154708
+#> EM - SNMoE: Iteration: 9 | log-likelihood: 89.8270945728553
+#> EM - SNMoE: Iteration: 10 | log-likelihood: 89.8522823286919
+#> EM - SNMoE: Iteration: 11 | log-likelihood: 89.8690413856779
+#> EM - SNMoE: Iteration: 12 | log-likelihood: 89.8823842200577
+#> EM - SNMoE: Iteration: 13 | log-likelihood: 89.893711335446
+#> EM - SNMoE: Iteration: 14 | log-likelihood: 89.903651007628
+#> EM - SNMoE: Iteration: 15 | log-likelihood: 89.9126919526382
+#> EM - SNMoE: Iteration: 16 | log-likelihood: 89.9210534477009
+#> EM - SNMoE: Iteration: 17 | log-likelihood: 89.9287996641882
+#> EM - SNMoE: Iteration: 18 | log-likelihood: 89.9359421699094
+#> EM - SNMoE: Iteration: 19 | log-likelihood: 89.9424784760293
+#> EM - SNMoE: Iteration: 20 | log-likelihood: 89.9484058745788
+#> EM - SNMoE: Iteration: 21 | log-likelihood: 89.9537266360716
+#> EM - SNMoE: Iteration: 22 | log-likelihood: 89.958612102315
+#> EM - SNMoE: Iteration: 23 | log-likelihood: 89.9629445037021
+#> EM - SNMoE: Iteration: 24 | log-likelihood: 89.9666778358523
+#> EM - SNMoE: Iteration: 25 | log-likelihood: 89.9698373326217
+#> EM - SNMoE: Iteration: 26 | log-likelihood: 89.9724223286294
+#> EM - SNMoE: Iteration: 27 | log-likelihood: 89.9741838443145
+#> EM - SNMoE: Iteration: 28 | log-likelihood: 89.9763727182534
+#> EM - SNMoE: Iteration: 29 | log-likelihood: 89.9769284082082
+#> EM - SNMoE: Iteration: 30 | log-likelihood: 89.9777832354772
+#> EM - SNMoE: Iteration: 31 | log-likelihood: 89.9783880081162
+#> EM - SNMoE: Iteration: 32 | log-likelihood: 89.9788726718781
+#> EM - SNMoE: Iteration: 33 | log-likelihood: 89.979612939516
+#> EM - SNMoE: Iteration: 34 | log-likelihood: 89.9799560042027
+#> EM - SNMoE: Iteration: 35 | log-likelihood: 89.9800683243663
+#> EM - SNMoE: Iteration: 36 | log-likelihood: 89.980320341829
+#> EM - SNMoE: Iteration: 37 | log-likelihood: 89.9804747778964
+#> EM - SNMoE: Iteration: 38 | log-likelihood: 89.9805125106536
snmoe$summary()
#> -----------------------------------------------
@@ -795,24 +657,24 @@ snmoe$summary()
#>
#> SNMoE model with K = 2 experts:
#>
-#> log-likelihood df AIC BIC ICL
-#> 90.82227 10 80.82227 66.259 66.16274
+#> log-likelihood df AIC BIC ICL
+#> 89.98051 10 79.98051 65.41724 65.30907
#>
#> Clustering table (Number of observations in each expert):
#>
#> 1 2
-#> 69 67
+#> 70 66
#>
#> Regression coefficients:
#>
#> Beta(k = 1) Beta(k = 2)
-#> 1 -14.217412214 -32.63731250
-#> X^1 0.007303448 0.01668922
+#> 1 -14.190861693 -33.78223673
+#> X^1 0.007245948 0.01719786
#>
#> Variances:
#>
#> Sigma2(k = 1) Sigma2(k = 2)
-#> 0.01492812 0.03739716
+#> 0.0171769 0.01724323
snmoe$plot()
```
@@ -847,172 +709,81 @@ p <- 1 # Order of the polynomial regression (regressors/experts)
q <- 1 # Order of the logistic regression (gating network)
stmoe <- emStMoE(X = x, Y = y, K = K, p = p, q = q, verbose = TRUE)
-#> EM - StMoE: Iteration: 1 | log-likelihood: -440.883552325807
-#> EM - StMoE: Iteration: 2 | log-likelihood: -375.041451068938
-#> EM - StMoE: Iteration: 3 | log-likelihood: -362.870294323756
-#> EM - StMoE: Iteration: 4 | log-likelihood: -353.094409813433
-#> EM - StMoE: Iteration: 5 | log-likelihood: -345.084704974844
-#> EM - StMoE: Iteration: 6 | log-likelihood: -338.385721447189
-#> EM - StMoE: Iteration: 7 | log-likelihood: -332.711434207247
-#> EM - StMoE: Iteration: 8 | log-likelihood: -327.869250919329
-#> EM - StMoE: Iteration: 9 | log-likelihood: -323.722486281363
-#> EM - StMoE: Iteration: 10 | log-likelihood: -320.174322569213
-#> EM - StMoE: Iteration: 11 | log-likelihood: -317.145317584615
-#> EM - StMoE: Iteration: 12 | log-likelihood: -314.564125534049
