-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
803 lines (711 loc) · 29.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import tensorflow_probability as tfp
import tensorboard as tb
from tensorflow import keras
from generative import NonMarkovModel, ExternalSequences
from auxiliary import ZForcing, EdgeClassifier, CPC, DGI, MaskedGNNDecoder, MIX
from dmm import MarkovModel
from vi import VI
from vsmc import VSMC
from proposal import Proposal, IndepProposal
from proposal import SUMMARIZER_LSTM, SUMMARIZER_RGNN
from proposal import FactorizedWrapper
from hvae import LearnableHIS
from sched import InterleavingScheduler
from tgraph import RuntimeGraph
from gnn import GNNConfig, GNN_DENSE
from gnn import ATTENTION_SOFTMAX, ATTENTION_UNIFORM
from gnn import READOUT_MEAN_MAX
import metrics
import util
import functools
import itertools
tfd = tfp.distributions
MODE_TRAIN = "TRAIN"
MODE_EVAL = "EVAL"
MODE_QUICK_PREDICT = "QUICK-PREDICT"
MODE_SLOW_PREDICT = "SLOW-PREDICT"
MODE_SAMPLE = "SAMPLE"
SUMMARY_TRAIN = "SUMMARY_TRAIN"
SUMMARY_EVAL = "SUMMARY_EVAL"
SUMMARY_QUICK_PREDICT = "SUMMARY_QUICK_PREDICT"
SUMMARY_SLOW_PREDICT = "SUMMARY_SLOW_PREDICT"
AUX_ADJ = "adj"
AUX_CPC = "cpc"
AUX_DGI = "dgi"
AUX_ZF = "zf"
AUX_MASK = "mask"
AUX_MIX = "mix"
class Model(object):
def __init__(self, gen_model, proposal_model, aux_model,
hamiltonian_is=None, interleaving_scheduler=None,
aux_weight=1.0):
self.gen_model = gen_model
self.proposal_model = proposal_model
self.aux_model = aux_model
self.hamiltonian_is = hamiltonian_is
self.interleaving_scheduler = interleaving_scheduler
self.aux_weight = aux_weight
class FlowSources(object):
def __init__(self, observations, edges,
center_mask, node_mask, edge_mask,
labels, mode,
node_attrs=None, edge_attrs=None, time_attrs=None):
self.observations = observations
self.edges = edges
self.node_attrs = node_attrs
self.edge_attrs = edge_attrs
self.time_attrs = time_attrs
self.center_mask = center_mask
self.node_mask = node_mask
self.edge_mask = edge_mask
self.labels = labels
self.mode = mode
class FlowSinks(object):
def __init__(self, train_op, new_states, train_loss, eval_metrics,
quick_predictions, quick_predict_metrics,
slow_predictions, slow_predict_metrics):
self.train_op = train_op
self.new_states = new_states
self.train_loss = train_loss
self.eval_metrics = eval_metrics
self.quick_predictions = quick_predictions
self.quick_predict_metrics = quick_predict_metrics
self.slow_predictions = slow_predictions
self.slow_predict_metrics = slow_predict_metrics
class PersistentStates(object):
def __init__(self, reset, belief_states, latent_histories, latent_states):
self.reset = reset
self.belief_states = belief_states
self.latent_histories = latent_histories
self.latent_states = latent_states
def trainable(self):
initializer = tf.initializers.glorot_uniform
belief_state = tf.get_variable(
"initial_belief_state", [util.dim(self.belief_states)],
trainable=True, initializer=initializer()
)
global_latent_history = tf.get_variable(
"initial_global_history", [util.dim(self.latent_histories[0])],
trainable=True, initializer=initializer()
)
local_latent_history = tf.get_variable(
"initial_local_history", [util.dim(self.latent_histories[1])],
trainable=True, initializer=initializer()
)
global_latent_state = tf.get_variable(
"initial_global_state", [util.dim(self.latent_states[0])],
trainable=True, initializer=initializer()
)
local_latent_state = tf.get_variable(
"initial_local_state", [util.dim(self.latent_states[1])],
trainable=True, initializer=initializer()
)
z = tf.zeros_like
belief_states = tf.math.add(z(self.belief_states), belief_state)
latent_histories = (
tf.math.add(z(self.latent_histories[0]), global_latent_history),
tf.math.add(z(self.latent_histories[1]), local_latent_history),
)
latent_states = (
tf.math.add(z(self.latent_states[0]), global_latent_state),
tf.math.add(z(self.latent_states[1]), local_latent_state),
)
original_states = (
self.belief_states, self.latent_histories, self.latent_states
)
states = util.select_nested(
self.reset,
(belief_states, latent_histories, latent_states),
original_states
)
states = util.nested_set_shape_like(states, original_states)
return PersistentStates(self.reset, *states)
class Template(object):
def __init__(self, estimator, predictor):
self._estimator = estimator
self._predictor = predictor
def estimate(self, *args, **kwargs):
return self._estimator(*args, **kwargs)
def predict(self, *args, **kwargs):
return self._predictor(*args, **kwargs)
def build_shared_model(params, config):
if config.train_obj == "vi" and config.analytic_kl and \
config.trans_mix_num_components != 1:
raise ValueError("Analytic KL cannot be applied to mixtures.")
