-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhvae.py
289 lines (248 loc) · 10.3 KB
/
hvae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import util
import tensorflow as tf
import tensorflow_probability as tfp
import tensorboard as tb
tfd = tfp.distributions
class FlatDistInfo(object):
def __init__(self, factor_prior_dist):
self.num_nodes = factor_prior_dist.num_nodes
self.dim_global_state = factor_prior_dist.dim_global_state
self.dim_local_state = factor_prior_dist.dim_local_state
def split_flat_samples(self, flat_samples):
global_states = flat_samples[..., :self.dim_global_state]
local_states = tf.reshape(
flat_samples[..., self.dim_global_state:],
tf.stack([
*tf.unstack(tf.shape(flat_samples)[:-1]),
self.num_nodes, self.dim_local_state
])
)
global_states.set_shape(
[None] * (flat_samples.shape.ndims - 1) + [self.dim_global_state]
)
local_states.set_shape(
[None] * flat_samples.shape.ndims + [self.dim_local_state]
)
return (global_states, local_states)
def flatten_samples(self, samples):
global_states, local_states = samples
flat_shape = tf.stack([
*tf.unstack(tf.shape(global_states)[:-1]),
self.num_nodes * self.dim_local_state
])
return tf.concat([
global_states, tf.reshape(local_states, flat_shape)
], axis=-1)
class FlatJointPrior(FlatDistInfo):
def __init__(self, factor_prior_dist):
super(FlatJointPrior, self).__init__(factor_prior_dist)
self._factor_prior_dist = factor_prior_dist
def log_prob(self, flat_samples):
samples = self.split_flat_samples(flat_samples)
return self._factor_prior_dist.log_prob(samples)
class FlatJointProposal(FlatDistInfo):
def __init__(self, factor_prior_dist, proposal_sample_fn):
super(FlatJointProposal, self).__init__(factor_prior_dist)
self._proposal_sample_fn = proposal_sample_fn
def sample(self):
states, _, log_proposal_prob, _ = self._proposal_sample_fn()
return self.flatten_samples(states), log_proposal_prob
def log_prob(self, flat_samples):
samples = self.split_flat_samples(flat_samples)
return self._factor_proposal_dist.log_prob(samples)
def flat_likelihood_fn_wrapper(factor_prior_dist, make_likelihood):
flat_dist_info = FlatDistInfo(factor_prior_dist)
def _fn(flat_samples):
samples = flat_dist_info.split_flat_samples(flat_samples)
return make_likelihood(particles=samples)
return _fn
def LearnableHIS(global_num_dims, local_num_dims,
num_steps=10, max_step_size=0.2, mass_scale=1.0,
name="LearnableHIS"):
with tf.variable_scope(name):
global_step_size_var = tf.get_variable(
"global_step_size", shape=[global_num_dims],
dtype=tf.float32, trainable=True,
initializer=tf.initializers.zeros
)
local_step_size_var = tf.get_variable(
"local_step_size", shape=[local_num_dims],
dtype=tf.float32, trainable=True,
initializer=tf.initializers.zeros
)
global_step_size = tf.math.multiply(
max_step_size, tf.math.sigmoid(global_step_size_var)
)
local_step_size = tf.math.multiply(
max_step_size, tf.math.sigmoid(local_step_size_var)
)
tb.summary.histogram("HIS/global_step_size", global_step_size)
tb.summary.histogram("HIS/local_step_size", local_step_size)
init_inv_temp_var = tf.get_variable(
"init_inv_temp", shape=[], dtype=tf.float32, trainable=True,
initializer=tf.initializers.zeros
)
init_inv_temp = tf.sigmoid(init_inv_temp_var)
tb.summary.scalar("HIS/init_inv_temp", init_inv_temp)
momentum_scale_factor = tf.constant(mass_scale)
return HamiltonianImportanceSampler(
global_num_dims=global_num_dims,
local_num_dims=local_num_dims,
num_steps=num_steps,
init_inv_temp=init_inv_temp,
global_step_size=global_step_size,
local_step_size=local_step_size,
momentum_scale_factor=momentum_scale_factor
)
def HamiltonianImportanceSampler(
global_num_dims, local_num_dims, num_steps, init_inv_temp,
global_step_size, local_step_size, momentum_scale_factor):
def sched_inv_temp(initial_inverse_temp, t, T):
inv_sqrt = tf.math.divide(1.0, tf.math.sqrt(initial_inverse_temp))
quad_ratio = tf.math.square(
tf.math.divide(tf.to_float(t), tf.to_float(T))
)
denominator = tf.math.add(
inv_sqrt, tf.math.multiply(
tf.math.subtract(1.0, inv_sqrt), quad_ratio
)
)
return tf.math.square(tf.math.divide(1.0, denominator))
def sample(prior, variational_prior, make_likelihood, observations):
'''
Args:
prior: A distribution with event shape (dz) and compatiable
batch shape w.r.t. variational_prior
make_likelihood: A function that returns a distribution with
batch shape (..., N) and event shape (dx)
variational_prior: A distribution with batch shape (..., N) and
event shape (dz)
observation: A (B, N, dx) Tensor.
initial_position: Optional. If given, it should a tensor sampled from
`variational_prior`
Returns:
samples: A (..., N, dz) Tensor.
weights: A (..., N, dz) Tensor.
