forked from RS2002/CSI-BERT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain.py
270 lines (240 loc) · 11.6 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
from model import CSIBERT,Token_Classifier
from transformers import BertConfig,AdamW
import argparse
import tqdm
import torch
from dataset import load_zero_people,load_all
from sklearn.model_selection import train_test_split
from torch.utils.data import DataLoader
import torch.nn as nn
import copy
import numpy as np
import random
pad=np.array([-1000]*52)
def get_args():
parser = argparse.ArgumentParser(description='')
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--mask_percent', type=float, default=0.15)
parser.add_argument('--normal', action="store_true", default=False) # whether to use norm layer
parser.add_argument('--hs', type=int, default=64)
parser.add_argument('--layers', type=int, default=4)
parser.add_argument('--max_len', type=int, default=100) # max input length
parser.add_argument('--heads', type=int, default=4)
parser.add_argument('--position_embedding_type', type=str, default="absolute")
parser.add_argument('--time_embedding', action="store_true", default=False) # whether to use time embedding
parser.add_argument("--cpu", action="store_true",default=False)
parser.add_argument("--cuda", type=str, default='0')
parser.add_argument("--carrier_dim", type=int, default=52)
parser.add_argument("--carrier_attn", action="store_true",default=False)
parser.add_argument('--lr', type=float, default=0.0005)
# parser.add_argument("--test_people", type=int, nargs='+', default=[0,1])
parser.add_argument('--epoch', type=int, default=100)
args = parser.parse_args()
return args
def get_mask_ind(seq_len=100,mask_percent=0.15):
Lseq=[i for i in range(seq_len)]
mask_ind = random.sample(Lseq, round(seq_len * mask_percent))
mask85 = random.sample(mask_ind, round(len(mask_ind)*0.85))
cur15 = list(set(mask_ind)-set(mask85))
return mask85, cur15
def main():
args=get_args()
device_name = "cuda:"+args.cuda
device = torch.device(device_name if torch.cuda.is_available() and not args.cpu else 'cpu')
bertconfig=BertConfig(max_position_embeddings=args.max_len, hidden_size=args.hs, position_embedding_type=args.position_embedding_type,num_hidden_layers=args.layers,num_attention_heads=args.heads)
csibert=CSIBERT(bertconfig,args.carrier_dim,args.carrier_attn,args.time_embedding)
csi_dim=args.carrier_dim
model=Token_Classifier(csibert,args.carrier_dim)
model=model.to(device)
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('total parameters:', total_params)
optim = AdamW(model.parameters(), lr=args.lr, weight_decay=0.01)
# train_data,test_data=load_zero_people(args.test_people)
train_data=load_all()
train_data,valid_data=train_test_split(train_data, test_size=0.1)
train_loader = DataLoader(train_data, batch_size=args.batch_size, shuffle=True)
valid_loader = DataLoader(valid_data, batch_size=args.batch_size, shuffle=False)
loss_func = nn.MSELoss(reduction='none')
best_loss=None
for j in range(args.epoch):
model.train()
torch.set_grad_enabled(True)
loss_list=[]
err_list=[]
pbar = tqdm.tqdm(train_loader, disable=False)
for x,_,_,_,timestamp in pbar:
x=x.to(device)
timestamp=timestamp.to(device)
input = copy.deepcopy(x)
max_values, _ = torch.max(input, dim=-2, keepdim=True)
input[input == pad[0]] = -pad[0]
min_values, _ = torch.min(input, dim=-2, keepdim=True)
input[input == -pad[0]] = pad[0]
if args.normal: # 在时间维度归一化
non_pad = (input != pad[0]).float()
avg = copy.deepcopy(input)
avg[input == pad[0]] = 0
avg = torch.sum(avg, dim=-2, keepdim=True) / torch.sum(non_pad, dim=-2, keepdim=True)
std = (input - avg) ** 2
std[input == pad[0]] = 0
std = torch.sum(std, dim=-2, keepdim=True) / torch.sum(non_pad, dim=-2, keepdim=True)
std = torch.sqrt(std)
input = (input - avg) / std
batch_size,seq_len,carrier_num=input.shape
loss_mask = torch.zeros(batch_size, seq_len)
if args.normal:
rand_word = torch.tensor(csibert.mask(batch_size, std=std, avg=avg)).to(device)
else:
rand_word = torch.tensor(csibert.mask(batch_size, min=min_values, max=max_values)).to(device)
for b in range(batch_size):
# get index for masking
mask85, cur15 = get_mask_ind(seq_len,args.mask_percent)
# apply mask, random, remain current token
for i in mask85:
if x[b][i][0] == pad[0]:
continue
input[b][i] = rand_word[b][i]
loss_mask[b][i] = 1
for i in cur15:
if x[b][i][0] == pad[0]:
continue
loss_mask[b][i] = 1
loss_mask = loss_mask.to(device)
attn_mask = (x[:, :, 0] != pad[0]).float().to(device) # (batch, seq_len)
if args.time_embedding:
y = model(input, attn_mask)
else:
y = model(input, attn_mask, timestamp)
if args.normal:
y = y * std + avg