gnn_attention = config.gnn_attention
if gnn_attention is None:
gnn_attention = ATTENTION_UNIFORM if config.mini_batch \
else ATTENTION_SOFTMAX
elif gnn_attention == ATTENTION_SOFTMAX and config.mini_batch:
raise ValueError("Bad configuration.")
assert not (config.embed_node_attr and params["dim_node_attrs"] <= 0)
assert not (config.embed_edge_attr and params["dim_edge_attrs"] <= 0)
assert not (config.learn_node_embed and config.const_num_nodes is None)
dim_node_attr = (
params["dim_node_embed"]
if config.embed_node_attr else params["dim_node_attrs"]
) + (
params["dim_node_embed"]
if config.learn_node_embed else 0
)
dim_edge_attr = params["dim_edge_embed"] \
if config.embed_edge_attr else params["dim_edge_attrs"]
gnn_config = GNNConfig(
num_heads=params["gnn_num_heads"],
dim_input=None,
dim_key=params["gnn_dim_key"],
dim_value=params["gnn_dim_value"],
dim_node_attr=dim_node_attr,
dim_edge_attr=dim_edge_attr,
impl=config.gnn_impl,
attention=gnn_attention,
messenger=config.gnn_messenger,
activation=config.gnn_activation,
layer_norm_in=params["gnn_layer_norm_in"],
layer_norm_out=params["gnn_layer_norm_out"],
skip_conn=False,
num_layers=1,
combiner=params["gnn_combiner"],
recurrent=params["gnn_recurrent"],
rnn_num_layers=params["rnn_num_layers"],
readout=READOUT_MEAN_MAX,
parallel_iterations=params["parallel_iterations"],
swap_memory=params["swap_memory"]
)
trans_gnn_config = gnn_config.clone()
trans_gnn_config.num_layers = params["trans_gnn_num_layers"]
gen_model_params = dict(
dim_hidden=params["dim_hidden"],
dim_observ=params["dim_observs"],
dim_latent=params["dim_latent"],
dim_mlp=params["dim_mlp"],
dim_global_input=params["dim_time_attrs"],
const_num_nodes=params["const_num_nodes"],
gnn_config=trans_gnn_config.clone(),
rnn_num_layers=params["rnn_num_layers"],
init_mix_num_components=params["init_mix_num_components"],
trans_mix_num_components=params["trans_mix_num_components"],
trans_mlp_num_layers=params["trans_mlp_num_layers"],
trans_activation=params["trans_activation"],
trans_layer_norm=params["trans_layer_norm"],
trans_scale_activation=params["trans_scale_activation"],
trans_scale_shift=params["trans_scale_shift"],
trans_scale_identical=params["trans_scale_identical"],
trans_skip_conn=params["trans_skip_conn"],
trans_ar=params["trans_ar"],
trans_global_low_rank=params["trans_global_low_rank"],
trans_local_low_rank=params["trans_local_low_rank"],
trans_global_flow=config.global_flow,
trans_flow_num_layers=params["trans_flow_num_layers"],
trans_flow_mv_factor=params["flow_mv_factor"],
trans_flow_skip_conn=config.flow_skip_conn,
emit_low_rank=params["emit_low_rank"],
emit_mix_num_components=params["emit_mix_num_components"],
emit_mlp_num_layers=params["emit_mlp_num_layers"],
emit_activation=params["emit_activation"],
emit_scale_activation=params["emit_scale_activation"],
emit_scale_shift=params["emit_scale_shift"],
emit_scale_identical=params["emit_scale_identical"],
emit_neg_binomial=params["emit_neg_binomial"],