-#> EM - StMoE: Iteration: 13 | log-likelihood: -312.365799387958
-#> EM - StMoE: Iteration: 14 | log-likelihood: -310.494816434848
-#> EM - StMoE: Iteration: 15 | log-likelihood: -308.90734115717
-#> EM - StMoE: Iteration: 16 | log-likelihood: -307.562662018129
-#> EM - StMoE: Iteration: 17 | log-likelihood: -306.431863696511
-#> EM - StMoE: Iteration: 18 | log-likelihood: -305.491159408921
-#> EM - StMoE: Iteration: 19 | log-likelihood: -304.713201844797
-#> EM - StMoE: Iteration: 20 | log-likelihood: -304.076291722324
-#> EM - StMoE: Iteration: 21 | log-likelihood: -303.556264095577
-#> EM - StMoE: Iteration: 22 | log-likelihood: -303.133105733088
-#> EM - StMoE: Iteration: 23 | log-likelihood: -302.788962131677
-#> EM - StMoE: Iteration: 24 | log-likelihood: -302.510214757931
-#> EM - StMoE: Iteration: 25 | log-likelihood: -302.284355856085
-#> EM - StMoE: Iteration: 26 | log-likelihood: -302.102709492201
-#> EM - StMoE: Iteration: 27 | log-likelihood: -301.952229413618
-#> EM - StMoE: Iteration: 28 | log-likelihood: -301.828306594261
-#> EM - StMoE: Iteration: 29 | log-likelihood: -301.727844905847
-#> EM - StMoE: Iteration: 30 | log-likelihood: -301.648397641675
-#> EM - StMoE: Iteration: 31 | log-likelihood: -301.587551566133
-#> EM - StMoE: Iteration: 32 | log-likelihood: -301.543221465035
-#> EM - StMoE: Iteration: 33 | log-likelihood: -301.513271473494
-#> EM - StMoE: Iteration: 34 | log-likelihood: -301.493057761561
-#> EM - StMoE: Iteration: 35 | log-likelihood: -301.479539851439
-#> EM - StMoE: Iteration: 36 | log-likelihood: -301.472848664551
-#> EM - StMoE: Iteration: 37 | log-likelihood: -301.470938151252
-#> EM - StMoE: Iteration: 38 | log-likelihood: -301.473915142384
-#> EM - StMoE: Iteration: 39 | log-likelihood: -301.482189626534
-#> EM - StMoE: Iteration: 40 | log-likelihood: -301.492724445284
-#> EM - StMoE: Iteration: 41 | log-likelihood: -301.504430808141
-#> EM - StMoE: Iteration: 42 | log-likelihood: -301.520362479513
-#> EM - StMoE: Iteration: 43 | log-likelihood: -301.537844646926
-#> EM - StMoE: Iteration: 44 | log-likelihood: -301.558557865998
-#> EM - StMoE: Iteration: 45 | log-likelihood: -301.580326531981
-#> EM - StMoE: Iteration: 46 | log-likelihood: -301.6019097139
-#> EM - StMoE: Iteration: 47 | log-likelihood: -301.622978880623
-#> EM - StMoE: Iteration: 48 | log-likelihood: -301.643425685362
-#> EM - StMoE: Iteration: 49 | log-likelihood: -301.663097097178
-#> EM - StMoE: Iteration: 50 | log-likelihood: -301.682215354801
-#> EM - StMoE: Iteration: 51 | log-likelihood: -301.70079024187
-#> EM - StMoE: Iteration: 52 | log-likelihood: -301.719757725239
-#> EM - StMoE: Iteration: 53 | log-likelihood: -301.739381113304
-#> EM - StMoE: Iteration: 54 | log-likelihood: -301.759540649247
-#> EM - StMoE: Iteration: 55 | log-likelihood: -301.779249480904
-#> EM - StMoE: Iteration: 56 | log-likelihood: -301.797911724126
-#> EM - StMoE: Iteration: 57 | log-likelihood: -301.81623977499
-#> EM - StMoE: Iteration: 58 | log-likelihood: -301.833272923682
-#> EM - StMoE: Iteration: 59 | log-likelihood: -301.849360112204
-#> EM - StMoE: Iteration: 60 | log-likelihood: -301.864650313966
-#> EM - StMoE: Iteration: 61 | log-likelihood: -301.879219103222
-#> EM - StMoE: Iteration: 62 | log-likelihood: -301.893072095918
-#> EM - StMoE: Iteration: 63 | log-likelihood: -301.906573460693
-#> EM - StMoE: Iteration: 64 | log-likelihood: -301.919762960663
-#> EM - StMoE: Iteration: 65 | log-likelihood: -301.932522405111
-#> EM - StMoE: Iteration: 66 | log-likelihood: -301.945156344736
-#> EM - StMoE: Iteration: 67 | log-likelihood: -301.957387126573
-#> EM - StMoE: Iteration: 68 | log-likelihood: -301.969115554813
