-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlabel.py
45 lines (40 loc) · 1.54 KB
/
label.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import config
from data_process import load_data
from collections import defaultdict
sentences,seg,pos,segpos,flag,gram_list,positions,gram_maxlen,gram2id=load_data('./zuozhuan_train_utf8.txt')
seg_freqs = defaultdict(int)
pos_freqs = defaultdict(int)
segpos_freqs = defaultdict(int)
for labels in zip(seg,pos,segpos):
for i in range(len(labels[0])):
seg_freqs[labels[0][i]] += 1
pos_freqs[labels[1][i]] += 1
segpos_freqs[labels[2][i]] += 1
label_seg2id = {}
id_seg2label = {}
uniq_tokens = [token for token, freq in seg_freqs.items()]
for i in range(len(uniq_tokens)):
label_seg2id[uniq_tokens[i]]=i
id_seg2label[i]=uniq_tokens[i]
num_seglabels = len(label_seg2id)
label_pos2id = {}
id_pos2label = {}
uniq_tokens = [token for token, freq in pos_freqs.items()]
for i in range(len(uniq_tokens)):
label_pos2id[uniq_tokens[i]]=i
id_pos2label[i]=uniq_tokens[i]
num_poslabels = len(label_pos2id)
label_segpos2id = {}
id_segpos2label = {}
uniq_tokens = [token for token, freq in segpos_freqs.items()]
for i in range(len(uniq_tokens)):
label_segpos2id[uniq_tokens[i]]=i
id_segpos2label[i]=uniq_tokens[i]
num_segposlabels = len(label_segpos2id)
# train_sentences,train_seg,train_pos,train_segpos,flag,train_gram_list,train_positions,train_gram_maxlen,gram2id=load_data(config.data_dir)
# for i in range(len(train_pos)):
# label_id = [label_pos2id.get(t) if label_pos2id.get(t) else -1 for t in train_pos[i]]
# if label_id[0] == -1:
# print(train_pos[i][0])
# print(i+1)
# print(train_sentences[i][0])