# print(x[0,:,0])
# print(y[0,:,0])
# loss1: MASK loss
loss1 = torch.sum(loss_func(y,x), dim=-1)
loss1 = torch.sum(loss1 * loss_mask) / torch.sum(loss_mask) / csi_dim
# loss2: Total loss
loss2 = torch.sum(loss_func(y, x), dim=-1)
loss2 = torch.sum(loss2 * attn_mask) / torch.sum(attn_mask) / csi_dim
# loss3: Min loss
min_values_hat, _ = torch.min(y, dim=-2, keepdim=True)
loss3 = torch.mean(loss_func(min_values_hat, min_values))
# loss4: Max loss
max_values_hat, _ = torch.max(y, dim=-2, keepdim=True)
loss4 = torch.mean(loss_func(max_values_hat,max_values))
if args.normal:
#loss5,6: Avg&Std loss
avg_hat = torch.sum(y, dim=-2, keepdim=True) / seq_len
std_hat = (y - avg_hat) ** 2
std_hat = torch.sum(std_hat, dim=-2, keepdim=True) / seq_len
std_hat = torch.sqrt(std_hat)
loss5 = torch.mean(loss_func(avg_hat, avg))
loss6 = torch.mean(loss_func(std_hat, std))
loss=loss1+loss2+loss3+loss4+loss5+loss6
else:
loss=loss1#+loss2+loss3+loss4
model.zero_grad()
loss.backward()
# nn.utils.clip_grad_norm_(model.parameters(), 3.0) # 用于裁剪梯度,防止梯度爆炸
optim.step()
loss_mask=loss_mask.unsqueeze(2)
loss_mask=loss_mask.repeat(1,1,csi_dim)
loss_mask[x==0]=0
x[x==0]=1
error = torch.sum(torch.abs(y - x) / x * loss_mask) / torch.sum(loss_mask)
loss_list.append(loss.item())
err_list.append(error.item())
log="Epoch {} | Train Loss {:06f}, Train Error {:06f}, ".format(j+1,np.mean(loss_list),np.mean(err_list))
print(log)
with open("Pretrain.txt", 'a') as file:
file.write(log)
model.eval()
torch.set_grad_enabled(False)
loss_list=[]
err_list=[]
pbar = tqdm.tqdm(valid_loader, disable=False)
for x,_,_,_,timestamp in pbar:
x=x.to(device)
timestamp=timestamp.to(device)
input = copy.deepcopy(x)
input=input.to(device)
max_values, _ = torch.max(input, dim=-2, keepdim=True)
input[input == pad[0]] = -pad[0]
min_values, _ = torch.min(input, dim=-2, keepdim=True)
input[input == -pad[0]] = pad[0]
if args.normal: # 在时间维度归一化
non_pad = (input != pad[0]).float()
avg = copy.deepcopy(input)
avg[input == pad[0]] = 0
avg = torch.sum(avg, dim=-2, keepdim=True) / torch.sum(non_pad, dim=-2, keepdim=True)
std = (input - avg) ** 2
std[input == pad[0]] = 0
std = torch.sum(std, dim=-2, keepdim=True) / torch.sum(non_pad, dim=-2, keepdim=True)
std = torch.sqrt(std)
input = (input - avg) / std
batch_size,seq_len,carrier_num=input.shape
loss_mask = torch.zeros(batch_size, seq_len)
if args.normal:
rand_word = torch.tensor(csibert.mask(batch_size, std=std, avg=avg)).to(device)
else:
rand_word = torch.tensor(csibert.mask(batch_size, min=min_values, max=max_values)).to(device)
for b in range(batch_size):
# get index for masking
mask85, cur15 = get_mask_ind(seq_len,args.mask_percent)
# apply mask, random, remain current token
for i in mask85:
if x[b][i][0] == pad[0]:
continue
input[b][i] = rand_word[b][i]
loss_mask[b][i] = 1
for i in cur15:
if x[b][i][0] == pad[0]:
continue
loss_mask[b][i] = 1
loss_mask = loss_mask.to(device)
attn_mask = (x[:, :, 0] != pad[0]).float().to(device) # (batch, seq_len)
if args.time_embedding:
y = model(input, attn_mask)
else:
y = model(input, attn_mask, timestamp)
if args.normal:
y = y * std + avg
# loss1: MASK loss
loss1 = torch.sum(loss_func(y,x), dim=-1)
loss1 = torch.sum(loss1 * loss_mask) / torch.sum(loss_mask) / csi_dim
# loss2: Total loss
loss2 = torch.sum(loss_func(y, x), dim=-1)
loss2 = torch.sum(loss2 * attn_mask) / torch.sum(attn_mask) / csi_dim
# loss3: Min loss
min_values_hat, _ = torch.min(y, dim=-2, keepdim=True)
loss3 = torch.mean(loss_func(min_values_hat, min_values))
# loss4: Max loss
max_values_hat, _ = torch.max(y, dim=-2, keepdim=True)
loss4 = torch.mean(loss_func(max_values_hat,max_values))
if args.normal:
# loss5,6: Avg&Std loss
avg_hat = torch.sum(y, dim=-2, keepdim=True) / seq_len
std_hat = (y - avg_hat) ** 2
std_hat = torch.sum(std_hat, dim=-2, keepdim=True) / seq_len
std_hat = torch.sqrt(std_hat)
loss5 = torch.mean(loss_func(avg_hat, avg))
loss6 = torch.mean(loss_func(std_hat, std))
loss = loss1 + loss2 + loss3 + loss4 + loss5 + loss6
else:
loss = loss1 #+ loss2 + loss3 + loss4
loss_mask=loss_mask.unsqueeze(2)
loss_mask=loss_mask.repeat(1,1,csi_dim)
loss_mask[x==0]=0
x[x==0]=1
error = torch.sum(torch.abs(y - x) / x * loss_mask) / torch.sum(loss_mask)
loss_list.append(loss.item())
err_list.append(error.item())
log="Test Loss {:06f}, Test Error {:06f} ".format(np.mean(loss_list),np.mean(err_list))
print(log)
with open("Pretrain.txt", 'a') as file:
file.write(log+"\n")
if best_loss is None or np.mean(loss_list)<best_loss:
best_loss=np.mean(loss_list)
torch.save(csibert.state_dict(), "csibert_pretrain.pth")
torch.save(model.state_dict(), "pretrain.pth")
if __name__ == '__main__':
main()