-#> EM - StMoE: Iteration: 69 | log-likelihood: -301.98037510572
-#> EM - StMoE: Iteration: 70 | log-likelihood: -301.991617754184
-#> EM - StMoE: Iteration: 71 | log-likelihood: -302.002560717356
-#> EM - StMoE: Iteration: 72 | log-likelihood: -302.013087192795
-#> EM - StMoE: Iteration: 73 | log-likelihood: -302.023158356658
-#> EM - StMoE: Iteration: 74 | log-likelihood: -302.033353078519
-#> EM - StMoE: Iteration: 75 | log-likelihood: -302.043205904383
-#> EM - StMoE: Iteration: 76 | log-likelihood: -302.052643511154
-#> EM - StMoE: Iteration: 77 | log-likelihood: -302.061810797848
-#> EM - StMoE: Iteration: 78 | log-likelihood: -302.070902764504
-#> EM - StMoE: Iteration: 79 | log-likelihood: -302.07973925995
-#> EM - StMoE: Iteration: 80 | log-likelihood: -302.088242899838
-#> EM - StMoE: Iteration: 81 | log-likelihood: -302.096388313632
-#> EM - StMoE: Iteration: 82 | log-likelihood: -302.104175694891
-#> EM - StMoE: Iteration: 83 | log-likelihood: -302.111617068742
-#> EM - StMoE: Iteration: 84 | log-likelihood: -302.118925441493
-#> EM - StMoE: Iteration: 85 | log-likelihood: -302.125457707218
-#> EM - StMoE: Iteration: 86 | log-likelihood: -302.13197004521
-#> EM - StMoE: Iteration: 87 | log-likelihood: -302.138129224314
-#> EM - StMoE: Iteration: 88 | log-likelihood: -302.144160520975
-#> EM - StMoE: Iteration: 89 | log-likelihood: -302.149916599427
-#> EM - StMoE: Iteration: 90 | log-likelihood: -302.155426446231
-#> EM - StMoE: Iteration: 91 | log-likelihood: -302.160714471348
-#> EM - StMoE: Iteration: 92 | log-likelihood: -302.165802591342
-#> EM - StMoE: Iteration: 93 | log-likelihood: -302.170710814011
-#> EM - StMoE: Iteration: 94 | log-likelihood: -302.175457223439
-#> EM - StMoE: Iteration: 95 | log-likelihood: -302.180057795817
-#> EM - StMoE: Iteration: 96 | log-likelihood: -302.184526236955
-#> EM - StMoE: Iteration: 97 | log-likelihood: -302.188117253055
-#> EM - StMoE: Iteration: 98 | log-likelihood: -302.191944047832
-#> EM - StMoE: Iteration: 99 | log-likelihood: -302.195764719166
-#> EM - StMoE: Iteration: 100 | log-likelihood: -302.199416754305
-#> EM - StMoE: Iteration: 101 | log-likelihood: -302.202913987336
-#> EM - StMoE: Iteration: 102 | log-likelihood: -302.206266279947
-#> EM - StMoE: Iteration: 103 | log-likelihood: -302.209481287433
-#> EM - StMoE: Iteration: 104 | log-likelihood: -302.21256540455
-#> EM - StMoE: Iteration: 105 | log-likelihood: -302.215524201826
-#> EM - StMoE: Iteration: 106 | log-likelihood: -302.21844028189
-#> EM - StMoE: Iteration: 107 | log-likelihood: -302.221347360257
-#> EM - StMoE: Iteration: 108 | log-likelihood: -302.224198487454
-#> EM - StMoE: Iteration: 109 | log-likelihood: -302.226968823771
-#> EM - StMoE: Iteration: 110 | log-likelihood: -302.22964637945
-#> EM - StMoE: Iteration: 111 | log-likelihood: -302.232226540156
-#> EM - StMoE: Iteration: 112 | log-likelihood: -302.234708840608
-#> EM - StMoE: Iteration: 113 | log-likelihood: -302.237095073969
-#> EM - StMoE: Iteration: 114 | log-likelihood: -302.239388193955
-#> EM - StMoE: Iteration: 115 | log-likelihood: -302.241591686042
-#> EM - StMoE: Iteration: 116 | log-likelihood: -302.243709214893
-#> EM - StMoE: Iteration: 117 | log-likelihood: -302.245744433168
-#> EM - StMoE: Iteration: 118 | log-likelihood: -302.247700883553
-#> EM - StMoE: Iteration: 119 | log-likelihood: -302.24958195369
-#> EM - StMoE: Iteration: 120 | log-likelihood: -302.251390860385
-#> EM - StMoE: Iteration: 121 | log-likelihood: -302.253130649339
-#> EM - StMoE: Iteration: 122 | log-likelihood: -302.254804202543
-#> EM - StMoE: Iteration: 123 | log-likelihood: -302.256414248943