emit_loc_scale_type=params["emit_loc_scale_type"],
emit_non_markov=params["emit_non_markov"],
emit_identity=params["emit_identity"]
)
if config.markov:
gen_model = MarkovModel(**gen_model_params)
else:
gen_model = NonMarkovModel(**gen_model_params)
perturb_noise_scale = tf.train.linear_cosine_decay(
config.noise_scale,
tf.train.get_or_create_global_step(),
config.noise_scale_decay_steps or config.num_steps,
alpha=0.0, beta=config.noise_scale_min_ratio
)
tb.summary.scalar("perturb_noise_scale", perturb_noise_scale)
proposal_gnn_config = gnn_config.clone()
proposal_gnn_config.num_layers = params["proposal_gnn_num_layers"]
proposal_params = dict(
model=gen_model,
dim_mlp=params["dim_mlp"],
mlp_num_layers=params["trans_mlp_num_layers"],
rnn_num_layers=params["rnn_num_layers"],
global_flow=config.global_flow,
flow_num_layers=params["proposal_flow_num_layers"],
flow_mv_factor=params["flow_mv_factor"],
flow_skip_conn=config.flow_skip_conn,
global_low_rank=params["trans_global_low_rank"],
local_low_rank=params["trans_local_low_rank"],
loc_activation=params["proposal_loc_activation"],
loc_layer_norm=params["proposal_loc_layer_norm"],
scale_activation=params["trans_scale_activation"],
scale_shift=params["trans_scale_shift"],
scale_identical=config.proposal_scale_identical,
gnn_config=proposal_gnn_config.clone(),
use_belief=config.use_belief,
use_lookahead=config.use_lookahead,
use_skip_conn=config.use_skip_conn,
use_gated_adder=config.use_gated_adder,
reuse_gen_flow=config.reuse_gen_flow,
denoising=config.denoising,
noise_scale=perturb_noise_scale
)
if config.proposal == "indep":
proposal_model = IndepProposal(
**proposal_params, summarize_unit=SUMMARIZER_LSTM
)
elif config.proposal == "joint" and not config.mini_batch:
proposal_model = Proposal(
**proposal_params, summarize_unit=SUMMARIZER_RGNN
)
else:
raise ValueError("Unknown/Invalid proposal type.")
proposal_model = FactorizedWrapper(proposal_model)
interleaving_rate = tf.train.polynomial_decay(
config.interleaving_rate,
tf.train.get_or_create_global_step(),
config.interleaving_decay_steps or (config.num_steps // 2),
(config.interleaving_rate_min_ratio * config.interleaving_rate),
power=1.0
)
tb.summary.scalar("interleaving_rate", interleaving_rate)
interleaving_scheduler = InterleavingScheduler(
prefix_length=(config.prefix_length if config.prefixing else 0),
rate=interleaving_rate,
randomly=config.interleaving_randomly,
refresh_last_step=False
)
if not config.interleaving:
assert not config.prefixing
interleaving_scheduler = None
hamiltonian_is = None
if config.his:
hamiltonian_is = LearnableHIS(
global_num_dims=params["dim_latent"],
local_num_dims=params["dim_latent"],
num_steps=params["his_num_leapfrog_steps"],
max_step_size=params["his_max_step_size"],
mass_scale=params["his_mass_scale"]
)
if config.aux_task is not None and not config.use_lookahead:
tf.logging.warning(
"Auxiliary loss is optimized without using lookahead information."
