Skip to content

check norm as class not instance & reset before every epoch instead before every fit #28

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion miniai/init.py
Original file line number Diff line number Diff line change
Expand Up @@ -106,7 +106,7 @@ def lsuv_init(model, m, m_in, xb):

# %% ../nbs/11_initializing.ipynb 114
def conv(ni, nf, ks=3, stride=2, act=nn.ReLU, norm=None, bias=None):
if bias is None: bias = not isinstance(norm, (nn.BatchNorm1d,nn.BatchNorm2d,nn.BatchNorm3d))
if bias is None: bias = not (norm in (nn.BatchNorm1d,nn.BatchNorm2d,nn.BatchNorm3d))
layers = [nn.Conv2d(ni, nf, stride=stride, kernel_size=ks, padding=ks//2, bias=bias)]
if norm: layers.append(norm(nf))
if act: layers.append(act())
Expand Down
23 changes: 4 additions & 19 deletions nbs/09_learner.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -86,22 +86,7 @@
"execution_count": null,
"id": "b22868a9",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "25a1693df8844081b050b8bbdb5f00fa",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/2 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"outputs": [],
"source": [
"x,y = 'image','label'\n",
"name = \"fashion_mnist\"\n",
Expand Down Expand Up @@ -182,14 +167,14 @@
" self.ns.append(n)\n",
"\n",
" def one_epoch(self, train):\n",
" self.accs,self.losses,self.ns = [],[],[]\n",
" self.model.training = train\n",
" dl = self.dls.train if train else self.dls.valid\n",
" for self.num,self.batch in enumerate(dl): self.one_batch()\n",
" n = sum(self.ns)\n",
" print(self.epoch, self.model.training, sum(self.losses).item()/n, sum(self.accs).item()/n)\n",
" \n",
" def fit(self, n_epochs):\n",
" self.accs,self.losses,self.ns = [],[],[]\n",
" self.model.to(def_device)\n",
" self.opt = self.opt_func(self.model.parameters(), self.lr)\n",
" self.n_epochs = n_epochs\n",
Expand Down Expand Up @@ -219,8 +204,8 @@
"name": "stdout",
"output_type": "stream",
"text": [
"0 True 1.1753044270833333 0.5986833333333333\n",
"0 False 1.120328794642857 0.6135285714285714\n"
"0 True 1.1753022135416666 0.5987333333333333\n",
"0 False 0.790286328125 0.7031\n"
]
}
],
Expand Down
4 changes: 2 additions & 2 deletions nbs/11_initializing.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -2181,7 +2181,7 @@
"source": [
"#|export\n",
"def conv(ni, nf, ks=3, stride=2, act=nn.ReLU, norm=None, bias=None):\n",
" if bias is None: bias = not isinstance(norm, (nn.BatchNorm1d,nn.BatchNorm2d,nn.BatchNorm3d))\n",
" if bias is None: bias = not (norm in (nn.BatchNorm1d,nn.BatchNorm2d,nn.BatchNorm3d))\n",
" layers = [nn.Conv2d(ni, nf, stride=stride, kernel_size=ks, padding=ks//2, bias=bias)]\n",
" if norm: layers.append(norm(nf))\n",
" if act: layers.append(act())\n",
Expand Down Expand Up @@ -2702,7 +2702,7 @@
"split_at_heading": true
},
"kernelspec": {
"display_name": "python3",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
}
Expand Down