-#> EM - StMoE: Iteration: 124 | log-likelihood: -302.257963375992
-#> EM - StMoE: Iteration: 125 | log-likelihood: -302.25945404088
-#> EM - StMoE: Iteration: 126 | log-likelihood: -302.260888580875
-#> EM - StMoE: Iteration: 127 | log-likelihood: -302.262269222598
-#> EM - StMoE: Iteration: 128 | log-likelihood: -302.263598090208
-#> EM - StMoE: Iteration: 129 | log-likelihood: -302.264877212588
-#> EM - StMoE: Iteration: 130 | log-likelihood: -302.266108529644
-#> EM - StMoE: Iteration: 131 | log-likelihood: -302.26729389785
-#> EM - StMoE: Iteration: 132 | log-likelihood: -302.268435095155
-#> EM - StMoE: Iteration: 133 | log-likelihood: -302.269533825348
-#> EM - StMoE: Iteration: 134 | log-likelihood: -302.270591721985
-#> EM - StMoE: Iteration: 135 | log-likelihood: -302.271610351937
-#> EM - StMoE: Iteration: 136 | log-likelihood: -302.272591218634
-#> EM - StMoE: Iteration: 137 | log-likelihood: -302.273535765038
-#> EM - StMoE: Iteration: 138 | log-likelihood: -302.274445376409
-#> EM - StMoE: Iteration: 139 | log-likelihood: -302.276048594329
-#> EM - StMoE: Iteration: 140 | log-likelihood: -302.277295858768
-#> EM - StMoE: Iteration: 141 | log-likelihood: -302.278329251585
-#> EM - StMoE: Iteration: 142 | log-likelihood: -302.27922826416
-#> EM - StMoE: Iteration: 143 | log-likelihood: -302.280037968947
-#> EM - StMoE: Iteration: 144 | log-likelihood: -302.280784391465
-#> EM - StMoE: Iteration: 145 | log-likelihood: -302.28148293074
-#> EM - StMoE: Iteration: 146 | log-likelihood: -302.282142994437
-#> EM - StMoE: Iteration: 147 | log-likelihood: -302.282770566065
-#> EM - StMoE: Iteration: 148 | log-likelihood: -302.283369637877
-#> EM - StMoE: Iteration: 149 | log-likelihood: -302.283943018484
-#> EM - StMoE: Iteration: 150 | log-likelihood: -302.284492793652
-#> EM - StMoE: Iteration: 151 | log-likelihood: -302.285020593249
-#> EM - StMoE: Iteration: 152 | log-likelihood: -302.285527748826
-#> EM - StMoE: Iteration: 153 | log-likelihood: -302.286015388739
-#> EM - StMoE: Iteration: 154 | log-likelihood: -302.286484497098
-#> EM - StMoE: Iteration: 155 | log-likelihood: -302.286935951393
-#> EM - StMoE: Iteration: 156 | log-likelihood: -302.287370547269
-#> EM - StMoE: Iteration: 157 | log-likelihood: -302.287789015395
-#> EM - StMoE: Iteration: 158 | log-likelihood: -302.288192033309
-#> EM - StMoE: Iteration: 159 | log-likelihood: -302.288580234002
-#> EM - StMoE: Iteration: 160 | log-likelihood: -302.288954212308
-#> EM - StMoE: Iteration: 161 | log-likelihood: -302.28931452978
-#> EM - StMoE: Iteration: 162 | log-likelihood: -302.289661718499
-#> EM - StMoE: Iteration: 163 | log-likelihood: -302.289996284107
-#> EM - StMoE: Iteration: 164 | log-likelihood: -302.290318708259
-#> EM - StMoE: Iteration: 165 | log-likelihood: -302.290629450648
-#> EM - StMoE: Iteration: 166 | log-likelihood: -302.290928950694
+#> EM - StMoE: Iteration: 1 | log-likelihood: -370.726750513745
+#> EM - StMoE: Iteration: 2 | log-likelihood: -341.192546514273
+#> EM - StMoE: Iteration: 3 | log-likelihood: -329.085781379873
+#> EM - StMoE: Iteration: 4 | log-likelihood: -323.871742557316
+#> EM - StMoE: Iteration: 5 | log-likelihood: -320.914075401737
+#> EM - StMoE: Iteration: 6 | log-likelihood: -318.939500521666
+#> EM - StMoE: Iteration: 7 | log-likelihood: -317.233506074405
+#> EM - StMoE: Iteration: 8 | log-likelihood: -315.350600501805
+#> EM - StMoE: Iteration: 9 | log-likelihood: -312.982352570411
+#> EM - StMoE: Iteration: 10 | log-likelihood: -309.931503956206
+#> EM - StMoE: Iteration: 11 | log-likelihood: -306.182624326178
+#> EM - StMoE: Iteration: 12 | log-likelihood: -301.920963379431