)
aux_params = dict(
dim_latent=params["dim_latent"],
dim_summary=params["dim_hidden"],
)
if config.aux_task == AUX_ADJ:
aux_model = EdgeClassifier(**aux_params)
elif config.aux_task == AUX_CPC:
aux_model = CPC(**aux_params)
elif config.aux_task == AUX_DGI:
aux_model = DGI(**aux_params)
elif config.aux_task == AUX_ZF:
aux_model = ZForcing(
**aux_params,
dim_mlp=params["dim_mlp"], mlp_num_layers=1,
num_future_steps=params["aux_zf_num_steps"]
)
elif config.aux_task == AUX_MASK:
aux_model = MaskedGNNDecoder(
**aux_params,
gnn_config=gnn_config.clone(),
dim_mlp=params["dim_mlp"],
num_masked_nodes=params["aux_mask_num_nodes"],
all_at_once=params["aux_mask_all_at_once"]
)
elif config.aux_task == AUX_MIX:
aux_model = MIX(
**aux_params,
dim_observ=params["dim_observs"],
gnn_config=gnn_config.clone(),
dim_mlp=params["dim_mlp"], mlp_num_layers=2,
cpc_scale=params["aux_cpc_scale"],
cpc_state=params["aux_cpc_state"],
dgi_scale=params["aux_dgi_scale"],
zf_scale=params["aux_zf_scale"],
zf_num_future_steps=params["aux_zf_num_steps"],
mask_scale=params["aux_mask_scale"],
mask_num_nodes=params["aux_mask_num_nodes"],
mask_all_at_once=params["aux_mask_all_at_once"]
)
elif config.aux_task is not None:
raise ValueError("Unknown auxiliary task: " + config.aux_task)
else:
aux_model = None
aux_weight = tf.train.polynomial_decay(
config.aux_weight,
tf.train.get_or_create_global_step(),
config.aux_weight_decay_steps or config.num_steps,
(config.aux_weight_min_ratio * config.aux_weight),
power=1.0
)
tb.summary.scalar("aux_weight", aux_weight)
return Model(
gen_model=gen_model,
proposal_model=proposal_model,
aux_model=aux_model,
hamiltonian_is=hamiltonian_is,
interleaving_scheduler=interleaving_scheduler,
aux_weight=aux_weight
)
def predict_and_quantify(
PREDICTOR, STATES, SOURCES, GRAPH, params, config,
dataset_transform=None, num_steps=5, num_samples=10):
assert not (config.pred_ar_filtering and config.use_lookahead)
predict_locs, predict_scales, _, log_weights = PREDICTOR(
GRAPH, ExternalSequences(SOURCES.time_attrs, None),
SOURCES.observations, num_steps, num_samples,
every_step=config.pred_every_step, mode=SOURCES.mode,
auto_regressive_filtering=config.pred_ar_filtering,
initial_belief_states=STATES.belief_states,
initial_latent_states=STATES.latent_states,
initial_latent_histories=STATES.latent_histories
)
avg_predictions = metrics.reduce_avg(predict_locs)
median_predictions = metrics.reduce_median(predict_locs)
# wavg_predictions = metrics.reduce_wavg(predict_locs, log_weights)
# mode_predictions = metrics.reduce_mode(predict_locs, predict_scales)
# max_prob_predictions = metrics.reduce_max_prob(predict_locs, log_probs)
labels = SOURCES.labels
if not config.pred_every_step:
labels = labels[-1, ...]