'''
assert observations.shape.ndims == 3
num_nodes = tf.shape(observations)[1]
flat_num_dims = global_num_dims + num_nodes * local_num_dims
step_size = tf.concat([
global_step_size, tf.tile(local_step_size, [num_nodes])
], axis=0)
half_step_size = tf.math.divide(step_size, 2.0)
momentum_scale_diag = tf.math.multiply(
momentum_scale_factor, tf.ones([flat_num_dims])
)
momentum_inv_variance = tf.math.divide(
1.0, tf.square(momentum_scale_diag)
)
def cond(t, *unused_args):
return tf.less(t, num_steps + 1)
def body(t, position, momentum, inv_temp, *unused_args):
likelihood = make_likelihood(position)
neg_log_prob = -tf.math.add(
prior.log_prob(position), likelihood.log_prob(observations)
)
with tf.control_dependencies([
tf.assert_equal(
tf.shape(neg_log_prob), tf.shape(position)[:-1]
)
]):
gradients = tf.gradients(neg_log_prob, position)
gradient = gradients[0]
with tf.control_dependencies([
tf.assert_equal(tf.shape(gradient), tf.shape(position))
]):
new_momentum_tmp = tf.math.subtract(
momentum,
tf.math.multiply(half_step_size, gradient)
)
new_momentum_tmp_rescaled = tf.math.multiply(
momentum_inv_variance, new_momentum_tmp
)
new_position = tf.math.add(
position,
tf.math.multiply(step_size, new_momentum_tmp_rescaled)
)
new_likelihood = make_likelihood(new_position)
new_neg_log_prob = -tf.math.add(
prior.log_prob(new_position),
new_likelihood.log_prob(observations)
)
new_gradient = tf.gradients(new_neg_log_prob, new_position)[0]
new_momentum = tf.math.subtract(
new_momentum_tmp,
tf.math.multiply(half_step_size, new_gradient)
)
new_inv_temp = sched_inv_temp(init_inv_temp, t, num_steps)
tempering_factor = tf.math.sqrt(
tf.math.divide(inv_temp, new_inv_temp)
)
new_tempered_momentum = tf.math.multiply(
new_momentum, tempering_factor
)
return t + 1, new_position, new_tempered_momentum, new_inv_temp
initial_position, initial_log_v_prior_prob = \
variational_prior.sample()
momentum_loc = tf.zeros_like(initial_position)
initial_tempered_scale_diag = tf.math.divide(
momentum_scale_diag, tf.math.sqrt(init_inv_temp)
)
initial_momentum_dist = tfd.MultivariateNormalDiag(
loc=momentum_loc, scale_diag=initial_tempered_scale_diag
)
initial_momentum = initial_momentum_dist.sample(1)[0]
with tf.control_dependencies([
tf.assert_equal(
tf.shape(initial_momentum), tf.shape(initial_position)
)
]):
initial_momentum = tf.identity(initial_momentum)
t1 = tf.constant(1)
_, position, momentum, inv_temp = tf.while_loop(
cond, body, [t1, initial_position, initial_momentum, init_inv_temp]
)
#
# Static loop:
#
# t, position, momentum, inv_temp = \
# t1, initial_position, initial_momentum, init_inv_temp
# for _ in range(num_steps):
# t, position, momentum, inv_temp = body(
# t, position, momentum, inv_temp
# )
#
final_position, final_momentum, final_inv_temp = \
position, momentum, inv_temp
with tf.control_dependencies([
tf.assert_equal(final_inv_temp, 1.0)
]):
final_position = tf.identity(final_position)
final_momentum_dist = tfd.MultivariateNormalDiag(
loc=momentum_loc, scale_diag=momentum_scale_diag
)
final_likelihood = make_likelihood(final_position)
log_jacobian = tf.math.multiply(
tf.math.divide(util.float(flat_num_dims), 2.0),
tf.math.log(init_inv_temp)
)
log_p = tf.math.add(
tf.math.add(
prior.log_prob(final_position),
final_likelihood.log_prob(observations)
),
final_momentum_dist.log_prob(final_momentum)
)
log_q = tf.math.subtract(
tf.math.add(
initial_log_v_prior_prob,
initial_momentum_dist.log_prob(initial_momentum)
),
log_jacobian
)
return final_position, tf.math.subtract(log_p, log_q)
return sample