+#> EM - StMoE: Iteration: 13 | log-likelihood: -297.475855851536
+#> EM - StMoE: Iteration: 14 | log-likelihood: -293.180807902264
+#> EM - StMoE: Iteration: 15 | log-likelihood: -289.269523609631
+#> EM - StMoE: Iteration: 16 | log-likelihood: -285.851021856506
+#> EM - StMoE: Iteration: 17 | log-likelihood: -282.937428542089
+#> EM - StMoE: Iteration: 18 | log-likelihood: -280.484548212553
+#> EM - StMoE: Iteration: 19 | log-likelihood: -278.430299627705
+#> EM - StMoE: Iteration: 20 | log-likelihood: -276.701583635741
+#> EM - StMoE: Iteration: 21 | log-likelihood: -275.23510650157
+#> EM - StMoE: Iteration: 22 | log-likelihood: -273.976046055447
+#> EM - StMoE: Iteration: 23 | log-likelihood: -272.875088586673
+#> EM - StMoE: Iteration: 24 | log-likelihood: -271.891182155167
+#> EM - StMoE: Iteration: 25 | log-likelihood: -270.989590901097
+#> EM - StMoE: Iteration: 26 | log-likelihood: -270.142463780709
+#> EM - StMoE: Iteration: 27 | log-likelihood: -269.326043191357
+#> EM - StMoE: Iteration: 28 | log-likelihood: -268.520669614896
+#> EM - StMoE: Iteration: 29 | log-likelihood: -267.718525247743
+#> EM - StMoE: Iteration: 30 | log-likelihood: -266.914433053862
+#> EM - StMoE: Iteration: 31 | log-likelihood: -266.111243863019
+#> EM - StMoE: Iteration: 32 | log-likelihood: -265.313221476057
+#> EM - StMoE: Iteration: 33 | log-likelihood: -264.526690891787
+#> EM - StMoE: Iteration: 34 | log-likelihood: -263.75624425922
+#> EM - StMoE: Iteration: 35 | log-likelihood: -263.01001436157
+#> EM - StMoE: Iteration: 36 | log-likelihood: -262.289637286734
+#> EM - StMoE: Iteration: 37 | log-likelihood: -261.607364812145
+#> EM - StMoE: Iteration: 38 | log-likelihood: -260.963612856337
+#> EM - StMoE: Iteration: 39 | log-likelihood: -260.362020161207
+#> EM - StMoE: Iteration: 40 | log-likelihood: -259.807479377133
+#> EM - StMoE: Iteration: 41 | log-likelihood: -259.294751978309
+#> EM - StMoE: Iteration: 42 | log-likelihood: -258.823929923216
+#> EM - StMoE: Iteration: 43 | log-likelihood: -258.393864732422
+#> EM - StMoE: Iteration: 44 | log-likelihood: -258.003583888492
+#> EM - StMoE: Iteration: 45 | log-likelihood: -257.651663760473
+#> EM - StMoE: Iteration: 46 | log-likelihood: -257.336473657702
+#> EM - StMoE: Iteration: 47 | log-likelihood: -257.053719743825
+#> EM - StMoE: Iteration: 48 | log-likelihood: -256.800315380835
+#> EM - StMoE: Iteration: 49 | log-likelihood: -256.574930491759
+#> EM - StMoE: Iteration: 50 | log-likelihood: -256.375231949913
+#> EM - StMoE: Iteration: 51 | log-likelihood: -256.202157051131
+#> EM - StMoE: Iteration: 52 | log-likelihood: -256.051653014697
+#> EM - StMoE: Iteration: 53 | log-likelihood: -255.919749562333
+#> EM - StMoE: Iteration: 54 | log-likelihood: -255.805927749667
+#> EM - StMoE: Iteration: 55 | log-likelihood: -255.706492867034
+#> EM - StMoE: Iteration: 56 | log-likelihood: -255.618724055303
+#> EM - StMoE: Iteration: 57 | log-likelihood: -255.54144944194
+#> EM - StMoE: Iteration: 58 | log-likelihood: -255.473122006403
+#> EM - StMoE: Iteration: 59 | log-likelihood: -255.413654295168
+#> EM - StMoE: Iteration: 60 | log-likelihood: -255.363004199483
+#> EM - StMoE: Iteration: 61 | log-likelihood: -255.319582824904
+#> EM - StMoE: Iteration: 62 | log-likelihood: -255.282198769895
+#> EM - StMoE: Iteration: 63 | log-likelihood: -255.249941110261
+#> EM - StMoE: Iteration: 64 | log-likelihood: -255.22274913182
+#> EM - StMoE: Iteration: 65 | log-likelihood: -255.200812034839
+#> EM - StMoE: Iteration: 66 | log-likelihood: -255.1827230173
+#> EM - StMoE: Iteration: 67 | log-likelihood: -255.167717740071