with tf.control_dependencies([
tf.assert_equal(tf.shape(avg_predictions), tf.shape(labels)),
tf.assert_equal(tf.shape(median_predictions), tf.shape(labels))
]):
l2_norm_errors = tf.math.sqrt(tf.math.reduce_sum(
tf.math.squared_difference(avg_predictions, labels), axis=-1
)) # ([T, ]H, B, N)
horizon_errors = tf.math.reduce_mean(l2_norm_errors, axis=[-2, -1])
avg_error = tf.math.reduce_mean(l2_norm_errors)
if dataset_transform is not None:
inverse = dataset_transform.tf_inverse_transform
predict_locs = inverse(predict_locs)
avg_predictions = inverse(avg_predictions)
median_predictions = inverse(median_predictions)
labels = inverse(labels)
error_metrics = dict()
for metric, prediction in itertools.product(
zip(
["MSE", "MAE", "MAPE"],
[metrics.MSE, metrics.MAE, metrics.MAPE]
),
zip(
["AVG", "MEDIAN"],
[avg_predictions, median_predictions]
)
):
key = "{}_{}".format(prediction[0], metric[0])
error_metrics[key] = metric[1](prediction[1], labels)
predict_metrics = {
"raw_horizon_errors": horizon_errors,
"raw_avg_error": avg_error,
"PICP": metrics.PICP(predict_locs, labels),
**error_metrics
}
return predict_locs, predict_metrics
def make_vi_template(MODEL, params, config):
assert not (config.train_obj == "iwae" and config.analytic_kl)
''' Variational Inference '''
estimate, predict = VI(
gen_model=MODEL.gen_model,
inf_model=MODEL.proposal_model,
aux_model=MODEL.aux_model,
analytic_kl=config.analytic_kl,
num_preview_steps=config.num_preview_steps,
pred_resample_init=config.pred_resample_init,
parallel_iterations=config.parallel_iterations,
swap_memory=config.swap_memory
)
return Template(estimate, predict)
def make_vsmc_template(MODEL, params, config):
''' Variational Sequential Monte Carlo '''
estimate, predict = VSMC(
model=MODEL.gen_model,
proposal=MODEL.proposal_model,
aux_model=MODEL.aux_model,
interleaving_scheduler=MODEL.interleaving_scheduler,
# resample_jointly=True,
resample_impl=config.vsmc_resample_impl,
pred_resample_init=config.pred_resample_init,
hamiltonian_is=MODEL.hamiltonian_is,
analytic_kl=config.analytic_kl,
parallel_iterations=config.parallel_iterations,
swap_memory=config.swap_memory,
summary_keys=[SUMMARY_TRAIN, SUMMARY_EVAL]
)
return Template(estimate, predict)
def build_vi_train_flow(MODEL, TEMPLATE, STATES, SOURCES, GRAPH,
params, config):
anneal_factor = tf.constant(1.0)
if config.kl_anneal:
anneal_factor = 1.0 - tf.train.cosine_decay(
1.0, tf.get_or_create_global_step(),
params["num_steps"] // 2
)
tb.summary.scalar("anneal_factor", anneal_factor)
EST, new_states = TEMPLATE.estimate(
mode=SOURCES.mode, graph=GRAPH,
observations=SOURCES.observations, inputs=SOURCES.time_attrs,
num_samples=params["num_samples"], anneal_factor=anneal_factor,
initial_belief_states=STATES.belief_states,
initial_latent_states=STATES.latent_states,
initial_latent_histories=STATES.latent_histories
)
EST.install_summaries([SUMMARY_TRAIN], "TRAIN")
bound = EST.iwae_bound if config.train_obj == "iwae" else EST.vi_bound
loss = tf.math.add_n([
tf.math.negative(bound),
MODEL.aux_weight * tf.math.negative(EST.aux_score),
params["preview_loss_weight"] * EST.preview_divergence
])
# TODO: Averaging IWAE bound may be problematic?
# train_loss = tf.math.divide(loss, tf.to_float(
# tf.math.reduce_prod(tf.shape(SOURCES.observations)[:-1]) # T*B*N
# ))
return new_states, loss
def build_vi_eval_flow(MODEL, TEMPLATE, STATES, SOURCES, GRAPH,
params, config):
EST, _ = TEMPLATE.estimate(
mode=SOURCES.mode, graph=GRAPH,
observations=SOURCES.observations,