+#> EM - StMoE: Iteration: 68 | log-likelihood: -255.156061184902
+#> EM - StMoE: Iteration: 69 | log-likelihood: -255.147002502619
+#> EM - StMoE: Iteration: 70 | log-likelihood: -255.140155018189
+#> EM - StMoE: Iteration: 71 | log-likelihood: -255.135121688847
+#> EM - StMoE: Iteration: 72 | log-likelihood: -255.131604303183
+#> EM - StMoE: Iteration: 73 | log-likelihood: -255.129369013648
+#> EM - StMoE: Iteration: 74 | log-likelihood: -255.128220393441
+#> EM - StMoE: Iteration: 75 | log-likelihood: -255.128009161635
stmoe$summary()
#> ------------------------------------------
@@ -1021,8 +792,8 @@ stmoe$summary()
#>
#> StMoE model with K = 2 experts:
#>
-#> log-likelihood df AIC BIC ICL
-#> -302.2909 12 -314.2909 -339.5786 -339.576
+#> log-likelihood df AIC BIC ICL
+#> -255.128 12 -267.128 -292.4157 -292.4248
#>
#> Clustering table (Number of observations in each expert):
#>
@@ -1032,24 +803,18 @@ stmoe$summary()
#> Regression coefficients:
#>
#> Beta(k = 1) Beta(k = 2)
-#> 1 0.06643398 -0.02736487
-#> X^1 2.57061178 -2.64710637
+#> 1 -0.04373447 -0.03343631
+#> X^1 2.56882321 -2.59525820
#>
#> Variances:
#>
#> Sigma2(k = 1) Sigma2(k = 2)
-#> 0.1031365 0.6024446
+#> 0.6109932 0.3072589
stmoe$plot()
```
-
-
- #> Warning in sqrt(stat$Vary): production de NaN
-
- #> Warning in sqrt(stat$Vary): production de NaN
-
-
+
``` r
# Applicartion to a real data set
@@ -1064,98 +829,40 @@ p <- 2 # Order of the polynomial regression (regressors/experts)
q <- 1 # Order of the logistic regression (gating network)
stmoe <- emStMoE(X = x, Y = y, K = K, p = p, q = q, verbose = TRUE)
-#> EM - StMoE: Iteration: 1 | log-likelihood: -599.970868260844
-#> EM - StMoE: Iteration: 2 | log-likelihood: -584.761753783483
-#> EM - StMoE: Iteration: 3 | log-likelihood: -584.739108683906
-#> EM - StMoE: Iteration: 4 | log-likelihood: -583.152667091195
-#> EM - StMoE: Iteration: 5 | log-likelihood: -577.01758775371
-#> EM - StMoE: Iteration: 6 | log-likelihood: -570.545320839571
-#> EM - StMoE: Iteration: 7 | log-likelihood: -566.102216660141
-#> EM - StMoE: Iteration: 8 | log-likelihood: -564.005208184307
-#> EM - StMoE: Iteration: 9 | log-likelihood: -563.473769874151
-#> EM - StMoE: Iteration: 10 | log-likelihood: -563.371015164243
-#> EM - StMoE: Iteration: 11 | log-likelihood: -563.325639042004
-#> EM - StMoE: Iteration: 12 | log-likelihood: -563.260956368371
-#> EM - StMoE: Iteration: 13 | log-likelihood: -563.160103139318
-#> EM - StMoE: Iteration: 14 | log-likelihood: -563.036208961213
-#> EM - StMoE: Iteration: 15 | log-likelihood: -562.929568309038
-#> EM - StMoE: Iteration: 16 | log-likelihood: -562.873926288988
-#> EM - StMoE: Iteration: 17 | log-likelihood: -562.863056340075
-#> EM - StMoE: Iteration: 18 | log-likelihood: -562.872058840866
-#> EM - StMoE: Iteration: 19 | log-likelihood: -562.884298969276
-#> EM - StMoE: Iteration: 20 | log-likelihood: -562.892257042228
-#> EM - StMoE: Iteration: 21 | log-likelihood: -562.893400819209
-#> EM - StMoE: Iteration: 22 | log-likelihood: -562.886326886739
-#> EM - StMoE: Iteration: 23 | log-likelihood: -562.869734547993
-#> EM - StMoE: Iteration: 24 | log-likelihood: -562.843373338597
-#> EM - StMoE: Iteration: 25 | log-likelihood: -562.806530223593
-#> EM - StMoE: Iteration: 26 | log-likelihood: -562.759209213378
-#> EM - StMoE: Iteration: 27 | log-likelihood: -562.701759556614
-#> EM - StMoE: Iteration: 28 | log-likelihood: -562.637851562422
-#> EM - StMoE: Iteration: 29 | log-likelihood: -562.578679951567
-#> EM - StMoE: Iteration: 30 | log-likelihood: -562.544706088763
-#> EM - StMoE: Iteration: 31 | log-likelihood: -562.547659760017
-#> EM - StMoE: Iteration: 32 | log-likelihood: -562.573594841724
-#> EM - StMoE: Iteration: 33 | log-likelihood: -562.606224655412
-#> EM - StMoE: Iteration: 34 | log-likelihood: -562.639170956927
-#> EM - StMoE: Iteration: 35 | log-likelihood: -562.670887429489
-#> EM - StMoE: Iteration: 36 | log-likelihood: -562.700977889776
-#> EM - StMoE: Iteration: 37 | log-likelihood: -562.729333904045
-#> EM - StMoE: Iteration: 38 | log-likelihood: -562.75594302018
-#> EM - StMoE: Iteration: 39 | log-likelihood: -562.780915483106
-#> EM - StMoE: Iteration: 40 | log-likelihood: -562.804273764516
-#> EM - StMoE: Iteration: 41 | log-likelihood: -562.826081748726
-#> EM - StMoE: Iteration: 42 | log-likelihood: -562.846465069854
-#> EM - StMoE: Iteration: 43 | log-likelihood: -562.865494990344
-#> EM - StMoE: Iteration: 44 | log-likelihood: -562.883363535599
-#> EM - StMoE: Iteration: 45 | log-likelihood: -562.899766649106
-#> EM - StMoE: Iteration: 46 | log-likelihood: -562.915105887419
-#> EM - StMoE: Iteration: 47 | log-likelihood: -562.929369415829
-#> EM - StMoE: Iteration: 48 | log-likelihood: -562.942618350082
-#> EM - StMoE: Iteration: 49 | log-likelihood: -562.954914681938
-#> EM - StMoE: Iteration: 50 | log-likelihood: -562.966324704433
-#> EM - StMoE: Iteration: 51 | log-likelihood: -562.976892924208
-#> EM - StMoE: Iteration: 52 | log-likelihood: -562.986679129858
-#> EM - StMoE: Iteration: 53 | log-likelihood: -562.995698141401
-#> EM - StMoE: Iteration: 54 | log-likelihood: -563.004199322622
-#> EM - StMoE: Iteration: 55 | log-likelihood: -563.011948719677
-#> EM - StMoE: Iteration: 56 | log-likelihood: -563.019092394262
-#> EM - StMoE: Iteration: 57 | log-likelihood: -563.025788220585
-#> EM - StMoE: Iteration: 58 | log-likelihood: -563.032130750582
-#> EM - StMoE: Iteration: 59 | log-likelihood: -563.038101658285
-#> EM - StMoE: Iteration: 60 | log-likelihood: -563.043686700587
-#> EM - StMoE: Iteration: 61 | log-likelihood: -563.048913316641
-#> EM - StMoE: Iteration: 62 | log-likelihood: -563.053800034428
-#> EM - StMoE: Iteration: 63 | log-likelihood: -563.058367081312
-#> EM - StMoE: Iteration: 64 | log-likelihood: -563.062634411041
-#> EM - StMoE: Iteration: 65 | log-likelihood: -563.066621029848
-#> EM - StMoE: Iteration: 66 | log-likelihood: -563.070344865861
-#> EM - StMoE: Iteration: 67 | log-likelihood: -563.073822774497
-#> EM - StMoE: Iteration: 68 | log-likelihood: -563.077068884576
-#> EM - StMoE: Iteration: 69 | log-likelihood: -563.080101318079
-#> EM - StMoE: Iteration: 70 | log-likelihood: -563.082932976016
-#> EM - StMoE: Iteration: 71 | log-likelihood: -563.085576456654
-#> EM - StMoE: Iteration: 72 | log-likelihood: -563.088043769262
-#> EM - StMoE: Iteration: 73 | log-likelihood: -563.090354748117
-#> EM - StMoE: Iteration: 74 | log-likelihood: -563.092543476789
-#> EM - StMoE: Iteration: 75 | log-likelihood: -563.094432674549
-#> EM - StMoE: Iteration: 76 | log-likelihood: -563.09630477819
-#> EM - StMoE: Iteration: 77 | log-likelihood: -563.098074257544
-#> EM - StMoE: Iteration: 78 | log-likelihood: -563.099724441976
-#> EM - StMoE: Iteration: 79 | log-likelihood: -563.101258071476
-#> EM - StMoE: Iteration: 80 | log-likelihood: -563.102682505525
-#> EM - StMoE: Iteration: 81 | log-likelihood: -563.104005588245
-#> EM - StMoE: Iteration: 82 | log-likelihood: -563.105234621045
-#> EM - StMoE: Iteration: 83 | log-likelihood: -563.106376189189
-#> EM - StMoE: Iteration: 84 | log-likelihood: -563.107436197855
-#> EM - StMoE: Iteration: 85 | log-likelihood: -563.108419942485
-#> EM - StMoE: Iteration: 86 | log-likelihood: -563.109332171131
-#> EM - StMoE: Iteration: 87 | log-likelihood: -563.110177132063