inputs=SOURCES.time_attrs,
num_samples=params["eval_num_samples"],
initial_belief_states=STATES.belief_states,
initial_latent_states=STATES.latent_states,
initial_latent_histories=STATES.latent_histories
)
EST.install_summaries([SUMMARY_EVAL], "EVAL")
eval_metrics = {
"ELBO": EST.vi_bound,
"IWAE": EST.iwae_bound,
"aux_score": EST.aux_score,
"distortion": EST.distortion,
"divergence": EST.divergence,
"preview_divergence": EST.preview_divergence
}
return eval_metrics
def build_vsmc_train_flow(MODEL, TEMPLATE, STATES, SOURCES, GRAPH,
params, config):
EST, new_states = TEMPLATE.estimate(
mode=SOURCES.mode, graph=GRAPH,
external=ExternalSequences(SOURCES.time_attrs, None),
observations=SOURCES.observations,
num_particles=params["num_samples"],
initial_belief_states=STATES.belief_states,
initial_latent_states=STATES.latent_states,
initial_latent_histories=STATES.latent_histories
)
EST.install_summaries([SUMMARY_TRAIN], "TRAIN")
loss = tf.math.add_n([
tf.math.negative(EST.vsmc_bound),
MODEL.aux_weight * tf.math.negative(EST.aux_score)
])
# train_loss = tf.math.divide(loss, tf.to_float(
# tf.math.reduce_prod(tf.shape(SOURCES.observations)[:-1]) # T*B*N
# ))
return new_states, loss
def build_vsmc_eval_flow(MODEL, TEMPLATE, STATES, SOURCES, GRAPH,
params, config):
EST, _ = TEMPLATE.estimate(
mode=SOURCES.mode, graph=GRAPH,
external=ExternalSequences(SOURCES.time_attrs, None),
observations=SOURCES.observations,
num_particles=params["eval_num_samples"],
initial_belief_states=STATES.belief_states,
initial_latent_states=STATES.latent_states,
initial_latent_histories=STATES.latent_histories
)
EST.install_summaries([SUMMARY_EVAL], "EVAL")
eval_metrics = {
"aux_score": EST.aux_score,
"NLL": tf.math.negative(EST.vsmc_bound)
}
return eval_metrics
def preprocess_graph(SOURCES, params, config):
if config.embed_node_attr and SOURCES.node_attrs is not None:
node_attrs = keras.layers.Dense(
config.dim_node_embed, activation="tanh",
input_shape=(params["dim_node_attrs"],)
)(SOURCES.node_attrs)
else:
node_attrs = SOURCES.node_attrs
if config.learn_node_embed:
assert config.const_num_nodes is not None
node_embeddings = tf.get_variable(
"node_embeddings",
shape=[config.const_num_nodes, config.dim_node_embed],
trainable=True, initializer=tf.initializers.glorot_normal()
)
node_attrs = node_embeddings \
if node_attrs is None \
else util.broadcast_concat(node_attrs, node_embeddings)
if config.embed_edge_attr and SOURCES.edge_attrs is not None:
edge_attrs = keras.layers.Dense(
config.dim_edge_embed, activation="tanh",
input_shape=(params["dim_edge_attrs"],)
)(SOURCES.edge_attrs)
else:
edge_attrs = SOURCES.edge_attrs
return RuntimeGraph(
edges=SOURCES.edges,
node_mask=SOURCES.node_mask,
center_mask=SOURCES.center_mask,
edge_mask=SOURCES.edge_mask,
node_attrs=node_attrs,
edge_attrs=edge_attrs,
dense=(config.gnn_impl == GNN_DENSE)
)
def build_train_and_eval_flow(MODEL, STATES, SOURCES, params, config,
dataset_transform=None):
GRAPH = preprocess_graph(SOURCES, params, config)
if config.learn_init_states:
tf.logging.info("Use trainable initial states.")
STATES = STATES.trainable()
obj = config.train_obj
if obj == "vi" or obj == "iwae":
make_template, train_flow, eval_flow = \
make_vi_template, build_vi_train_flow, build_vi_eval_flow
elif obj == "vsmc" and not config.mini_batch:
make_template, train_flow, eval_flow = \
make_vsmc_template, build_vsmc_train_flow, build_vsmc_eval_flow
else:
raise ValueError("Unknown/Invalid training objective.")