-#> EM - StMoE: Iteration: 88 | log-likelihood: -563.11095860863
-#> EM - StMoE: Iteration: 89 | log-likelihood: -563.11167994535
-#> EM - StMoE: Iteration: 90 | log-likelihood: -563.112344067246
-#> EM - StMoE: Iteration: 91 | log-likelihood: -563.112953493273
-#> EM - StMoE: Iteration: 92 | log-likelihood: -563.113510345457
+#> EM - StMoE: Iteration: 1 | log-likelihood: -592.004336622621
+#> EM - StMoE: Iteration: 2 | log-likelihood: -585.916900610996
+#> EM - StMoE: Iteration: 3 | log-likelihood: -583.076094509161
+#> EM - StMoE: Iteration: 4 | log-likelihood: -582.35303957367
+#> EM - StMoE: Iteration: 5 | log-likelihood: -581.734074076419
+#> EM - StMoE: Iteration: 6 | log-likelihood: -579.595449281258
+#> EM - StMoE: Iteration: 7 | log-likelihood: -575.42344389975
+#> EM - StMoE: Iteration: 8 | log-likelihood: -567.664506233259
+#> EM - StMoE: Iteration: 9 | log-likelihood: -562.744630287675
+#> EM - StMoE: Iteration: 10 | log-likelihood: -559.883103523731
+#> EM - StMoE: Iteration: 11 | log-likelihood: -558.5958354343
+#> EM - StMoE: Iteration: 12 | log-likelihood: -557.957404163152
+#> EM - StMoE: Iteration: 13 | log-likelihood: -557.580087963646
+#> EM - StMoE: Iteration: 14 | log-likelihood: -557.380380786243
+#> EM - StMoE: Iteration: 15 | log-likelihood: -557.254189800172
+#> EM - StMoE: Iteration: 16 | log-likelihood: -557.15021434204
+#> EM - StMoE: Iteration: 17 | log-likelihood: -557.055670910678
+#> EM - StMoE: Iteration: 18 | log-likelihood: -556.965014162961
+#> EM - StMoE: Iteration: 19 | log-likelihood: -556.875501292633
+#> EM - StMoE: Iteration: 20 | log-likelihood: -556.78537227562
+#> EM - StMoE: Iteration: 21 | log-likelihood: -556.693406619935
+#> EM - StMoE: Iteration: 22 | log-likelihood: -556.598768102611
+#> EM - StMoE: Iteration: 23 | log-likelihood: -556.500831004615
+#> EM - StMoE: Iteration: 24 | log-likelihood: -556.399708827442
+#> EM - StMoE: Iteration: 25 | log-likelihood: -556.297492762027
+#> EM - StMoE: Iteration: 26 | log-likelihood: -556.20141494444
+#> EM - StMoE: Iteration: 27 | log-likelihood: -556.126170836946
+#> EM - StMoE: Iteration: 28 | log-likelihood: -556.083951793487
+#> EM - StMoE: Iteration: 29 | log-likelihood: -556.067066602711
+#> EM - StMoE: Iteration: 30 | log-likelihood: -556.060627935558
+#> EM - StMoE: Iteration: 31 | log-likelihood: -556.057569070043
+#> EM - StMoE: Iteration: 32 | log-likelihood: -556.055860006502
+#> EM - StMoE: Iteration: 33 | log-likelihood: -556.054981626471
+#> EM - StMoE: Iteration: 34 | log-likelihood: -556.054660968923
stmoe$summary()
#> ------------------------------------------
@@ -1164,8 +871,8 @@ stmoe$summary()
#>
#> StMoE model with K = 4 experts:
#>
-#> log-likelihood df AIC BIC ICL
-#> -563.1135 30 -593.1135 -636.4687 -636.4969
+#> log-likelihood df AIC BIC ICL
+#> -556.0547 30 -586.0547 -629.4099 -629.406
#>
#> Clustering table (Number of observations in each expert):
#>
@@ -1174,15 +881,15 @@ stmoe$summary()
#>
#> Regression coefficients:
#>
-#> Beta(k = 1) Beta(k = 2) Beta(k = 3) Beta(k = 4)
-#> 1 -3.52358475 996.077085 -1616.483001 134.35786999
-#> X^1 0.88184631 -104.419255 95.549943 -6.74970173
-#> X^2 -0.08184845 2.446371 -1.386852 0.07092188
+#> Beta(k = 1) Beta(k = 2) Beta(k = 3) Beta(k = 4)
+#> 1 -3.64134439 1271.108412 -1831.574242 319.1508761
+#> X^1 0.92120299 -137.891056 113.065461 -13.2640845
+#> X^2 -0.08468105 3.367926 -1.698854 0.1361425
#>
#> Variances:
#>
#> Sigma2(k = 1) Sigma2(k = 2) Sigma2(k = 3) Sigma2(k = 4)
-#> 14.09186 448.3051 1404.488 1385.116
+#> 14.72618 1002.282 545.9523 425.1502
stmoe$plot()
```
@@ -1213,8 +920,9 @@ T-Distribution.” *Neural Networks - Elsevier* 79: 20–36.