TEMPLATE = make_template(MODEL, params, config)
new_states, train_loss = train_flow(
MODEL, TEMPLATE, STATES, SOURCES, GRAPH, params, config
)
eval_metrics = eval_flow(
MODEL, TEMPLATE, STATES, SOURCES, GRAPH, params, config
)
quick_predict_ops, slow_predict_ops = [
predict_and_quantify(
TEMPLATE.predict, STATES, SOURCES, GRAPH, params, config,
num_steps=num_steps, num_samples=num_samples,
dataset_transform=dataset_transform
)
for num_steps, num_samples in zip(
[config.train_num_pred_steps, config.eval_num_pred_steps],
[config.train_num_pred_samples, config.eval_num_pred_samples]
)
]
quick_predictions, quick_predict_metrics = quick_predict_ops
slow_predictions, slow_predict_metrics = slow_predict_ops
return (
new_states, train_loss, eval_metrics,
quick_predictions, quick_predict_metrics,
slow_predictions, slow_predict_metrics
)
def install_summary_endpoints(train_loss, eval_metrics,
quick_predict_metrics, slow_predict_metrics):
tf.summary.scalar("loss", train_loss,
collections=[SUMMARY_TRAIN], family="TRAIN")
def install_predict_summaries(mode, predict_ops, key):
tf.summary.scalar(
mode + "/raw_avg_error", predict_ops["raw_avg_error"],
collections=[key], family="PREDICT")
tf.summary.histogram(
mode + "/MSE", predict_ops["AVG_MSE"],
collections=[key], family="PREDICT")
tf.summary.histogram(
mode + "/MAE", predict_ops["AVG_MAE"],
collections=[key], family="PREDICT")
tf.summary.histogram(
mode + "/MAPE", predict_ops["AVG_MAPE"],
collections=[key], family="PREDICT")
install_predict_summaries(
"quick", quick_predict_metrics, SUMMARY_QUICK_PREDICT)
install_predict_summaries(
"slow", slow_predict_metrics, SUMMARY_SLOW_PREDICT)
def save_predictions(quick_predictions, slow_predictions):
tf.summary.tensor_summary(
"quick_predictions", quick_predictions,
collections=[SUMMARY_QUICK_PREDICT]
)
tf.summary.tensor_summary(
"slow_predictions", slow_predictions,
collections=[SUMMARY_SLOW_PREDICT]
)
def build_tf_graph(
MODEL, STATES, SOURCES, dataset_transform, params, config):
global_step = tf.train.get_or_create_global_step()
new_states, train_loss, eval_metrics, \
quick_predictions, quick_predict_metrics, \
slow_predictions, slow_predict_metrics = build_train_and_eval_flow(
MODEL, STATES, SOURCES, params, config,
dataset_transform=dataset_transform
)
install_summary_endpoints(
train_loss, eval_metrics,
quick_predict_metrics, slow_predict_metrics
)
# save_predictions(quick_predictions, slow_predictions)
decay_steps = params["decay_steps"]
if decay_steps is None:
decay_steps = params["num_steps"]
learning_rate = tf.train.noisy_linear_cosine_decay(
learning_rate=params["learning_rate"],
global_step=global_step,
decay_steps=decay_steps,
initial_variance=params["learning_rate_init_variance"],
variance_decay=params["learning_rate_variance_decay"],
beta=params["learning_rate_min_ratio"]
)
warmup_steps = max(1, params["learning_rate_warmup_steps"])
warmup = tf.math.divide(
tf.cast(global_step, tf.float32),
tf.cast(warmup_steps, tf.float32)
)
learning_rate = tf.where(
tf.math.less_equal(global_step, warmup_steps),
tf.math.multiply(warmup, params["learning_rate"]),
learning_rate
)
tb.summary.scalar("learning_rate", learning_rate)
if config.optimizer is None or config.optimizer == "Adam":
optimizer = tf.train.AdamOptimizer(
learning_rate,
beta1=config.adam_beta1,
beta2=config.adam_beta2,
epsilon=config.adam_eps
)
elif config.optimizer == "SGD":
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
else:
raise ValueError("Unknown optimizer: " + config.optimizer)
if config.clip_gradient:
threshold = params["clip_threshold"]
gradients, variables = zip(*optimizer.compute_gradients(train_loss))
global_norm = tf.linalg.global_norm(gradients)
global_norm = tf.where(
tf.math.logical_or(
tf.math.is_inf(global_norm),
tf.math.is_nan(global_norm)
),
tf.constant(1E20), global_norm
)
gradients, global_norm = tf.clip_by_global_norm(
gradients, threshold, use_norm=global_norm
)
tb.summary.scalar(
"global_norm", global_norm, collections=[SUMMARY_TRAIN]
)
with tf.control_dependencies([tf.assign_add(global_step, 1)]):
train_op = optimizer.apply_gradients(zip(gradients, variables))
else:
train_op = optimizer.minimize(train_loss, global_step=global_step)
return FlowSinks(
train_op=train_op,
new_states=new_states,
train_loss=train_loss,
eval_metrics=eval_metrics,
quick_predictions=quick_predictions,
quick_predict_metrics=quick_predict_metrics,
slow_predictions=slow_predictions,
slow_predict_metrics=slow_predict_metrics
)